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Robustness to missing or faulty input, due to failures in the data collection system, is
a key characteristic for any travel time prediction model that is to be applied in a real
time environment. Previous research by van Lint et al (2002) has shown that so-called
State-Space Neural Networks (SSNN) are capable of accurately predicting
experienced travel times. Our paper shows that incorporating corrupt data into the
training procedure does increase the robustness of these SSNN models, but at the cost
of predictive performance: there is a clear trade off between robustness and model
accuracy. More over, inclusion of (small) amounts of corrupted data in the training
procedure makes the internal states of the SSNN model, which are closely related to
the expected traffic conditions, more difficult to interpret.

Because of the SSNN’s intrinsic robustness to small deviations in the input,
application of pre-processing (input-repairing) strategies before feeding the input into
the model does lead to a robust but still accurate model. The combined framework of
pre-processing and SSNN model is robust to various kinds of input failure, even
though the proposed pre-processing strategies are naive non-parameterized procedures
such as exponential smoothing and spatial interpolation. Further research should
emphasize on enhancing the proposed pre-processing procedures and applying the
travel time prediction framework in real time.
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There is an increasing need for systems that can provide road-users with accurate real
time traffic information. Many research efforts emphasize the significance of traffic
information and the potential effect of advanced traveler information systems (ATIS)
on travel choice. In (van Berkum, van der Mede, 1993) the credibility and the net
value of the information is argued to influence the traveler’s response to the
information presented. Ner value is defined by the difference between the information
and individual expectations, implying that different drivers value the same
information differently. The credibility of information strongly relates to the quality
(e.g. accuracy) of the information. Drivers tend to make less use of the information,
once they have had bad experiences with it. Thus, for traffic information to have an
effect on driver behavior, it should consist of clear and unambiguous messages based
on accurate and reliable predictions. With respect to the accuracy and reliability of
traffic information, the sensitivity of the quality of that information to faulty and
missing input data is of particular interest.

So-called State-Space Neural Networks (SSNN) are capable of accurately predicting
experienced travel times, producing approximately zero mean normally distributed
residuals, generally not outside a range of 10% of the real expected travel times (van
Lint et. al., 2002). These results, however, are obtained by feeding the models with
100% accurate and reliable data. The input data to travel time prediction models,
collected by a real time traffic monitoring system, will often consist of corrupted or
missing values. In illustration: Let us note that on average 15% of the inductive loops
of the Dutch Freeway monitoring system (MONICA) may be out of operation or
producing unreliable measurements’.

The goal of this paper is therefore to present a travel time prediction framework,
based on the SSNN model, which is robust to various kinds of input failure, as well as
to noisy and possibly biased input. Robustness in this context is defined as the
capability of the SSNN based framework to produce accurate predictions under all
kinds and degrees of input failure. To this end we first give a brief overview of
methods for dealing with data-corruption from literature, next we present a
classification of different kinds of input failure (incidental, structural and intrinsic).
Subsequently, we propose various pre-processing and training strategies, and finally,
we critically discuss results and present conclusions and recommendations for further
research.

! Statistic from a week of 1 minute aggregate measurements of detectors on the A13 highway between
Den Haag and Rotterdam, January 2002; 9746 of 65536 measurements classified unreliable (missing or
faulty) =14.9%
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2 Brief overview of methods for dealing with missing
data

In practice the most commonly used approach to remedy input-failure is imputation
(substituting missing values with sensible replacements, such as regression forecasts
or sample mean). This pre-processing procedure allows one to treat the input after
imputation as if it were 100% complete. Schafer (1997) shows that simple imputation
schemes tend to change the covariance structure of the input-data and may induce
bias. Therefore, Schafer proposes EM-based and Markov Chain Monte Carlo based
approaches that account for the missing values, and the uncertainty they inherently
introduce. Examples of these and other approaches to remedy the missing data
problem can be found in many fields, including neuro-computing (Armitage, 1994)
and (Meert, 1996), pattern recognition (Gabrys, 2002), climatology (Jeffrey et al,
2001), and medical statistics (Faris et al, 2001), to name a few.

