
API evolution on Maven Central: do developers adhere
to semantic versioning?

Simcha Vos
Supervisors: Mehdi Keshani, Sebastian Proksch

EEMCS, Delft University of Technology, The Netherlands

21-06-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1



API evolution on Maven Central: do developers
adhere to semantic versioning?

Simcha Vos
TU Delft

Faculty of EEMCS
Delft, The Netherlands

Supervisor: Mehdi Keshani
TU Delft

Faculty of EEMCS
Delft, The Netherlands

Professor: Sebastian Proksch
TU Delft

Faculty of EEMCS
Delft, The Netherlands

Abstract—In this paper, we investigate whether developers of
artifacts on Maven Central adhere to semantic versioning. We
also investigate whether there is a link between violations in
semantic versioning and the popularity of the violating method.
Developers can violate semantic versioning by removing or
altering methods in their API, which we refer to as breaking
changes. They can also violate semantic versioning by extending
the API in a patch version, referred to as an illegal API extension.
APIs that do not keep their promise of adhering to semantic
versioning, will unexpectedly break their dependents during
upgrading of dependencies.

We have found that these two types of violations do occur in
practice. We find that 24% of analyzed artifacts contain breaking
changes and 24% of artifacts contain illegal API extensions.
Finally, we show that popularity of a method does not have an
impact on breaking changes.

We conclude that semantic versioning can not always guaran-
tee that upgrading dependencies will not lead to incompatibility.
This indicates a need for developers to be more aware of the
impact that violating semantic versioning has.

Index Terms—Maven Central, compatibility, semantic version-
ing, API evolution, breaking changes

I. INTRODUCTION

Maven Central is the most popular repository that distributes
JVM-based artifacts [1]. A noteworthy aspect of Maven Cen-
tral is that it accumulates all the versions of published artifacts,
allowing one to analyze the evolution of an artifact. Artifacts
hosted on Maven Central may include dependencies that point
towards other artifacts. In this paper, we refer to artifacts as
the unique combination of a groupId and an artifactId, which
may have any number of versions associated with them.

In this study, we investigate APIs hosted on Maven Central.
Over time, these APIs may evolve in their interface and
functionality, which is a concept called API evolution. We
investigate these changes on the method-level.

This paper looks at compatibility through different versions
of an API, and investigates whether developers adhere to se-
mantic versioning. Semantic versioning consists of three parts
[2]: (1) major version: increases when new functionality is
added, possibly breaking the API; (2) minor version: increases
when new functionality is added and remains backward-
compatible1; and (3) patch version: increases when backward-
compatible bug fixes are added and the API is not changed.

1Backward-compatible: upgrading from an older version to a newer version
which is backward-compatible can not lead to any compatibility issues.

In this study, we investigate two types of semantic ver-
sioning violations. Firstly, we investigate the alteration of the
API in a minor or patch version, for example, the deletion
of a method that is part of the API, which we refer to as
breaking changes. Secondly, we investigate the addition of
new functionality by extending the API in a patch version,
which we refer to as illegal API extensions. Both of these are
violations of semantic versioning.

The first violation is related to the fact that compatibility
should only be broken after a so-called major release. In
case a change breaks this compatibility, we call this change a
breaking change if it occurs within the current major version.

The second violation is the extension of the API in a patch
version. When this happens, new functionality is added and the
API is changed. This is not allowed within a patch version.

While Kim et al. [3] and others have investigated the
changes to an API through its evolution, as well as the reason
and extent of these changes, most have not connected API
evolution to the concept of semantic versioning. Understanding
compatibility and adherence to semantic versioning is impor-
tant, as an analysis of these concepts allows developers to
know whether they can trust an API to remain compatible.
Therefore, in this paper, we investigate whether semantic
versioning can be trusted to guarantee compatibility.

Finally, we connect the popularity of methods to violations
of semantic versioning. By analyzing which methods violate
the principles of semantic versioning, we can tell whether there
is a link between popularity and violating semantic versioning.

