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Summary 
Malicious software such as botnets are a threat to society and increasingly so through Internet 
of Things (IoT) devices. The large volume, pervasiveness and high vulnerability of IoT devices 
make them low hanging fruit for malicious actors. Currently, the biggest threat for insecure IoT 
devices is Mirai, a botnet which is deployed for DDoS attacks. Home users often fail to detect 
and resolve Mirai on their IoT devices. For this reason, Internet Service Providers (ISP) 
increasingly take efforts to increase remediation. Sending their infected customers a 
notifications containing cleanup instructions is currently the most feasible measure on a large 
scale. However, previous studies point out that it is not clear how people process these 
notifications, if they comply with it and how this effects the remediation rate and speed.  

The central research question of this study is ‘What is the role of IoT device end users in Mirai-
like bot remediation?’. We have conducted an eight-week experiment at the KPN Abuse Desk 
that notifies customers about abuse incidents. 177 Mirai-infected consumers have been 
randomly assigned to a walled garden notification (i.e., a quarantined environment), an e-mail 
notification, or control group. All subjects within the experiment have been tracked for two 
weeks to estimate the infection time and are contacted afterward for interview purposes. 

Male consumers and consumers younger than 54 years possess relatively more often a Mirai-
infected device compared to other consumers. Both e-mail and walled garden notifications are 
effective in reaching consumers, informing them and encouraging them to take action. The 
majority of consumers do not follow the recommendations provided by the notification. In 
contrast, the number of actions that are performed while not mentioned in the notifications is 
remarkably high. Since many consumers asked for additional help, we conclude that consumers 
appear don’t have a full understanding of how to tackle the problem. In the control group,  
several consumers remediated Mirai unintentionally. However, these cases do not explain all 
observed remediation.  

Using two survival analysis modeling techniques, we find that consumers placed in a walled 
garden have a 29% to 85% shorter infection time than other consumers. We conclude that 
there is a discrepancy between stated behavior and the actual behavior of consumers. 
Although we cannot observe all cleanup efforts of consumers, we observed that awareness of 
the Mirai-infection and the intention to comply with the recommended actions influence that 
unobserved behavior. Gender also influences the unobserved behavior. Women clean up their 
device quicker than men while their statements during the interviews contradict this. One 
explanation is that women may unintentionally clean up their device. We conclude that age, 
consumer market, device type and customer satisfaction have no significant influence on 
remediation. 

We believe that it is unlikely that all unexplained remediation can be attributed to the 
unobserved behavior. We thus cannot explain all observed remediation from the user 
perspective. Therefore, we argue that future work must also focus on the attacker perspective. 
Since we only observed Mirai-infections, we cannot exclude the possibility that competing 
malware confiscated infected devices within our experiment. In addition, novel Mirai variants 
may have evolved scanning behavior which obstructed proper detection of infected bots. 
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1 Introduction 
1.1 Background 

1.1.1 Internet connects 

The Internet connects beyond people: it increasingly connects ‘things’. We find ourselves at 
the start of this new paradigm called the Internet of Things (IoT). The term refers to the concept 
of interconnected objects which can send data to other objects, systems, and people. There is 
no definition of IoT that is widely accepted: some definitions focus on the architectural 
requirements of an IoT environment, whereas others emphasize the ubiquity and autonomy of 
IoT networks. A unique characteristic of IoT is so-called ‘smartness’ of its networks: each object 
is connected to a network (to gain access to the Internet or share data with other devices), is 
context-aware (the device perceives information from its environment) and is autonomous 
(can perform tasks without the user’s command) (Silverio-Fernández, Renukappa, & Suresh, 
2018). Collectively, these smart things have the capability to ‘collect, process and exchange 
data [in a network] in order to adapt dynamically to a context’ (ENISA, 2017). 

IoT applications are in numerous places. One example is smart homes. A smart thermostat can 
be switched on or off from outside the house via an app. A smart smoke detector can check 
the functionality of its sensor or can send a warning to your mobile phone when it detects 
smoke. These and other IoT devices such as smart lights, fridges, camera’s and faucets can 
make daily life activities easier, safer or greener (Essent, 2017). Other IoT environments can be 
found in transport (smart public transport, smart airports, smart cars), health (eHealth, smart 
hospitals) and overarching infrastructures (smart grid, smart cities).  

1.1.2 Botnet of things 

While the number of Internet-connected devices grows, so does the concern regarding their 
security. The European Union Agency for Network and Information Security (ENISA) identifies 
twelve generic issues that impede the secure use of IoT (ENISA, 2017). We provide three 
examples to give an impression of the obstacles: 

• Limited device resources: most conventional security controls cannot be adopted by IoT 
devices due to technical constraints such as low computing power; 

• Insecure programming: due to a short ‘time to market’ and slow adaption of guidelines and 
regulations, vendors give low priority to security and privacy of their devices; 

• Absence of user interface: most IoT devices do not have a user interface, which makes it 
more complicated for users to perform security measures such as changing the default 
password or performing updates. 

In short: many IoT devices are not secure, or they are used in an insecure manner and thereby 
form the risk of being abused by malicious actors. IoT devices can be abused in several ways, 
but the most urgent threat is that of weaponization through so-called botnets (derived from 
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‘robot networks’). A botnet is a coordinated network of compromised hosts1 infected with 
malware which is controlled by a malicious actor without the owner’s knowledge (International 
Telecommunications Union, 2008; Livingood, Mody, & O’Reirdan, 2012). These networks 
collectively increase the computing power and bandwidth of a criminal which can be used to 
serve different criminal activities such as generating spam e-mails, launching Distributed Denial 
of Service (DDoS) attacks, destruction of data, identity theft and click fraud (International 
Telecommunications Union, 2008; Livingood et al., 2012). A DDoS attack is an attempt to flood 
a target with Internet traffic by means of a magnitude of compromised systems. The target, 
often a server or network, can get overwhelmed which results in a disruption of its services.  

In 2016, one Mirai botnet compromised more than 600K IoT devices and overwhelmed the 
world by DDoS-attacks of high profile targets such as a Domain Name System (DNS) 
infrastructure (Antonakakis et al., 2017; Groenewegen, 2016). The Mirai botnet shows the 
destabilizing potential of botnets and the danger of poor security of low-end devices. ENISA 
(2019) points out that malware authors increasingly target IoT devices and that the trend of 
botnet attacks is increasing. This trend goes hand in hand with the growing number of IoT 
devices and the increasing range of their application. Predictions about the number of installed 
IoT devices in 2020 vary between 20 and 50 billion  (ENISA, 2017; Statista, 2019). 

1.1.3 Voluntary compliance 

Internet end users appear to struggle to detect and clean up Mirai on the IoT devices they use 
(Orçun Çetin, Altena, Gañán, & Eeten, 2018). Internet Service Providers (ISP) are in the unique 
position to stimulate malware remediation because they have the capabilities to detect 
malicious activities in their network and are able to identify and thus notify the infected end 
user (Livingood et al., 2012). For this reason, ISPs are often a designated actor to make botnet 
mitigation efforts (Orçun Çetin et al., 2018; Livingood et al., 2012). Besides their natural control 
position, ISPs also have an incentive to mitigate botnets due to the increasing costs and 
reputational damage they suffer from their polluted network. In the last decennium, industrial 
collaborations, governments and academics have published best practices, recommendations 
and studies about botnet mitigation in ISP networks.  

ISPs can thus deploy mitigation measures against Mirai by notifying infected consumers. There 
are two typical notification mechanisms. The first is placing an infected customer into a 
quarantined environment, a so-called ‘walled garden’, and instructing them what to do to clean 
up the infection. This measure prevents the Mirai botnet of extending and draws a customer’s 
attention to the recommended actions. The second option is only to warn the customer 
without further consequences and provide him or her with cleanup instructions. Both measures 
appeal to an end user’s willingness to comply with the instructed remediation advice although 
the first (walled garden) is more intrusive due to the disconnection from the Internet. Also, 
walled gardens raise major objections from customers and are time- and cost consuming for 
an ISP (Orçun Çetin et al., 2019). 

1.1.4 Prior research 

Although the effectiveness of abuse and vulnerability notifications is broadly studied, the 
amount of work focusing on IoT abuse is small. The master thesis research by Lisette Altena 
(2018) and the subsequent articles by Çetin et al. (2018, 2019) were ground-breaking and 
hitherto the only empirical studies of IoT malware cleanup in the wild.  

                                                             
1 A ‘host’ refers to a computing device that is connected to the Internet (Livingood et al., 2012) 
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These studies conclude that walled gardens are effective in terms of clean up rate and speed 
and that e-mail only notifications do not have more impact on remediation compared to the 
control group that did not receive a notification. Striking is the high natural remediation rate of 
the control groups, which was 77% after 14 days (Altena, 2018, p.53). The high natural 
remediation is partly attributed to the non-persistent character of Mirai, which means the 
malware is remediated after a device is switched off (Orçun Çetin et al., 2019). These results 
raise questions about what underlying behavior of end users cause these findings. It is unclear 
if and why notified users do not comply or whether they fail to perform the recommended 
cleanup actions.  

1.1.5 A socio-technical domain 

The system under study is sociotechnical in nature. The IoT paradigm and its negative side 
effects such as Mirai emerge from an interaction between the social and technical domain. The 
technical aspects in the system lie in the increasing capabilities and applications of IoT devices. 
At the same time, the sophistication of the abuse of these devices is also a technical component 
of the problem. This sophistication will be concretized in the context of Mirai in section 2.2. 

The social aspect of the system interacts with this technical domain: due to the increasing 
functionalities and better access to IoT devices, more people buy and use IoT devices. In 
addition, the security of an IoT device is not solely determined by its design; how a person 
configures and uses a device is of great influence for its exposure to potential abuse. The 
development within the technical domain thus stimulates the presence of IoT in the social 
domain and vice verse. The size of the IoT paradigm also increases the scale of the negative 
consequences of insecurity. The problems of insecure IoT devices are tangible on society-level: 
for example companies, Internet service providers and governments suffer from the 
consequences of insecure IoT devices through DDoS attacks.  

This interaction between the technical and social domain of IoT devices and their (in)security 
create a complex system in which both aspects cannot be considered in isolation. One must 
understand both domains and interaction between them to understand the problems that 
emerge from this system and how to mitigate them. 

 

1.2 Research objective 

1.2.1 Problem statements 

Notifications are currently one of the most feasible mitigation measures to fight IoT abuse on 
a large scale. Three problems can be identified that hold back good functioning remediation 
efforts: 

A) Altena’s (2018) research provides the first empirical findings on remediation rates and 
speed of different notification mechanisms. There is no empirical explanation yet for the 
high remediation rate in the control group. First, we want to find out to what extent 
remediation can be explained as a result of notifications. Also, we want to explore what 
factors may explain remediation among consumers that are not notified. Then, to improve 
the effectiveness of notifications, we must understand why customers (do not) comply and 
why they (do not) perform the recommended actions. 

B) The current bottleneck for an ISP is workload capacity. The more infected customers are 
sent a notification or are placed in a walled garden, the higher the workload for an ISP since 
customers regularly e-mail the Abuse Desk with questions (Altena, 2018). Responding and 
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providing assistance to customers is a process that requires personal dedication and is 
difficult to automate. To decrease questions, we need to understand how customers 
perceive the content of a notification, if this aligns with the intended message, and whether 
customers understand the intended message.   

C) An ISP’s key service is Internet access. Walled gardens are not a preferable solution on a 
large scale since it disturbs this key service. Also, putting customers in a quarantined 
environment requires computing capacity. However, the other alternative – e-mail only 
notifications - have a lower remediation rate and are thus less effective. This creates a 
trade-off between inconvenience and effectiveness of a notification. To achieve more 
customer-friendly notifications, we must understand when customers are dissatisfied and 
how they wish to be approached. 

1.2.2 Research questions 

The problems discussed in the previous section suggest a need for a better understanding of 
what drives remediation. Due to time and technical constraints, this research will particularly 
focus on remediation of the Mirai malware by home users (consumer market). As will be 
discussed in chapter 2, Mirai is currently the most serious and predominant form of IoT abuse. 
Home customers – in contrast to business customers – are easier to reach and notify since the 
contact details are that of the person of interest. To achieve the defined objectives, the 
research question is as follows: 

(RQ) What is the role of IoT device end users in Mirai-like bot remediation? 

The following five sub-questions (SQ) break down the main research question formulated 
above into smaller questions which need to be answered: 

 

(SQ 1) What are the characteristics of IoT device end users who get Mirai-infected? 

The first step in exploring the role of end users that are Mirai-infected is examining who these 
consumers are. We will explore the age and gender of infected IoT users in a real-life setting 
(‘in the wild’). This exploration is executed for two separate populations: consumers of the ISPs 
KPN and Telfort. Telfort is a budget subsidiary of KPN. 

 

(SQ 2) What actions do Mirai-infected consumers perform? 

Notified consumers are asked to perform a set of recommended actions to clean up their 
infected device. It is yet unclear how many consumers that have the intention to comply with 
the notification, succeed in doing so correctly. We want to know which actions consumers 
perform and to what extent this influences remediation. It is also not empirically explored yet 
what actions non-notified customers perform (intentionally or unintentionally) that cause 
remediation (Altena, 2018).  

 

(SQ 3) What are the reasons for non-compliance with Mirai notifications? 

One can think of different reasons for non-compliance with the recommended cleanup actions. 
Notification delivery failure, misunderstanding and a lack of motivation are three examples. To 
be able to encourage consumers to take voluntary action, one must know the common 
obstacles that stand in the way of compliance. A large body of literature provides models and 
empirical findings of these reasons in the context of security and vulnerability notifications 
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(Orçun Çetin et al., 2019). There is no study yet that explores this in the case of IoT abuse 
notifications.  

 

(SQ 4) How do consumers experience Mirai notifications? 

To improve future notification effectiveness, we must also consider the notification experience 
of notified customers. To this end, we want to explore their opinions and suggestions. 

 

(SQ 5) How can remediation of Mirai-like bots be explained? 

The knowledge gaps that come forward in Altena’s (2018) research are a direct motivation for 
the existence of this study. This research will further explore the effect of notifications on 
remediation and will do so by replicating the experimental setup of previous research. In 
addition, this study will make use of statistical data modeling techniques to explore the effect 
of notifications and other factors on remediation. 

 

1.3 Research approach 
To answer the research questions, we use a mixed-methods approach. This kind of design 
involves ‘collecting, analyzing and interpreting both quantitative and qualitative data’. The core 
assumption of this approach is that the combination of both forms of data will provide a ‘more 
complete understanding of a research problem than either approach alone’ (Creswell, 2014, 
p.4). There are different typologies of mixed methods; this design is convergent and parallel. 
Convergent mixed methods are a form in which qualitative and quantitative data is converged 
or merged to create a comprehensive view of the research problem (Creswell, 2014). Parallel 
refers to the data collection sequence: both forms of data will be collected in parallel and the 
results will be integrated during their interpretation (Creswell, 2014).  

The study exists of four phases, which will be discussed in the next sections. The research will 
be executed in cooperation with the Abuse Desk of KPN, a Dutch ISP. The Abuse Desk mitigates 
abuse incidents among KPN and Telfort customers (KPN, n.d.). Telfort is a budget subsidiary of 
KPN. Chapter 3 provides more information about KPN and its network abuse mitigation 
practices. 

1.3.1 Research context 

The first phase provides the context in which the research will be executed. A literature review 
will explore studies into cybersecurity behavior, notification effectiveness and IoT security 
challenges. This chapter provides us with a solid background to base the study on.  

To set up an experiment and to understand the context in which a customer deals with a 
notification, we must understand how KPN detects and notifies infected customers. These 
practices by the Abuse Desk are studied by observing the variety of activities and by engaging 
with the employees of the Abuse Desk. The reporting of the practices will be validated through 
reviews by two Abuse Desk employees.  

1.3.2 Experiment 

Over eight weeks, a randomized controlled experiment is performed to explore how customers 
deal with different notification mechanisms. All IoT-infected customers that appear on the 
Abuse Desk’s radar within this time frame are included in the experiment. After random 
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assignment to a group, each customer is tracked for two weeks to measure the infection time 
of the bot. After tracking, the customer will be contacted to perform an interview in a semi-
structured manner. More details about the experiment set up and limitations are presented in 
chapter 4. 

1.3.3 Data analysis 

Quantitive data concerning remediation speed and rate and qualitative data concerning 
consumers’ characteristics, behavior and reaction have been collected during the experiment. 
This data will be collectively analyzed to answer the six research questions using exploratory 
modeling. The methods used for this are supported and described in chapter 4. 

1.3.4 Research evaluation 

The last phase entails the evaluation of the research. Using the results and conclusions of the 
five sub-research questions, the central question will be answered. The research quality will 
further be assessed by discussing the limitations of the study and the validity of the results. 
Lastly, we will provide several suggestions for future research. 

 

1.4 Academic & societal relevance 

1.4.1 Societal relevance 

The combat against IoT abuse is not only in the hands of ISPs. Therefore, insights of this study 
regarding Mirai and the role of an infected device owner may help to provide a better 
understanding for a greater range of stakeholders. Policy decisions regarding botnet mitigation 
and IoT security in general, may benefit from such insights as well other Mirai botnet mitigation 
actors such as other ISPs. 

The Dutch government is increasingly more aware of the damaging consequences of poor IoT 
device security which is reflected in increased budget and measures (Ministerie van 
Economische Zaken en Klimaat, 2019; Raad Cyber Security, 2017). One of these measures is an 
awareness campaign that will start in October 2019 ‘aimed at changing behavior [of citizens 
and enterprises]’ (Ministerie van Economische Zaken en Klimaat, 2019). Findings of this study 
will be of added value for such purposes because they A) help to understand the characteristics 
of the target audience, and B) provide insight in the troubles that IoT end users perceive when 
cleaning up an infected IoT device. Both findings will increase the effectiveness of an awareness 
campaign as proposed.  

In addition, there is a need for more certainty regarding remediation. Although the study of 
Altena (2018) shows positive results regarding the use of walled gardens, remediation among 
unnotified consumers cannot be explained. This is problematic in the context of policymaking 
since either we don’t understand the cause of remediation, or our monitoring instrument is 
not reliable and give us a distorted picture of Mirai remediation. 

The focus of the experiment is on Mirai remediation in the Netherlands since the study 
population exists of KPN and Telfort consumers. However, the findings of this study are of 
added value across borders. For example at the EU level, the ENISA is increasing its efforts to 
address IoT safety and security challenges (ENISA, 2017). Raising awareness is one of the 
baseline security recommendations which may also benefit from best practices in the 
Netherlands, including the findings of this study. 
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1.4.2 Academic relevance 

As addressed before, notification effectiveness of IoT abuse notification is a recent terrain in 
academia. Altena’s (2018) research provided novel insights in this area and thereby 
simultaneously created new knowledge gaps in how to explain the observed ‘natural’ 
remediation of Mirai. This research attempts to fill these gaps by looking into the role of IoT 
users.  

1.4.3 Added value KPN / other ISPs 

Since the treatments in the experiment are equal to KPN’s common practice, we can obtain 
reliable results of how KPN and Telfort customers deal with and perceive Mirai notifications. 
This understanding may not only help to improve notification effectiveness, but also customer 
satisfaction. Improved notification effectiveness can reflect in time-saving among Abuse Desk 
employees in helping customers and overall improved costs efficiency. In addition, other ISPs 
may benefit from the best practices of KPN’s Mirai remediation efforts and the insights 
provided by this study. 

 

1.5 Thesis organization 
The organization of this thesis report is schematically illustrated in figure 1. The research 
context will be described in chapter 2 (literature review) and chapter 3 (KPN Abuse Desk). The 
experimental setup and statistical tests that will be used, are presented in chapter 4 which 
covers the research methodology. Chapter 5 explores the study population and thereby 
provides answers to research question 1. Chapter 6 presents the tracking results. This chapter 
does not answer a research question but rather provides a general view of the data which 
serves as a base for the following chapters. Chapters 7 to 9 each cover results and sub-
conclusions of the research questions 2 to 4. The analysis in these chapters is mainly of 
qualitative of nature. Chapter 10 combines all data by modeling and thereby answers research 
question 5 (which is already partially answered in chapter 8). In chapter 11, the overall key 
findings are recapped and the main conclusions are drawn, which provide an answer to the 
main overarching research question. Reflection upon the research design, results and 
conclusions are presented in chapter 12.  
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Figure 1 Thesis organization
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2 Literature review 
2.1 Introduction 
This chapter provides a summary and evaluation of works that are related to the research 
problems in question. We can distinguish three conceptual categories which are of interest to 
understand customer behavior after abuse notifications concerning Mirai: 

 

IoT and the emergence of Mirai 

The emergent IoT paradigm forces a change of security thinking and practices. IoT abuse 
practices such as the Mirai malware bring up issues on how to overcome the poor security of 
devices and insecure consumer behavior. But how is this different to abuse of conventional 
devices? Why is Mirai such a threat? And how does Mirai operate?  

Notification effectiveness 

Within the field of cybersecurity, warning and vulnerability notifications are a broadly studied 
topic. These studies often focus on the effectiveness of a notification - to what extent a 
notification leads to the desired outcome. How can we define notification effectiveness? And 
what are the best practices to achieve effective notifications? 

User cybersecurity behavior 

The vulnerability of a device – and with that, the risk of abuse - is partly determined by the 
behavior of its user. Think of setting safe passwords, regular updates, non-clicking on suspicious 
links, etc. Theories and models from a variety of disciplines provide different explanations of 
cyber (in)secure behavior of users. Why do users comply to abuse-notifications from the 
perspective of these works? What may explain non-compliance? 

 

The literature search is conducted through the framework as proposed by Webster and Watson 
(2002) and Levy and Ellis (2006). They propose the following three steps in identifying relevant 
literature: 

• Keyword search: the initial step using keywords in scholarly databases and leading journals; 

• Backward search: reviewing citations of (relevant) articles; 

• Forward search: use academic search engines to find articles that have cited the (relevant) 
articles. 

This initial literature search resulted in 124 articles and books that are structured by concepts 
and relevance (three-point scale). Appendix A provides the details on the literature search, such 
as used keywords and search engines. Appendix B provides a table with takeaways from the 
relevant studies from the literature search. The findings of the literature review are structured 
following the three conceptual categories in sections 2.2 to 2.4. 
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2.2 IoT and the emergence of Mirai 

2.2.1 Low hanging fruit 

The Internet of Things is a new kid on the block. A 2011 whitepaper of Cisco argues that while 
the World Wide Web knows several evolutionary leaps, IoT is the first evolution of the Internet 
itself (Evans, 2011). The concept of IoT was first used in 1999 in a networked radio frequency 
identification (RFID) group in the Massachusetts Institute of Technology (Evans, 2011; Heer, 
René, Loong, Sandeep, & Klaus, 2011). Since then, IoT technology and applications have 
developed and finds itself at the foundation of the new paradigm of interconnectivity. 

In 2008, the number of Internet-connected devices exceeded the total world population 
(Evans, 2011).  The numbers are growing, and prognoses estimate further increase to 20 to 50 
billion devices in 2020 (ENISA, 2017; Statista, 2019). This magnitude is an important cause of 
the threat that stems from these devices: ‘What they lack in computational capabilities, they 
make up in numbers’ write Vlajic and Zhou (2018). This trend, in combination with poor security 
and often unbroken connection to the Internet, makes IoT devices ‘low hanging fruit for 
hackers’ (Kolias, Kambourakis, Stavrou, & Voas, 2017). 

Whereas security practices have become common practice in traditional devices (laptops, 
smartphones, etc.), security of IoT devices is a complex matter. This makes IoT currently the 
‘weakest link in the security chain of computer networks’. The vulnerable character of IoT 
devices can be explained by an accumulation of reasons: 

• In a rush to market, vendors minimize or neglect security to keep costs low, time-to-market 
short and their devices user-friendly (Kolias et al., 2017; Raad Cyber Security, 2017). On top 
of that, the security of IoT devices is a difficult task since many of them use lightweight 
operation systems on which traditional computer security solutions cannot be run (Batalla, 
Mastorakis, Mavromoustakis, & Pallis, 2017).  

• Customers often think of IoT as plug and play devices and want to make sure their device 
works quickly rather than investigate and taking basic security measures such as setting a 
new password (Vlajic & Zhou, 2018). This behavior is often strengthened by the (lack of) 
interfaces of IoT devices, which are non- or minimal interactive (Kolias et al., 2017). 

• If security measures are in place, two reasons above contribute to poor maintenance of 
security: vendors may not develop security patches and users may not think about/forget 
about updating their device regularly (Bertino & Islam, 2017; Kolias et al., 2017; Vlajic & 
Zhou, 2018).  

• Deployment of global security mechanisms or policy is not possible due to the distributed 
control of the Internet and complex governance structure. Each network and country 
follow their local rules and many actors are involved (Donno, Dragoni, Giaretta, & 
Spognardi, 2018; Raad Cyber Security, 2017). ENISA (2018) concludes that all security 
requirements for IoT can be met with existing standards, but that a new flexible and holistic 
approach is needed to actually achieve effective IoT security in a dynamic ecosystem. 

2.2.2 Mirai: ‘The Future’ 

Currently, the biggest threat for insecure IoT devices is Mirai, a botnet which is deployed for 
DDoS attacks. DDoS attacks can have severe destabilizing consequences for the direct victims 
of an attack as well as for the systems and users that depend on that service. DDoS attacks 
illustrate the interdependent nature of Internet security: the vulnerability of a DDoS victim is 
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not determined by the security his/her own system, but instead by the security of the entire 
Internet (Donno et al., 2018).  

Although there are more DDoS-capable IoT malware (Donno et al. identify twelve others), Mirai 
stands out because of the damage it has caused and due to its growing technical sophistication 
(Donno et al., 2018). The Mirai malware (Japanese for ‘the future’) was first identified by a 
whitehat security research group in 2016 (Kolias et al., 2017). In that same year, the Mirai 
source code was published open source on the online software development platform GitHub, 
which gave birth to a number variety of variants and imitators, often more sophisticated and 
with new capabilities (Antonakakis et al., 2017; Donno et al., 2018; Kolias et al., 2017). 
Collectively these variants are referred to as ‘Mirai-like’. 

A Mirai botnet has the following four components (Donno et al., 2018; Kolias et al., 2017): 

• A ‘bot’ can be considered as an infected device. Strictly speaking, the term refers to the 
malware that runs on the device; 

• A Command and Control (C&C) center is a server that provides the botherder (the malicious 
actor that runs a botnet) with an interface to control the botnet; 

• The report server receives information about newly infected bots and forwards this to the 
loader server; 

• The loader server uploads the Mirai malware code to the newly infected devices. 

Due to the public availability of the source code, the operations of Mirai have been largely 
studied. The following description of Mirai is based on the articles of Antonakakis et al. (2017), 
Donno et al. (2018) and Kolias et al. (2017). A Mirai bot functions as follows: 

Step 1 The first phase exist of scanning randomly public IPv4 addresses through TCP port 23 
and 2323 (Telnet protocol). IP addresses on a hard-coded blacklist that include ones of the U.S. 
public services and the Internet Assigned Numbers Authority are excluded from this scanning.  

Step 2 When a potential victim is identified, the bot will execute a brute-force2 attack the victim 
device with ten random username-password combinations from a hard-coded list of 62 
credentials. 

Step 3 If the brute-force login has succeeded and a Telnet connection is established, Mirai 
sends the IP address of the victim and the correct credentials to a report server. 

Step 4 The report server forwards the information to a loader server, which logs in on the victim 
device, determines the hardware architecture and downloads and executed the Mirai malware 
that fits the system. 

Step 5 After the successful download and execution of the binary code, the binary code is 
deleted.  The malware is now active and has four tasks: 

• Scanning: searching for new victims, see step 1 

• Killing: kills other processes bound to TCP/23 and TCP/2323 and prevents breaking in of 
others through other common methods to protect itself from competing malware (and 
thereby maximize availability) 

• Waiting commands: once in a while, the bot checks-in with the C&C server and waits for 
further commands. 

                                                             
2 A brute-force attack is an automated trial-and-error method (i.e., automated ‘guessing’) used by hackers to 
obtain encrypted data, often login credentials.  
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• (DDoS) attacking: when the C&C server gives an attack command, the bot will attack the 
target server with one of the ten available attack variations. 

While TCP/23 and TCP/2323 were initially used to lay a connection, new strains also target 
other ports. Cetin et al. (2019) observe fourteen target ports, distributed over six protocols. 
Devices providing HTTP-related services are most frequently compromised by Mirai 
(Antonakakis et al., 2017; Orçun Çetin et al., 2019). By looking into the credentials that are 
hard-coded in Mirai, studies by Antinajajus et al. (2017) and Cetin et al. (2019) both find that IP 
cameras, DVRs, and consumer routers are the most targeted types of devices. 

2.2.3 IoT governance 

Traditionally, the responsibility of, for example, a DDoS attacks lies with the users of a host: 
they have a duty of care with regard to maintaining secure devices (Kolias et al., 2017). 
However, due to the different nature of IoT as covered in section 2.2.1, insecure IoT devices 
cannot purely be attributed to its end users. In an advisory report to several ministries, the 
Dutch Cyber Security Council raises concerns regarding the liability and duty of care of IoT 
devices (2017). ‘The IoT playing field is big, borderless and knows a complex international 
composition. [..] Due to the great number of primary international players on the IT-market, 
there is a lack of overview’ (Raad Cyber Security, 2017). This chaotic situation complicates the 
question of who is responsible for IoT security.  

In addition to the immaturity of the IoT governance ecosystem, the governance of botnet 
mitigation in general is known for its complex character. In the last decade, many initiatives are 
taken in so-called stakeholder communities: groups of actors that are related for geographical 
reasons (EU, Netherlands, etc.) and/or functional reasons (law enforcement agencies, ISPs, 
etc.). Due to the overlap of these initiatives, the landscape of botnet mitigation is diverse and 
dispersed (International Telecommunications Union, 2008). Stakeholder communities tend to 
operate in their silo while meanwhile, overarching coordination is missing (International 
Telecommunications Union, 2008).  