Despite the clear theoretical shortcomings of simple imputation schemes (Schafer
(1997) and Armitage (1994)), the results in (Chen et al, 2001) indicate that such
simple imputation schemes combined with a neural network based travel time
predictor, do yield accurate travel time predictions even when up to 30% of the input
data to the model is missing. One (tentative) hypothesis may be that the neural
network travel time predictor is robust to the “damage” caused by the imputation
scheme applied. Slight changes in the statistical properties of the input data do not
cause the neural network to produce inaccurate results. Another (again tentative)
hypothesis could be that the spatiotemporal patterns formed by traffic measurements
have statistical properties (covariance structure, correlations through time and space)
that are more invariant to simple data-repair techniques as compared to for instance
the multivariate datasets used throughout Schafer (1997), which stem predominantly
from medical statistics, and social sciences. From traffic flow theory this does makes
sense: we do expect that traffic measurements are highly correlated through space and
time. Travel time predictions may be induced from different subsets of measurements
along the route of interest

Based on these findings, we will explore two different approaches in the remainder of
the paper. The first one involves inclusion of corrupted data’ in the training procedure
of our neural network based travel time predictor (the SSNN). The idea behind it is
that the SSNN will find learn to predict travel time in a redundant way. The second
one involves a simple imputation scheme that corrects corrupted input values before it
is fed to the SSNN, by means of simple non-parameterized pre-processing procedures.
This approach relies on the hypothesis that the SSNN is robust to the “damage” done
by these procedures Before we claborate on these two approaches, we will first
classify the various kinds of input-failure we may encounter in practice.



o AU ALRAW ST LA AR W mmmpe wm mwwmm e

We propose a classification of input failure as presented in Figure 1.

missing values

missing values ‘ measurements are biased and noisy

space A space space

»
»

time time time

(a) Incidental failures (b} Structuratl failures (¢) Intrinsic failures

Figure 1: Incidental, Structural and Intrinsic failures in detection system

The first type of detection failure (Figure la — Incidental failures) occurs due to, for
example, temporary power or communication failures in the freeway monitoring
system. The second type (Figure 1b — Structural failures) occurs mainly due to
physical damage or maintenance backlogs to the inductive loops or roadside
equipment. The distinction between structural and incidental failure may in fact not be
as crisp as presented here. It is more likely that detection devices will exhibit failure
for a number of consecutive time periods, rather than produce random failure patterns
over time. Furthermore, it is also more likely that failure will occur on a specific set of
detectors due to maintenance backlog or the specific geographical and environmental
circumstances on their locations, rather than randomly on all detectors on a specific
route. Nonetheless, the proposed distinction expresses two extreme configurations of
input failure that we can expect to encounter, and is hence useful in the investigation
of the robustness of travel time prediction models to input failure. A third type of
failure (Figure lc — Intrinsic failure), measurement noise and bias, is inherent to
detection devices and averaging measurements over time in general. For example: in
MONICA the arithmetic time mean speed per measurement period is calculated. The
result is a biased estimate of the space mean speed (the mean speed on a particular
link or stretch), which is in fact the quantity of interest. This bias can exceed 13% in
low speed regimes with high speed-variability, which is the case in congested or near-
congested conditions; the conditions where accurate measurements are most desirable.
Another known source of intrinsic data corruption is miscounts, double counts or false
counts of vehicles, device calibration errors, round off errors, etc.
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5 Experimental Setup

5.1 Data

We will use synthetic data obtained from a micro-simulation to test the robustness of
the framework above. To this end we have set up a network in the microscopic
simulation model FOSIM (developed at the Delft University of Technology, see e.g.
(Vermijs et. al,, 1994)), for the southbound stretch of the A13 highway between two
of the major Dutch cities in the western part of the Netherlands, The Hague and
Rotterdam. This three-lane stretch with a total length of 7,3 km is one of the most
intensively used motorways in the Netherlands, with recurring congestion in most
afternoon peaks on weekdays. It contains four on ramps and four off ramps, and two
weaving sections. Usage of data from a traffic micro-simulation model allows us to
collect and process all the data we need for the experiments, including the
experienced travel times. The input to FOSIM (Dynamic OD matrices) was scaled to
fit collected data from inductive loop-detectors on a number of typical afternoon
- peaks of January 2000. The scaling was done heuristically. All data used for training
and testing the neural networks (both inputs and outputs) are lifiearly scaled to the
interval [+0.1, +0.9], based on the rule-of-thumb that this leads to faster and more
stable learning.

