
 
 

Delft University of Technology

A discontinuous Galerkin residual-based variational multiscale method for modeling
subgrid-scale behavior of the viscous Burgers equation

Stoter, Stein K.F.; Turteltaub, Sergio R.; Hulshoff, Steven J.; Schillinger, Dominik

DOI
10.1002/fld.4662
Publication date
2018
Document Version
Final published version
Published in
International Journal for Numerical Methods in Fluids

Citation (APA)
Stoter, S. K. F., Turteltaub, S. R., Hulshoff, S. J., & Schillinger, D. (2018). A discontinuous Galerkin residual-
based variational multiscale method for modeling subgrid-scale behavior of the viscous Burgers equation.
International Journal for Numerical Methods in Fluids, 88(5), 217-238. https://doi.org/10.1002/fld.4662

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/fld.4662
https://doi.org/10.1002/fld.4662


Green Open Access added to TU Delft Institutional Repository 

‘You share, we take care!’ – Taverne project 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care


Received: 23 October 2017 Revised: 10 May 2018 Accepted: 17 June 2018

DOI: 10.1002/fld.4662

R E S E A R C H A R T I C L E

A discontinuous Galerkin residual-based variational
multiscale method for modeling subgrid-scale behavior of
the viscous Burgers equation

Stein K.F. Stoter1,2 Sergio R. Turteltaub2 Steven J. Hulshoff2 Dominik Schillinger1

1Department of Civil, Environmental, and
Geo-Engineering, University of
Minnesota, Minneapolis, Minnesota
2Faculty of Aerospace Engineering, Delft
University of Technology, Delft,
The Netherlands

Correspondence
Stein K.F. Stoter, Department of Civil,
Environmental, and Geo-Engineering,
University of Minnesota, Minneapolis,
MN 55455.
Email: Stote031@umn.edu

Funding information
National Science Foundation,
Grant/Award Number: 1651577

Summary

We initiate the study of the discontinuous Galerkin residual-based variational
multiscale (DG-RVMS) method for incorporating subgrid-scale behavior into the
finite element solution of hyperbolic problems. We use the one-dimensional vis-
cous Burgers equation as a model problem, as its energy dissipation mechanism
is analogous to that of turbulent flows. We first develop the DG-RVMS formula-
tion for a general class of nonlinear hyperbolic problems with a diffusion term,
based on the decomposition of the true solution into discontinuous coarse-scale
and fine-scale components. In contrast to existing continuous variational multi-
scale methods, the DG-RVMS formulation leads to additional fine-scale element
interface terms. For the Burgers equation, we devise suitable models for all
fine-scale terms that do not use ad hoc devices such as eddy viscosities but
instead directly follow from the nature of the fine-scale solution. In compar-
ison to single-scale discontinuous Galerkin methods, the resulting DG-RVMS
formulation significantly reduces the energy error of the Burgers solution,
demonstrating its ability to incorporate subgrid-scale behavior in the discrete
coarse-scale system.

KEYWORDS

Burgers turbulence, discontinuous Galerkin methods, residual-based multiscale modeling,
variational multiscale method

1 INTRODUCTION

The variational multiscale (VMS) method is a paradigm for incorporating the fine-scale effects of a partial differential
equation (PDE) into the coarse-scale finite element solution by means of a multiscale model.1-3 So far, the VMS method,
particularly its residual-based format, has played an important role in designing efficient finite element discretization
schemes for hyperbolic problems, including those described by Navier-Stokes equations. On the one hand, its ability to
model subgrid-scale behavior has motivated the use of the VMS method as a large-eddy simulation (LES)–type turbu-
lence model.4-7 On the other hand, its intimate relation to stabilization mechanisms has enabled VMS-based derivations
of stabilized finite element schemes.8-10 Another important paradigm in the context of hyperbolic problems is the discon-
tinuous Galerkin (DG) method.11,12 The significant impact of DG methods in recent years has been based on a series of
advantageous properties, such as its natural stability for advective operators, its local conservation properties, the potential
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use of basis functions of arbitrary order on unstructured meshes, straightforward hp-adaptivity, and its suitability for
parallel computing.13-19

Motivated by the individual success of the VMS and DG paradigms, we have developed a general form of the VMS
method in a DG framework. In the past, there have been efforts to combine the two approaches, such as the multiscale
DG methods introduced in the works of Bochev et al,20 Buffa et al,21 and Hughes et al22 and methods for constructing
discontinuous fine-scale bubble functions.23,24 These methods, however, maintain a continuous solution space for the
coarse-scale problem and use discontinuous representations of the fine scales only. They thus fundamentally differ from
the original VMS idea, that is, the decomposition of the true solution into a discontinuous coarse-scale function space and
an accompanying discontinuous fine-scale function space. While several authors have investigated the enhancement of
DG methods with fine-scale eddy viscosity or wall models,25-31 DG methods based on a residual-based VMS subgrid-scale
model are still largely unexplored. To some extent, this may be attributed to the importance of coarse-scale continuity in
the derivation of the VMS method.2,10,32

The discontinuous Galerkin residual-based variational multiscale (DG-RVMS) method that we have presented recently
in a preliminary work33 no longer relies on the level of continuity of the coarse-scale function space. On the basis of
the decomposition of the true solution into discontinuous coarse-scale and fine-scale components, it features two types
of fine-scale contributions. The first is a fine-scale volumetric term, which is formulated in terms of a residual-based
model that also takes into account the nonhomogeneous fine-scale element boundary values. The second are indepen-
dent fine-scale terms at element interfaces, which are formulated in terms of a new fine-scale “interface model.” In a
preliminary work,33 we demonstrated for the one-dimensional Poisson problem that existing DG formulations, such as
the symmetric interior penalty (IP) method,14 can be rederived by choosing particular fine-scale interface models. The
multiscale formulation thus opens the door for a new perspective on DG methods and their numerical properties. In our
previous work,33 this was demonstrated for the one-dimensional advection-diffusion problem, where the use of upwind
numerical fluxes was shown to be interpretable as an ad hoc remedy for missing volumetric fine-scale terms.

In this paper, we begin the exploration of the DG-RVMS method as a framework for modeling subgrid-scale effects on
the computational coarse-scale solution. Since this work represents our first step in this direction, we restrict ourselves
to the transient nonlinear viscous Burgers equation in one space dimension. Such a model problem provides an initial
indication of the quality of turbulence models for more complex fluid mechanics problems. This is based on the key obser-
vation that the energy dissipation in the solution of the one-dimensional Burgers equation follows an energy cascade that
is analogous to the energy cascade observed in turbulent solutions of the Navier-Stokes equations in three dimensions.34-36

In both systems, the kinetic energy is, on average, transported to higher-frequency modes by nonlinear hyperbolic terms
in the PDE, where it is finally dissipated by the viscous term. Accurate reproduction of this scale interaction in the Burgers
equation constitutes an initial representative test of the performance of the new DG-RVMS formulation and associated
fine-scale models for representing subgrid-scale behavior.

This paper is organized as follows. In Section 2, we review the essential properties of the Burgers equation in view of its
inherent energy cascade. In Section 3, we summarize the DG-RVMS formulation according to our preliminary work33 and
extend it to a general class of nonlinear hyperbolic PDEs. In Section 4, we specify the formulation for the one-dimensional
Burgers equation, discretized by higher-order DG finite elements in space and a fourth-order Runge-Kutta method in time.
In Section 5, we present numerical results that demonstrate the improved accuracy of the finite element solution, when
subgrid scales are represented by fine-scale models in the context of the DG-RVMS formulation. In Section 6, we draw
conclusions and discuss the potential of the DG-RVMS method for modeling subgrid-scale behavior in other contexts.

