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1 INTRODUCTION

1 Introduction

Europe’s day-ahead electricity markets operate on an hourly granularity, where market

participants can submit bids (maximum price for which to buy) and offers (minimum

price for which to sell). These market participants are not individual consumers, but

energy suppliers, large industrial users and trading companies. As the name suggests,

the electricity in the day-ahead market is traded one day before actual delivery. Elec-

tricity can be traded in two ways, over-the-counter (OTC) or with the exchange. When

electricity is traded OTC, it means that a buyer and a seller jointly agree on a price,

usually facilitated by a broker. Besides OTC trading, market participants have the

option to bring their electricity to the exchange. Until 12.00 CET the day prior to

delivery, every producer can submit the minimum price per hour for which he wants

to sell his energy, while every consumer can submit the maximum price for which he

wants to purchase energy. All the bids and offers applying to the same physical location

are being aggregated to form demand and supply curves, respectively. If these were

the only trading products, then the settlement price and total traded volume could be

easily determined by simply finding the intersection of the two curves. Furthermore,

all the bids below the settlement price as well as all the offers above the settlement

price would see their order (bid or offer) accepted. There are, however, also orders that

extend over multiple consecutive time periods so that the order has to be cleared en-

tirely for all hours, we will refer to these as block orders. The market clearing problem

amounts to finding a set of hourly and block orders as well as prices and cross-border

electricity flows that maximize social welfare (consumer surplus + producer surplus

+ congestion rent) under operational constraints from market participants, as well as

network constraints defined by Transmission System Operators (TSOs).

The aim of this thesis is to develop a mathematical model for the market clearing

problem for the five countries of the CWE (Central Western European) region, that

can be solved within a reasonable time. The model will be subject to the exact same re-

quirements as EUPHEMIA (the algorithm currently in use for solving Europe’s market

clearing problem). In order to fully understand these requirements and their implica-

tions, however, some background information is necessary. We will therefore wait until

the introduction of Chapter 5 before specifying them. The problem will be formulated

as a Mixed Integer Linear Progam (MILP) and solved using the optimization package

CPLEX with real-world data from the first 15 days of July 2019 CPLEX (2020). The

goal here is to see if it is computationally feasible to solve instances of realistic size,

as the five countries included contain roughly one third of all the orders in Europe.

This thesis is organized as follows. Chapter 2 will give an example of a market clearing

problem, so that the problem becomes more tangible to the reader. Chapter 3 will

review the most important contributions from other authors. Chapter 4 will look into

the data — the different parameters, sets and variables used, and explain the market

clearing problem in depth. The heavy work is done in Chapter 5 where the model is

derived. We finish off with the results of some tests in Chapter 6, and the conclusion

can be found in Chapter 7.
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2 BACKGROUND

2 Background

This chapter will illustrate the trade-off that has to be made in solving the market

clearing problem. We start with a discussion of Definition 2.1 and 2.2 followed by an

example of a market clearing problem containing block orders that will show why a

market equilibrium with uniform prices in a non-convex setting is impossible most of

the time.

Definition 2.1 (Uniform prices). A price system is uniform if all transactions between

market participants depend only and proportionally on a single commodity price per area

and hour.

Definition 2.2 (Market (Walrasian) equilibrium I). A solution to the market clearing

problem forms a market equilibrium if no market participant desires another level of

execution.

If a set of prices and orders form a market equilibrium, then all consumers who

want to purchase above the settlement price and all producers who want to sell below

the settlement price will see their order accepted. It is a desirable property to have as it

allows decision making by market participants to be decentralized. Furthermore, each

participant can easily verify why its bids were accepted or rejected, which contributes

to the legitimacy and transparency of the market (O’Neill, Sotkiewicz, & Rothkopf,

2007).

A set of prices is uniform if they are non-discriminatory, i.e., every participant

receives the price at the marginal bid or offer. When the owner of a power plant with

a marginal cost of e20/MWh offers his electricity at this price, he does not actually

receive this price (unless the market happens to coincidentally clear at e20), instead he

receives the settlement price (whenever it settles at or above e20). This has a number

of benefits. For starters, uniform prices give incentives to invest, because they allow

the investor to make a profit and thereby recover their investment. Conversely, under

a pay-as-bid pricing scheme, market participants have an incentive to misrepresent

their marginal costs. They will try to bid as closely to the settlement price as possible

whenever the settlement price is above the variable cost. The problem here is that

market players are not always able to accurately forecast the settlement price. It can

for example happen that an expensive gas plant estimates a lower settlement price

than a relatively cheaper nuclear plant. If they bid according to their forecast then the

gas plant will see its bid accepted instead of the more efficient nuclear plant. This is

suboptimal from both an economic and environmental perspective. Under a uniform

pricing scheme this would never happen as the primary determinant of a supplier’s

offer is the marginal cost. In the long run these dispatch inefficiencies raise costs,

which are ultimately passed on to consumers Cramton (2007). Finally, there is what

is known as the missing money problem. In a uniform price setting, the total amount

of money collected from consumers is exactly enough to cover the total amount needed

to pay producers, as there is one price and supply and demand match. In the non-

uniform case this does not have to be true, and it often happens that the amount

needed to pay-out in order to compensate certain participants exceeds the amount

2



2 BACKGROUND

received. In practice this is not a major issue as the amount remains small compared

to the financial transfers derived from trade at market prices, and also compared to the

welfare generated (Van Vyve, 2011), nevertheless it is an undesirable property.