Despite the urgency of the IoT security and IoT botnet mitigation, there is hitherto no 
governance structure in place that ‘glues’ all stakeholders and their interest (Almeida & Goh, 
2017). Rules, norms and regulation concerning IoT security (both cross-bordering and cross-
sectoral) will thus not be implemented in the foreseeable future (Orçun Çetin et al., 2019). 
Meanwhile, best efforts are made by different stakeholders to mitigate IoT abuse. Notification 
efforts by the Abuse Desk of KPN are such an example and are said to play a ‘critical role’ (Orçun 
Çetin et al., 2019). More information about KPN’s notification practices is covered in chapter 3. 

 

2.3 Notification effectiveness 
Abuse and vulnerability notifications call for end users’ willingness and capability to execute 
the recommended action voluntary. The success of these notifications is mainly measured 
through infection tracking. Studies into this focus on different potential predictors of 
remediation such as user traits, notification content and notification channels. These predictors 
are discussed in the following sections. Since most studies are performed under usual 
circumstances (real-life), we speak here of ‘effectiveness’ rather than ‘efficacy’ (ideal or 
selected circumstances). Note: the following findings come from studies into abuse 
notifications as well as studies into vulnerability notifications.  
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2.3.1 Notifying pays off 

Li et al. (2016) and Çetin et al. (2017) both analyze which aspects of vulnerability notifications 
lead to higher remediation rates. Both studies show a higher remediation rate when 
notifications are sent but lack clear insights into the incentives that have led to this 
remediation. Vasek & Moore (2012) find that sending more than one notification does not 
create a higher remediation rate. The most recent studies by Altena (2018) and Çetin et al. 
(2018, 2019) show a high natural remediation rate of Mirai and a very low reinfection rate, as 
discussed in section 1.1.4. The low reinfection rate creates a discrepancy with earlier lab 
results, which is not well understood.  

2.3.2 Notification content 

Krol et al. (2012) explore whether computer users heed warnings and conclude that the 
majority of people ignores security warnings and that the content of the warning does not 
matter. In contrast, Vasek & Moore (2012) conclude that for abuse reporting, detailed 
descriptions of a compromise lead to a higher remediation rate. This is also supported by an 
empirical study of Çetin et al. (2016) into the role of sender reputation. Whereas information 
on the compromise must be detailed, Forget et al. (2016) argue that security instructions, on 
the other hand, must be very simple. Stock et al. (2018) find a discrepancy between problem 
awareness and actual patching efforts and therefore claim that content of notifications is key 
to convince the receiver.  

2.3.3 Notification channel  

The commonly used notification channel to reach end users is e-mail. Çetin et al. (2016) 
conclude that sender reputation does not matter. Stock et al. (2018) argue that e-mail as a 
communication medium suffers from several shortcomings but that other channels do not 
justify their significant financial costs and time overheads. This is contradicted by the studies 
by Çetin et al. (2018, 2019) who observed that among consumers placed in a walled garden, 
92% of the Mirai infections is remediated after two weeks. Although this measure is highly 
effective, fifteen percent of the customers expressed dissatisfaction with this intrusive measure 
and the solution is not cost-effective on a large scale. The two articles also conclude that e-mail 
notifications did not have an impact on remediation compared with the control group 
(respectively 77% and 74% infections were remediated after two weeks).  

2.3.4 User traits  

Interestingly, Krol et al. (2012) conclude that people with a lack of computer knowledge 
revealed saver computer behavior and that participants rely on their own judgment, rather 
than a security warning. Forget et al. (2016) compares user engagement (‘desire to control and 
manage their computer’s functionality and security’) with the actual security state of their 
computer and concludes that user engagement alone is not a good predictor for computer 
security. This implies that even with the right motivation, people’s behavior may not result in 
the desired outcome. 

In conclusion, although notifications in most studies lead to a higher remediation rate, the 
results are quite modest. Several articles argue that content is a driving factor, but there is not 
yet a universal understanding of the criteria of a successful notification. Besides an incomplete 
understanding of the influence of content, differences among end users may also affect the 
success rate of notifications. A one-size-fits-all notification is, therefore, an illusion.  
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2.4 Cybersecurity behavior 
To encourage end users to take voluntary action, one must understand their motives. Studies 
on this topic often use a theory or model to illustrate the antecedents or drivers that explain 
(in)action. Within the consulted literature, fifteen of these models and theories are identified. 
Appendix C presents these behavioral models, their explanatory value and whether or not they 
are relevant in light of IoT abuse remediation. Thirteen of those theories have psychological 
fundamentals; one stems from the warning science and one from economics. This section 
discusses four theories that proved to be valid in understanding why and when people do not 
comply with security measures recommended by notifications.  

2.4.1 The Theory of Planned Behaviour  

The Theory of Planned Behaviour (TPB) is a psychological model that is often used in explaining 
how individual security behavior is influenced. Ajzen (1991) proposes the TPB to predict actions 
based on an individual’s intention to perform that behavior. Intentions are ‘indicators of how 
hard people are willing to try’ to perform a certain behavior and is influenced by three 
‘motivational factors’ (Ajzen, 1991, p.181): 

Attitude toward the behavior: the users' positive or negative feeling towards engaging in a 
particular behavior (Ifinedo, 2012a; Safa et al., 2015).  

Subjective norm:  ‘the perceived social pressure to perform or not to perform the behavior.’ 
(Ajzen, 1991, p.188) 

Perceived behavioral control: the ‘perceived ease or difficulty of performing the behavior and 
it is assumed to reflect past experience as well as anticipated impediments and obstacles.’ 
(Ajzen, 1991, p.188). Perceived behavioral control not only predicts intention, but also 
influences actual behavior directly (Ajzen, 1991; Howe, Ray, Roberts, Urbanska, & Byrne, 2012). 
This variable is recognized by Ajzen (1991) to be congruent with the notion of ‘self-efficacy’ as 
introduced by Bandura in 1977.  

 

 
Figure 2 Theory of Planned Behaviour. From Ajzen (1991) 

The relations between the motivational factors are illustrated in the model in figure 2. Although 
the model is quite general, it provides several insights that are useful in the context of IoT abuse 
remediation. Firstly, intention is the most important predictor for behavior, which means that 
intention does not always lead to the desired behavior. This intention-behavior discrepancy 
also comes forward in other psychological models such as TPB’s predecessor Theory of 
Reasoned Action (TRA) and the protection motivation theory (PMT, see section 2.4.3). Sheeran 
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(2002) quantified this gap through a meta-analysis. He found that intention explains 28 percent 
of the variance in future behavior. A second insight is that self-efficacy is assumed to be of 
direct influence on behavior. This has two reasons: someone with more self-confidence in 
achieving something is more inclined to make more effort, and perceived control is a good 
measure for actual control (Ajzen, 1991). If people thus believe they could perform a certain 
action, the probability that they succeed is higher. A last valuable insight is that attitude toward 
the behavior appeared in some studies to be influenced by knowledge since knowledge creates 
more awareness (Dinev & Hu, 2007; Safa et al., 2015). One can thus assume that better 
information provision can lead to more desired behavior.  

2.4.2 Rational Choice Theory  

The Rational Choice Theory (RCT) is a neo-classical approach to understand behavior and 
crossed the boundaries of the economics domain due to its explanatory power. Like the theory 
of planned behavior, the RCT focuses on the determents of behavior. The theory assumes that 
individuals make rational choices: from a set of alternatives, they choose for the alternative 
with the highest utility given that the situation meets the assumptions (such as perfect 
information).  

An extensive study by Van Eeten & Bauer (2008) argues that malware is an outcome of the 
underlying incentive structure in the market. Each actor in the value net makes a rational 
decision and thereby weights cybersecurity benefits (the minimization of risks, potential loss) 
against the cost (inconvenience, effort) of taking security measures. Similar to other markets, 
this results in externalities: home users do not take into account negative effects for other 
actors in their decision to behave insecurely. A follow-up study focuses on botnets in particular. 
End users’ incentives to clean-up botnet infections are even smaller compared to other 
malware since the services of compromised devices are often not disrupted (M. van Eeten & 
Bauer, 2009). A study by Fagan et al. (2016) empirically supports this theory. They conclude 
that users act rational (since all participants perceived their benefits greater than costs) and 
that security behavior is more driven by individual concerns than social considerations (causing 
externalities). Herley (2009) also finds that rejection of security advice is a rational decision and 
assigns rejection to poor information about the cost/benefit trade-off in security warnings. He, 
therefore, concludes that users must be more confronted with the actual harms of non-
compliance so they can make a more realistic trade-off. Bulgurcu et al. (2010) combine the RCT 
with the TPB by subdividing each of the three determinants of TPB in an aggregate sum of costs 
and benefits. A more recent study by Jhaveri et al. (2017) presents a model of the current abuse 
reporting incentive structure and conclude that voluntary action is at the heart of effective 
remediation.  

Limitations of the RCT also apply for the context of IoT abuse. End users don’t act fully rational. 
First of all, they don’t have full information: they are informed about the consequences, but 
there is uncertainty about the costs of compliance and non-compliance. Secondly, end users 
have limited cognitive ability: they do not have the time or mental capacity to weigh the two 
alternatives. Aytes & Connolly (2004) tested this boundedly-rational choice process for risky 
computer security behavior and concluded that users don’t make sensible choices at all and 
that additional information will thus not improve behavior.  

In conclusion: despite the limitations of the RCT, it provides a powerful rationale to understand 
non-compliance with IoT abuse notifications. Non-compliance is the outcome of 
externalizations of the actual costs: an end user does not take into account societal costs in 
her/his trade-off. Therefore, the costs of compliance do not weigh up against the benefit of a 
clean IoT device. Based on this, one could assume that IoT abuse notifications can be more 
effective when making an end user aware of the societal benefits of compliance (or cost of non-
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compliance). However, the study by Fagan et al. (2016) shows that people, although aware, are 
still likely to neglect societal concerns. Also, Herley (2009) argues that warning should not 
confront receivers with worst-case harm since users must be enabled to make a realistic 
cost/benefit trade-off based on actual harm.   

2.4.3 Protection Motivation Theory  

The Protection Motivation Theory (PMT) is grounded in fear appeal theories (Rogers, 1975). 
The theory explains how fear-arousing communication influences behavior through 
anticipation of a bad outcome and desire for a good outcome. The PMT was often used in 
health care studies but proved useful in other domains. Initially, Rogers’ (1975) theory 
contained four3 cognitive processes that ‘mediate the effects of the components of fear 
appeals’ which arouse so-called ‘protection motivation’. In later studies, a fifth component is 
added (response costs) and all five processes are structured in two main processes: threat 
appraisal and coping appraisal. Threat appraisal is the extent to which a person perceives to be 
threatened, which is determined by: 

Perceived severity: ‘the size of the potential consequence, should the negative event occur’ 
(Hanus & Wu, 2016, p.4); 

Perceived vulnerability: ‘the probability of occurrence of a negative event’ (Hanus & Wu, 2016, 
p.4). 

Coping appraisal is the extent to which a person believes s/he can cope with the threat given 
the recommended response. Coping appraisal is determined by: 

Response efficacy: ‘one’s confidence that certain type of behaviors will allow him or her to 
avoid or minimize the risk of a negative event’ (Hanus & Wu, 2016, p.4); 

Self-efficacy: ‘the degree that s/he believes it is possible to implement the protective behavior’ 
(Vance, Siponen, & Pahnila, 2012, p.190); 

Response costs: ‘costs to the individual when implementing the protective behavior’ (Vance, 
Siponen, & Pahnila, 2012, p.190). 

The model is illustrated in figure 3. The core idea behind protection motivation (hence attitude 
change) is that one has the desire to minimize the potential harm of perceived threat, and 
weights that desire against the perceived coping ability (thus a multiplicative relation) (Rogers, 
1975). In Rogers’ initial theory, attitude change refers to the ‘intention to adopt the 
recommended response’ (Rogers, 1975). In later studies by others ‘intention’ is often ignored, 
and the five components are assumed to have a direct influence on behavior. Because of its 
general nature, PMT is applied in many domains among which information security studies. The 
consulted literature contains 21 articles that apply and test the PMT in the context of 
(information/computer/etc.) security advice. Most studies have tested all five components of 
the PMT, often in combination with another theory. The majority of studies show a significant 
influence of at least three of the PMT components on behavior. However, which of the five 
components have significant explanatory value vary greatly among these studies.  

                                                             
3 The initial theory existed of three processes, but this theory was in 1983 revised by Rogers. Similar to the 
theory of planned behaviour, PMT was then complemented with the self-efficacy theory of Bandura. 
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Figure 3 Protection Motivation Theory. Adapted from Rogers (1985) 

 

In conclusion, the PMT provides a model to understand the underlying motivation to comply 
with a security warning. Key in this model is the notion of perception, which implies that not 
only the information provided in a notification is important, but also its framing. Another 
relevant assumption in the context of IoT abuse notification is the presence of self-efficacy and 
response efficacy as predictors of intention. End users must thus be convinced of the efficacy 
of the recommended remediation guidelines and must also be confident that s/he is capable 
of performing those actions.   

2.4.4 Communication-Human Information Processing model 

Warning science (or: risk communication) aims to understand how warnings are processed by 
a receiver. Models in this domain explain why and when a message is (in)effective and often 
provide guidelines to design an effective warning. This domain, therefore, provides a helpful 
perspective to analyze cybersecurity notifications. The Communication-Human Information 
Processing Model (C-HIP) has been used to this end. 

The C-HIP model was introduced by Wogalter (2006) to structure warning research by 
identifying seven phases between a source that sends a warning and a receiver who will or will 
not change his/her behavior due to the warning. Wogalter (2006, p.53-58) describes the nine 
stages the following:  

Source: ‘the initial transmitter of the warning information’ 

Channel: the medium and sensory modality (e.g., visual, auditory) in which the warning is sent 

Delivery: whether or not the warning has reached its target 

Attention switch: the warning must be noticed. It competes with other stimuli from the 
environment. 
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Attention maintenance: after notice, attention must be maintained until the message is 
completely delivered 

Comprehension and memory: the receiver must understand the meaning of a message 
(comprehension) or relevant knowledge must be activated (memory) 

Attitudes and beliefs: warning content must concur with what the receiver believes is true (e.g., 
hazard perception)  

Motivation: a warning must energize the receiver to comply 

Behavior: whether the receiver carries out the ‘warning-directed safe behavior.’  

Environmental stimuli (‘noise’): is not a stage, but captures all aspects other than the warning 
that may influence how the warning is processed such as other people, other warnings, 
background noise, etc. 

The C-HIP model is illustrated in figure 4. Wogalter (2006) describes the model as a stage or 
process model, in which information is linearly transferred through each phase. In other words: 
each phase is a potential bottleneck that could prevent information from being successfully 
processed. Although a warning may not lead to compliance, it could still have been effective in 
earlier stages. Although Wogalter emphasizes the linearity of the process, he adds feedback 
loops to also include the possibility of non-linearity due to processes such as habituation.  

This model is applied for the first time for computer security warnings by Egelman et al. (2008). 
They use the structure of the model in their research design and conclude that active warnings 
are more effective than passive warnings. Similar to findings discussed in section 2.3.2, Cranor 
(2008) attribute the failure of compliance with incomplete communication. He argues that 
receivers are often non-experts who need to be provided with clear instructions. Studies by 
Felt et al. (2012) and Fagan et al. (2015) focus on the blocking stages of the model. Felt et al. 
(2012) conclude that permission requests already fail at the beginning stages of the process, 
namely at ‘attention’ and ‘comprehension’. Fagan et al. (2015) find that update notifications 
have a negative effect on the ‘attitude/beliefs’ stage due to annoyance, which causes more 
non-compliance.  

Although the C-HIP model is not a widely used model in the cybersecurity domain, the four 
studies above illustrate that the C-HIP model can be helpful as a framework to understand how 
the process that leads to (non-)compliance may look like. Due to the structure of sequential 
stages, it can be an easy tool to ‘pinpoint’ where an end user drops out the process. An 
interesting notion within the C-HIP model is that notification effectiveness can also be 
measured based on other stages than compliance only. This way, one could measure the 
‘extent of effectiveness’ of notifications rather than the binary distinction between compliance 
and non-compliance.  
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Figure 4 C-HIP model. From Wogalter (2006) 

2.4.5 A theoretical framework 

The studies discussed in previous sections provide different rationales behind end user 
compliance with IoT abuse notifications. Whereas the TPM and RCT help to explain end users’ 
incentive to behave safely in general terms, the PMT and C-HIP models acknowledge the 
influence of the (content of) a notification.  

Figure 5 illustrates the combination of these theories adjusted to the context of this study. This 
model is used to understand the behavior of notified consumers and form the basis for the 
interviews and subsequent data analysis. 

The main structure is derived from the C-HIP model that explains compliance as the outcome 
of a process with different stages. Attention switch and maintenance are not included as a 
separate stage but included in the delivery stage since the distinction between the two will be 
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difficult to make within this study. Since ‘delivery’ now not only refers to the technical aspect 
of delivery (e.g., an e-mail is successfully sent) but to the fact the message has reached its target 
(the receiver has read the e-mail), we choose to name this stage ‘awareness’ to avoid possible 
confusion. 

The stage ‘motivation’ is extended by the PMT since Wogalter (2006, p.58) mentions similar 
predictors for this stage as the ones in the PMT such as ‘cost of compliance’ and ‘severity of 
injury’. ‘Perceived vulnerability’ is not included since the notification addresses an actual 
infection and is not a vulnerability warning. ‘Attitudes and beliefs’ are included within the 
motivation stage. Since motivation and intention are closely linked (someone who is motivated 
to take action, has also the intention to do so), the motivation stage is not treated as a separate 
stage but as a further specification of the intention stage.  

‘Intention’ refers to the intention to comply and is derived from TPB and PMT. Both theories 
argue there is a gap between intentions and behavior. The last stage ‘behavior’ is subdivided 
into two stages: ‘Compliance’ is the behavior-component that refers to whether the end user 
has actually complied to the recommendations in a notification. Since there are other ways to 
clean up Mirai than the recommended actions, we add the behavior-component ‘cleanup 
actions’ that refers to all other effective cleanup efforts. 

Four out of the five variables in TPB are included in this model. ‘Subjective norm’, which is also 
recognized as an influencer of the ‘motivation’ stage in the C-HIP model, is excluded since it 
addresses social pressure or influence which is not an applicable factor in a home context. Also, 
the cost-benefit trade-off that is central in the RCT can be derived from the components of the 
theoretical framework: minimizing the perceived severity versus response costs. To reduce 
further complexity, the feedback loops between all stages and the loop through the 
‘environmental stimuli’ are excluded.  

In conclusion, the main factors which will be used in this research to understand consumer 
behavior after receiving a notification are: 

• Awareness: which entails both the technical delivery of a notification and the 
awareness of a consumer of the notification content; 

• Comprehension: whether a consumer understands what the problem is and what the 
recommended steps are; 

• Intention: whether a consumer intends to comply with the recommended actions in 
the notification. Intention can be explained by consumers’ motivation to comply; 

• Behavior: whether a consumer has performed the recommended actions correctly or 
took other effective cleanup measures. 

When a notification has successfully passed all four stages, a Mirai infection is remediated.  
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Figure 5 Theoretical framework 
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3 KPN Abuse Desk 
3.1 Introduction 
This chapter describes the processes of the KPN Abuse Desk and thereby provides an overview 
of how infected consumers are notified. The Abuse Desk is an eight-man sub-department of 
the KPN Security Operation Centre (SOC), which in turn is part of the umbrella department 
Chief Information Security Office (CISO). The CISO’s mission is ‘to keep KPN reliable, secure and 
trusted by customers, partners and society’ (internal document CISO, 2019). The Abuse Desk 
has as a primary goal to remediate vulnerabilities and abuse of KPN resources. This concerns 
the malicious activities of customers as well as unintentional abuse or vulnerabilities. Abuse 
Desk employees notify infected customers and mitigate the damage by placing them in a walled 
garden. Section 3.2 describes how abuse incidents and vulnerabilities are detected. The 
notification practices are described in section 3.3. 

 

3.2 Detection 
The Abuse Desk depends on external organizations for data on abuse incidents, vulnerabilities 
and other malicious activities. This data is typically provided through so-called abuse feeds. The 
data providers can be divided into three categories:  

• Non-profit organizations which detect and/or collect abuse incidents and notify the 
concerning ISPs; 

• Commercial enterprises that collect and sell abuse data as a service; 

• Individuals or individual organizations that ‘come across’ abuse incident data and 
report this to KPN. 

Of all sources available to KPN, Shadowserver and AbuseHUB provide information about Mirai 
infections. The Shadowserver Foundation is a non-profit organization that collects a large 
amount of threat data and sends daily reports to parties such as network providers, 
governments and law enforcement agencies (Shadowserver, n.d.-a). The KPN Abuse Desk 
receives every day 41 lists with vulnerabilities and abuse incidents at IP addresses that fall 
within the range of KPN’s and Telfort’s networks (Shadowserver, n.d.-b). The ‘Drone/Botnet-
drone Report’ is the only list that contains reports on Mirai infections.  

The Abuse Information Exchange is a Dutch Association which represents more than ninety 
percent of the Dutch ISPs. Their central system, AbuseHUB, collects and correlates data about 
infections from different sources and share this with the joining ISPs (Abuse Information 
Exchange, n.d.). In this study, we can only make use of the Shadowserver feed since Mirai 
detections provided in the AbuseHUB’s abuse feeds cannot be easily retrieved. Each abuse 
incident has to be visually inspected to determine whether the incident concerns Mirai. The 
Abuse Desk is currently working on a software system that makes it possible to gain overview 
of the abuse incidents reported by AbuseHUB. 
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3.3 Notification 
The majority of the feeds from Shadowserver are automatically processed. In principle, all 
reported abuse incidents among KPN consumers are remediated by placing the consumer in a 
walled garden. This is a quarantined environment from which the consumer can still visit a few 
whitelisted websites so s/he can perform urgent actions (e.g. financial websites, e-mail hosting 
websites) and can perform the recommended actions (e.g. website that provides virus scan 
software). Consumers who are placed in a walled garden receive both an e-mail and landing 
page in their browser which contain information about the reason for quarantine and 
recommended steps to remediate the abuse. The e-mail and landing page of Mirai customers 
are improved using the recommendations by Altena (2018) and are shown in appendix D.3. The 
recommended steps to remediate Mirai are the following:  

1. Identify the devices that are connected to the Internet; 

2. Reset the device(s); 

3. Change the passwords of the device(s); 

4. Reset the modem/router (back to factory settings); 

5. Change the password of the modem/router. 

Note: this is a concise version of the steps, appendix D.3 shows the complete formulation of 
the recommended cleanup actions. Consumers in a walled garden can release themselves by 
filling in a contact form on the landing page. This form is also shown in appendix D.3. This 
contact form is the same for all abuse incidents and thus contains irrelevant questions for Mirai 
remediation (e.g., a customer is asked for virus scan logs). Customers can self-release from a 
walled garden two times. After the second time, consumers have to wait for an employee of 
the Abuse Desk to release them. When a customer is still in the walled garden after a month, 
the blockade is automatically lifted. 

As previously mentioned, this procedure only concerns KPN consumers. Telfort consumers and 
KPN business and wholesale customers on KPN’s radar are not automatically processed and are 
notified on a best-effort basis. The procedure is illustrated and described in more details in 
appendix D.2. 

All consumers are asked to e-mail the Abuse Desk when one has performed the steps. In reality, 
mainly consumers who experience difficulties contact the desk. Consumers cannot call the 
Abuse Desk, which is a precaution to prevent work overload. The employees can thus only be 
reached per mail during office hours (Monday to Friday, 8 am – 17 pm).  
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4 Methodology 
4.1 Overview 
This research follows an experimental design. It studies the effect of two different notification 
mechanisms through a randomized controlled experiment setup. This study will be performed 
for both KPN and Telfort customers, which results in two separate experiments due to possible 
characteristic differences between these customers.  

Sections 4.2 provides information on the experimental setups. The two data collection methods 
– infection tracking and interviews - are described in respectively section 4.3 and 4.4. These 
sections will also focus on data preparation procedure. The methods used for data analysis are 
described in section 4.5. This chapter concludes with an elaboration of the ethical 
considerations (4.6) and limitations (4.7) of the methodology. Due to the complexity around 
the estimation of infection time in this study, we visualize this at a conceptual level in figures 8 
to 10 at the end of this chapter. 

 

4.2 Experimental setup 
In an experimental design, a factor or subject is manipulated to explore its effect. In our 
experiments, the notification mechanism is the manipulated factor and its effect on customers’ 
behavior is explored. The experiments are randomized (random assignment to groups) to 
minimize selection bias, and thereby increase the validity of the results. The experiments will 
be controlled (inclusion of a control group) to be able to study the causal effect of notifications 
on consumers’ behavior and remediation.  

4.2.1 Intervention 

Two interventions will be tested: e-mail only notifications and walled gardens. In e-mail only 
notifications, a customer receives an e-mail which: 

• notifies the customer about the Mirai infection; 

• provides the five steps to remediate the malware and prevent reinfection as described in 
section 3.3; 

• requests the customer to respond with an e-mail to the Abuse Desk to the notification. 

The walled garden notification mechanism consists of the e-mail as mentioned above, but 
additionally puts the consumer in a quarantined environment. More information about the 
notification process can be found in chapter 3 and appendix D. 

IoT-infected consumers are assigned to either one of the two treatment groups or the control 
group. The control group will not be notified during the experiment period. When the customer 
is still detected as Mirai-infected after this period, s/he will receive a notification too. 
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4.2.2 Populations of interest 

The target population in the experiment exists of consumers that own a Mirai-infected IoT 
device. This research focuses on two consumer markets: KPN and Telfort consumers. 
Customers from the business, the wholesale and mobile markets are excluded for different 
reasons: 

• Business market: currently, Mirai-infected business customers are notified on best-effort 
basis. There is no procedure or database in place to match an IP with corresponding 
business or the right person within that business. Infected IP addresses are randomly 
selected and attempted to notify (see appendix D). Also, it is not desirable to put a business 
customer in a walled garden since this may lead to severe economic or safety 
consequences.  

• Wholesale market: in this market, other service providers make use of KPN’s infrastructure 
and network and sell this service under their own brand. The end users of the Internet 
services thus don’t take service directly from KPN. KPN cannot identify nor notify these 
users directly. 

• Mobile market: following our findings from the literature review, Mirai is not a threat to 
mobile devices (smartphones and tablets). Therefore, this market is not in the scope of this 
research.  

Normally, Mirai infections within the Telfort market are not included in the regular notification 
procedures and are also remediated on a best effort basis. However, since the identification 
and notification of Telfort customers are possible, this population will be included in the 
experiment.  

4.2.3 Procedure 

On all working days, the Mirai feeds of the previous day are checked for new infections. All 
Mirai-infected consumers who have been notified before are excluded from the experiment to 
avoid the influence of habituation. Consumers who are only detected on Fridays or Saturdays 
are not included because these consumers may not be notified due to the unavailability of the 
Abuse Desk during the weekend. This is a limitation of the experiment setup and discussed in 
section 4.7. All other consumers are assigned following two premade lists of complete random 
assignment. Since KPN and Telfort consumers will be treated as different populations, they are 
assigned following a separate random assignment process. The procedure for this assignment 
and corresponding replicable code can be found in appendix F. F Randomization protocol 

The experiment subjects are tracked for a period of two weeks. After these two weeks, all 
consumers will be contacted for an interview by phone. We set this time to two weeks because 
we want to obtain as reliable information as possible regarding what actions a consumer took. 
Since the memory of consumers may get blurrier over time, we decided to interview consumers 
immediately after the experiment period. Section 4.7 on limitations discusses this choice in 
more detail. 

All consumers are tracked for an additional two weeks after the experiment period to monitor 
whether an IP address is still visible in the abuse feed. If so, that would imply that the Mirai-
infection is not remediated during the experiment. Our interviews may have influenced these 
observations since we may help remember a consumer to cleanup their device, or may alarm 
a consumer in the control group, which could result in cleanup actions within the two weeks of 
observation. Also this limitation will be discussed in section 4.7. 
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During the total of four weeks (two weeks tracking + two weeks of extra observation), a 
consumer is put on a white-list to prevent him/her from getting a notification about another 
malware or vulnerability. The experimental procedure is illustrated in figure 6. 

 
Figure 6 Experimental procedure 

4.2.4 Experiment duration: an exploration 

The observed infections represent the complete population of interest within the experiment 
period. In other words: we do not take a sample. Due to the absence of sampling variability, 
inference of the data to a larger population is inapplicable (Neal, 2015). However, this research 
deals with inferences about the differences between populations due to treatment evaluation 
(different notification mechanisms).  

The experiment has a maximum duration of ten weeks due to time constraints. To determine 
the minimal number of consumers needed in the experiment to reach significance given 
sufficient power, we conduct a power analysis. Because of fluctuating numbers of detected 
Mirai detections per day, it is unclear yet how many consumers in the experiment are to be 
expected in this period. For that reason, a dynamic power analysis is performed to explore the 
power level for different population sizes. Since infection time is the most dominant variable, 
this variable is used for the power analysis.  

The power analysis is computed and visualized using the G*Power software (Faul, Erdfelder, 
Lang, & Buchner, 2007). Since Altena’s (2018) study concludes that there is no significant 
difference between the control group and e-mail notification group, we use the walled garden 
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group to determine the expected effect size. The following input parameters are used for the 
power analysis (t-test based):  

  

Input parameter Value Support 

Tail One The effect has an expected direction: the walled 
garden group has lower mean 

Effect size 0,4 We cannot obtain the mean values of prior studies 
and therefore not estimate the effect size. We 
choose to set the effect size on 0,4, which is a 
medium effect size. 

Alpha 0,05 The probability of wrongfully rejecting the null 
hypothesis (type I error). 

Allocation N2/N1 1 Consumers are complete randomly assigned (thus 
equal size) 

Table 1 Input variables power analysis 

The power level is the probability that one does not make a type II error, in this context: the 
probability that we will not detect a difference between two populations while there actually 
is. Figure 7 visualizes the relation between population size and power level for this experiment. 
Although one wishes to maximize the power of its outcomes, there is no consensus on the 
minimal level. The minimal power level for this research is set to 50%. As can be derived from 
the figure, the experiment needs more than 105 consumers (70 for two treatment groups, the 
experiment has 3: 70/2*3). We wish to reach a power level of 80%, which comes down to 234 
consumers (156/2*3). In conclusion: to obtain enough data to be able to detect a difference 
between infection time of two groups given the effect size of 0,4, we need a minimum of 105 
Mirai infected consumers and wish to approach 234.  