2 THE BURGERS EQUATION AND ITS MULTISCALE SOLUTION BEHAVIOR

We define the following initial boundary value problem on a periodic one-dimensional domain Ω, based on the forced
viscous Burgers equation: {

ut − 𝜈Δu + (u · ∇)u = g, in Ω × (t0,T ]
u = u(t0), on Ω × {t0},

(1)

where 𝜈 is the viscosity coefficient and g is the source function. The solution u, which can loosely be interpreted as the
velocity, is propagated from its initial condition u(t0) at time t = t0 until t = T.
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2.1 Decomposition into diffusion and transport equations
In fluid dynamics, interactions between scales are often characterized in terms of an energy transfer.36,37 Similarly, the scale
interaction in the solution of the Burgers equation (1) may be characterized by the energy distribution in the frequency
domain. To this end, we define the energy of the Burgers solution to be analogous to the kinetic energy per unit mass of
a fluid as

E = 1
2

u2. (2)

To understand the fine-scale behavior, we separately study the two types of equations found in (1), namely, the parabolic
diffusion equation and the hyperbolic nonlinear transport equation, as follows:

ut − 𝜈ux x = 0 (3)

ut + uux = ut +
1
2
(u2)x = 0. (4)

The nonlinear transport equation (4) is often referred to as the inviscid Burgers equation. When we assume a sufficiently
smooth solution u on a one-dimensional periodic domain, both (3) and (4) conserve the total quantity u. This can be
shown as follows:

x1

∫
x0

(ut − 𝜈uxx)dx = d
dt

x1

∫
x0

udx + 𝜈ux
|||x0

− 𝜈ux
|||x1

= 0

x1

∫
x0

(
ut +

1
2
(u2)x

)
dx = d

dt

x1

∫
x0

udx − 1
2

u2|||x0
+ 1

2
u2|||x1

= 0.

(5)

When x0 and x1 are the end points of the periodic domain Ω, it holds for both equations that

d
dt ∫

Ω

u dx = 0. (6)

2.2 Evolution of energy spectra in the diffusion and transport equations
Despite the conservation of u in both PDEs, the corresponding solutions exhibit very different energy spectra. We illustrate
the evolution of these energy spectra using analytically constructed examples. To obtain the energy spectrum of a solution,
we make use of the discrete Fourier transform (DFT) with N sampling points. The spectral energy associated with wave
number k is defined as

E(k) =

{
𝜋

N2 |DFT(k)|2
, when k = 0

2𝜋
N2 |DFT(k)|2

, when k > 0.
(7)

Making use of Parseval's identity, we can observe that, as N → ∞, the sum of spectral energies is equal to the total solution
energy in one period of the domain, which is normalized to have a width of 2𝜋, as follows:

Etot =
1
2

2𝜋

∫
0

u(x)2dx ≈ 𝜋

N

N−1∑
x̂=0

u
( 2𝜋

N2 x̂
)2

= 𝜋

N2

⌊N∕2⌋∑
n=−⌊N∕2⌋|DFT(n)|2 =

⌊N∕2⌋∑
k=0

E(k). (8)

We consider a periodic domain of width 2𝜋. As an initial condition, we use a repeated Weibull distribution, given by (9),
with shape parameter 𝛼 = 2.5 and scale parameter 𝛽 = 2.5. The initial condition is propagated until t = 4.5.

u(x) = 𝛼

𝛽𝛼
x𝛼−1

0 e−(x0∕𝛽)𝛼 where x0 = x mod 2𝜋 (9)

For the diffusion equation, we use Fourier analysis to obtain the solution at different time instants. Figure 1A illustrates
the evolution of the solution for a viscosity coefficient 𝜈 = 0.3. Figure 1B plots the energy spectra, according to (7), that
correspond to the plotted solutions at different time instants. We observe that both the solutions and the associated energy
spectra show a rapid damping of high-frequency modes, emphasizing coarse-scale solution components.

For the nonlinear transport equation, we use the method of characteristics to advance the solution in time. Figure 2A
illustrates the evolution of the solution in time for the given initial condition. We observe that a shock wave is formed
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(A) Spatial solutions. (B) Energy spectra.

FIGURE 1 Solution of the diffusion equation at different time instants. A, Spatial solutions; B, Energy spectra [Colour figure can be
viewed at wileyonlinelibrary.com]

(A) Spatial solutions. (B) Energy spectra.

FIGURE 2 Solution of the nonlinear transport equation at different time instants. A, Spatial solutions; B, Energy spectra [Colour figure
can be viewed at wileyonlinelibrary.com]

at the final time instant t = 4.5. Figure 2B plots the energy spectra that correspond to the displayed solution fields at
different times. We observe that in contrast to the diffusion equation, the nonlinear transport equation transfers energy
toward the higher frequencies. The sharp gradient at the shock front requires a wide distribution of energy components
in the frequency domain, emphasizing fine-scale solution components.

2.3 Balance of energy spectra and Burgers turbulence
When the diffusion equation (3) and the transport equation (4) are combined to form the Burgers equation (1), the solution
must represent a balance between the two conflicting energy evolutions. We illustrate the balance in the energy spectrum
evolution with a numerical example described in the work of Hulshoff.38 We consider (1) on a periodic domain of width
2𝜋 with viscosity coefficient 𝜈 = 2𝜋∕1000, constant initial condition u(t0) = 1, and source function g(x, t) = 0.1 sin(x− t)
that is periodic in space and time. This problem was investigated in the work of Hulshoff.38 We discretize the domain
with 8192 linear finite elements in space and use the fifth-order accurate explicit Dormand-Prince Runge-Kutta method
in time with a time-step size of Δt = 3.2 ·10−5. The spatial mesh resolution is thereby equal to that of the direct numerical
simulation (DNS) described in the work of Hulshoff,38 whereas we use a smaller time step and a time integration method
of higher order. Figure 3A,B plots solutions and the corresponding energy spectra at different time instants. We observe
that periodic forcing creates a wave that travels to the right through the periodic domain. From t = 6𝜋 onward, the shape
of the wave that is translated through the periodic domain remains practically unchanged, so that the corresponding
energy spectrum is steady.

The steady energy spectrum shown in Figure 3B illustrates the characteristic multiscale solution behavior of the Burgers
equation. The nonlinear hyperbolic nature of the equation results in a solution that approaches a shock wave. In the
frequency response, this corresponds to energy being transferred to the high-frequency modes. At the high-frequency
range, the energy is dissipated by the viscous term of the equation. We note that the noisy behavior past k = 103 is the
result of the limited machine accuracy, where E(k) ≈ 10−32 roughly corresponds to the square of the double-precision
machine epsilon.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


STOTER ET AL. 221

(A) Spatial solutions. (B) Energy spectra.

FIGURE 3 Direct numerical simulation solution of the Burgers problem at different time instants. A, Spatial solutions; B, Energy spectra
[Colour figure can be viewed at wileyonlinelibrary.com]

As we use a sufficiently fine discretization in space and time, all scales of the Burgers solution can be resolved with
sufficient accuracy. In practical applications, however, such DNS discretization is prohibitively expensive, so that coarser
discretizations must be used that can only represent the coarse-scale behavior of the PDE. As conceptually illustrated in
Figure 3B, the coarse-scale finite element solution (denoted by ū) covers only the low-frequency modes. In this situation,
a subgrid-scale model, for example, VMS based, that reproduces the effect of the scale interaction with fine-scale solution
components (denoted by u′) is essential for an accurate coarse-scale solution. Without a suitable subgrid-scale model,
the coarse-scale solution will tend to overemphasize certain energy components, since they cannot be dissipated at the
fine scales.38 In the following sections, we will develop a residual-based fine-scale model that can be used in a DG VMS
formulation of the Burgers equation.

3 VMS FORMULATION IN A DISCONTINUOUS APPROXIMATION SPACE

In this section, we extend the DG-RVMS method, introduced in our preliminary work,33 to nonlinear hyperbolic problems
with a viscous term. For a periodic domain Ω, this class of boundary value problems is defined as{

ut − 𝜈Δu + ∇ · 𝑓 (u) = g(x, t), in Ω × (t0,T ]
u = u(t0), on Ω × {t0},

(10)

where f (u) is a (potentially nonlinear) flux function. We assume that the diffusion coefficient is sufficiently large to ensure
that the true solution is at least C1-continuous in space and time. We emphasize that the class of problems described by (10)
contains the Burgers model problem (1) as a special case.

3.1 Space-time VMS formulation
Following the VMS procedure described in the work of Bazilevs et al,5 we divide the temporal domain into N time slabs
of domain (tn, tn + 1), where n = 0, … ,N − 1. A separate initial boundary value problem can be posed for each time slab.
The initial value within a time slab is the final value of the previous time slab. For discretizing the space-time domain, we
consider the following function space:

n(h) =
{

v ∈ L2 (Ω × [tn, tn+1]
)
∶ v|||Q

∈ 0∀Q ∈ Q, v = h on Ω × {tn}
}
, (11)

where Q is a space-time element in the set of space-time elements Q = {Q} that spans the time slab. Figure 4 illustrates
the space-time domain and its discretization for the case of a one-dimensional spatial domain. Each space-time element is
constructed as a spatial element K advanced in time: Q = K × (tn, tn + 1). For completeness, we also define a computational
mesh  = {K}, which is the set of spatial elements. We emphasize that (11) allows trial and test functions that are
discontinuous from element to element.