We will now introduce convex problems. Convex problems are those whose feasible

set and objective function are convex. A set S is convex if for all x, y ∈ S and θ ∈ [0, 1]

we have that θx+ (1− θ)y ∈ S. Intuitively this means that the line segment between

any two points of the set lies within the set. A function f is convex if its domain is

convex and for all x, y in its domain and all θ ∈ [0, 1] we have that f(θx+ (1− θ)y) ≤
θf(x) + (1− θ)f(y). This means that the line segment between any two points on the

graph of the function lies above or on the graph. Convexity is a desirable trait as there

are often polynomial time algorithms available to solve such problems. And, equally

important, from a convex problem, dual variables can be retrieved that provide uniform

prices that form a market equilibrium (Madani & Van Vyve, 2018). Unfortunately,

the cost structure of power plants does not allow for a perfectly convex problem. In

order to maintain acceptable efficiency rates, plants usually have to reach minimum

output levels. In addition, there can be extra costs incurred due to the start-up or

shut-down of the plant, which the owner of the power plant wants to recover over the

duration of the production period. Finally, plants often have to run for a minimum

number of periods in order to not put too much stress on the mechanics of the power

plant. These peculiarities are integral to the nature of power and in order to accurately

account for them, new financial products in the form of block orders were introduced.

They differ from regular orders in two ways. First, they are tied across two or more

consecutive hours, and second, they have to be cleared completely or not at all (fill or

kill). In this case, strong duality fails and a market equilibrium with uniform prices is

mathematically impossible, unless the optimal solution for the relaxed Linear Problem

(LP) is coincidentally integral (Madani & Van Vyve, 2015). In order to show this we

will first introduce Definition 2.3, which is equivalent to Definition 2.2, but easier to

work with. Consider an hourly order consisting of a quantity/price pair (q, p), and let

π be the settlement price. As q is counted positive for bids and negative for offers, the

following holds for all orders. An order is

• in the money (ITM) when (p− π) · q > 0

• at the money (ATM) when (p− π) · q = 0

• out of the money (OTM) when (p− π) · q < 0.

Let h ∈ H. As blocks apply to multiple hours we extend this to

•
∑

h∈H(p− πh) · qh > 0 for OTM blocks

•
∑

h∈H(p− πh) · qh = 0 for ATM blocks

•
∑

h∈H(p− πh) · qh < 0 for OTM blocks.

This means that a block can be out OTM in some hours and still overall be ITM as long

as the sum over the total period is positive. Next, we define a block to be paradoxically

accepted when it is accepted but OTM and paradoxically rejected when it is rejected

but ITM.

3
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Table 1: Example input

Orders Quantity Price Decision Var.

A (hourly) 11 50 x1

B (hourly) 14 10 x2

C (block) -10 5 y1

D (block) -20 10 y2

Definition 2.3 (Market equilibrium II). A solution (x∗, y∗, π∗) to the market clearing

problem forms a market equilibrium if

1. fully executed orders are ITM or ATM

2. fractionally executed orders are ATM

3. rejected orders are ATM or OTM

The example in Table 1 consists of two regular bids and two block offers that all

apply to the same location and time period. Therefore, the only difference between the

hourly orders and the blocks is that the blocks cannot be partially executed. This is

enough, however, to illustrate the problem. The MILP formulation corresponding to

Table 1 is defined below at 2.1a - 2.1e. Here, the variables x1 and x2 denote the ratio

of execution of the hourly orders, while y1 and y2 do the same for the block orders.

The objective function can be found at 2.1a and aims to maximize social welfare. The

balance equation is defined at 2.1b and makes sure that total demand and supply

match, while the remaining constraints force all variables to be within their respective

bounds. First off, it is clear that it is impossible for both blocks to be accepted, as the

total supply would be 30 MW, while the total demand can be 25 MW at most. Since

the blocks can only be fully accepted or rejected there are two trading options, either

block C or block D gets accepted.

max
x,y

x1 · 11 · 50 + x2 · 14 · 10 + y1 · (−10) · 5 + y2 · (−20) · 10 (2.1a)

s.t. x1 · 11 + x2 · 14 + y1 · (−10) + y2 · (−20) = 0 (2.1b)

x1, x2 ≥ 0 (2.1c)

x1, x2 ≤ 1 (2.1d)

y1, y2 ∈ {0, 1} (2.1e)

Let us assume a solution in which block C gets accepted. In that case supply

is 10MW and hourly order A gets partially accepted, with x1 = 10/11. According

to Definition 2.3 the settlement price should be e50, which means that Block D is

paradoxically rejected, as it wants to produce for a lower price than e50/MW. The total

social welfare in this case would be 10/11 ·11 ·50+0 ·14 ·10+1 ·(−10) ·5+0 ·(−20) ·10 =

e450. Now assume a solution wherein block D gets accepted instead, supply would be

20MW and in order to match this order A would be fully accepted and order B would

4
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be partially accepted with x2 = 9/14. The market clearing price would be e10/MW

as B is ATM, this means block C is in the money and thus paradoxically rejected.