Altena’s (2018) experiment contained nine consumers per week average. Her dataset 
contained only KPN consumers, and all observations were obtained from one source only 
(Shadowserver). In our experiment, we also include Telfort consumers and use data provided 
by a second source (Thunderlab, see section 4.3.2). We, therefore, think ten weeks is a long 
enough experiment duration to reach a minimum of 105 Mirai-infected consumers. If this 
number is not reached after ten weeks, we have to accept an increased risk of not estimating 
differences between populations while these exist in reality (type II error). 
 

 

Figure 7 Dynamic power analysis 
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4.3 Tracking infections 

4.3.1 Estimating infection time 

The Mirai infection time is estimated using the daily abuse feed of two sources which will be 
described in section 4.3.2. These feeds provide timestamps of when Mirai is detected at an IP 
address. In this study, the infection time is estimated by the difference between the time of 
notification and the last detection. There are exceptions to this rule: 

• The last detection of consumers in a walled garden is set to the bailout timestamp since 
Mirai cannot be detected during this quarantined state. If a consumer has not been able to 
release him/herself, the timestamp of the first communication with the Abuse Desk is used. 
If Mirai is detected again after the bailout, this timestamp is denoted as the last detection. 

• Since the control group has no notification timestamp, the notification timestamp is set to 
the first day after detection at 11 am. This is the regular time on which the other treatment 
groups are notified. 

• If Mirai is not detected after notification, the infection time is set to a random number 
between 1 and 12 hours. We choose to do this - instead of setting the infection time to 0 - 
since zero-values may lead to assumption violations during Cox modeling (Cox modeling is 
described in 4.5.2). We choose to randomly pick a number because this more realistic than 
one specific infection time. Because we want to maintain as much information as possible, 
we choose for the range 1 to 12 hours and not longer.     

• If Mirai is detected in the observation period (after the two-week experiment), the 
infection time is set to 336 hours (two weeks) and the infection is included in the analysis 
as a censored observation (censored observations will be explained in section 4.5) 

We choose to set the notification timestamp as start time rather than the first detection 
because notifications can speed up remediation. Also, Altena’s (2018) study uses a similar 
setup, so replicating this setup permits comparison of the results. 

4.3.2 Mirai infection sources 

Two sources are at our disposal of this experiment: the Shadowserver Botnet-Drone report and 
a darknet infrastructure named ‘Thunderlab’. 

Shadowserver 

The Shadowserver Foundation is a large repository of security information internationally 
(Shadowserver, n.d.-a) and shares this information freely with network owners. Of all current 
reports available, Mirai detections are shared in the ‘Botnet-Drone report’. An interview with 
Rosie Lovell, personas analyst of Shadowsserver, provides more information about their 
detection methods (see appendix E). Currently, the detection of Mirai is done in four ways: 

• An in-house honeypot network of 600 IP addresses; 

• A honeypot network of 1000 IP addresses funded by the General Cyber Alliance (GCA); 

• 169 sinkholes of Mirai variant 14; 

• Third-party feeds (e.g. large ISPs) that provide raw data or fingerprinted data. 
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Thunderlab 

SURF is a Dutch cooperative of educational and research institutions that provides ICT facilities 
to its community (Surf.nl, n.d.). A network segment of its network SURFnet is made available 
for research purpose (Surfnet.nl, 2018). This darknet infrastructure is called ‘Thunderlab’. This 
infrastructure provides access to 131,070 IP addresses. 

 

4.4 Interviews 
There is a vast body of literature on how to develop and conduct interviews for research 
purposes. The Interview Protocol Refinement Framework (IPR) by  Castillo-Montoya (2016) 
combines existing resources on conducting research interviews and structures this using a four-
phase process. This framework provides a systematic approach to develop interview protocols 
and thereby increase their reliability.  

4.4.1 Phase 1: alignment with research questions 

The interview questions need to be aligned with the research questions to obtain ‘intentional 
and necessary’ questions (Castillo-Montoya, 2016, p. 812). This alignment can be checked using 
a matrix that displays what interview question answers which research questions. This matrix 
shows what questions are unnecessary (not giving an answer to a research question) and if 
there is a gap (research questions that are not covered).  

From the literature review, we have gained an understanding of how and why consumers 
behave or comply with an abuse notification. The stages of the theoretical framework (section 
2.4.5) are used to align the interview questions with. 

4.4.2 Phase 2: constructing an inquiry-based conversation 

Phase 2 entails the search for balance between conversation and inquiry in an interview. This 
goal can be reached by making sure the questions meet common interview rules (Castillo-
Montoya, 2016): 

• The questions are accessible and approachable; 

• The interview follows ‘social rules that apply to ordinary conversation’ (Rubin & Rubin, 
2012 p.96  as referred to in Castillo-Montoya, 2016); 

• The interview meets its inquiry goals by structuring it by types of questions 
(introductory/transition/key/closing); 

• Likely follow-up questions and prompts are pre-defined in a script. 

The questions from phase 1 are adjusted and complemented to meet these guidelines. 
Appendix G presents the matrix that contains the questions, what topic it covers, the type of 
question and what the follow-up question will be depending on the answer. 

4.4.3 Phase 3: Receiving feedback 

Gathering feedback on the interview protocol is key to enhance the reliability and 
trustworthiness of interviews as a data collection method (Castillo-Montoya, 2016). The 
interview protocol is reviewed by two researchers of the research department and two 
employees of the KPN Abuse Desk. One Abuse Desk employee provided little points of 
improvements. He suggested having the contact details of the Abuse Desk and Help Desk ready 
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for when consumers would like to contact the Abuse Desk in the future and for referral when 
consumers ask questions regarding their subscription. 

4.4.4 Phase 4: Piloting the interview protocol 

The last phase of the interview refinement is trying out the research instrument in real life. This 
pilot tests A) whether the questions lead to the intended answers, B) whether interviewees 
understand the question, and C) how long an interview takes (Castillo-Montoya, 2016).  

KPN consumers that were placed in a walled garden due to Mirai have been interviewed to test 
the protocol. Of 17 consumers, eight consumers were available for an interview. The following 
points are taken into account for the final improvement of the protocols: 

• Consumers seem to better understand the problem and the recommended actions than 
their answers to the contact form suggest; 

• Consumers overestimate their remediation effort (performed some of the five 
recommended steps while stating they complied fully); 

• Although customers are subscribed to a consumer subscription, some of them use their 
Internet subscription for business purposes (50%); 

• No consumer could recall the brand of their infected device; 

• Some consumers (25%) received no landing page and no e-mail and thus were unaware of 
the notification; 

• The interviews took between 5 and 10 minutes each. 

4.4.5 Conducting interviews 

Prior to each interview, the communication of a consumer with the Abuse Desk and Help Desk 
is studied. This enables us to conduct better-informed interviews. Due to KPN’s wish to not 
record interviews with its customers, the interviews cannot be fully transcripted. To capture 
the data, the answers are written down in a pre-made form during the interview and directly 
entered in a Python script afterwards. This script automatically asks the correct input based on 
the treatment of a consumer and his/her previous answers. This makes sure the complete data 
is entered and cannot be modified accidentally.  

When a customer is not reached, a voice-mail is left to inform the consumer that we will 
attempt to reach the consumer another time. A customer was taken off the interview list after 
three attempts.  We did not communicate the purpose of the call in the voice-mail so 
consumers who have not been reached, do not know they are Mirai-infected.  

 

4.5 Data analysis 
In this study, we are primarily interested in the Mirai infection time, or: the time between ‘birth’ 
and ‘death’ of a bot. This kind of data is known as ‘time-to-event’ outcomes and includes 
censored observation. Censored observations arise when a lifespan is longer than the period 
in which a subject is observed. This is visualized in figure 10 at the end of this chapter. Exclusion 
of censored observations would lead to information loss when analyzing lifetime probabilities 
(Klein & Moeschberger, 2003). Because of these conditions, survival analysis is the designated 
branch of statistics to analyze the data of this study.  
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Survival analysis is a set of statistical methods wherein the time to an event is the outcome 
variable and includes censored observations (Klein & Moeschberger, 2003). Three models will 
be used in this study: the nonparametric Kaplan Meier estimate, the semi-parametric Cox 
Hazard model and the parametric Accelerated Failure Time (AFT) model. The first two methods 
are commonly used in survival analysis, the latter is less common but may provide extra insight 
as will be explained in section 4.5.4. 

4.5.1. Kaplan Meier survival curve (nonparametric) 

Since malware studies have similar features as clinical trials (treatment groups, infection time), 
estimating survival probabilities is a common practice to analyze infections (Orçun Çetin et al., 
2019). At the base of survival analysis lies the survival function and the hazard function (Klein 
& Moeschberger, 2003). The survival function provides the probability ! that a subject 
(malware infection) is still alive after time	# (remediation $ of the bot has not occurred yet). 

!(#) = Pr	($ > #) 

The Kaplan Meier product limit estimate can provide this survival curve when dealing with 
censored data (Lindsey et al., 2004). The Kaplan-Meier survival curve is a step-wise function of 
‘the probability of surviving in a given length of time’ (Goel, Khanna, & Kishore, 2010).	!+(#) is 
the probability a subject still lives before time #, estimated by the number of deaths that 
happened during the last event ,-	and the number of living until that moment .-. This is 
formulated as follows: 

!+(#) = 	 /(1 −
,-

.-
-:3453

	) 

In the context of this study, ‘subjects’ refers to Mirai bots and ‘death’ refers to the remediation 
of Mirai bots. Key in this estimate is the inclusion of partial information: bots that are not 
remediated after the experiment time of two weeks, are also included in the estimate as shown 
in figure 10. These cases are referred to as ‘right-censored observations’ (Goel et al., 2010). 
The inclusion of right-censored data prevents the underestimation of survival probability. 

The Kaplan-Meier estimate has several underlying assumptions of which one is critical to 
highlight in light of this study. The survival probabilities are assumed to be the same for all 
infections (Goel et al., 2010). We must thus distinguish curves for all groups of which we assume 
have different features.  

To compare survival behavior, one can compare the survival differences over time (entire 
curves) or at specific times. Entire curves can be compared using log-rank tests when the 
assumption of proportional hazards is met (Lifelines, 2019b). This assumption is true when all 
populations have the same hazard function but with a different ratio (see next section). In case 
that curves of different population cross, this assumption is thus violated and comparison of 
the curves does not lead to accurate outcomes. However, time-specific log-rank tests can 
always be performed (Lifelines, 2019b). 

4.5.2 Cox proportional hazard regression (semi-parametric) 

The problem of Meier-Kaplan estimates is the exclusion of heterogeneity; in other words: each 
curve is independently drawn while groups may be dependent. In the context of this study, 
groups can be related (e.g., similar device types or user characteristics). These shared features 
can lead to an underestimation of the influence of each variable (O’Quigley, 2018, p.152). In 
the presence of other covariates which are not taken into account, we may not detect a 
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difference between two survival curves while there actually is. This is the so-called ‘omitted 
variable bias’. We can overcome this by using regression models.  

There are several techniques to regress covariates. Cox’s proportional hazard regression is a 
common semi-parametric method in survival analysis and includes covariates (Z). The 
dependent variable in Cox’s model is the hazard rate (HR): the risk of death at the begin of a 
small time interval, given that a subject has survived until then (Klein & Moeschberger, 2003). 

678#9: = Pr8$ = #9;$ ≥ #9: = 	
=(3>)

?(3>@A)
 , j = detections of remediation 

The survival function and hazard rate are related by: 

!(#) = 	/[1 − 67(#9)

3>53

] 

 

The Cox proportional hazard model assumes that hazard functions of different groups are 
proportional to each other: they all have the same baseline hazard function (DE) and a partial 
hazard exp{JK} that is dependent by covariates (O’Quigley, 2018, p. 156). This can be 
mathematically formulated as: 

D(#|K) = 	DE(#)	exp	{JK} 

Wherein: 

D(#|K = 0) = 	DE(t) 

The parameters (Z) can be estimated by maximizing the partial likelihood of the weights J. By 
estimating a Cox regression model, we can identify the influence of covariates (e.g., treatment, 
market) on the survival behavior of Mirai. These covariates (Z) are included in the model as a 
vector and can take the form of interaction effects and dummy variables. The exponential of 
the coefficient is the multiplying factor of the hazard function. In other words: a covariate with 
an estimated coefficient J will have on time # a hazard rate of the mean hazard rate at that 
time multiplied by exp(J).  

A Cox hazard model can only be created when the aforementioned assumption of proportional 
hazard is met. In some cases, this assumption is violated because the baseline hazard functions 
of covariates are completely unrelated. Stratification can be applied in these cases so that the 
baseline hazard function is estimated for each individual stratum and the explanatory value of 
a covariate can be analyzed (Klein & Moeschberger, 2003, p. 308). 

4.5.3 Accelerated Failure Time model (parametric) 

The Cox hazard model is most commonly used for survival analysis (Klein & Moeschberger, 
2003; Saikia & Barman, 2017). This model needs no specification of a probability distribution. 
We choose to also include a parametric regression model to analyze survival data, namely the 
Accelerate failure time (AFT) model which is a popular approach when modeling failure time in 
a parametric way (Klein & Moeschberger, 2003; Saikia & Barman, 2017). The inclusion of this 
model A) enables us to be still able to analyze the data when the Cox proportional assumption 
is violated, and B) provides us with different information than the Cox model. 

The AFT model describes the survival function as the product of a fitted baseline survival 
function and an acceleration function. The acceleration factor determines the change of the 
time scale of the survival curve compared to the time scale of the baseline and is formulated 
as exp	{JK} (Klein & Moeschberger, 2003, p. 394). This is formulated as: 

!(O|K) = 	!E[exp{JK} t]	for	all	O 
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This model is based on the assumption that the baseline survival function !E follows a particular 
probability distribution. A variety of models can be used to represent !E. The Weibull 
distribution is a popular distribution due to its flexibility (hazard rate can be increasing, 
decreasing or constant) (Klein & Moeschberger, 2003, p. 395). To determine the distribution 
which must be chosen for the AFT model, the most common distributions are fit on the data. 
These are exponential, Weibull, Lognormal and Log Logistic distributions (Klein & 
Moeschberger, 2003).  

To determine the best distribution of the baseline survival curve, we use the Akaike Information 
Criterion (AIC) with P as the number of parameters and K as the number of coefficients (Saikia 
& Barman, 2017; Zare et al., 2015): 

UVW = 	−2(YZ[Y\]^Y\ℎZZ,) + (a + b) 

The model with the lowest AIC-value fits best. Note: when comparing models with an equal 
amount of parameters, we can directly compare the log-likelihood values of the models. 

The estimated acceleration factor is the ‘ratio of survival times corresponding to any fixed value 
of survival time’ (Saikia & Barman, 2017, p. 413). An estimated covariate thus ‘stretches’ or 
‘shrinks’ a survival curve by a constant amount, in other words: a covariate with an estimated 
coefficient J will have the same survival function on time t as the baseline survival function at 
time exp(J). Interpretation of this is quite intuitive: the mean and median survival time is 
multiplied by exp(J). 

4.5.4 Explorative modeling 

The Cox hazard model and AFT model have different qualities and weaknesses. These are 
summarised in table 2 (Bradburn, Clark, Love, & Altman, 2003; Klein & Moeschberger, 2003; 
Saikia & Barman, 2017). 

 

 Cox hazard model AFT model 

Main 
assumption: 

Cox’s proportional assumption is 
met 

The survival curve is distributed as 
the specified probability distribution 

Interpretation of 
estimations: 

Multiplying factor on hazard rate 
(time-specific) 

Multiplying factor on survival time 

Strength: No need for distribution 
specification. The baseline 
hazard curve is based on actual 
hazard rates (more valid model). 

More informative than the Cox 
model and more efficient (smaller 
standard errors) 

Weakness: Provides less information than 
AFT and estimates are less 
intuitive. 

A distribution must be specified for 
the survival curve. The model is 
estimated under the assumption that 
the specified distribution is true.  

Table 2 Characteristics of survival regression models 

Because of the explanatory nature of this study, and lack of understanding of the influence of 
covariates, each modeling process starts with the inclusion of all possible covariates. During 
backward selection, each step a variable is excluded based on either expert opinion (e.g. 
multicollinearity or low variance) or on the highest p-value (least reliable covariate). Each 
improvement of the model is tested using the Log-Likelihood ratio test. The last step of each 
modeling process is the comparison of the best-fit model with a trivial model (a model without 
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covariates). When the Log-Likelihood ratio estimates a significant difference, the model is 
accepted. The steps of each model cycle are included in the appendices J,K and L. 

The Kaplan-Meier curves, Cox regression models and AFT models are developed using the 
Lifelines (v0.21.3) Python package (“Lifelines,” 2019a). This package also enables us to check 
the Cox proportional assumption, to include stratification and to fit the AFT baseline survival 
function accounting for censored observations. 

 

4.6 Ethical considerations 
We wish not to violate any ethical or legal norms. Potential objections are discussed in this 
section.  

4.6.1 No treatment 

During the experiment, one-third of the consumers with an infected IoT device doesn’t receive 
any notification (the control group). To mitigate this prejudice, consumers are well-informed 
about Mirai and how to remediate it during the interview. This is complemented with an e-mail 
notification when Mirai is still detected after two weeks. This extra effort also applies to other 
consumers who are not aware of the notification. 

4.6.2 Whitelisting 

Since customers in the experiment are whitelisted, they will not receive any other notification. 
To prevent any damage or harm, customers are removed from the whitelist when a severe 
malware is detected. The severity of an abuse case is assessed by a senior Abuse Desk 
employee.  

4.6.3 Confidentiality 

The research is executed in line with the General Data Protection Regulation (GDPR). During 
the experiment, we use information from the subscription accounts to contact Mirai-infected 
consumers. Contact details are looked up every time prior to an interview and will thus not be 
part of the collected data. All other data is stored locally within the KPN network and will not 
be used for other purposes. The processed data cannot be traced back to individual persons.  

 

4.7 Limitations 

4.7.1 Estimation infection time 

One major limitation of this experiment is the reliability level of the infection time estimations. 
This limitation is visualized in figure 9. The underlying problem is how Mirai is detected using 
honeypot and darknet: a bot is only detected when scanning the IP addresses of these 
particular infrastructures (colored red in figure 9). This creates three blindfolds: 

• The shorter the scanning activity (e.g., due to high DDoS activity), the smaller the chance 
that a bot will scan an IP of one of our sources and thus stays unnoticed; 

• The remediation of a Mirai bot cannot be detected. We can only see incidents of when a 
bot has been, but are not able to see its ‘birth’ and ‘death’. 



46 
 

• When a Mirai-infected device is switched-off, Mirai is remediated but the device is likely to 
be reinfected when switched on. Although a device is technically ‘clean’, we argue that the 
Mirai has not been successfully remediated. 

There is no obvious or easy way to overcome this limitation in a real-life setting: one cannot 
monitor customer’s outgoing Internet traffic due to legal reasons (Article 8 of the European 
Convention on Human Rights). Also, due to the many Mirai variants and their unpredictable 
behavior, no studies exist yet that may help us verify how reliable our estimates are.  

This limitation is mainly a problem when looking into absolute descriptives such as infection 
time and remediation rate. The limitation also prevents us from making future predictions. 
However, when comparing survival regressions, this problem is less of an issue: although we 
may not perceive the real hazard rates, survival curve and mean infection time, we can assume 
that the error term of each estimate is similar for each group (because the limitation applies to 
all subjects) which enables us to isolate the influence of covariates. 

The problem of identifying the death of a bot is partly overcome by the two additional weeks 
of observation (see figure 10). We can conclude that IP addresses that are seen again during 
this period are not remediated within the two-week tracking and are consequently censored 
observations. 

In addition to detection difficulties, we estimate the start of a Mirai infection using the moment 
of notification. This choice is made because we want to explore the effect of notifications which 
must, therefore, be independent from the moment of the first detection. However, this choice 
could imply that infections that are not detected after a notification, have a wrong estimation 
of zero hours. The difference with estimations using the first detection has a maximum of 24 
hours (since notifications are sent the day after the first detection). 

4.7.2 Messy Mirai detection 

As discussed in section 2.2, there are many Mirai-like variants. However, we cannot control for 
the Mirai variant. There are two reasons for this:  

• Detection of Mirai is primarily done using packet fingerprinting. The Mirai scanning code 
includes the characteristic that its TCP packets begin with a sequence that is equal to the 
IP address of the device it scans. Therefore, other malware that has copied the scanning 
code of Mirai is wrongfully tagged as Mirai-like. 

• Additional information that may have been collected using Honeypots or sinkholes are not 
shared in the Shadowserver feed. 

We thus do not control for Mirai variant and all results are be based on the assumption that all 
variants have similar behavior.  

4.7.3 No enrollment during weekends 

In the procedure as described in 4.2.3, we enroll no consumers during the weekend. Since the 
Abuse Desk is closed on Saturday and Sunday, consumers cannot receive help and therefore 
placing consumers in a walled garden is irresponsible. However, this would imply that Mirai-
infected consumers who are detected for the first time on a Friday or Saturday (note: the feeds 
have one day delay), would be excluded from the experiment. This exclusion would lead to a 
bias in the dataset since consumers detected for the first time on a Friday or Saturday may be 
different than the other Mirai-infected consumers (e.g., are fulltime workers and thus install 
an IoT device mostly on Friday evenings or Saturdays).  
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To compromise this bias, these consumers are still enrolled when they are detected again on a 
different day. That day will be treated as the first day of infection. Since we are not able yet to 
explain natural remediation among the control group, this solution is not watertight. The 
estimated infection time is possibly lower because of potential actions consumers perform 
when not (yet) notified. On the other hand, consumers with a short infection time will not be 
enrolled since they are not detected anymore after Saturday. In other words: only consumers 
detected longer than one or two days (depending on the day of the first detection) will be 
enrolled, and the estimated infection time of these cases will be lower. Despite this 
inconvenience, believe this is still a better option than excluding these consumers because it 
results in less bias and larger population size. 

4.7.4 Interview bias 

When conducting interviews, we can assume that consumers give answers that may diverge 
from reality.  Consumers may have forgotten what actions they performed, may formulate it 
not precisely or have done things wrongfully (e.g., identified the wrong device). Also, 
consumers may give answers they believe are desired (to please the interviewer or because 
they have the feeling of being judged). This limitation is taken into account in the interview 
protocol design.  Most questions are open and in case of vague answers, follow-up questions 
are asked to obtain more precise information. Also,  the conversation is framed as an effort to 
help the consumer, which may encourage consumers to speak more freely about their 
difficulties with remediation. 

4.7.5 Interviews as a treatment 

As explained in section 4.2.3, the interviews may influence the infection time since interviewed 
consumers may take action in the two weeks after the interview. In the context of the obtained 
data, that would mean we observe a lower number of censored observations than if we 
wouldn’t have interviewed consumers after two weeks. We assume interviews may have the 
greatest impact in the control group since most of the consumers in other treatment groups 
are already alarmed by the notification. Therefore, we will estimate whether there is a 
significant difference between interviewed and non-interviewed consumers in the control 
group. 
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Figure 8 Legend infographics 

 
Figure 9 Actual versus estimated infection time 
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Figure 10 Estimation infection time of normal and censored observations 
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5 Study population 
5.1 Introduction 
This chapter describes the enrollment of Mirai-infected consumers in the experiment, the 
demographics of these consumers, and characteristics of their infected IoT device. This 
information gives us an overview of the obtained data, and provides us with an answer to the 
first research question: ‘What are the characteristics of IoT end users who get Mirai-infected?’. 
Section 5.2 describes the course of the experiment, including an overview of the distribution 
over the two ISP markets and size of the treatment groups. Section 5.3 describes the 
demographics of the study population, based on information from subscription accounts. 
Section 5.4 presents an overview of the identified IoT devices and assignable causes of 
infection. The data of the latter section is obtained through interviews. Section 5.5 presents 
the conclusions. 

 

5.2 Course of experiment 
The experiment took place from week 19 to week 27, 2019 (eight weeks in total). Newly 
detected Mirai-infections were included in the experiment within the first six weeks. The last 
two weeks were used to track the infection time of the latest entries. Figure 11 illustrates the 
entries of all infections. The green bars illustrate the Mirai infections which are newly detected. 
The yellow bar represents the infections that have already been detected earlier during the 
experiment. The numbers of infections are low during the beginning of the experiment, except 
for the peak on June 1st. From June 10th, there is a peak in the number of new infections which 
continues the three consecutive days. 

We did not receive a Mirai feed from Shadowserver on May 15th and June 2nd. We also didn’t 
receive feeds from the darknet at the start of the experiment (until May 19th), and on June 
16th, 17th, and from June 19th to 24th. The graph shows zero infections between June 20th and 
June 25th because the Shadowserver feed didn’t contain any Mirai infections (in the consumer 
markets).  

Figure 12 shows the accumulative number of Mirai-infected consumer during the experiment 
period. Not all Mirai-infected consumers are included in the experiment. Four people were 
reinfected with Mirai. Five consumers received a notification before the experiment 
concerning a different abuse incident. One person terminated her KPN contract during the 
experiment and four consumers were only detected during the weekend. This results in 188 
Mirai-infected consumers. During the analysis of the demographics (see section 5.3), eleven 
consumers appeared to have a business subscription instead of consumer subscription. This 
leads to 177 Mirai-infected consumers in the experiment.  
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Figure 11 Mirai-infected consumers detected per day 

 
Figure 12 Accumulative Mirai-infected consumers during the experiment 

During interviews, it became apparent that none of the consumers of the e-mail notification 
group had received an e-mail. KPN normally doesn’t notify a customer by e-mail only and the 
mechanism to do this appeared to be malfunctioning since the migration to a new mail server. 
The consequence of this malfunction is that there is no e-mail group and the control group 
has doubled in size. The e-mail notification to Telfort consumers did function so that 
population still has an e-mail treatment group. 

In addition, the landing page of the Telfort quarantined environment didn’t work properly 
during the experiment. Many consumers were not able to see the landing page due to a 
technical problem. The majority of these consumers made a link between the denied Internet 
access and the received e-mail notification. Therefore, we still treat this population as walled 
warden group instead of the e-mail group since consumers were incentivized by an Internet 
disconnect to take action.  

Of the total, 72% of the consumers are from the KPN consumer market and 28% from the 
Telfort consumer market. Of all consumers in the experiment, 57% have been interviewed. 
The interviewed consumers are quite evenly divided over the different groups (see table 3). 
One person didn’t want to partake in the interview, the rest of the consumers were called 
three times without success. Table 3 summarizes the distribution of consumers over the two 
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ISP markets and three treatments. The numbers after the slash refer to the number of 
consumers interviewed within each group. 

 

 Control E-mail Walled garden Total 

KPN 85 / 35 (41%) - 43 / 28 (65%) 128 

Telfort 17 / 10 (59%) 16 / 12 (75%) 16 / 11 (69%) 49 

Total 102 16 59 177 
 

Table 3 Consumers in the experiment (/consumers interviewed) 

5.3 Demographics of Mirai-infected subscribers  
The subscription accounts contain information on the demographics of the Internet 
subscribers. We obtained the gender and birth year for each consumer. Of the KPN consumers 
in the experiment, 69% are male, 15% female and 7% had a shared account. Eleven consumers 
(9%) have a business subscription and are therefore excluded from further analysis. The 
distinction between the different markets is not accurate for some IP ranges, which explains 
these eleven cases. When looking at the gender distribution of Mirai-infected Telfort 
consumers, we find that the majority is male (88%), followed by female subscribers (10%). The 
gender of 2% is unknown. 

Figure 13 compares these percentages with the distribution of all Internet subscribers in both 
markets. The share of male subscribers is in both markets higher than in the overall population. 
This difference is largest in the Telfort market (30%), and a bit smaller in the KPN market (10%). 
Using the N-1 Chi-squared test, we find a significant difference between the share of male 
subscribers among Mirai-infected consumers and the total population (p=0,0002, CI:15-35% in 
Telfort market, p=0,019, CI:2-20% in KPN market). We don’t estimate a significant difference 
between the shares of female subscribers.   

 
Figure 13 Comparison of gender distributions 
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The distribution of Mirai-infected consumers over birth years is visualized using boxplots and 
histograms in figure 14 in the left column. This distribution is wide-spread (between 1932 and 
1993), which means that Mirai-infected consumers have greatly varying ages. Ages within the 
Telfort population are a bit more densely distributed but still show great variety. The median 
birth year for KPN and Telfort is respectively 1971 and 1972, and all Mirai-infected consumers 
are older than 25 years.  

When comparing these distributions with the birth year distributions of all Internet subscribers 
(right column of figure 14), we observe that the Mirai-infected KPN consumers have a positively 
shifted distribution compared with the distribution of all KPN subscribers. The group of Mirai-
infected consumers is thus relatively young. The mean age of Mirai-infected consumers is seven 
years younger (mean age of 48) than the mean age in the total population of KPN Internet 
subscribers (mean age of 55). Welch’s unequal variance t-test estimates a significant difference 
(p<0,001)4. This shift is not present in the distribution of Mirai-infected Telfort consumers. 
There is no difference between the mean age of infected Telfort subscribers and the total 
population (both 49 years). However, relatively more consumers between 1965 and 1985 are 
infected. 

 
 

 
 

 

Figure 14 Distribution of birth year per consumer market (left: Mirai-infected consumers, right: comparison with 
all Internet subscribers) 

The subscriber of an Internet service does not per se have to be the owner of the infected IoT 
device. However, none of the 99 interviewed consumers indicated that the device in question 

                                                             
4 The Welch’s t-test is performed under the assumption that the influence of the Mirai-infected consumers is 
negligible because of the small number compared with the total population. This population can therefore be 
regarded as the non-infected population, resulting in two independent groups (infected and non-infected 
consumers). 
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was owned or used by another user of the home network. Therefore, the demographic data 
we obtain from the subscription accounts are a reliable representation of the demographics of 
the infected IoT device users. 