We derive the weak formulation of problem (10) on each time slab by the method of weighted residuals that we indi-
vidually apply to each space-time element. This ensures that the derivatives remain well defined within the respective

http://wileyonlinelibrary.com
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FIGURE 4 Definition of the domain and discretization

element domain. Additionally, we impose transmission conditions that act on the element interfaces to couple the ele-
ments and to ensure the uniqueness of the solution. Making use of the definitions summarized in Table 1, the weak
formulation reads as follows:

Findu ∈ n (
u(tn)

)
s.t.:

⎧⎪⎪⎨⎪⎪⎩

∑
Q∈Q

(w,ut − 𝜈Δu + ∇ · 𝑓 (u))Q =
∑

Q∈Q

(w, g)Q ∀w ∈ n(0)

⟦u⟧ = 0, on 𝜕Qx ∀Q ∈ Q⟦∇u⟧ = 0, on 𝜕Qx ∀Q ∈ Q.

(12)

In the next step, we introduce the split of the true solution u into a coarse-scale solution ū and a complementary
fine-scale solution u′. First, we define a subspace of n that represents the coarse-scale function space. This will be the
finite-dimensional discontinuous approximation space n

, ie,

n
(g) =

{
v ∈ L2 (Ω × [tn, tn+1]

)
∶ v|||K

∈ Pp(Q) ∀Q ∈ Q, v = g at t = tn
}
. (13)

Next, the coarse-scale solution is defined as the component of u that can be precisely represented in the coarse-scale
function space. A projector  ∶ n → ̄n is required to obtain ū as a projection of u onto ̄n, ie,

ū ≡ u ∈ ̄n(·). (14)

The fine-scale solution u′ is thereby naturally defined as the difference between the true solution u and the coarse-scale
solution ū, ie,

u′ ≡ u − ū ⇒ u = ū + u′. (15)

TABLE 1 Collection of domain definitions

Jump operator ⟦w⟧ = w+ · n+ + w− · n−

Average operator {{w}} = 1
2
(w+ + w−)

Volume L2-inner product (w,u)K = ∫
K

w · u

Surface L2-inner product ⟨w · n,u⟩𝜕K = ∫
𝜕K

w · nu

Space domain Ω (Periodic)
Element space domain K (With boundary 𝜕K)
Space-time element Q = K × (tn, tn + 1)
Temporal boundary of Q 𝜕Qtn = K × {tn}
Spatial boundary of Q 𝜕Qx = 𝜕K × (tn, tn + 1)
Numerical space domain ΩK =

⋃
K∈

K s.t. (w,u)ΩK
=

∑
K∈

(w,u)K

Numerical space-time domain ΩQ =
⋃

Q∈Q

Q s.t. (w,u)ΩQ
=

∑
Q∈Q

(w,u)Q

Element interfaces Γ =
⋃

K∈
𝜕K s.t. ⟨1, ⟦u⟧⟩Γ =

∑
K∈

⟨1,u · n⟩𝜕K
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According to this definition, the fine-scale solution and the discretization error are equivalent. Thereby, the design of
subgrid-scale models and the design of the finite element scheme are unified. In contrast, for typical LES, the coarse-scale
solution is defined by means of some filtering operator. Then, the development of a model that accurately captures the
fine-scale effects and the task of numerically resolving the coarse-scale solution are two separate objectives.

When projector  is a linear, idempotent, surjective mapping, then the fine-scale solution is a member of the fine-scale
space  ′n. This is shown as follows:

u′ = (u − ū) = u − (u) = 0 ⇒ u′ ∈ ker() ≡  ′n(·). (16)

By construction of the fine-scale function space  ′n, the coarse-scale and fine-scale function spaces form a direct sum
decomposition of the space n, as follows:

n = n
⊕  ′n. (17)

By definition of the direct sum decomposition (17), any possible true solution u ∈ n maps uniquely to a coarse-scale
solution ū ∈ n

and a fine-scale solution u′ ∈  ′n. This ensures the well-posedness of the VMS formulation. By
substituting the split (15) into the weak formulation (12), we obtain the following VMS formulation:

Find ū,u′ ∈ n (
ū(tn)

)
×  ′n (

u′(tn)
)

s.t.:⎧⎪⎪⎨⎪⎪⎩

(
w̄ , ūt + u′

t
)
ΩQ

−
(
𝜈 w̄ , Δū + Δu′)

ΩQ
+

(
w̄ ,∇ · 𝑓 (ū + u′)

)
ΩQ

= (w̄ , g)ΩQ ∀w̄ ∈ ̄n(0)(
w′, ūt + u′

t
)
ΩQ

− (𝜈w′,Δū + Δu′)ΩQ +
(

w′,∇ · 𝑓 (ū + u′)
)
ΩQ

= (w′, g)ΩQ ∀w′ ∈ n(0)⟦ū⟧ = −⟦u′⟧, on 𝜕Qx ∀Q ∈ Q⟦∇ū⟧ = −⟦∇u′⟧, on 𝜕Qx ∀Q ∈ Q.

(18)

In the next step, we will transfer the first line in (18), which we refer to as the coarse-scale weak formulation, into
a discrete DG format. To this end, we first perform element-wise integration by parts on the different terms to find the
following weak formulation:

Find ū ∈ n (
ū(tn)

)
s.t.:

(w̄ , ūt⟩ΩQ − (w̄t ,u′)ΩQ +
∑

Q∈Q

−⟨w̄,u′⟩𝜕Qtn + ⟨w̄,u′⟩𝜕Qtn+1

+ (𝜈∇w̄,∇ū)ΩQ −
∑

Q∈Q

⟨𝜈w̄,∇ū · n⟩𝜕Qx − (𝜈Δw̄,u′)ΩQ +
∑
K∈

[⟨𝜈∇w̄ · n,u′⟩𝜕Qx − ⟨𝜈w̄,∇u′ · n⟩𝜕Qx

]
−

(
∇ · w̄, 𝑓 (ū + u′)

)
ΩQ

+
∑

Q∈Q

⟨
w̄, 𝑓 (ū + u′) · n

⟩
𝜕Qx

= (w̄, g)ΩQ ∀w̄ ∈ ̄n(0).

(19)

We would like to emphasize two points with regard to the weak form of (19). Firstly, it does not yet represent a unique
scale decomposition. The projector that defines this scale decomposition manifests itself in (19) through the fine-scale
terms. When we substitute the fine-scale contributions that precisely correspond to projector  from (16), only then do
we obtain the coarse-scale solution ū corresponding to (14). In practice, however, the exact form of these fine-scale terms
is unknown. Secondly, the element-local derivation leads to basis functions that are completely decoupled from element
to element. Some form of element coupling needs to be incorporated into the weak form in order to retrieve a global
(solvable) system of equations.

Both of these points may be addressed by replacing the fine-scale terms with suitable models. Equation (19) includes two
types of fine-scale terms that represent the complete scale interaction between the fine-scale and coarse-scale solutions.
They can be classified as fine-scale volumetric terms that have been examined in classical continuous VMS formulations
and fine-scale interface terms that originate from the lack of continuity of the coarse-scale basis. We consider these two
types of fine-scale occurrences separately in the following two sections.