In this paper, we look at whether the evolution of an API
generally leads to incompatibility. In addition, we investigate
whether these changes in the API are in line with the principles
of semantic versioning. This means that methods may only be
removed in major versions and the API may only be extended
in minor or major versions.

We analyze a representative set of 356 artifacts, each with
some number of different versions. The contributions of this
study are as follows:

• a quantitative analysis of the compatibility across versions
of APIs concluding whether semantic versioning can be
trusted to guarantee compatibility across minor and patch
releases;

• a release of the tools of this study for public use.



II. RELATED WORKS

To find the current gap in research, we will first study
several works that are related to this study.

Mileva et al. [4] have employed what they call wisdom
of the crowds in order to analyze the usage of individual
library versions. Their paper presents an approach to support
developers in their decision to upgrade a dependency. To
this end, they mined the dependencies of 250 APACHE
projects and consider the choice of the majority to come to
a recommendation. Their findings are that trends in software
will result in immediately useful recommendations.

Nguyen et al. [5] presents a system called LibSync, which is
a tool for developers who want to upgrade their dependencies.
It suggests users a way of adapting their API usage by learning
from clients that have already migrated to a new library
version. The system looks at the API usage at the method-level
and attempts to suggest to users a way to deal with changes
in method declarations.

Kim et al. [3] have performed a large analysis of API
refactorings and bug fixes and come to several interesting
conclusions. Firstly, the presence of an increase in the number
of bug fixes after refactorings, secondly that it takes shorter to
fix bugs after refactorings. Another observation they make is
that refactoring revisions often include bug fixes or are related
to later bug fix revisions, and finally that refactorings occur
more frequently before than after major software releases. This
study offers insights into the consequences of refactorings, but
it does not focus on versioning of the library, as it looks at
the commit history of Git repositories.

Hora et al. [6] reason that during software evolution, the
source code of APIs is constantly refactored. The researchers
propose a tool to extract rules by monitoring API invocation
changes. This tool mines the changes at revision-level in the
code history and can be used to keep track of the evolution of
an API. The paper is therefore also concerned with monitoring
the evolution of an API, which is something we will also study
in this work.

Hora et al. [7] have performed an exploratory study aimed
at observing API evolution and its impact on a large software
ecosystem. The found information can be used to find the
best way to alleviate the large impact of API evolution. They
use multiple metrics to analyze the evolution, for example,
changes in method declarations. The paper does consider more
metrics than this study does, and it is focused on the impact
on one large software ecosystem, which is something we will
not restrict ourselves to in this study.

Koçi et al. [8] has investigated changes that happen to APIs
and has identified and classified them to gain a bigger picture
of API evolution. The paper defines a classification framework
that considers the changes and the reason behind them. Our
study does not concern itself with any classifying of API
changes, however, both take a look at the history of APIs.

Macho et al. [9] has analyzed trends concerning changes in
Maven build files. They present an approach called BuildDiff,
that can be used to observe trends, such as frequently co-
occurring changes, changes to the dependency management

system, or dependency declarations. The study sets a founda-
tion for future research, such as studies analyzing the evolution
of build files.

Ochoa et al. [10] investigate breaking changes in APIs,
which are changes that might trigger at any time and will
cause clients to be hesitant with upgrading their dependencies.
They note that conclusions drawn by studies like Hora et al.
[7] do not hold outside the ecosystem in which the study was
performed. The researchers have conducted an external and
differentiated replication study of 2017’s Raemaekers et al. [2]
study. They contrast the original study and show that 83.4%
of upgrades comply with semantic versioning and that the
tendency to comply with semantic versioning has significantly
increased over time. In addition, they find that most breaking
changes affect code that is not used by any client, and that
only 7.9% of clients are affected by breaking changes.