5.2 Representation of input failure

All Input failures result in input values of —1, allowing the pre-processing layer and/or
travel time prediction model to detect these values as “outliers”. If a measurement
from detector d at time period p is dubbed corrupt then all values (i.e. both speed and
flow) measured at {d, p} are replaced with —1. Incidental input failure is generated
with a random generator 9, producing numbers from a uniform distribution on [0, 1],
such that each measurement {d, p} has an equal probability to be labelled corrupt. If,
for example, the required level of corruption is set to 20% then a measurement is
labelled corrupt if 9(dp) < 0.2. The maximum amount of incidental input failure
considered is set at 40%. In case of structural detection failure ALL measurements
{d,, p} from a specific detector dy are labelled corrupt. Therefore, structural detector
failure is generated deterministically. First the number of corrupt detectors N° is
selected from {0, 1, .., D}, where D is the total number of detectors. Next all possible
combinations of N° out of D detectors are generated. Since this leads to a very large
amount of test data, we will only consider cases where 1 or 2 detectors (out of 13) are
structurally down, yielding a total of

! !
£_+L=13+78:91test-sets

12t 2811
We will not include structural failure of detectors located on- or off-ramps here.
Obviously, spatial interpolation does not apply to structural detector failure at
onramps, since no adjacent detectors are available. We will address this important
issue in following studies.



In this section we will propose a number ot strategies m handling taults or
incompleteness in the input data based on the framework in Figure 2. Each strategy
(listed in Table 1) consists of a naive and non-parameterized pre-processing method
and a neural network training scheme’, and is consequently tested against a dataset
consisting of (a) 100% clean data, (b) a dataset with increasing amount of incidental
input failure (detector failure is randomly drawn from a uniform probability
distribution), and — in three of the five strategies - (c) a dataset with structural detector
failure (one or two detectors on the main carriage way structurally breaks down). In
the remainder of the paper the abbreviation MA is used to indicate the pre-processing
method discussed in section 4.1.1, Interpolation refers to the pre- method depicted in
section 4.1.2, and MA-+Interpolation refers to the one discussed in section 4.1.3

Table 1: Combined strategies of pre-processing and training

Strategy | pre-processing training testing
100% clean | incidental structural
S0 None 100% clean X X X
S1 None 10-40% incidental X X X
S2 MA 100% clean X
S3 Interpolation 100% clean X X
S4 MA-+Interpolation 100% clean X

Note that we do not need to test the performance of S2, S3 and S4 on clean data, since
pre-processing has no effect if no corruption is present.

5.4 Performance indicators

Let 7, and 77" denote the experienced and the predicted mean travel time for a
vehicle departing in time period p on the route described above, and let P the total
number of periods. The prediction error for departure time p then equals AS' =77 -T,.
We will make use of the following performance measures to assess the various
strategies:

RMSE (Root of Mean Squared Error) %Z( A )2
P
ME (Mean Error) 1 Z A
P p
> (A~ MEY
SE (Standard Deviation of Error) 2

P-1

3 The SSNN model is trained by Levenberg-Marquardt and Bayesian Regularization (Foresee, Hagan,
1997). More details and references are given in (van Lint et al, 2002).
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6 Results

6.1 Testing on Incidental Failure

The three tables below show the ME, SE and RMSE on one of the two test datasets
for all proposed strategies.

Table 2: Mean prediction Error of strategies SO (top row), S1 (2nd to 5th row),
$2 (6™ row), S3 (7" row) and S4 (8" row) to incidental input failure at increasing
amounts of corrupted data in the test datasets (total nr records in test data: S x
396)

% of incidental failure in test-set ME on ALL
ME (seconds) 0% 10% 20% 30% 40% test-sets
s S0 1 43 91 120 152
5 S1(10%) 0 0 4 5 -10
£2 S1(20%) -6 3 -4 1 1
SE S1(30%) 3 2 -4 -1 3
©S1(40%) 17 13 6 3 -4
2 S2(ma) 1 1 1 2 2
2% S3(interp) 1 -8 -19 25 26
& 4 (int/ma) 1 3 6 12 18

Table 3: Standard deviation of prediction Error of strategies S0 (top row), S1
(2nd to 5th row), S2 (6th row), 83 (7th row) and S4 (8th row) to incidental input
failure at increasing amounts of corrupted data in the test datasets (total nr
records in test data: 5 x 396)

% of incidental failure in test-set SEon ALL

SE (seconds) 0% 10% 20% 30% 40% test-sets

s ) 17 43 62 76 89 :
S S1(10%) 22 22 26 31 42
2 S1(20%) 27 25 26 27 32
E g S1 (30% 32 30 28 25 26
S1 (40%) 50 44 37 32 28
2 S2(ma) 17 18 19 21 24
24 S3(interp) 17 30 39 50 62
iS4 (int/ma) 17 19 23 32 36




increasing amounts of corrupted data in the test datasets (total nr records in test data:
5 x 396)

% of incidental failure in test-set RMSE on

RMSE (seconds) 0% 10% 20% 30% 40%
e S0 17 60 110 141 176
L s1(10%) 22 2 26 32 43
g % S1 (20%) 28 25 26 27 32
£E  S1(30%) 33 30 28 25 27
S1 (40%) 53 46 38 32 28

