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SUMMARY

Waterlogging is the accumulation of excess water in the rootzone. When soils are water-
logged the rootzone is either saturated or submerged with water. As a result, waterlog-
ging prevents aeration of the rootzone which has adverse effects on crop growth. Wa-
terlogging is an issue in both irrigated and rain-fed agriculture and crop productivity
issues related to waterlogging are reported around the globe. As most terrestrial crops
are within days susceptible to the negative effects of waterlogging, timely information
on waterlogging and its presence spatially is beneficial. In that regard, to understand the
impact of waterlogging on agriculture and combat consequential negative effect, satel-
lite remote sensing can play a role.

However, in the field of satellite Remote Sensing of agriculture, waterlogging has so
far received little attention. Previous related research focused on remote sensing of in-
undation or monitoring surface water, but waterlogging in agriculture is an overlooked
subject. Little is known about how waterlogging is present in (irrigated) agriculture and
what the ability of different remote sensing techniques is to detect and monitor water-
logging. Therefore, this thesis aimed to extend knowledge on how waterlogging influ-
ences agricultural monitoring with satellite remote sensing. Ultimately, to set footsteps
towards monitoring waterlogging with satellite remote sensing.

The results presented evolve around a sugarcane plantation in Xinavane, Mozam-
bique. The plantation served as a case study to demonstrate different satellite remote
sensing observations in the context of waterlogging. First, the case study is presented
and a describption is provided on the ground data collected. By providing remote sens-
ing evaporation estimates, the high demand of irrigation water is illustrated. Vast quan-
tities of water is needed to sustain sugarcane crop growth in the semi-arid environment
of the plantation.

To continue, with a thorough literature review and the case study it is demonstrated
waterlogging is a major issue burdening crop productivity. By assessing different remote
sensing evaporation algorithms the results showed currently available evaporation esti-
mates interpret waterlogging stress as a need to irrigate. This implies, before evapora-
tion estimates from satellite data can play a role in optimizing field-scale water use in
irrigated areas, evaporation algorithms must be able to identify water stress only in the
case of water deficit in the root-zone. Throughout the chapter the presence of waterlog-
ging or crop response to waterlogging is illustrated in different satellite remote sensing
observations. In sum, the results imply a need to integrate observations of multiple sen-
sors and potentially ancillary data (e.g. DEMs) to unravel how to monitor waterlogging
with satellite remote sensing.

In search for the influence of waterlogging on agricultural monitoring, the research
continued by comparing optical vegetation indices, radar vegetation indices, and sug-
arcane yield over the growing season in the plantation. The analysis gave an interest-
ing and unexpected result. Contrary to the expectation the results showed a negative
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xii SUMMARY

correlation between the Cross Ratio (CR) and sugarcane yield over the growing season.
A modeling study proved the negative correlation results from a change in the sugar-
cane’s internal composition which affects the dielectric constant of sugarcane canopies
observed. The chemical composition of plant water in sugarcane changes over the grow-
ing season. As a consequence of sucrose accumulation in the stalk, water is increasingly
bound to sucrose and this process lowers the dielectric constant.

To follow up, active and passive microwave observations, optical vegetation indices,
and production data are evaluated in different seasons. In addition to a temporal change
of sucrose and moisture, the results showed vertically the sucrose-moisture distribution
changes as well over the growing season. Therefore, the vertical distribution of sucrose
- plant moisture influences the dielectric constant and, hence, the backscattered signal.
The results highlight the VV backscatter responds to the stalk biomass, which is also the
reservoir of sucrose in the sugarcane crop.

Finally, the influence of waterlogging on Sentinel-1 backscatter was detected through
benchmarking with passive microwave observations, optical vegetation indices, and pro-
duction data in a period where waterlogging was reported. Despite a thick sugarcane
canopy, an increase in VH and VV polarizations was observed as a result of waterlog-
ging. The increase was present at all stages during the growing season. The difference in
backscatter as a result of waterlogging was highest in the VH backscatter. Also, the effect
of waterlogging is translated through to the CR, which proves CR can play a role in the
discrimination of waterlogging.

The results presented in this thesis help to further understand the influence of wa-
terlogging in agricultural monitoring. Also, this work shows to correctly interpret irriga-
tion estimates and crop development, waterlogging and sucrose development need to
be flagged or otherwise considered during the growing season. Especially radar obser-
vations from Sentinel-1 backscatter appeared to be useful in monitoring waterlogging
and sucrose development.



SAMENVATTING

Het verzadigen van de bodem is de ophoping van overtollig water in de wortelzone,
verder aangeduid als waterlogging. Waterlogging verhindert de beluchting van de wortel-
zone, wat nadelige effecten heeft op de groei van het gewas. Afname van gewaspro-
duciviteit als gevolg van een verzadigde bodem wordt over de hele wereld gemeld, in
zowel geïrrigeerde als door regen gevoede landbouw. Aangezien de meeste terrestrische
gewassen binnen enkele dagen vatbaar zijn voor de negatieve effecten van waterlogging,
is tijdige en ruimtelijke informatie over waterlogging belangrijk. Satelliet data kan een rol
spelen bij het monitoren van waterlogging om de impact op de landbouw te begrijpen
en de daaruit voortvloeiende negatieve effecten te bestrijden.

Onderzoek op het gebied van waterlogging in de landbouw en hoe deze te monitoren
heeft tot nu toe weinig aandacht gekregen in de wetenschap van satellietwaarnemingen.
Er zijn betrekkelijk weinig studies gedaan naar de potentie van verschillende satelliet
observatietechnieken om waterlogging te waarnemen en te controleren. Daarom heeft
dit proefschrift tot doel de kennis uit te breiden over hoe waterlogging in de landbouw
satelliet observatietechnieken beïnvloedt. Om zodoende bij te dragen aan het verder
ontwikkelen van methodes om waterlogging waar te nemen met satelliet observatietech-
nieken.

De resultaten in deze dissertatie worden gepresenteerd rondom een suikerrietplan-
tage in Xinavane, Mozambique. De plantage dient als casus om verschillende satelliet
observatietechnieken te onderzoeken in de context van waterlogging. Allereerst zullen
de verzamelde veldgegevens gepresenteerd worden en een wordt de suikerrietplantage
verder uitgelicht. Met verdampingsschattingen vanuit satellietwaarnemingen wordt de
grote vraag naar irrigatiewater geillustreerd, die nodig is om de groei van suikerrietge-
wassen in de semi-aride omgeving van de plantage te ondersteunen.

Vervolgens, wordt er aangetoond dat waterlogging een groot probleem is voor de
productiviteit van de landbouw met een grondig literatuuronderzoek en observaties van
de casus. Door verschillende verdampingsalgoritmen op basis van satellietwaarnemin-
gen te beoordelen, laten de resultaten zien dat de momenteel beschikbare verdamp-
ingsschattingen gewas-stress door waterlogging interpreteren als noodzaak te irrigeren.
Dit houdt in dat, voordat schattingen van verdamping op basis van satellietwaarnemin-
gen een rol kunnen spelen bij het optimaliseren van het watergebruik in geïrrigeerde
gebieden, verdampingsalgoritmen alleen in staat moeten zijn om waterstress te identi-
ficeren in het geval van een watertekort in de wortelzone. Door het hele hoofdstuk heen
wordt de aanwezigheid van waterlogging of de reactie van gewassen op waterlogging
geillustreerd aan de hand van verschillende satellietwaarnemingen. Om verder te on-
trafelen hoe waterlogging kan worden gedetecteerd met satellietwaarnemingen zullen
observaties van meerdere sensoren moeten worden geintegreerd, en mogelijk aanvul-
lende gegevens (bijv. DEM’s).
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In hoofdstuk 4 wordt verder onderzocht wat de invloed van waterlogging is op land-
bouwmonitoring met satellietwaarnemingen door optische vegetatie-indexen, radarvegetatie-
indexen en suikerrietopbrengst te vergelijken gedurende het groeiseizoen in de plan-
tage. De analyse laat een interessant en onverwacht resultaat zien. In tegenstelling
tot de verwachting blijkt de vegetatie index gebaseerd op radarwaarnemingen, negatief
te correleren met suikerrietopbrengsten naarmate het groeiseizoen vordert. Een mod-
elleerstudie verklaart de negatieve correlatie, en bewijst dat de verandering in de interne
samenstelling van de suikerriet plant, de diëlektrische constante beïnvloedt. Als gevolg
van sucrose-ophoping in de steel van de suikerriet plant wordt water in toenemende
mate gebonden aan sucrose met als gevolg een verlaging van het waargenome radarsig-
naal.

Om te vervolgen, in Hoofdstuk 5, worden actieve en passieve microgolfwaarnemin-
gen, optische vegetatie-indices en productiegegevens in verschillende seizoenen geëval-
ueerd. Naast een temporele verandering van sucrose en vocht in de plant, laten de re-
sultaten ook zien dat de sucrose-vochtverdeling vertikaal ook verandert gedurende het
groeiseizoen. Zodoende kan er worden geconcludeerd dat de verticale verdeling van su-
crose en plantwater de diëlektrische constante beïnvloedt. De resultaten benadrukken
dat de radarwaarnemeningen in de VV-polarisatie reageren op de biomassa van de steel,
die tevens het reservoir van sucrose is gedurende de suikerriet groei.

Ten slotte, wordt de invloed van waterlogging op Sentinel-1-waarnemingen gede-
tecteerd door middel van passieve microgolfwaarnemingen, optische vegetatie-indices
en productiegegevens te analyseren in een periode waarin de bodem verzadigde. De re-
sultaten laten zien dat ondanks het dikke bladerdak van suikerriet, waterlogging zorgt
voor een toename van radarwaarnemingen in de VH- en VV-polarisaties. De toename
is aanwezig in alle stadia van het groeiseizoen. Ook wordt het effect van waterlogging
doorvertaald naar de CR, een veel gebruikte radar vegetatieindex.

De resultaten gepresenteerd in dit proefschrift helpen om de invloed van waterlog-
ging in de landbouw op satelliet observatietechnieken verder te begrijpen. Tevens laat
dit werk zien dat bij het monitoren van irrigatie en landbouw met satellietwaarnemin-
gen, er rekening moet worden gehouden met het effect van waterlogging en sucroseon-
twikkeling in de plant. Om irrigatieschattingen en vegetatiesignalen met satellietwaarne-
mingen juist te intepreteren moeten waterlogging en sucroseontwikkeling in de plant
worden gesignaleerd of anderszins worden overwogen. Radarwaarnemingen van Sentinel-
1 blijken zeer nuttig te zijn bij het monitoren van waterlogging alsmede het monitoren
van het suikergehalte in de suikerriet plant.



PREFACE

Dear reader,
Aside from researching satellite remote sensing observations, this thesis is also a per-

sonal quest to find a way to contribute to positive change in our agricultural system.
In many ways agriculture impacts our environment a great deal and, therefore, holds
tremendous opportunities to improve. To give an example relevant to the context of this
thesis, agriculture accounts for approximately seventy percent of the total fresh water
withdrawals (FAO, 2016a). With an increasing amount of mouths to feed on this globe, ir-
rigation will increase in the coming decades. Currently, a lot of basins already experience
difficulties to meet agricultural water demand. Indisputably the difficulties in meeting
water demand for agriculture will continue to increase due to a rising population and
climate change. That is, if we sustain our current agricultural system.

Every day we collectively gain more and more knowledge on what we can observe
from space. However, we should not get lost in misinterpreting a tool as a solution. The
core issue of our current agricultural system is that we are completely and utterly out of
balance with our environment. We create sugarcane plantations in places they should
not be. To convert them into products we do not need, e.g. Coca-cola. Consequently,
the only real way forward in agriculture is fundamental change in human behavior to
maximize positive impact.

For example, to produce sugarcane a lot of water is needed and the hydrology of a
basin changes when crops like these are planted in manifold. This has consequences
to the supply of water to other users. Now, and even more in the long run. Every gen-
eration we get more considerate of the consequences of putting monetary value above
environmental value, but there is still limited action.

Therefore, hand in hand with the development of technological tools discussions
should be held on: are we able to SUSTAIN a certain agricultural practice and produce?
and do the negative effects of production outweigh the monetary value? The latter dis-
cussion is needed, because we seem to still believe in technocratic solutions for our cur-
rent climate crisis. As such, SUSTAINability is used, sometimes unintentionally, to dis-
guise a system that is no longer working. A system that should not be sustained.

The results in this thesis contribute to finding ways to monitor waterlogging and sug-
arcane from space. They are written and researched in the paradigm of sustainability.
Therefore they imply that by the use of such technologies within sugarcane production,
improvement to agriculture will be inherently made. But, in order to really make im-
provements to our agricultural system we need to make different choices with regard to
our human and natural capital. Which means choices considerate of human and natural
capital, resulting from a shift in our consciousness.

Of course, here tools can be very helpful. Now my hope is, and of many others, that
we will use these tools to get away from old systems and start using remote sensing tools

xv
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to encourage new systems in agriculture. However, this starts with pointing out what
goes wrong on the ground, by visualizing negative impact.

What is also fundamental here is that we, you and me, the society that we are part
of, starts seeing that our behaviour (in)directly influences the environment and other
societies across the globe. For example, we cannot separate us from the sugarcane plan-
tations across the world and at the same time drink coca cola. There will not be a tech-
nological breakthrough that will save the climate, or us. It will be very simple: we need
to make different choices. And I repeat, choices that respect our ecology and each other,
not trying to tame it nor each other. In that regard, remote sensing of agriculture can play
a great role in showing how our current practices are not to be sustained, and encourage
new ways needed. We can use remote sensing of agriculture to visualize change needed
in our behaviour.

(Almost) Everybody I spoke to wants an agricultural system more considerate of its
environment. Naturally, people that work in agriculture are nature lovers, they enjoy the
outdoors. They do not want to spray their land a few times a year to get rid of some insect
or pest and kill all other life along. Nevertheless, we are stuck in our current practices.
We know it is not working and yet we continue, because we think this is it.

By writing this down I want to encourage you and myself to think beyond the borders
of our current agricultural system. And to point out that it is a system that you and me
are very much part of. Therefore, by connecting with your own impact in the agricultural
sector (i.e. what you consume), you can help change it every day. Let’s re-think our habits
and change them, in terms of human behavior as well as existing plantation systems. I
hope the knowledge gathered in this thesis will not sustain old plantation systems, but
encourage ways to make real improvements in the agricultural sector. Not minimize
negative impact, but eliminate them and maximize positive impact1.

Nadja den Besten
Noja, December 2022

1https://www.bodemzicht.nl/



1
INTRODUCTION

1.1. THE IMPORTANCE OF MONITORING WATERLOGGING IN AGRI-
CULTURE

Waterlogging is the accumulation of excess water in the rootzone and inhibits crop de-
velopment (Houk et al., 2006; Ritzema, 2016). When soils are waterlogged there is a low
oxygen availability in the rootzone, a reduction of the availability of nutrients, and a
change in microbial activity, which affects plant physiology. Waterlogging issues have
been observed in many countries around the world, such as Australia (Christen et al.,
2001; Shaw et al., 2013), Pakistan (A. Singh, 2016), Hungary (Van Leeuwen et al., 2020),
India, among other countries (Poddar et al., 2011; Valipour, 2014). In Australia, Dennis
et al., 2000 estimated a EUR 180 million annual loss in wheat production due to water-
logging.

Waterlogging is an issue in both irrigated and rain-fed agriculture. Academic liter-
ature reports on waterlogging in irrigated agriculture as a result from over-irrigation or
poor sub-surface drainage (FAO, 2016c). As waterlogging prevents aeration of the root-
zone and in some cases may even induce secondary soil salinization, as salts are unable
to leave the soil profile (Steduto et al., 2017; Wallender, Tanji, et al., 2011). It is esti-
mated that roughly twenty percent of irrigated land is burdened by waterlogging and
secondary soil salinization resulting from over-irrigation or poor sub-surface drainage
(FAO, 2016c).

In rain-fed agriculture waterlogging also causes harm to crop productivity. Martinez-
Feria and Basso, 2020 found waterlogging is an important driver behind yield instability
in the US Midwest. They assessed temporal yield variability in maize, soybean, wheat
and cotton and proved that the largest in-field variability can be found in depressional
areas, where waterlogging occurs in wet years. In Hungary country-wide waterlogging
issues are reported as a consequence of high precipitation events in winter or at the start
of the season. This, in combination with the local geomorphology, causes periods with
prolonged waterlogging that inhibit optimal crop growth (Van Leeuwen et al., 2020).

In addition, waterlogging as an abiotic stress factor is linked to biotic stress (e.g.

1
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2 1. INTRODUCTION

pests, diseases and weeds) (Chaerle et al., 2009). For example, a study on wheat and
barley showed the increase of fungal pathogen growth under waterlogged compared to
non-waterlogged conditions (Martıénez et al., 2019). In other words, waterlogging in-
creases the vulnerability to pathogen attack (D. Chen et al., 2013). Therefore, informa-
tion on waterlogging can help in the identification of biotic stress.

Considering the above, spatial and temporal information on waterlogging occur-
rence touches a wide variety of topics and issues that are key to agricultural monitor-
ing: such as optimizing irrigation, understanding crop development, or chemical input
use, amongst others. Satellite remote sensing offers a multitude of techniques to po-
tentially monitor waterlogging. However, so far limited research has been conducted to
understand the influence of waterlogging on agricultural monitoring with satellite re-
mote sensing. This is a first step towards understanding how to monitor waterlogging
with remote sensing. Remote sensing technologies of particular interest here are: pas-
sive microwave, optical and infra-red, and radar (RAdio Detection And Ranging).

1.2. MEASUREMENT TECHNIQUES AND RECENT DEVELOPMENTS

IN OBSERVING WATERLOGGING

Figure 1.1: The electromagnetic spectrum and observing waterlogging under a sugarcane canopy

Detection of surface water with satellite remote sensing is based on the difference be-
tween radiometric properties and temperature of water and other surfaces (Prigent et al.,
2016). However, observing waterlogging in agriculture from space is not straightforward.
Unlike monitoring water on the surface (e.g. inundation), waterlogging in agriculture fo-
cuses predominantly on water underneath a canopy. Therefore, the surface of interest
is a mixture of water and growing vegetation, or saturated soil and growing vegetation,
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see figure 1.1. As a consequence, the phenomena of interest, waterlogging, is dynamic
in space and time. Different observation techniques may contain different information
relevant to detection and monitoring of waterlogging.

From a theoretical perspective, the longer the wavelength observed, the better the
ability to penetrate the vegetation canopy (Martinis & Rieke, 2015). In general, shorter
wavelengths (e.g. optical measurements) sense the skin of the surface, where longer
wavelengths (e.g. microwave observations) are able to penetrate the medium. Never-
theless, optical measurements contain information on, for example vegetation health,
which reflects what is happening underneath the canopy and should therefore not be
disregarded to detect and monitor waterlogging.

1.2.1. PASSIVE MICROWAVE OBSERVATIONS AND WATERLOGGING

Waterlogging or surface water can theoretically be detected by passive microwave obser-
vation (Basist et al., 2001; Giddings & Choudhury, 1989; Sippel et al., 1994). By combining
data from different wavelengths, polarizations, and/or viewing angles, it is possible to re-
trieve information about the soil surface. Due to the high contrast in dielectric properties
between water and dry soil, microwave observations are particularly suitable for sensing
water in the topsoil or on the surface (Ulaby et al., 1981). The difference in dielectric
constant (k) is the basis for microwave remote sensing of, for example, inundation and
soil moisture, due to a large contrast of the constant in dry soil (k 4) and water (k 80)
(Jeu de, 2003).

The presence of water in the soil will lower the brightness temperature, which is mea-
sured by microwave radiometers (Philpot & Philipson, 2012). All bodies or surfaces with
a non-zero Kelvin temperature emit electromagnetic radiation (Emery & Camps, 2017).
The thermal electromagnetic radiation in the microwave spectrum (0.3-300 GHz) is cap-
tured with a radiometer (Emery & Camps, 2017). A microwave radiometer is an instru-
ment that can respond to very low levels naturally emitted microwave energy (Lillesand
et al., 2015; Sharkov, 2003). The radiometer contains an antenna, a receiver, and a sys-
tem to store and transmit data to processing points. Observations can be obtained in
multiple wavelengths, polarizations, and viewing angles, dependent on the instrument
(Sharkov, 2003).

Microwave observations are particularly suitable for measuring land surface prop-
erties related to the hydrological cycle. For example, observing large scale inundation
under dense canopies using the polarization difference in 37GHz observations (Choud-
hury, 1989; Sippel et al., 1994), or the retrieval of surface soil moisture using low fre-
quency (<20GHz) (Schmugge et al., 1986).

The difficulty in using passive microwave observations to detect waterlogging is that
the spatial resolution is coarse. Observations at lower frequencies have a lower spatial
resolution than observations at higher frequencies (e.g., L-band’s spatial resolution is in
the order of 36 km). There are operational products that downscale brightness tempera-
ture observations. For example, NASA provides a downscaled 9 km resolution brightness
temperature and soil moisture product (Chaubell et al., 2016). While a 9 km spatial reso-
lution is sufficient for many applications (e.g. drought monitoring), it is relatively coarse
for agricultural applications, which require field-scale monitoring.
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1.2.2. ACTIVE MICROWAVE OBSERVATIONS AND WATERLOGGING

Radar observations also have proven to be useful in the detection of surface water. Just
like passive microwave observations, radar observes in the microwave domain of the
electromagnetic spectrum, see figure 1.1. However, in radar observations a different
technique is used. Active microwave remote sensing operates by emitting a signal (mi-
crowave) and measuring the backscattered power of the returning signal (Steele-Dunne
et al., 2017). As a result of emitting a microwave signal by itself, higher spatial resolutions
are reached with radar satellites in orbit (e.g. Sentinel-1: 20mx5m). Radar observations
can be obtained at different incidence angles, polarizations, and frequencies, the choice
of which determines which surface information can be retrieved.

Backscatter behavior of agricultural crops is governed by many principles including:
the dielectric constant of the crop and its constituents, the size and shape distribution
of crop constituents (e.g. fruit, stalk) and their orientation, the roughness and dielec-
tric constant of the underlying surface, and the canopy cover (e.g. row direction, plant
height) (Ulaby et al., 1982). The dielectric constant is a material property that governs
how a material behaves in an electric field (Ulaby & Jedlicka, 1984). The contribution
of all aforementioned governing principles to the total backscatter is controlled by the
observation characteristics, such as the polarization, wavelength, and incidence angle
(Ulaby et al., 1982).

Different scattering mechanisms can be distinguished that contribute to the backscat-
ter signal, these are: surface scattering (from the soil), volume scattering (from the vege-
tation), and soil-vegetation interactions inclduing double bounce and multiple scatter-
ing (Steele-Dunne et al., 2017). In agricultural canopies the structure of the crops play
an important role in the distribution of the different scattering mechanisms to the to-
tal backscatter observed (McNairn & Brisco, 2004). The dielectric properties influence
the response to backscatter and are driven by the water content in the plant (Ulaby &
Jedlicka, 1984). The vegetation water content fluctuates throughout the season. There-
fore, the observed by backscatter differs throughout the season. In addition, different
layers in the crop canopy contribute to the total backscattered signal (Vermunt et al.,
2022). Backscatter is not only influenced by vegetation water content, but also by Sur-
face Canopy Water (SCW) and moisture in the soil under the canopy (Khabbazan et al.,
2022; Vermunt et al., 2020). Moreover, backscatter observations are used for soil mois-
ture retrievals (De Roo et al., 2001) and inundation detection (Tsyganskaya et al., 2018b).