Social welfare in this scenario would be e440, Table 2 summarises the results. As the

objective of 2.1a - 2.1e is to maximize social welfare, the solution would be to accept

block C if solved to optimality. This shows that it is not always possible to have a

market equilibrium with uniform prices in the case of indivisible products.

Table 2: Example results

Scenario Settl. Price Traded Vol. Social welfare

accept C 50 10 450

accept D 10 20 440
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3 LITERATURE REVIEW

3 Literature Review

This chapter will review the work of other authors who studied partial market equi-

libria. There are three main approaches to solving the market clearing problem, the

Integer Programming (IP) approach, the Convex Hull (CHP) approach and the Primal-

Dual (PD) method. There are other approaches and modifications of the approaches

discussed here, see Liberopoulos and Andrianesis (2016) for an overview.

The IP pricing method uses the standard approach of marginal-cost pricing, with

the addition that “uplift” values are computed and added to commodity prices in

order to make sure that no market participant loses money on the trade. First, the

market clearing problem is solved, including integer variables for indivisible products.

Subsequently, an identical problem is created, except that now the integer variables are

fixed to their optimal values. The result is a convex problem from which dual variables

can be extracted. The commodity prices are now simply the dual variables related

to the balancing constraints. Under these commodity prices, however, some market

participants would be making a loss. Therefore, dual variables can be retrieved from

the constraints that control the non-convexities. The dual variables can be interpreted

as start-up costs for producers, or additional fees for bulk-purchasers and can be used

to calculate so called uplifts, which are then added to the commodity price to form

individual prices for all bidders, thereby deviating from a uniform price scheme but

maintaining a market equilibrium (O’Neill, Sotkiewicz, Hobbs, Rothkopf, & Stewart,

2005). The start-up costs can be both positive and negative and as such imply zero

profits for all market participants. As zero profits do not entice participants to bid in

their power to the exchange, it is not used in practice.

An alternative pricing rule, called Convex Hull Pricing (CHP) was developed by

Gribik, Hogan, and Pope (2007), drawing from the works of Hogan and Ring (2003)

and Ring (1995). CHP introduces the concept of side-payments and aims to minimize

these as a best compromise to uniform prices. Side-payments consist of two parts: lost

opportunity cost (LOC) payments and excess product payments. LOC payments make

sure that each committed resource receives its maximum possible profit given prices

and its bidding constraints. We have

LOC = Maximal profit− profit as dispatched

In the case of an accepted block that is ITM, the maximal profit equals the profit

as dispatched, so the LOC is 0. When the block is accepted but OTM (paradoxically

accepted block) the maximal profit is 0 and the profit as dispatched is negative so the

LOC becomes positive. The LOC in this case is referred to as a make-whole payment

(the payment needed to make the block break even). It is a common misunderstanding

that LOC are simply make-whole payments. When a rejected block is ITM (paradox-

ically rejected block) the profit as dispatched is zero and the LOC becomes the profit

that would be taken if the plant was dispatched. When a block is rejected and OTM

both maximal profit and profit as dispatched are 0. Excess product payments ensure

that the total payment made by all buyers covers the total payments needed by all

6



3 LITERATURE REVIEW

sellers, this is necessary because CHP may create positive prices for products that are

not short given the market clearing (Schiro, Zheng, Zhao, & Litvinov, 2016).

Figure 1: Convex hull of optimal total cost curve

CHP is similar to IP pricing in the sense that both make use of a commodity

price and on top of that an uplift that is unique per trade to generate a solution that

forms a market equilibrium. The methods differ, however, in the determination of the

commodity price. Under IP, the commodity price is the dual variable of the balance

constraint, while under CHP it is determined by approximating the cumulative non-

convex cost of the original MILP with its convex hull. The cumulative non-convex

curve is determined as a function of load based on suppliers’ offers. The convex hull of

this total cost curve is defined as “the greatest convex function that is bounded above by

the optimal total cost curve” (Schiro et al., 2016, p. 12). The commodity price is now

the slope of the convex hull of the optimal total cost curve at the actual load. Figure 1

shows the optimal total cost curve in blue, and its convex hull in red. It is important

and interesting to note that the shape of this convex hull is partially determined by

uncommitted resources. Another difference between IP pricing and CHP is that the

uplift payment under CHP can never be negative. A rigorous implementation of CHP is

not used in practice as it is computationally infeasible for large scale instances, however,

some power exchanges in the United States (PJM, New York, New England, MidWest

SO, ERCOT) use a variation of CHP pricing.