 

5.4 Identified devices and cause of infection 
Using the information obtained from the interviews, we can review the device types that Mirai-
infected consumers own and whether they can identify an assignable cause for the infection. 
Figure 15 displays the percentages of how often a device type is mentioned as possibly infected.  
The majority (72%) of consumers own an IP camera or Raspberry Pi, followed by NAS (7%) and 
DVR (6%) devices. 5% of the interviewed consumers could not recall having any IoT devices. 
The number of Raspberry Pi devices is striking since the recent study by Cetin et al. (2019) 
identified no Rasberry Pi among 88 infected devices. Also, the identification of a heat pump has 
never been reported before as far as we’re aware. 

The high number of Mirai-infected Rasberry Pi devices can be explained by a Domoticz software 
vulnerability. Normally, Mirai infects IoT devices through brute-force attacks using default or 
common credentials. Mirai-infections can thus not be attributed to a vulnerability. However, 
this is different in case of infected devices running on Domoticz software. The Mirai variant on 
these devices exploits the ‘Unauthenticated Remote Command Execution’ vulnerability so that 
it can bypass authentication (Carretto, 2019). This vulnerability was already detected at the end 
of April 2019 in Domoticz software older than version 4.10577 (Exploit Database, 2019). A new 
version without the vulnerability is released on the 9th of May (“Download,” 2019). Domoticz 
software runs on home automation devices, often Raspberry Pi and NAS devices. This 
‘Domoticz-variant’ of Mirai explains the high peak on June 10th and the following days.  

Since we don’t have information about the Mirai-variant of the infected devices, we can only 
study the outbreak of the Domoticz-variant using the date of the outbreak. Table 4 shows the 
number of infected consumers per market before and during the outbreak. The period after 
June 9th (during the outbreak) accounts for two-thirds of the number of infections in the 
experiment. The number of Telfort consumers that is detected even quadrupled after the 
Domoticz-variant outbreak.  

 

 

 

 

 

Table 4 Consumers per market before and after June 9th 

Figure 16 presents the proportion of assignable causes. 45% of the interviewed consumer knew 
they had a device running on outdated Domoticz software. Except for this group, most 
consumers could not point out an assignable cause for the infection (42%). 6% of the 
interviewees had installed a new device. 3% had installed a new Experiabox (a KPN 
router+modem), 2% connected their device to the Internet, and 2% reinstalled a device that 
had been temporarily not in use. The installation of a new Experiabox is not an obvious cause 
for infection. We provide two possible explanations: A) A consumer needs to reconfigure 
his/her network and does so less secure than before (e.g. using a demilitarized zone (DMZ) or 
Universal Plug and Play (UPnP) ). B) A consumer is assigned to a new IP address and now falls 
within the observed IP ranges (a few KPN IP ranges are not well categorized). Employees of the 
Abuse Desk explain that his latter situation occurs rarely. 

 Before June 9th After  June 9th Total 

KPN 49 83 132 

Telfort 9 40 49 

Total 58 123  



55 
 

 

 

 

Figure 15 Device types 

                    
Figure 16 Assignable causes for Mirai infections 

5.5 Sub-conclusions on the study population 
This chapter describes the study population by looking into the enrollment of the Mirai 
infections, the demographics of the device users, the identified IoT devices and assignable 
causes of infection. The goal was to answer the research question: 'What are the characteristics 
of IoT device end users who get Mirai-infected?’. The data used to answers this question is 
obtained through subscription accounts and interviews. As addressed in section 5.3, we can 
assume that the demographics of the subscribers are a reliable representation of the 
demographics of the Mirai-infected device users.  

The population of Mirai infected consumers contains relatively many male consumers when 
compared with the total population of Internet subscribers. Men are thus more exposed to IoT 
abuse for which we provide two possible explanations: 

• More IoT devices per capita: men are more often in possession of an IoT device compared 
to women which increase the chance that the owner of an infected device is male; 
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• More Mirai infections per device: men use their IoT device differently than women (e.g., 
they use it for more technically advanced applications, or use a device in a less secure 
manner), which increases the chance on abuse among male consumers. 

The birth years of Mirai-infected consumers vary from 1932 to 1993, and the distribution of is 
widely spread. This is remarkable in two ways: the eldest Mirai-infected consumer is 87, which 
is quite a high age for someone using something novel as an IoT device. On the other side: the 
youngest consumer with a Mirai-infected device is 26 years old, which is older than one might 
expect for the youngest infected IoT users. These findings can be explained when comparing 
the distribution of Mirai-infected consumers with the distribution of the complete population 
of Internet subscribers. We observe a great overlap between those distributions. In terms of 
spread, this implies that the population of infected consumers is a moderately good 
representation of the complete population. We observe two major deviations: 

We conclude that  Mirai-infected KPN consumers are relatively younger. The mean age of this 
group is seven years younger than the mean age among all KPN Internet subscribers. 
Consumers within the ages of 29 and 54 years are typically more infected than consumers of 
other ages. Consumers older than 54 are typically less infected. 

Telfort consumers within between the ages of 34 and 54 are relatively more infected than 
others. In contrast to the consumers in the KPN market, there is no difference in the mean age 
between infected and non-infected Telfort consumers. 

During the experiment, we encountered an outbreak of a specific Mirai variant targeting 
software that runs on outdated Domoticz software. Different than conventional Mirai, this 
variant doesn’t access the device through a brute-force attack but rather bypasses 
authentication by exploiting a vulnerability on the outdated versions of Domoticz. This 
outbreak explains the high amount of Rasberry Pi devices among the infected devices. Telfort 
consumers have relatively fallen more victim of this variant, which means these consumers are 
more exposed to Mirai (i.e., are more often in possession of devices running on Domoticz 
software or using it differently than KPN consumers).   

42% of the consumers could not assign the infection to a cause, which is strikingly high because 
we have no reason to believe that these devices are left out before in scanning activities of 
other bots. We provide two theories which can explain the unobserved causes: 

• The information provided by the consumer is incorrect. A consumer can have misidentified 
the device or forgot events that explain the cause of infection; 

• Recent Mirai-variants use new sets of credentials for their brute-force attack or exploit 
new/other vulnerabilities which explains why a device is suddenly ‘exposed’ to Mirai. The 
outbreak of the Domoticz-variant supports this theory.  

All in all, these findings provide a general understanding of the context of the problem and are 
the first exploratory step in identifying patterns that may be of interest for further analysis.  
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6 Tracking results 
 

6.1 Introduction 
This chapter reports on the results of the experiment so we can analyze the survival behavior 
of different populations. The goal of this analysis is two-fold: we want to obtain an 
understanding of the data before analyzing it in-depth in the next chapter, and we want to 
check whether natural remediation - as found in Altena’s (2018) study -  is also observed in our 
data (since this is one of the primary motivations for this study). Section 6.2 describes the 
distribution of infection time per treatment group and ISP market. Section 6.3 further analyses 
these results by providing remediation rates and survival curves. Section 6.4 explores the effect 
of the Domoticz variant outbreak on survival behavior. Section 6.5 presents the conclusions.  

 

6.2 Infection time per treatment and market 
Before performing survival analysis, we take a look at the data distributions. These plots 
visualize the center and spread of the distribution of infection time structured by the two 
markets (figure 17) and three treatment groups (figure 18). 

KPN and Telfort consumers show similarities in the distribution of infection time in figure 17: 
the majority of Mirai bots survive less than four days with a peak of remediation within the first 
day. Quite a substantial share of consumers is still infected after the experiment period, 
resulting in the peak at 336 hours (these are censored observations). The low number of 
remediation after four days is remarkable since it shows that Mirai is typically remediated 
either within four days or not at all. The boxplots illustrate that the infection times of KPN 
consumers is wider spread than of Telfort consumers. Due to the higher density at the 
beginning of the Telfort distribution, the censored observations are considered outliers. Since 
these are of importance in survival analysis, these will not be excluded.  

 

 

 

 

Figure 17 Distribution of infection time per market 
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Figure 18 displays three plots that show the spread of the distribution of infection time per 
treatment group. Please note that the e-mail treatment group only exist of Telfort consumers 
due to the failed KPN notification mechanism. 

The control group has the widest spread in infection time and a very high peak at 336 hours, 
which means that the control group has many censored observations. The e-mail group also 
has a wide-spread distribution but has a lower median than the control group. The observation 
in the walled garden groups is very dense compared to the other treatment groups. The 
number of censored observation is low, thus most of the Mirai-infections are remediated 
during the experiment. As observed in figure 17, remediation rarely occurs after four days. In 
figure 18 we see that these cases of remediation can be assigned to observations in the control 
group. 

 

 

 
Figure 18 Distribution of infection time per treatment group 
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6.3 Remediation speed and rate 
The density plots in section 6.2 provide information on the spread of infection time per 
treatment and ISP market separately. This information combined is presented in graph 19 using 
survival curves. The numbers between brackets in the legend refer to the population size. 
Please note that the first 12 hours of the survival curve is manipulated: we changed zero-values 
into a random number between 1 and 12 hours. Section 4.3.1 of the methodology describes 
this choice.  

Figure 19 shows that Mirai infections in the walled garden groups have a higher remediation 
rate than the other treatment groups. The two survival curves of the KPN consumer market are 
most divergent; the curves of the Telfort consumer market differ less and are more moderate 
when compared with the KPN curves: the remediation rate is higher in the control group and 
lower in the walled garden group. The survival curve of the e-mail group (Telfort only) lies in 
the middle of the two other treatment groups.  

After further visual inspection of the survival curves in figure 19, one can notice a drop after 81 
hours. This is reflected in all curves, in some more than others. This drop implies that the chance 
of survival decreases greatly from one moment to the other, regardless of the market or 
treatment. 

 
Figure 19 Kaplan Meier survival curves per population and treatment 

Tables 5 and 6 contain the remediation rates at three specific times (1, 5 and 14 days) and 
measures of central tendency. Within the KPN market, the walled garden group has a higher 
remediation rate than the control group on all three moments. The median infection time is 
shorter than 12 hours and three days shorter than the median infection time of the control 
group. The proportional hazard assumption is met for the treatment variable which allows us 
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to do a log-rank test that compares the complete curves. The difference between the two 
curves is highly significant (p<0,005). The grey values in table 5 are the results obtained from 
Altena’s (2018) study. Almost all remediation rates from that study are higher than the rates 
found in this experiment. The high remediation rate of the walled garden (97% remediation 
after two weeks) is not reached in this study (11% lower). However, when comparing the 
proportions using a chi-square test, none of these differences are significant (see p-values in 
grey). Striking is the relatively low median infection time in Altena’s (2018) study, which is half 
the median infection time of this experiment’s KPN control group (40 versus 81 hours). 

The remediation rates and speed of the Telfort consumer market in table 6 show a remarkably 
low remediation rate in the walled garden group after one day (31%) compared to the other 
treatment groups and the walled garden group of KPN consumers. Also, the median infection 
time (40 hours) is higher than that of the other groups. On the longer term, the walled garden 
group performs better in terms of remediation: more consumers have remediated after two 
weeks. The turning points are at one and half day (with the control group) and two and a half 
day (with the e-mail group). The proportional hazard assumption is met for both curves, so we 
can estimate log-rank tests for the three curves. All the differences between the three curves 
are insignificant. 

 

 #customers >1 day >5 days >14 days median Mean + 
(std.error) 

Control 85 40 % 60 % 65 % 81 145 (149) 

Control from 
Altena (2018)  

33  46 % 

p=0,55 

58 % 

p=0,84 

79 % 

p=0,14 

40  - 

Walled garden 43 60 % 86 % 86 % 11 66 (112) 

Walled garden 
from Altena 
(2018) 

30 60 % 

p=1,0 

90 % 

p=0,61 

97 % 

p=0,12 

17  - 

Log-rank test control vs 
walled garden survival curve 

Proportional hazard assumption is met. Log-rank test estimates 
a t-value of 9.18 (p<0,005).  

Table 5 KPN remediation rates  

 #customers >1 day >5 days >14 days median Mean + 
(std.error) 

Control 17 35% 65 % 71 % 39 124  (141) 

E-mail 
notification 

16 50% 75 % 75 % 24 104 (137) 

Walled garden 16 31 % 82 % 81 % 40 89 (121) 

Log-rank test control vs e-mail 
survival curve 

Proportional hazard assumption is met. Log-rank test 
estimates a t-value of 0.11 (p=0,74). 

Log-rank test control vs walled 
garden survival curve 

Proportional hazard assumption is met. Log-rank test 
estimates a t-value of 0.58 (p=0,45). 

Log-rank test e-mail vs walled 
garden survival curve 

Proportional hazard assumption is met. Log-rank test 
estimates a t-value of 0,09 (p=0,76). 

Table 6 Telfort remediation rates 
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6.4 Exploration Domoticz-variant outbreak 
The previous section shows a drop in all survival curves around 81 hours. When combining this 
observation with the information provided in chapter 5 about the outbreak of the Domoticz-
variant, we can isolate the cause of the drop. Figure 20 shows the survival curves of Mirai bots 
before the outbreak (June 9th) and during (after June 9th). As described in chapter 5, we 
separate the data based on the date of the first detection because we cannot distinguish 
different Mirai variants.  

The two curves show that the drop around 81 hours can be assigned to the Domoticz-variant. 
This curve (orange) shows a decrease in survival probability of 12%. In other words: 12% of the 
bots are last detected after 81 hours. This sudden decrease in survival probability is too big to 
be coincidental. When exploring the individual observations, it appears that the last detection 
of these and four other observations (19 in total) is on June 14th between 4 pm and 7 pm UTC. 
Eleven other observations that are censored also show a disruption from that moment. When 
adding up these observations, a total of 30 bots (25%) are under the radar (completely or 
temporarily) at the same time, indicating that they simultaneously stopped their scanning 
activity.  

 
Figure 20 Kaplan Meier survival curves before and after June 9th 

6.5 Sub-conclusions on tracking results 
The goals of this chapter are to obtain an understanding of the data and to compare the 
remediation behavior with findings of the previous experiment by Altena (2018).  

The results of our experiment are in line with Altena’s (2018) findings. Although remediation 
among our experiment subjects is lower, the remediation rates do not significantly differ with 
that of Altena’s (2018) results. In addition, we find a significant difference between remediation 
within the KPN control group and KPN walled garden group and a substantial natural 
remediation rate within the control group (more than 65% is remediated after two weeks).  

The infected devices that are remediated have an infection time of typically less than four days. 
The majority of Mirai-infections are thus remediated within four days, or not at all.  

The remediation rate among consumers in the walled group is higher than the other treatment 
groups. One exception is the first forty hours after notification in the Telfort market: the 
remediation rate is lower for the walled garden. In hindsight, we know that the Telfort landing 
page malfunctioned. This obstructed self-release and may have confused consumers, leading 
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to a longer period before the consumer knows s/he must contact the Abuse Desk for the 
release from the walled garden.  

The control and walled garden group of the KPN population are most divergent and significantly 
differ. Remediation among Telfort consumers is less influenced by notifications than among 
KPN consumers. Although the survival probabilities of the Telfort treatment groups are 
divergent, their difference is insignificant. However, we cannot conclude that notifications in 
the Telfort market are ineffective. The presented survival curves only take the treatment into 
account, while other variables may have explanatory value. If that is the case, the effect of 
these omitted variables is attributed to the treatment only, leading to a bias in our estimates 
(known as the so-called ‘omitted variables bias’). To obtain reliable results on the effect of the 
treatments, we make use of modeling techniques that include more variables. This is presented 
in chapter 10. 

From the analysis of the Domoticz-variant outbreak, we can conclude that a quarter of the bots 
during this outbreak were given a command by the same botnet herder on June 14th. Nineteen 
of these infected devices (63%) are not detected anymore after this day, which implies that 
they are cleaned up but we do not know when (the moment of ceased scanning activity is not 
the moment of cleanup). The other 37% is detected again after the experiment period and thus 
are censored observations. It is unlikely that this event is a major obstruction for further 
analysis because A) it concerns 15% of all infected devices, and B) due to the inclusion of 
censored observation, we still know how many infections are remediated between June 14th 
and the end of the experiment.  

The occurrence of this event on June 14th gives us an interesting insight into the influence of 
the attacker on bot behavior. Firstly, it seems that not all bots in the botnet of the Domoticz-
variant are deployed for an activity at the same time (since we only identify 30 bots that have 
ceased scanning activity). Secondly, the censored observations have a remarkably long period 
of non-scanning (at least ten days). This suggests that either the bots are deployed for long-
term activities (e.g. crypto mining), or that they are put on-hold between the execution of short 
activities. 
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7 Cleanup efforts 
7.1 Introduction 
In this chapter, we focus on consumers’ behavior. We want to understand what consumers do 
after receiving a notification, and what unnotified consumers do that may explain the observed 
natural remediation. The central research question in this chapter is: ’What actions do Mirai-
infected consumers perform?’. The answer to this can both help to understand how people 
remediate, what may cause remediation in the control group, and what difficulties consumers 
perceive. 

 

7.2 Unnotified consumers 
In total, 45 consumers within the control group are interviewed. None of these consumers were 
aware that they owned an IoT device infected with Mirai. However, there were a number of 
consumers who experienced troubles with their device and/or Wifi-connection. Four of these 
consumers contacted the Help Desk. The Help Desk didn’t make a link with a possible malware 
infection and helped the consumers differently: one consumer was told to update his DVR 
(which was effective), one consumer received a new Experiabox (which was effective only for 
a few hours), one consumer was sent a KPN technician who inactivated three of the four 
surveillance cameras (which was effective) and one consumer was not helped at all. Two 
consumers experienced problems with their Raspberry Pi and decided to reinstall the newest 
version. One of these two consumers asked during the interview whether ‘Mirai could also have 
caused the bad WiFi connection he experienced’ around that same time. 

In addition to these two consumers who experienced problems with their Raspberry Pi, six 
other consumers with either a Rasberry Pi or NAS running on Domoticz software updated their 
device between the first detection and the moment of the interview. For them, this was just 
normal routine, not motivated by perceived troubles. Three of them explained that their device 
is automatically updated whenever a new version is released. However, this statement is 
questionable since a successfully updated device after the release would not have been 
vulnerable to infection (see section 5.4: the patched version was released on May 9th).   

Strikingly, 41 of the 45 interviewed consumers in the control group were able to identify IoT 
devices in their home during the phone call. Only three consumers couldn’t name any IoT 
device in their possession and could not recall any visitors who brought any device temporarily.  

The majority of consumers in the control group (71%), did not recall doing anything with their 
IoT device which could explain remediation. This contradicts with the findings of Alterna (2018) 
and the findings in this study (see chapter 6): we found that 65% of the KPN consumers and 
71% of Telfort consumers in the control group had remediated Mirai after two weeks. The 
remediation rate of the interviewed consumers in the control groups is only 62% after two 
weeks. We now know that we cannot explain this remediation entirely by the actions of the 
control group. Only ten of the 45 consumers took correct measures, which explains a 
remediation rate of 22%. This still leaves a gap of 40% in remediation we cannot explain. 

However, one must note that the interviews took place after the experiment period, but still 
during the observation period. This could have alarmed consumers and thereby stimulated 
them to take action within the observation period. In other words: the interview is a form of 
treatment which could have led to less censored observations and thereby a higher 
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remediation rate (see section 4.7 for research limitations). Figure 21 illustrates the survival 
curves of the interviewed and not interviewed consumers in the control group. The non-
interviewed consumers were sent an e-mail only when they were detected again during the 
observation period (and thus received only treatment when they were already censored). The 
interviewed group has a slightly lower remediation rate and speed. There is no significant 
difference between the two groups (Log-rank test estimates a p-value of 0.37). This invalidates 
the assumption that the interviews have a significant influence on remediation. 

 

 
Figure 21 Survival curves for interviewed versus not interviewed control group 

  

7.3 Consumers who received an e-mail 
Twelve consumers of the e-mail group were interviewed of whom two did not see the 
notification since it was sent to an old e-mail address. One of these two consumers cleaned up 
his infected NAS because ‘it worked very slowly’. Of the eight consumers who were aware of 
the e-mail, five e-mailed the Abuse Desk back for additional questions. All questions asked in 
the e-mails show a basic technical understanding of the problem (‘Do you have the Mac address 
of the device in question’, ‘is it possible that this infection is in my Raspberry Pi?) and some e-
mails all expressed the wish to keep their devices clean (‘Can you warn me again if it happens 
again?’, ‘Can I scan for Mirai myself?’). One consumer in particular stands out for his 
commitment to clean up the infected device. This consumer possesses thirty IoT devices and 
e-mailed te Abuse Desk regularly to give an update of his cleanup activities.  He reinstalled all 
his devices, performed several virus scans (which is not effective for Mirai), disabled 
forwarding, and then individually disconnected each device to find the infected devices. The 
DVR appeared to be the source of the problem. 

Two consumers (17%) contacted the Help Desk regarding the notification but were not helped 
adequately. Both consumers were explained where to download a virus scan and how to clean 
their computer. One of these consumers knew these actions were incorrect and decided to 
disconnect his DVR. Another consumer contacted the Help Desk even before receiving the 
notification because of malfunctioning WiFi. There is only one consumer that did receive the e-
mail but did not do anything; he intended to comply but forgot to do so. 

The actions of consumers in the e-mail group vary greatly. Only a minority follows all steps that 
are recommended (16%). The majority performed only some of the recommended measures 
(22%) or other measures than were mentioned in the notification (22%); or both (33%). Of the 
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recommended measures, a reset of the modem is the least performed action (41%). Some 
consumers indicate that they don’t want to lose their configurations and therefore try to clean 
up their device without a modem reset. However, it is likely that in many cases, the 
configuration of the modem is part of the problem. Several e-mailed consumers took more 
rigorous measures such as disconnecting the device from the Internet or discarding the device 
completely. 

 

7.4 Consumers placed in a walled garden 
Thirty-nine consumers of the walled garden group are interviewed. More than a third (41%) of 
these consumers called the Help Desk. Nine of these consumers called the Help Desk 
immediately after noticing the walled garden to ask what to do (‘I seem to have a Mirai virus 
and want to be in contact with the Abuse Team’), three consumers performed the actions and 
wondered when their Internet connection would be restored, and two consumers were not 
aware of the notification and asked if there was an Internet outage at KPN. Only one consumer 
inquired about the authenticity of the notification; she was afraid it might be a phishing e-mail. 

All consumers sent a reaction to the Abuse Desk except for one. This one particular consumer 
was not aware of the fact that she was placed in quarantine: ‘we haven’t used the computer 
for months, but indeed, the surveillance camera is malfunctioning already for quite some time’. 
Only eight consumers managed to release themselves from the walled garden using the contact 
form. The rest sent an e-mail to the Abuse Desk. 

Remarkably many consumers placed in the walled garden choose to disconnect their device 
from the Internet or to not use the device at all any more, instead of following the steps. Among 
these consumers, some do this to give themselves some time to take the actions (‘my wive has 
disconnected all devices, I will change the passwords when I’m home’), some because they 
already doubted the security of the device (‘I disconnected the Chinese IP camera and brought 
it straight to the recycling dump’).  

Several consumers have difficulties performing the actions. The troubles vary between 
identifying the right device (‘There are no other laptops connected, what do I forget?’), to 
executing the actions (‘How can I know how to change the passwords on my printer?’) to fear 
for the consequences (‘I use a lot of home automation but I’m not capable myself to open the 
ports again after a reset’). Similar to the communication within the e-mail group, many 
consumers show commitment to remediate Mirai. However, many of these consumers are 
driven by the disconnect from the Internet rather than concern. Some consumers explain why 
they need the Internet connection back. One consumer has a security system that doesn’t 
function without Internet access. Another consumer didn’t understand what happened so his 
son took care of the issue. The son expressed his concern and dissatisfaction about the Internet 
disconnect (‘Can you imagine what happens if my parents need the emergency button!?’). 

23% of the interviewed consumers in the walled garden group followed all recommendations 
of the notification. The majority of some of these steps in combination with other actions such 
as a Domoticz software update (17%) and disabling of port forwarding (10%). Consumers in the 
walled garden can release themselves by filling in a standard contact form which also asks for 
a virus scan log. This is contradicting the recommended steps and also not an applicable 
remediation action. Despite this misleading contact form, only 10% of the interviewed 
consumers indicate specifically to have performed a virus scan. Half of those did that in 
combination with other actions. Only two consumers performed a virus scan without having 
seen the contact form and thus made this cleanup effort on their own initiative. However, both 
consumers seemed to be aware that a virus scan is not effective for Mirai (‘It is not possible to 
install a virus scanner on my webcam’), but did it just to be sure in case it would be effective. 
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7.5 Performed actions 
Figure 22 presents the actions that interviewed consumers have performed to remediate Mirai 
per treatment group. The first five actions are the recommendations that are provided in the 
notifications. When looking at the percentages of these bars, we see that these steps are only 
performed by around half (40-70%) of consumers who received a notification. The consumers 
in the walled garden do not seem to perform more recommended actions than those who only 
received an e-mail. Although consumers in the control group were able to identify the IoT 
devices they own, these are not included in the graph since they didn’t identify the infected 
device during the experiment as being Mirai-infected. 

Several consumers decide to take other or additional measures: they disable port forwarding 
(cannot use the device from outside their home network), they disconnect the device 
completely from the Internet or decide to not use the infected device anymore.  Relatively 
many consumers placed in walled garden decide to perform these ‘other’ steps than 
recommended. Two consumers explicitly tell that they have brought the infected device to a 
recycling dump. 

The last bar contains the percentage of consumers who did not perform any remediation step. 
This is lowest for the walled warden group (2%), followed by the mail group (8%). Within the 
control group, 71% of the consumers did make any cleanup efforts.  

 

 
Figure 22 Performed actions per treatment (* is a recommended action in the notification) 
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Figure 22 provides information per action but does not account for combinations of 
remediation steps. Figure 23 provides more insight by structuring the remediation efforts in 
three categories: 

• All: consumers who performed all five recommended steps. This category can be 
described as the consumers who have strictly complied with the notification; 

• Some: consumers who performed some of the five recommended steps; 

• Other: consumers who have performed other steps than were recommended in 
the notification. 

The left side of figure 23 shows that the majority of consumers who received an e-mail (and 
did something) has performed some and other steps (33%). Only 22% have complied to all steps 
in the notification. 11% of all consumers only perform steps other than recommended. The 
walled garden group (right-hand side of figure 23) also has a majority that executes some of 
the recommended steps in combination with other actions (40%). A quarter complies 
completely with the notification and more than three-quarters perform other actions. 

 
 
 

 
 

 
 

 
 

Figure 23 Overview performed actions in e-mail (left) and walled garden (right) group 

 

7.6 Sub-conclusions on cleanup efforts 
‘What actions do Mirai-infected consumers perform?’ is the central question in this chapter. 
We conclude that the majority of consumers do not follow the recommendations in the 
notification. When looking purely to compliance with all remediation steps as recommended 
in the notifications, we can conclude that consumers who actively perform actions score badly: 
respectively 22% and 25% of consumers with an e-mail and in walled garden performed all 
steps. Striking in these findings is the high percentage of active and complying consumers in 
the e-mail group. Since the incentive is less than for consumers in the walled garden, one could 
have expected lower rates. The disconnection from the Internet is thus not the only motivation 
to comply with a notification. 

Another peculiarity is the number of actions that are performed that were not mentioned in 
the notifications. Consumers in the walled garden particularly take more drastic measures such 
as disconnecting the device from the Internet (23%), or discarding the infected device 
completely (20%). Despite the non-compliance among consumers who received a notification, 
some of them have performed actions that remediate Mirai. For example, the disconnection 
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of devices and update of Domoticz software lead to successful remediation. This means that 
we cannot purely determine remediation based on compliance, but rather on the specific 
actions a consumer took. 

In the control group, we find no clear explanation for remediation. Ten of the 45 interviewed 
consumers cleaned up Mirai unintentionally by updating outdated software; one consumer by 
the disconnection of devices. Although some of these consumers experienced troubles with 
their device, none of them was aware of the fact that his/her device was infected with Mirai. 
One must note that the consumers in the control group who unintentionally cleaned up their 
device mainly exist of consumers with a device running on outdated Domoticz software. Only 
two consumers cleaned up different device types. Without the outbreak of the Domoticz-
variant, the share of consumers who cleaned up their device would have been lower. Despite 
these cleanup efforts, there is still a difference of 40% difference in remediation after two 
weeks which we cannot explain. Although the interviews may have stimulated remediation, we 
don’t detect such influence when comparing the interviewed control group with the non-
interviewed control group.  

Remarkably, almost all consumers – including those in the control group – were able to identify 
IoT devices in their home. The ease in identifying the infected device varied among consumers. 
Many consumers who received a notification needed additional help to find out which of the 
devices would be infected. Their requests differed from specific inquiries (‘which Mac address’) 
to general questions (‘how do I find the device if I cannot install a virus scan on it?’). However, 
some consumers already had a gut feeling of which device was infected (‘that Chinese cheap 
camera’, ‘that DVR that was already malfunctioning’).  

In conclusion, the appeal to consumers to remediate Mirai seems effective when looking at the 
numbers of performed actions:  98 % of the walled garden performed at least one action, 
versus 92 % in the e-mail group. In contrast, 88% of the consumers among the control group 
didn’t perform any cleanup actions. The 22% who did perform actions are mainly consumers 
who own a device running on Domoticz who updated their software. 