Open water is relatively easy to detect with radar, due to the fact that standing wa-
ter lowers the roughness of the surface creating specular reflection (Pulvirenti et al.,
2015). This lowers the observed backscatter, especially in VV polarization, and is ideal
for change detection in case of inundation monitoring (Twele et al., 2016). Inundation
underneath a canopy is more complex, because it is a mixture of vegetation and wa-
ter. As a result, most radar-based inundation algorithms underestimate the presence of
inundation where vegetation is present. Studies relating to waterlogging in this context
observe so-called Temporarily Flood Vegetation (TFV) (Tsyganskaya et al., 2018b). These
studies assume that the presence of water underneath the canopy increases the double
bounce resulting from backscatter (Pierdicca et al., 2017), which is hard to standardize
as this changes per vegetation type and incidence angle (Pulvirenti et al., 2015).
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1.2.3. OPTICAL AND NEAR INFRA-RED REMOTE SENSING AND WATERLOG-
GING

Optical and near-infra-red (NIR) observations measure between 360 and 2500 nm, see
figure 1.1. Here we focus on optical and near-infra-red observations which use passive
remote sensing technologies. These techniques measure the reflectance of solar illumi-
nation of the surface in specific bandwidths. Unfortunately, the observations in these
bands can be hindered by cloud formation or shadow effects (Jiang et al., 2006).

Optical vegetation indices are widely used to understand crop or vegetation dynam-
ics (Weiss et al., 2020). This is because vegetation absorbs radiation in the visible part
of the spectrum and reflects a large amount of NIR radiation. Therefore, a normalized
ratio can be used to identify vegetation activity of which the Normalized Difference Veg-
etation Index (NDVI) has become the most commonly used index nowadays (Bausch &
Neale, 1987). In addition, optical satellite images are capable of detecting surface wa-
ter because water responds to optical and near infra-red differently (Townsend & Walsh,
1998). In general, water absorbs longer wavelengths (NIR), whereas shorter wavelengths
(e.g. red) are more reflected by an inundated surface.

For example, Choubey, 1997 used the infra-red band to delineate waterlogged ar-
eas. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water
Index (NDWI) are also common indices used to delineate waterlogged areas (Chowdary
et al., 2008; Dwivedi et al., 2007; El Bastawesy et al., 2012; Kaushik et al., 2019; Mandal
& Sharma, 2011; S. K. Singh & Pandey, 2014). Ultimately, the results are generally static
risk maps delineating perennial and/or permanent waterlogged areas. The analysis of
temporal variation in, for example, Enhanced Vegetation Index (EVI) or Land Surface
Temperature (LST), can also be useful for identifying waterlogged croplands (Fei et al.,
2014). The difficulty in optical and near infra observation are the inability of these tech-
niques to penetrate a crop canopy. The vegetation indices can be useful to benchmark
crop growth in waterlogged areas (Pierdicca et al., 2017).

1.3. RESEARCH GAP AND OBJECTIVES
Despite the fact that a lot of research has been done on remote sensing of inundation (G.
Schumann & Moller, 2015) and monitoring surface water (Alsdorf et al., 2007), waterlog-
ging in agriculture is an overlooked subject. From a remote sensing perspective, little is
known about how waterlogging is present in (irrigated) agriculture and what the ability
of different remote sensing techniques is to detect and monitor waterlogging. Moreover,
especially in remote sensing studies on irrigated agriculture the focus is generally on
drought, not waterlogging (Calera et al., 2017; Veloso et al., 2017; Weiss et al., 2020). This
is surprising, as at least twenty percent of the world’s irrigated agriculture struggles with
productivity issues related to waterlogging (FAO, 2016c). Therefore, this thesis aimed to
understand what the influence of waterlogging is on agricultural monitoring with satel-
lite remote sensing. Ultimately, the aim is to increase knowledge on how to monitor and
prevent waterlogging with satellite remote sensing.

To begin with, it is often assumed that remote sensing-based irrigation estimates will
help as a tool to achieve sustainable irrigated agriculture (Bastiaanssen et al., 2000; FAO,
2018). There are many different satellite evaporation algorithms available to monitor
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crop water use to calculate irrigation requirements (Bastiaanssen et al., 1998; Calera et
al., 2017; Kustas et al., 2003; Miralles et al., 2011). Examples of research conducted with
such algorithms are estimating irrigation water use, crop water use, and technical val-
idation and comparative assessments of such algorithms (Bazzi et al., 2020; Blatchford
et al., 2020; P. Gowda et al., 2007). Very few research the functionality, benefits, or mal-
functions when the algorithms are applied in the field (Barker et al., 2018; Bhatti et al.,
2020; O’Shaughnessy et al., 2019). However, in order to achieve increased productivity
with the help of satellite remote sensing, research is needed to what is still missing in
these algorithms to assist irrigated agriculture.

To continue, the satellite-derived evaporation algorithms interpret vegetation stress
directly as a need for water. Nonetheless, there are more abiotic stresses affecting crop
growth (Jones, 2016). Examples of these issues are nutrient deficits, diseases, pests, and
waterlogging. It is not known how different evaporation algorithms deal with stress
resulting from waterlogging. Consequently, the first objective of this thesis is to under-
stand how waterlogging influences satellite-based evaporation estimates used for irriga-
tion. This will set guidelines as to what is still needed to further interpret the evaporation
estimates driving irrigation estimates from space.

Previous research showed passive microwave remote sensing can capture large-scale
surface dynamics underneath a canopy, such as flooding of the Amazon river (Sippel et
al., 1994). The foundation of this work is based on a significant relation between pas-
sive microwave remote sensing and fraction of area inundated (Prigent et al., 2016). The
focus in similar studies are on natural water bodies, so previous work has not yet con-
sidered waterlogging in agriculture. In addition to passive microwave remote sensing,
radar remote sensing is able to sense flooding underneath a canopy with high spatial
resolution (Tsyganskaya et al., 2018b). Nevertheless, waterlogging underneath agricul-
tural canopies is an understudied topic (Pierdicca et al., 2017; Pulvirenti et al., 2015).

So far, research on rice paddies and wheat has demonstrated that radar backscat-
ter increases as a result of double bounce scattering from the interaction crop-water (Le
Toan et al., 1997; Pierdicca et al., 2017; Pulvirenti et al., 2015). However, this was, to our
knowledge, never studied for a thick canopy like sugarcane. Moreover, Pierdicca et al.
(2017) mentions plant density and volume scattering may attenuate the signal result-
ing from double bounce scattering. Therefore, to better understand the capability of
remote sensing to monitor waterlogging, the second objective of this thesis is to under-
stand how waterlogging influences crop growth monitoring with satellite remote sensing
at field-scale.

In order to reach the aim of the research presented in this dissertation we use a case
study. The case study is an irrigated sugarcane plantation in Xinavane, Mozambique.
On top of year-round irrigation application, the plantation endures a high inter-annual
variability in water availability with a short and intense rainfall season and a long dry
season. The plantation covers nearly 18000 hectares of sugarcane, which is produced
all year round. These characteristics make it a suitable playground to investigate the
influence of waterlogging in agricultural monitoring from space.
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1.4. RESEARCH OUTLINE
This thesis consists of several chapters, which have been published as a series of peer-
reviewed articles. Chapter 2 provides a description of the study site and data collected.
The data and some of the code generated within this chapter have been made publicly
available and references to these datasets are provided. In Chapter 3, an overview is
provided on how waterlogging is overlooked in satellite based evaporation algorithms
to assist irrigation, what its impact is on agriculture, and potential pathways to observe
waterlogging from space. Hereafter, in Chapter 4, we demonstrate how radar observa-
tions respond to sucrose accumulation in the sugarcane crop benchmarked to optical
observation. Chapter 5 dives deeper in the response of radar to sucrose accumulation
and shows how waterlogging influences sugarcane monitoring from space. Finally, in
the Conclusion the main findings and their implications will be summarized.





2
CASE STUDY AND GROUND DATA

Ahi tengissene timbilo ta hina ku fana ni mati

Let us purify our hearts and be like water (Changan saying)

The research conducted in this dissertation evolves around a case study in Xinavane,
Mozambique. Multiple fieldwork campaigns were conducted to gather the ground database
that enabled the research. The following chapter gives a description of the case study and
the ground data collected. In addition, information is provided on where to access the
data and parts of the code.

Parts of this chapter have been published in Elsevier Physics and Chemistry of the Earth (den Besten et al.,
2020)

9
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2.1. CASE STUDY

Figure 2.1: The location of the case study: a sugarcane plantation in Xinvane, Mozambique

The location of the research conducted in this dissertation is in Xinavane, Mozam-
bique. In Xinavane, a large (±18000 ha) plantation is located, as illustrated in Figure
2.1. The plantation is established within the lower reaches of the Incomati river basin.
As a result of the location, the plantation in Xinavane is in competition over water with
an increasing population in the catchment and water users in upstream South Africa and
Swaziland, where numerous other sugarcane plantations are located (Santillán-Fernández
et al., 2016; Zaag van der & Carmo Vaz, 2003).

To grow sugarcane in Xinavane, irrigation is required all year round. The long-term
average annual precipitation in the area is 721 mm/year, measured from 1967 to 2017
by a local weather station. However, to grow sugarcane in Xinavane a lot more water is
needed. The maximum crop evaporation in Xinavane is around 1800 mm/season (den
Besten et al., 2020). Chukalla et al., 2022 found the potential evaporation ranging be-
tween 1800 and 2200 mm/season. In addition, den Besten et al., 2020 documented
mean actual evaporation per field ranged between 1390 and 1483 mm/season for dif-
ferent fields. Similarly, Chukalla et al., 2022 reported actual evaporation rates of 1350
mm/season assessing four seasons. These numbers imply a significant amount of irriga-
tion water is required to sustain sugarcane production in Xinavane. In addition, the big
difference between actual and potential evaporation rates indicate room for improve-
ment to optimize crop water use (Chukalla et al., 2022; den Besten et al., 2020).

Figure 2.2 illustrates Xinavane’s struggle with water. The gray line represents the av-



2.1. CASE STUDY

2

11

erage soil water content of the catchment of the Corumana dam. The dam, located fur-
ther upstream of the Incomati river, is the most important reservoir for irrigation at the
plantation. The blue line in Figure 2.2 represents the water level measured in the dam.
From 2012 until 2014, the plantation experienced three successive years of heavy rain-
fall and high river levels which adversely affected the operations within the plantation.
These events were followed by two consecutive drought years in 2015 and 2016, associ-
ated with El Nino (Gelcer et al., 2018). In the years 2017 and 2018 the annual rainfall was
also below average. Clearly, this was not enough to replenish the reservoir to pre-El Niño
conditions.

Figure 2.2: A representation of the average soil water content measured with SMOS of the catchment of the
Corumana dam and respective dam levels.

In this dissertation, the area of interest covers ± 7510 hectares (see figure 2.1). In
this area, irrigation is centrally organized by the agricultural department of Xinavane.
Different irrigation techniques (e.g. furrow, sprinkler, drip) are used in the plantation,
of which sprinkler is the most common practice. In practice, irrigation is applied every
10-12 days approximately. Irrigation water is provided by different pumping stations,
which pump water from the Incomati river into irrigation channels. Drains and drainage
channels are supposed to divert excess water into basins before the drainage water is
pumped out of the plantation.

Most of the ground data were collected during a project named IWACA-Tech, which
aimed to improve water use efficiency at irrigation systems using advanced remote sens-
ing technology1. During the project, several fieldwork campaigns were conducted to
understand the irrigation and production issues in the plantation and to test and im-
plement solutions proposed by partners in the project. One of the outcomes of the
project was a peer-reviewed article presenting a high resolution evaporation algorithm

1www.iwacatech.com
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(See appendix A). The spatial evaporation estimates provide the irrigation and agricul-
tural managers with information on actual crop water use and biomass development,
which is relevant to both crop monitoring and irrigation water management (den Besten
et al., 2020). In addition, during the fieldwork a large spatio-temporal variability of yield
within the plantation was observed. Several student research projects showed produc-
tion issues related to waterlogging and salinization.

2 3

2.2. AVAILABLE GROUND DATA
Data and knowledge were shared by the agricultural department of Xinavane’s estate for
this research. This included production data at field level, but also meteorological data,
and elevation spatial maps to understand the geomorphology. The dataset contains the
following spatial and temporal variables:

Agronomic info of 387 fields ( 20ha) from 2002-2021 12 years:

• Sugarcane and sucrose yield (Tons/ha)

• Quality yield metrics: percentage of sucrose, water, brix and fibre (percentage of
fresh weight)

• Ratoon years (year)

• Length growing season (days) [datapoints: 3463]

• Harvest date (Day Of Year)

• Irrigation type (categorical)

• Soil type/ clay percentage (percentage) [shapefile/ points]

• Location with areas that face permanent waterlogging (binary) [shapefile] (Vilan-
culos & Mafalacusser, 2012)

Meteorological data (1 weather stations):

• Temperature (daily, mean Celsius)

• Precipitation (mm/day)

• Wind speed

• Radiation

• Relative Humidity

LIDAR observations: LIDAR from which the following spatial layers are calculated on
a pixel level (13x13m) or field level:

2Multi-Disciplinary Student Project
3Master Thesis

https://repository.tudelft.nl/islandora/object/uuid%3Add56f7e2-8e70-41d2-8ccb-cd690b96c983
https://repository.tudelft.nl/islandora/object/uuid%3A488e2e5a-86cb-4af6-9f5f-7baf4a498d40
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• Digital Elevation Model

• Slope

• Topographic Wetness Index

• Convex-Concave features in a field

• Height Above Nearest Drainage - HAND (considering man-made pumping sta-
tions/ drainage)

The ground data are bundled in a package called Sugarmomma and can be used by
citing this dissertation.

https://figshare.com/s/ef50b701bfd454b79f0f




3
WATERLOGGING IN IRRIGATED

AGRICULTURE

Too much of anything is never good.

Mom

This chapter provides a scientific perspective on the topic of waterlogging by consult-
ing literature in the disciplines of agronomy, hydrology, and remote sensing. As water-
logging is an increasingly important issue in irrigated agriculture with detrimental im-
pact on crop productivity, the current impact of waterlogging on irrigated agriculture and
the presence of waterlogging in different remote sensing techniques and evaporation algo-
rithms is assessed.

This chapter is published in the special issue of MDPI Remote Sensing for Agricultural Water Management
(RSAWM) (den Besten, Steele-Dunne, de Jeu, et al., 2021)
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3.1. INTRODUCTION
In irrigated agriculture, waterlogging is a common problem with a detrimental impact
on crop productivity (Houk et al., 2006). Waterlogging prevents aeration of the root-
zone and induces secondary soil salinization, as salts are unable to leave the soil profile
(Wallender, Tanji, et al., 2011). Waterlogged soil conditions affect plant physiology by
causing low oxygen availability in the roots, a reduction of the availability of nutrients,
and a change in microbial activity. These effects of waterlogging hamper crop growth
and yield significantly (Shaw et al., 2013). For example, (Dennis et al., 2000) estimated a
EUR 180 million annual loss in wheat production due to waterlogging in Australia.

Worldwide, roughly twenty percent of irrigated land is burdened by waterlogging and
secondary soil salinization resulting from over-irrigation or poor sub-surface drainage
(FAO, 2016c). This is especially the case for (semi-)arid areas with high evaporation rates
(Steduto et al., 2017). Researchers have reported issues related to waterlogging around
the world, such as in Australia (Christen et al., 2001; Shaw et al., 2013; Ward et al., 2002),
Pakistan (A. Singh, 2016), India, amongst other countries (Poddar et al., 2011; Valipour,
2014).

For example, waterlogging and secondary soil salinity in the Lower Arkansas River of
Colorado causes significant damage to agriculture (Houk et al., 2006). The agricultural
land in this basin has been irrigated since the 1870s, and reported issues with waterlog-
ging date back to the beginning of the 20th century. Waterlogging increased over the
decades as a consequence of continuous irrigation and inadequate drainage, causing
the water table to rise within the rootzone. Moreover, 25 percent of the agricultural area
in the Lower Arkansas River basin has a water table at less than 1.5 meter. (Houk et al.,
2006) calculated agricultural profits are approximately 40 percent less as a consequence
of waterlogging and associated soil salinity.

In the last 50 years, the global area equipped with irrigation has almost doubled
(Neumann et al., 2011). The global coverage of irrigated areas is expected to increase
alongside the projected rise in global population (You et al., 2011). Moreover, the future
increase in population calls for sustainable agricultural intensification, as the majority
of the world’s arable land is already cultivated (Cassidy et al., 2013; Mueller et al., 2012;
Pfister et al., 2011). Irrigated crop production globally is 2.5 times more productive than
rain-fed crop production (Mashnik et al., 2017). Therefore, irrigation is internationally
promoted as a technique to help sustain future food demand (Mueller et al., 2012).

The increase in irrigated areas is expected to increase fresh water abstraction rates.
Nowadays, agriculture already accounts for approximately seventy percent of the total
freshwater withdrawals (FAO, 2016a). Studies show that the socio-economic impact, due
to an increased demand on our freshwater resources may be just as large as the pressure
resulting from climate change (Ferguson & Maxwell, 2012; Fischer et al., 2007).

Therefore, to manage freshwater in a sustainable manner and optimize productivity,
it is necessary to focus on enhancing water use efficiency and water productivity in ir-
rigated agriculture (Bhaduri et al., 2016). Here, monitoring plays a crucial role: to track
(crop) water use and assess opportunities for improvement. Satellite remote sensing
can be a powerful tool in monitoring and evaluating crop water use (Atzberger, 2013;
Bastiaanssen et al., 2000). Optimizing irrigation water use, in an irrigation scheme for
example, can benefit from frequent spatial evaporation updates on the actual develop-
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ment of the crop and its water requirement (Calera et al., 2017; Vanino et al., 2018; Vuolo
et al., 2015), as farmers tend to over-irrigate in the absence of objective information on
crop status and water requirement (Vanino et al., 2018).

Satellite based evaporation algorithms are increasingly common in irrigation schedul-
ing, to irrigate the right quantity at the right time (Calera et al., 2017; Vanino et al., 2018).
In these evaporation algorithms crop stress is directly or indirectly inferred through satel-
lite data by spectral indices, thermal bands, or passive microwave observations, where
the term crop stress is inferred to include all kinds of crop stresses, such as water stress
(Glaz et al., 2004), nutrient stress (N. Inman-Bamber & Smith, 2005), or stress result-
ing from disease or pest (Franke & Menz, 2007). Therefore, if these algorithms are used
for irrigation purposes, stress resulting from other stresses than water deficit may cause
overirrigation. For example, stress resulting from waterlogging can be wrongly inter-
preted as a need for irrigation, while adding more irrigation water might in fact worsen
waterlogging problems (Jones, 2018).

Considering the above, monitoring waterlogging could therefore contribute to the
prevention of waterlogging in irrigated agriculture. By identifying which areas are prone
to waterlogging, irrigation could be reduced or drainage improved. This would improve
both irrigation water use as well as crop productivity. Also, an operational monitoring
system can provide agriculturalists information on land trafficability, drainage, or crop
selection (Shaw et al., 2013).

Satellite remote sensing has the potential to monitor and identify waterlogging in
agricultural fields. However, there is limited research available on waterlogging within
the remote sensing community (Choubey, 1997; Mondal & Pal, 2018; S. K. Singh & Pandey,
2014). Literature focussed on waterlogging in irrigated agriculture is even more limited
(Chowdary et al., 2008; El Bastawesy & Ali, 2013). Therefore, the aim of this chapter is to
provide a perspective on how waterlogging could be monitored in irrigated agriculture.
This chapter starts by reviewing literature on the topic of waterlogging within the dis-
ciplines of agronomy and hydrology. Then, literature in the in satellite remote sensing
community is assesed to understand what has been done so far with waterlogging. Here,
different remote sensing based evaporation algorithms are assessed to discuss the pres-
ence of waterlogging in the algorithms. Next, several approaches are reviewed that have
proved successful in the field of inundation detection and discuss how they might be
adapted to address the challenges associated with monitoring waterlogging in irrigated
agriculture. Finally, these aspects will be synthesized to present a roadmap towards the
development of a methodology to monitor waterlogging with remote sensing for sus-
tainable irrigated agriculture.

3.2. WATERLOGGING AND ITS IMPACT
Waterlogging is the accumulation of excess water in the rootzone (Ritzema, 2016). Agronomists
also define soil submergence, where even the aerial (above-ground) plant tissue is partly
or completely flooded (Fukao et al., 2019). When a soil is waterlogged or submerged,
pores are predominantly filled with water. However, to sustain proper crop growth a
good soil needs to consist of a combination of soil, air, and water. Both waterlogging and
soil submergence can create a situation where there is less than 21 percent oxygen in
the soil, this is called hypoxia (Fukao et al., 2019; Sasidharan & Voesenek, 2015). Anoxia
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occurs when there is a complete absence of oxygen (Sairam et al., 2008).
The response of crops to (partial) submergence or waterlogging differs (Parent et al.,

2008). In general, when plants are partially submerged, shoot elongation may be sup-
pressed to keep carbohydrates for when flooding disappears. On the other hand, when
a plant is fully submerged, rapid elongation can occur to reach the surface of the water.
The influence of waterlogging, partial submergence, and full submergence all negatively
affect the yield. In this thesis, waterlogging is defined as the situation where the rootzone
is deprived of oxygen, irrespective of partial or full submergence.

The absence or scarcity of oxygen under waterlogged soil conditions hampers the
gas exchange in and around the plant, as water slows down the gas diffusion necessary
for major physiological processes in the plant (Sasidharan & Voesenek, 2015). Vital pro-
cesses such as photosynthesis and transpiration are heavily affected by waterlogging as
these require exchange with atmospheric gases (Sairam et al., 2008; Sasidharan & Voe-
senek, 2015). The absence of oxygen inhibits or prevents the roots from taking up ions.
This disturbs the water potential in the cells of the plant and leads to a decrease in stom-
atal conductance (the degree of stomatal opening) (Irfan et al., 2010).

Figure 3.1: The similarities in response to the crop on above-ground features in times of waterlogging (left)
and water deficit (right). The situation and response of the crop beneath the surface is different.

There are many effects of physiologic and morphological responses to oxygen deficit
to aerial plant tissue, and they are crop and variety dependent. Generally, above-ground
symptoms of waterlogging include wilting of the plant, leaf yellowing, reduction of plant
growth and grain yield (Kaur et al., 2020; Shaw et al., 2013). Importantly, leaf wilting of
the plant is often interpreted as water deficit stress (Shaw et al., 2013). Morphological
adaptations or symptoms as stomatal closure or leaf wilting can occur both under crop
stress due to water deficit as well as due to waterlogging, see Figure 3.1.

Waterlogging inhibits root development, leading to a decrease of root length and
weight (Zhou et al., 2020). Ultimately, the damage to the root system negatively impacts
the nutrient and water uptake of the crop, and may result in a physiological water deficit
above ground (Gomathi et al., 2015). To survive waterlogged soil conditions crops can
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develop adventitious roots (Bellini et al., 2014). The adventitious roots grow from the
stem and closer to the surface in order to access oxygen (Kaur et al., 2020).