We conclude that research on adherence to semantic ver-
sioning on Maven Central is very limited, whilst it is one of
the largest and oldest public repositories. Next to this, research
has only investigated the first category of violations, breaking
changes. It has not looked at the second category, where the
API is extended in a patch upgrade. In addition, research has
not connected this concept of adherence to semantic versioning
to the popularity of the respective methods that are involved
in breaking changes. These are the areas on which this study
will be focused.

III. STUDY APPROACH

In order to investigate the evolution of compatibility and ad-
herence to semantic versioning, this work is articulated around
three research questions. After describing the motivation for
these research questions, we discuss the methodology used to
answer these questions.

A. Research questions

The main interest of this study is the evolution of an API
over time.

In order to study this, we answer three research questions.
These research questions focus on adherence to semantic ver-
sioning and the connection between adherence and popularity.

The first question concerns itself with violations of semantic
versioning through breaking changes, which are changes that
break compatibility:

RQ1: How often do breaking changes occur during
upgrades of minor and patch versions, and to what
extent do they happen?

We expect that the evolution of an API sometimes leads to
incompatibility, due to developers removing or changing the
existing set of method signatures of an artifact. If this is
indeed the case, we should take a closer look at semantic
versioning, and investigate whether the breaking changes only
occur between major versions, or also within the same major
version.

The second category of violations of semantic versioning is
the extension of an API through patch versions. We investigate
this category by answering the second research question:

2



RQ2: How often do extensions of API occur during
patch version upgrades, and to what extent do they
happen?

When we have answered both of the first two research ques-
tions, we have an insight into how often violations of semantic
versioning occur in general.

Finally, we can combine semantic versioning and popularity
to answer our last research question. It is particularly interest-
ing to involve the popularity of methods. That is because the
deletion of an unpopular method does not nearly give way
to as many consequences as the deletion of a very popular
method. To investigate this, we look at minor releases or
patches within the same major release, and verify whether
any breaking changes happen in these releases. Afterward, we
can check whether these breaking changes occur in methods
that are popular or less popular. We do this by answering the
final research question:

RQ3: Does popularity of a method influence the
appearance of breaking changes?

B. Methodology

In this section, we explain which methods we use to answer
the three research questions.

1) RQ1: For the first research question, we concern our-
selves with versions that introduce breaking changes.

To answer this question, we should precisely define breaking
changes. Breaking changes are changes within a major version
that break compatibility. This means that, when a new minor
or patch version is released, a public method signature has
been altered or removed. This leads to issues in case this
method is called by some artifact. Therefore, changes that
remove method signatures are not allowed, unless it is part
of a major version upgrade.

We have to find a way to detect evolution that makes
changes in the existing set of method signatures. Our approach
looks at the set of method signatures, and finds the difference
between the current version’s set of method signatures and the
previous version’s set of method signatures:

breakingChanges = methodSignaturesn −
methodSignaturesn+1

where n and n+1 are successive versions within the same
major version.

Once we have found this difference, we know the set
of method signatures that are involved in a breaking change.
We categorize using a combination of the artifact and the
corresponding major version.

2) RQ2: Now we look into the second category of viola-
tions: extending the API in a patch version.

We can use a similar approach as the first research question,
however, we should make some small adaptations to the
codebase. We iterate along the different patch versions, and
detect if a new method signature is added. In this case, there
has been an extension of the API within a patch version. We
find illegal API extensions by finding the difference between

the next version’s set of method signatures and the current
version’s set of method signatures:
illegalAPIExtensions = methodSignaturesn+1 −

methodSignaturesn
where n and n+1 are successive versions within the same

minor version.

Once more, we categorize the resulting set of illegal
API extensions with the same combination of artifact and
corresponding major version.

3) RQ3: To answer the final research question, we once
again extrapolate a set of method signatures that break the
semantic versioning of an artifact, according to the first and
second research questions.

The most problematic category of violations is the breaking
changes within the same major version, as according to
semantic versioning, developers should be able to rely on the
fact that upgrading a minor or patch version is not going to
break the compatibility.