These sub-conclusions are illustrated in figure 24. The described cleanup efforts are part of the 
‘behavior’ phase of the theoretical framework. We can now further specify this phase by 
distinguishing intentional and intentional cleanup efforts. One out of five consumers in the 
control group unintentionally cleaned up Mirai. Notified consumers intentionally performed 
cleanup actions but most of these didn’t comply fully to the recommended actions. We cannot 
point out the exact reason for this. One explanation is the lack of good comprehension. Since 
many consumers asked for additional help, we conclude that consumers appear don’t have a 
full understanding of how to tackle the problem. This may obstruct compliance. Another 
explanation is the lack of motivation to comply with all recommendations. We observed no 
pronounced cases in which consumers didn’t intend to comply due to a lack of faith in their 
capabilities (‘self-efficacy’) or the effectiveness of the recommended actions (‘response-
efficacy’). However, the high rate of full compliance indicates that either consumers may not 
fully rely on the advice and prefer to solve the problem in their own way, or consumers believe 
they are not capable of performing the actions and thus take rigorous actions.  
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Figure 24 Theoretical framework adjusted to sub-conclusions on cleanup efforts



8 Compliance and 
remediation 

8.1 Introduction 
The first goal of this chapter is to understand what obstructs compliance with the 
recommended cleanup actions among notified consumers. This is formulated in the research 
question ‘What are the reasons for non-compliance with Mirai notifications?’. In the previous 
chapter, we concluded that the majority of consumers does not comply with the recommended 
cleanup actions, but that still many consumers took other measures that are effective for Mirai 
cleanup. Therefore, we not exclusively look to ‘strict’ compliance, but rather to performance 
of right cleanup measures (a looser notion of compliance). In section 8.2, we analyze the 
reasons for compliance and non-compliance (both in loose sense), using the theoretical 
framework. 

Secondly, we use the information we have about consumers’ behavior to make the first step in 
exploring its effect on remediation. This helps in partly answering the research question ‘How 
can remediation of Mirai-like bots be explained?’. Section 8.3 presents an exploration of the 
effect of performing right cleanup actions on survival behavior. Section 8.4 presents the drawn 
conclusions. 

 

8.2 Dissection of reasons for (non-)compliance 
The theoretical framework, as presented in section 2.4.5, describes five phases that lie between 
notification and desired behavior. Each stage is a potential obstruction in the way of achieving 
remediation. For both e-mail and walled garden notifications, we mapped the paths between 
these phases. Each node presents one stage of the theoretical framework. Since we are 
interested in the loose notion of compliance (whether a consumer has cleaned up Mirai), we 
exclude compliance in a strict sense. This results in the following four mapped stages: 

• Awareness: whether a consumer has received a notification. This is not only technical 
delivery (correct e-mail address) but also includes awareness of the consumer about the 
notification (e.g. not regarded as a spam e-mail); 

• Comprehension: whether the content of the notification was clear to the recipient; 

• Intention: whether a consumer had the intention to comply with the notification. In other 
words: was s/he motivated?; 

• Correct measures: based on the findings in the previous chapter, we choose here to 
distinguish compliance from right behavior. Whether a consumer has performed right 
cleanup measures is determined by the following rules: 

o The consumer has restarted the infected device and changed the password. Or: 
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o The consumer has disconnected the device from the Internet. Or: 

o The consumer has discarded the device. Or: 

o The consumer has updated/reinstalled Domoticz software. 

The tree with reasons of (non-) compliance is visualized in figure 25 for the consumers who are 
placed in the walled garden. These consumers in a walled garden were almost all aware of the 
notification. For 68% of these consumers, the content was clear and intention to comply was 
present. Despite the unclarity for the 32% other consumers, the majority (92%) still intended 
to try to comply with the remediation steps. 31 of the 39  (79%) consumers in walled garden 
succeeded in performing correct cleanup actions. 

 
Figure 25 Reasons for (non-)compliance with walled garden notification 

Figure 26 shows the tree for consumers who only received an e-mail notification. In 
comparison, these consumers were less aware of the notification: only 75% of the consumers 
read the notifications. Not all consumers who understood the message were motivated to 
comply. Of all people who did understand the content and intended to comply, seven 
succeeded in performing correct actions (58% of total). Of all consumers who didn’t read the 
notification, still one of the three remediated Mirai. 

Both figures 25 and 26 show that the majority of notified consumers stated the notification 
was clear to them. However, the findings of chapter 7 contradict this: many consumers needed 
additional help.  
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Figure 26 Reasons of (non-)compliance with e-mail notification 

Table 7 explores the intention-behavior gap of notified consumers. Behavior is defined in two 
ways: strict compliance with the notification (performing all recommended steps), and loose 
compliance (performing correct cleanup actions, can also be others than mentioned in the 
notification). Concerning strict compliance, only 25% of the consumers who intended to comply 
did actually do so. When looking purely at performing correct cleanup actions, the gap is 
smaller: only 14% of the motivated consumers did not succeed in taking the right cleanup 
measures. 

 

Number of 
consumers who 
were aware of the 
notification 

Of who intended 
to comply: 

Of who complied 
to all actions in the 
notification: 

Of who performed 
right cleanup 
actions: 

51 44 (86%) 11 (21%) 38 (75%) 
Table 7 Exploration intention-behavior gap 

Although the majority of consumers who are aware of the notification have the intention to 
comply, the underlying motivation differs per notification mechanism. The bar plot in figure 27 
shows that the disconnect from the Internet in the walled garden is the primary reason to 
comply, while intention in the e-mail group is mainly driven by the wish for a secure network 
and Internet. Among the consumers driven by security concerns, the motivations have nuance 
differences. Some consumers wanted to comply because of concern for the security of their 
own network and privacy (‘I’m afraid for theft of my personal files on my computer’), other 
consumers expressed concern for the threat to society in general (‘I don’t want to spread all 
kinds of viruses to others’, ‘I don’t want to contribute to a DDoS attack’). Other reasons to 
comply to the recommendations vary from encountered issues (‘my devices were already 
malfunctioning and my internet was getting slowly’), to one consumer who wanted to avoid a 
potential walled garden placement KPN. Three consumers express disgust towards the Mirai-
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infected device (‘what a source of misery!’, ‘I already doubted the device, I brought it straight 
to the recycling dump’,’I want to lose that thing, have it off my network!’). 

 
Figure 27 Motivation to comply with notification per notification mechanism 

8.3 Exploring the effect of behavior 
Figure 28 shows - per treatment group - the survival curves of consumers who performed the 
right cleanup actions and of those who didn’t. The control group has the lowest remediation 
rate (78%) among consumers still infected after two weeks while having performed the right 
actions. As described in chapter 7, these actions mainly encompassed the update of outdated 
Domoticz software. It is remarkable that still two of the nine consumers appear on our radar 
after the experiment period. When looking at the consumers who didn’t clean up their device, 
58% is not seen again after the experiment period. Although this rate is 20% lower than the 
other group, the difference between the curves is non-significant (Log-rank test estimates a p-
value of 0,31)5. 

The curves within the e-mail group differ most of all treatment groups. The remediation rate 
among consumers who didn’t perform right clean up actions is the lowest in this group with a 
rate of 50%. One of the eight consumers who remediated is still infected after two weeks. 
Although the remediation rate of the two groups differs with 37% after two weeks, the Log-
rank test estimates no significant difference (p=0,18)5.  

The walled garden group contains the lowest remediation rate for both the consumers who 
performed the right actions and the consumers who did not. Six of the eight consumers who 
did not perform any right cleanup action are not detected after three days. Only 10% of the 
consumers who did perform the right actions are still infected after the experiment period. 
Similar to the other treatment groups, there is no estimated difference between the two 
survival curves (p=0,27)5. 

 

                                                             
5 As explained in section 4.5.1, due to omitted-variable bias we may not estimate a significant difference 
between survival curves while the influence of behavior variable could be significant. 
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Figure 28 Survival curves - the influence of behavior per treatment group 
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8.4 Sub-conclusions on compliance and remediation 
The first research question focused on in this chapter is ‘What are the reasons for non-
compliance with IoT abuse notifications?’. Both e-mail and walled garden notifications are 
effective in reaching the consumer, informing them and encouraging them to take action. Most 
consumers who are placed in a walled garden have as a primary incentive to get back Internet 
access while people who received an e-mail are motivated by the severity of the threat. Note 
that the e-mail notifications were only sent to Telfort consumers and that the findings on the 
effect of e-mail only apply to this market. When reviewing these findings in light of the 
theoretical framework, the identified motivations are covered by two motivation components 
of the theoretical framework. The disconnect from Internet access can be considered a 
reversed ‘response cost’: instead of the costs to clean up a device, it is the costs of not doing 
so. The other common motivation - the whish for a secure network – can be traced back to the 
motivation component ‘perceived severity’. People are motivated because they believe a Mirai 
infection is a severe problem for themselves and/or society.  

Although notifications are effective in reaching, informing and activating consumers, we 
identify a large intention-behavior gap. Only 25% of the consumers who state to be motivated 
to comply, succeed in doing so completely. On the other hand, looking at compliance in loose 
sense (taking effective measures), the intention-behavior gap is smaller: 14% of the consumers 
did not manage to clean up their infected device. In addition to the intention-behavior gap, we 
observed a discrepancy between the stated comprehension and observed comprehension. 
Although the majority of consumers stated that they understood the content of the notification 
completely, many consumers were not able to clean up their infected device without additional 
help. 

The second goal of this chapter was to make a start with answering the research questions 
‘How can remediation of Mirai-like bots be explained?’. Despite our attempt to explain natural 
remediation by looking at user behavior, we are (still) not able to do so. We observe a 
substantial remediation rate among consumers who didn’t clean up their device. The 
unexplained remediation is highest among consumers in the walled garden group: 75% of the 
consumer who didn’t clean up their device is observed as remediated during the experiment. 
The lowest remediation rate is among the e-mail group: half of the Mirai infections are 
observed as remediated. Since a Mirai infection cannot disappear without reason, we must 
look for other explanations for the observed remediation. The first explanation is that we have 
not observed all behavior. We provide four possible scenarios: 

• Consumers forgot what clean up actions they performed or forgot to mention them during 
the interviews; 

• Consumers clean up their device unintentionally; 

• The device is cleaned up by someone else in the household without the consumer’s 
knowledge; 

• The consumer cleaned up the device after the interview: between the end of the 
experiment period and the end of the two-week additional observation. 

The second explanation concerns the area we focus on. This study studies remediation from 
the user perspective. Since the unexplained natural remediation rates are so high, one can 
argue that unobserved behavior is not able to explain that complete gap. That would imply that 
more than half of all consumers cleaned up their device while stating otherwise during the 
interviews. Since we believe this is unlikely, we must look for answers on the attacker side. We 
provide the following two unexplored explanations: 
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• Other malware takes over Mirai-infected devices. This study focuses on Mirai and only 
included abuse feeds on this malware. Therefore, a device may be compromised by other 
malware without our knowledge. That would explain why an IP address doesn’t appear on 
our radar and the bot is wrongly considered to be cleaned up. 

• The majority of Mirai infections are detected when a bot is in a scanning phase. 
Conventional Mirai bots are scanning unless they get commands from the botnet herder. 
With the increasing number of Mirai-variants, bots may have evolved scanning behavior. 
They might for example only scan when commanded to, or have built-in behavior that 
determines that a bot only scans in the first hours of its life. 

The findings of this chapter are illustrated in figure 29. Although we didn’t estimate a significant 
difference between the survival curves of consumers who said to have cleaned up their device 
and those who didn’t, we cannot conclude yet that the observed behavior has no influence on 
the estimated infection time. This has to do with the omitted-variable bias as explained in 
section 4.5.1 and 6.5. Especially now we know that we didn’t observe all behavior of consumers 
and potential influences from the attacker side, the univariate Kaplan-Meier survival cannot 
provide us with a definitive conclusion on the effect of stated behavior. The models in chapter 
10 include more variables and thus provide us with more reliable estimates. 
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Figure 29 Theoretical framework adjusted to sub-conclusions on compliance and remediation 
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9 Customer 
experience 

9.1 Introduction 
The previous two chapters focused on consumers’ behavior after receiving a notification, what 
obstructed them in complying and what motivated them to clean up their Mirai-infected 
device. This chapter covers customer experience with as central research question: ‘How do 
consumers experience Mirai notifications?’. Section 9.2 presents the result on customer 
satisfaction. The obtained suggestions are  described in section 9.3. Section 9.4 presents the 
conclusions. 

 

9.2 Customer satisfaction 
All interviewed consumers who received notification were asked about their experience. Figure 
30 displays two pie charts of consumer satisfaction of consumers who were placed in a walled 
garden (left) versus consumers who received an e-mail (right). 61% of the interviewed 
consumers in the walled garden group were satisfied versus 100 % in the e-mail group. Almost 
a quarter of the consumers placed in a walled garden were dissatisfied. These results are 
contradictory to Altena’s (2018) study in which 8% of all notified consumers expresses 
satisfaction. The only explanation we can find is the difference in the interview protocol. In 
Altena’s (2018) study, consumers are not asked specifically about their opinion, only about their 
suggestions (‘How could the communication to customers be improved when KPN sees 
problems like this?’). In our study, we asked specifically about a consumer’s opinion (‘What do 
you think of KPN’s service to reach out to infected customers?’). Apparently, consumers only 
express their satisfaction when asked about. This is also reflected in the communication with 
the Abuse Desks: the contact forms and e-mails are often framed negatively (‘I want my 
Internet back soon!’) while most of these consumers are actually grateful for KPN’s service.  

 
 

Figure 30 Consumer satisfaction for walled garden (left) and e-mail (right) notifications 
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Table 8 contains measures of central tendency and figure 31 present the survival curves of 
consumers with a different experience. Satisfied consumers in our experiment have a ‘typical’ 
infection time of 12 hours, which is half the infection time of dissatisfied consumers and 30 
hours less than consumers without a clear opinion about the notification service. In contrast to 
these differences, we observe no notable differences in survival behavior in figure 31 (log-rank 
test estimates p-value higher than 0,31 for comparison of all curves). 

 

 mean std median 

Satisfied 50,53 95,46 11,80 

Neutral 88,52 124,80 42,04 

Dissatisfied 61,33 107,06 24,92 
Table 8 Descriptives on infection time (in hours) based on consumer satisfaction 

 

 
Figure 31 Survival curves - customer satisfaction 

9.3 Customer suggestions 
Consumers who have fallen victim to a Mirai infection may possess valuable information to 
improve notification. They may point us to blind spots and may have creative ideas for 
improvement. Of all notified consumers, 27 (69%) of the walled warden group and six (54%) of 
the e-mail group had suggestions on how to improve notifications concerning Mirai. These 
suggestions can be divided into two categories: notification content, and notification 
procedure. 

9.3.1 Notification content 

Eight consumers declare that they questioned the authenticity of the notification and 
suggested this may be improved. Most of these people suggest a more personalized content. 
One person specifically says it would be helpful if he could have verified the authenticity of the 
message. Two customers wonder why they have never heard of the Abuse Desk before and 
suggest better publicity of this service. 

Five consumers believe that the measures are not easy to follow for technical lay(wo)men. For 
example, one consumer had difficulties in regaining Internet again after resetting his modem. 
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It took him long to realize the default password is written underneath the modem and he 
suggested to include such little tips. Eight people specifically suggested more help or advice on 
how to detect the infected machine (‘isn’t there any tool available?’). The people asking for this 
differed from technical experts (who asked for a MAC address) to people who did not manage 
to identify one single Internet-connected device and wanted a list of device types to 
understand what kind of device he was looking for.  

9.3.2 Notification procedure 

The suggestions about the notification procedure only come from customers who were placed 
in a walled garden. All consumers who were only e-mailed were satisfied with how they were 
approached. 

Twelve of the consumers in the walled garden group would have liked to receive a notification 
before being placed in quarantine. Many of those consumers encountered the problem that 
they were not aware of the quarantine until very late (because they did not receive a landing 
page in their browser or because they did not go to their inbox because they believed their 
Internet was down). Five consumers suggested an additional call for notification purposes. 

Quite many people did not manage to release themselves (44 consumers in total) due to the 
absence of a landing page. Six consumers suggest clear information on how to get released 
after taking remediation actions. Five people express their concern about the disconnect from 
the Internet. Two of those were sons (both adults) of consumers and were worried about the 
Internet disconnect of their parents. One of them mentioned that the emergency button would 
not function. The other explained that his parents were very worried because the surveillance 
camera did not function anymore. One consumer has been robbed during the disconnect from 
the Internet since he had no functioning surveillance camera. 

Seven consumers wanted to have been able to call the Abuse Desk for additional help. Three 
consumers mention that the Help Desk has not been able to help them. Two consumers 
expressed their dissatisfaction with the limited availability of the Abuse Desk. Both men could 
not release themselves and had to wait until the following day before they were manually 
released by an Abuse Desk employee. 

 

9.4 Sub-conclusions on customer experience 
The central research question of this chapter was ‘How do consumers experience Mirai 
notifications?’. In general, notified consumers are satisfied with KPN’s effort to notify them 
about Mirai while in most cases this was not reflected in the communication with the Abuse 
Desk. A quarter of consumers placed in a walled garden are dissatisfied which can be explained 
by the disruptive nature of the measure. All consumers who received an e-mail are satisfied 
with this service. Customer satisfaction does not seem to have a significant effect on the 
estimated infection time. 

The suggestions of consumers vary greatly but three things stand out: 

• People wish to be better informed. This is the case for both consumers who have difficulty 
with following the steps, as for more tech-savvy consumers who wish to have more details 
on the information that KPN possesses about the abuse incident. This finding is in line with 
the findings of chapter 7 in which we observed that many consumers requested additional 
help from the Help Desk and Abuse Desk. 

• In addition to the first point, consumers would like to have additional help from KPN 
employees. The Abuse Desk cannot be called and employees of the Help Desk often know 
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little about the abuse incident or are not able to help a consumer. People wish to be able 
to call someone for help on the problem or for a release from the walled garden. In 
addition, consumers wish to ask for additional help outside office hours so they do not have 
to wait a night or weekend without access to the Internet.  

• On top of the disruptive nature of a quarantine environment, three factors aggravate the 
disconnection: A) consumers are not aware of the walled garden up until they come home 
in the evening when the Abuse Desk is already closed and not able to help. B) The majority 
of consumers is not able to release themselves because they have not received a landing 
page, accidentally clicked it away or are not aware of the existence of this page. C) 
Consumers think that because their Internet is down, they cannot enter their e-mail inbox. 
This prevents them from retrieving the information that tells them they are put in a walled 
garden and explains them how to self-release. Therefore, it takes a long time for some 
consumers to find out they have to take action. A warning prior to an Internet 
disconnection is, therefore, a frequently mentioned suggestion. 
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10 Remediation drivers 
10.1 Introduction 
Previous chapters have reported the results and conclusions on user characteristics (chapter 
5), Mirai remediation among different populations (chapter 6), cleanup efforts (chapter 7), 
reasons of non-compliance (chapter 8) and customer experience (chapter 9). This chapter 
combines these aspects to explore what factors influence remediation. The results give an 
answer to the research question: ‘How can remediation of Mirai-like bots be explained?’. The 
data is analyzed using the Cox and AFT modeling techniques which are both described in 
chapter 4. The modeling is done in three steps as illustrated in figure 32  - from generic to 
specific. Each step is reported in a separate section: 

• Step 1 (section 10.2): includes the observations of all consumers, using only 
information from subscription accounts (e.g., gender) and variables as set by the 
experiment (e.g., treatment); 

• Step 2 (section 10.3): includes observations of only interviewed consumers, using 
additional variables obtained from interviews (e.g., device type and cleanup efforts) 

• Step 3 (section 10.4): includes observations of only interviewed consumers who have 
received a notification, using additional variables obtained from the interviews (e.g., 
comprehension of the content and intention to comply). 

Section 7.5 draws conclusion using the findings from the models. Appendices J, K and L contain 
the detailed modeling process of respectively section 7.2, 7.3 and 7.4.  

 
Figure 32 Three modeling steps 
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10.2 General exploration remediation drivers 

10.2.1 Variables of interest 

To be able to include all observations in the modeling process, we can only use variables which 
are known for all observations. In this first modeling step, all the variables that are addressed 
in chapter 5 on study population are included, in addition to the variable ‘time-splits’ which 
refers to the division of observations before and after the Domoticz-variant outbreak. Table 9 
provides an overview of these variables, including the dependent variables. Appendix J provides 
more details on how the dummy variables are coded. The dataset contains 177 observations, 
of which 28 censored (15%). We test whether the independent variables are covariates for 
infection time. In other words: we explore what variables have a significant influence on 
remediation and what these relations look like. 

 

  

10.2.2 Modeling 177 observations and 5 variables 

Modeling a Cox hazard model (see appendix J.3) based on the data and variables as described 
in the previous section leads to a bivariate model wherein the variables ‘female’ and ‘walled 
garden’ have a significant effect on the infection time. The dummy variable ‘female’ refers to 
the distinction between female consumers (coded as 1) and the rest of the consumers (male + 
unknown gender, coded as 0). The coefficient of this variable in the partial hazard is 0,526 

                                                             
6 Exp(0,52)=1,68 

 Variable Explanation Coded 

De
pe

nd
en

t 
va

ria
bl

es
 

Infection 
time 

Infection time of a Mirai bot Between 0 and 336 hours 

Death Censored observations: all the bots 
that were still infected after two 
weeks. 

Censored = 0 (still infected) 

Not censored = 1 (last detection is 
within two weeks after notification) 

In
de

pe
nd

en
t v

ar
ia

bl
es

 

Sex Male Two dummy variables 

Female 

Business 

Age 2019 minus birth year Continuous variable 

Market Telfort or KPN consumer Dummy variable 

0 = KPN  1 = Telfort 

Treatment E-mail notification Two dummy variables 

Walled garden 

No notification (control group) 

Time splits Whether the infection took place 
before or after June 9th  

Dummy variable 

0 = before  1 = after 

Table 9 Variables included in the first modeling step 
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(CI:0,03-1,00, p=0,04), which indicates a factor 68% increase of baseline hazard. In other words: 
female consumers have about 70% more chance on remediation compared to consumers who 
are not known to be female. The ‘walled garden’ variable distinguishes consumers who are 
placed in a walled garden versus the other consumers (control and e-mail group). The 
coefficient of this variable in the partial hazard is 0,577 (CI:0,19-0,95, p<0,005), which implies a 
77% increase of baseline hazard. Combined, the estimated regression equation is: 

log d
[eZfg	ℎhihe,

jhk^Y\.^	ℎhihe,
l = 0,52Oopqrsp + 0,57Oursspv	wrxvpy 

Wherein Oopqrsp is an indicator for gender (1=female, 0=rest) and Oursspv	wrxvpy	is an indicator 
for notification mechanism (1=walled garden notification, 0=no notification or e-mail). Female 
consumers placed in the walled garden have the highest relative increase in hazard rate. This 
group has three times8 higher remediation rate compared to the baseline hazard.    

When modeling an AFT model (see appendix J.4) with the same variables and observation, the 
LogNormal distribution has the best fit. The AFT LogNormal model that is estimated also results 
in a bivariate model with ‘female’ and ‘walled garden’ as significant covariates. The coefficient 
of ‘female’ is  -1,03 (CI:-2,07- -0,01, p=0,052) and the coefficient of ‘walled garden’ is -1,13 (CI:-
1,92- -0,34, p=0,005). This means that female consumers have a 68%9 decrease in mean and 
median Mirai-infection time and consumers placed in a walled garden a 64%10  decrease. The 
influence of these two covariates combined can be described by the accelerated failure rate D: 

D(O) = exp	(−1,03Oopqrsp − 1,13Oursspv	wrxvpy) 

Female consumers placed in a walled garden have an acceleration rate of 0,1211: their mean 
infection time is 88% shorter than consumers not placed in a walled garden and who are not 
known to be female.   

The influence on remediation of the two estimated covariates are shown in appendices J.3 (Cox 
model) and J.4 (AFT model). Figure 33 visualizes the observed - not modeled - survival curves 
based on these two variables to gain a better picture of the data from which the models are 
derived. Since we have not controlled for demographics, consumers of each gender are not 
equally distributed over the treatment groups. Only four female consumers were placed in a 
walled garden. These four women have remediated Mirai within three days and stand out 
compared to the other survival curves. Consumers who are not known to be female and are 
not in walled harden have te lowest remediation rate. 

 

                                                             
7 Exp(0,57)=1,77 
8 Exp(0,52+0,57) = 2,97 
9 Exp(-1,13) = 0,32 // 1-0,32 = 0,68 
10 Exp(-1,03) = 0,36 // 1-0,36 = 0,64 
11 Exp(-2,16) = 0,12 
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Figure 33 Survival curves - covariates gender and notification mechanism 

10.3 Exploration interviewed consumers 

10.3.1 Variables of interest 

We can use information obtained from the interviews to further specify the drivers of 
remediation. We include two qualitative variables concerning the stages of the theoretical 
framework: awareness and behavior. ‘Aware of notification’ is a variable that distinguishes 
whether the consumer received a notification and is aware of its content. ‘Right measures’ is a 
variable that refers to whether consumers have performed effective remediation measures. 
‘Compliance’ and ‘Intention’ are not included since this only concerns notified consumers. 
These stages will be explored in section 10.4.  

In addition to awareness and behavior, device types are also included in the modeling 
sequence. The pie chart in figure 15 (chapter 5) visualizes the ratios of device types. However, 
these pie charts do not take into account that some consumers have identified several devices 
as possible infected. Since we don’t know the precise device, we collect these devices under 
the variable ‘multiple’. The NAS and Rasberry Pi devices are collected under the variable ‘home 
automation’ (modeled as ‘home’).  

In total, the dataset of interviewed consumers contains 39 observations of home automation 
devices, 23 cameras, 11 instances of multiple identified devices, 11 unknown devices, 3 
printers, and 2 routers. Due to their low occurrence, printers and routers are not modeled as 
separate variables but as a residual category. The five device categories are modeled using four 
dummy variables (see appendix K.1 for the coding schemes). 

The six discussed variables are summarized in table 10 and are added to the five variables that 
are described in section 10.2. From the observations, we exclude consumers who are 
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reinfected and who are not interviewed. The remaining dataset contains 89 observations, of 
which 22 are censored (25%).  

 

 

When plotting the observations against infection time (see appendix K.2), we detect that the 
majority of censored observations are among consumers who have not performed effective 
measures and among consumers who are not aware of the notification. Appendix K.2 presents 
a correlation matrix of all variables, which shows that the correlation between these two 
variables is 0,6. This value indicates that there is a moderate/strong linear relationship between 
awareness and cleanup actions. Both variables are also correlated with the walled garden 
variable; awareness (coefficient of 0,75) more than behavior (coefficient of 0,45). 

When plotting the observations in the context of device categories, there are no observable 
trends. The time-splits variable relates to categories of home automation (coefficient of 0,74) 
and camera (coefficient of -0,6), which is expected. The home automation variable has a 
moderate positive relationship with behavior (coefficient of 0,45).  

10.3.2 Modeling 89 observations and 11 variables 

The Cox modeling steps are reported in appendix K.3. This results in a model with three 
significant covariates: ‘female’ with a coefficient of 1,35 (CI:0,52-2,17, p<0,005), ‘aware fo 
notification’ with a coefficient of 0,64 (CI:0,01-1,27, p=0,05), and ‘right measures’ with a 
coefficient of 0,63 (CI:-0,01- 1,28, p=0,05). This leads to the following equation: 

log d
[eZfg	ℎhihe,

jhk^Y\.^	ℎhihe,
l = 1,35Oopqrsp + 0,64Orurxp + 0,63Ox-w}3	qpr~�xp~ 

Variable Explanation Coded 

Awareness Whether the consumer received and read a 
notification 

Dummy variable 

0 = not aware (incl. control 
group)  1 = aware 

Behavior Whether the consumer performed right cleanup 
actions (can be other actions than recommended) 

Dummy variable 

0 = incorrect actions  (incl. 
inaction) 1 = correct actions 

Device 
type 

‘home’:  Consumers who have identified a NAS or 
Rasberry Pi as the infected device 

Four dummy variables 

‘camera’:  Consumers who have identified an IP 
camera as the infected device  

‘multiple’:   Consumers who have identified multiple 
IoT devices as possibly infected 

‘unknown’:  Consumers who were not able to identify 
an IoT device in their network 

Consumers who have identified a printer or router as 
the infected device (residual category) 

Table 10 Additional variables included in the second modeling step 
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Individually, these variables have an increase of the baseline hazard of 280%12 (female), 90%13 
(aware of notification) and 89%14 (right measures). Remarkably, awareness of the Mirai 
infection and right behavior have individually significant explanatory value. Since the ‘walled 
garden’ variable showed a moderate positive relationship with both variables, we also 
estimated a model substituting ‘right measures’ and ‘aware of notification’ with ‘walled 
garden’. Although this leads to an accepted model, the model is of less quality (the Akaike 
information criterion is higher, see appendix K.3). 

Fitting an AFT model leads to a bivariate model based on the LogNormal distribution. The 
modeling steps are reported in appendix K.4. ‘Aware of notification’ and ‘female’ are the 
variables with explanatory value and have a coefficient of respectively -1,78 (CI:-2,78— -0,78, 
p<0,0005) and -1,96 (CI:-3,565- -0,36, p=0,017). This means that female consumers have a 
86%15 shorter infection time than consumers who are not known to be female. Consumers who 
have read a notification regarding Mirai have an 83%16 shorter mean infection time. This 
variable can be substituted with the variable ‘right measures’ or ‘walled garden’ which both 
lead to an accepted model but with less goodness of fit. The combined acceleration factor can 
be estimated using the following equation: 

D(O) = exp	(−1,96Oopqrsp − 1,78Orurxp) 

Female consumers who have received a notification and are aware of it have thus the shortest 
infection time. The mean infection time of this group is 98%17 shorter than consumers that are 
not to be known to be female and are not aware of a notification.  

In contrast to the Cox model, the LogNormal AFT model does not estimate the ‘right measures’ 
variable as a significant covariate (appendix K.4 shows that exclusion of this variable results in 
a slightly better model). To explore the survival behavior in the experiment, we therefore first 
look to the combined effect of gender and awareness. The survival curves are illustrated in 
figure 34. All female consumers within this dataset have remediated their device within four 
days, while a substantial share of non-female consumers are still infected after two weeks. 
However, also the non-female consumers who are aware of the notification have either 
remediated within four days or not at all (the survival curve is horizontal after four days). It is 
remarkable that the subscribers who have not received a Mirai notification, still show a high 
rate of remediation: 100% among female consumers, and 58% among non-female consumers. 
This is in line with the unexplained natural remediation within the control group. 