The impact of waterlogging on crop yields can vary in different regions due to the
variation in climatic conditions, soil types, crop type, crop variety, crop age, and man-
agement differences (Kaur et al., 2020). Each crop and variety responds differently to
waterlogging, and the duration of waterlogging is key to the impact on crop yield (Irfan
et al., 2010). Figure 3.2 provides an overview of the effect of waterlogging duration on the
yield for different major crops based on data collated from the literature. Raw data can
be found in appendix A.

Figure 3.2: The relation between duration of waterlogging (in days) and yield reduction (in percentages). Each
dot represents a study result from the literature. The size of the dots illustrate the onset of waterlogging within
the growing season.

From Figure 3.2 it can be observed that the selected crops experience a reduction
in yield when waterlogging occurs. Most terrestrial crops are sensitive to water excess
in the rootzone (Sasidharan & Voesenek, 2015). However, some crop types are more re-
sistant to waterlogging than others. For example, a few study results on wheat show a
yield reduction of 30 percent where waterlogging prevailed for 60 days (Arguello et al.,
2016; Marti et al., 2015; Pampana et al., 2016). On the other hand, most tomato varieties
already experience severe yield reduction after a few days of waterlogging (Ezin et al.,
2010; Mohanty et al., 2020; Tareq et al., 2020).

Note that the effect of duration can differ for the same crop type in Figure 3.2 as
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some experiments use different varieties or a different onset of waterlogging within the
growing season. In all development stages waterlogging is an issue. However, the im-
pact differs because of different coping mechanisms in the crop stages (Kaur et al., 2020;
Zhou et al., 2020). For example the impact of waterlogging on corn and soybean growth
is largest in the initial or development stage (Kaur et al., 2017; Linkemer et al., 1998;
Ren et al., 2016; Rhine et al., 2010; Shah et al., 2012; Sullivan et al., 2001). Germination
and seedling establishment are frequently mostly impacted by waterlogging (Kaur et al.,
2020).

There are also crops more resistant to waterlogging. For example, paddy rice is cul-
tivated on flooded soils. However, when completely submerged, paddy rice yield may
be negatively affected (Irfan et al., 2010). Another example of a waterlogging-resistant
crop is sugarcane, which can withstand weeks of waterlogging or inundation (Avivi et
al., 2020; Glaz et al., 2004). Nonetheless, long-term or permanent waterlogging is detri-
mental to sugarcane productivity and can result in secondary soil salinization (Rietz &
Haynes, 2002; Warrence et al., 2002).

An example of the effects of waterlogging to crop productivity can be observed in an
irrigated sugarcane plantation in Xinavane, Mozambique, see figure 3.3. In this planta-
tion, there are a lot of productivity issues associated with waterlogging (den Besten et
al., 2020; Vilanculos & Mafalacusser, 2012). During a large soil survey waterlogged areas
were documented (Vilanculos & Mafalacusser, 2012). From figure 3.3 it is visible that
the majority of the waterlogged areas coincide with low crop productivity. Waterlogging
is also noted as a driver behind yield instability in other areas (Martinez-Feria & Basso,
2020). By assessing temporal variability in maize, soybean, wheat and cotton yield in
the US Midwest (Martinez-Feria & Basso, 2020) prove largest in-field variability can be
found in depressional areas, where waterlogging occurs in wet years.

Figure 3.3: An overview of the average yield per field in Xinavane between 2008-2019 in Tonne Cane per
Hectare (TCH). The black striped shapefile displays the areas with waterlogging issues (Vilanculos & Mafala-
cusser, 2012).
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For the majority of the experimental results in Figure 3.2, the focus lies on the effect
of waterlogging with a duration of <10 days to assess the impact on yield. The effect on
crop yield can already be significant in a few days. Therefore, both transient or perma-
nent waterlogging needs to be monitored and prevented for optimal crop productivity.
Monitoring waterlogging is especially useful in areas where it can be controlled, such as
in irrigated or drainage agriculture.

The spatial extent of waterlogging varies from small-scale depressions to large-scale
shallow groundwater tables. Waterlogging is related to absence of or limited drainage,
and occurs in local depressions, poorly constructed irrigation schemes, (irrigated) wet-
lands, or areas with impermeable soils, for example (Ritzema et al., 2008). Small-scale
depressions in a field may induce waterlogging, but a shallow groundwater table may
also enhance the development of waterlogged soils. To prevent or mitigate waterlogging
adequate drainage is required (Ritzema et al., 2008; Valipour, 2014).

Geographically, waterlogging occurs in both natural and human induced circum-
stances. In natural circumstances, waterlogging may occur when there is a high water
table and water is continuously or at once added to the surface by rain or a flood event
(Shaw et al., 2013). These naturally waterlogged areas can be found globally in wetlands,
river basins, or lakesides, for example (Z. Wang et al., 2019). Waterlogging may also be
caused by human interventions such as irrigation, wrongly designed drainage methods,
and other surface alterations (e.g. ridges) (H. Chen et al., 2020; Z. Wang et al., 2019). Due
to continuous irrigation, waterlogging is prevalent in agricultural areas in mostly arid
and semi-arid areas where irrigation is needed to sustain agricultural production.

Previous research within hydrology and agronomy focused on modeling and moni-
toring waterlogging in irrigated agriculture to optimize crop productivity. For example,
the crop models SWAGMAN, DRAINMOD, and APSIM take the effect of water excess
stress on crop yield into consideration in agricultural management (Shaw et al., 2013).
Recently, efforts were made to model waterlogging in irrigated paddy rice to understand
human interventions in the irrigation schemes and the resulting yield reduction of wa-
terlogged area (H. Chen et al., 2020). To simulate waterlogging in irrigated agriculture,
natural processes need to be considered, but also the hydraulic structures created by
humans and the interventions taken place within the system are of importance (e.g. ir-
rigation, gates) (H. Chen et al., 2020). The model developed by (H. Chen et al., 2020)
is able to predict accurate water levels within the irrigated rice system, but it requires a
lot of data. Moving towards an operational monitoring system for waterlogging, satellite
remote sensing could provide a less data-intensive solution. There is need for an oper-
ational monitoring system that identifies waterlogged areas to support decision-making
in irrigation scheduling, drainage, or crop selection (H. Chen et al., 2020; Shaw et al.,
2013).

3.3. WATERLOGGING AND SATELLITE REMOTE SENSING
There is limited research on waterlogging within the remote sensing community (Choubey,
1997; Mondal & Pal, 2018; S. K. Singh & Pandey, 2014), especially in an irrigation context
(Chowdary et al., 2008; El Bastawesy & Ali, 2013). Within the agricultural water manage-
ment community, (A. Singh, 2016) reviewed literature to analyze the applications and
GIS techniques available for the management of water in irrigated agriculture. Most of
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the techniques available focus on delineation of waterlogged areas, where the use of op-
tical data in these studies are common. For example, (Choubey, 1997) uses the infra-red
band to delineate waterlogged areas. Normalized Difference Vegetation Index (NDVI)
and Normalized Difference Water Index (NDWI) are also common indices used to delin-
eate waterlogged areas (Chowdary et al., 2008; Dwivedi et al., 2007; Mandal & Sharma,
2011; S. K. Singh & Pandey, 2014). Ultimately, the results are generally static risk maps
delineating perennial and/or permanent waterlogged areas. The analysis of temporal
variation in, for example, Enhanced Vegetation Index (EVI) or Land Surface Tempera-
ture (LST), are particularly useful for identifying waterlogged croplands (Fei et al., 2014).

The use of Digital Elevation Models (DEM), with or without the combination of op-
tical data, has also played a role in research on delineation of waterlogging within re-
mote sensing (El Bastawesy & Ali, 2013; S. K. Singh & Pandey, 2014). (El Bastawesy &
Ali, 2013) mapped waterlogging hazard with the help of hydrological parameters ana-
lyzed with GIS. A DEM was used to visually interpret the natural sinks in the area under
study. Another example is (S. K. Singh & Pandey, 2014), where the extent of waterlogging
is spatially analyzed with Modified Normalized Difference Water Index (MNDWI) and a
DEM.

However, as pointed out in section 3.2, waterlogging is a process that changes in
space and time in response to physical surface changes, precipitation and/or irrigation
application. The aforementioned studies result in delineation of waterlogged areas, but
do not monitor the actual areas subject to waterlogging over time. Ideally, an operational
system should track the extent of area waterlogged in time. This is essential to provide
agriculturalists with timely information on land trafficability and drainage to support de-
cisions related to crop choice and land management practices. Furthermore, informa-
tion on the waterlogging state is essential to correctly identify the underlying source of
crop stress, and to improve irrigation advice based on satellite-based evaporation mod-
els (den Besten et al., 2020; Shaw et al., 2013).

Several researchers have demonstrated the potential of satellite remote sensing for ir-
rigation scheduling, but also to assess the water use on global and catchment scale (Bas-
tiaanssen et al., 2000; Weiss et al., 2020). Examples of remote sensing based evaporation
algorithms can be found in Table 3.1. Table 3.1 shows that several of these methodologies
are now downscaled to fine spatial and temporal resolution with the help of data from
new satellites or improved algorithms (He et al., 2019; Martens et al., 2018). This opens
up an era of research to integrate valuable remote sensing information for field-scale
water management (Weiss et al., 2020).

In all remote sensing based evaporation algorithms in Table 3.1, crop stress is directly
or indirectly incorporated through satellite data by spectral indices, thermal bands, or
passive microwave observations. The observed crop stress includes all kinds of crop
stresses, such as water stress (Govender et al., 2009), nutrient stress (Jackson, 1986), or
stress resulting from disease or pest (Franke & Menz, 2007). In current remote sensing
based evaporation calculations any kind of crop stress will translate into a need for irri-
gation.

However, waterlogging will also result in the closure of stomata or leaf wilting (see
figure 3.1), which in turn affects the surface temperature or eventually NDVI observed
by the satellite (Jones, 2018). In current evaporation algorithms, there is a dominant
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focus on water deficit, and stress resulting from water-logging may be overlooked or
misinterpreted as water deficit stress. Scientific reviews on remotely sensed evapora-
tion algorithms for irrigation focus mainly on water deficit stress (Barbagallo et al., 2009;
Bastiaanssen et al., 2000; Calera et al., 2017; P. H. Gowda et al., 2008; Khanal et al., 2017;
Maes & Steppe, 2012), and do not consider stress resulting from waterlogging. If such al-
gorithms would be used for irrigation scheduling, this might in fact worsen waterlogging
problems (Jones, 2018).

To illustrate this, the irrigated sugarcane plantation in Xinavane, southern Mozam-
bique, is considered. Many fields in the plantation are burdened by permanent waterlog-
ging, see figure 3.4. Figure 3.4 B, C, and D give a snapshot of a visual (RGB, Sentinel-2B),
NDVI (Sentinel-2B), and Thermal image (B10, Landsat-8) in a field where waterlogging
is occurring on the particular dates displayed (den Besten et al., 2019). From ground-
water and field observations the centred field in figure 3.4 B, C, and D is waterlogged:
groundwater levels are within the rootzone and the centre of the field is fully submerged
(den Besten et al., 2019). From figure 3.4 B you can see the effects of permanent water-
logging (and soil salinization): in some parts the sugarcane is barely growing. The latter
is also visible in figure 3.4 C and D. The parts where sugarcane is barely growing results
in a lower NDVI and higher surface radiometric temperature due to the exposure of bare
soil.

Thermal Infrared bands and NDVI are common and important building blocks for
ET algorithms, see Table 3.1. Often the surface radiometric temperature is partitioned
by using NDVI/LAI to retrieve soil and canopy temperature which are crucial to calcu-
late latent heat. However, in the case of waterlogging underneath a canopy the algorithm
will be able to visualize the effects of waterlogging only once the adverse effects of wa-
terlogging already occurred. Namely when the NDVI/LAI is low due to hampered crop
growth (see bare soil spots figure 3.4 C).

The latter example is illustrative of how waterlogging can be overlooked or misinter-
preted as water deficit stress when these algorithms are used for irrigation. Nevertheless,
it is important to include waterlogging stress to inform sustainable irrigation water use
and productivity. In this context, (Jones, 2018) also pointed out that it is critical to dis-
tinguish water deficit-related stomatal closure from the responses to other stress, which
can also lead to stomatal closure. Therefore, monitoring waterlogging can be of help to
interpret evaporation algorithms in irrigated agriculture.

Table 3.1: An overview of different remote sensing based evaporation algorithms and their characteristics. The
spatial and temporal resolutions are the highest resolutions found in literature. LST: Land Surface Tempera-
ture, NIR: Near infra-red, FPAR: fraction of photosynthetically active radiation

Name Spatial res Temporal resolution Crop stress product Crop stress bands Source
MODIS ET 30m Daily EVI, NDVI, LST TIR, Red, NIR (Mu et al., 2007), (He et al., 2019)
SEBAL 30m Daily EVI, NDVI, LST TIR, Red, NIR (Bastiaanssen et al., 1998; Hong et al., 2009)
GLEAM 100m Daily VOD, Microwave SM X, C, L-band (Miralles et al., 2011), (Martens et al., 2018)
Alexi 5-10km Daily LST, fPAR TIR, Red, NIR (M. C. Anderson et al., 2007; M. Anderson et al., 2010)
DisAlexi 30m Every 5-16 days LST, fPAR TIR, Red, NIR (M. Anderson et al., 2010; Kustas et al., 2003)
SSEB 120m Daily LST, NDVI TIR, Red, NIR (P. Gowda et al., 2009; Senay et al., 2007)
TSEB 30m Every 8 days LST, NDVI TIR, Red, NIR (French et al., 2015; Norman et al., 1995)
METRIC 30m Every 8 days EVI, NDVI, LST TIR, Red, NIR (Allen et al., 2007; French et al., 2015)
WaPOR 30-100m Every 10 days LST, NDVI TIR, Red, NIR (FAO, 2018)
PT-JPL 70m Daily NDVI Red, NIR (J. B. Fisher et al., 2008)
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Figure 3.4: A) the extent of permanent waterlogging documented by a sugarcane plantation in Xinavane,
Mozambique (Vilanculos & Mafalacusser, 2012). B) a snapshot of a true-color composite by Sentinel-2B on
the 14th of April 2019. C) a snapshot of NDVI observed by Sentinel-2B on the 14th of April 2019. D) a snapshot
of surface radiometric temperature (B10) observed by Landsat-8 on the 15th of April 2019.

3.4. DETECTION OF WATERLOGGING WITH DIFFERENT REMOTE

SENSING TECHNIQUES

Detection of surface water with satellite remote sensing is based on the difference be-
tween radiometric properties and temperature of water and other surfaces (Prigent et al.,
2016). There are several theoretical possibilities to detect surface water or waterlogging
with satellite data: by using passive microwave sensors, optical (VIS) or Near-infrared
sensors (NIR), Synthetic Aperture Radar (SAR), or scatterometry. The advantages and
disadvantages of each of the first three techniques to detect waterlogging with satellite
imagery will be assessed. A summary can be found in Table 3.2.

First, waterlogging can be detected by passive microwave frequencies (Basist et al.,
2001; Giddings & Choudhury, 1989; Sippel et al., 1994). By combining data from different
wavelengths, polarizations, and/or viewing angles, it is possible to retrieve information
of the soil surface. Due to the high contrast in dielectric properties between water and
dry soil, microwave observations are particularly suitable for sensing water in the topsoil
or on the surface (Ulaby et al., 1981).

Passive microwave observations show sensitivity to the underlying surface wetness
that enables detection of surface water even in densely vegetated areas (Choudhury,
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Figure 3.5: Timeseries of satellite soil moisture for an irrigated (blue) and non-irrigated reference area (gray) as
derived from enhanced L-band microwave observations of NASA SMAP (Richard de et al., 2016). The lightblue
bars on top indicate precipitation events measured by a meteorological tower within the irrigated area.

1989; Hamilton et al., 1996; Prigent et al., 2001; Sippe et al., 1998; Sippel et al., 1994).
The polarization difference increases with increasing soil wetness (Choudhury, 1989).
For example, soil moisture to a depth of 0.8mm can be sensed with the Ka-band (37 Ghz)
frequency (Shang, 2017). A combination of different frequencies has also been used to
detect surface wetness (Achutuni, 1996; Scofield & Achutuni, 1996).

Higher frequency passive microwave channels, such as Ka-band, are partly influ-
enced by atmospheric circumstances and vegetation and ideally should be corrected
for those (Prigent et al., 2007). Low frequency passive microwave channels, such as the
L-band radiometer on SMOS and SMAP, are less affected by canopy and atmospheric
conditions (Parrens et al., 2017) and are well suited to soil moisture monitoring.

The difficulty in using passive microwave observations to detect waterlogging is that
their resolution is coarse. Observations at lower frequencies have a lower spatial res-
olution than observations at higher frequencies (e.g. L-band’s spatial resolution is in
the order of 36 km). There are operational products that downscale brightness tempera-
ture observations. For example, NASA provides a downscaled 9 km resolution brightness
temperature and soil moisture product (Chaubell et al., 2016). This enhanced L-band
product has, to our knowledge, not yet been used in research to detect surface water.

To illustrate the potential value of passive microwave remote sensing here, Figure 3.5
shows a comparison of satellite derived soil moisture from L-band observations over the
sugarcane plantation in Xinavane and from a reference area with no irrigation. Here a
downscaled version of SMAP L-band observations based on a new deconvolution method
(Richard de et al., 2016) and converted to soil moisture with the Land Parameter Retrieval
Model gridded at 100 m is used (van der Schalie et al., 2017). Outside of the rainy season
the average soil moisture is higher than the reference area without irrigation. Despite
the coarse spatial resolution, L-band passive microwave observations are capable of de-
tecting differences in surface soil moisture even under the dense sugarcane canopy.
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Secondly, it is possible to detect surface water with VIS and NIR sensors. The physical
radiation over different wavelengths in the VIS and NIR domain are distinctly different
for water, compared to other surfaces. Longer wavelengths in the VIS and NIR bands
are absorbed more by water than shorter VIS. Due to these spectral response patterns,
water bodies can be delineated per pixel (Lillesand et al., 2015). In addition, VIS and
NIR sensors observe at a high spatial resolution, e.g. Sentinel-2 at a 10 meter spatial
resolution (Pekel et al., 2016).

Figure 3.6: A) NDVI timeseries observed by Sentinel 2B of a waterlogged (blue) and non-waterlogged field
(gray). The black vertical line denotes the observation date of the snapshot in B. B) NDVI snapshot on 30-12-
2018 of the waterlogged (blue border) and non-waterlogged field (gray border).

Nevertheless, figure 3.6 A shows a NDVI time-series (Sentinel-2) of a water logged and
non-waterlogged field in the sugarcane plantation Xinavane, Mozambique (See Figure
3.3). The NDVI values in the timeseries of the waterlogged field are lower compared to
the non-waterlogged field, as a result of hampered crop growth due to waterlogging. This
confirms there is information within the visual spectrum on waterlogging. In addition,
the standard deviation in the field dealing with waterlogging is larger. The latter is visible
in figure 3.6 B, where a snapshot of the two fields show the waterlogged field (blue) shows
less uniformity than the non-waterlogged field (gray).

A limitation of this technique is the inability to acquire observations under cloudy
conditions (Prigent et al., 2020). Since waterlogging may also result from intensive rain-
fall events, the inability to have observations under cloudy conditions hampers the abil-
ity to continuously monitor waterlogging. In addition, VIS and NIR data are sensitive to
the reflectance at the top of the canopy and cannot penetrate a dense canopy to provide
information from the underlying surface (Lillesand et al., 2015).

Third, active microwave observations may also provide information on waterlogging.
SAR transmits a microwave pulse and measures the backscattered power of each re-
turning signal (Lillesand et al., 2015). These observations can be obtained in different
wavelengths and polarizations. Generally, open water surfaces are distinguished by low
backscattering coefficients (Prigent et al., 2016). Data from SAR are able to detect surface
water bodies underneath vegetation (Martinez & Le Toan, 2007; Pierdicca et al., 2017).
For example, SAR can detect water beneath a slender leaf crop such as rice (Pierdicca et
al., 2017). However, the signal is influenced by vegetation and the signal saturates under
a thick canopy (Tsyganskaya et al., 2018b).
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Table 3.2: Disadvantages and advantages of different remote sensing techniques to detect waterlogging.

Disadvantages Advantages
Passive microwaves coarse spatial resolution, almost daily observations,

downscaling needed, detects beneath canopy (frequency dependent)
saturation (crop specific)

VIS and NIR cloud interference, inundation easily detected,
saturation high spatial resolution,

SAR saturation (crop specific) high spatial resolution,
no cloud interference
detects beneath canopy (frequency dependent)

Unlike VIS and NIR data, SAR data are less influenced by atmospheric effects and
observations can be made on cloudy days (Prigent et al., 2020). In addition, SAR provides
data at high spatial resolution. Sentinel-1, for instance, provides SAR backscatter at a 5 x
20 meter resolution (Torres et al., 2012). Sentinel-1 data has a revisit time of six days with
platform A and B, but coverage varies around the globe. For example, for the sugarcane
plantation in Xinavane there is an observation every 12 days. To observe waterlogging,
however, high temporal resolution is required, since most terrestrial crops are negatively
effected by waterlogging in a matter of days (see section 3.2).

The spatial and temporal resolutions of current available satellite products will limit
the operationability of monitoring waterlogging in irrigated agriculture. Future mis-
sions, with higher spatial and temporal resolutions can become game-changers in the
future. For example, ESA’s ROSE-L mission will provide high spatial and temporal res-
olution L-band data that is especially of interest to flood mapping, in particular below
vegetation (Davidson et al., 2019). Also, Global Navigation Satellite Systems - Reflectom-
etry (GNSS-R) signals can be an interesting data source to monitor waterlogging (Jensen
et al., 2018).

Several sources of remote sensing data contain useful information on waterlogging.
Combining them provides complementary information on waterlogging at a range of
spatial and temporal scales, and provides a way to circumvent the limitations of the in-
dividual data streams.

3.5. DOWNSCALING USING ANCILLARY DATA
In addition to combining observations from different parts of the electromagnetic spec-
trum, the use of ancillary data can provide a means to downscale to the higher spatial
resolutions needed to monitor within-field waterlogging. In this regard, future research
on monitoring waterlogging can benefit from the work done so far within monitoring in-
undation. Recently (global) inundation products were introduced that combine differ-
ent satellite products with passive microwave remote sensing, also referred to as hybrid
approaches (Parrens et al., 2019; Prigent et al., 2016; Schroeder et al., 2015). By combin-
ing different satellite products, different sensitivities to surface properties are differenti-
ated, but also higher spatial resolutions are obtained (Prigent et al., 2020). Two examples
are Global Inundation Extent from Different Satellites (GIEMS) and Surface Water Mi-
crowave Product Series (SWAMP) (Papa et al., 2010; Schroeder et al., 2015).

Table 3.3 gives an overview of the characteristics of these inundation products. In re-
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cent years several researchers have attempted to downscale global and regional surface
water products to higher spatial resolutions (Aires et al., 2013; Galantowicz et al., 2017;
Parrens et al., 2019; Prigent et al., 2016). These methodologies all require high resolution
ancillary data to improve the resolution of the passive microwave observations. (Prigent
et al., 2016) distinguishes two strategies to improve the resolution of coarse scale surface
water products: (1) downscaling by using high spatial resolution satellite observations;
(2) downscaling by using topography information. Although waterlogging requires even
higher spatial and temporal resolutions, these existing methodologies set a basis for an
approach to monitor waterlogging.