The third method is the Primal-Dual (PD) method, and it is also the method that

we will follow. A detailed derivation can be found in Chapter 5, but a brief discussion

can be found below. It is assumed that the optimal set of blocks for the market clearing

problem is known a priori. The integrality constraints of the market clearing problem

are then replaced with inequalities that force the decision variables of the blocks to their

optimal values, resulting in an LP. Next, the dual of this problem is defined, so that now

the dual variables related to the constraints forcing the blocks to be accepted or rejected

7



4 WELFARE OPTIMIZATION

can be interpreted as upper boundaries to the incurred losses or missed opportunity

costs, respectively. Finally, a new problem is defined that includes all constraints from

the original MILP (including integrality constraints) as well as the dual problem, and

in which all dual variables related to the upper bound of incurred losses are set to zero.

The resulting MILP now satisfies all requirements from Definition 2.3 except point 3.

Ruiz, Conejo, and Gabriel (2012) use non-linear constraints, which are linearized with

auxiliary variables. Madani and Van Vyve (2015) found a more efficient formulation

that does not require auxiliary variables. The main difference between the Primal-Dual

method and the two approaches discussed prior, is that under PD the resulting prices

are uniform, i.e., there is one price for all market participants.

The algorithm currently in use in Europe is colloquially known as EUPHEMIA,

and is a decomposition-based branch-and-bound algorithm that consists of two steps

(Euphemia, 2019). First, the market clearing problem including integrality constraints

is solved. The result is an optimal selection of hourly orders and blocks that ensure

that the allocation respects network security constraints. Subsequently, a second op-

timization problem is defined that aims to find prices that meet all the requirements

in Definition 2.3 except for point 3. Of course it is not always true that such a set

of prices exist for the blocks found in the first step. In that case, cuts are added to

the primal problem to exclude blocks that violate this requirement, and the primal

problem is solved again. Note that like the PD method, this solution is asymmetric,

it allows paradoxically rejected orders but not paradoxically accepted orders. This is

justified because the owner of a paradoxically accepted order is actually losing money

on the trade while the owner of a paradoxically rejected order only has a theoreti-

cal lost opportunity cost. To realise this opportunity cost, he has to find a counter

party at market prices, which is costly and not always possible, so the deviation from

equilibrium is arguably the least bad one.

4 Welfare optimization

This chapter will discuss the market clearing problem that applies to the CWE area

specifically. There are three subsections, each of which will give general information

as well as explain the sets, parameters and variables used to model the problem. A

complete overview of the notation used, including dual variables, can be found in Sec-

tion 5.1. We start with the hourly orders. Next, we explain the different kind of block

orders and we finalize with a discussion about the transmission system.

4.1 Hourly orders

In this section we will discuss the sets, parameters and variables related to the hourly

orders. The sets A and H contain the five areas and the 24 hours of the day. We will

use |A|×|H|= 5 ·24 index sets of Ia,h, which are used to uniquely identify all the orders

for a given area and hour. This means that every order can be identified using a ∈ A,

h ∈ H, i ∈ Ia,h. Every order is associated with two parameters: a quantity qa,h,i and a

8



4 WELFARE OPTIMIZATION

Figure 2: Stepwise curve (left) and linear curve (right) with the red line the aggregate demand

(bid) curve and the blue line the aggregate supply (offer) curve (Madani & Van Vyve, 2015). Q

stands for quantity while P stands for price. Every order is made up of a finite number of break-

points s ∈ S

price pa,h,i as well as a continuous variable 0 ≤ xa,h,i ≤ 1 that indicates the acceptance

ratio. Below we briefly explain how to find the quantities and prices for each order.

As said in the introduction, market participants can submit bids and offers to the

power exchange for each area a ∈ A, and hour h ∈ H. They submit them in the

form of stepwise or piecewise linear curves, specified by a number of quantity/price

combinations {(Qs, Ps)}s∈S , S being the set of steps, see Figure 2. The bids and offers

of all participants are collected by the power exchange and sorted and aggregated

into aggregate supply and demand curves that reflect the demand and supply of the

entire market. Supply curves are non-decreasing (Ps ≤ Ps+1), since a higher price

means more producers are willing to generate power. Demand curves are non-increasing

(Ps+1 ≤ Ps), as a lower price means more consumers are willing to purchase power.

Stepwise curves have the property that Ps = Ps+1 if Qs 6= Qs+1 and Ps 6= Ps+1 if

Qs = Qs+1, while for piecewise linear curves it is possible to have Ps 6= Ps+1 and

Qs 6= Qs+1. The hourly orders are now computed from each two consecutive points

of the curve. For both the stepwise and the piecewise linear curve the quantity of an

hourly order is simply computed by subtracting consecutive points qa,h,i = Qs+1 −Qs,

where purchase orders are counted positively and sell orders negatively. This will prove

to be useful in formulating the balance constraints and the objective function. In the

case of the stepwise curve, if Qs = Qs+1 then the quantity will obviously be zero and we

can omit the order since it will not contribute anything to the model. This means that

only orders where Qs 6= Qs+1 will be included and in this case we have Ps = Ps+1 is

equal to the price pa,h,i of that order. In the piecewise linear case the order starts to get

accepted at Ps and ends at Ps+1. Therefore the price depends on the level of execution

of the order pa,h,i = Ps +xa,h,i(Ps+1−Ps)/2. Since this would give a quadratic term in

the objective function we set pa,h,i = (Ps+1+Ps)/2. This is justified as for fully executed

orders we have that xa,h,i = 1 and therefore Ps + xa,h,i(Ps+1 − Ps)/2 = (Ps+1 + Ps)/2.