3.2 General form of the fine-scale interface model
In (12), the weak form is defined on each element separately, whereas transmission conditions are included to couple the
elements. These conditions must be incorporated into (19) to obtain a global system of equations. To do so, we make use
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of the following identities that follow from the definition of the jump and average operators (see Table 1):

u′±n± = {{u′}}n± + 1
2
⟦u′⟧

∇u′± · n± = {{∇u′}} · n± + 1
2
⟦∇u′⟧, (20)

where the fine-scale solution on either side of an element boundary is written as u′+ or u′−.
At this stage, we incorporate the multiscale-type transmission conditions from (18). The jump of the fine-scale solution

is equal and opposite to the jump of the coarse-scale solution, thereby yielding

u′±n± = {{u′}}n± − 1
2
⟦ū⟧

∇u′± · n± = {{∇u′}} · n± − 1
2
⟦∇ū⟧. (21)

To eliminate all the fine-scale interface dependencies in (19), we write the remaining fine-scale terms as functions of
coarse-scale interface terms, ie,

u′±n± = Φn± − 1
2
⟦ū⟧

∇u′± · n± = Θ · n± − 1
2
⟦∇ū⟧, (22)

where we introduce fine-scale interface models of the form
{{u′}} = Φ ({{ū}}, ⟦ū⟧, {{∇ū}}, ⟦∇ū⟧, … )

{{∇u′}} = Θ ({{ū}}, ⟦ū⟧, {{∇ū}}, ⟦∇ū⟧, … ) .
(23)

By substituting (22) into the element boundary terms in (19), we obtain a global formulation where all elements are
coupled. The choice of the fine-scale interface model and the associated assumptions should directly reflect the physics
of the fine-scale behavior of the specific PDE at hand. In the next section, we will illustrate this for the example of the
Burgers equation. Together with the fine-scale volumetric model, the choice of the fine-scale interface model determines
the projector (14) that defines the split (15) into a coarse-scale solution and a fine-scale solution.

3.3 General form of the fine-scale volumetric model
Classical VMS formulations that treat the fine-scale volumetric term with a residual-based model assume that the
fine-scale solution vanishes on element interfaces.2,5 In a DG setting, the fine-scale solution at element interfaces is gen-
erally nonzero, which follows directly from (21). When the coarse-scale DG solution exhibits large jumps across element
interfaces, the fine-scale solution must have large values as well, thus having a significant impact on the fine-scale volu-
metric term in (19). To accommodate the presence of nonhomogeneous fine-scale solution values at element boundaries,
we propose the following modifications to the classical residual-based volumetric fine-scale model.

We start by considering the fine-scale weak formulation in (18), where we may treat each space-time element separately,
since all functions are discontinuous from element to element. On a space-time element Q, we rewrite the fine-scale
weak formulation in such a way that each term on the left-hand side contains fine-scale components. Assuming that the
fine-scale solution u′ typically represents a small perturbation with respect to the coarse-scale solution ū, we expand the
flux function f into a first-order Taylor approximation that is linear with respect to u′, ie,

𝑓 (ū + u′) = 𝑓 (ū) + d𝑓
du

(ū)u′ + (u′2). (24)

Even though the numerical experiments show that this assumption is often violated, the resulting model approximation
proves effective. We substitute this approximation into the fine-scale weak formulation and obtain

Find ũ′ ∈  ′n (
u′(tn)

)
s.t.:

(
w′, ũ′

t
)

Q −
(
𝜈w′,Δũ′)

Q +
(

w′, ũ′ ∇ · d𝑓
du

(ū)
)

Q
+

(
w′,

d𝑓
du

(ū)∇ · ũ′
)

Q

=
(

w′, g − ūt + 𝜈Δū − ∇ · 𝑓 (ū)
)

Q =
(

w′,ū
)

Q ∀w′ ∈ n(0),
(25)

where ũ′ is the approximate fine-scale solution and the source term ū on the right-hand side is the residual of the
coarse-scale solution. We observe that the left-hand side in (25) is linear with respect to ũ′, such that it can be rewritten as

Find ũ′ ∈  ′n (
u′(tn)

)
s.t.:

(
w′,ūũ′)

Q =
(

w′,ū
)

Q ∀w′ ∈ n(0), (26)
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where the linear differential operator ū corresponds to the differential operator on the left-hand side of (25), assuming
ū is known. Next, we use Green's identities to rewrite the left-hand side term in (26) as

Find ũ′ ∈  ′n (
u′(tn)

)
s.t.:

(∗
ūw′, ũ′)

Q + k(w′, ũ′; 𝜕Q) =
(

w′,ū
)

Q ∀w′ ∈ n(0), (27)

where k(·, ·; 𝜕Q) is the collection of element interface terms that act on 𝜕Q and appear as a result of integration by parts,
and ∗

ū is the adjoint of ū.
The definition of the Green's function for the linearized PDE at hand is

⎧⎪⎨⎪⎩
G(x, 𝑦) ∈ n(0)
∗

ūG(x, 𝑦) = 𝛿x, for 𝑦 ∈ Q
G(x, 𝑦) = 0, for 𝑦 ∈ 𝜕Q.

(28)

We choose the Green's function defined in (28) as the test function w′. Substituting G(x, y) in place of w′ in (27), we obtain

∫
Q

∗G(x, 𝑦) ũ′ d𝑦 = ∫
Q

𝛿x ũ′ d𝑦 = ũ′ = −k(G(x, 𝑦), ũ′; 𝜕Q) + ∫
Q

G(x, 𝑦)ūd𝑦, (29)

where the parameter of integration and differentiation is y.
Equation (29) is driven by the coarse-scale residual via its last term. It also depends on the fine-scale boundary con-

ditions via the functional k. To close the formulation, the fine-scale boundary values ũ′ must be written in terms of the
coarse-scale solution, for which the identities in (21) can be used. Since the fine-scale solution ũ′ occurs in the volumetric
term in a weighted sense, we can implement all Green's functions as averaged quantities, ie,

(∗w̄,u′)
Q ≈

(∗w̄,−k(G(x, 𝑦), ũ′; 𝜕Q)
)

Q +
⎛⎜⎜⎝∫Q G(x, 𝑦)ū d𝑦

⎞⎟⎟⎠Q

(30)

≈ −
⎛⎜⎜⎝∗w̄,

∑
F∈𝜕Q

𝛾F ∫
F

(
Φ − 1

2
⟦ū⟧ · n

)⎞⎟⎟⎠Q

+ (∗w̄, 𝜏ū)Q, (31)

where F denotes the faces (3D), edges (2D), or nodes (1D) of the element K, and 𝜏 and 𝛾F are averaged Green's function
quantities. Relation (31) is inspired by the steady advection-diffusion equation with constant coefficients in one dimen-
sion, where it is an identity when discretized with linear basis functions. In (31), the averaged Green's function quantities
are defined as

𝜏 = 1|Q| ∫
Q
∫

Q

G(x, 𝑦)d𝑦dx 𝛾F = 1|Q| ∫
Q
∫

F

(x, 𝑦)d𝑦dx, (32)

where  is a function derived from the Green's function, which depends on the definition of k, as we will show for the
example of the Burgers equation in the next section.

4 A DG-RVMS FORMULATION FOR THE BURGERS EQUATION

In this section, we apply the general DG-RVMS framework described above to a one-dimensional viscous Burgers
equation, which can be obtained from (10) with the following flux function:

𝑓 (u) = 1
2

u2. (33)

The space-time finite element setting used in the previous section provides a mathematically rigorous foundation, where
the coarse-scale solution can be defined as some projection onto a finite element approximation space in both the temporal
and the spatial dimension. In this framework, the volumetric fine-scale model can be defined throughout the whole
space-time domain. The resulting model involves all the differential operators, including the time derivative. However,
in most practical applications, finite difference schemes are commonly preferred for discretization in time. We therefore
switch to a formulation that uses a finite element formulation in space only. In order to use the same volumetric fine-scale
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models, we interpret a finite difference step in time from tn to tn + 1 as one time slab from the space-time formulation. The
new weak formulation is written as

Find u ∈  s.t.:

⎧⎪⎪⎨⎪⎪⎩

(
w,ut − 𝜈ux x + 1

2
(u2)x

)
ΩK

= (w, g)ΩK
∀w ∈ (0)⟦u⟧ = 0, onΓ⟦∇u⟧ = 0, onΓ,

(34)

where  is the purely spatial function space equivalence of (11).

4.1 The coarse-scale DG-RVMS system
Using the multiscale split (15) and integration by parts as described in Section 3, we obtain the following coarse-scale
weak formulation, analogous to (19):

Find ū ∈  s.t.:(
w̄, ūt + u′

t
)
ΩK

+ (w̄x, 𝜈ūx)ΩK
−

(
w̄x x, 𝜈u′)

ΩK
+

∑
K∈

[⟨w̄n, 𝜈ūx⟩𝜕K −
⟨

w̄n, 𝜈u′
x
⟩
𝜕K −

⟨
w̄x, 𝜈u′ n

⟩
𝜕K

]
− 1

2
(

w̄x, ū2)
ΩK

−
(

w̄x, ūu′)
ΩK

− 1
2
(

w̄x,u′2)
ΩK

+
∑
K∈

1
2

⟨
w̄n,

(
ū + u′)2

⟩
𝜕K

= (w̄, 𝑓 )ΩK ∀w̄ ∈  .