In these inundation products the underlying assumption is the passive microwaves
signal used is linked to the fraction of land inundated (Galantowicz, 2002; Parrens et al.,
2019; Prigent et al., 2016). However, in irrigated agriculture there is a very important ad-
ditional driver besides topography and precipitation, namely irrigation and man-made
drainage. The underlying assumption used in current inundation models need to add
derivatives of irrigation effects or detection of irrigation in order to monitor waterlog-
ging.

Figure 3.7: A) A kernel density estimation and histogram of the distribution of the average HAND per field with
waterlogging issues (blue) and without waterlogging issues (gray) as reported by (Vilanculos & Mafalacusser,
2012). B) A spatial overview of the HAND throughout the plantation considering drainage pumps.

Table 3.3: Two examples of high resolution inundation products using topography for downscaling.

Product Spatial resolution Temporal resolution Remote sensing products used
GIEMS-D3 (Aires et al., 2017) 90 m Monthly (1993-2007) 19 and 37 GHz [cloud filtering: 85 GHz]

Radar 5 GHz
NDVI
DEM (HydroSHED)
Global Lands and Wetlands database

SWAF-HR (Parrens et al., 2019) 1 km 3 days 1.4 GHz
DEM (MERIT)
Global surface water occurrence dataset

To monitor waterlogging future studies should focus on how to include human-made
drivers inducing waterlogging. Future scientific studies need to focus on: (1) monitor-
ing waterlogging with ancillary data by looking at the temporal variation, and (2) wa-
terlogging occurrence from drainage parameters deducted from high spatial resolution
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DEMs. These DEMs can be developed with data from LIDAR or Unmanned Aereal Ve-
hicles (UAVs). A determining factor in suitability for DEM to monitor waterlogging is
the vertical accuracy, which is still too large in available global satellite products, e.g.
TanDEM-X with a vertical accuracy of two meters (G. J. Schumann & Bates, 2018).

For example, in the sugarcane plantation in Mozambique permanently waterlogged
areas occur in poorly drained areas, see figure 3.7. The Height Above Nearest Drainage
(HAND) was computed with LIDAR observations, considering drainage points and pumps
of the irrigation system. Figure 3.7 shows the distribution of HAND is different in wa-
terlogged fields compared to non-waterlogged fields. This illustrates topographical in-
formation withholds information on waterlogging or the potential to be waterlogged
(Galantowicz, 2002).

3.6. CONCLUSION
Waterlogging is a localized phenomenon (e.g. ponds within a field) and can induce crop
stress within a few days. Within agronomy, studies on crop stress focus more on water
deficit stress, as compared to stress resulting from waterlogging. However, waterlogging
is a common and adverse problem in (irrigated) agriculture. Most terrestrial crops are
susceptible to waterlogging, but the intensity of the negative effects depend on crop type
and variety, duration, timing, amongst other factors. Within (irrigated) agriculture, wa-
terlogging needs to be prevented to optimize yield, water productivity, and soil quality.
Furthermore, failure to tackle persistent waterlogging can induce secondary soil salin-
ization, a process that is hard to reverse.

The above-ground effect of waterlogging on crops is hard to distinguish from wa-
ter deficit stress, as responses like stomatal closure and leaf wilting occur in both situ-
ations. Currently the origin of crop stress is not distinguished by remote sensing based
evaporation algorithms and these may therefore be erroneously interpreted as a need for
irrigation. In sum, before evaporation estimates from satellite data can play a role in op-
timizing the field-scale water use in irrigated areas, evaporation algorithms must be able
to identify water stress only in case of water deficit in the root-zone. Here, monitoring
waterlogging can play a role.

Efforts in modelling waterlogging are data-intensive and it is worthwhile to explore
whether satellite remote sensing provides opportunities for an operational system to
monitor waterlogging. In recent years studies within remote sensing on irrigated agri-
culture have focussed on static delineation of waterlogging. However, waterlogging is a
dynamic process that requires frequent monitoring. Future research to create a remote
sensing based monitoring system to prevent waterlogging can learn from research on
the remote sensing of inundation.

To demonstrate the information on waterlogging present in different remote sens-
ing data products, an irrigated sugarcane plantation in Xinavane, Mozambique, is used
as a case study. The plantation faces issues with waterlogging and, therefore, use the
information to illustrate how different sensing techniques may contain information on
waterlogging. However, each sensing technique has its own limitations. Consequently,
there is not just one sensing technique suitable to monitor waterlogging. Opportunities
to monitor waterlogging lie in hybrid approaches combining different satellite products
to optimize temporal and spatial resolution.
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Future scientific routes should focus on complementing remote sensing data with
ancillary data by looking at the temporal variation, and waterlogging occurrence from
drainage parameters deduced from high spatial resolution DEMs (with LIDAR or UAVs).

Remote sensing can be used to identify areas that are frequently subject to water-
logging, information that can be used to make smarter crop choices and to improve
drainage. Remote sensing data from multiple sources can be combined with ancillary
data to monitor transient waterlogging at high temporal and spatial resolution. This can
provide real-time information on trafficability, and potential crop damage. Most im-
portantly, this provides an essential input to evaporation estimation algorithms used for
irrigation support. In addition to conserving water resources, the correct attribution of
crop stress to waterlogging rather than water deficit stress would ensure that waterlog-
ging is not further exacerbated by the application of additional irrigation.



4
MONITORING SUGARCANE

CANOPIES

You, Venerable One, may indeed be a seeker, for, striving toward your goal, there is much
you do not see which is right before your eyes.

Herman Hesse

The previous chapter gave a perspective on how waterlogging is present in satellite re-
mote sensing observations in irrigated agriculture. The original aim of this chapter was
to study field time series of different vegetation indices. Surprisingly, time series analysis
revealed the sensitivity of Sentinel-1 backscatter to sucrose accumulation. This is an im-
portant finding to be considered when observing agricultural canopies and waterlogging
from space.

This chapter is published in Frontiers in Remote Sensing (den Besten, Steele-Dunne, Aouizerats, et al., 2021).
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4.1. INTRODUCTION
Sugarcane is an important source for both sugar and ethanol production, where the
quantity and quality of soluble sugar in the plant, named sucrose, determines the final
sugar yield. Sucrose production develops over the season in the stem of the sugarcane
plant (J. Wang et al., 2013). Sucrose accumulates in high concentrations in the stem. Dif-
ferent sucrose concentrations have been reported by cultivars around the world, ranging
between 10 and 15 percent of fresh weight (G. Inman-Bamber, 2013).

Monitoring sugarcane and its sucrose content during the growing season can provide
essential information to several users, such as individual producers, sugarcane mills, or
commodity traders (Abdel-Rahman & Ahmed, 2008). This is because monitoring and
yield forecasting helps to evaluate production processes, adjust on-site management,
and estimates the potential industrial production (Bocca et al., 2015). Currently, the
most common method for yield estimation in the field is still based on historical records
and expert knowledge (Shendryk et al., 2021). Specialists estimate yield based on visual
assessment, basing their estimation on knowledge, historical yield data, land character-
istics, weather, and the manifestation of pests and diseases (Bocca et al., 2015).

Previous studies have researched the relation between sugarcane yield and vegeta-
tion indices computed from satellite data (Bégué et al., 2010; Lofton et al., 2012; Molijn
et al., 2019; Morel et al., 2014). Common techniques are based on optical indices (e.g.
NDVI). For instance, Morel et al. (2014) found integrated NDVI values over the growing
season best related to yield on a field scale. Fernandes et al. (2017) investigated how
NDVI timeseries and neural networks can be combined to predict regional sugarcane
yield in Brazil. Unfortunately, the integration of new yield estimation techniques into
the decision making process of sugarcane production remains slow (Bocca et al., 2015).

Few studies have focused on Synthetic Aperture Radar (SAR) data and its relation to
sugarcane or sucrose yield. Limited studies have assessed the capability of SAR data to
monitor sugarcane biomass or estimate sugarcane yield. Shendryk et al. (2021) focused
on predicting yield with machine learning, where Sentinel-1 data was used as a predic-
tor variable. Molijn et al. (2019) explored the suitability of Sentinel-1 data to monitor
biomass throughout the growing season. However, in none of these studies was SAR
data directly compared to a large yield database.

This chapter will show how sucrose accumulation affects Sentinel-1 backscatter. Sentinel-
1 backscatter and Planet optical data are used and compared. The analysis starts by as-
sessing the variation of different vegetation indices over the growing season. Hereafter,
the relationship of different vegetation indices to sugarcane yield over the season is com-
pared. Finally, a modeling study was set up to mimic the impact of sucrose accumulation
on the dielectric constant. The modeling study will provide explanation on the behavior
of Sentinel-1 backscatter and supports the potential to monitor potential sucrose yield
with satellite data.

4.2. SUGARCANE GROWTH
Around the world sugarcane is grown in subtropical and tropical conditions. While Brazil
and India are the largest sugarcane producers worldwide, accounting for 21 percent and
percent respectively (FAO, 2021a), the continent of Africa accounts for five percent of
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the total sugarcane production (FAO, 2021b). Where Brazil produces sugarcane mostly
under dryland conditions, the majority of the sugarcane grown on the African continent
is sustained with irrigation (Dubb et al., 2017).

Sugarcane can be grown as a plant cane or ratoon crop (G. Inman-Bamber, 2013).
When sugarcane is grown as a ratoon crop, it is not replanted annually but grown from
the preceding plant. As it is cost-effective, ratooning is the most common practice within
the sugarcane growing countries (Surendran et al., 2016). Sugarcane is planted and har-
vested all year round. Harvest dates depend on the sugar mill and ideally, cane growth is
planned to sustain maximum capacity (Bocca et al., 2015).

Compared to other perennial crops, sugarcane has a relatively long growing season
and is harvested after a period of between 12 and 18 months. Physiological changes
controlled by different mechanisms define different growth stages. In general, sugar-
cane growth is divided by the following four periods: an initial stage (30 days), tillering
stage (90 days), development stage (150 days), and the final stage (90 days) (Doorenbos
& Kassam, 1979; Silva et al., 2015). Throughout the analysis the growth stages will be
referred to.

The initial stage is characterised by the germination of the original stool. The onset
of biomass growth and sucrose accumulation coincides with the development of the leaf
canopy, during the tillering stage (G. Inman-Bamber, 2013). During the development
stage the sugarcane plant focuses more on elongation of the stem, which is an important
sink for sucrose development (Cock, 2001; G. Inman-Bamber, 2013). In the final stage,
senescence is the dominant process (Martins et al., 2016). During this process the leaves
turn yellow as chlorophyll content decreases. This process is combined with water loss
in the plant and therewith increases the sucrose concentration in the plant (Bégué et
al., 2010). In irrigated sugarcane, irrigation is often stopped at the end of the season to
maximize the accumulation of sucrose (G. Inman-Bamber, 2013).

4.3. DATA AND METHODS

4.3.1. FIELD DATA ACQUISITION

This chapter uses crop yield data from a sugarcane plantation located on the banks of
the lower Incomati river in Xinavane, Mozambique. The plantation grows ratoon sugar-
cane under irrigated conditions in a subtropical climate. From April to December, the
local sugar mill opens and the sugarcane fields are harvested (den Besten et al., 2020; den
Besten, Steele-Dunne, de Jeu, et al., 2021). The focus of this research lies on 387 fields
that make up the majority of the area owned and grown by the Tongaat Hulett group,
where agricultural management is centrally organized. The average field-size is approx-
imately 20 hectares (den Besten et al., 2020). The sugarcane in the plantation is planted
in rows 1-1.5 meter apart. The dominant sugarcane varieties in the plantation are N25
and N23.

In the analysis, a sugarcane yield data of season 2018-2019 and 2019-2020 was used.
After harvest, trucks containing harvested sugarcane are weighed and documented per
field. After weighing, several samples are tested for their sucrose content. This pro-
cess results in data per field on sugarcane yield (tons/hectare, TCH) and sucrose yield
(tons/hectare, TSH). The relation between sugarcane and sucrose yield is linear for this
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plantation with a correlation coefficient of 0.95 for 688 samples (see Figure 4.1B). Be-
cause of this very high correlation and the fact that the sucrose database is not complete,
the analysis focuses on the yield data available for sugarcane as a proxy for its sucrose
content to maximize the number of available data points.

Figure 4.1: A) Distribution of sugarcane yield for season 2018-2019 and 2019-2020 B) Comparison sucrose yield
and sugarcane yield (r=0.95).

4.3.2. SATELLITE DATA ACQUISITION AND PROCESSING
For this analysis, time series per season were extracted for different remote sensing prod-
ucts per field based on harvesting dates. Time series dates were expressed in terms
of "days after ratooning" to allow for comparison between fields. Time series of the
field-averaged Sentinel-1 backscatters at VV and VH polarizations were used, as well as
Planet’s NDVI product.

SENTINEL-1 BACKSCATTER

Sentinel-1 data was processed by using the Sentinel Application Platform (SNAP) tool-
box (ESA, 2021b). During this process a radiometric calibration and terrain correction
are applied to convert the data into normalized backscatter and correct for elevation dif-
ferences respectively. The Sentinel-1 satellites observed with Synthetic Aperture Radar
(SAR), captures backscatter at 5.405GHz (C-band) at 5x20m spatial resolution. In south-
ern Mozambique, Sentinel-1 has a revisit frequency of approximately 12 days (ESA, 2021a).
Only descending data from both Sentinel-1 platforms were used of orbit number 6 and
79 to minimize observation geometry effects (Vreugdenhil et al., 2018). Finally, the ob-
servations were sampled at a 10 by 10 meter resolution.

Backscatter timeseries were extracted from Sentinel-1 observations for each field for
VV and VH polarizations. In addition, the cross ratio (CR) was calculated for each field.
The CR can be calculated by subtracting VH-VV on a logarithmic scale. In previous re-
searches CR was used to study vegetation dynamics as it reduces the backscatter effect of
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soil moisture and soil-vegetation interactions (Khabbazan et al., 2019; Vreugdenhil et al.,
2018). CR has been shown to increase with vegetation growth and is, therefore, more rep-
resentative of the scattering associated with volume scattering from vegetation (Veloso
et al., 2017), while the individual VV and VH backscatters include a stronger contribution
of soil moisture from rain events as well as irrigation.

PLANET FUSION NDVI
The Normalized Difference Vegetation Index (NDVI) is a widely used vegetation index.
NDVI requires red and near-infra red bands and is indicative of the chlorophyll content
of a vegetated surface (Rouse et al., 1974). Planet realizes daily global imaging in opti-
cal spectrum, observing in RGB and near infra red at approximately 3 meter spatial res-
olution with commercial satellites. For this chapter Planet’s NDVI fusion products was
used and up-scaled to Sentinel-1’s 10 meter spatial resolution. The Planet fusion product
merges PlanetScope observations with Sentinel-2, Landsat-8 and MODIS data (Houborg
& McCabe, 2018a). The end result is a daily cloud free NDVI timeseries. The new Planet
data improves cross-sensor inconsistencies due to variations in orbital configurations,
spectral responses, and radiometric quality. The CubeSat ENabled Spatio-Temporal En-
hancement Method (CESTEM) creates a robust NDVI signal that can be used to observe
high-frequency vegetation dynamics (Aragon et al., 2021; Houborg & McCabe, 2018a;
Planet, 2021).

4.3.3. SUGARCANE DATA ANALYSIS

The sugarcane yield and satellite data were used to understand the effect of sucrose ac-
cumulation on different vegetation indices retrieved with satellite data. In addition, a
modeling study was done to explain the effect of changes in the vegetation water con-
tent as a result of sucrose accumulation on the dielectric constant of vegetation.

YIELD ANALYSIS

First, the variation of NDVI and CR per field was assessed over the growing season. To
understand the behaviour of the two vegetation indices in poor and good performing
fields, the 10th and 90th percentile of the sugarcane yield dataset for the season 2018-
2019 and 2019-2020 was calculated. The 10th percentile was found to be 50.0 TCH and
the 90th percentile 108.7 TCH. The average NDVI and CR over time was computed for
the selected fields below and above the chosen percentiles.

Second, the VV backscatter, VH backscatter, CR, and NDVI were compared with yield
over the growing season. The Pearson correlation coefficient was computed for each
day after ratooning for average field values of the satellite derived products and the final
sugarcane yield. For each satellite product the five-day moving average of the correlation
coefficient was plotted to understand the changes over the growing season.

MODELING STUDY

To understand the effect of sucrose accumulation on radar backscatter a modeling study
was performed. Radar backscatter of a canopy is determined by its dielectric properties,
size, shape, orientation, and roughness, and the distribution of the canopy (Karam &
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Fung, 1989; Steele-Dunne et al., 2017). The dielectric properties of vegetation are de-
scribed by the dual-dispersion model of Ulaby and El-Rayes (1987). This is a model con-
verting the gravimetric water content into the complex dielectric constant of vegetation
(ϵv ) (Meyer et al., 2019). Ulaby and El-Rayes (1987) assumes ϵv is a mixture of three com-
ponents: a non-dispersive residual component (ϵr ) [-], a free water component (ϵ f w ) [-],
and a bound water component (ϵb) [-]. Where bound water refers to the water molecules
that are in a solution, and free water means refers to water molecules not in compound
(Ulaby & El-Rayes, 1987). Ulaby and El-Rayes (1987) define the dielectric constant of
vegetation (ϵv ) as follows:

ϵv = ϵr +υ f wϵ f w +υbϵb (4.1)

Where υ f w : volume fraction of free water [-] υb : volume fraction of the bulk vegetation-
bound water mixture [-]. All the components depend on the gravimetric water content
(Mg ). Where Mg is the gravimetric moisture content defined as the amount of water [g]
per wet biomass [g] (Meyer et al., 2019). The non-dispersive residual component (ϵr ) is
estimated as:

ϵr = 1.7−0.74Mg +6.16M 2
g (4.2)

The free water and bound water component of the complex dielectric constant of
vegetation in equation 4.1 are defined as follows:

ϵ f w = 4.9+ 75

1+ j f
18

− j
18σ

f
(4.3)

ϵb = 2.9+ 55

1+ ( j f
0.18 )0.5

(4.4)

where f is the frequency [GHz],σ the ionic conductivity of free-water solution [Sm−1],
and j denotes the imaginary number. The parameter σ was found to be constant (1.27
Sm−1) by Ulaby and El-Rayes (1987). The difficulty of the model is to estimate the dis-
tribution of free and bound water. With the help of lab experiments Ulaby and El-Rayes
(1987) found a relation between the gravimetric moisture content and the υ f w and υb :

υ f w = Mg (0.55Mg −0.076) (4.5)

υb = 4.64M 2
g /(1+7.36M 2

g ) (4.6)

Literature on water content and sucrose development in sugarcane over time is not
abundant (G. Inman-Bamber, 2013). However, a study by Muchow et al. (1996) reported
on a field experiment that documented the development of sucrose, vegetation water,
and dry vegetation over the growing season. The location of the experiment was Aus-
tralia and sugarcane was grown as a ratoon crop under irrigated conditions (Muchow
et al., 1996). The experiment entailed sampling of sugarcane on eight moments in the
growing season. From these results the gravimetric moisture content was estimated by:
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Mg = 1−Msucr ose −Mdr y (4.7)

where Msucr ose is the fraction of sucrose of the total fresh biomass and Mdr y the
fraction of dry weight of the fresh biomass. Data from (Muchow et al., 1996) were used
to model the effect of temporal changes in Mg on the dielectric constant in vegetation.
This allows us to explain the observed changes in backscatter and CR. In Table 4.1 the
resulting υ f w and υb can be found.

Table 4.1: Free and bound water fractions after several moments in the growing season. υb and υ f w computed
with field experiment results Muchow et al. (1996).

Sampling day 150 190 220 250 290 350 380 420
υ f w 0.29 0.23 0.20 0.18 0.15 0.14 0.14 0.13
υb 0.52 0.50 0.49 0.48 0.45 0.45 0.45 0.44

4.4. RESULTS
Figure 4.2 A and B show the NDVI and CR per field during the growing season, where
panel A shows the NDVI and panel B the CR. The red and green lines in Figure 4.2 A
and dots in Figure 4.2 B display the NDVI and CR observation values in 10th and 90th

percentile fields considering crop yield. The NDVI and CR of the fields with a yield be-
low the 10th percentile and above the 90th percentile are averaged to compute the red
and green lines, respectively. From Figure 4.2 A the 90th percentile NDVI development
show an increase over the growing season. The 90th percentile reaches a much higher
NDVI value. The 10th percentile NDVI development show lower values. The difference
between the 10th and 90th percentile line becomes evident during the Development and
Final stage, when the biomass is fully developing. The results suggest good performing
fields develop high NDVI values over the growing season and poor performing fields de-
velop low NDVI values. Which is in line with previous research on NDVI and sugarcane
yield (Bégué et al., 2010; Pinheiro Lisboa et al., 2018).

Figure 4.2 B shows an opposite signal compared to NDVI. The CR development of
90th percentile line shows a decrease over the growing season, starting in the Devel-
opment stage. The average CR values of the 10th percentile fields are more constant
from the end of the Tillering stage onward. Interestingly, the CR values of the 10th per-
centile fields are higher than the 90th percentile fields in the Development and Final
stage. Combining with Figure 2A, this suggests that good-performing fields are charac-
terized by high NDVI and low CR. Conversely, poor-performing fields are characterized
by low NDVI and higher CR values. To our knowledge, this is the first such analysis of CR
in sugarcane. However, in other crops (e.g. corn) the CR increases over time as a result
of increase in vegetation water content (Vreugdenhil et al., 2018).

Figure 4.3 visualizes the relation between different satellite products and sugarcane
yield over the growing season. The satellite derived products assessed in Figure 4.3 are:
VV, VH, CR and NDVI. In Figure 4.3 the Pearson correlation over each day in the grow-
ing season is calculated for the final yield and average field value of the satellite derived
product for all fields under study. Figure 4.3 shows the correlation between sugarcane
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Figure 4.2: (A) NDVI timeseries of the fields under study over the growing season. Each gray line corresponds
to a single field. (B) Cross ratio timeseries of the fields under study. The green and red lines display the average
values of fields with a yield above the 90th percentile (> 108.7 TCH) and below the 10th percentile (< 50.0
TCH). The bar below the figure indicates the length of the different crop stages.

yield and NDVI is increasing alongside the sugarcane development. The highest correla-
tion is 0.56 on 254 days after ratooning, at the end of the Development stage. In the Final
stage, the correlation with yield declines. This is expected since, at this stage, dry-off
causes wilting of the sugarcane plant (see section 4.2).

VV and VH show a similar variation in their correlation to yield throughout the grow-
ing season. The highest correlation for VV is 0.50 on day 272 and 0.42 for VH on day 116.
The correlation to yield for VV and VH start to deviate from each other during the De-
velopment stage. VV shows higher correlations to yield compared to the VH, suggesting
that VV provides a better indicator of sugarcane growth than VH. This is in contrast to
other studies on broadleaf crops and tall leaf stems (e.g. corn) which showed an increas-
ing backscatter signal over the growing season (Macelloni et al., 2001). Macelloni et al.
(2001) and Vreugdenhil et al. (2018) showed VH to be more sensitive to crop growth in-
dicators (i.e. Leaf Area Index, Vegetation Water Content). However, the crops considered
in those studies do not accumulate sucrose over the growing season.