We will use a metric that produces the popularity of a
method of an artifacts [11]. We can use this metric to learn how
often it happens that a developer encounters breaking changes
when upgrading minor or patch releases of an artifact.

Finally, we combine the methods, those involved in a
breaking change and those that are not involved in a breaking
change, with their respective popularity. Plotting this in a graph
shows whether there is indeed a connection between popularity
and involvement in a breaking change.

IV. EXPERIMENTAL SETUP

To gather our results we use a FASTEN2 server which
contains information about the past six months of Maven
artifact releases.

To answer the three research questions we have created a
Java package that uses the data obtained from the FASTEN
server to execute the described approach in the methodology.
The data we use from the server is described in more detail
in section V.

The produced results are represented by a text file con-
taining hundreds of entries, each giving information about a
specific major version of an artifact.

The entries consist of the groupId and artifactId, followed
by the major version. Then, the results are printed, consisting
of the number of violations followed by the total number of
different method signatures that were involved in the violation.
Afterward, the unique identification numbers of these methods
are printed. These methods have caused a violation, meaning
they were either illegally removed in a minor or patch release,
or illegally added in a patch release.

In order to investigate the impact of method popularity on
the number of breaking changes, we make use of a metric
which outputs the popularity of method.

2FASTEN: a dependency analysis framework that amongst oth-
ers enables one to analyze dependencies between APIs. Available at
https://github.com/fasten-project/fasten.

3



Finally, we make use of Python to explore the produced
results and create graphs.

A reproducible package is available on the Docker Hub3,
which allows one to replicate the results of this study.

V. DATA SELECTION

For this study, we have used the last six months of artifacts
available to us on the FASTEN server, and remove all artifacts
related to testing. As Maven does not store any test code of
its artifacts, we know nothing about the usage of artifacts that
offer testing suites. That is because Maven offers close to zero
calls to these testing artifacts.

Finally, through manual inspection, we have removed sev-
eral artifacts that turned out to feature very high numbers
of breaking changes. These were artifacts with an extremely
rare and odd structure. For example, one of the artifacts had
a structure with nested data types within Scala class files.
Another artifact featured a library of packages within their
artifact, which is not part of the API of this artifact. These
artifacts had to be manually removed from the data set, as
within this study, we want to only investigate the actual API
of the artifacts.

The data set contains 356 different artifacts, each featuring
up to seven different major versions. 286 artifacts of the
complete set of artifacts have just one major version. In total,
we analyze 2766 different versions, consisting of all the major,
minor, and patch releases of the 356 artifacts, all published on
Maven Central over the past six months.

VI. RESULTS

Table I shows a readable representation of the output file,
with several interesting entries. Firstly, one might notice that
the SPRING-JDBC artifact has two major versions shown in
the table, with the second one featuring a notable decrease in
the number of breaking changes. Another artifact, TRUFFLE-
API, has a huge number of breaking changes compared to the
total number of unique methods, whilst artifacts like MYSQL-
CONNECTOR-JAVA feature not a single breaking change in
all their methods. TRUFFLE-API makes use of a versioning
scheme with four digits. Their patch release 21.0.0.2 suddenly
introduces a huge number of breaking changes, as well as
adding a large number of methods. These numbers correspond
with a major version upgrade. This artifact is one of the
artifacts that was removed during the selection of data, as this
outlier would skew the results.

One can notice that we differentiate between different major
versions of the same artifact. This is because we have noticed
some artifacts start using semantic versioning at a later point
in their development. For example, we have found an artifact
that did not make use of semantic versioning for its first major
version but started using it correctly during the development
of its second major version. In case we would not differentiate
between these major versions, it would be impossible to notice

3The reproducible package is available at https://hub.docker.com/r/simayy/
maven-reproducible-package.

different adherence during the development of different major
versions.