2 S2(ma) 17 18 19 2 24

g § S3 (interp) 17 31 43 56 67
& S4 (int/ma) 17 19 24 34 40

The best results are obtained with strategy S2, which performs well at all degrees of
incidental input failure corruptness. Due to the random nature of the input failure, the
MA procedure is capable of reconstructing the corrupted input signals such, that the
SSNN model is still capable of producing accurate predictions, even at 40% incidental
corruption. We hypothesize that the good results of this strategy are partly due to the
good generalization capabilities of the SSNN model (section 4.2), implicating that
slight deviations (caused by the MA procedure) in on or more input signals do not
translate into similar deviations in the output. The fact that it infers expected travel
times not only from current input signals but also from its own internal states (its
short term memory), makes it “extra” robust to temporary flaws in one or more input
signals.

We can also conclude that incorporating corrupt values into the training datasets
(strategy S1), does increase the robustness of the model to incidental input failure.
There is, however, a price for this increase in robustness in terms of model accuracy.
Clearly, the SSNN trained with 40% corrupt input data, produces a larger bias and
larger variance when tested against clean test-data, than a SSNN model trained with
100% clean data. Nonetheless, the inclusion of small amounts (10 - 20%) of
corruptness in the training datasets offers a good balance between accuracy and
robustness.

6.2 Testing on structural detector failure

As noted before, structural detector failure may require a neural network to leamn the
complex dynamics of traffic flow in a different way, by “looking” at different
detectors to detect congestion and thus delays. In other words: structural detector
failure might require an entirely different SSNN model, than a situation with clean or
randomly corrupted data. Consequently, we a-priori expect that a pre-processing
strategy might prove more useful than a strategy where SSNN’s are trained with
various degrees of incidental corruption.

Table 5 shows the performance for a SSNN model trained with clean data, four
different SSNN models, trained with 10 — 40% (incidental) corruption, and a SSNN
model trained with clean data fed with pre-processed data using spatial interpolation
on test sets in which one out of the 13 detectors of the main carriage way is
structurally down.
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Again we see that the simple pre-processing strategy (S3 — spatial interpolation)
outperforms the models resulting from strategy S1 on all performance indicators.
Obviously, the deviations in the input patterns caused by the interpolation procedure
still allow the SSNN model to infer expected travel times quite accurately, although
structural input failure at some of the significant detectors still causes an increase in
bias. This increase is never larger than 30 seconds and always less than in any of the
“S1 models”.

Nonetheless, all “S1 models” still perform substantially better than the model trained
with clean data, but no clear picture emerges as to how much corruption in the
training datasets leads to the best overall result. If we look at the RMSE cost for
failure of detectors connected to so-called “significant” links®, {2,3,5,6,7,8,10,11},
then the SSNN trained with 20% corruption can be considered the best model for
strategy S1.

A couple of remarks need to be made. First, it is important to note that structural
failure of the significant detectors leads to a larger bias (ME), rather than larger
variance (SE), for all strategies. This is a result from the fact that these detectors are
associated with those links where congestion sets in first (bottlenecks), and thus
provide crucial information on the progression of congestion and hence the expected
travel time. Secondly, a remarkable result is that structural failure of detectors
connected to these significant links result in the largest errors in the SSNN trained
with clean data, but do not necessarily yield the largest errors in SSNN models trained
with more than 10% corruption. We have no clear explanation for this phenomenon.

4 Bar avamnla: datactar 10 and 11 ara cannactad #n linl- 10 which ic cancidarad tha arincinla hattlanack



Table 5: Performance of strategies SU, S1, and 83 to structural input taifare at 1
out of 13 detectors on the main carriage way (total nr records in test data: 13 x
396)

detector structurally down Performance on
1 2 3 4 5 6 7 8 9 10 11 12 13 ALL test-data