(35)

First, we focus on the interface terms that are related to the diffusion term. We substitute the identity (21) and obtain∑
K∈

[⟨w̄n, 𝜈ūx⟩𝜕K −
⟨

w̄n, 𝜈u′
x
⟩
𝜕K − ⟨w̄x, 𝜈u′ n⟩𝜕K

]
=

∑
k∈

[⟨w̄n, 𝜈ūx⟩𝜕K −
⟨

w̄n, 𝜈
{{

u′
x
}}⟩

𝜕K +
⟨1

2
w̄, 𝜈⟦ūx⟧⟩

𝜕K
+ ⟨w̄x n, 𝜈{{u′}}⟩𝜕K −

⟨1
2

w̄x, 𝜈⟦ū⟧⟩
𝜕K

]
=

∑
k∈

[⟨w̄n, 𝜈ūx⟩𝜕K
]
−

⟨⟦w̄⟧, 𝜈 {{u′
x
}}⟩

Γ + ⟨{{w̄}}, 𝜈⟦ūx⟧⟩Γ + ⟨⟦w̄⟧x, 𝜈{{u′}}⟩Γ − ⟨{{w̄x}}, 𝜈⟦ū⟧⟩Γ
= −

⟨⟦w̄⟧, 𝜈 {{u′
x
}}⟩

Γ − ⟨⟦w̄⟧, 𝜈{{ūx}}⟩Γ + ⟨⟦w̄⟧x, 𝜈{{u′}}⟩Γ − ⟨{{w̄x}}, 𝜈⟦ū⟧⟩Γ,
(36)

where, from the third to the fourth line, we use the following identity:

⟨{{w̄}}, ⟦ūx⟧⟩𝜕K − ⟨w̄, ūxn⟩𝜕K+ − ⟨w̄, ūxn⟩𝜕K−

= ∫
K

(1
2
(w̄+ + w̄−)

(
ū+

x n+ + ū−
x n−) − (w̄ūxn)+ − (w̄ ūxn)−

)
= ∫

K

1
2
(
−w̄+n+ū+

x − w̄+n+ū−
x − w̄−n−ū+

x − w̄−n−∇ū−)
= −∫

K

1
2
(w̄+n+ + w̄−n−)

(
ū−

x + ū+
x
)
= −⟨⟦w̄⟧, {{ūx}}⟩𝜕K .

(37)

Next, we focus on the interface terms that are related to the nonlinear advective term. Due to the continuity of the true
solution u, we can infer that ū + u′ = u is single valued on element interfaces. We can therefore write

∑
K∈

1
2

⟨
w̄n,

(
ū + u′)2

⟩
𝜕K

= 1
2
⟨⟦w̄⟧,u2⟩

Γ = 1
2
⟨⟦w̄⟧, {{u}}2⟩

Γ = 1
2
⟨⟦w̄⟧, {{ū + u′}}2⟩

Γ

= 1
2

⟨⟦w̄⟧, ({{ū}} + {{u′}}
)2
⟩
Γ
= 1

2
⟨⟦w̄⟧, {{ū}}2 + 2{{ū}}{{u′}} + {{u′}}2⟩

Γ.

(38)
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By substituting the manipulated interface terms of (36) and (38) into (35), we obtain the following coarse-scale weak
formulation:

Find ū ∈  s.t.:(
w̄, ūt + u′

t
)
ΩK

+ (w̄x, 𝜈ūx)ΩK
−

(
w̄x x, 𝜈u′)

ΩK
− ⟨⟦w̄⟧, 𝜈 {{ūx}}⟩Γ − ⟨{{w̄x}}, 𝜈⟦ū⟧⟩Γ − ⟨⟦w̄⟧, 𝜈 {{u′

x
}}⟩

Γ + ⟨⟦w̄x⟧, 𝜈 {{u′}}⟩Γ
− 1

2
(

w̄x, ū2 )
ΩK

−
(

w̄x, ūu′)
ΩK

− 1
2
(

w̄x,u′2 )
ΩK

+ 1
2
⟨⟦w̄⟧, {{ū}}2 + 2{{ū}}{{u′}} + {{u′}}2⟩

Γ = (w̄, 𝑓 )ΩK ∀w̄ ∈  . (39)

We emphasize again that no approximations or simplifications have been introduced until this point. This means that the
coarse-scale formulation (39) captures the complete multiscale nature of the PDE.

4.2 A fine-scale interface model for the Burgers equation
To eliminate the fine-scale dependencies in the interface terms of (39), we propose the following fine-scale interface
model, in reference to (23): {

Φ = {{u′}} = 0, on Γ
Θ =

{{
u′

x
}}
= −(𝜂h−1 + 1

2𝜈
|{{ū}}|)⟦ū⟧, on Γ,

(40)

where 𝜂 is a model parameter, h is the mesh size, and the viscous-like term 𝜈 is assumed constant.
Substituting the first line of (40) in (39) removes the fine-scale interface term that originates from the Laplace operator

and all fine-scale interface terms that originate from the nonlinear advection term. We then substitute the second line of
(40) into the remaining fine-scale interface term. We combine the result with the coarse-scale nonlinear advection term
as follows:

−
⟨⟦w̄⟧, 𝜈 {{

u′
x
}}⟩

Γ +
1
2
⟨⟦w̄⟧, {{ū}}2⟩

Γ =
⟨⟦w̄⟧, 𝜈𝜂h−1⟦ū⟧⟩Γ +

1
2

⟨⟦w̄⟧, {{ū}}
(

sign ({{ū}}) 1
2
⟦ū⟧ + {{ū}}

)⟩
Γ
. (41)

The last term in (41) can be manipulated as follows:
1
2
⟨⟦w̄⟧, {{ū}}

(
sign({{ū}})⟦ū⟧ + {{ū}}

)⟩
Γ = 1

2

⟨⟦w̄⟧, {{ū}}
(

sign({{ū}})1
2
(ū− − ū+) + 1

2
(ū− + ū+)

)⟩
Γ

=

{ 1
2
⟨⟦w̄⟧, {{ū}} ū−⟩Γ, if{{ū}} > 0

1
2
⟨⟦w̄⟧, {{ū}} ū+⟩Γ, if{{ū}} < 0

= 1
2

⟨⟦w̄⟧, {{ū}} ū
(
lim
𝜖→0

x − 𝜖{{ū}}
)⟩

Γ
,

(42)

where at each interface, ū− is evaluated on the element on the left and ū+ is evaluated on the element on the right.
The final coarse-scale variational formulation that we obtain with the fine-scale interface model (40) is

Find ū ∈  s.t.:(
w̄, ūt + u′

t
)
ΩK

+ (w̄x, 𝜈ūx)ΩK
−

(
w̄x x, 𝜈u′)

ΩK
− ⟨⟦w̄⟧, 𝜈 {{ūx}}⟩Γ − ⟨{{w̄x}}, 𝜈⟦ū⟧⟩Γ + ⟨⟦w̄⟧, 𝜂h−1 𝜈⟦ū⟧⟩Γ

− 1
2
(

w̄x, ū2 )
ΩK

−
(

w̄x, ūu′)
ΩK

− 1
2
(

w̄x,u′2 )
ΩK

+ 1
2

⟨⟦w̄⟧, {{ū}} ū
(
lim
𝜖→0

x − 𝜖{{ū}}
)⟩

Γ
= (w̄, 𝑓 )ΩK ∀w̄ ∈  .

(43)
Our DG-RVMS formulation originates completely from a VMS point of view. It is interesting to note, however, that it
features components that closely resemble classical DG formulations. For example, the fine-scale interface model can be
interpreted as combining an IP treatment of the diffusion term with an upwinding treatment of the advective term. For
the upwind method, an advective velocity of magnitude u = {{ū}} is used. Therefore, the DG-RVMS point of view offers a
multiscale interpretation of classical formulations. In particular, we may conclude that when the fine-scale volume terms
are treated appropriately, the use of an IP method combined with an upwind method implicitly enforces a projector that
corresponds to the fine-scale interface model (40). We refer the interested reader to our earlier work,33 where we studied
the nature of this projector in more detail.