Only in the case of a partially accepted order is there a difference. However, orders will

only be partially accepted when they are equal to the settlement price, which can be

at most one bid and one offer for each area and hour.

9



4 WELFARE OPTIMIZATION

4.2 Block orders

The sets Ja contain the block IDs, which are used to uniquely identify the block orders

for a given area a ∈ A. Blocks are characterised by a single price pba,j and quantities

qba,j,h for each hour of the day, again purchase blocks have positive volume while sellers

have negative volume. The binary variable ya,j determines if the order is rejected or

accepted in its entirety. The power exchanges for the five countries we deal with use

four different types of block orders, C01, C02, C04 and C88 orders. C04 block orders are

also called exclusive orders and come in groups. Market participants have the option

to construct up to 24 block orders for a single group, out of which at most one can get

accepted, which will be the one that generates the most social welfare. To model this

we use sets Ga that contain all the IDs of the different groups. The sets Eg contain all

the IDs of the blocks in every group. C02 block orders are also known as linked family

block orders, every C02 block order is a child of either another C02 or a standard C01

block order, which is called the parent block order. The defining feature here is that

a child can only get accepted if its parent is accepted. Every linked block order has a

parameter lpa,j with the ID of its parent. A set of blocks that are linked together are

called a family or a tree. Every parent can have up to six children, but a child can only

have one parent. Furthermore, the maximum number of generations in a linked block

order family is seven and the total amount of block orders in the family cannot exceed

40. The “highest” block in the family, also known as the root, is always a regular (C01)

block order, while the rest of the family are linked family (C02) block orders. The set

lca,j contains the IDs of the children blocks. All regular blocks that are at the root

of a linked family tree and all linked block orders except the ones at the leaves of the

tree contain such a set. C01 orders are standard block orders without any additional

constraints attached, except for the fact that they can be parent of a C02 order. In the

dual formulation we will need this information so we introduce a parameter lca,j that

refers to the ID of its child. The last type is the C88 block order, or loop family block

order. C88s come in pairs, where one is a purchase and the other a sell order. In this

group of two, either both blocks get accepted or both get rejected. We deal with them

in the same way as the exclusive block orders, Ua contains all the unique IDs for each

group, while each Ou contains the two block IDs in that group.

4.3 The electricity network

As a country’s power supply is closely related to its national security, electricity mar-

kets were historically organized nationally, where each country focused mainly on self-

sufficiency. With the gradual integration of the economies of Western Europe, the need

for integration of the electricity markets became apparent. Based on these foundations,

the model for electricity trading makes use of a zonal approach, building on a number

of interconnected markets. Within each zone, electricity can be traded without taking

into account network restriction. For cross-border trade, however, network constraints

become vitally important. That is why coordination among zones is important, as

power flows are not bounded by commercial restrictions but follow the laws of physics.

10
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For example, as Germany exports power to France, part of it will flow through the

Netherlands and Belgium, instead of directly going into France, and will therefore also

impact the flow capacity on the Dutch and Belgian borders. There are currently two ap-

proaches being used for determining this cross-border capacity, the Available Transfer

Capacity (ATC) model, and the Flow Based (FB) model.

4.3.1 The available transfer capacity model

The ATC network model was once applied to all of Europe’s cross-border trade. Within

the CWE region it has been replaced by the more efficient FB model, but it is still very

relevant as it is applied in the remainder of Europe’s borders and will be briefly ex-

plained for the sake of completeness. The TSO of each country determines a Net

Transfer Capacity (NTC) for each of its borders. They do this based on historical

data, taking into account potential loop flows, seasonal impact and a security margin

known as total reliability margin (TRM). This NTC can be interpreted as the maxi-

mum allowed flow that pushes the critical points of a network to their maximum load.

After this, the TSO coordinates bilaterally with each of the TSO’s responsible for their

common border, usually selecting the lowest NTC among the two. Subsequently, the

ATC is derived by subtracting capacity that has already been auctioned.

Figure 3: Feasible region ATC model

Figure 3 contains an example from the point of view of area A, which is connected

to both area B and C. Each combination of flows falling inside the green rectangle is

allowed. Corner 1 represents the case in which area A exports maximally to both B

and C, while corner 3 represents maximum import from B and C.

11
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4.3.2 The flow based model

Figure 4: Feasible region FB model

Instead of supplying fixed capacities like the ATC model, the FB approach formu-

lates the constraints that reflect the physical limits of the grid. Each TSO selects a

number of physical nodes and lines in the grid based on their vulnerability with re-

spect to internal contingencies and CWE cross-border exchanges. These bottlenecks of

the grid are referred to as Critical Branches (CBs). The Remaining Available Margin

(RAM) for each CB is determined based on the maximum physical capacity of the line

after subtracting a Flow Reliability Margin (FRM) and can be seen as the maximum

allowed load. Power Transmission Distribution Factors (PTDFs) denote the physical

flow on a transmission line as a result of power being injected at a specific zone. The

set K contains pairs of h, k, with h ∈ H the hour that the constraint applies to and

k an ID of the specific CB. wh,k is the Remaining Available Capacity for that branch,

and Ch,k,a is the PTDF for branch k that applies to hour h ∈ H for area a ∈ A.