The CR shows a negative relationship with yield over time. This is an opposite rela-
tionship NDVI shows with yield over time. Over the growing season the relation between
CR and yield shows an increasing negative correlation with a maximum correlation of
-0.47 on day 233. In particular, halfway through the Tillering stage and towards the start
of the Development stage, the CR correlation shows a steep decline. Towards the end
of the Development stage, the correlation stablizes and remains stable throughout the
Final stage. The steep increase in negative correlation between the yield and CR half
way the Tillering stage suggests a change in the sugarcane plant growth. Interestingly,
this coincides with the period in which the sugarcane plant starts to accumulate sucrose
(see section 4.2).

A modeling study was performed to investigate how sucrose accumulation affects



4.4. RESULTS

4

39

Figure 4.3: Pearson correlation with sugarcane yield for season 2019-2020 for VV and VH polarization, Cross
ratio, and NDVI. The bar below the figure indicates the length of the different crop stages

.

the dielectric constant, a key driver of the radar backscatter. Data were used from a field
campaign conducted by Muchow et al. (1996), in which they documented the develop-
ment of sucrose, vegetation water, and dry vegetation over the growing season. The data
are visualized in Figure 4.4, where the accumulation of sucrose is evident, particularly
during the Development stage.

The accumulation of sucrose within the plant lowers the total gravimetric water con-
tent in the plant (section 4.3.3 and equation 4.1). Based on the Dual Dispersion model of
Ulaby and El-Rayes (1987), this lowers the dielectric constant of vegetation significantly,
see Figure 4.4. Figure 4.4 shows how the dielectric constant of vegetation, particularly
the real part, decreases. This decrease explains the decrease in backscatter, which in
turn explains the negative correlation between CR and yield.

It is worth noting that a change in the chemical composition of stem water as a result
of sucrose accumulation would also affect the dielectric constant, a factor not explicitly
considered in Equation 4.6 (McDonald et al., 2002; Ulaby & El-Rayes, 1987). As sucrose
is bound to water, an increase in sucrose should increase the amount of bound water
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Figure 4.4: Results of a field campaign by Muchow et al. (1996) and the influence of the change in distribution
between bound and free particles on the dielectric properties of vegetation. The bar below the figure indicates
the length of the different crop stages.

(Moore & Botha, 2013). Bound water has a lower dielectric constant than free water, as
the molecules are not free to rotate. Hence, accounting for the impact of sucrose on the
bound water fraction is likely to lead to a further decrease in dielectric constant.

As a result of sucrose production within the sugarcane stem, the combined effect
of a changing water content and chemical composition affects the backscatter signal
through a decrease in dielectric constant directly. This is different from NDVI, which
indicates the chlorophyll content of the vegetated surfaces (Rouse et al., 1974). The link
between chlorophyll content and sucrose accumulation is indirect. The CR in particular
has a distinctive response to the sucrose development and, therefore, proves to contain
information on sucrose accumulation in the sugarcane plant. In addition, the results
support the CR to be more representative of the scattering associated with the canopy,
as was found in other studies (Khabbazan et al., 2019; Veloso et al., 2017; Vreugdenhil
et al., 2018).
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4.5. DISCUSSION
This chapter shows the relationship between sugarcane yield and vegetation indices
from Sentinel-1 backscatter and Planet NDVI. The results show a negative correlation
between the CR and sugarcane yield over the growing season. Previous studies on the
CR reported the ability to observe changes in vegetation structure and accumulation of
fresh biomass (Veloso et al., 2017; Vreugdenhil et al., 2018). However, no comparable
studies exist where the CR is compared to yield in sucrose accumulating crops.

Contrary to the results using CR, NDVI develops a positive correlation to yield over
the growing season. In other words, where good performing fields are characterized by
low CR values and high NDVI, poor performing fields are characterized by high CR values
and low NDVI. Other researchers have found positive correlations with NDVI and sug-
arcane crop yield (Bégué et al., 2010; Morel et al., 2014). In these studies the integral of
NDVI over the growing season was compared to final sugarcane yield or the maximum
value within a growing season. In addition, Bégué et al. (2010) found lower NDVI val-
ues in the final stage for fields with a higher sucrose content. This can be explained by
the leaf senescence, which causes the chlorophyll content to drop. And could explain
why the results show a decrease in correlation with NDVI towards the end of the growing
season.

A modeling study was used to show how the dielectric constant of sugarcane is af-
fected by the change in the sugarcane’s internal composition (El-Rayes & Ulaby, 1987;
Ulaby & El-Rayes, 1987). Contrary to other crops, the chemical composition of plant
water in sucrose-producing crops, like sugarcane, changes over the growing season. Su-
crose is produced from the Tillering stage through to the Development stage. This de-
creases the amount of free water and increases the bound water in the sugarcane stem
over the growing season (J. Wang et al., 2013; R. Wang et al., 2011). The combined effect of
a decrease in vegetation water content and change in chemical composition of the veg-
etation water due to sucrose accumulation in the sugarcane stem alters the backscatter
signal (McDonald et al., 2002).

The alteration of the backscatter signal is visible in the CR over the growing season
which shows a negative correlation to sucrose yield. This shows the CR is able to ob-
serve sucrose accumulation during the growing season. Hence, the CR is indicative of
the sucrose content in the sugarcane plant. To improve understanding of the effect of
sucrose accumulation on the backscatter signal, more research should focus on the ef-
fect of sucrose accumulation on the partitioning between free and bound water in veg-
etation. Within the current estimation of gravimetric moisture content in Ulaby and
El-Rayes (1987) the development of bound water in sucrose accumulating crops are un-
derestimated. The estimation of apportioning free and bound water is currently based
on, predominantly, corn leaf experiments by Ulaby and El-Rayes (1987). More studies
should focus on experiments with sucrose accumulating vegetation (e.g. agave).

In this chapter, it has been proven that CR computed with Sentinel-1 backscatter can
be used to observe sucrose accumulation in sugarcane. Although this thesis focuses on
sugarcane, Sentinel-1 backscatter could also be of use to monitor quality and/or sucrose
accumulation in other crops (e.g. agave). In addition, combining optical and backscatter
observations is expected to be of value for crop monitoring and yield prediction. Future
studies along the same line, therefore, should focus on combining these different data
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products.



5
THE INFLUENCE OF WATERLOGGING

ON SUGARCANE MONITORING

I told you. Too much of anything is really never good.

Mom

The previous chapter showed the impact of sucrose accumulation in Sentinel-1 backscat-
ter. In this chapter the aim was to analyze if, and how, waterlogging is present in Sentinel-
1 backscatter. This was done by comparing several seasons and by benchmarking against
different remote sensing observations. The analysis elaborated on how to observe sucrose
development in Sentinel-1 backscatter and the results showed the influence of waterlog-
ging on Sentinel-1 backscatter observations.

This chapter is published in Remote Sensing of Environment (den Besten et al., 2023).
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5.1. INTRODUCTION
The global production of sugarcane is driven by the demand for raw sugar and (bio-)
ethanol (Shabbir et al., 2021). Over the last few decades researchers have managed to
breed the perennial grass to produce high contents of sucrose. Furthermore, sucrose is
the soluble sugar present in the stem of the sugarcane crop and, as a result of breeding,
sugarcane species accumulate high concentrations of sucrose. Additionally, the concen-
tration of sucrose in the sugarcane stem can be as high as 18 percent of fresh weight
(Mustafa et al., 2018).

Improving operational and management practices in the sugarcane production chain
are key to sustainable intensification, in order to ultimately close the current yield gaps
with less pressure on the environment (Bordonal et al., 2018). An example is to improve
current manual sugarcane monitoring to adjust on-site management (Bocca et al., 2015).
Here, information on the presence of waterlogging plays a role due to waterlogged soil
conditions affecting plant physiology and hampering crop growth and yield significantly
(den Besten, Steele-Dunne, de Jeu, et al., 2021; Shaw et al., 2013). Academic literature re-
ports the cause of waterlogging in irrigated agriculture to be a result of over-irrigation
or poor sub-surface drainage (FAO, 2016c). In rain-fed agriculture, Martinez-Feria and
Basso (2020) found waterlogging to be an important driver behind yield instability in the
US Midwest.

Satellite remote sensing can play a role in improving current sugarcane production
practices through monitoring (Bégué et al., 2018; Cancela et al., 2019; Mancini et al.,
2019; McCabe et al., 2016). Unfortunately, the integration of new remote sensing tech-
niques into the decision making process of sugarcane production remains slow (Bocca
et al., 2015). Previous studies have researched the relationship between sugarcane yield
and vegetation indices computed from satellite data (Bégué et al., 2010; Lofton et al.,
2012; Molijn et al., 2019; Morel et al., 2014). Common techniques are based on optical
indices (e.g. NDVI) (Morel et al., 2014) and focus on machine learning (Fernandes et al.,
2017; Shendryk et al., 2021).

Vegetation indices retrieved from backscatter are also starting to proliferate (Steele-
Dunne et al., 2017). Researchers have shown the capabilities of cross- and co-polarization
backscatter channels to monitor sugarcane (Baghdadi et al., 2009; Molijn et al., 2019;
Som-ard et al., 2021). For example, Baghdadi et al., 2009 concluded cross-polarizations
are slightly better for monitoring sugarcane and, therefore, Molijn et al., 2019 did not
consider co-polarization.

Vegetation indices retrieved from radar are sensitive to different characteristics than
indices derived from optical sensors. Microwave energy responds to the dielectric prop-
erties of the crop canopy, but also to the structure of the crops, such as the size, and
orientation of leaves, stalk, and fruit (McNairn & Brisco, 2004). The dielectric properties
are strongly influenced by the water content in the plant (Ulaby & Jedlicka, 1984). In ad-
dition, for sugarcane, den Besten, Steele-Dunne, Aouizerats, et al., 2021 showed how a
change in the internal characteristics of sugarcane during the growing season influences
the radar backscatter. As a result of sucrose accumulation, the dielectric constant of the
canopy decreases and the strength of the observed backscatter signal also decreases.

Unfortunately, studies relating large sugarcane yield datasets to backscatter are scarce
(den Besten, Steele-Dunne, Aouizerats, et al., 2021; Shendryk et al., 2021). In addition,
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it is not known how or the extent to which waterlogging beneath a thick canopy, such
as sugarcane, affects different radar polarizations and polarization ratios. Expanding
knowledge on how Sentinel-1 backscatter responds to sugarcane yield variability and
waterlogging is crucial to help the interpretation of the radar vegetation signals. In addi-
tion, information on the presence of waterlogging itself is valuable to several agricultural
practices (e.g. drainage issues, trafficability, irrigation).

Therefore, the aim of this chapter was to understand how Sentinel-1 backscatter re-
sponds to sugarcane yield variability and waterlogging. Here we present how backscatter
observations can be used to monitor sugarcane yield and how the observations are in-
fluenced by waterlogging. The ultimate goal was to increase understanding on how to
simultaneously monitor sugarcane and waterlogging using Sentinel-1 SAR data. To re-
search the issue we focused on an irrigated sugarcane plantation in Xinavane, southern
Mozambique, a site with numerous reported issues related to waterlogging (den Besten,
Steele-Dunne, de Jeu, et al., 2021).

5.2. SUGARCANE GROWTH
Sugarcane is grown in subtropical and tropical regions. Harvest dates are ideally de-
termined to match optimum supply to the nearest sugar mill (Bocca et al., 2015). The
majority of sugarcane plantations or farms grow sugarcane as a ratoon crop (G. Inman-
Bamber, 2013). This is a common and cost-effective practice around the world, where
sugarcane is not replanted after harvest, but grown from the preceding plant (Surendran
et al., 2016).

Sugarcane is ideally harvested at maximum sugar accumulation in the stem. The
average length of the growing season in Xinavane is twelve months (den Besten et al.,
2020). The growing season can be divided into different growth stages. In the analysis
presented in this chapter, the following four growth stages were defined: the initial stage
(30 days), the tillering stage (90 days), the development stage (150 days), and the final
stage (90 days) (Doorenbos & Kassam, 1979; Silva et al., 2015).

Sugarcane is a peculiar crop as it accumulates sucrose both inside and outside the
cells (both symplast and apoplast) (J. Wang et al., 2013). The sugarcane plant deposits the
sucrose in the stem vacuoles and cells around it. During the tillering stage, the sugarcane
plant starts accumulating biomass. The biomass growth takes place particularly in the
leaf canopy (G. Inman-Bamber, 2013). Hereafter, in the development stage, the growth
emphasis is on the stem, which is an important sink for sucrose development (Cock,
2001; G. Inman-Bamber, 2013). In this stage, the sucrose accumulation starts to play a
significant role. See figure 5.1 (A) and (D). Sucrose forms as a hydrogen bond, and the
development of stalk moisture and sucrose are therefore closely linked to each other (N.
Inman-Bamber et al., 2009). Over time, the sucrose accumulation ensures that a fraction
of the water in the fresh stalk is substituted with sucrose, see figure 5.1 (A) (Muchow et
al., 1996).

Throughout the growing season, the vertical distribution of sucrose and Vegetation
Water Content (VWC) inside the sugarcane plant changes as well. From our experience
in Xinavane, we know that the vertical distribution inside the sugarcane plant changes
during the growing season. However, to our knowledge, quantitative data on this have
not been published to date. A few researchers have attempted to capture the changes
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Development Final
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Figure 5.1: A schematic diagram of the vertical and temporal distribution of sucrose in the sugarcane stalk.
(A) shows the temporal change of sucrose, vegetation, and water distribution over the development and final
phase (Muchow et al., 1996); (B) and (C) the vertical distribution for a low and high yielding variety respectively.
(N. Inman-Bamber et al., 2009) For reference purposes (D), (E), and (F) illustrate the physical development of
the canopy and vertical structure of the sugarcane stalks.

of the vertical distribution over time by sampling different varieties in the development
stage. These results showed the sucrose distribution in lower yielding varieties was stored
mostly in the lower inter-nodes, whereas in the higher yielding varieties the sucrose is
distributed more homogeneous in the stalk, see figure 5.1 (C) and (D) (N. Inman-Bamber
et al., 2009). Nodes are referred to as the place where leafs develop on the stalk, see figure
5.1 (E) and (F).

5.3. DATA AND METHODS
The research presented in this chapter focused on different satellite remote sensing ob-
servations for an irrigated sugarcane plantation. Optical and passive microwave obser-
vations were used to benchmark Sentinel-1 observations, in order to understand the sea-
sonal characteristics and expose differences. Ground data were used to understand how
radar observations in different polarizations and their ratio relate to sucrose yield. Sec-
tion 5.3.1 will explain the origin and characteristics of the data and Section 5.3.2 will
provide a description of the data analysis.

5.3.1. DATA
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Figure 5.2: Location of fields under study in Xinavane, Mozambique. The colors indicate average yield for the
seasons 2019-2021 for 299 fields.

YIELD DATA

Crop yield data were obtained from a sugarcane plantation located on the banks of the
lower Incomati river in Xinavane, Mozambique (see Figure 5.2). The local sugar mill runs
from April to December and during these months sugarcane is harvested and milled.
The sugarcane produced in the plantation is converted to raw sugar at the sugar mill.
In the plantation, ratoon sugarcane is grown under irrigated conditions (den Besten et
al., 2020). The average field-size is approximately 20 hectares (den Besten et al., 2020).
The sugarcane in the plantation is planted in rows 1-1.5 meter apart. The dominant
sugarcane varieties in the plantation are N25 and N23, accounting for 86 percent (Butler,
2001). The research presented focused on 299 fields that are owned and managed by the
Tongaat Hulett group.

To harvest the sugarcane, fields are burnt to ease the manual harvest process and
remove leaves. After the fire ceases, the harvest labourers cut the stalk from the roots
at ground level. The harvested sugarcane is then collected by trucks allocated to spe-
cific fields. The trucks containing harvested sugarcane are weighed and documented
per field. After weighing, several samples are tested for their sucrose content. This pro-
cess results in data per field on sugarcane yield (tonnes of cane per hectare, TCH) and
sucrose yield (tonnes of sucrose per hectare, TSH).

For this research the sucrose yield (TSH) obtained by the sugar mill was considered
for the seasons 2018-2019, 2019-2020, and 2020-2021. The preceding seasons corre-
spond to 2019, 2020, and 2021 in Figure 5.3 (A). These years were taken because of robust
availability of satellite data during these seasons and contrasting years in terms of soil
water content. Seasons 2015-2019 experienced a rainy season below average, in contrast
to seasons 2020 and 2021 in Figure 5.3 (den Besten et al., 2020). Interestingly, Figure 5.3
(A) shows the mean sucrose yield was lower in seasons 2020 and 2021.
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Figure 5.3: (A) shows a boxplot of mean sucrose yield for seasons 2015 until 2021 (B) shows the relation between
measured sucrose and moisture percentage of fresh weight of seasons 2018-2021 for the 299 fields

In addition, Figure 5.3 (B) shows the percentage of sucrose and moisture of fresh
weight measured at harvest. This is to illustrate the high percentage of sucrose concen-
tration in the stalk (up to 16 percent). There is a negative correlation between sucrose
and moisture content at harvest, further illustrating the relation between sucrose and
moisture content in the sugarcane stalk (see section 5.2).

SOIL WATER CONTENT AND LAND SURFACE TEMPERATURE

During the analysis, Soil Water Content and Land Surface Temperature as derived from
the Land Parameter Retrieval Model using passive microwave observations were used
(Owe et al., 2008; van der Schalie et al., 2017). A downscaling method was applied to
the passive microwave brightness temperatures to get to a spatial resolution of 100m
(Richard de et al., 2016). The basis for Soil Water Content was SMAP’s L-band (1.41GHz)
passive microwave observations at 06:00AM at equatorial passing (descending) and the
a effective field of view footprint is a 39 km by 47 km ellipse. The observations repre-
sent the Soil Water Content in the first 0-5 cm of the soil. To compute Land Surface
Temperature AMSR-2’s Ka-band (36.5GHz) data were used, which observes at 01:30AM
(descending) with a spatial resolution of 7km x 12km (Holmes et al., 2009; Owe et al.,
2008).

For the analysis, the Soil Water Content was used to understand the temporal varia-
tion in soil moisture over the three seasons. The data products are too coarse to identify
individual irrigation events (den Besten, Steele-Dunne, de Jeu, et al., 2021). Neverthe-
less, it is very valuable for identifying wet or dry periods. Certainly, in combination with
observations from the field, a period with prolonged waterlogging could be identified in
season 2020-2021, see figure 5.4 and section 5.3.2. In Figure 5.4 (C) we zoom in on the
soil water content during the identified waterlogging peak where (II) indicates a week
during the waterlogging peak and (I) a week before of the waterlogging event.
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Figure 5.4 (A) also shows the average daily Land Surface Temperature for all the fields
under study. The LST reflects the seasonality in the plantation, with higher temperatures
before and during the rainy season and lower temperatures during winter. LST was used
in the analysis to understand seasonal dynamics and to understand the role of tempera-
ture on sucrose development.

SENTINEL-1 RADAR BACKSCATTER

Sentinel-1 GRD data were processed using Google Earth Engine and the Sentinel-1 Tool-
box. During this process, a radiometric calibration and terrain correction were applied to
convert the data into normalized backscatter and correct for elevation differences. The
Sentinel-1 satellites observed with Synthetic Aperture Radar (SAR), captures backscatter
at 5.405GHz (C-band) at 5x20m spatial resolution. Descending data from Sentinel-1 A
and B were used. Figure 5.5 (A) shows the available observations that were used through-
out the season. In southern Mozambique the majority of the revisit frequency between
4 to 6 days, with a few exceptions in 2018 as a result of maintenance (ESA, 2021a). Figure
5.5 (B) provides a snapshot of Sentinel-1 VH polarization. Finally, the observations were
sampled at a 10 by 10 meter resolution.

Backscatter time series were extracted for each field with daily average values of VV
and VH polarizations, see Figure 5.2 (B) for the respective field boundaries. The cross ra-
tio (CR) was also calculated for each field. The Cross Ratio can be calculated by subtract-
ing VH-VV on a logarithmic scale. Previous work showed CR reduces the backscatter ef-
fect of soil moisture and soil-vegetation interactions (Khabbazan et al., 2019; Vreugden-
hil et al., 2018). The individual VV and VH backscatters contain artefacts of soil moisture,
rain events, and irrigation for example (Molijn et al., 2019). The CR relates more to the
volume scattering from vegetation and increases with vegetation growth (Veloso et al.,
2017).

PLANET FUSION NDVI
The Normalized Difference Vegetation Index (NDVI) requires red and near-infrared bands
and is widely used as an indicator of the chlorophyll content and density of a vegetated
surface (Rouse et al., 1974). In this study PlanetScope satellite data were used. Plan-
etScope provides near-daily global imaging at optical wavelengths, observing in RGB
and near-infrared at 3-5 meter spatial resolution. This study used the Planet Fusion sur-
face reflectance product, which represents a comprehensive harmonization and fusion
methodology based on the CubeSat Enabled Spatio-Temporal Enhancement Method
(CESTEM) (Houborg & McCabe, 2018a, 2018b; Planet, 2021). Planet Fusion leverages rig-
orously calibrated publicly accessible datasets from Sentinel-2, Landsat 8/9, Moderate
Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiome-
ter Suite (VIIRS) in concert with the higher spatial and temporal resolution data provided
by Planet’s medium resolution constellation of 200+ CubeSats for full fleet interoperabil-
ity. Planet Fusion includes rigorous, temporally driven, cloud and cloud shadow detec-
tion and advanced harmonization to reduce cross-sensor inconsistencies resulting from
variations in orbital configurations, spectral responses, and geometric and radiometric
quality. The end result is a next generation analysis ready surface reflectance product
that can be used to derive daily, cloud-free, and gap-free NDVI time series data char-
acterized by enhanced radiometric stability and consistency across space and time to
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Figure 5.4: (A) Land Surface Temperature and (B) soil water content averaged for all the fields under study
from April 2018 until December 2021. The individual observations are indicated with colored dots. The gray
line shows a moving average with a 10 day timeframe. The blue shading indicates the rainy season. (C) detailed
view of the rainy season of 2021. (I) and (II) indicate before and during the waterlogging peak, respectively.
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(A) (B)

Figure 5.5: (A) Green squares are days of Sentinel-1 observations used in the analysis (Tomkwok, 2022). (B)
Snapshot of Sentinel-1 observation (2021-02-17) with fields under study in Xinavane, Mozambique.

support studies on high-frequency vegetation dynamics (Aragon et al., 2021; Houborg
& McCabe, 2018a; Planet, 2021). Finally, the observations were resampled at a 10 by 10
meter resolution to meet the spatial resolution of Sentinel-1 for a more accurate com-
parison.

5.3.2. DATA ANALYSIS

CLASSIFYING FIELDS BY SUCROSE YIELD

First, the variation of vegetation indices per field were assessed over the growing sea-
son. To understand the response of the vegetation indices to sugarcane yield variability,
the 25th , 50th , and 75th percentiles of the sucrose yield (TSH) dataset were calculated.
From these percentiles four groups were created, respectively < 25th , 25th-50th , 50th-
75th , > 75th . These yield constraints were used to mask the field time series and gener-
ate averages for different performance groups and different indices. A rolling mean of
fifteen days was used to visualize time series.

SEASONALITY IN SUCROSE DEVELOPMENT

Previous studies have found a connection between ratooning month, sugarcane biomass
accumulation and sucrose yield (van Heerden et al., 2010). Due to seasonal variations in
radiation, the relationship between biomass and intercepted radiation is affected by ra-
tooning month. This means that radiation use efficiency for sugarcane varies depending
on the ratooning month (Donaldson et al., 2008). Figure 5.4 A shows how Land Sur-
face Temperature (LST) varies during the year and figure 5.6 shows that yield is indeed
affected by choice of ratooning month. Figure 5.6 shows the difference in yield in the
plantation can potentially be as much as 3 TSH [=20 percent] comparing the average
yield in August and November.