4.3 A fine-scale volumetric model for the Burgers equation
To eliminate the fine-scale dependencies in the volumetric terms of (39), we derive a volumetric fine-scale model based on
the space-time fine-scale weak formulation described in Section 3.3. We note that we neglect the fine-scale time derivative
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in the first term of (43), which is common practice.5 For the one-dimensional case, we develop a fine-scale volumetric
model of the form

u′ ≈ 𝜏ū +
1
2
𝛾0⟦ū⟧||||x𝑗

− 1
2
𝛾1⟦ū⟧||||x𝑗+1

, (44)

where the point xj corresponds to the left node of the current element in which u′ is to be modeled, and x j + 1 to the right
node. We observe that relation (44) corresponds to (31), with the fine-scale interface model Φ from (40).

We obtain the definitions of 𝜏, 𝛾0, and 𝛾1 from the fine-scale problem. Following the residual-based strategy described
in Section 3.3, the fine-scale problem can be written as

Find ũ′ ∈  ′(0)s.t.:
(

w′, ũ′
t − 𝜈ũ′

x x + ūxũ′ + ūũ′
x
)

Q =
(

w′,ū
)

Q ∀w′ ∈ (0). (45)

Thereby, we may define the linearized fine-scale differential operator, its adjoint, and the accompanying interface
integrals as

 = d
dt

+ ūx + ū d
dx

− 𝜈
d2

dx2

∗ = − d
dt

+ ūx − ū d
dx

− 𝜈
d2

dx2

k(w′,u′; 𝜕Q) = −⟨w′,u′⟩𝜕Qtn + ⟨w′,u′⟩𝜕Qtn+1 + ⟨w′ n, ūu′⟩𝜕Qx −
⟨

w′ n, 𝜈u′
x
⟩
𝜕Qx

+
⟨

w′
x, 𝜈u′n

⟩
𝜕Qx

,

(46)

where 𝜕Qtn refers to the temporal boundary of 𝜕Q, and 𝜕Qx to the spatial boundary, as defined in Table 1.
We construct the parameter 𝜏 associated to the Burgers equation by means of asymptotic scaling arguments. The behav-

ior of the PDE depends on the set of parameters 𝜈, ūx, and ū. Their values determine which differential operators dominate
the collective 𝜏. We expect the following asymptotic behavior:

1 ≫ 𝜈, ūx, ū ⇒ 𝜏 → 𝜏t =
(tn+1 − tn)2

2h
Cq−1

1

ūx ≫ 1, 𝜈, ū ⇒ 𝜏 → 𝜏R = 1
ūx

C p−1
2

ū ≫ 1, ūx, 𝜈 ⇒ 𝜏 → 𝜏A = h
2ū

C p−1
2

𝜈 ≫ 1, ū, ūx ⇒ 𝜏 → 𝜏D = h2

12𝜈
C p−1

2 , (47)

where 𝜏 t corresponds to the Green's function of a purely temporal differential operator d
dt

. Similarly, 𝜏R, 𝜏A, and 𝜏D cor-
respond to the reactive, advective, and diffusive components, respectively. Explicit expressions for these Green's function
quantities are derived in the Appendix. These expressions are suitable for both uniform and nonuniform meshes due to
their element-local derivation.

We add factors C q−1
1 and C p−1

2 to mitigate the averaging error introduced in (31) when using higher-order basis functions.
Here, p and q denote the polynomial degree of the finite element discretization and the convergence rate of the finite
difference time integration method. We note that coefficients C1 and C2 should be smaller than 1 to enable convergence.
In our numerical experiments, however, we found that larger values sometimes yield better results.

The final 𝜏 is constructed from the single components in (47) as follows:

𝜏 = 1√(
1
𝜏t

)2
+

(
1
𝜏R

)2
+

(
1
𝜏A

)2
+

(
1
𝜏D

)2
, (48)

where we follow the asymptotic scaling argument that is commonly used to derive stabilization parameters in stabilized
finite element methods.39

The definition of 𝛾 can be based on the interface integrals in (46), where we replace the test function w′ by the
Green's function. Since the Green's function is, by definition, zero on the element boundaries, only the last term remains.
Comparing this term to the definition of 𝛾 in (32), we find

(x, 𝑦) = 𝜈
d

d𝑦
G(x, 𝑦). (49)
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Similar to the construction of 𝜏, a 𝛾 expression can be derived for each differential operator (temporal, reactive, advective,
and diffusive). As shown in the Appendix, for the present case, only the 𝛾 that corresponds to the diffusion operator is
nonzero. In our numerical experiments, we will use

𝛾0 = 1
2𝜈

C3

𝛾1 = − 1
2𝜈

C3. (50)

We introduce another factor, C3, for the same reason as above, ie, to mitigate the averaging error.

5 NUMERICAL EXPERIMENTS

In this section, we will illustrate the potential of the DG-RVMS formulation and the associated fine-scale models to
improve the accuracy of the finite element solution by incorporating subgrid-scale behavior of the one-dimensional
Burgers model problem. To this end, we return to the Burgers benchmark that we introduced in Section 2.3 and whose
solution and energy spectra are plotted in Figure 3. We use the result of the DNS discretization presented in Section 2.3
as the reference solution. Our DG-RVMS formulation is based on (43), with the volumetric fine-scale model derived in
Section 4.3. We use the classical explicit time-accurate fourth-order Runge-Kutta method (RK4) for time integration,
where we interpret the time-step tn → tn + 1 as a time slab in the volumetric fine-scale model. The RK4 algorithm pro-
duces a solution ū at tn + 1 based on the known solution at tn and a weighted average of intermediate time derivatives.
The intermediate time derivatives are obtained from the coarse-scale formulation, where we use the solution ū of the
previous intermediate computation for the explicit treatment of all coarse-scale terms. This includes the residual and
interface jumps in the volumetric fine-scale model (44). The following numerical experiments use a time-step size of
Δt = 𝜋∕(8pN), where p is the polynomial order of the DG basis functions and N is the total number of elements. The
RK4 method is fourth-order accurate in terms of the total accumulated error but fifth-order accurate in terms of the local
truncation error, and hence, q = 5 in (47).

In these numerical experiments, we compare three different DG formulations. These are the “No volumetric model”
formulation, the “CG-RVMS” formulation, and the “DG-RVMS” formulation. Their finite element schemes are devised
as follows.

• No volumetric model: This scheme still uses the fine-scale interface model (40) to couple the elements. The volumetric
model derived in Section 4.3 is completely omitted. Effectively, this reduces to a DG formulation with an IP treatment
of the diffusive term and an upwind treatment of the advective term.

• CG-RVMS: This formulation adds the classical residual-based fine-scale model onto the “No volumetric model”
scheme. This only concerns the 𝜏-term in (44). Consequently, it is implicitly assumed that the fine-scales vanish on
element boundaries.

• DG-RVMS: This formulation makes use of the complete model (44). In contrast to the above models, we also incorporate
the effect of the nonvanishing fine-scale element boundary values in the volumetric residual-based fine-scale model.

As a final note regarding these formulations, we would like to emphasize once more that the CG-RVMS model repre-
sents the current standard in turbulence modeling in the finite element framework. It is widely adopted in isogeometric
or continuous Galerkin finite element computations. It will thus be the benchmark subgrid-scale model that we use to
determine the effectiveness of the DG-RVMS variant proposed herein. For an overview of other subgrid-scales, we refer
the reader to the work of Li and Wang.40

5.1 Accuracy in solution fields
Figures 5-7 show the resulting solutions at times t = 7.75𝜋 and t = 8𝜋, obtained with four DG elements and higher-order
basis functions of polynomial order p = 2, p = 3, and p = 4, respectively. At time t = 7.75𝜋, the wave front lies in the
center of an element, and at time t = 8𝜋, it lies in between two elements.