The feasible region will look like Figure 4, the FB domain corresponds with the

global Security of Supply domain. Instead of assuming one NTC capacity value per

direction on each border, all constraints imposed by the critical branches are considered.

Figure 5 includes both the ATC and FB domains, it is clear that the FB domain contains

the ATC domain. The reason for this is that when a TSO provides ATC constraints,

a choice needs to be made on how to split the capacity among its borders (A to B and

A to C), before the bids and offers in each market are known. While under the FB

approach, the entire Security of Supply domain is available, and the market itself will

12
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Figure 5: Feasible region of both ATC and FB model

decide on the division of commercial capacity between areas. This is clearly illustrated

by the shape of the feasible regions. In Figure 3 the region is squared, which means that

the maximum flow from A to B is the same regardless of the flow between A and C.

Conversely, in Figure 4 we have that the flow from A to C impacts the capacity between

A and C. From Figure 5 it can be seen that the difference is most notable when one of

two flows is zero, as the FB model can allocate more capacity to the remaining border.

Since, the FB domain encapsulates the ATC domain, it offers more transport options

to the market and will therefore result in a better or equally good solution than under

an ATC model. The constraint that a CB imposes is the following:

PTDF · nex ≤ RAM

Here, nex is the vector of net positions, the net position is the difference in MW

sold and bought, as all the power that will be generated but not consumed needs to

be exported, while on the other hand all the power that will be consumed but not

generated needs to be imported. The plain flow based model has a significant flaw

though, as it is possible for power to flow from high to lower priced areas. Market

participants can see this as unfair anti-competitive behavior or “price-dumping” and it

decreases the transparency of the results, even though it is a natural phenomenon that

can be perfectly explained by the physical properties of the system (Vlachos & Biskas,

2016). For this reason an extra requirement is added, namely that only flows from low

13
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Figure 6: Example of net positions decomposed into flows

to equal or higher prices areas are allowed, referred to as a Flow Based Intuitive (FBI)

model. The example in Figure 6 comes from the public documentation of Euphemia

(2019) and shows why these non-intuitive situations might happen. It contains three

markets and one critical branch so that the imposed constraint looks like the following:

0.25 · nexa − 0.5 · nexb − 0.25 · nexc ≤ 125

In the representation of the result, bilateral exchanges between areas are shown, in

addition to the net export positions. Theoretically there are infinitely many potential

decompositions of the net export position in bilateral exchanges. Any decomposition

will lead to market B exporting to a lower priced area, however, since it is exporting and

it is also the highest priced area. The reason for these non-intuitive flows is that some

non-intuitive flows might free up capacity on a branch allowing larger flows between

other areas. Rewriting the net export positions into the sum of flows will show why.

PTDFa · nexa + PTFDFb · nexb + PTDFc · nexc ≤ 125

PTDFa · (flowa,b − flowb,a + flowa,c − flowc, a)+

PTDFb · (flowb,a − flowa,b + flowb,c − flowc,b)+

PTDFc · (flowc,a − flowa,c + flowc,b − flowb,c) ≤ 125

flowa,b · (PTDFa − PTDFb) + flowb,a · (PTDFb − PTDFa)+

flowa,c · (PTDFa − PTDFc) + flowc,a · (PTDFc − PTDFa)+

flowb,c · (PTDFb − PTDFc) + flowc,b · (PTDFc − PTDFB) ≤ 125

(4.1)
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Which, after substituting the PTDF values results in:

flowa,b · (0.25− (−0.5)) + flowb,a · ((−0.5)− 0.25)+

flowa,c · (0.25− (−0.25)) + flowc,a · ((−0.25)− 0.25)+

flowb,c · (−0.5− (−0.25)) + flowc,b · ((−0.25)− (−0.5)) ≤ 125

flowa,b · 0.75 + flowb,a · (−0.75) + flowa,c · 0.5+

flowc,a · (−0.5) + flowb,c · (−0.25) + flowc,b · 0.25 ≤ 125

(4.2)

We see that exporting from area B to area C loads the critical branch with -0.25 MW for

each MW exchanged, in other words: the flow relieves the load on the line. This means

that flowing from B to C frees up capacity that can be used to transport more between

other markets, thereby increasing social welfare. This is an undesirable situation as it

decreases transparency for market participants. In extreme cases where several markets

end up at maximum price, the PTDF coefficients can lead to unfair distribution of the

available energy so that the solution that maximizes the welfare is the one where one

market is totally curtailed, while all the available energy is given to another market that

is not necessarily at maximum price. A solution is to cancel out the relieving effects

of the exchange between area B and C, by replacing coefficient PTDFb - PTDFc with

max(PTDFb - PTDFc, 0).
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5 Model

This chapter will show how the model was derived. In Section 5.1 you can find the

notation that has already largely been introduced in Chapter 4. The model we will

develop here is very similar to the one in Madani and Van Vyve (2018) and can be

classified under the Primal-Dual approach. The reason we picked this method is be-

cause the requirement from the European power exchanges is that the prices need to

be uniform. The only deviation from a perfect market equilibrium is that paradoxically

rejected orders are allowed. Furthermore, the model should correctly handle the differ-

ent block order types, discussed in Section 4.2. Finally, it should be able to deal with a

flow based transmission model, while maintaining a spatial equilibrium (no power flows

from lower priced to higher priced areas).