Figure 5.6 illustrates how the LST in the period of Day After Ratooning (DAR) 150-200
relates to the seasonality in yield. This implies, in order to compare other influential fac-
tor besides temperature, ratooning dates or month need to be considered. Therefore, the
data were further sorted by ratooning month which ranges from May to November. April
and December were excluded from the analysis due to insignificant number of fields
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(B)(A)

Ratooning month Ratooning month

Figure 5.6: (A) cumulative Land Surface Temperature between DAR 150-200 for fields with similar ratooning
months (B) violin plot for average sucrose yield per ratooning month for season 2019, 2020, and 2021

harvested during these months. The categorization aimed to understand the effect of
ratooning month on crop growth and how the vegetation indices are affected by other
factors (e.g. large rainfall events).

INTER-ANNUAL VARIABILITY

To demonstrate the difference between seasons, the average of the different observa-
tions for a specific Day of Ratooning was created for different growing seasons. Three
seasons were used to compute these averages, season 2018-19, season 2019-2020, and
season 2020-2021. In addition to time series, Pearson correlations between sucrose yield
and polarizations, CR, and NDVI were also provided. The average value of these polar-
izations and indices in the last 150 days before the ratooning date were related to sucrose
yield to understand the relationship to yield in different seasons.

THE INFLUENCE OF WATERLOGGING ON SUCROSE MONITORING

In this section the mean backscatter over the time series of the VV, VH, and CR is visu-
alized for fields ratooned in a given month. To illustrate the effect of waterlogging on
backscatter we focused on the wet period in season 2020-2021 (see Figure 5.4 (C)). The
agricultural department in Xinavane confirmed that intense rainfall events combined
with high groundwater levels due to the rise of water levels in the Incomati river, resulted
in prolonged waterlogging during this period. To start with, the SWC and backscat-
ter were compared in a season with a relatively dry rainy season (2018-19) and a rela-
tively wet rainy season (2020-21) for similar ratooning months. Second, we compared
data from at the waterlogging peak [2021-02-11:2021-02-18], to data from the local min-
imum before the waterlogging peak [2021-01-12:2021-01-19]. Each period contained
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three radar observations, which were averaged before visualizing the difference as a
function of growth stage.

5.4. RESULTS AND DISCUSSION

5.4.1. OBSERVING DIFFERENT SUCROSE LEVELS

Figures 5.7 shows the behaviour of VH and VV backscatter and the CR during three dif-
ferent growing seasons. Figures 5.7 (A), (D), and (G) show that the increase in biomass
leads to an increase of around 5dB in VH backscatter. Similar to the results of Molijn
et al., 2019, there is a rapid increase at the start of the season and a slower decrease after
the maximum is reached. However, the results are similar among the yield performance
categories, particularly early in the season.

In contrast, results from the VV polarization in Figure 5.7, (B), (E), and (H), are markedly
different for the four yield performance classes. By the end of the season, the differ-
ence between the lowest and highest performing categories is 1.5dB in VV compared to
0.5dB in VH. The maxima are more distinct in VV compared to VH, and the rate of de-
crease after the maximum is also different. One reason for the clear distinction among
yield categories in VV may be the predominantly vertical structure due to the sugarcane
stalks. In addition, the stalk is the main reservoir of sucrose in the sugarcane crop (J.
Wang et al., 2013) and sucrose yield data is directly linked and measured from the fresh
stalk biomass, section 5.2. Stalk biomass is lower in lower performing fields and higher
in higher performing fields (N. Inman-Bamber et al., 2009).

The combined influence of the differences between VH and VV is encapsulated in
the CR. Figure 5.7 (C), (F), (I), shows a clear distinction among the yield categories in
the CR. The CR of lower yield categories increases more slowly, and reaches a maximum
50 to 75 days later than the higher yield categories. The maximum values themselves
are higher for the lower yield categories. The most notable feature, though, is the diver-
gence after the maximum has been reached. The CR from the lowest yield category stays
close to its maximum until harvest, while the CR of the highest yield category has the
sharpest decline. By the end of the season, the difference in CR between the highest and
lowest yield categories can be as high as 1dB (Figure 5.7 (F)). Furthermore, den Besten,
Steele-Dunne, Aouizerats, et al. (2021) used published data and modeling to argue that
sucrose accumulation decreases the dielectric constant of sugarcane, thereby lowering
the Sentinel-1 backscatter. A decrease of the dielectric constant due to an increase in
sucrose concentration was also observed by Sumranbumrung et al., 2021. This explains
why higher performance categories show lower CR values over the growing season, and
vice versa. Figure 5.7 (C), (F), (I) confirms the CR is indicative of the measured VWC, as
pointed out by other studies (Veloso et al., 2017; Vreugdenhil et al., 2018).

Recall that the vertical distribution of moisture and sucrose is not uniform, and is
different for higher and lower yielding sugarcane (Figure 5.1) (N. Inman-Bamber et al.,
2009). In higher yielding sugarcane, the ratio of moisture to sucrose is more vertically
homogeneous, while there is a gradient in lower yielding stalks. However, even in higher
yielding sugarcane, there is little to no sucrose at the top of the plant. Note though,
that the dynamics of total backscatter are not necessarily dominated by the top of the
canopy, or some sensing depth from the top of the canopy. Recent modeling at L-band
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has also shown that contributions to total backscatter depend on the vertical distribution
of moisture, or more generally on the vertical variations in dielectric constant (Vermunt
et al., 2022). InSAR studies have also shown that the phase center can be close to the
surface even for relatively high frequencies (Joerg et al., 2018; Steele-Dunne et al., 2017).
This explains why, even at C-band, Sentinel-1 backscatter is sensitive to dynamics in
sucrose accumulation within the stalk and allows for a distinction between sugarcane
with high and low sucrose yield.

In Figure 5.8 the development of VH, VV, CR, and NDVI over all three growing seasons
are visualized. Figure 5.8 (D) and (E) shows CR and NDVI are able to distinguish differ-
ent performance groups over the growing season. In particular, the lowest performance
category deviates early in the season from the other categories. This may suggest poor
performing fields are more easily detectable early in the season. The maximum of the
VH, VV and CR radar data is observed earlier than the maximum in the optical indices.
This was also observed by Molijn et al., 2019. More importantly, while the lowest cate-
gory deviates from the others in the optical indices early in the season, the distinction
between all four classes is clearer in the radar data. In particular there is a delay between
the classes during the development stage. In addition, Table 5.1 shows the correlation
between backscatter and sucrose yield in the different seasons. The VV polarization and
sucrose yield show moderate positive correlations in Season 2018-19 and Season 2019-
20.

5.4.2. SEASONALITY IN SUCROSE DEVELOPMENT

Figure 5.9 (A), (B), and (C) shows the influence of ratooning month on the evolution of
backscatter. The influence of the choice of ratooning month on crop yield is visible in VV,
VH, and CR. In VV, VH and CR the fields ratooned in October and November rise to their
maximum faster than other months. However, in the VV and VH data these fields end
up distinctly lower at the end of the growing season. This is very consistent with Figure
5.6 (B), which shows that fields ratooned in the months October and November have a
lower yield compared to other ratooning months.

Compared to NDVI in Figure 5.9 (D), the development is similar to the individual po-
larizations. Fields ratooned in October or November, for instance, rise faster, but finish
with the lowest average values. This illustrates the importance of temperature on sucrose
development. Fields ratooned in October or November experience high temperatures at
the start of the growing season.

In addition, Figure 5.9 illustrates the difference in temporal behavior between optical
and radar timeseries. Where NDVI shows a clear distinction between ratooning months,
it is evident backscatter records more than vegetation. For example, in Figure 5.9 (C) the
CR for ratooning month November shows a steep rise due to high initial temperatures
and reaching a maximum at DAR 75. After reaching this maximum a second high is
reached at DAR 100, coinciding with the onset of the rainy season, which commences at
the end of December or January (see section 5.3.2). This is also visible in the ratooning
month of August in the CR, a second peak is reached around DAR 200 in Figure 5.9 (C),
which coincides with the onset of the rainy season. These additional peaks are not visible
in NDVI in Figure 5.9 (D). It is known that backscatter is sensitive to soil moisture and the
soil surface in early growth stages (De Roo et al., 2001; Pierdicca et al., 2017). However,
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Figure 5.7: The figures in the first columns (A), (D), and (G) show the development of VH over the growing
season. Subsequently, the figures in the second column (B, E, and H) represent the VV and third column (C,
F, and I) represent the CR. Each row represents a different season: 2018-2019, 2019-2020, and 2020-2021 (Day
after Ratooning) respectively. The different colors represent the different sucrose yield percentiles over the
growing season.
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(C) (D)

Figure 5.8: The development of (A) VH, (B) VV, (C) CR, and (D) NDVI over the growing season combining all
seasons (Day after Ratooning). The different colors represent the different sucrose yield percentiles over the
growing season.
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it may be worthwhile to also consider the effect of extreme wet periods throughout the
growing season.

5.4.3. INTER-YEAR VARIABILITY

Table 5.1: This table shows the Pearson correlation between mean backscatter in the last 150 days of the grow-
ing season observed in different polarizations, the CR, NDVI, and sucrose yield (TSH) for seasons 2018-19,
2019-20, 2020-21 and all three seasons together.

Season 2018-19 Season 2019-20 Season 2020-21 All seasons
VV 0.55 0.52 0.22 0.53
VH 0.22 0.21 -0.11 0.19
CR -0.48 -0.54 -0.49 -0.56

NDVI 0.58 0.6 0.34 0.6

Table 5.1 shows generally higher correlations between NDVI and sucrose yield than
backscatter observations and sucrose yield in different seasons. For backscatter, the CR
and VV give highest correlations to the yield. The correlation with CR is variable ranging
from -0.48 - -0.56, whereas the correlation between VV and sucrose yield lay between
0.22 and 0.55. Interestingly, all correlations except CR are affected in season 2020-21.
The VH backscatter and sucrose yield in season 2020-21 is even negative opposing the
correlation in other seasons.

Figure 5.10 shows the mean over the growing season for VV, VH, CR, and NDVI as
a function of day after ratooning. In Figure 5.10 (C) and (D) it is clearly visible season
2020-21 is behaving differently than other seasons. The graphs show a delay in the sug-
arcane development. Figure 5.11 (A), (C), and (D) show the standard deviation is also
different in season 2020-21. In this season a long wet period was documented, resulting
into prolonged waterlogging, see section 5.3.2.

5.4.4. THE INFLUENCE OF WATERLOGGING ON SUGARCANE MONITORING
Figure 5.12 shows (A) the average Soil Water Content and (B) average VH polarization for
fields with a ratooning month in June in two different seasons, season 2018-2019 (red)
and season 2020-2021 (blue). Figure 5.12 illustrates the response of VH backscatter due
to the rainy season. In both seasons an increased Soil Water Content in Figure 5.12 (A) in
mid-February and a drydown towards April is visible in VH backscatter in Figure 5.12 (B).
The rainy season was less intense in season 2018-2019 than in 2020-2021, which resulted
in a long waterlogging event in 2021. Considering the waterlogging event, as identified
in section 5.3.2, the blue shaded area (II) identifies the peak of the waterlogging event
in 2021 and (I) before the waterlogging event. The difference between VH backscatter at
the height of the peak (II) and before the rise of the peak (I) is also visible in Figure 5.12
(B) in season 2020-2021. Similar figures for different ratooning months can be found in
the appendix B.

To further quantify the effect of the waterlogging event on backscatter, Figure 5.13
shows the difference in the period before the large soil water content peak in season
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(A) (B)

(C) (D)

Figure 5.9: The average (A) VH, (B) VV, (C) CR, and (D) NDVI over the growing season (Day After Ratooning) for
different ratooning months. The colors indicate the different ratooning months
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(A) (B)

(C) (D)

Figure 5.10: The average (A) VH, (B) VV, (C) CR, and (D) NDVI over the growing season for seasons 2018-2019,
2019-2020, and 2020-2021 (Day after Ratooning).
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(A) (B)

(C) (D)

Figure 5.11: The standard deviation VH, VV, CR, and NDVI over the growing season for seasons 2018-2019,
2019-2020, and 2020-2021 (Day after Ratooning).
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(A) (B)

(I) (II)(I) (II)

Figure 5.12: The average Soil Water Content (A) and average VH backscatter (B) for fields ratooned in August
for Season 2018-2019 and 2019-2020. The graphs zoom in on the period of the 1st of January until the 1st of
April. (I) and (II) indicate the period before and during the waterlogging event in Season 2020-2021.

2020-21 and during the peak for different ratooning months. The difference shows backscat-
ter increases as a result of the event and is visible in VH, VV and CR. The waterlogging
event causes differences between 0.45 dB and 1 dB for VV, and between 1.12 to 1.47 dB
for VH. The higher values in November in the individual polarizations indicate that the
effect of waterlogging is more visible at earlier stages of the crop growth, i.e. when the
canopy is not fully developed yet. The results of CR in Figure 5.13 also indicate that the
effect of waterlogging may be translated through to the cross ratio. Therefore, the CR
contains information on waterlogging.

Though few studies have explicitly considered waterlogging, these differences can be
considered in the context of what is known about flooding under vegetation more gen-
erally. Lang et al., 2008 researched the difference of flooded and non-flooded forest in
HH polarization (C-band) and recorded an average difference of 2.45 db depending on
the incidence angle. Sentinel-1 data was also used to detect temporary flooded vegeta-
tion (TFV) to improve flood algorithms (Tsyganskaya et al., 2018a). Tsyganskaya et al.
(2018a) found, in different parts of the world, that VH and VV increased during flood-
ing events and the increase was due to the interaction between standing water and the
vertically oriented vegetation which increases the double- or multi-bounce interactions
(Tsyganskaya et al., 2018a).

Despite sugarcane’s thick canopy, Figure 5.13 shows that waterlogging is visible in all
crop stages. It seems that the effect of waterlogging is more evident at earlier stages of
the growing season (ratooning month November) in the individual polarizations. The
results imply Sentinel-1 backscatter contains both information on waterlogging under
the canopy as well as sucrose development in the stalk. Therefore, CR could potentially
play a role in the discrimination of waterlogging.
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Development FinalTillering

Figure 5.13: The difference between backscatter during and before the waterlogging peak averaged for fields
with similar ratooning months
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5.5. CONCLUSION
The aim of this research was to understand how Sentinel-1 backscatter responds to sug-
arcane yield variability and waterlogging. We demonstrated the possibility to monitor
sugarcane yield throughout the season, the effect of ratooning month on sugarcane de-
velopment, and how waterlogging under the canopy is observed within different stages
during the sugarcane development. All this valuable information is evidently present in
Sentinel-1 backscatter.

The results showed VV backscatter contains information on sucrose development.
The VV backscatter responds to the stalk characteristics which is also the reservoir of
sucrose in the sugarcane crop. The CR represents the VWC in the stalk and the results
demonstrated the influence of the distribution in availability of moisture and sucrose in
the stalk on total observed backscatter. The fraction of sucrose and VWC changes over
the growing season and the vertical distribution of sucrose and VWC varies as well. The
results showed both influence the observed backscatter.

In addition, the results demonstrated the influence of choice in ratooning month on
the sucrose yield and consequently backscatter. By considering ratooning month and
comparing sucrose yield with different backscatter observations, we discovered the in-
fluence of waterlogging beneath the sugarcane canopy. Especially the VH backscatter
was found to be sensitive to waterlogging beneath a canopy. However, waterlogging was
also visible in the CR, which demonstrates the CR can be used to discriminate waterlog-
ging from regular crop growth conditions. Moreover, the analysis implies the influence
of waterlogging is present in all stages of the sugarcane growth, despite a thick sugarcane
canopy.

The results of this research indicate that Sentinel-1 backscatter contains both infor-
mation on waterlogging under the canopy as well as sucrose development in the plant.
As the influence of waterlogging is detectable on a field-scale, it gives confidence that
Sentinel-1 backscatter can be used to monitor waterlogging. Also, the influence of wa-
terlogging can be flagged to help interpret vegetation signals retrieved with Sentinel-1
backscatter.

We recommend future studies and applications on crop monitoring with backscatter
to consider waterlogging or inundation within the growing season. In addition, more
experimental research is needed to understand the vertical and temporal distribution of
sucrose and moisture and its effect on backscatter for different crops. This is necessary
to improve understanding of the actual sensing depth of backscatter and to understand
the contributions of different surface and crop characteristics on backscatter retrievals.
Here, modelling studies could contribute to increased understanding of the backscatter
signal.

Sentinel-1 backscatter contains a lot of information relevant to monitor sugarcane
development. Nevertheless, more collaboration is needed between radar remote sens-
ing experts and application users to extract relevant and actionable information about
the surface and canopy. In addition, such collaboration would allow remote sensing sci-
entists to benefit from the great wealth of data collected on the ground by agriculturalists
every season.
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CONCLUSION

The research presented in this dissertation aimed to extend knowledge on what the influ-
ence of waterlogging is on agricultural monitoring with satellite remote sensing. This is an
essential step towards monitoring waterlogging from space. To do so, agronomic ground
data were collected from an irrigated sugarcane plantation. Different satellite remote
sensing technologies were assessed, modeled, and compared to the gathered field data.
In particular, we demonstrated with this thesis the detrimental impact of waterlogging
on agriculture and the potential to use C-band radar for sucrose monitoring and wa-
terlogging on a field-level, benchmarked with optical and passive microwave data. The
results have implications for evaporation estimates for irrigation calculations, remote
sensing of sucrose accumulating crops, and remote sensing of waterlogging in agricul-
ture.

6.1. NEW FINDINGS AND IMPLICATIONS

6.1.1. ON THE INFLUENCE OF WATERLOGGING ON IRRIGATION ESTIMATES

WITH SATELLITE REMOTE SENSING

The case study presented in Chapter 3 showed that, even in Xinavane’s semi-arid envi-
ronment, waterlogging is a major issue burdening crop productivity. The results demon-
strated currently available evaporation estimates from satellite data interpret waterlog-
ging stress as a need to irrigate. This implies that before evaporation estimates from
satellite data can play a role in optimizing field-scale water use in irrigated areas, evap-
oration algorithms must be able to unambiguously identify water stress due to water
deficit in the root-zone. In addition, by assessing different remote sensing techniques
in the context of waterlogging, the analysis showed the signature of waterlogging or
crop response to waterlogging varies among different satellite remote sensing observa-
tions. Consequently, integrating observations of multiple sensors and potentially an-
cillary data (e.g. DEMs) will help to unravel how to monitor waterlogging with satellite
remote sensing.
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6.1.2. ON MONITORING SUCROSE ACCUMULATING CROPS

The comparison of optical vegetation indices, radar vegetation indices, and sugarcane
yield (Chapter 4) in the plantation gave an interesting and unexpected result. Contrary
to expectations, the results showed a negative correlation between the CR and sugarcane
yield over the growing season. A modeling study proved that the negative correlation is
a result of a change in the sugarcane’s internal composition which effects the dielectric
constant of sugarcane canopies. The chemical composition of plant water in sugarcane
changes over the growing season. Sucrose is produced from the Tillering stage through
to the Development stage. This decreases the fraction of free water and increases the
fraction of bound water in the sugarcane stem over the growing season. Results from
the modelin study showed that this change in composition due to an increase in su-
crose accumulation lowers the backscattered signal. It was found that the distribution
of sucrose and moisture changes in time, but also that the vertical profile of the sucrose-
moisture distribution changes over the growing season. As a result, the vertical profile of
the fraction of sucrose to plant water influences the dielectric constant and, hence, the
backscattered signal.

The results confirmed that the CR is especially sensitive to the VWC in the plant. In
addition, the results contributed to fundamental knowledge that a change in chemical
composition of the crop influences the dielectric properties of the crop canopy. Hence,
canopies containing a lot of fruit (e.g. pineapple) or change in chemical composition
over time in the crop (e.g. agave) may exhibit variations in their dielectric properties due
to their chemical composition. Therefore, applications or studies of radar observations
including such agricultural canopies should be considered with care.

Previous research highlighted VH as the polarization containing the most relevant in-
formation to sugarcane monitoring. The results in this dissertation showed VV backscat-
ter contains valuable information on stalk development. The VV backscatter responds to
the stalk biomass, which is also the reservoir of sucrose in the sugarcane crop. Therefore,
we should not underestimate the potential value of VV polarization data for monitoring
crops with a structure similar to sugarcane should not be underestimated (e.g. narrow-
leaf crop, dominant vertical stalk).

6.1.3. ON MONITORING WATERLOGGING

The influence of waterlogging on Sentinel-1 backscatter was detected through bench-
marking with passive microwave observations, optical vegetation indices, and produc-
tion data. Despite a thick sugarcane canopy, an increase in VH and VV polarizations
was observed as a result of waterlogging. The increase was present at all stages during
the growing season. The difference in backscatter as a result of waterlogging was high-
est in the VH backscatter. Also, the effect of waterlogging is translated through to the
CR. As the influence of waterlogging is detectable on a field-scale and throughout the
growing season, it gives confidence that Sentinel-1 backscatter can be used to monitor
waterlogging. In addition, the influence of waterlogging can be flagged to help interpret
vegetation signals retrieved with Sentinel-1 backscatter.
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6.2. DIRECTIONS FOR FURTHER RESEARCH

6.2.1. RADAR REMOTE SENSING OF SUCROSE ACCUMULATING CROPS
A majority of the fundamental research on (active) microwave remote sensing was con-
ducted in the eighties and beginning of nineties (Ulaby et al., 2014). However, as the
results in this dissertation show, there is still a lot to discover to fully understand radar
backscatter observations over agricultural canopies. For example, Ulaby and El-Rayes,
1987 developed the Dual Dispersion dielectric model to understand the nature of vari-
ation in dielectric constant as a result of different vegetation components and their re-
spective contribution to the measured dielectric constant of vegetation. These compo-
nents relate to the volume fraction of free water, bound water, and vegetation. The model
was, however, fitted to experiments on corn leaves. Therefore, it would be beneficial to
expand experimental research with different crops. Especially crops and/or crop com-
ponents that accumulate sucrose over the growing season would be of interest here, to
improve our understanding of the effect this has on the dielectric constant of vegetation.

Recently, Sumranbumrung et al. (2021) presented a model to characterize the dielec-
tric properties of a sugarcane solution to be used in lab analyses in cane milling. This
model adds a term to include the effect of ionic activity and is fitted to in-situ measure-
ments. Sumranbumrung et al. (2021) also found the dielectric constant was inversely
proportional to sugar concentrations at all investigated frequencies and temperatures.
The dielectric constant decreases markedly with increasing sugar content, which is ex-
plained by a decrease of free water molecules in samples with higher sugar concentra-
tions. This in turn affects mostly the real part of the dielectric constant. In addition,
an increase in bound water in higher sugarcane concentration decreases the relaxation
frequency. The relationship between dielectric loss factor (imaginary part) and sugar
concentration was directly proportional at a lower frequency band before reaching the
relaxation region (< 9-10GHz). For C-band, the results showed no significant differences
between different concentration samples and loss factor. This illustrates that the effect
of an increase in bound water due to higher sugar concentration may influence the di-
electric loss factor more in other frequencies (observation bands). Moreover, Ulaby and
Jedlicka, 1984 showed bound water especially influences the imaginary part of the di-
electric constant below frequencies of 5GHz. This is an important consideration for fu-
ture studies with lower frequency observations, such as L-band (e.g. ROSE-L).