                                                             
12 Exp(1,35) = 3,84 
13 Exp(0,64) = 1,90 
14 Exp(0,63) = 1,89 
15 Exp(-19,61) = 0,141 // 1-0,141 = 0,86 
16 Exp(-1,780 = 0,17 // 1-0,17 = 0,83 
17 Exp(-1,96-1,78) = 0,02 // 1-0,02 = 0,98  
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Figure 34 Survival curves - covariates gender and awareness of notification 

Of all observations in the experiment, 36% of the female consumers are interviewed (versus 
56% of the rest). Since we found in section 10.2 that gender explains remediation, the low 
amount of interviewed female consumers can obstruct reliable estimates. There are only nine 
observations of female subscribers, of whom only one is aware of a Mirai notification. Due to 
the small size of this group, our estimates are not highly reliable. 

In figure 35, one can inspect the observations of consumers who performed (in)correct 
behavior and were (non-)aware of Mirai. The consumers who were either not aware or did not 
perform the correct behavior are the minority of the observations: both groups cover 20% of 
all interviewed consumers.  

 
Figure 35 Survival curves - covariates awareness of notification and taking right cleanup measures 
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None of the device type categories variables are estimated covariates. The survival curves of 
the four categories are illustrated in figure 36. The behavior of the device categories are quite 
similar until four days and diverge from there. Infections among consumers with multiple IoT 
devices identified as possibly infected, have the highest remediation rate. Consumers with an 
infected IP camera have the lowest remediation rate.  

 
Figure 36 Survival curves – device type categories 

10.4 Exploration notified consumers 

10.4.1 Variables of interest 

In the last step in exploring remediation drivers, we use detailed information that is obtained 
from the notified consumers who are interviewed. We add four variables to the variables 
explored before: the two stages of the theoretical framework which were excluded before 
(comprehension and intention) and two dummy variables regarding customer satisfaction. 
These variables are explained in table 11. The dummy coding is described in more depth in 
appendix L.1. These four variables are added to the ten variables that are described in the 
modeling process of section 7.3 (eleven minus the variable ‘e-mail’* since we exclude the 
control group). In total, the dataset in this modeling sequence contains 49 observations, of 
which nine censored  (18%). Of these 49 interviewed, notified consumers, 37 consumers were 
placed in a walled garden and twelve received an e-mail only. 
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When reviewing the correlation matrix (appendix L.3), several correlation coefficients stand 
out. Firstly, the correlations between all stages of the theoretical framework are in line with 
our expectations. They all have a positive relationship with each other, with a minimum 
correlation coefficient of 0,38 (between comprehension and behavior). The intention to 
comply is strongly (positive) related to awareness (correlation coefficient is 0,83). In a lesser 
extent, intention also relates to behavior (coefficient is 0,58). Secondly, female subscribers 
seem to have more trouble with understanding a notification (negative correlation of -0,61) 
than male subscribes (positive correlation of 0,46). Thirdly, the device type category ‘unknown’ 
is negatively related to all stages in the theoretical framework. Lastly, consumers who received 
an e-mail notification are typically more satisfied with the notification service (coefficient of 
0,34), than consumers placed in a walled garden. 

10.4.2 Modeling 49 observations and 14 variables 

Appendix L.3 reports all modeling steps for the estimated Cox model. The accepted model is a 
bivariate model with ‘male’ and ‘intended to comply’ as significant covariates. ‘Male’ has a 
coefficient of -1,22 (CI:-2,21- -0,22, p=0,02) and ‘intended to comply’ a coefficient of 1,13 
(CI:0,07-2,20, p=0,04). Combined the lead to the following equation of the proportional hazard: 

log d
[eZfg	ℎhihe,

jhk^Y\.^	ℎhihe,
l = −1,22Oqrsp + 1,13O-y3py3-Çy 

The male variable has an individual influence of the baseline hazard of -70%18. In other words: 
male consumers have a 70% decrease in the baseline hazard. Note: a decrease in hazard rate 
implicates a longer infection time. The intention to comply increases the baseline hazard with 
211%19.  

                                                             
18 Exp(-1,22) = 0,30 
19 Exp(1,13) = 3,11 

Variable Explanation Coded 

Comprehension Whether the consumer understood the content of 
the notification 

Dummy variable 

0 = not understood   

1 = understood 

Intention Whether the consumer intended to comply with the 
recommended actions 

Dummy variable 

0 = no intention 1 = 
intention 

Consumer 
satisfaction 

Satisfied with the service Two dummy variables 

Neutral regarding service 

Dissatisfied with the service 

Treatment* Walled garden Dummy variable 

0 = e-mail 1 = walled 
garden 

E-mail notification 

Table 11 Additional variables included in the third modeling step 
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The variables ‘right measures’ and ‘aware of notification’ can individually substitute the 
variable ‘intention to comply’. Both substitutes lead to an accepted model, but with decreased 
goodness of fit and less reliable explanatory value (p=0,06).  

When fitting the AFT model, again the LogNormal distribution results in the best fit. All the 
steps are reported in appendix L.4. The estimated LogNormal AFT model results in a univariate 
model with ‘intended to comply’ as the only significant covariate with a coefficient of -1,923 
(CI:-3,570- -0,276, p=0,22). The failure acceleration factor is: 

D(O) = exp	(−1,92O-y3py3-Çy) 

Consumers who have the intention to comply with the recommended steps in the notification 
thus have an 84 %20 shorter mean infection time. There is no other variable that can substitute 
this variable for an accepted model.  

The LogNormal AFT model does not include the variable ‘male’. Inclusion of this variable results 
in an insignificant explanatory value (p=0,055) and a model with a less goodness of fit. The 
observed survival curves of the combined covariates (intention and gender) are illustrated in 
figure 37.  

 
Figure 37 Survival curves – gender & intention 

 
Figure 38 Survival curves -  intention 

Only five observations in this dataset are of consumers that are not known to be male. Of these 
five consumers, two are women and three have a shared account. Because of the consequent 
low reliability of our estimate of the gender variable, we inspect the survival curves with 
intention as the only variable, which is illustrated in figure 38. The remediation rates after two 
weeks differ more than 30% between consumers who had the intention to remediate and those 
who did not.  

 

10.5 Sub-conclusions on remediation drivers 
This chapter has provided the results and analysis to answer the research question ‘How can 
remediation of Mirai-like bots be explained?’. We use three steps of analysis, which enabled us 
to include all observations in the analysis, as well as all obtained information from the 
interviews. We used two modeling techniques to analyze the data and thereby identify 
variables that influence Mirai infection time. Whereas the Cox models are more close to the 
data (they estimate the relation of a covariate to the observed hazard rates), the AFT models 

                                                             
20 Exp(-19,23) = 0,146 // 1 – 0,146 = 0,854 
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provide a more generic view on the influence of a covariate (the failure acceleration factor of 
a covariate, which implies the relation to the mean infection time).  

When including all observations and only the variables known for all observations, we find that 
gender and walled garden notifications explain remediation. At any given time within the two 
first weeks of infection, female subscribers have a 68% (CI: 3%-170%) more chance on 
remediation compared to male subscribers and subscribers of unknown gender, and a 1% to 
87% shorter mean infection time. This is a conservative estimate: the other modeling steps 
estimate a higher influence on remediation but are less reliable due to the small number of 
female consumers in the datasets. 

Consumers placed in a walled garden have 77% (CI:21%-260%) increased chance on 
remediation compared to consumers in the control and e-mail group, and a 29% to 85% shorter 
mean infection time. When including the data obtained from interviews, we find that we can 
further specify the role of walled garden notifications. The Cox model estimates that awareness 
of a notification (a consumer has received and read the content) and behavior (consumers has 
performed correct cleanup actions) are of influence. Both variables show a moderate to strong 
relationship with the walled garden variable. From this relationship, in combination with the 
finding that awareness and right measures have combined more explanatory value than the 
variable walled garden alone, we can conclude two things: 

• Walled garden notifications are effective because these notification raise awareness and 
stimulate right cleanup efforts; 

• Since awareness of a notification has individual explanatory power - on top of the 
explanatory power of right behavior - we can conclude we do not observe all cleanup 
efforts. The reason behind this is the following: the fact that a consumer is aware that 
his/her IoT device is Mirai-infected, doesn’t explain remediation of the device directly. 
Apparently, the consumer has done something with the device that caused cleanup of the 
Mirai infection. Since we included behavior in our model and estimated it as a covariate as 
well, consumers who are aware of the notification thus performed actions which are not 
included in our data. In other words: there is a discrepancy between stated behavior and 
actual behavior.  

This finding matches our explanations for natural remediation as described in section 8.4. In 
the AFT model, exclusion of the behavior variable results in a slightly better model. We can 
therefore not say that behavior has an effect on the mean infection time (only on baseline 
hazard).  

When modeling the data obtained from notified consumers who are interviewed only, we find 
that the intention to comply has the best explanatory value. Consumers with the intention to 
comply with the recommended actions in a notification have 211% increased chance on 
remediation compared to the baseline hazard, and 84% shorter mean infection time. Since 
intention has more explanatory power than behavior, the same logic as before applies here: 
there is unobserved behavior which is influenced by the intention to comply.  

In addition to the estimated covariates concerning the stages of the theoretical framework, 
gender explains remediation as well. The remediation rate among women is higher than among 
men. Following the logic as applied above, we cannot assume that infected devices are cleaned 
up just because its user is female. Instead, we conclude that there is unobserved behavior that 
is not included in the model. In addition to that conclusion: female users are performing this 
unobserved behavior more than male consumers. Remarkably, female consumers have a 
negative relation to the stages of the theoretical framework, which implies a negative effect on 
remediation (lower remediation rate). Since the models estimate the opposite effect, the gap 
between stated and actual behavior must be substantial.   
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Our findings are illustrated in figure 39. Awareness, comprehension, intention and behavior are 
positively correlated and thus form a good backbone to understand how notifications lead to 
remediation. Some cleanup behavior is unobserved which results in the explanatory value of 
the variables awareness, intention and female. This latter covariate is remarkable since it has a 
negative relation to the stages, which indicates that women have cleaned up Mirai substantially 
more (intentionally or unintentionally) than they communicated during the interviews. 

 
Figure 39 Theoretical framework adjusted to sub-conclusion on remediation drivers
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11 Conclusions and 
discussion 

 

11.1 Introduction 
The objective of this research was to explore the role of IoT end users in Mirai-like bot 
remediation. To analyze this question, five sub-questions are formulated which have been 
answered in previous chapters. Section 11.2 will recap the main findings and provides the main 
conclusions. Section 11.3 elaborates on the implications of these conclusions for KPN and 
policy-making in general regarding Mirai remediation. 

 

11.2 Main conclusions 
To answer the question ‘what is the role of IoT device end users in Mirai-like bot remediation?’, 
we have conducted an eight-week experiment at the KPN Abuse Desk that notifies KPN and 
Telfort customers about abuse incidents. Mirai-infected consumers of these two markets have 
been randomly assigned (during staggered entry) to a walled garden, e-mail notification or 
control group. All 177 subjects within the experiment have been tracked for two weeks to 
estimate the infection time and are contacted afterward for interview purposes. Using different 
behavioral theories, we made a framework that serves as a backbone to understand how 
notifications influence remediation. 

We conclude that male consumers were more exposed to Mirai infections during the 
experiment compared to female consumers. We can conclude the same for KPN consumers 
between the ages of 29 and 54 and Telfort consumers between the ages of 34 and 54. 
Consumers with this demographic background were relatively more in possession of a Mirai-
infected device. One explanation is that consumers with this profile are more often in 
possession of an IoT device in general. Another explanation is that these consumers use their 
device differently (e.g., use it for more technically advanced applications, or use a device in a 
less secure manner), which increases the chance of Mirai-infection on these devices. In addition 
to these deviations, we observe a shifted age distribution of KPN Mirai-infected consumers in 
general. The mean age of this group is seven years younger than the mean age among all KPN 
Internet subscribers.  

The majority of consumers do not follow the recommendations in the notification. In contrast, 
the number of actions that are performed that were not mentioned in the notifications is 
remarkably high. Consumers in the walled garden particularly take more drastic (but effective) 
measures such as disconnecting the device from the Internet, or discarding the infected device 
completely. We cannot point out the exact reason for this. One explanation is the lack of good 
comprehension. Since many consumers asked for additional help, we conclude that consumers 
appear don’t have a full understanding of how to tackle the problem. This may obstruct 
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compliance. Another explanation is the lack of motivation to comply to all recommendations: 
consumers may not fully rely on the advice and prefer to solve the problem in their own way, 
or consumers may believe that they are not capable of performing the actions and thus take 
rigorous actions. In the control group, we find no clear explanation for remediation. One out of 
five consumers cleaned up Mirai unintentionally by updating outdated software; one consumer 
by the disconnection of devices. None of these consumers was aware of the fact that his/her 
device was infected with Mirai. Without the outbreak of a Mirai-variant exploiting a 
vulnerability of outdated software on home automation devices, the share of consumers who 
cleaned up their device would have been lower. 

Both e-mail and walled garden notifications are effective in reaching the consumer, informing 
them, and encouraging them to take action. Consumers who are placed in a walled garden have 
as a primary incentive to get back Internet access while people who received an e-mail were 
motivated by the severity of the threat. There is a discrepancy between the stated 
comprehension of consumers and the observed comprehension. Although the majority of 
consumers stated that they understood the content of the notification completely, many 
consumers were not able to clean up their infected device without additional help. We also 
identified a gap between intention and behavior. Only 25% of the consumers who stated to be 
motivated to comply, succeeded in doing so completely. On the other hand, looking at 
compliance in loose sense (taking effective measures), the intention-behavior gap is smaller: 
14% of the consumers did not manage to clean up their infected device. 

In general, notified consumers are satisfied with KPN’s effort to notify them about Mirai 
although this is not reflected in the communication with the Abuse Desk. A quarter of 
consumers placed in a walled garden are dissatisfied which can be explained by the disruptive 
nature of the measure. All customers who received an e-mail are satisfied with this service. The 
suggestions of consumers vary greatly but three recurring suggestions are a better information 
provision, availability of additional help and a better functioning walled garden notification 
process.  

We find that gender and walled garden notifications have an influence on remediation. 
Consumers placed in a walled garden have a 29% to 85% shorter mean infection time. We can 
further specify the role of walled garden notifications: the covariates awareness (a consumer 
has received and read the content) and behavior (consumers has performed correct cleanup 
actions) explain remediation better than walled garden notifications alone. Since awareness of 
a notification has individual explanatory power - on top of the explanatory power of right 
behavior - we can conclude we do not observe all cleanup efforts. In other words: there is a 
discrepancy between stated behavior and actual behavior. Among notified consumers, 
intention explains remediation best. Since intention has more explanatory power than 
behavior, the same logic as before applies here: there is unobserved behavior which is 
influenced by the intention to comply.  

Gender also influences remediation but the conservative estimates are not highly reliable: 
female consumers have a 1% to 87% shorter mean infection time than male consumers and 
subscribers of unknown gender. Following the logic as applied above, we cannot assume that 
Mirai-infected devices are cleaned up just because its user is female. Devices of female 
consumers are thus cleaned up more than the women in question stated. We conclude that 
age, consumer market, device type and customer satisfaction have no significant influence on 
remediation. 

We provide four possible scenarios for the identified gap between the stated and unobserved 
behavior: 

• Consumers forgot what clean up actions they performed or forgot to mention them during 
the interviews; 
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• Consumers clean up their device unintentionally; 

• The device is cleaned up by someone else in the household without the consumer’s 
knowledge; 

• The consumer cleaned up the device after the interview: between the end of the 
experiment period and the end of the two-week additional observation. 

Since the unexplained remediation rates are so high, one can argue that unobserved behavior 
is not able to explain that complete gap. That would imply that more than half of all consumers 
cleaned up their device while stating otherwise during the interviews. Since we believe this is 
unlikely, we must look for answers on the attacker side. We provide the following two 
unexplored explanations: 

• Other malware takes over Mirai-infected devices. This study focuses on Mirai and only 
included abuse feeds on this malware. Therefore, a device may be compromised by other 
malware without our knowledge. That would explain why an IP address doesn’t appear on 
our radar and the bot is wrongly considered as cleaned up. 

• The majority of Mirai infections are detected when a bot is in a scanning phase. 
Conventional Mirai bots are scanning unless they get commands from the botnet herder. 
With the increasing number of Mirai-variants, bots may have evolved scanning behavior. 
They might for example only scan when commanded to, or have built-in behavior that 
determines that a bot only scans in the first hours of its life. 

The findings are aligned with the theoretical framework and illustrated in figure 40. 
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Figure 40 Theoretical framework adjusted to main conclusions 
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11.3 Implication of findings 

11.3.1 Recommendations Abuse Desk 

People wish to gain more information about the problem and how to resolve it. Due to the 
differences in technical knowledge, KPN could consider establishing an online information page 
with basic information, more elaboration on how to perform the steps and FAQs. Reference to 
such trusted website may also take away suspicion (since it enables consumers to fact-check). 

A warning prior to placing consumers into a walled garden will prevent much confusion and 
improve customer satisfaction. The self-release option can be improved and needs to be 
mentioned in the e-mail notification to avoid unnecessary waiting and confusion among 
consumers, and saves extra work for the Abuse Desk. Although the contact form cannot be 
easily changed into a dynamic form, there can be made improvements in the static version. 
Currently, the introduction of the contact form refers to the ‘problems on your 
computer/laptops’, this can be changed to ‘problems on your network’. In addition, the 
questions that are not applicable to all abuse incidents must explicitly state so. For example: 
the question about which virus scanner a consumer uses, can be complemented with the note 
that the consumer doesn’t need to provide this information in case of a Mirai infection. 

KPN could consider to better expose the activities of the Abuse Desk. Since this is a first-line 
service (direct contact with customers), consumers find it odd to have never heard of it before. 
This unfamiliarity, in combination with the notion ‘abuse’, creates distrust towards the 
notification. Awareness of the Abuse Desk’s existence may improve consumer’s co-operation 
and can also be marketed as a unique selling point in KPN’s service. The content of notifications 
could be further personalized to prevent suspicion (e.g. inclusion of KPN account number). If 
the filing system of KPN permits, abuse incidents could even be included in the online logs of a 
consumer’s account (MijnKPN) so that customers can verify the authenticity of the notification.  

We would recommend the consideration of other means of communication that would 
complement the current notification practices. Sending an SMS is potentially very effective in 
A) making the consumer timely aware of the walled garden placement so there is no confusion 
about the cause of the disconnect and consumers are given the opportunity to solve the 
problem inside office hours, and B) increasing the trustworthiness of the other notification 
mechanisms because of the use of two channels. 

Lastly, consumers will be helped greatly if the Abuse Desk and Help Desk are better integrated. 
A minimal requirement is that the Help Desk must be able to check the abuse incidents and 
notifications sent to a customer. Technically this requirement is met but in practice, Help Desk 
officers lack awareness and do not check automatically the Abuse Desk tickets. This can be 
solved by integrating the systems so that the Help Desk can monitor the Abuse Desk within the 
CRM. However, due to the complexity and multitude of Abuse Desk systems, this is easier said 
than done. In addition, the Help Desk must be better equipped with knowledge and access to 
tools so that can help customers who are placed in a walled garden. Although the Abuse Desk 
steers customers to only communicate per mail, customers often call the Help Desk in reality. 
This, in combination with unavailability outside office hours of the Abuse Desk, makes it worth 
to extend the capabilities of the Help Desk to help these customers.    

11.3.2 Policy implications 

Due to the exploratory nature of this research, the findings cannot be used for specific policy 
recommendations. Instead, the outcomes may be applied as background information to 
understand the problem at stake and to make better-informed policy decisions concerning IoT-
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botnet remediation. During the course of this study, the Dutch government has announced to 
increase its efforts to increase IoT security and mitigate IoT abuse (Ministerie van Economische 
Zaken en Klimaat, 2019). This study can be of added value within two parts of that roadmap: 
the development of an awareness campaign and the stimulation of IoT abuse mitigation by 
ISPs. These efforts can be enriched by the following takeaways: 

Firstly, performing the correct remediation efforts is effective and walled garden notifications 
stimulate this behavior. This seems a trivial conclusion but it is important because it supports 
the decision to give ISPs a dominant role in IoT abuse mitigation. In addition to that, not all 
notified consumers succeed in performing effective remediation actions. This is because A) the 
remediation measures may differ per Mirai variant (as the Domoticz exploit illustrated) and B) 
consumers believe they have remediated but in reality have not (intention-behavior gap). Since 
we may expect more sophisticated and varying Mirai variants, there is no singular set of actions 
which will remediate all Mirai infections. This implies that instructions for Mirai remediation 
must be dynamic and case-specific. 

Secondly, Mirai-victims cannot be captured in a few personas. The variety and increasing size 
of IoT devices cause a wide variety of victims: young, old, tech-savvy or not, etc. Informing 
potential victims may thus be challenging because different persons need different 
information. 

The last suggestion is a follow-up on the idea of an online information page mentioned in the 
previous section. It would be helpful to develop such platform nation-wide in collaboration with 
all relevant stakeholders. In addition to basic information, this platform can be extended with 
dynamic updates on for example newly found exploits or detected outbreaks. 
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12 Reflection and 
future work 

 

 

12.1 Introduction 
This chapter reflects upon the research and conclusions. Section 12.2 discusses the research 
quality by addressing the limitations and their effect on the validity of the results. Section 12.3 
provides ideas for future research. 

 

12.2 Research quality 

12.2.1 Limitations 

One main limitation is the inaccurate measurement of infection time of Mirai bots. This 
limitation prevents us from making statements about exact remediation speed and rates. 
However, due to the modeling approach, we have been able to retrieve valuable information 
about the relative influence of factors.  

Secondly, the experiment has not controlled for the Mirai variants. This is not possible due to 
the magnitude of variation and the absence of this information. Due to the Domoticz exploit, 
we tested whether that Mirai variant (and its inherent victims) plays a role. Although we could 
not control for Mirai-variant, we have included a dummy variable that distinguishes detections 
before and during the Domoticz-variant outbreak in the modeling steps. Since this variable is 
not estimated to have a significant influence, we conclude that this variant has no influence on 
observed remediation. 

Thirdly, due to malfunctioning of the KPN mail server, we have not been able to obtain data 
from KPN customers who are only notified through e-mail. The e-mail treatment group in this 
study thus only exist of Telfort consumers which makes the results about e-mail notifications 
only valid for this population. In addition, the landing page of Telfort has been malfunctioning 
which prevented Telfort consumers from self-release. This is visible in the survival curves in 
chapter 6, but the influence is not big enough to obstruct proper analysis. However, one must 
realize the estimated infection time of this group would have been shorter within the first few 
days of infection if the landing page wouldn’t malfunction. 

Fourthly, we interviewed the control group after two weeks which can be regarded as a 
treatment. In theory, this might have decreased the number of censored observations, leading 
to an overestimated remediation speed and rate. However, the comparison of the survival 
curves of interviewed and non-interviewed consumers in the control group in section 7.2 shows 
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that there is no significant difference in survival behavior (the non-interviewed consumers even 
perform better in terms of remediation).   

Fifthly, we find that gender is of influence for remediation. However, since this has not been 
found before in other studies, we didn’t control for gender. As a consequence, women were 
relatively often assigned to the control group. In addition, the number of interviewed female 
consumers is low, making the estimates of the modeling steps 2 and 3 less reliable. We 
therefore only mention the conservative estimates of the first modeling steps in the 
conclusions. 

Lastly, we miss one of the two daily feeds on sixteen days. This creates a blind spot in the 
detection of Mirai bots which may result in underestimated infection times. However, at least 
one feed was available each day so very active bots are likely to be detected. 

12.2.2 Internal validity 

We assume that all Mirai bots within the KPN and Telfort markets are included in the 
experiment. However, there is no possibility to cross-check these numbers. We can therefore 
not be completely certain that we have included the total Mirai-infected population. 

The last limitation is the validity of the data obtained from the interviews. There are three 
things to take into account: 

• Consumers may unknowingly give wrong answers. They may have forgotten what 
action they have performed or have identified the wrong device.  

• Consumers may knowingly give wrong answers. Consumers may give answers they 
believe are desired because they have the feeling of being checked by KPN or they 
want to please the interviewer. 

• Of all consumers in the experiment, 99 consumers are interviewed. Although this is a  
relatively high attendance, information about device type, actions, reasons for non-
compliance and experience are not obtained from 78 consumers. 

Due to the unobserved behavior we identified during modeling, we can conclude that what 
consumers have shared in the interviews does indeed not always match with reality. However, 
the data still provides a powerful first step in the exploration of consumers’ role in Mirai 
remediation. 

12.2.3 External validity 

We cannot infer the results to Mirai infection times in future populations due to the dynamic 
character of Mirai’s evolution and unpredictable behavior. In addition, users may also alter 
their behavior regarding IoT devices over time. However, we find no significant differences 
between the results of the same experiment in 2018, which implies that the behavior of Mirai 
and infected-device users have not substantially altered during the past year. 

The research is culture and market-specific. KPN and Telfort have other target groups due to 
price differences and have other demographical compositions (Telfort consumers are younger 
as illustrated in section 5.3). Despite these differences, we have identified no significant 
difference between Telfort and KPN which is a promising result for the generalizability of the 
results to other Dutch ISPs. However, we cannot make the claim that our results also apply to 
other Dutch ISPs for two reasons: A) the number of Telfort consumers in the experiment is 
relatively low which causes an increased chance of Type II error, and B) more ISPs must be 
researched to support such claim. 
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In addition, the research only consists of Dutch ISPs. We cannot assume that IoT users in other 
countries have similar device types, user characteristics, and coping mechanisms. 

 

12.3 Future work 
The conclusions and limitations create respectively new knowledge gaps and room for 
improvement. 

An important gap which needs to be covered is the lack of understanding of natural 
remediation as identified by Alterna (2018). This study has attempted to shine more light on 
this by exploring the role of infected users. We have concluded that the actions of consumers 
have a significant effect on remediation, but cannot explain all observed remediation. This 
means future research must focus more on the attacker side. We provide two scenarios which 
can both be explored: 

The first scenario is that a Mirai-infected device is taken over by another malware. This would 
explain why Mirai is remediated without intervention from the user. This theory can be tested 
by analyzing abuse feeds: if an IP address is still detected while not being fingerprinted as Mirai, 
we know the theory is correct for that particular IP address. Preferably, only raw data from 
honeypots and darknet infrastructures are used since processed abuse feeds (as provided by 
Shadowserver) exclude detections that are not labeled. Even if we don’t know the precise 
malware type, we still are interested in knowing whether a device is compromised by another 
malware than Mirai. Hajime is an example of an emerging malware that is known to compete 
with Mirai for IoT devices.   

The second scenario is that some Mirai variants have different scanning behavior than we 
assumed. Remember: we detect the majority of Mirai-infected devices when they are in a 
scanning phase. Conventional Mirai bots scan the Internet in search of vulnerable devices 
unless they are given commands by the botnet herder. Hitherto we assume that Mirai bots are 
not constantly executing commands, and thus appear on our radar sooner or later. However, 
it is possible that certain variants have deviating built-in scanning behavior (e.g., only scan the 
first few hours of its lifecycle). That means we only detect a bot at the start of its life. Another 
explanation is that bots are given more commands than we expected so that a bot only scans 
for really short periods of time. This reduces the chance we detect a bot. Both explanations can 
be explored by collecting Mirai variants through honeypots and execute the malware code in a 
secured environment. However, this exploration will take much time due to the vast amount 
of Mirai variants.  

Many consumers have not complied with the recommendations in the notification. Also, a 
number of interviewed consumers suggested a  better information provision in the notification. 
These two findings indicate that the current notifications can be improved or that an external 
information source may be helpful. Future research could focus on how consumers react to 
different notification contents and what information is essential to reach more compliance.  

We also observed a large intention-behavior gap and a gap between stated and actual behavior. 
These gaps can be further studied in a lab setting to observe what IoT users do in reality versus 
what they think/say they have done. In future research, it is recommended to control for 
gender since we conclude that gender influences the observed remediation. We have no 
explanation yet for the big difference in remediation between male and female IoT users. 
Possibly, women are more forgetful about their actions, or are unaware of other actions 
performed by others in a household. This needs further attention. 
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The last recommendation for future work is research in the behavior and demographics of IoT 
users in general. We observe that men and ‘younger’ (age 26-49) IoT users have relatively fallen 
more victim to a Mirai infection. However, we have no explanation yet for these findings. These 
groups may possess more IoT devices, deal differently with their device, or a combination of 
both.  
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A Literature search 
 

The literature search is conducted through the framework as proposed by Webster and Watson 
(2002) and Levy and Ellis (2006). They propose the following three steps in identifying relevant 
literature: 

1. Keyword search: the initial step using key words in scholarly databases and leading 
journals; 

2. Backward search: reviewing citations of (relevant) articles; 

3. Forward search: use academic search engines to find articles that has cited the 
(relevant) articles. 

Details on the keyword search are presented in table 11. Three searches are executed in two 
journals (Computer & Security and Journal of Cybersecurity) and one database (IEEE Explore). 
The search terms were: 

• security AND (perception* OR behaviour*); 

• security AND (IoT OR ‘Internet of Things’); 

• (malware OR ‘malicious software*’ OR ‘botnet’) AND (warning* OR 
notification*). 

The Journal of Cybersecurity sometimes gave very few hits thus two search terms were altered 
for this journal. After these searches, the following steps were taken: 

1. All hits were sorted by relevance by the search engine; 

2. Depending on the actual relevance, 50 or 100 hits were studied (less if there were 
not many hits); 

3. The relevant hits were added a list and structured  

Table 12 indicates the outcomes of each search in terms of hits, studied articles (abstract), the 
number of relevant articles (added to the list) and how many of those were new to the list.  

 

# Journal/source Search term Hits/studied/relevant/(new) Date 
1.1 Computer & 

Security 
security AND (perception* OR 
behaviour*) 
 

1487/50/19 
 

28/02/19 

1.2 security AND (IoT OR 'Internet of 
Things') 
 

611/50/10/4 28/02/19 

1.3 malware OR 'malicious software*' OR 
'botnet') AND (warning* OR 
notification*) 

377/100/2/2 01/03/19 

2.1 IEEE Explore security AND (perception* OR 
behaviour*) 

3575/50/11 28/02/19 

2.2 security AND (IoT OR 'Internet of 
Things') 
 

7354/50/16 28/02/19 

2.3 (malware OR 'malicious software*' OR 
'botnet') AND (warning* OR 
notification*) 

95/50/2/2 01/03/19 
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3.1 Journal of 

Cybersecurity 
security AND behaviour  45/45/5/5 28/02/19 

3.2 (security AND IoT OR 'Internet of 

things') 
 

3/3/0/0 28/02/19 

3.3 (malware AND notification) 

11/11/3/1 01/03/19 

Table 12 Keyword search 

For the back- and forward search, six most relevant articles from the list were reviewed. Table 
13 contains similar information as table 12, only the ‘number of hits’ is replaced by the number 
of citations. The forward searches were conducted through the academic search engines 
Semantic Scholar and researchgate.net.  