The first step is to define an MILP that maximizes social welfare under all relevant

constraints, this model will be referred to as the “primal” and discussed in section 5.2.

Subsequently, we assume that the optimal selection of blocks is known in advance and

replace the integrality constraints for each block by an inequality that forces the decision

variable to its a priori “known” value. This turns the problem from an MILP to an LP,

with the advantage that strong duality holds. As strong duality holds, dual variables

have a straightforward interpretation: the dual variable gives the improvement in the

objective function if the constraint is relaxed by one unit. So using this LP we are

now able to construct a dual problem and complementary slackness constraints. The

dual variables related to the constraints forcing the decision variables of the “accepted”

blocks to be greater than or equal to 1 can be interpreted as upper bounds on the loss

the blocks make. The dual variables related to the constraints forcing the decision

variables of the “rejected” blocks to be less than or equal to 0, on the other hand, can

be interpreted as upper bounds on the missed opportunity costs. The next step is to

formulate the feasible region that is described by the primal, dual and complementary

slackness constraints. This is done by putting together the primal and dual constraints

and adding a constraint that forces the objective value of the primal to be less than or

equal to the dual. To enforce a partial market equilibrium that does not allow losses for

accepted blocks, we set the dual variables related to the “accepted” blocks to 0. Note

that we still allow blocks to be rejected but ITM so there is no full market equilibrium,

i.e., point 3 from Definition 2.3 is not satisfied. From this we describe a final model

whose feasible set is the one described in the previous step and whose objective function

is to maximize social welfare.

There are three main differences between our model and the one by Madani and

Van Vyve (2018). First, it includes all the different types of block orders that are

employed in the CWE region. Second, it enforces a spatial equilibrium, discussed in

Subsection 4.3.2. Finally, it omits the flexible minimum acceptance ratio, i.e., the model

in Madani and Van Vyve (2018) can handle the constraint that some plants either want

to shut down completely or produce more than a certain ratio of the offered volume

(e.g. 50%). As this parameter is not made available by the power exchanges of the

CWE region, all the blocks in our model can either be completely rejected or accepted,
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i.e., the minimum acceptance ratio is always one.

5.1 Notation

sets

A

H

Ia,h
Ja
Ba

Kh

Ga

Eg

Ua

Ou

La

Na

Ja
a

Jr
a

Set of Areas, with a ∈ A
Set of Hours, with h ∈ H
Sets of Indices of hourly orders for a ∈ A, h ∈ H, with i ∈ Ia,h
Set of Blocks, for a ∈ A with j ∈ Ja
Sets of borders, for a ∈ A, with b ∈ Ba

Sets of Critical Branches, for h ∈ H, with k ∈ K
Sets of IDs of exclusive (C04) blocks, for a ∈ A with g ∈ G
Sets of blocks that are in the same exclusive group, for g ∈ G with

j ∈ Eg

Sets of IDs of loop family (C88) blocks, for a ∈ A with u ∈ U
Sets of blocks that are in the same loop family group, for u ∈ U

with j ∈ Ou

Sets of all linked family (C02) blocks, for a ∈ A with j ∈ L
Sets of all regular (C01) blocks, for a ∈ A with j ∈ N
Sets of all accepted blocks, for a ∈ A, with j ∈ Ja

a

Sets of all accepted blocks, for a ∈ A, with j ∈ Jr
a

parameters

pa,h,i
qa,h,i
pba,j
qba,j,h
lpa,j
lca,j
wh,k

ch,k,a

Price for hourly orders, with a ∈ A, h ∈ H, i ∈ Ia,h
Quantity for hourly orders, with a ∈ A, h ∈ H, i ∈ Ia,h
Price for block orders, with a ∈ A, j ∈ Ja
Quantity for block orders, with a ∈ A, j ∈ Ja, h ∈ H
Block ID of parent block, with j ∈ L
Block IDs of children blocks, if any, with j ∈ N ∪ L
Remaining available margin, with h, k ∈ K
Coefficient for Critical Branch, with, h, k ∈ K, a ∈ A

primal variables

0 ≤ xa,h,i ≤ 1

ya,j ∈ {0, 1}

nexa,h (free)

0 ≤ fa,b,h

Variable associated to execution ratio of hourly orders, with a ∈
A, h ∈ H, i ∈ Ia,h
Variable associated to execution ratio of block orders, with a ∈
A, j ∈ Ja
Variable denoting the net export position, with a ∈ A, h ∈ H
Flow variable, with a,∈ A, b ∈ Ba, h ∈ H
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dual variables