ME -50 -107 64 134 127 209 96 38 74 139 198 28 19

a SE 26 63 31 41 38 70 40 23 34 56 77 18 18
RMSE |56 124 71 140 132 220 104 44 81 150 213 33 26

3 ME -1 2 2 41 -6 -27 -44 15 85 71 -26 39 -1
7S é SE 22 25 22 26 20 23 33 38 35 29 36 27 22
~ RMSE |22 25 22 49 21 35 55 41 92 76 44 47 22
3 ME 4 6 -70 17 -3 -12 -36 -78 33 80 -18 29 -2
b % SE 27 27 42 36 24 23 33 36 24 36 23 34 28
~ RMSE |27 27 8 40 24 25 49 86 41 87 29 44 28
Q ME | |-4 25 36 7 27 13 -11 31 43 45 21 32 7
b :% SE 30 60 33 38 47 37 28 36 31 39 28 41 32
~ RMSE |30 65 49 38 54 39 30 47 53 59 35 52 33
S ME 17 52 -12 29 2 18 -32 -3 55 53 -77 111 8
% % SE 50 73 40 46 35 51 35 48 47 43 54 72 47
~ RMSE |53 90 41 55 35 53 48 48 72 68 94 132 48
’E“. ME 0 23 -1 3 6 16 6 2 6 -12 25 -2 4
a g SE 17 24 17 17 18 28 18 18 17 21 24 17 17
< RMSE |17 33 17 17 19 33 19 18 18 25 34 17 17

Let us now consider structural failure of two detectors on the main carriageway, for
which Table 6 presents the total performance on all 78 test-sets.

Table 6: Total Performance on structural detector failure at 2 out of 13 detectors
on the main carriageway, indicators calculated on 78 test-sets of 396 records
each

ME (seconds) SE (seconds) RMSE (seconds)
So 136 126 185
S1 (10%) 5 47 47
S1.(20%) 8 65 65
S1 (30%) 35 55 66
S1 (406%) 19 81 83
S3 6 28 29

Again we see that the inclusion of small amounts of corruption in the training datasets
leads to an improvement of the performance and thus robustness of the model to
corrupted input. As could be expected, the preprocessing strategy (S3 — spatial
interpolation) outperforms the S1 strategies.
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6.3 Overall comparison and discussion

In the previous sections we tested two general approaches to increase the robustness
of the SSNN travel time prediction model to both incidental and structural input
failure. The first involved incorporating corrupted data in the SSNN training
procedure, the second pre-processing strategies with naive non-parameterized
procedures such as an exponentially moving average and spatial interpolation.

Tt appears that both approaches do improve the robustness to both incidental and
structural input failure considerably, albeit that the pre-processing strategies
performed best. This is remarkable since the proposed pre-processing algorithms are
very simple naive non-parameterized procedures. This supports both hypotheses
posed in section 2 on the robustness of a neural network to the “damage” caused by
simple imputation schemes, and the invariant nature of traffic data to imputation
schemes (to a degree). There is yet another, more qualitative, argument that favours
the pre-processing approach to the training approach. The internal states of SSNN
travel time prediction model (Figure 4) are strongly correlated to the actual traffic
processes and can be interpreted as metrics representative for the expected traffic
conditions on the route of interest (van Lint et al, 2001). Incorporating corrupt data in
the training procedure makes these internal states more difficult to interpret, and
makes the model less useful for analytical purposes.

As stated in section 3, the distinction between incidental and structural detector failure
may not be as crisp as presented here. The results of the previous section show that a
time series approach works best for incidental failure, but is useless for structural
failure, where spatial interpolation is the preferable alternative. Thus, in real life a
more sophisticated pre-processing strategy is required. In this strategy, we need to
keep track of detector failure, classify it on-line as incidental or structural, and
consequently apply the appropriate pre-processing algorithm, which could be a time
series model, a spatial interpolation model or even more sophisticated (spatio-
temporal) models such as Kalman filters, macroscopic traffic models or even neural
networks.



Robustness to missing or faulty input, due to failures in the data collection system, is
a key characteristic for any travel time prediction model that is to be applied in a real
time environment. We have tested two strands of approaches to deal with different
kinds of input failure (incidental, structural) in conjunction with a neural network
based travel time prediction model (the SSNN model). The main findings are:

1. Both naive non-parameterized imputation schemes, and incorporation of
corrupt data in the training data of the SSNN, improve the robustness of the
travel time prediction model to incidental and structural input-failure
considerably.

2. The pre-processing strategies give the best overall results. Although there are
clear theoretical shortcomings to simple imputation schemes, their use may be
justified in this particular application: the results indicate that the SSNN is
robust to the “damage” done by naive imputation schemes.

3. Nonetheless, in real life more sophisticated pre-processing procedures need to
be developed since the distinction between incidental and structural detector
failure will not be as crisp as presented here.

4. Inclusion of corruption in the training procedure of the SSNN model also
improves robustness, but at the cost of predictive accuracy.

Further research topics include: enhancing the proposed pre-processing strategies
such that the appropriate procedure is used for each kind of input failure encountered;
research into more sophisticated spatio-temporal pre-processors based on for instance
Kalman filtering and macroscopic traffic flow modeling; a mechanism to assign
confidence intervals to predictions based on the level of corruptness in the input.
Further research should also focus on real time application of the robust travel time
prediction framework proposed here.
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