The residual-based fine-scale model that corresponds to the “CG-RVMS” solution made use of the constants C1 = 3
and C2 = 0.7. The residual-based model that corresponds to the “DG-RVMS” solution uses the same constants C1 = 3
and C2 = 0.7. It also includes the newly introduced jump terms in formulation (44), where the additional coefficient
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(A) (B)

FIGURE 5 Example solutions with and without the proposed discontinuous Galerkin residual-based variational multiscale (DG-RVMS)
model, using four discontinuous Galerkin elements of p = 2. A, At t = 7.75𝜋; B, At t = 8𝜋. CG-RVMS, continuous Galerkin residual-based
variational multiscale; DNS, direct numerical simulation [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 6 Example solutions with and without the proposed discontinuous Galerkin residual-based variational multiscale (DG-RVMS)
model, using four discontinuous Galerkin elements of p = 3. A, At t = 7.75𝜋; B, At t = 8𝜋. CG-RVMS, continuous Galerkin residual-based
variational multiscale; DNS, direct numerical simulation [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 7 Example solutions with and without the proposed discontinuous Galerkin residual-based variational multiscale (DG-RVMS)
model, using four discontinuous Galerkin elements of p = 4. A, At t = 7.75𝜋; B, At t = 8𝜋. CG-RVMS, continuous Galerkin residual-based
variational multiscale; DNS, direct numerical simulation [Colour figure can be viewed at wileyonlinelibrary.com]
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is C3 = 0.3. Each Figure compares the RVMS solutions to the DNS reference solution and the “No volumetric model”
solution. We observe that with respect to the DNS reference, the RVMS formulation consistently improves the accuracy
of the solution. The oscillations within the elements become smaller, and the jumps from element to element decrease.
We observe that the CG-RVMS solution is slightly less accurate than the DG-RVMS solution.

5.2 Convergence of kinetic energy
As shown in Figures 5-7, the DG method that excludes a volumetric model is already performing very well by itself due
to the simplicity of the model problem. Hence, the quality of the solution field itself is not the most appropriate indicator
for the performance of the DG-RVMS method. In Section 2, we reviewed the scale interaction in the Burgers equation,
which revolves around the transfer of energy between coarse-scale and fine-scale solution components. We can therefore
expect that the error in the total kinetic energy, as defined in (8), is a much more adequate measure for the performance
of the DG-RVMS method and its associated fine-scale models.

In the following, we examine the convergence of the relative total kinetic energy of the solution at time t = 8𝜋, when
the DG discretization in space is uniformly refined. The relative energy is computed with respect to the energy of the DNS
solution averaged over the time window 6𝜋 ≤ t ≤ 8𝜋, where the wave form of the solution is steady.

We perform three sets of experiments to assess the energy convergence of the DG-RVMS formulation, which we report
in Figures 8-10 for DG meshes of polynomial order p = 2, p = 3, and p = 4, respectively. In each Figure, we plot the
energy errors that were obtained with the DG-RVMS model and the CG-RVMS model (C3 = 0) and without a volumetric
fine-scale model.

FIGURE 8 Energy convergence with uniform mesh refinement at t = 8𝜋 for basis functions of p = 2. CG-RVMS, continuous Galerkin
residual-based variational multiscale; DG-RVMS, discontinuous Galerkin residual-based variational multiscale; Dofs, degrees of freedom
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Energy convergence with uniform mesh refinement at t = 8𝜋 for basis functions of p = 3. CG-RVMS, continuous Galerkin
residual-based variational multiscale; DG-RVMS, discontinuous Galerkin residual-based variational multiscale; Dofs, degrees of freedom
[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10 Energy convergence with uniform mesh refinement at t = 8𝜋 for basis functions of p = 4. CG-RVMS, continuous Galerkin
residual-based variational multiscale; DG-RVMS, discontinuous Galerkin residual-based variational multiscale; Dofs, degrees of freedom
[Colour figure can be viewed at wileyonlinelibrary.com]

Each of the Figures is complemented by a table that shows the coefficients that were used at different mesh resolutions.
For the DG-RVMS case, coefficients C1 and C2 were kept at a constant value of 0.7, whereas coefficient C3 was optimized
empirically. For the CG-RVMS case, coefficient C2 was kept at 0.7, and coefficient C1 was optimized empirically. Generally,
the optimal value for the coefficients was found to decrease with mesh refinement.

We observe that the DG-RVMS method is able to decrease the relative energy error of the solution by almost one order
of magnitude with respect to the DG method without a volumetric fine-scale model. The three Figures confirm that the
improvement in energy accuracy occurs consistently for the complete range of mesh sizes and for all polynomial orders
examined. It is interesting to see that the CG-RVMS model does not improve the energy accuracy. This indicates that the
fine-scale boundary values included in the fine-scale volumetric model as proposed in Section 3.3 play a pivotal role for
the optimal performance of the DG-RVMS formulation.

5.3 Accuracy of energy spectra
As a final measure of accuracy, we plot the energy spectra for a set of solutions. As discussed in Section 2, we can obtain
these spectra by means of a fast Fourier transform that transfers a solution field from its spatial representation to its
frequency domain. The number of interpolation points that are used for the transform is twice the number of degrees of
freedom. Frequencies higher than that purely capture the piecewise polynomial nature of the solution field, leading to
overlapping curves for the solutions with or without the volumetric model. We average the energy spectra over the time
window 6𝜋 ≤ t ≤ 8𝜋, where the wave form of the solution is steady. We perform this analysis for models that include,
and exclude, the DG-RVMS fine-scale volumetric model. Figures 11-13 plot the energy spectra and the associated error

(A) Spectra. (B) Absolute error.

FIGURE 11 Spectral energy obtained with eight discontinuous Galerkin elements of p = 2 and 24 degrees of freedom. A, Spectra;
B, Absolute error. DG-RVMS, discontinuous Galerkin residual-based variational multiscale; DNS, direct numerical simulation [Colour figure
can be viewed at wileyonlinelibrary.com]
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(A) Spectra. (B) Absolute error.

FIGURE 12 Spectral energy obtained with four discontinuous Galerkin elements of p = 3 and 16 degrees of freedom. A, Spectra;
B, Absolute error. DG-RVMS, discontinuous Galerkin residual-based variational multiscale; DNS, direct numerical simulation [Colour figure
can be viewed at wileyonlinelibrary.com]

(A) Spectra. (B) Absolute error.

FIGURE 13 Spectral energy obtained with four discontinuous Galerkin elements of p = 4 and 20 degrees of freedom. A, Spectra;
B, Absolute error. DG-RVMS, discontinuous Galerkin residual-based variational multiscale; DNS, direct numerical simulation [Colour figure
can be viewed at wileyonlinelibrary.com]

for each wave number for three coarse meshes of polynomial degree p = 2, p = 3, and p = 4, respectively. The error in
the spectra is computed with respect to the spectrum of the DNS solution averaged over the time window 6𝜋 ≤ t ≤ 8𝜋.

We observe that the DG-RVMS method consistently performs better than the variant that excludes the volumet-
ric fine-scale model. This improvement occurs primarily in the low-frequency range, where the spectral energy is
significantly closer to the DNS reference spectrum.

This observation confirms that the DG-RVMS formulation reduces the spurious energy buildup in the low-frequency
modes. This issue was discussed in the work of Hulshoff38 for discretization schemes without a subgrid-scale model in
the context of the one-dimensional Burgers equation. Comparing the errors in Figures 11-13, we see that the DG-RVMS
formulation becomes more effective for higher-order DG discretizations.

6 SUMMARY, CONCLUSIONS, AND OUTLOOK

In this paper, we extended the DG-RVMS method to nonlinear hyperbolic problems. Our method is based on the decom-
position of the solution into coarse-scale and fine-scale components in each DG element, while using multiscale-type
transmission conditions to tie discontinuous elements together. We showed that the effect of the fine scales on the
coarse-scale part of the weak formulation manifests itself in the form of two types of fine-scale terms, which we classified
as fine-scale volumetric terms and fine-scale interface terms.

For the one-dimensional Burgers equation, we closed the formulation on the coarse-scale level by devising suitable
fine-scale models that can replace the exact, but unknown, fine-scale volumetric and interface terms. With our fine-scale
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models, we naturally obtained an IP-type treatment of the viscous term and an upwind-type treatment of the advective
term. The fine-scale volumetric model proposed in this paper incorporates nonhomogeneous fine-scale boundary values,
which appear as volumetric integrals of the jump of the coarse-scale solution across element interfaces. We emphasize
that our fine-scale models do not use any ad hoc devices such as eddy viscosities. All the models that we propose are
consistent and inspired mathematically by the fine-scale equation rather than phenomenologically. The parameters that
remain are understood in terms of their mathematical interpretation and their potential range of values.