A. Breaking changes in minor or patch releases

Now we investigate how often breaking changes occur,
and if they occur, how many breaking changes exist per
artifact. First, figure 1 shows the ratio of breaking changes
compared to how many major versions feature such a ratio.
286 major versions have a ratio of around zero breaking
changes compared to the number of methods. In total, the
percentage of artifacts featuring breaking changes is 24%. In
addition, we can notice that if we look at the higher ratios,
only a small number of major versions have such a high ratio.
In fact, barely any artifacts feature a breaking change ratio
higher than 10%.

0 5 10 15 20 25 30
Frequency of ratio breaking changes

100

101

102

Nu
m

be
r o

f m
aj

or
 v

er
sio

ns

Fig. 1: Frequency of ratio of breaking changes over respective
number of methods

Figure 2 contains a violin plot that shows the average ratio
of breaking changes per major version. The input data of this
figure consists only of versions that contain breaking changes,
as the largest part of the data does not contain breaking
changes, which would otherwise skew the plot towards zero.
The graph shows that 75% of all artifacts feature a ratio that
is not bigger than 0.15. However, several outliers exist which
feature a noticeably higher ratio, indicating that these artifacts
contain a lot of breaking changes.

Another figure, 3, shows the total number of methods
against the total number of breaking changes, in order to
see if a higher number of methods also leads to a higher
number of breaking changes. This figure also shows a trend
line with a 95% confidence interval. The figure shows that
indeed a larger number of methods leads to a larger number of
breaking changes. However, one can observe that the number
of breaking changes does not grow as rapidly along with the
number of methods.

B. Method addition in patch releases

Now we show the results of the analysis on the number
of methods that were added in patch releases. In figure 1,

4



groupId:artifactId Major version Breaking changes Illegal API extensions Number of methods
org.springframework:spring-jdbc 2 66 123 886
org.springframework:spring-jdbc 3 17 65 1368
org.graalvm.truffle:truffle-api 21 1369 8759 10501
mysql:mysql-connector-java 8 0 0 14545

TABLE I: Breaking changes and illegal API extensions of some artifacts

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of breaking changes to respective number of methods

Fig. 2: Average ratio of breaking changes in total number of
methods for artifacts that feature one or more breaking changes

101 102 103 104

Total number of methods

100

101

102

103

To
ta

l n
um

be
r o

f b
re

ak
in

g 
ch

an
ge

s

Fig. 3: Increase in number of breaking changes in relation to
total number of methods

the number of artifacts is plotted against the number of API
extensions. One may notice the distribution is quite similar to
figure 4, however, the number of API extensions is overall
a little lower than the number of breaking changes. The
percentage of artifacts which feature illegal API extensions
is also 24%, but the set of artifacts is not equal to the set of
artifacts that feature breaking changes.

The violin plot in figure 5 agrees with this observation, as
the 75th percentile is somewhat lower than figure 2, coming in
at a ratio of around 0.1. This means that most of the artifacts do

0 10 20 30 40
Frequency of ratio illegal API extensions

100

101

102

Nu
m

be
r o

f m
aj

or
 v

er
sio

ns
Fig. 4: Frequency of ratio of illegal API extensions over
respective number of methods

not feature more than 10% illegal API extensions, compared to
the total number of methods of the artifact. This plot confirms
that illegal API extensions happen slightly less often than
breaking changes. However, some outliers can be observed,
which are generally higher than in figure 2.

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of illegal API extensions to respective number of methods

Fig. 5: Average ratio of illegal API extensions in total number
of methods for artifacts that feature one or more illegal API
extensions

Finally, we can notice from figure 6 that the number of
API extensions also grows along with the number of methods.
However, just as with the number of breaking changes, this
number of API extensions grows a little slower than the

5



number of methods. Compared to figure 3, we notice that the
number of illegal API extensions grows a little slower than the
number of breaking changes if we compare these violations
to the total number of methods of an artifact.