With the research presented in this dissertation, a start is made to understand the
sensitivity of radar backscatter and the dielectric constant to different levels of sucrose
during crop development. Future studies on sucrose sensitivity can use the data pre-
sented in this thesis as there is still a lot more to explore. For instance, a thorough sensi-
tivity analysis of the sucrose-water distribution can be done with the quality yield met-
rics provided in Chapter 2. Concentrations of sucrose could be further understood and
estimated through comparison of backscatter and other variables (e.g temperature) ob-
served around the harvest date. When consistent relationships are found, the informa-
tion can be used to provide input to forecast sucrose levels.

In addition, the results of Chapter 4 on vegetation monitoring of sucrose accumu-
lating crops, point out similar studies in other geographies and larger scale studies are
needed. Consequently, to understand how what we found in Mozambique also occurs in
other regions of the world. Continued improvement of our understanding of backscat-
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ter timeseries is important, as a radar time series on a sucrose accumulating crop may
be falsely interpreted as being affected by e.g. drought, while the opposite might be the
case. In that regard, revisiting fundamental research is necessary and the need for field-
work to support it.

6.2.2. COMBINING SENSORS TO DETECT WATERLOGGING
The results presented in the different chapters pointed out the relevance of combining
different sensors. Chapter 4 and 5 showed how benchmarking with different sensors
helps to enhance understanding of backscatter’s capability to monitor sugarcane and
detect waterlogging. For instance, by benchmarking the CR with NDVI, unexpected be-
havior in the radar vegetation signal was identified in Chapter 4. Likewise, in Chapter
5, the influence of waterlogging on radar vegetation indices was understood by bench-
marking against soil water content retrievals from passive microwave observations.

In Chapter 3 it was hypothesized that opportunities to monitor waterlogging lie in
hybrid approaches combining different satellite retrievals. The results in Chapter 4 and
5 reveal that this is indeed the way forward to monitor waterlogging. For the further de-
velopment of monitoring waterlogging from space, it is crucial to enhance knowledge on
the larger scale biophysical dynamics on field-scale or intra-field variation. For instance,
in further research on waterlogging, the contribution of waterlogging to backscatter ob-
servations should be isolated. This can be done by incorporating other sensors deter-
mining the likelihood of the occurence of waterlogging in the radar backscatter when a
temporal and/or spatial change in the signal is observed.

6.2.3. THE RIGHT RESOLUTION TO MONITOR WATERLOGGING
Throughout this dissertation the main sample size for the analysis was field level. This
helped to interpret the different signals with each other and proved to assist the analysis,
because of the abundant yield data collected at field-level. However, as mentioned in
Chapter 3, waterlogging is a phenomena that also drives intra-field variability (Maestrini
& Basso, 2018). Therefore, in order to monitor waterlogging it is essential to explore how
intra-field spatial patterns relate to waterlogging in future research. This can be done by,
clustering spatial patterns through space and time and linking them to larger processes
as precipitation or irrigation.

Furthermore, the work done in inundation and detection of surface water mostly
take a pixel-based approach (Pulvirenti et al., 2015; Tsyganskaya et al., 2018a). However,
due to the complex nature of observing agricultural crops, which are highly variable in
time and space, it is difficult to start at pixel level to understand when and where water-
logging is occurring. Therefore, starting with field-level or intra-field clusters is highly
recommended.

6.2.4. IRRIGATION ESTIMATES WITH SATELLITE REMOTE SENSING
As concluded in Chapter 3, evaporation models used to calculate irrigation requirements
interpret waterlogging stress as a need to irrigate. To prevent over-irrigation resulting
from incorrect interpretation of crop stress, irrigation estimates can benefit from ad-
ditional spatial and temporal information on the presence of waterlogging. Future re-
search on the topic may want to include information on waterlogging in the crop stress
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module in evaporation algorithms to prevent irrigation where it is not necessary. Follow-
up research can focus on evaluating the effect on variable rate irrigation when including
information on waterlogging Barker et al., 2018. Moreover, limited research within the
domain of remote-sensing-based evapotranspiration for irrigation has focused on the
actual benefit of using such calculations in the field to meet agricultural reality (Maguire
et al., 2022). Therefore, to understand the technical limitations of such algorithms for
daily agricultural practices, more adoption-impact studies should be conducted.

6.2.5. VEGETATION MONITORING WITH RADAR OBSERVATIONS
The results presented demonstrate that radar backscatter contains a lot of information
relevant to monitor sugarcane development and other agricultural canopies. Neverthe-
less, more collaboration is needed to distinguish the information from the surface or
canopy. Before radar retrieved vegetation indices can play a role in monitoring vegeta-
tion consistently, forecasting biomass or yield, waterlogging within the growing season
must be considered. We recommend future studies or applications on crop and vege-
tation monitoring with backscatter to consider waterlogging or inundation within the
growing season.

The contribution of different vegetation components to the temporal variation of
backscatter observed needs more attention. This thesis and research by Vermunt et al.,
2020, Khabbazan et al., 2022, and Molijn et al., 2019, highlight the influence of factors
other than total internal vegetation water content and their dynamics on backscatter
observations over agricultural canopies. The results show SCW and waterlogging affects
the backscatter observations used to monitor agricultural crops. To understand the con-
tribution of the individual components to backscatter variation over time, their contri-
butions need to be recognized, understood, and isolated. The latter can benefit from (1)
experimental research combined with modelling studies, but also (2) higher spatial level
studies where mono-culture or similar vegetation is present (e.g. US corn, soybean, or
wetlands). In both cases, a good ground dataset is required to conduct the research.

In addition, in Water Cloud Models and VOD retrievals from active microwave ob-
servations, the effect of multiple scattering from soil vegetation interactions is neglected
(Frappart et al., 2020). El Hajj et al., 2019 also notes deviating results with the develop-
ment of VOD mapping from C-band over rapeseed. The deviating results are attributed
to an increase in soil moisture and waterlogging, causing the multiple or double bounce
scattering mechanism to rise. This goes to show that the effect of double bounce mech-
anism in radar VOD retrievals should be considered and not neglected, especially when
the objective is to assist agricultural monitoring.

6.2.6. THE INFLUENCE OF VERTICAL PLANT WATER DYNAMICS TO TOTAL

BACKSCATTER
This research shortly demonstrates the current unknowns on the contribution of verti-
cal variation in dielectric constant to total backscatter. The results in Chapter 5 point
out sucrose accumulation starts in the lower nodes of the sugarcane stalk and gradually
moves up the stalk during the growing season. This means that the vertical distribution
of moisture (and sucrose) is of importance in understanding backscatter variation over
agricultural canopies. The latter resonates with the need for improved understanding on
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backscatter and the vertical crop water dynamics as also noted by Vermunt et al., 2022.

The general prevailing view is that backscatter observations of vegetation capture
the above ground biomass (Liu et al., 2021). To further improve knowledge on the ef-
fect of the vertical distribution of plant water on radar backscatter, collaboration with
agronomist could lead to improved understanding of the vertical distribution of biomass
and plant water. For several crops the vertical distribution of biomass in the canopy is
known (e.g. corn) (Mourtzinis et al., 2015; Vermunt et al., 2022). In order to simplify,
vertical dynamics could be understood by solving the vegetation backscatter as a func-
tion of the vertical gradient of water in the crop. By collaborating with agronomists such
gradients could be understood on a larger scale for different crops.

6.2.7. ON MACHINE LEARNING

Chapter 4 points out the opportunities that backscatter observations provide to observe
quality characteristics inside the crop canopy which are complementary to optical veg-
etation indices. More research is needed to study the synergy between optical and radar
backscatter in observing agricultural canopies. In sugarcane research, studies have at-
tempted to immediately use machine learning approaches in their analysis (Shendryk
et al., 2021). However, these approaches miss out on the opportunity to first understand
which data should go into the machine learning algorithm. There is still a lot that needs
to be understood on how radar remote sensing observations connect to what is hap-
pening on the ground. Therefore, radar backscatter studies may first need to focus on
understanding the signal before it can feed in to machine learning algorithms.

6.2.8. THE EFFECT OF CANOPY DENSITY AND IRRIGATION

A limitation of this study, and an opportunity for future research, is the need for a more
careful consideration of canopy density and irrigation on results obtained with Sentinel-
1 backscatter. Chapter 5 shows the presence of waterlogging in backscatter. However,
to further understand the effect of the attenuation effect the above-ground canopy may
have on the results, spatial estimations on canopy cover can help. Here indices as LAI
retrieved from NDVI may be relevant to consider as well. Similarly, the presence of row
space and direction may be of interest as well. Consequently, the sensitivity of backscat-
ter to changes underneath a canopy can be estimated as a function of canopy cover or
crop density. Such a sensitivity study could help in further identification and develop-
ment of waterlogging from radar observations.

In addition, due to the absence of reliable irrigation data, we assumed the effect of
irrigation on the results were uniform. With a large plantation-wide waterlogging peak
we were able to identify waterlogging on a field-scale. As we move to finer (temporal)
resolutions and longer wavelengths in the future (Torres et al., 2012) artefacts of irriga-
tion may be more present in the observations. This could be advantageous in order to
detect waterlogging, but also leads to an additional variable to consider. If, in the future,
we are able to isolate irrigation events on a field-level, the information can be used to
understand the spatial response of backscatter to additional water applied. The spatial
response after irrigation events will further help to understand spatial patterns related to
waterlogging, which are dominant in local depressions (Martinez-Feria & Basso, 2020).
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6.3. CONCLUDING REMARKS
As demonstrated in this thesis, field data collected from producers proved to be very
helpful in the interpretation of vegetation indices retrieved with satellite remote sensing.
Despite the fact different characteristics are measured, for instance stalk yield instead of
fresh biomass or VWC, a lot can be learned from comparing the two. Therefore, more
research should be done with larger producer data sets and, especially, radar-retrieved
data.

For instance, within sugarcane the focus so far has been on smaller scale experiments
(e.g. Molijn et al. (2019)), which are very relevant to fundamental understanding and ref-
erence purposes. The relevance of larger production datasets should not be underesti-
mated, as they may well contribute to fundamental knowledge. Researchers can benefit
from the great wealth of data collected on the ground by agriculturalists every season.
This will require improved collaboration with researchers and people on the ground.

In addition, since there is so much to study to further understand the dynamics of
vegetation, it may also be very helpful for researchers to work more closely together with
producers to see what is the main interest of people in the field. This is needed in order
to keep the promises made that our Remote Sensing community repeats in this thesis
and many other academic literature: e.g. "RS technologies can be used to support site-
specific management decisions at various stages of crop production, helping to optimize
crop production while addressing environmental quality, profitability, and sustainability"
(Khanal et al., 2020). We all have to work together more closely to make these promises
come true.
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A.1. INTRODUCTION
Globally agriculture accounts for approximately seventy percent of the total fresh water
withdrawals (FAO, 2016a). To cope with the increasing competing demands for water
in river basins it is necessary to focus on enhancing water use efficiency and water pro-
ductivity in irrigated agriculture which is the largest water consumer sector. Due to its
importance and urgency this goal is referred to in the UN sustainable development goals
(SDGs) under the target 6.4 which calls for substantial increase in water-use efficiency to
address water scarcity.

The predominant irrigation technique, globally, is surface irrigation which accounts
for 86% of the total (Berg & Carter, 1980; FAO, 2016a). Surface irrigation is considered
an irrigation method with a low water use efficiency. Poor field water management
practices in surface irrigation often result in drainage issues and erosion (Berg & Carter,
1980), salinization (Aroca, 2012), and low field irrigation application uniformity (Raine
& Bakker, 1996). These issues all lead to reducing gains, and low land and water produc-
tivity (Gunarathna et al., 2018; A. Singh et al., 2018).

Sugarcane, with a global cultivated area of 26 million hectares, is widely used as an
industrial crop to produce bioethanol and sugar (Endres et al., 2018). The economic con-
tribution of this commercial crop is of vital importance to some of the African economies
such as Mozambique (Jelsma et al., 2010). As a water-intensive crop, sugarcane often re-
quires frequent irrigation (Endres et al., 2018). Its large scale cultivation is known to
highly impact freshwater abstraction rates (Olivier & Singels, 2015). The majority of the
irrigated sugarcane is irrigated using surface irrigation method (FAO, 2016b) and its pro-
ductivity is prone to inherent challenges that surface irrigation has.

Proper water management is essential in achieving the target crop yield for sugar-
cane. The yield is sensitive to both water stress and waterlogging, a situation in which
the soil remains saturated with water for prolonged periods. In water stress conditions
the plant closes stomata pores to avoid water losses, leading to a decrease in transpi-
ration and subsequently reduced biomass production (Aroca, 2012). Short periods of
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water logging mostly do not result in a sugarcane yield decrease, nor decrease in transpi-
ration, but it is observed that if flooding is persistent (>21 days) or if the water tables are
very shallow (<15cm) biomass growth can be significantly hampered (Chabot et al., 2002;
Glaz et al., 2004). In addition, the salinity of the soil and/or irrigation water decreases the
stomatal conductance and photosynthesis and inhibits the growth of sugarcane (Plaut
et al., 2000).

Water stress may lead to curling of sugarcane leaves, alteration in chlorophyll con-
tent of the plants, reduced leaf area, and stomatal closure (Ferreira et al., 2017; N. Inman-
Bamber & Smith, 2005). These symptoms of stress can be observed by the over-passing
satellites, which observe vegetation status of the growing crops, and surface tempera-
ture, amongst other variables. This data can be used to derive spatial evaporation esti-
mates. These spatial evaporation estimates can be very helpful in efficiently allocating
water in especially irrigated agriculture (Bastiaanssen et al., 2000).

Several algorithms have been suggested to retrieve evaporation estimates from data
collected by orbiting satellites. For instance, the Two Source Energy Balance (TSEB)
(Norman et al., 1995), the Surface Energy Balance Algorithm for Land (SEBAL) (Basti-
aanssen et al., 1998), the Atmosphere-Land Exchange Inverse (ALEXI) model (M. C. An-
derson et al., 2007), and the Global Land-Surface Evaporation: the Amsterdam Method-
ology (GLEAM) (Miralles et al., 2011), and the FAO Water Productivity Open-access portal
(FAO, 2018). These algorithms apply different methodologies to derive crop water stress
and estimate actual evaporation. For example, within GLEAM stress is integrated as a
function of the availability of water in the root-zone and canopy size, using microwave
soil moisture observations and vegetation optical depth (Miralles et al., 2011). With the
Alexi and TSEB models information from the thermal band is used to detect crops stress,
based on the principle that canopy temperature increases with increasing crop stress
(M. C. Anderson et al., 2007).

To serve the needs of agricultural management at field level and within a field, a high
spatial and temporal resolution is required. With the launch of the Copernicus Sentinel-
2 satellites, valuable high spatial resolution imagery became available which can assist
field-scale and within field agricultural management (Vanino et al., 2018).

Several authors have demonstrated or researched the use of spatial evaporation esti-
mates based on satellite remote sensing to estimate and visualize the crop water require-
ment to assist irrigation planning (Atzberger, 2013; Bastiaanssen et al., 2000; FAO, 2018;
Mulla, 2013; Vanino et al., 2015; Vanino et al., 2018; Vuolo et al., 2015). Detailed evapora-
tion estimates can be used in (irrigation) water management to estimate the crop water
requirement or maximum crop evaporation. For instance, this information can be used
to irrigate at the proper time and with the proper amount per field. Optimizing irriga-
tion water use, in an irrigation scheme, can benefit from frequent spatial evaporation
updates on the actual development of the crop and its water requirement (Calera et al.,
2017; Vanino et al., 2018; Vuolo et al., 2015). This is because farmers tend to over irrigate
in the absence of objective information on crop status and water requirement (Vanino
et al., 2018).

An operational irrigation monitoring system that incorporates near real-time high
spatial resolution evaporation information in irrigation decisions and practices will be
a significant improvement over the point-based evaporation estimates which are still
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common even within relatively hi-tech plantations and irrigation schemes (N. Inman-
Bamber & McGlinchey, 2003; Singels et al., 1998). High spatial resolution evaporation
estimates enable plantations to monitor water needs at and within the plots, keep track
of crop growth, take corrective actions when necessary, and consequently leading to bet-
ter yields (Calera et al., 2017).

Previous studies demonstrating high spatial resolution evaporation estimates have
combined meteorological and satellite data (Vanino et al., 2015; Vanino et al., 2018;
Vuolo et al., 2015). Information on Leaf Area Index (LAI) and albedo was retrieved by
Sentinel-2 imagery, whereas other data was obtained from a nearby meteorological tower
(Vanino et al., 2018). These methodologies use the FAO-56 Penman Monteith method as
a basis for their calculations to estimate maximum crop evaporation and irrigation water
requirements (Allen et al., 1998).

In this research we focus on a sugarcane plantation in Xinavane in southern Mozam-
bique. The Priestley-Taylor methodology is used to get spatial evaporation estimates
(Priestley & Taylor, 1972). Due to the mono-culture in the plantation we are able to de-
velop a sugarcane specific remote sensing evaporation estimate. The application of the
Priestley-Taylor (PT) methodology with satellite data has so far shown promising results
in several remote sensing based evaporation algorithms and studies (Y. Chen et al., 2014;
J. Fisher et al., 2015; Miralles et al., 2011). However, these researches do not apply their
research in an irrigated context. Priestley Taylor requires limited data and parameter-
ization and therefore fits the study due to the limited data availability (J. Fisher et al.,
2015).

The objective of this study is to present a novel approach for estimating daily actual
evaporation at a high resolution of 20 m using a combination of satellite imagery and
local weather data. The analysis focuses on a furrow-irrigated area within the plantation,
covering 420 hectares. This area was part of a pilot project IWACA-Tech, which aimed
at improving water use efficiency at irrigation systems using advanced remote sensing
technology1.

A.2. METHODOLOGY AND DATA

A.2.1. STUDY SITE
The Xinavane plantation is located within the lower reaches of the Incomati river basin,
in Mozambique (figure A.1). The irrigated sugarcane plantation in Xinavane is in com-
petition over water with the increasing population and water users in upstream South
Africa and Swaziland where numerous sugarcane plantations are located (Santillán-Fernández
et al., 2016; Zaag van der & Carmo Vaz, 2003). From 2012 until 2014, the plantation ex-
perienced three successive seasons of flooding which adversely affected the operations
within the plantation. These events were followed by two consecutive drought years in
2015 and 2016, associated with El Nino (Gelcer et al., 2018). In the years 2017 and 2018
the annual rainfall was also below average.

Twenty-four furrow irrigated fields of the IWACA-Tech project were selected for the
analysis, with a total area of approximately 420 ha (figure A.1). The slope runs from
Northwest to Southeast in the study area. The irrigation interval is approximately 10-12

1www.iwacatech.com
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days, and the net irrigation application depth aimed by the agricultural department is
1,350 mm/year. The long-term, 1967 to 2017, average annual precipitation in the area is
721 mm/year.

Figure A.1: The left panel shows the location of the sugarcane plantation in Xinavane, Mozambique. The map
on the right zooms in to the project site.

A.2.2. SUGARCANE GROWTH CHARACTERISTICS

The furrow irrigated study site plots have a size of approximately 20 ha each. Within the
sugarcane plantation, sugarcane is harvested after approximately 12 months when the
crop is nearly four meters tall. From April to December fields are harvested based on
the production capacity of the factory, meaning the crop stages and length of growing
season differ between fields.

Sugarcane is grown as a ratoon crop, so new cane grows from the same root in 8-9
consecutive years. Ratooning naturally leads to a decline in yield over the years, due to
several factors, such as soil degradation and fertility (Yadav et al., 2009). Sugarcane grow-
ing stage is often divided into four periods: an initial stage (30 days), tillering stage (90
days), development stage (150 days), and the final stage (90 days) (Doorenbos & Pruitt,
1977; Silva et al., 2015). In these different stages the consumptive water use differs and,
therefore, it is important to characterize the different stages for agricultural water man-
agement. The initial stage commences right after harvest or planting, characteristic for
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this stage is the germination of the original stool. After the initial stage, the tillering
stage commences, during which the sprouted sugarcane rapidly starts to form shoots
and leaves. Next, the smaller shoots die off due to plant competition, and the elonga-
tion of the stem starts in the development stage. In this stage, not many new leaves are
formed, but energy is used for the growth of existing leaves and the stalk (Cock, 2001).
The final stage of the sugarcane crop is characterized by senescence, where the plant
cells degrade and the end of the crop cycle approaches (Martins et al., 2016).

A.2.3. FIELD DATA

Data for this research was shared by the agricultural department of Xinavane’s estate.
This included data on planting dates, harvesting dates, and yields in the period between
April 2012 and June 2018. The critical level for yield in the sugarcane plantation is de-
fined at 80 tonnes sugarcane per hectare (tonnes/ha) by the estate management. Fields
below the critical level will trigger a diagnostic performance assessment by the planta-
tion management and will be followed up by corrective measures. The set target yield is
105 tonnes cane per hectare.

We also studied the spatial differences in yield during the growing seasons of 2016-
2017 and 2017-2018. To compare different fields adequately, fields were selected with the
same growing period for an in-depth analysis, since the yield is affected by the harvest
date. The selected fields were clustered to good performing (> 90 tonnes/ha), medium
performing (80-90 tonnes/ha) and poor performing (< 80 tonnes/ha) fields. Table A.1
presents the selected fields and figure A.1 shows the location of these particular fields.
Table A.1 displays the yield of the fields in the year of the analysis, the planting date,
and the harvest date with the nearest Sentinel-2 overpass date used as a final date for the
analysis.

A.2.4. REFERENCE EVAPORATION

The full workflow proposed in this paper is visualized in figure A.2. In order to take the
first step in estimating the actual evaporation spatially with the available data, we first
estimated the reference evaporation with Priestley-Taylor (Priestley & Taylor, 1972). The
methodology and input used to get the reference evaporation is visualized in the first
column of figure A.2. Priestley-Taylor describe the evaporation from saturated surfaces
into an unsaturated atmosphere, which is expressed as a function of an equilibrium rate
(Viswanadham et al., 1991). According to Priestley-Taylor, the daily evaporation rate can
be defined as:

EPT = 1

γ
· s(Rn −G)

s +λ
·α (A.1)

where EPT is the daily evaporation flux (mm d−1), γ the latent heat of vaporization
(2.45 M J kg−1), s the slope of saturation vapour pressure-temperature relationship (kPa
C−1), α is a dimensionless empirical number and better known as the Priestley-Taylor
coefficient [-], Rn the net radiation (M J m−2 d−1), λ the psychrometric constant (kPa
C−1), and G the soil heat flux (M J m−2 d−1), which is assumed negligible when averaged
over a day (Price, 1982).
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Figure A.2: A visualization of the methodology.

The net radiation is computed by balancing the incoming shortwave radiation and
incoming Li n and outgoing Lout longwave radiation. The latter is calculated through
the surface and air temperatures in combination with the Stefan-Boltzman law, to deter-
mine the temperature flux for sensible heat. Air temperature data was obtained from the
estate’s weather station.