Our numerical experiments with the one-dimensional Burgers equation demonstrate that our DG-RVMS formulation
and the associated fine-scale models can represent the energy dissipation mechanism of the Burgers problem at very
coarse meshes, when the dissipative high-frequency modes are unresolved. The solutions of our DG-RVMS method reduce
the error of the total kinetic energy by approximately one order of magnitude compared to a DG method without a volu-
metric subgrid-scale model. By investigating the resulting energy spectra, we showed that the added dissipation targets the
correct wave modes. We also showed that the improved energy accuracy is predominantly the effect of the new jump term
in the volumetric fine-scale model, which indicates that this fine-scale model truly incorporates a missing subgrid-scale
component in the formulation.

The quality of the DG-RVMS results indicates that our new fine-scale models constitute an adequate subgrid-scale
model for the Burgers equation. On the basis of the similarities in kinetic energy transport and dissipation in the Burgers
and Navier-Stokes cascades, one can anticipate that the improved consistency in representing the effects of unresolved
scales provided by the current DG-RVMS approach makes it an attractive candidate for application to the LES of turbulent
flows in the context of higher-order DG methods.
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APPENDIX

GREEN'S FUNCTIONS AND 𝝉 AND 𝜸 EXPRESSIONS

In this Appendix, we derive Green's functions for the differential diffusion, advection, and reaction operators that are
involved in the linearized fine-scale problem associated with the Burgers equation. We also derive the corresponding
expressions for 𝜏 and 𝛾 .

A.1 Diffusion operator

 = −𝜈Δ ∗ = −𝜈Δ

The Green's function for a one-dimensional diffusion operator is defined as

{
−𝜈 d2

d𝑦2 G(x, 𝑦) = 𝛿x, for 𝑦 ∈ (x𝑗 , x𝑗+1)

G(x, 𝑦) = 0, for 𝑦 ∈ {x𝑗 , x𝑗+1}.
(A1)

We integrate the first line and obtain a step function of magnitude −𝜈−1, as follows:

d
dx

G(x, 𝑦) =

{
C1, when𝑦 < x
C1 − 1

𝜈
, when𝑦 ≥ x.

(A2)

Further integration results in a Green's function that is piecewise linear. The slope is defined according to (A2). The
following structure also satisfies the boundary conditions:

G(x, 𝑦) =
⎧⎪⎨⎪⎩

g1(x, 𝑦) = C1 (𝑦 − x𝑗), when𝑦 < x

g2(x, 𝑦) =
(

C1 − 1
𝜈

)
(𝑦 − x𝑗+1), when𝑦 ≥ x.

(A3)

The final condition to obtain C1 is based on the required continuity of G(x, y). A discontinuous Green's function would
not satisfy (A1). Therefore, we have

g2(x, x) = g1(x, x) = C1 (x − x𝑗) = (C1 − 𝜈−1)(x − x𝑗+1) (A4)

⇒ C1 = −1
𝜈

x − x𝑗+1

x𝑗+1 − x𝑗
. (A5)

After simplification, we obtain the following Green's function for the diffusion operator:

G(x, 𝑦) =
⎧⎪⎨⎪⎩

g1(x, 𝑦) = − 1
𝜈

(
x−x𝑗+1

x𝑗+1−x𝑗

)
(𝑦 − x𝑗), when 𝑦 < x

g2(x, 𝑦) = − 1
𝜈

(
x−x𝑗

x𝑗+1−x𝑗

)
(𝑦 − x𝑗+1), when 𝑦 ≥ x.

(A6)
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We obtain the averaged quantity 𝜏 from definition (32). Note that the domains of integration, and averaging, become
the element spatial domain. We translate the domain of the PDE to the origin, replacing xj and xj + 1 with 0 and h. This
significantly simplifies integration.

𝜏 = 1
h

h

∫
0

h

∫
0

G(x, 𝑦)dx d𝑦 = 1
h

h

∫
0

x

∫
0

g1(x, 𝑦)d𝑦dx + 1
h

h

∫
0

h

∫
x

g2(x, 𝑦)d𝑦dx

= − 1
h𝜈

h

∫
0

x

∫
0

( x
h
− 1

)
𝑦d𝑦dx − 1

h𝜈

h

∫
0

h

∫
x

x
h
(𝑦 − h)d𝑦dx

= − 1
h𝜈

h

∫
0

( x
h
− 1

) 1
2

x2 dx − 1
h𝜈

h

∫
0

x
h

(
−1

2
x2 − 1

2
h2 + hx

)
dx

= − 1
h𝜈

h

∫
0

(
x2

2
− x h

2

)
dx = − 1

h𝜈

(
h3

6
− h3

4

)
= h2

12𝜈
(A7)

We obtain the 𝛾 values from (32). On a one-dimensional domain, the integrals over 𝜕K are point values at y = 0 and
y = h, such that the two associated values for 𝛾 become

𝛾0 = 1
h

h

∫
0

d
d𝑦

G(x, 𝑦)
||||𝑦=0

dx = 1
h

h

∫
0

d
d𝑦

g1(x, 𝑦)
||||𝑦=0

dx = − 1
𝜈h

h

∫
0

( x
h
− 1

)
dx = 1

2𝜈

𝛾1 = 1
h

h

∫
0

d
d𝑦

G(x, 𝑦)
||||𝑦=h

dx = 1
h

h

∫
0

d
d𝑦

g2(x, 𝑦)
||||𝑦=h

dx = − 1
𝜈h

h

∫
0

x
h

dx = − 1
2𝜈

. (A8)

A.2 Reaction operator
 = s ∗ = s

The second contribution to the fine-scale problem of the Burgers equation is the reactive component. This component
does not include any differential operators, but a corresponding 𝜏 may still be computed. First, we write the Green's
problem as {

sG(x, 𝑦) = 𝛿x, for 𝑦 ∈ (x𝑗 , x𝑗+1)
G(x, 𝑦) = 0, for 𝑦 ∈ {x𝑗 , x𝑗+1},

(A9)

which has the following simple solution:

G(x, 𝑦) = 1
s
𝛿x. (A10)

Then, 𝜏 is obtained by double integration as

𝜏 = 1
h

h

∫
0

h

∫
0

1
s
𝛿x =

1
h

h

∫
0

1
s
= 1

s
. (A11)

Since G(x, y) is independent of y, and thereby gy(x, y) = 0, it follows that

𝛾0 = 0 (A12)

𝛾1 = 0. (A13)

A.3 Advection operator
 = a · ∇ ∗ = −a · ∇
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The final component of the fine-scale problem of the Burgers equation is an advection operator. Note that a pure advec-
tion problem on a one-dimensional domain only has a single boundary condition; thus, the Green's problem has to be
written as {

−a d
d𝑦

G(x, 𝑦) = 𝛿x, for 𝑦 ∈ (x𝑗 , x𝑗+1)

g(x, x𝑗) = 0 or g(x, x𝑗+1) = 0.
(A14)

Integration of the first line in this set of equations yields the Green's function

G(x, 𝑦) =

{
C1, when 𝑦 < x
C1 − 1

a
, when 𝑦 ≥ x.

(A15)

We choose the boundary condition (A14) to be satisfied on the right side, such that C1 = 1∕a and

G(x, 𝑦) =

{
1
a
, when 𝑦 < x

0, when 𝑦 ≥ x.
(A16)

We finally obtain 𝜏 as

𝜏 = 1
h

h

∫
0

x

∫
0

1
a

d𝑦 dx = 1
h

h

∫
0

x
a

dx = h
2a

. (A17)

The temporal differential operator d
dt

can be viewed as an advective operator with advection speed 1. The expression for 𝜏
changes slightly. The weak formulation used in Section 4.3 makes use of a one-dimensional finite element mesh in space
and a finite difference scheme in time. Since 𝜏 is an element average, the factor 1|K| is 1

h
. However, the x-coordinate in the

Green's function runs from tn to tn + 1 or, when translated, from 0 to Δt, which is the domain of integration. We therefore
obtain

𝜏 = 1
h

Δt

∫
0

x

∫
0

1 = 1
h

Δt

∫
0

x = Δt2

2h
. (A18)

Since this Green's function is piecewise constant, the derivative with respect to y is zero. Therefore, the integrals in the
expression for 𝛾 vanish, and we find

𝛾0 = 0 (A19)

𝛾1 = 0. (A20)
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