101 102 103 104

Total number of methods

10 1

100

101

102

103

To
ta

l n
um

be
r o

f i
lle

ga
l A

PI
 e

xt
en

sio
ns

Fig. 6: Increase in number of API extensions in relation to
total number of methods

C. Relation between popularity and involvement of a breaking
change

Figure 7 shows the popularity of every method compared
to the popularities of methods involved in a breaking change.
The popularity is represented by the percentage of dependents
which call the method. In case the x-axis is equal to one, the
method is called by every dependent.

Both these figures do not include methods with a dependent
percentage of zero percent. This is a fairly big portion of the
popularity scores. We do not include these data points as these
methods are generally in disuse. Including them will not be
representative, as they will skew the density of methods which
do not have a popularity of zero.

Figure 7a shows the popularity distribution of every method
as well as the popularity distribution of all the methods
involved in a breaking change. We notice the distributions are
quite similar.

In figure 7b, we can compare the different graphs by
investigating the difference in density at a certain point of the
x-axis. If the graph with breaking changes has a higher density
than the graph without breaking changes on a certain point x,
this means that the popularity of the methods is distributed
in a way that on average, a method with a breaking change
more often has popularity x than a method without a breaking
change.

However, in this figure it can be noted that both lines follow
a very similar pattern. Whether the method is involved in a
breaking change or not does not seem to be related to the
popularity.

The graph shows us that unpopular methods are more often
methods that are involved in breaking changes. Additionally,

when we investigate more popular methods, for example, the
methods which are called by more than half of the dependents
of their artifact, we notice that these methods are more likely
not to be involved in a breaking change than conversely.

VII. DISCUSSION

In this section, we first interpret the results. Afterward, we
discuss the implications of this study. Then, we introduce
limitations and suggest possible future work. Finally, we
shortly go into the ethical consequences of this study.

A. Interpretations

While a large number of artifacts do not feature any
breaking changes, there is a large number of artifacts that do
contain some number of breaking changes. This means that
developers are going to run into issues when they unsuspect-
ingly attempt to upgrade their dependencies, as the API is no
longer compatible with their artifact.

The second category of violations – illegal API extensions
– occurs somewhat less often. We have also seen that the
increase in illegal API extensions is related to the total
number of methods. An important thing to realize is that
the addition of an extra method does not pose a threat to
the compatibility of said artifact. Therefore, developers need
to be less concerned with these illegal API extensions when
upgrading their dependencies. However, the developers which
extend their API illegally are employing bad coding practices
by violating the principles of semantic versioning.

Finally, there does not seem to be a relation between the
popularity of a method and whether it is involved in a breaking
change or not. It could be concluded that developers are not
interested in popularity of their methods when they choose
to introduce breaking changes – if they have even made a
conscious choice. However, there might still be some factors
at stake, which possibly cancel each other out.

Methods that are more popular might gain more traction
in the creation of pull requests. This can cause developers
to notice problems with method signatures sooner than they
would have if the method was unpopular.

On the other hand, the developer might realize that a method
is popular, and be wary of the fact that altering the method
signature could affect a lot of dependents.

It is good to realize that, when an artifact contains break-
ing changes, it is not guaranteed to cause problems. If the
dependent does not use the methods which are involved in a
breaking change, the dependent will not be broken.

B. Implications

It has become clear that breaking changes are a big part
of the dependency upgrading process. While this study has
shown that the majority of developers attempt to introduce zero
breaking changes during their development, we have seen that
a fair number of artifacts are not without violations of semantic
versioning. This means that developers should remain careful
while upgrading their dependencies.

6



0.0 0.2 0.4 0.6 0.8 1.0

All methods

0.0 0.2 0.4 0.6 0.8 1.0

Methods involved in a breaking change

(a) Violin plots

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Percentage of dependents that call method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

Methods involved in a breaking change
All methods

(b) Kernel Density Estimates

Fig. 7: Distribution of percentage of dependents that call methods

We expected that illegal API extensions would be present.
This study could serve as a reminder to avoid the bad practice
of introducing these API extensions in patch versions.