 

# 
Article 

 

Backward search 

Citations/studied/
relevant/(new) 

Forward 
Citations/studied/
relevant/(new) 

Date 

1 Çetin, O., Jhaveri, M. H., Gañán, C., van Eeten, 
M., & Moore, T. (2016) 

16/16/2/2 18/18/7/7 04/03/19 

2 Thompson, N., McGill, T. J., & Wang, X. (2017)  96/96/23/21 6/6/2/1 04/03/19 

3 Torten, R., Reaiche, C., & Boyle, S. (2018) 44/44/12/6 0/0/0/0 04/03/19 

4 Pijpker, J., & Vranken, H. (2016) 

 

25/25/9/9 2/2/0/0 04/03/19 

5 Çetin, O., Altena, L., Gañán, C., & Eeten, M. Van. 
(2018) 

31/31/12/6 1/1/1/1 04/03/19 

6 Forget, A., Pearman, S., Thomas, J., Acquisti, A., 
Christin, N., Cranor, L. F., … Telang, R. (2016) 

40/40/8/7 0/0/0/0 04/03/19 

Table 13 Back- and forward search
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B Consulted literature 
 Reference Aim Relevant methodology Relevant results/conclusions Knowledge gaps 
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 Don't Work – Can't 
Work: Why It's Time 
to Rethink Security 
Warnings  
 
(Krol, Moroz, & Sasse, 
2012) 
 

One of the first studies 
into security warning 
effectiveness 
(download warning) 
 

• Use of folk models (Wash) 
during interviews 

• Security warnings are largely 
ineffective 

• Content does not matter.  
• Those with a lack of computer 

experience perform better.  
• Participants rely on their own 

judgment, rather than a 
security warning. 
 

 

Do Malware Reports 
Expedite Cleanup? An 
Experimental Study  
 
(Vasek & Moore, 
2012) 
 

This paper 
describes assesses 
‘whether sending 
[abuse] reports to 
affected parties makes 
a measurable 
difference in cleaning 
up malware.’ 
 

• A relevant study design • ‘including details describing 
the compromise is essential [..] 
– sending reports with minimal 
descriptions of the malware is 
ineffective’ 

• Sending multiple notices does 
not make an impact 
(compared to one notice)  
 

• Impact of sender 
reputation (see Çetin, 
Jhaveri, Gañán, van 
Eeten, & Moore, 2016) 

• Reasons for re-
infections are (see 
Orçun Çetin et al., 
2019) 
 

Combatting Botnets 
Through User 
Notification Across 
the Ecosystem: a view 
of emerging practices  
 
(Online Trust Alliance, 
2012) 

This paper present the 
botnet notification 
best practices from a 
multi-actor perspective 

 • Tips to Improve the Delivery 
and Design of User 
Notifications 

• Preliminary List of Best 
Practices 
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Do or Do Not, There Is 
No Try: User 
Engagement May Not 
Improve Security 
Outcomes (Forget et 
al., 2016) 

‘This paper presents a 
qualitative study 
comparing users’ 
attitudes, [behaviors], 
and understanding of 
computer security to 
the actual states of 
their computers.’ 

 • ‘User engagement alone may 
not be predictive of computer 
security.’ 

• Need for ‘concise, precise, 
simple, and easy-to-perform 
security instruction, [..] once 
applied, will remain effective 
without any user effort’ 

• ‘A need for a more 
critical evaluation of 
the content, 
presentation, and 
functionality of 
security interventions’  

• More research needed 
into security 
interventions tailored 
to users with different 
levels of expertise 
 

You've Got 
Vulnerability: 
Exploring Effective 
Vulnerability 
Notifications  
 
(Li et al., 2016) 

This paper illuminates 
which aspects of 
vulnerability 
notifications (to non-
end users) have the 
greatest impact on 
efficacy.  
 

 
 

• Notifications improved 
remediation behavior 
(additional 11%) but most 
organizations did not patch 
their host  

 

• No understanding of 
why these results are 
so modest 

• [no focus on abuse 
notification or IoT 
abuse] 

Understanding the 
role of sender 
reputation in abuse 
reporting and cleanup  
 
(Orçun Çetin et al., 
2016) 
 

This study researches 
whether sender 
reputation is a driver 
of response to abuse 
notification 
  

• A relevant research design • ‘detailed abuse reports 
significantly increase cleanup 
rates.’ 

• There is ‘no evidence that 
sender reputation improves 
cleanup’ 
 

• ‘Remarkably little 
research has been 
undertaken into what 
factors drive the 
chances of a recipient 
acting upon an abuse 
report’  
 

Make Notifications 
Great Again: Learning 
How to Notify in the 
Age of Large-Scale 
Vulnerability Scanning  

This paper analyzed 
‘the aspects and 
factors that drive 
vulnerability 
remediation rates and 

• Use of survival probabilities 
to visualize remediation 
rate 

• While notifications did lead to 
more remediation than in the 
control groups, the overall 
remediation rates were low.’  

• The incentive structure 
for remediation are 
not  
well understood 
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(Orcun Çetin, Gañán, 
Korczyski, & Van 
Eeten, 2017) 
 

how recipients feel 
about various types of 
notifications.’ 

Didn't You Hear Me? - 
Towards More 
Successful Web 
Vulnerability 
Notifications  
 
(Stock, Pellegrino, Li, 
Backes, & Rossow, 
2018) 
 

This paper analyses the 
technical and human 
aspects that affect the 
success of vulnerability 
notifications. 

• Variable: ‘aware-to-fix 
rate represents the chance 
that an issue is fixed after 
the report was viewed’ 

• The content of a notification is 
important in convincing 
operators to take action 
(discrepancy between problem 
awareness and addressing it) 

• E-mail as a communication 
medium suffers from several 
shortcomings but other 
channels do not justify their 
significant financial costs and 
time overheads. 
 

• Incentives for 
remediation not well 
understood 

Let Me Out ! 
Evaluating the 
Effectiveness of 
Quarantining 
Compromised Users in 
Walled Gardens  
 
(Orçun Çetin et al., 
2018) 

This paper user 
behavior and 
remediation 
effectiveness of walled 
gardens as a 
notification 
mechanism 

• A relevant study design • IoT malware remediation 
methods will differ from 
traditional clean-up strategy. 

• ‘Substantial support for the 
effectiveness of walled 
gardens’ for ISPs in the fight 
against botnets 

• Walled gardens may create a 
prisoners’ dilemma in ISP’s 
remediation efforts 
 

 

Cleaning Up the 
Internet of Evil Things: 
Real-World Evidence 
on ISP and Consumer 

The first ‘empirical 
study of IoT malware 
cleanup [..] – more 
specifically, of 
removing Mirai 

• A relevant study design  • E-mail only notifications did 
not have impact compared 
with the control group 

• High natural remediation rate 
of 58-74 % 

• Not well understood 
what customers did 
after receiving a 
notification 
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Efforts to Remove 
Mirai  
 
(Orçun Çetin et al., 
2019) 
 

infections in the 
network of a medium-
sized ISP.’ 

• A very low reinfection rate 
• Walled gardens are effective 

but are not a large-scale 
solution 

• A discrepancy between 
lab results and 
empirical results of 
reinfection 

N
ot

ifi
ca

tio
n 

pr
oc

es
sin

g Handbook of warnings  
 
(Wogalter, 2006) 

This book describes 
warning design 
standards and 
guidelines. 
 

• The Communication-
Human Information 
Processing Model (C-HIP) 
for structuring warning 
research 

 

  

You’ve Been Warned : 
An Empirical Study of 
the Effectiveness of 
Web Browser Phishing 
Warnings  
 
(Egelman, Cranor, & 
Hong, 2008) 
 

This study compared 
the effectiveness of 
active and passive 
phishing warnings by 
analyzing them using 
the C-HIP model. 

• A warning analysis 
methodology: the C-HIP 
model. 

• Active warnings (disturbing in 
user’s activity) are more 
effective than passive. 

 

A Framework for 
Reasoning About the 
Human in the Loop  
 
(Cranor, 2008) 

This article proposes a 
framework, largely 
based on the C-HIP 
model, to explain 
potential reasons for 
human failure in a 
cybersecurity context. 

 • Security actions are often to be 
performed by non-experts who 
are instructed in what to do 
(warnings, notification, etc.) 
Therefore, failure of such 
action can also be seen as a 
problem of incomplete 
communication. 
 

 

Android permissions: 
User attention, 

This study examines 
whether Android 
permission system is 

• ‘Each step [within C-HIP 
model] is critical: a failure 
of usability at any step will 

• ‘Most users fail to pass the 
attention and comprehension 
steps’ 

• Hypothesis that 
different users have 
different types of 
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comprehension, and 
behaviour  
 
(Felt, Ha, Egelman, & 
Haney, 2012) 

effective at warning 
users.  

render all subsequent steps 
irrelevant.’ 

privacy and security 
concerns and that 
addressing those in a 
warning will make the 
warning more effective 

A study of users' 
experiences and 
beliefs about software 
update messages  
 
(Fagan, Khan, & Buck, 
2015) 

This study explores the 
relation between 
beliefs in different 
software updates and 
the effectiveness of 
those. 

• Survey questions based on 
C-HIP 

• Most users are annoyed by 
software warning and update 
messages, which affects the 
attitude/belief stage in the C-
HIP model which causes more 
non-compliance. 

 

Computer security 
and risky computing 
practices: A rational 
choice perspective 
 
(Aytes & Connolly, 
2004) 

Why people who are 
aware of of the risks, 
still expose insecure 
behavior, as an 
outcome of a 
boundedly-rational 
choice process 

• Based on conditions 
founded in TRA and TAM 

• People don’t make sensible 
action decisions and therefore 
it is unlikely that additional 
information on risks improves 
behavior 

• Further understanding 
of factors that 
influence decision 
process is needed. 

Io
T 

ab
us

e  
re

m
ed

ia
tio

n 
(R

CT
)  Economics of 

malware: security 
decisions, incentives 
and externalities  
 
(M. J. van Eeten & 
Bauer, 2008) 

This working paper 
reports on qualitative 
empirical research into 
the incentives of 
market players when 
dealing with malware. 

• ‘Many of the problems of 
information security can be 
explained more clearly and 
convincingly using the 
language of 
microeconomics’ 
 

• The development of a 'culture 
of security' is very sensitive to 
economic incentive structures 

• Overview of externalities 

 

Emerging Threats to 
Internet Security: 
Incentives, 
Externalities and 
Policy Implications  
 

This study explains the 
causes of the rise in 
botnets by the 
incentive structure of 
market players. 

• A multi-actor perspective 
• RCT as explanation for both 

behavior as well as the 
aggregate outcome to 
society 

• Machine owners have little 
incentive to remediate a 
botnet 

• End users’ behavior enables 
the growth of botnets, which 
impose costs on every other 
actor in the network. 
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(M. van Eeten & 
Bauer, 2009) 

• Benefits in cost/benefit trade-
offs are rather ‘potential costs 
to society of attacks that have 
not yet occurred.’  

 Cybersecurity: 
Stakeholder 
incentives, 
externalities, and 
policy options  
(Bauer & van Eeten, 
2009) 

‘The paper develops a 
framework for 
studying the co-
evolution of the 
markets for cybercrime 
and cybersecurity.’ 

 • ‘Market and non-market 
relations in the information 
infrastructure generate many 
security-enhancing incentives. 
However, pervasive 
externalities remain that can 
only be corrected by voluntary 
or government-led collective 
measures.’ 

 

 So Long, and No 
Thanks for the 
Externalities: The 
Rational Rejection of 
Security Advice by 
Users  
 
(Herley, 2009) 

This article argues that  
‘users’ rejection of the 
security advice they 
receive is entirely 
rational from an 
economic perspective.’ 

• Working security advice 
when: d(benefit) > d(costs) 

• Benefits are overestimated 
whole costs of user effort is 
often ignored. 

• Users are rational, they ‘only’ 
need a better understanding of 
the harms they face 

 

 Information Security 
Policy Compliance: An 
Empirical Study of 
Rationality-Based 
Beliefs and 
Information Security 
Awareness  
 
(Bulgurcu et al., 2010) 

This research identifies 
rationality based 
factors that drive an 
employee to comply 
with information 
security policy of an 
organization.  

• Combines rational choice 
theory with theory of 
planned behavior 

• Use of structural model 
testing (PLS approach) 

• ‘along with normative belief 
and self-efficacy, an 
employee's attitude toward 
compliance determines 
intention to comply.  

• We posit that an employee's 
attitude is influenced by the 
benefit of compliance, cost of 
compliance, and cost of 
noncompliance’ 
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 Why Do They Do 
What They Do?: A 
Study of What 
Motivates Users to 
(Not) Follow 
Computer Security 
Advice 
(Fagan, Maifi, & Khan, 
2016) 

This paper investigates 
user motivation to 
follow-up on computer 
security advice. 

•  Cost/benefit framework 
can be used to investigate 
motivation of users to 
follow computer security 
advice. 

• Choices in the experiment 
provided more perceived 
benefit than costs (compliant 
and in noncompliant decisions) 

• ‘Social considerations are 
trumped by individualized 
rationales.’ 

There is a gap between 
perceived and actual 
costs and benefits. 

 Abuse Reporting and 
the Fight Against 
Cybercrime  
 
(Jhaveri et al., 2017) 

This paper presents a 
model of the abuse 
reporting 
infrastructure to 
improve the 
understanding of 
voluntary actions 
against cyber crime   

 • ‘Because no single entity is 
responsible for reporting, 
maintaining, and acting on 
abuse data, incentives 
determine why participants 
take action’ 

• ‘For the immediate 
future, it seems more 
promising to increase 
the effectiveness of 
the abuse reporting 
infrastructure within 
the existing incentive 
structure.’ 

Table 14 Consulted literature 
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C Behavioral models 
Abbr. Theory/model Explains: Relevant? (+ or -) Named in: Developed by: 

ARI Affect-Reason-
Involvement model 

How users can be convinced to 
comply with a message in three 
ways (rational appeal, emotional 
appeal or both) 

- difficult variables to make tangible 
- underrepresented in security 
studies 

(Fagan et al., 2015) Buck, 1994 

BH Health belief model Healthcare behavior based on 
expectancy-value principles (Ng, 
Kankanhalli, & Xu, 2009) 
 

+ has been widely applied to many 
domains (Ng et al., 2009) 
- similar construct as PMT but PMT 
is more applicable in this domain as 
argued by (Hanus & Wu, 2016)  

(Ng et al., 2009) 
(Hanus & Wu, 2016) 
 

Rosenstock, 1966 

C-HIP Communication-
Human Information 
Processing model 

How communication to an 
individual triggers his/her 
behavior and to identify reasons 
why notifications may be 
ineffective 

+ framework to understand 
notification processing by end users 
+ is used as a backbone in four 
earlier studies to systematically 
analyse failure of the desired 
behavior 

See four articles under 
‘Notification 
processing’ in table 14 

Wogalter, 2006 

CET Cognitive Evaluation 
Theory 

detrimental effects of rewards on 
intrinsic motivation, especially 
when rewards were tangible 
(Siponen, Adam Mahmood, & 
Pahnila, 2014, p.219) 

- rewards not relevant in this 
research 

(Siponen et al., 2014)  

FM Folk models Conceptualizations of home 
computer security threats (Forget 
et al., 2016) 

+ focus particular on botnets 
- not a comprehensive or validated 
theory 
 

(Krol et al., 2012) 
(Forget et al., 2016) 
(Orçun Çetin et al., 
2019) 

Wash, 2010 

GDT General Deterrence 
Theory 

‘ the effect of deterrent factors on 
security policy compliance.’ 
(Herath & Rao, 2009, p.109) 

- The theory proposes that non-
compliance can be deterred with 
severe punishment. Punishment is 
not desired in this research. 
- Rajab & Eydgahi (2019) find little 
support for GDT to explain variance 

(Herath & Rao, 2009) 
(Rajab & Eydgahi, 
2019) 

Williams & Hawkins, 
1986 
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in information security policy 
compliance 

GEMS Generic-Error 
Modeling System 

‘human security failures’ and 
distinguishes three types of 
human errors (Cranor, 2008) 

+ addresses the gap between 
intention and actual behavior which 
is not covered by other models 
- ignores many aspects of 
behaviour 

(Cranor, 2008) Reason, 1990 

KAP Theory of 
Knowledge, Attitude 
and Practice 

effectiveness of training in terms 
of change in attitudes and 
behavior (Torten, Reaiche, & 
Boyle, 2018) 

- no training in notification 
processes 

(Torten et al., 2018) 
 

NT Neutralization 
theory 

Behavior as an outcome of a 
‘rationale to justify actions and 
neutralize guilt’ (Torten et al., 
2018, p.69) 

- It studies behaviour after action 
(post hoc) and does not help 
explaining how behaviour can be 
modified 

(Torten et al., 2018) Matza & Sykes, 1964 

PMT Protection 
Motivation Theory 

Has evolved greatly from the 
theory of fear appeal to model 
that is used to explain risky 
behavior. 

+ many studies show the 
explanatory value of the model  
+ based on TPB and TRA (Boss, 
Moody, Polak, Lowry, & Galletta, 
2015) 

21 studies using PMT 
for explaining 
cybersecurity 
behaviour 

Rogers, 1975 
 
(Hanus & Wu, 2016 
modified the model 
for security 
behavior) 
 
 

RCT Rational Choice 
Theory 

Behavior as the outcome of a 
cost-benefit trade-off. Often 
combined or complemented with 
another model (TPB, TRA, TAM) 

+ is complementary to other 
models 
+ powerful rationale to explain the 
rise of botnets (as the outcome of 
incentive structure) 
- actors are not fully rational (no 
complete information on benefits 
and costs, perception and beliefs 
play a major role)  

See eight articles under 
‘IoT abuse remediation’ 
in table 14 

A neo-classical 
economic approach 
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TAM Technology 
Acceptance Model 

‘Attitude and its antecedents 
(behavioral beliefs)’ as the 
outcome of ‘objective 
information concerning 
information technologies and 
their design’ (Bulgurcu et al., 
2010) 

+ IoT can be considered a new 
technology and therefore TAM may 
explain the influence of its adaption 
on behavior 
- TAM does not explain user 
behavior well of protective 
technologies (Dinev & Hu, 2007) 
- Same foundation as TPB (both an 
extension of TRA) (Dinev & Hu, 
2007) but TPB more applicable 

(Ng et al., 2009) 
(Mocrii, Chen, & 
Musilek, 2018) 
(Howe et al., 2012) 
(Dinev & Hu, 2007) 

Davis, 1989 

TPB Theory of Planned 
Behavior 

Explores ‘intentions prior to 
actions, which is driven by the 
values of the individuals to 
behave’ (Torten et al., 2018, p.69) 

+ more general version of the PMT 
(Thompson et al. 2017) 
+ multiple times used in studies 
into information security policy 
compliance 
- requires a large qualitative study 
to interpret behavior (Torten et al. 
2018) 

(Thompson, McGill, & 
Wang, 2017) 
(Ifinedo, 2012b) 
(Bulgurcu et al., 2010) 
(Rajab & Eydgahi, 
2019) 
 

Ajzen, 1985 

TRA Theory of Reasoned 
Action 

TRA predicts behavior by a 
person’s intention to take actions, 
which is influenced by a person’s 
attitude and subjective norms 
 
 

+ intention is not similar to actual 
action (intention-behavior gap)  
- the predecessor of TPB (Bulgurcu 
et al., 2010; Sommestad & Hallberg, 
2013) 

(Gundu & Flowerday, 
2012) 
(Sommestad & 
Hallberg, 2013) 
(Bulgurcu et al., 2010) 

Fishbein and Ajzen 
1975 

TTAT Technology Threat 
Avoidance Theory 

‘why and how individuals avoid IT 
threats in voluntary settings’ 
(Liang & Xue, 2018) 

- quite similar as PMT as 
constructed by Hanus and Wu 
(2016) but only one study identified 
that uses this model 

(Liang & Xue, 2018) Liang & Xue, 2018 

Table 15 Behavioral models 
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D Abuse Team procedures 

 

D.1 & D.2 

CONFIDENTIAL 

D.3 Notification e-mails, landing page and contact form 
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Figure 41 Mirai e-mail notification KPN 
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Figure 42 Mirai landing page KPN - NL 
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Figure 43 Mirai static contact form KPN - NL 
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Figure 44 Mirai landing page KPN - EN 
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Figure 45 Mirai static contact form - EN 
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Figure 46 Mirai e-mail notification Telfort - NL 
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E Background information Shadowserver 

CONFIDENTIAL 
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F Randomization protocol 

This appendix describes the randomization protocol that is deployed to allocate detected IPs 
to a treatment or control group. The following conditions are considered while setting up the 
protocol: 

• The exact sample size (N) is not known in advance; 

• We strive for an equal number of IPs in each group; 

• Telfort and KPN customers will be treated as two populations. Therefore, both 
markets have their own protocol. 

To assign detected IPs to a group, a list is made for both markets (Telfort and KPN) which 
determines the sequence of assignment. We choose for a complete random assignment which 
is a procedure in which each treatment condition contains an equal number of units. The 
difficulty in creating the assignment lists lies in estimating beforehand how many IPs will have 
to be assigned: when a list is larger than the number of actual IPs detected, there is still the 
chance of unequal distribution over the treatment conditions. For that reason, the lists are 
dynamic: a new list will be added when the previous list is completely used. The new lists will 
be created with another seed. The complete random assignment is done in R using the package 
randomizr. The following two sections show the used code.  

KPN assignment list 

  > install.packages("randomizr") 

  

> set.seed(24) 

 

> Z <- complete_ra(99, num_arms = 3, conditions = c("control","e-m

ail only","loose wg"), check_inputs = TRUE) 

 

#initial list of 99 assignments  

#equally distributed over three treatment conditions 

 

> write.table(Z, file="KPN_list.csv",sep=",",row.names=F) 

 

 

> set.seed(25) 

 

> Z <- complete_ra(33, num_arms = 3, conditions = c("control","e-m

ail only","loose wg"), check_inputs = TRUE) 

 

#second list of 33 assignments  

#equally distributed over three treatment conditions 

 

> write.table(Z, file="KPN_list.csv",sep=",",row.names=F) 
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Telfort assignment list 

> set.seed(48) 
 
> Z <- complete_ra(60, num_arms = 3, conditions = c("contro
l","e-mail only","loose wg"), check_inputs = TRUE) 
 
#initial list of 60 assignments  
#equally distributed over three treatment conditions 
 
> write.table(Z, file="Telfort_list.csv",sep=",",row.names=
F) 
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G Interview protocol 
# question category stage 

Rem
ediation efforts 

R easons of non - com
pliance  

Recurrent notifications 

Device type 

C ustom
er reaction 

E -m
ail only 

Loose  w
alled garden 

Control  

yes no yes no yes no 

1.1 Do you have time? introductory      x 2.1 1.2 9.1 1.2 12.1 1.2 

1.2 What moment would suit you better? Closing      x       

2.1 Do you recall receiving the notification? Transition Delivery 

 
 x    3.1 2.2 - - -  

2.2 Is [e-mail address] your correct e-mail 
address? 

Closing  x    2.4 2.3 - - - - 

2.3 What is your correct e-mail address? Closing  x   x   - - - - 

2.4 Do you know the possible reason(s) for not 
receiving or noticing the e-mail? 

Transition  x    8.1 - - - - - 

3.1 Have you had the chance to read the 
notification? 

Transition Attention  x   x 4.1 3.2 - - - - 

3.2 What contributed to not reading the e-
mail? 

key x x    8.1 - - - - 

4.1 At that moment, did you understand the 
content of the e-mail? 

Transition Comprehension  x    5.1 4.2 - - - - 
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4.2 Do you remember what was not clear to 
you? 

Key x x    5.1 5.1 - - 

5.1 Have you tried to perform the 
recommended actions? 

Key Intention x x   x 7.1 6.1 7.1 7.1 - - 

6.1 What demotivated you or hold you back? Key Motivation 

/Beliefs 
x x    8.1 8.1 - - 

7.1 Did you succeed in performing the 
recommended actions? 

Transition  x x    7.3 7.2 7.3 7.2 - - 

7.2 What have you tried? Key Behavior x x  x  7.4 7.4 - - 

7.3 How did you do that? Key x x  x  7.4 7.4 - - 

7.4 Which device(s) have you identified as 
possibly infected? 

Key    x  8.1 8.1 - - 

8.1 What do you think of KPN’s service to reach 
out to infected customers? 

Key      x 8.2 8.2 - - 

8.2 How can this service be improved? Key      x 13.1 13.1 - - 

9.1 Do you recall being placed into quarantine? transition Delivery  x    - - 10.1 9.2 - - 

9.2 Is there a chance another user of your 
Internet connection has solved the 
problem? 

transition  x    - - 9.3 - - - 

9.3 Could I speak to this person? transition     x - - 1.1 - - - 

10.1 At that moment, did you understand the 
content of the message that was placed 
into you browser and/or e-mailed to you? 

Key Comprehension  X    - - 5.1 4.2 - - 

12.1 Do you recall having installed a new device 
or switched on a device? 

Key       - - - - 12.2 12.4 

12.2 Which kind of device was that? Key     x  - - - - 12.3 
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12.3 What have you done with that device after 
use? 

Key Behavior x     - - - - 13.1 

12.4 Do you have any devices that are 
connected to the Internet? 

Key     x  - - - - 12.5 12.6 

12.5 What devices? Key     x  - - - - 12.6 

12.6 Could you think of another reason that one 
of these devices are infected? 

Key Behavior x     - - - - 13.1 

13.1 Is there anything you like to add or ask? Closing      x - - - - - 
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H  Age distribution KPN and Telfort infected consumers 
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I Data exploration 
 

 
Figure 47 Pairplot all observations, division in market 

 

 

 
Figure 48 Boxplot all observations per market (median infection time) 
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Figure 49 Pairplot all observations, division in treatment 

 

 

 
Figure 50 Boxplot all observations per treatment (median infection time) 

 



139 
 

J Modeling step 1 [all observations] 

J.1 Introduction 

The complete dataset contains 177 consumers, of which 48 censored (remediation happened 
after the experiment period). Both female and male are included as variables since there are 
nine cases in which the gender of the subscriber is unknown. The dummy variables are coded 
the following: 

 

 Variable ‘female’ Variable ‘male’ 

Female subscriber 1 0 

Male subscriber 0 1 

Unknown gender 0 0 

 

 Variable ‘walled garden’ Variable ‘e-mail 

Walled garden notification 1 0 

E-mail notification 0 1 

No notification (control group) 0 0 

 

 Variable ‘market 

KPN consumer 0 

Telfort consumer 1 

 

 Variable ‘time_splits’ 

First detected before June 9th 0 

First detected after June 9th 1 

J.2 Overview data 

Figure 53 shows the correlation of all variables. ‘infection time’ and ‘censored’ are the 
dependent variables. The other seven variables are independent (possible covariates). The 
variables market and e-mail are closely linked since the e-mail treatment group only exist of 
Telfort consumers due to malfunctioning KPN mail server. The correlation between male and 
female is high (only eleven cases of unknown gender). To avoid multicollinearity, only one of 
these two variables is chosen. The variables are separately modeled to check which more 
reliable in step 0 (cannot be modeled as one dummy variable due to the unknown gender 
cases).  
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Figure 51 Correlation potential remediation drivers (all observations) 
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J.3 Cox modeling steps 

 

Step 0 First, we check if ‘female’ or ‘male’ is a better covariate.  

Including female: 

 
 

Including male: 

 
The model including ‘female’ has higher reliable parameters and a better overall fit ( the 
partial log-likelihood is higher for equal degrees of freedom).  

In the next steps, the variable ‘male’ is excluded due to the high covariance between this 
variable and ‘female’. Due to this exclusion, the coding of the dummy variable ‘female’ is 
changed. 1 = female subscriber, and 0 = male subscriber and subscribers of unknown 
gender. 

Step 1 The market variable is the least reliable and excluded 

Modeling the Cox model for [age, female, walled garden, e-mail] 
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The difference in partial log-likelihood (LL) = -0,03 

Log-Likelihood Ratio Statistic (LRS) = 0,06 

Consulting the chi-square distribution for 0,06 on 1 df: p>0,75 

Model 1 is better than model 0 

Step 2 The age variable is the least reliable and excluded 

Modeling the Cox model for [female, walled garden, e-mail] 

 
The difference in partial log-likelihood (LL) = -0,12 

Log-Likelihood Ratio Statistic (LRS) = 0,24 

Consulting the chi-square distribution for 0,24 on 1 df: p>0,50 

Model 2 is better than model 1 

Step 3 The e-mail variable is the least reliable and excluded 

Modeling the Cox model for [female, walled garden] 

 
The difference in partial log-likelihood (LL) = -0,55 

Log-Likelihood Ratio Statistic (LRS) = 1,1 

Consulting the chi-square distribution for 1,1 on 1 df: p>0,25 
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Model 3 is better than model 2 

Step 4 The female variable is the least reliable and excluded 

Modeling the Cox model for [walled garden] 

 
The difference in partial log-likelihood (LL) = -1,99 

Log-Likelihood Ratio Statistic (LRS) = 3,98 

Consulting the chi-square distribution for 3,98 on 1 df: p<0,05 

Model 3 is better than model 4 

Step 5 Model 3 is best of all models. 

When comparing model 3 with a trivial model, the LRS is 10,57 for 2 degrees of freedom: 
p<0,01 

Model 3 is better than a model without covariates.  