Daily Land Surface Temperature and Emissivity (LST and E) at 1 kilometer (km) spa-
tial resolution was derived from the MOD11A1 Version 6 product from the MODIS Terra
satellite (Wan et al., 2015). The surface albedo, r0, controls the partitioning of incoming
shortwave radiation Rg . Rg data was also obtained from the local weather station. The
net radiation Rn can be calculated as:

Rn = (1− r0)Rg +Li n −Lout (A.2)

Data on surface temperature from (MODIS), air temperature and incoming short-
wave radiation data of the meteorological station were used in combination with spa-
tially distributed albedo maps. Combining spatial satellite data with meteorological data
requires combining data layers with different spatial and temporal resolutions. This has
been successfully done by other authors, such as Vuolo et al. (2015) and Vanino et al.
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(2018). Combining resolutions is possible because not all variables show large variabil-
ity spatially (e.g. incoming radiation) or temporally (e.g. albedo). To illustrate, incom-
ing shortwave radiation can be covered by daily meteorological point measurement, be-
cause there is little spatial variability. In contrast, albedo varies spatially, but shows less
variability temporally, and therefore can be estimated with the help of satellite data.

The albedo is calculated using two spectral signature curves: one for sugarcane (Apan
et al., 2004) and one for clay soil (Vertisol, obtained from Aster Spectral Library (Meerdink
et al., 2018)). The signatures were used to extrapolate the reflection registered within the
different bands of Sentinel 2. To continue, the reflection within the same bandwidths
as the satellite observations in the spectral signature curves were averaged (ρb,r c ) for
the respective Sentinel-2 bands. The reflectance observed in the sentinel bands (ρb,s )
were divided by ρb,r c , weighted according to the band contribution to the total wb , and
summed to get a correction factor (C f ) to reconstruct the reflection curve for each pixel:

C f =
∑

((ρb,s /ρb,r c )×wb) (A.3)

Finally, the albedo was estimated over the extent of spectral reflection curves. Ad-
ditionally, the computed albedo was scaled with the BRDF/albedo Parameters Daily L3
Global Version 6 of MODIS to correct for overestimation caused by limited observation
bands of Sentinel-2 (Schaaf & Wang, 2015). Sentinel-2 data is available at a 5-day in-
terval. For the construction of the albedo daily time series, only Level 2A (Louis et al.,
2016) and cloud-free images were used. Missing dates were linearly interpolated. This
resulted in daily albedo maps for the study region from April 2016 until July 2018. Given
the fact that temporal changes of albedo in a short timeframe are negligible, the linear
interpolation method is expected to result in realistic daily values per pixel (Vanino et al.,
2018).

The conditions in Xinavane, with relative humidity ranging between 68 and 75 per-
cent and annual mean daily wind speed below 2 m/s, are favourable to obtain opti-
mal reference evaporation estimates with the Priestley-Taylor equation (Cristea et al.,
2012). Therefore, the Priestley-Taylor coefficient can remain 1.26 for the vegetated ar-
eas (Cristea et al., 2012; Priestley & Taylor, 1972). For soil pixels, the α value is 1.08 as
proposed by Miralles et al., 2011.

A.2.5. MAXIMUM CROP EVAPORATION

The reference evaporation obtained using the Priestley-Taylor equation does not ac-
count for the growing stage. Generally, to convert reference evaporation to crop evapo-
ration a crop coefficient (Kc ) is used that compensates for the crop type and crop grow-
ing stage (Allen et al., 1998). Furthermore, the growing cycle of a crop is divided into
three or four crop stages and for each of these crop stages, a different crop coefficient is
used. The FAO has provided crop coefficients for each crop stage of some common crops
(Allen et al., 1998). The methodology and input used to get from reference evaporation
to maximum crop evaporation is visualized in the second column of figure A.2.

There is a similarity between the evolution of Kc and the Normalized Difference Veg-
etation Index (NDVI) (Bausch & Neale, 1987). Vegetation absorbs radiation in the visual
spectrum and reflects a large amount of infrared radiation. Therefore, a normalized ratio
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can be used to identify vegetation activity of which the Normalized Difference Vegetation
Index (NDVI) has become the most commonly used index today.

NDVI can be translated into a crop coefficient using a simple linear regression model
(Kamble et al., 2013). Kamble et al., 2013 showed a strong linear correlation (r 2=0.91)
between the NDVI and the measured crop coefficients. However, for our study, no mea-
sured values are available that can be used for regression. Nonetheless, in this study, the
crop factors of ratoon sugarcane that are proposed in Allen et al., 1998 will be used to
compensate for the growing stage of the sugarcane.

Mean NDVI data per observation along the growing period was obtained for the fields
XNC19, XND18,20, and XNE18-21,23. These fields were selected because of their in-
creasing NDVI curve. Next, using the planting and harvest dates of each field, the NDVI
data of each crop cycle were obtained. Furthermore, temperature data for each crop
cycle was used to convert growing days to Cumulative Growing Degree Days (CGDD),
in order to correct for the influence of temperature on the crop development over the
growing season (Lofton et al., 2012), see figure A.3. A quadratic regression resulting from
the NDVI observations was used to obtain an NDVI curve as a function of CGDD.

According to Allen et al., 1998 and Doorenbos and Kassam, 1979, the initial crop
stage has a crop coefficient of 0.4 for ratooned sugarcane and 1.25 when the canopy is
at its peak size, and 0.7 at the end of the growing season. These crop factors were used
as boundaries to translate the N DV Iest to a crop coefficient curve dependent on the
CGDD:

Kc =−6.24×10−7 ×CGDD2 +1.51×10−3 ×CGDD +0.4 (A.4)

A.2.6. ACTUAL EVAPORATION
In the last part of the analysis, we tested whether crop stress is visible within NDVI and
albedo values in different crop stages to test a methodology to correct maximum crop
evaporation estimates for crop stress to retrieve actual evaporation. The methodology
and input used in this step are visualized in the third column of figure 3. By looking
at three performance groups, based on their yield obtained from ground observations
(section A.2.3), we assess whether the spectral indices are significantly different from
each other in different growth stages. It is assumed that if there is a lot of non-uniformity
within a field, then this is related to either mismanagement and/or stress within a field.
The non-uniformity should be visible in high spatial resolution spectral indices (Ač et al.,
2015).

In order to test if the non-uniformity is present within different crop stages, we first
look at the coefficient of variation (CV) of NDVI and albedo within differently performing
fields in different crop stages. Then, the statistical significance was tested of the distri-
bution of spectral indices within the different groups. Moreover, the mean value and CV
of a field per observation were used as samples for the Mann-Whitney U test. The obser-
vations within the groups of fields were at times not normally distributed and the groups
showed unequal variances. Therefore the Mann-Whitney U test was found to be most
suitable for the analysis (Mann & Whitney, 1947). A significance level of 0.05 was chosen.
In each crop stage we tested whether the mean and CV values of NDVI and albedo of the
observations within each growth stage were significantly different from each other. In
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Figure A.3: NDVI observations per field are visualized in relation to CGDD. Fields XNC19, XND18,20, and
XNE18-21,23 were used to create a crop growth curve. The black line indicates the quadratic regression curve
fitting the NDVI observations N DV Iest . The dotted grey line indicates the optimal NDVI curve N DV Iopt .

other words, we tested whether the performance groups could be distinguished based
on NDVI or albedo.

Ultimately, the relationship between actual NDVI compared to the optimal NDVI was
used to account for stress in the evaporation estimate per time step. The optimal NDVI
curve, N DV Iopt , is assumed to be above the estimated NDVI curve as the boundary be-
tween sugarcane and bare soil is set where NDVI is 0.3:

N DV Iopt =−2.78×10−7 ×CGDD2 +8.46×10−4 ×CGDD +0.3 (A.5)

To compute actual evaporation from maximum crop evaporation, the following stress
factor was applied:

Fs =


N DV I

N DV Iopt
for N DV I ≤ N DV Iopt

1for N DV I > N DV Iopt

(A.6)

Where a value of 1 indicates no stress and a value of 0 indicates maximum stress.
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A.3. RESULTS AND DISCUSSION

A.3.1. MAXIMUM CROP EVAPORATION

In figure A.4 the evolution of maximum crop evaporation and albedo over CGDD is pre-
sented for five selected fields. A similar analysis was done for other groups within the
selected 24 fields, but the results do not differ. Within the two figures we zoom in to the
difference in maximum crop evaporation and albedo over the growing season.

In theory, the albedo is affected when crop stress is present (S. Wang & Davidson,
2007). For instance, the albedo of leaves facing water-stress is higher than well-watered
leaves (S. Wang et al., 2004). Therefore, working with high spatial resolution albedo es-
timates may already include crop stress in the maximum crop evaporation calculations.
Figure A.4, however, shows that the difference in albedo between fields is marginal.

A difference between the albedo can only be observed in the first 150 CGDD, this can
explained by the difference in the start date of the growing season (which is determined
by the harvesting date of the previous season). The growing season of fields MDD17,
XND24, and XNC18 starts earlier than fields XNE22 and XND19 (see table A.1). In figure
A.4b fields MDD17, XND24, and XNC18 therefore show a steeper increase in the first 150
CGDD, which results from a higher albedo in this first part. The albedo increases when
sugarcane grows. The sugarcane in fields MDD17, XND24, and XNC18 grow faster at the
start. After the difference at the start, the albedo evolution in the different fields have the
same shape. Finally, there is barely a difference in cumulative albedo at the end of the
season.

The maximum crop evaporation estimates in figure A.4b also confirm insignificant
differences between selected fields. The albedo estimates, therefore, do not include
crop stress directly. The reason why crop stress is not directly visible in the albedo esti-
mates results from the methodology applied to retrieve albedo estimates, where MODIS
is downscaled with Sentinel-2 bands. The evaporation estimates derived in figure A.4a,
barely include crop stress and can be used to calculate maximum crop evaporation.

A.3.2. DETECTING CROP STRESS

In figure A.5 we consider the CV of NDVI and albedo within the different performance
categories in different growth stages. Similar to the results in figure A.4, the albedo es-
timates are not able to distinguish between good and poor performing fields, except for
the development stage. The CV values in all growth stages are very low (min=0.003,
max=0.0325). This indicates a marginal variability in albedo estimates, resulting from
the MODIS correction.

However, considering CV values of NDVI are in figure A.5, it is possible to distinguish
good, medium, and poor performing fields in the development and final stage. The CV
of NDVI shows on average a strong negative correlation between the CV and yield in the
last two stages.

NDVI is able to distinguish between good and poor performing fields in the last two
stages, see table A.3 in Appendix A. The results of the Mann-Whitney U test to distin-
guish the different groups within crop growth stages shows the different groups can be
distinguished based on the NDVI. However, in earlier growth stages the performance
categories are not distinguished by the NDVI.
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Figure A.4: Figure (a) shows the cumulative maximum crop evaporation in mm for five selected fields (see
group 1, table A.1). The red lines indicate the cumulative maximum crop evaporation for fields with a poor
yield in seasons 2016/2017. The green lines indicate fields with a medium or good yield. Figure (b) shows the
same selected fields, but in this figure the cumulative albedo is displayed against the cumulative growth degree
days
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A thick canopy cover, like sugarcane, challenges the performance of spectral indices.
Baghdadi et al., 2009 found a similar outcome in the NDVI signal, where NDVI saturated
after a height of 150cm. Saturation effects in spectral indices of sugarcane were also doc-
umented by Simões et al., 2009. Only in the case of significant differences, where non- or
barely vegetated pixels are present, spatial heterogeneity is detectable. Such as at the last
two stages in figure A.5 where there is a significant contrast between good and poor per-
forming fields. Molijn et al., 2019 found high spatial resolution NDVI imagery best suit-
able to monitor sugarcane crop growth compared to different Synthetic Aperture Radar
(SAR) products. Molijn et al., 2019 found saturation of NDVI around 80 tonnes/ha. This
may explain the results presented in figure A.5 and table A.3 in Appendix A, where we are
able to distinguish between poor and good performing fields based on the CV of NDVI
and mean NDVI in the last two growth stages.

Additionally, Molijn et al., 2019 point out the inconsistencies when relating early crop
growth imagery with later imagery. The NDVI in the first crop stages shows more vari-
ability between images in their analysis. The inconsistencies found by Molijn et al., 2019
in NDVI at the start of the growing period can explain partly the reason why the start
of the growing season is not indicative of the biomass production or final yield. This
corresponds with the results in figure A.5.

A.3.3. ACTUAL EVAPORATION

In the fields considered for analysis in group 1, mean actual evaporation per field ranged
between 1390 and 1483 mm/season, with minimum values of 693 mm/season and max-
imum 1589 mm/season. There is a large difference between actual evaporation values
within fields. To compare the actual evaporation estimates, we consult another actual
evaporation product with a different methodology (FAO, 2018). For the year 2016 and
2017, yearly values between 1098 to 1505 mm/season and 1013 to 1513 mm/season were
documented within WAPOR for the same area. These estimates are also in line with the
reported industry standard sugarcane ET of 1365 mm/season in the sugarcane states in
Swaziland that are located near the Mozambique border (Karimi et al., 2019).

Figure A.6 presents the accumulated difference between maximum crop evaporation
and actual evaporation over the growing period within each pixel and field. Each pixel
in figure 9 indicates accumulated stress. The three fields with a good performance, indi-
cating 110.3, 93.5 and 92.5 tonnes/ha, show a small difference between maximum crop
and actual evaporation. In these fields, the mean field difference is 91 mm/season, 93
mm/season, and 126 mm/season respectively. The fields with a yield of 50.4 and 44.0
tonnes/ha indicate a large difference between the maximum crop and actual evapora-
tion. In these fields the mean field difference is 223 mm/season and 335 mm/season re-
spectively. A large difference between maximum crop and actual evaporation indicates
more stress.

Additionally, table A.2 shows the effect of harvest date on the difference between
maximum crop and actual evaporation. In group 1 and 3 this difference is smaller than
in group 2. Group 2 the difference between maximum crop evaporation and actual evap-
oration is 259 mm/season or more. The larger difference can be explained by the harvest
date. The harvest dates of the fields in group 1 and 3 lie around June, whereas the harvest
dates in group 2 are around the end of November. This is in line with expectation as the
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Figure A.5: The first and second column represent the NDVI and Albedo, respectively. The rows present the
different growth stages of sugarcane and the relation of NDVI in the different performance categories.
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yield decreases with harvest dates towards the end of the year. Fields with a harvest date
at the end of a calendar year experience the rainy season at the start of their growing sea-
son. This is the period with the highest evaporation rates and largest difference between
maximum crop and actual evaporation.

Using NDVI to incorporate stress in actual evaporation calculations it is possible to
distinguish between differently performing fields. NDVI is indicative of the chlorophyll
content in the crop or irregularities in sugarcane growth, which can be affected by sev-
eral factors besides drought. To continue, NDVI can identify hampered growth due to
soil nutrition deficits, poor drainage, or secondary salinity effects, amongst other fac-
tors. However, to assist irrigation the spatial evaporation estimates need to distinguish
between drought-related stress and other crop stresses to prevent overirrigation. This
pitfall in current satellite based evaporation algorithms is also identified by Jones, 2016.
With regard to crop monitoring, the spatial information provided in figure A.6 can al-
ready identify problematic fields and in-field irregularities which can provide valuable
information for on-site agronomists.

A.4. CONCLUSION
The objective of this study was to determine daily actual evaporation estimates at 20m
resolution for a furrow irrigated site of a large sugarcane plantation in Xinavane, Mozam-
bique, using a combination of satellite imagery and local weather data. A method is set
up to apply the Priestley-Taylor methodology spatially and demonstrate the accompa-
nied steps.

Creating a crop growth curve from NDVI as a function of CGDD, allowed the correc-
tion of the reference evaporation to the specific growth stage. This resulted in maximum
crop evaporation estimates. Identifying stress with spectral indices on a daily scale and
with the current resolution of the Sentinel-2 imagery is challenging. Analysis was done
to compare the spectral indices of good, medium, and poor performing fields in differ-
ent growth stages. Albedo estimates show little spatial variability. NDVI in different crop
stages in different performance categories showed better results.

With crop yield data and NDVI images per observation from the plantation, differ-
ent categories of differently performing fields were detected. Especially in the last crop
stages the poor, medium, and good performing fields could be distinguished by NDVI
observations. Therefore, NDVI shows potential to be used as an input for a crop stress
adjustment factor. This adjustment factor can be used to incorporate crop stress in the
maximum crop evaporation calculations to obtain actual evaporation estimates. Test-
ing the consistency of the methodology should be part of future research with a larger
database and preferably at different geographic locations. Additionally, the methodol-
ogy can benefit from a comparison with in-situ field measurements.

In practice irrigation scheduling is often based on calculations which considers point-
based meteorological data. Spatial visualization of the evaporation fluxes will give farm-
ers and/ or plantations an overview of crop development and growth irregularities. How-
ever, in order to be of use to irrigation scheduling, the identified crop stress should be
related to drought stress to prevent over-irrigation. The proposed methodology sets a
first step in deriving an operational high spatial and temporal resolution of the actual
evaporation flux.
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Figure A.6: The difference between maximum crop potential and actual evaporation is presented. Figure A, B,
and C zoom in on different groups sugarcane fields with similar growing periods. The fields presented show
simulations of the fields with their corresponding plant and harvest dates, as explained in the methodology.
The numbers in each field indicate the yield in tonne/ha.
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Table A.1: An overview of three groups of fields that were considered for analysis with a similar harvest date
and length of growing season. The rows indicate the yield (tonne/ha), planting date, harvest date with the date
of the nearest Sentinel overpass.

Group 1

XNC18 XNE22 XND19 MDD17 XND24

(ratoon 5) (ratoon 4) (ratoon 8) (ratoon 7) (ratoon 8)

Yield 2017 110.3 93.5 92.5 44.0 50.4

(tonne/ha)

Planting date 5/28/2016 7/26/2016 7/22/2016 6/18/2016 5/28/2016

Harvest date 6/3/2017 6/25/2017 7/10/2017 7/12/2017 6/15/2017

(Overpass) (5/19/2017) (6/28/2017) (6/28/2017) (6/28/2017) (11/22/2017)

Group 2

MDC17 MDC16 XNE19 XNC19 XNC22

(ratoon 7) (ratoon 7) (ratoon 4) (ratoon 6) (ratoon 5)

Yield 2017 68.8 53.3 86 90.4 71.9

(tonne/ha)

Planting date 11/14/2016 11/16/2016 11/26/2016 11/11/2016 12/8/2016

Harvest date 12/21/2017 12/17/2017 12/17/2017 12/17/2017 12/19/2017

(Overpass) (11/22/2017) (11/22/2017) (11/22/2017) (11/22/2017) (11/22/2017)

Group 3

XNC18 XNE22 XND18 XND20

(ratoon 6) (ratoon 5) (ratoon 8) (ratoon 9)

Yield 2018 89.3 90.7 66.8 69.7

(tonne/ha)

Planting date 6/3/2017 6/25/2017 6/16/2017 7/10/2017

Harvest date 6/4/2018 5/26/2018 5/31/2018 6/21/2018

(Overpass) (5/11/2018) (5/11/2018) (5/11/2018) (6/10/2018)



A

92 A. APPENDIX A

Table A.2: An overview of three groups of fields that were considered for analysis with a similar harvest date
and length of growing season.

Group 1

XNC18 XNE22 XND19 XND24 MDD17

(ratoon 5) (ratoon 4) (ratoon 8) (ratoon 8) (ratoon 7)

Yield 2017 110.3 93.5 92.5 50.4 44.0

(tonne/ha)

Ecrop-Eact: 91 (σ=23) 93 (σ=51) 126 (σ= 63) 223 (σ=95) 334 (σ=88)

mean (std)

Group 2

XNC19 XNE19 XNC22 MDC17 MDC16

(ratoon 6) (ratoon 4) (ratoon 5) (ratoon 7) (ratoon 7)

Yield 2017 90.4 86 71.9 68.8 53.3

(tonne/ha)

Ecrop-Eact: 259 (σ=84) 322 (σ=89) 361 (σ=93) 411 (σ=121) 345 (σ=113)

mean (std)

Group 3

XNE22 XNC18 XND20 XND18

(ratoon 5) (ratoon 6) (ratoon 9) (ratoon 8)

Yield 2018 90.7 89.3 69.7 66.8

(tonne/ha)

Ecrop-Eact: 129 (σ=39) 187 (σ=67) 265 (σ=101) 193 (σ=77)

mean (std)
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Table A.3: NDVI results. The results in this table present the outcome of the Mann-Whitney U test for mean
NDVI in different crop stages.

Good - Poor Good - Medium Medium - Poor

Stage 1 U-Statistic=353 U-Statistic=151 U-Statistic=159

P-value=0.27 P-value=0.16 P-value=0.32

Sample size - Good: 29 Sample size - Good: 29 Sample size - Medium: 13

Sample size - Poor: 27 Sample size - Medium: 13 Sample size -Poor: 27

Stage 2 U-Statistic=382 U-Statistic=234 U-Statistic=203

P-value=0.28 P-value=0.45 P-value=0.31

Sample size - Good: 30 Sample size - Good: 30 Sample size - Medium: 16

Sample size - Poor: 28 Sample size - Medium: 16 Sample size - Poor: 28

Stage 3 U-Statistic=1073 U-Statistic=503 U-Statistic=831

P-value=0.02 P-value=0.16 P-value=0.2

Sample size - Good: 42 Sample size - Good: 42 Sample size - Medium: 28

Sample size - Poor: 67 Sample size - Medium: 28 Sample size - Poor: 67

Stage 4 U-Statistic=337 U-Statistic=260 U-Statistic=339

P-value=3.44x10-7 P-value=0.003 P-value=0.02

Sample size - Good: 41 Sample size - Good: 41 Sample size - Medium: 22

Sample size - Poor: 44 Sample size - Medium: 22 Sample size - Poor: 44
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Table A.4: Albedo results. The results in this table present the outcome of the Mann-Whitney U test for mean
albedo in different crop stages.

Good - Poor Good - Medium Medium - Poor

Stage 1 U-Statistic=382 U-Statistic=169 U-Statistic=151

P-value=0.44 P-value=0.3 P-value=0.24

Sample size - Good: 29 Sample size - Good: 29 Sample size - Medium: 13

Sample size - Poor: 27 Sample size - Medium: 13 Sample size - Poor: 27

Stage 2 U-Statistic=306 U-Statistic=223 U-Statistic=178

P-value=0.04 P-value=0.35 P-value=0.13

Sample size - Good: 30 Sample size - Good: 30 Sample size - Medium: 16

Sample size - Poor: 28 Sample size - Medium: 16 Sample size - Poor: 28

Stage 3 U-Statistic=1050 U-Statistic=417 U-Statistic=928

P-value=0.01 P-value=0.02 P-value=0.47

Sample size - Good: 42 Sample size - Good: 42 Sample size - Medium: 28

Sample size - Poor: 67 Sample size - Medium: 28 Sample size - Poor: 67

Stage 4 U-Statistic=480 U-Statistic=346 U-Statistic=366

P-value=0.0001 P-value=0.07 P-value=0.055

Sample size - Good: 41 Sample size - Good: 41 Sample size - Medium: 22

Sample size - Poor: 44 Sample size - Medium: 22 Sample size - Poor: 44
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Ratooning month 05 

Ratooning month 06 

Ratooning month 07 

Figure B.1: Soil Water Content (SWC) and the VH Polarization in 2019 and 2021 for rattoning months May (05),
June (06), and July (07).
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Ratooning month 09 

Ratooning month 10 

Ratooning month 11 

Figure B.2: Soil Water Content (SWC) and the VH Polarization in 2019 and 2021 for rattoning months Septem-
ber (09), October (10), and November (11).
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