This study also investigated the popularity of the methods
that are involved in a breaking change. We have shown that
popularity does not have an impact on breaking changes. This
serves as an encouragement and reminder for developers to
avoid breaking changes, for methods that are in disuse but
even more for methods which are popular.

The insights of this paper serve as a reminder to uphold
the principles of semantic versioning, and to stimulate com-
patibility, so developers do not have to worry about broken
dependencies.

The presence of these kinds of violations of semantic ver-
sioning indicate a need for more tools, either on the client side,
or on platforms such as Maven Central. For example, build
tools could offer warnings when they detect an inappropriate
version upgrade. IDEs (integrated development environment)
could recommend users to adjust their version appropriately
whenever a change in method signatures is detected. Finally,
Maven Central could warn developers for the appearance of
incompatibilities, or impose strict requirements for versioning
of artifacts. This would create a safer and trustworthier envi-
ronment within the ecosystem of the repository. Developers
would be able to put trust in the fact that standards of
semantic versioning are upheld within Maven Central or other
platforms, whenever they upgrade their dependencies.

C. Limitations and future work

In this study, we limit our selection of data to the last six
months of artifacts published on Maven Central. It could be
suggested that the study would be more general if a larger se-
lection of data would be used, possibly even spanning multiple
decades of evolution featured on Maven Central. However, we
would argue that this would involve a tremendous increase in

cost, and lead to a less relevant bulk of data. It is in fact more
interesting to see the latest trends of API evolution, as we want
to produce insights into the current state of affairs related to the
adherence to semantic versioning. However, future work could
take a more broad look at the history of Maven Central, which
would allow the researchers to look at statistics such as the
trend of breaking changes between different major versions.
Most of the artifacts of this study only featured one major
version during the past six months.

Another limitation of this study is that we can only investi-
gate breaking changes that are caused by changes to the set of
method signatures. While our definition of breaking changes
only involves alteration of method signatures within the same
major version, another type of breaking change could be
considered. In case the functionality of a method is changed,
leading to unexpected behavior while the API remains intact,
as the method signature is not changed. We expect that this
type of breaking change is not a large factor and does not
happen too often, however, we do not have the tools to analyze
this. Such a tool should be able to analyze whether, given a
certain input, the method always produces the same output,
even though the code might be different. We imagine creating
such a tool will be very complicated and have a very high
time complexity. For this reason, this study has only factored
in changes to method signatures. Future work could investigate
the existence of such tools or create such tools, to gain insights
about this type of breaking change.

D. Responsible research

This study does not introduce bias in the selection of our
data, as it consists of a random sample of Maven Central,
filtered on a small number of conditions. Results were ac-
cumulated on an anonymous basis. Results from this study
might stimulate developers to adhere to semantic versioning.
We expect no other side effects and no ethical risks to come

7



forth from this study. By offering a reproducible package, we
invite readers to reproduce the data we have produced, to be
able to verify that our results are correct.

VIII. CONCLUSIONS

We have showed that a large number of artifacts do not
completely adhere to semantic versioning. We know this, as
24% of analyzed artifacts contained breaking changes, causing
compatibility within a major version to be broken. Illegal
extensions of an API also pose a problem in 24% of artifacts,
as developers violate this principle of semantic versioning
equally often as they push breaking changes. Therefore, it
seems that both of these violations form a big problem for
the trustworthiness of semantic versioning.

However, we must also realize that the deletion or alteration
of an unpopular method does not have the same impact as
changing a popular method. Therefore, we attempted to verify
whether a relationship between popularity of a method and
involvement in a breaking change exists. We have noticed that
popularity of a method does not have an impact on breaking
changes.

Developers that upgrade their dependencies need not worry
about illegal extensions of the API. While this is a violation
of semantic versioning, this violation does not pose a problem
to the dependents as adding a method does not influence
backward compatibility.