Model 3 is accepted 

Step 6 
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J.4 AFT modeling steps 

Step 0 Prior to estimating a model, we must find the best fitting distribution for the survival curve. 
Figure 54 shows the distribution fits and the Log-Likelihood (LL) of that function compared 
to the null distributions. Since the data and the number of parameters are for all these five 
distributions the same, except for the exponential distribution, we can directly compare 
the LL estimates of these five. The difference in one degree of freedom does not 
compromise for the low LL of the exponential distribution. When comparing the rest, we 
can conclude the LogNormal distribution has the best goodness of fit. 

 
Figure 52 Distribution fits for the survival curve of all observations 

Figure 55 shows the quantile-quantile (Q-Q) plot to compare the fitted LogNormal 
distribution with the empirical distribution. The Q-Q-plot shows that until 81 hours, the 
data has quite the same shape as the fitted LogNormal distribution. The empirical 
distribution is a bit more concentrated than the fitted distribution. Then there is a spike 
of identical values of 81/82 hours (horizontal line of dots). This can also be seen in the 
Kaplan-Meier plot in section 6.3, which shows a drop around this time. After this spike, 
the dots form a steep vertical line, which indicates there is a gap in values. 
 

 
Figure 53 Q-Q plot LogNormal distribution 

 

Step 1 Similar to the Cox modeling in the previous section, we first estimate two models (including 
female and including male) so we can decide which variable to continue with. 
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Including female: 

 
 

Including male: 

 
The model including ‘female’ has higher reliable parameters and a better overall fit (the 
log-likelihood is higher for equal degrees of freedom). Similar to the Cox model, the next 
steps will include ‘female’. (Dummy coding: 1 = female subscriber, and 0 = male subscriber 
and subscribers of unknown gender) 

Step 2 The market variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [age, female, walled garden, e-mail] 

 
The difference in partial log-likelihood (LL) = -0,077 

Log-Likelihood Ratio Statistic (LRS) = 0,154 

Consulting the chi-square distribution for 0,154 on 1 df: p>0,50 

Model 2 is better than model 1 
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Step 3 The age variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [female, walled garden, e-mail] 

 
The difference in partial log-likelihood (LL) = -0,066 

Log-Likelihood Ratio Statistic (LRS) = 0,132 

Consulting the chi-square distribution for 0,132 on 1 df: p>0,50 

Model 3 is better than model 2 

Step 4 The e-mail variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [female, walled garden] 

 
The difference in partial log-likelihood (LL) = -0,523 

Log-Likelihood Ratio Statistic (LRS) = 1,046 

Consulting the chi-square distribution for 1,046 on 1 df: p>0,525 

Model 4 is better than model 3 

Step 5 The female variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [walled garden] 

 
The difference in partial log-likelihood (LL) = -1,871 
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Log-Likelihood Ratio Statistic (LRS) = 3,742 

Consulting the chi-square distribution for 3,742 on 1 df: p=0,053 

Model 4 is better than model 5 under the significance level of 5,3% 

Step 6 Model 4 is best of all models. 

When comparing model 4 with a trivial model, the LRS is 9,9 for 2 degrees of freedom: 
p<0,05 (p=0,002) 

Model 4 is better than a model without covariates.  

Model 4 is accepted 

Step 7 
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K Modeling step 2 [interviewed consumers] 

K.1 Introduction 

Of all the subjects in the experiment, 99 consumers were interviewed. Seven of these 
consumers had a business account, two consumers were reinfected and one customer had a 
business account and was reinfected. We exclude these customers from the dataset, resulting 
in a dataset of  89 entries, of which 22 are censored.  

Through the interviews, we obtained more information that may have explanatory value for 
infection time. This information is translated into several dummy variables. Two dummy 
variables concern two stages of the theoretical framework: awareness and behavior. 
Comprehension, intention and compliance are not included since these stages are only of 
interest in the e-mail and walled garden group. This appendix, therefore, excludes these stages. 
Appendix L models the process excluding the control group so that the other stages can be 
included. 

The two dummy variables are defined and coded as the following: 

Aware of notification (awareness): whether the interviewed consumer has received a 
notification and is aware of the content. 

 Variable ‘aware of 
notification’:  

Consumers in the control group; consumers in the e-mail and 
walled group who have not seen or read the notification 

0 

Consumers in the e-mail and walled group who have seen and read 
the notification 

1 

 

Right measures (behavior): whether the interviewed consumer has performed effective 
remediation measures. These actions may differ from the recommended actions in the 
notification. Section 8.1 presents the rules that determine whether remediation actions are 
considered ‘effective’. 

 

 Variable ‘Right measures’:  

Consumers who haven’t performed 
effective measures to remediate Mirai 

0 

Consumers who have performed effective 
measures to remediate Mirai 

1 

 

Other data obtained through the interviews is the device types that consumers have identified 
as infected. The pie charts in chapter 5 visualize the ratios of device types. However, these pie 
charts do not take into that some consumers have identified several devices as possible 
infected. Since we don’t know the precise device, we collect these devices under the variable 
‘multiple’. The NAS and Rasberry Pi devices are collected under the variable ‘home automation’ 
(modeled as ‘home’). This data exists of 39 home automation devices, 23 camera’s, 11 
instances of multiple possibly infected devices, 11 unknown device types, 3 printers and 2 
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routers. Due to their low occurrence, printers and routers are not modeled asa  variable. All 
other device types are modeled as dummy variables: 

 

 Variable 
‘home’ 

Variable 
‘camera 

Variable 
‘multiple’ 

Variable 
‘unknown’ 

Consumers who have identified a NAS or 
Rasberry Pi as the infected device 

1 0 0 0 

Consumers who have identified an IP 
camera as the infected device 

0 1 0 0 

Consumers who have identified multiple 
IoT devices as possibly infected 

0 0 1 0 

Consumers who were not able to 
identify an IoT device in their network 

0 0 0 1 

Consumers who have identified a printer 
or router as the infected device (rest 
group) 

0 0 0 0 

 

K.2 Overview data 
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Figure 54 Correlation potential remediation drivers (interviewed consumers) 
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K.3 Cox modeling steps 

Step 0 For the same reasons as addressed in appendix J.2, we first check if ‘female’ or ‘male’ is a 
better covariate to determine which of the two to include. 

Including female: 

 
 

Including male: 

 
The model including ‘female’ has higher reliable parameters and a better overall fit ( the 
partial log-likelihood is higher for equal degrees of freedom).  

In the next steps, the variable ‘male’ is excluded due to the high covariance between this 
variable and ‘female’. Due to this exclusion, the coding of the dummy variable ‘female’ is 
changed. 1 = female subscriber, and 0 = male subscriber and subscribers of unknown 
gender. 

Step 1 The ‘multiple’ variable is the least reliable and excluded 

Modeling the Cox model for [market, e-mail, walled garden, age, female, aware of 
notification, right measures, camera, home, unknown] 
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The difference in partial log-likelihood (LL) = -0,02 

Log-Likelihood Ratio Statistic (LRS) = 0,04 

Consulting the chi-square distribution for 0,04 on 1 df: p>0,75 

Model 1 is better than model 0 

Step 2 The e-mail and walled garden variable are the least reliable. E-mail is excluded because the 
model of the complete dataset (appendix J.3) has shown that walled garden is a significant 
covariate and B)  

Modeling the Cox model for [market, walled garden, age, female, aware of notification, 
right measures, home, camera, unknown] 

 
The difference in partial log-likelihood (LL) = -0,13 

Log-Likelihood Ratio Statistic (LRS) = 0,26 

Consulting the chi-square distribution for 0,26 on 1 df: p>0,50 

Model 2 is better than model 1 

Step 3 The ‘walled garden’ variable is the least reliable and excluded 

Modeling the Cox model for [market, age, female, aware of notification, right measures, 
camera, home, unknown] 
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The difference in partial log-likelihood (LL) = -0,01 

Log-Likelihood Ratio Statistic (LRS) = 0,02 

Consulting the chi-square distribution for 0,02 on 1 df: p>0,75 

Model 3 is better than model 2 

Step 4 The ‘unknown’ variable is the least reliable and excluded 

Modeling the Cox model for [market, age, female, aware of notification, right measures, 
camera, home] 

 
The difference in partial log-likelihood (LL) = -0,09 

Log-Likelihood Ratio Statistic (LRS) = 0,18 

Consulting the chi-square distribution for 0,18 on 1 df: p>0,50 

Model 4 is better than model 3 

Step 5 The ‘age’ variable is the least reliable and excluded 

Modeling the Cox model for [market, female, aware of notification, right measures, camera, 
home] 
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The difference in partial log-likelihood (LL) = -0,23 

Log-Likelihood Ratio Statistic (LRS) = 0,46 

Consulting the chi-square distribution for 0,46 on 1 df: p>0,25 

Model 5 is better than model 4 

Step 6 The ‘market’ variable is the least reliable and excluded 

Modeling the Cox model for [female, aware of notification, right measures, camera, home] 

 
The difference in partial log-likelihood (LL) = -0,41 

Log-Likelihood Ratio Statistic (LRS) = 0,82 

Consulting the chi-square distribution for 0,82 on 1 df: p>0,25 

Model 6 is better than model 5 

Step 7 The ‘camera’ variable is the least reliable and excluded 

Modeling the Cox model for [female, aware of notification, right measures, home] 
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The difference in partial log-likelihood (LL) = -0,89 

Log-Likelihood Ratio Statistic (LRS) = 1,78 

Consulting the chi-square distribution for 1,78on 1 df: p>0,10 

Model 7 is better than model 6 

Step 8 The ‘home’  variable is the least reliable and excluded 

Modeling the Cox model for [female, aware of notification, right measures] 

 
The difference in partial log-likelihood (LL) = -0,48 

Log-Likelihood Ratio Statistic (LRS) = 0,96 

Consulting the chi-square distribution for 0,96 on 1 df: p>0,25 

Model 8 is better than model 7 

Step 9 All variables are significant. Exclusion of ‘aware of notification’ or ‘right measures’ lead to a 
partial Log-Likelihood of respectively  -257,66 and -257,78.  

The difference in partial log-likelihood (LL) = -2,06 / -1,94 

Log-Likelihood Ratio Statistic (LRS) = 4,12 / 3,88 

Consulting the chi-square distribution 4,12 / 3,88 on 1 df, both models: p<0,05 

Model 8 is better than a model with less covariates. 

 Model 8 is best of all models. 

When comparing model 8 with a trivial model, the LRS is 18,92 for 3 degrees of freedom: 
p<0,01 

Model 8 is better than a model without covariates.  

Model 8 is accepted 
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AIC model 8: -2 *(-255,72) + (3+3) = 517,44 

AIC model with walled garden as substitute: -2 * (-259,82) + (2+2) = 521,84 

Model 8 has a lower AIC estimate and is thus better than model wherein tha variables awareness 
and right measures are substituted with the variable walled garden. 
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K.4 AFT modeling steps 

Step 0 Following the similar line of reasoning of appendix J.4, the fitted distributions in figure 57 
show that the LogNormal distribution has the best goodness of fit. 

 
Figure 55 Distribution fits for the survival curve of all observations 

Figure 58 shows the quantile-quantile (Q-Q) plot to compare the fitted LogNormal 
distribution with the empirical distribution. This Q-Q plot has the similar shape as the Q-
Q plot in appendix J.4, but with less dots because the dataset contains less entries.  
The Q-Q-plot shows that until 81 hours, the data has quite the same shape as the fitted 
LogNormal distribution. The empirical distribution is a bit more concentrated than the 
fitted distribution. Then there is a spike of identical values of 81/82 hours (horizontal line 
of dots). This can also be seen in the Kaplan-Meier plot in chapter 6, which shows a drop 
around this time. After this spike, the dots form a steep vertical line, which indicates 
there is a gap in values.  
 
 

 
Figure 56 Q-Q plot LogNormal distribution 

 

Step 1 Similar to the Cox modeling in the previous section, we first estimate two models (including 
female and including male) so we can decide which variable to continue with. 
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Including female: 

 
 

Including male: 

 
The model including ‘female’ has a better overall fit (the log-likelihood is higher for equal 
degrees of freedom). Similar to the Cox model, the next steps will include ‘female’. 
(Dummy coding: 1 = female subscriber, and 0 = male subscriber and subscribers of 
unknown gender) 

Step 2 The camera variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, e-mail, walled garden, age, female, aware 
of notification, right measures, home, multiple, unknown] 
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The difference in partial log-likelihood (LL) = -0,014 

Log-Likelihood Ratio Statistic (LRS) = 0,028 

Consulting the chi-square distribution for 0,028 on 1 df: p>0,75 

Model 2 is better than model 1 

Step3  The walled garden variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, e-mail, age, female, aware of notification, 
right measures, home, multiple, unknown] 

 
The difference in partial log-likelihood (LL) = -0,077 

Log-Likelihood Ratio Statistic (LRS) = 0,154 

Consulting the chi-square distribution for 0,154 on 1 df: p>0,50 

Model 3 is better than model 2 

Step 4 The e-mail variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, age, female, aware of notification, right 
measures, home, multiple, unknown] 

 
The difference in partial log-likelihood (LL) = -0,16 

Log-Likelihood Ratio Statistic (LRS) = 0,32 

Consulting the chi-square distribution for 0,32 on 1 df: p>0,50 

Model 4 is better than model 3 
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Step 5  The home variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, age, female, aware of notification, right 
measures, multiple, unknown] 

 
The difference in partial log-likelihood (LL) = -0,221 

Log-Likelihood Ratio Statistic (LRS) = 0,442 

Consulting the chi-square distribution for 0,442 on 1 df: p>0,50 

Model 5 is better than model 4 

Step 6  The age variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, female, aware of notification, right 
measures, multiple, unknown] 

 
The difference in partial log-likelihood (LL) = -0,373 

Log-Likelihood Ratio Statistic (LRS) = 0,746 

Consulting the chi-square distribution for 0,746 on 1 df: p>0,25 

Model 6 is better than model 5 

Step 7  The unknown variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, female, aware of notification, right 
measures, multiple] 
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The difference in partial log-likelihood (LL) = -0,585 

Log-Likelihood Ratio Statistic (LRS) = 1,17 

Consulting the chi-square distribution for 1,17 on 1 df: p>0,25 

Model 7 is better than model 6 

Step 8  The market variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [female, aware of notification, right measures, 
multiple] 

 
The difference in partial log-likelihood (LL) = -0,33 

Log-Likelihood Ratio Statistic (LRS) = 0,66 

Consulting the chi-square distribution for 0,66 on 1 df: p>0,25 

Model 8 is better than model 7 

Step 9  The multiple variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [female, aware of notification, right measures] 

 
The difference in partial log-likelihood (LL) = -0,614 
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Log-Likelihood Ratio Statistic (LRS) = 1,228 

Consulting the chi-square distribution for 1,228 on 1 df: p>0,25 

Model 9 is better than model 8 

Step 10 The female measures variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [aware of notification] 

 
The difference in partial log-likelihood (LL) = -1,522 

Log-Likelihood Ratio Statistic (LRS) = 3,044 

Consulting the chi-square distribution for 3,044 on 1 df: p=0,08 

Model 10 is better than model 9 

Step 11 All variables are significant. Exclusion of ‘female’ leads to a Log-Likelihood of -349,290 

The difference in partial log-likelihood (LL) = -2,842 

Log-Likelihood Ratio Statistic (LRS) = 5,684 

Consulting the chi-square distribution 5,684 on 1 df: p<0,05 

 
Model 10 is better than model 11 

Step 12 Model 10 is best of all models. 

When comparing model 10 with a trivial model, the LRS is 13,925 for 2 degrees of freedom: 
p<0,01 

Model 10 is better than a model without covariates.  

Model 10 is accepted 
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Model 10 has a Log-Likelihood of -346,448, which is higher than these models with substituted 
variables for awareness. Model 10 is thus the best model. 
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L Modeling step 3 [interviewed, notified consumers] 

L.1 Introduction 

Of the 89 interviewed consumers that are included in the modeling process (as described in 
appendix K), 49 consumers were notified. 37 consumers of these were placed in a walled 
garden and 12 consumers were sent only an e-mail. 9 entries of the 49 are censored. 

Using this dataset enables us to use more information obtained from the interviews that 
concern only notified consumers. In addition to the variables addressed in appendix K.1, this 
modeling process includes four more dummy variables. Two variables are two stages of the 
theoretical framework: comprehension and intention. (Strict) compliance not included because 
we want to know the influence of effective remediation measures, which is already covered by 
the variable ‘right measures’. The two dummy variables are defined and coded as the following: 

Understood notification (comprehension): whether the interviewed consumer understood the 
content of the notification 

 Variable ‘understood notification?’:  

The notification was unclear / had some 
unclear parts 

0 

The notification was clear to the consumer 1 

 

Intended to comply (intention): whether the interviewed consumer had the intention to take 
comply with the recommended actions. 

 Variable ‘intended to comply?:  

No intention to comply 0 

Intention to comply 1 

 

Consumers were also asked about their experience with the notification. The information about 
their satisfaction is included using two dummy variables, coded as follows: 

 Variable ‘satisfied with service’ Variable ‘dissatisfied with service’ 

Satisfied 1 0 

Dissatisfied 0 1 

Neutral 0 0 

Due to the absence of the control group, the dummy variables for the notification mechanisms 
is changed. The variable ‘e-mail’ is excluded and the zero-value of ‘walled garden’ now refers 
to e-mail notified consumers only.  
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L.2 Overview data 

 

 
Figure 57 Correlation potential remediation drivers (interviewed, notified consumers) 

 

L.3 Cox modeling steps 

Step 0 For the same reasons as addressed in appendix J.2, we first check if ‘female’ or ‘male’ is 
a better covariate to determine which of the two to include. Including ‘male’ leads to a 
violation of the proportional hazard assumption of the ‘understood notification?’ 
variable. Complimentary to the statistical test, we can review this violation in this figure 
(lines should be constant): 
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To compare the model including ‘female’ with a model including ‘male’, we delete the 
variable in question.  

Including female: 

 
 

Including male: 

 
The model including ‘male’ has higher reliable parameters and a better overall fit ( the 
partial log-likelihood is higher for equal degrees of freedom).  
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In the next steps, the variable ‘female’ is excluded. Due to this exclusion, the coding of 
the dummy variable ‘male’ is changed. 1 = male subscriber, and 0 = female subscriber and 
subscribers of unknown gender. 

Step 1 Due to the violation of the proportional hazard assumption, we can either stratify or 
exclude the ‘understood notification’ variable. We choose for the latter option due to A) 
the low reliability of the variable when including ‘female’ instead of ‘male’ and B) the high 
covariance with other variables which may indicate an overlap with the other variables. 
In the last step of this modeling process, we will include this variable again to check 
whether we made a misjudgment.  

We continue with model 0. The ‘aware of notification’  variable is the least reliable and 
excluded 

Modeling the Cox model for [market, walled garden, age, male, intended to comply, right 
measures, satisfied with service, dissatisfied with service, home, camera, multiple, 
unknown] 

 
The difference in partial log-likelihood (LL) = -0,00 

Log-Likelihood Ratio Statistic (LRS) = 0,00 

Consulting the chi-square distribution for 0,00 on 1 df: p>0,99 

Model 1 is better than model 0 

Step 2 The ‘right measures’  variable is the least reliable and excluded 

Modeling the Cox model for [market, walled garden, age, male, intended to comply, 
satisfied with service, dissatisfied with service, home, camera, multiple, unknown] 
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The difference in partial log-likelihood (LL) = -0,05 

Log-Likelihood Ratio Statistic (LRS) = 0,1 

Consulting the chi-square distribution for 0,1 on 1 df: p>0,75 

Model 2 is better than model 1 

Step 3 The ‘market’  variable is the least reliable and excluded 

Modeling the Cox model for [walled garden, age, male, intended to comply, satisfied with 
service, dissatisfied with service, home, camera, multiple, unknown] 

 
The difference in partial log-likelihood (LL) = -0,12 

Log-Likelihood Ratio Statistic (LRS) = 0,24 

Consulting the chi-square distribution for 0,24 on 1 df: p>0,50 

Model 3 is better than model 2 

Step 4 The ‘walled garden’  variable is the least reliable and excluded 

Modeling the Cox model for [age, male, intended to comply, satisfied with service, 
dissatisfied with service, home, camera, multiple, unknown] 
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The difference in partial log-likelihood (LL) = -0,55 

Log-Likelihood Ratio Statistic (LRS) = 1,1 

Consulting the chi-square distribution for 1,1 on 1 df: p>0,25 

Model 4 is better than model 3 

Step 5 The ‘multiple’  variable is the least reliable and excluded 

Modeling the Cox model for [age, male, intended to comply, satisfied with service, 
dissatisfied with service, home, camera, unknown] 

 
The difference in partial log-likelihood (LL) = -1,03 

Log-Likelihood Ratio Statistic (LRS) = 2,06 

Consulting the chi-square distribution for 2,06 on 1 df: p>0,10 

Model 5 is better than model 4 

Step 6  The ‘home’ variable is the least reliable and excluded 

Modeling the Cox model for [age, male, intended to comply, satisfied with service, 
dissatisfied with service, camera, unknown] 
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The difference in partial log-likelihood (LL) = -0,36 

Log-Likelihood Ratio Statistic (LRS) = 0,72 

Consulting the chi-square distribution for 0,72 on 1 df: p>0,25 

Model 6 is better than model 5 

Step 7 The ‘unknown’ variable is the least reliable and excluded 

Modeling the Cox model for [age, male, intended to comply, satisfied with service, 
dissatisfied with service, camera] 

 
The difference in partial log-likelihood (LL) = -0,48 

Log-Likelihood Ratio Statistic (LRS) = 0,96 

Consulting the chi-square distribution for 0,96 on 1 df: p>0,25 

Model 7 is better than model 6 

Step 8  The ‘camera’ variable is the least reliable and excluded 

Modeling the Cox model for [age, male, intended to comply, satisfied with service, 
dissatisfied with service] 
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The difference in partial log-likelihood (LL) = -0,91 

Log-Likelihood Ratio Statistic (LRS) = 1,82 

Consulting the chi-square distribution for 1,82 on 1 df: p>0,10 

Model 8 is better than model 7 

Step 9  The ‘dissatisfied with service’ variable is the least reliable and excluded 

Modeling the Cox model for [age, male, intended to comply, satisfied with service] 

 
The difference in partial log-likelihood (LL) = -0,49 

Log-Likelihood Ratio Statistic (LRS) = 0,98 

Consulting the chi-square distribution for 0,98 on 1 df: p>0,25 

Model 9 is better than model 8 

Step 10 The ‘age’ variable is the least reliable and excluded 

Modeling the Cox model for [male, intended to comply, satisfied with service] 
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The difference in partial log-likelihood (LL) = -1,1 

Log-Likelihood Ratio Statistic (LRS) = 2,2 

Consulting the chi-square distribution for 2,2 on 1 df: p>0,10 

Model 10 is better than model 9 

Step 11 The ‘satisfied with service’ variable is the least reliable and excluded 

Modeling the Cox model for [male, intended to comply] 

 
The difference in partial log-likelihood (LL) = -0,71 

Log-Likelihood Ratio Statistic (LRS) = 1,42 

Consulting the chi-square distribution for 1,42 on 1 df: p>0,10 

Model 11 is better than model 10 

Step 12 All variables are significant. Exclusion of ‘intended to comply’ leads to a Log-Likelihood of 
-132,61 

The difference in partial log-likelihood (LL) = -2,83 

Log-Likelihood Ratio Statistic (LRS) = 5,66 

Consulting the chi-square distribution 5,66 on 1 df: p<0,05 

Model 11 is best of all models. 

When comparing model 11 with a trivial model, the LRS is 8,36 for 2 degrees of freedom: 
p<0,05 

Model 11 is better than a model without covariates.  

Model 11 is accepted 
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Model 11 has a Log-Likelihood of -129,78, which is higher than these models with 
substituted variables for the variable intention. Model 11 is thus the best model. 
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L.4 AFT modeling steps 

Step 0 Following the similar line of reasoning of appendix J.4, the fitted distributions in figure 60 
show that both the LogNormal and LogLogistic distributions have the best fit. The 
Lognormal distribution has a slightly little better fit (LL = 198,61) than the LogLogistic 
distribution (-198,63). We, therefore, use the LogNormal distribution for the AFT model. 

 
Figure 58 Distribution fits for the survival curve of all observations 

Figure 61 shows the quantile-quantile (Q-Q) plot to compare the fitted LogNormal 
distribution with the empirical distribution. The empirical distribution more concentrated 
than the fitted distribution and thus has a larger tail than the fitted LogNormal 
distribution. This is also visible through the data range: almost all data points lie between 
zero and eighty hours.  
 

 
Figure 59 Q-Q plot LogNormal distribution 

 

Step 1 Similar to the Cox modeling in the previous section, we first estimate two models (including 
female and including male) so we can decide which variable to continue with. 

Including female: 
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Including male: 

 
The model including ‘male’ has higher reliable parameters and a better overall fit ( the 
partial log-likelihood is higher for equal degrees of freedom).  

In the next steps, the variable ‘female’ is excluded. Due to this exclusion, the coding of the 
dummy variable ‘male’ is changed. 1 = male subscriber, and 0 = female subscriber and 
subscribers of unknown gender. 

Step 2 The ‘aware of notification’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, walled garden, age, male, understood 
notification, intended to comply, right measures, sastisfied with service, dissastisfied with 
service, home, camera, multiple, unknown] 
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The difference in partial log-likelihood (LL) = -0,076 

Log-Likelihood Ratio Statistic (LRS) = 0,152 

Consulting the chi-square distribution for 0,152 on 1 df: p>0,50 

Model 2 is better than model 1 

Step3  The ‘unknown’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, walled garden, age, male, understood 
notification, intended to comply, right measures, sastisfied with service, dissastisfied with 
service, home, camera, multiple] 

 
The difference in partial log-likelihood (LL) = -0,031 

Log-Likelihood Ratio Statistic (LRS) = 0,062 

Consulting the chi-square distribution for 0,062 on 1 df: p>0,75 

Model 3 is better than model 2 

Step 4 The ‘walled garden’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, age, male, understood notification, 
intended to comply, right measures, sastisfied with service, dissastisfied with service, 
home, camera, multiple] 
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The difference in partial log-likelihood (LL) = -0,071 

Log-Likelihood Ratio Statistic (LRS) = 0,142 

Consulting the chi-square distribution for 0,142 on 1 df: p>0,50 

Model 4 is better than model 3 

Step 5 The ‘multiple’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, age, male, understood notification, 
intended to comply, right measures, sastisfied with service, dissastisfied with service, 
home, camera] 

 
The difference in partial log-likelihood (LL) = -0,251 

Log-Likelihood Ratio Statistic (LRS) = 0,502 

Consulting the chi-square distribution for 0,502 on 1 df: p>0,25 

Model 5 is better than model 4 

Step 6 The ‘right measure’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, age, male, understood notification, 
intended to comply, sastisfied with service, dissastisfied with service, home, camera] 
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The difference in partial log-likelihood (LL) = -0,218 

Log-Likelihood Ratio Statistic (LRS) = 0,436 

Consulting the chi-square distribution for 0,436 on 1 df: p>0,50 

Model 6 is better than model 5 

Step 7 The ‘home’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, age, male, understood notification, 
intended to comply, sastisfied with service, dissastisfied with service, camera] 

 
The difference in partial log-likelihood (LL) = -0,152 

Log-Likelihood Ratio Statistic (LRS) = 0,304 

Consulting the chi-square distribution for 0,304 on 1 df: p>0,50 

Model 7 is better than model 6 

Step 8 The ‘dissatisfied with service’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, age, male, understood notification, 
intended to comply, sastisfied with service, camera] 
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The difference in partial log-likelihood (LL) = -0,461 

Log-Likelihood Ratio Statistic (LRS) = 0,922 

Consulting the chi-square distribution for 0,922 on 1 df: p>0,25 

Model 8 is better than model 7 

Step 9 The ‘age’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, male, understood notification, intended 
to comply, sastisfied with service, camera] 

 
The difference in partial log-likelihood (LL) = -0,364 

Log-Likelihood Ratio Statistic (LRS) = 0,728 

Consulting the chi-square distribution for 0,728 on 1 df: p>0,25 

Model 9 is better than model 8 

Step 10 The ‘satisfied with service’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, male, understood notification, intended 
to comply, camera] 
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The difference in partial log-likelihood (LL) = -0,466 

Log-Likelihood Ratio Statistic (LRS) = 0,932 

Consulting the chi-square distribution for 0,932 on 1 df: p>0,25 

Model 10 is better than model 9 

Step 11 The ‘understood notification’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, male, intended to comply, camera] 

 
The difference in partial log-likelihood (LL) = -0,681 

Log-Likelihood Ratio Statistic (LRS) = 1,362 

Consulting the chi-square distribution for 1,362 on 1 df: p>0,10 

Model 11 is better than model 10 

Step 12 The ‘camera’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, male, intended to comply] 

 
The difference in partial log-likelihood (LL) = -1,56 

Log-Likelihood Ratio Statistic (LRS) = 3,12 
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Consulting the chi-square distribution for 3,12 on 1 df: p>0,05 

Model 12 is better than model 11 

Step 13 The ‘market’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, male, intended to comply] 

 
The difference in partial log-likelihood (LL) = -0,71 

Log-Likelihood Ratio Statistic (LRS) = 1,42 

Consulting the chi-square distribution for 1,42 on 1 df: p>0,10 

Model 13 is better than model 12 

Step 14 The ‘male’ variable is the least reliable and excluded 

Modeling the AFT LogNormal model for [market, male, intended to comply] 

 
The difference in partial log-likelihood (LL) = -1,789 

Log-Likelihood Ratio Statistic (LRS) = 3,578 

Consulting the chi-square distribution for 3,578 on 1 df: p>0,10 

Model 14 is better than model 13 

Step 15 Model 14 is best of all models. 

When comparing model 14 with a trivial model, the LRS is 5,163 for 1 degree of freedom: 
p<0,05 

Model 14 is better than a model without covariates.  

Model 14 is accepted 



182 
 

 

 

 

 

 

 

 
All models with a substitution for the variable intention are not accepted because the LRS 
for 1 degree of freedom is for all lower than 3,841 (critical value for p-value of 0,05). 

 Model 14 is thus the best model. 

 