We conclude that, as several artifacts do not completely
adhere to semantic versioning – resulting in problems with
compatibility – a negative impact is made on the trustworthi-
ness of semantic versioning. We have shown that only breaking
changes form a problem for dependent artifacts, as illegal
extensions of the API do not change compatibility. While
breaking changes occur in a large number of artifacts, the
chance of a dependent relying on a method involved in a
breaking change is very small. Therefore we conclude that,
in practice, developers of dependents should not run into
problems very often. While semantic versioning cannot be
trusted completely to guarantee compatibility, the chance of
a broken dependency is quite slim.

ACKNOWLEDGMENT

I want to thank Mehdi Keshani very much for his continued
support and dedication to help me during my research, particu-
larly during some of the struggles I encountered. I want to give
another word of thanks to Sebastian Proksch, especially for
his ability to come up with ideas and opportunities during the
research process. Finally, I want to thank my team members,
especially Thijs Nulle, for their insights and for our successful
collaboration.

REFERENCES

[1] César Soto-Valero, Amine Benelallam, Nicolas Har-
rand, Olivier Barais, and Benoit Baudry. “The emer-
gence of software diversity in maven central”. In: 2019
IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE. 2019, pp. 333–343
(cit. on p. 1).

[2] Steven Raemaekers, Arie van Deursen, and Joost Visser.
“Semantic versioning and impact of breaking changes
in the Maven repository”. In: Journal of Systems and
Software 129 (2017), pp. 140–158 (cit. on pp. 1, 2).

[3] Miryung Kim, Dongxiang Cai, and Sunghun Kim. “An
empirical investigation into the role of API-level refac-
torings during software evolution”. In: Proceedings of
the 33rd international conference on software engineer-
ing. 2011, pp. 151–160 (cit. on pp. 1, 2).

[4] Yana Momchilova Mileva, Valentin Dallmeier, Martin
Burger, and Andreas Zeller. “Mining trends of library
usage”. In: Proceedings of the joint international and
annual ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution (Evol) work-
shops. 2009, pp. 57–62 (cit. on p. 2).

[5] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wil-
son Jr, Anh Tuan Nguyen, Miryung Kim, and Tien
N Nguyen. “A graph-based approach to API usage
adaptation”. In: ACM Sigplan Notices 45.10 (2010),
pp. 302–321 (cit. on p. 2).

[6] André Hora, Anne Etien, Nicolas Anquetil, Stéphane
Ducasse, and Marco Tulio Valente. “Apievolutionminer:
Keeping api evolution under control”. In: 2014 Soft-
ware Evolution Week-IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE). IEEE. 2014, pp. 420–424 (cit. on p. 2).

[7] André Hora, Romain Robbes, Marco Tulio Valente,
Nicolas Anquetil, Anne Etien, and Stéphane Ducasse.
“How do developers react to API evolution? A large-
scale empirical study”. In: Software Quality Journal
26.1 (2018), pp. 161–191 (cit. on p. 2).

[8] Rediana Koçi, Xavier Franch, Petar Jovanovic, and
Alberto Abelló. “Classification of changes in API evolu-
tion”. In: 2019 IEEE 23rd International Enterprise Dis-
tributed Object Computing Conference (EDOC). IEEE.
2019, pp. 243–249 (cit. on p. 2).

[9] Christian Macho, Stefanie Beyer, Shane McIntosh, and
Martin Pinzger. “The nature of build changes: An
empirical study of Maven-based build systems”. In:
Empirical Software Engineering 26.3 (2021) (cit. on
p. 2).

[10] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and
Jurgen Vinju. “Breaking Bad? Semantic Versioning and
Impact of Breaking Changes in Maven Central”. In:
arXiv preprint arXiv:2110.07889 (2021) (cit. on p. 2).

[11] Thijs Nulle. “Popularity Distribution of Methods within
Software Artifacts”. 2022 (cit. on p. 3).

8


	Mandatory_cover_Page_1_
	Maven_API_Study___Personal final2