0 ≤ sa,h,i

0 ≤ za,j

0 ≤ vh,k

−500 ≤ πa,h ≤
3000

0 ≤ c02a,j
0 ≤ c04g
c88u (free)

πsysh

δa,h
duaa,j

dura,j

Variable representing the surplus associated to the hourly bid xa,h,i,

with a ∈ A, h ∈ H, i ∈ Ia,h
Variable representing the surplus associated to the block order ya,j ,

with a ∈ A, j ∈ Ja
Variable representing the value of critical branch, with h ∈ H, k ∈
Kh

Variable representing a uniform price, with a ∈ A, h ∈ H

Variable that transfers the surplus of a child to its parent c02

Variable representing the surplus of the group g

Variable representing the surplus of the group u

Variable representing the system price, with h ∈ H
Variable representing the deviation from πsysh , with a ∈ A, h ∈ H
Variable representing the upper bound on incurred losses of an ac-

cepted block

Variable representing the upper bound on missed opportunity costs

of a rejected block

5.2 The primal problem

The primal model in standard form can be found in 5.1, including network and in-

tegrality constraints as well as all constraints to handle the different types of blocks.

The dual variables are written after each constraint and are given within brackets [

]. After giving the first description we discuss the various expressions and make some

modifications.

Primal

max
x,y

∑
a∈A,h∈H,i∈Ia,h

xa,h,i · pa,h,i · qa,h,i +
∑

a∈A,j∈JA

ya,j · pba,j ·
∑
h∈H

qba,j,h (5.1a)

s.t.∑
i∈Ia,h

xa,h,i · qa,h,i +
∑
j∈JA

ya,j · qba,j,h + nexa,h = 0 ∀a ∈ A, h ∈ H [δa,h] (5.1b)

∑
a∈A

nexa,h = 0 ∀h ∈ H [πsysh ] (5.1c)∑
a∈A

nexa,h · ch,k,a ≤ wh,k ∀h ∈ H, k ∈ Kh [vh,k]

(5.1d)∑
j∈Eg

ya,j ≤ 1 ∀a ∈ A, g ∈ Ga [c04g]

(5.1e)

ya,j − ya,lpa,j ≤ 0 ∀a, j ∈ L [c02a,j ] (5.1f)
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ya,j1∈Ou − ya,j2∈Ou = 0 ∀a ∈ A, u ∈ Ua [c88u]

(5.1g)

−xa,h,i ≤ 0 ∀a ∈ A, h ∈ H, i ∈ Ia,h
(5.1h)

xa,h,i ≤ 1 ∀a ∈ A, h ∈ H, i ∈ Ia,h [sa,h,i]

(5.1i)

−ya,j ≤ 0 ∀a ∈ A, j ∈ Ja (5.1j)

ya,j ≤ 1 ∀a ∈ A, j ∈ Ja [za,j ] (5.1k)

ya,j ∈ Z ∀a ∈ A, j ∈ Ja (5.1l)

−fa,b,h ≤ 0 ∀h ∈ H, a ∈ A, b ∈ Ba

(5.1m)

The first summation of the objective 5.1a handles the hourly orders while the second

takes care of all the block orders. Inequalities 5.1b, 5.1c and 5.1d enforce the constraints

laid out by the network. The first one makes sure that the net export position is equal

to the difference between the total volume bought and sold, as the volume for sell orders

is negative the net export position becomes positive in case an area is exporting. The

second constraint forces the sum of all the net positions to be equal to zero, this is

necessary so that the entire system is in balance and the total export matches total

import. Finally 5.1d forces the load on each branch to be smaller than the capacity.

∑
i∈Ia,h

xa,h,i · qa,h,i +
∑
j∈JA

ya,j · qba,j,h+

∑
b∈Ba

(fa,b,h − fb,a,h) = 0 ∀a ∈ A, h ∈ H [πa,h] (5.2)

∑
a∈A,b∈Ba

fa,b,h · (ch,k,a − ch,k,b) ≤ wh,k ∀h ∈ H, k ∈ Kh [vh,k] (5.3)

In order to be able to enforce the intuitiveness requirement, constraints 5.2 and 5.3

should be used instead of 5.1b, 5.1c and 5.1d. Equality 5.2 directly decomposes the

net export position into the sum of incoming and outgoing flows, instead of using a

variable that represents the net export position. This is necessary so that 5.3 can

replace 5.1d, see the system of equations 4.2 for the derivation. In addition, it also

makes 5.1c obsolete as the flow variable appears in balance constraint 5.2 of both the

sending and receiving area, thereby linking supply and demand in the two areas. Note

that the dual variables πsysh related to 5.1c can be interpreted as the system price and

the dual variables δa,h related to 5.1d as each country’s deviation from this system

price. The dual variables πa,h related to constraint 5.2, on the other hand, directly give

the settlement price so that we have πa,h = πsysh + δa,h.

Constraints 5.1e, 5.1f and 5.1g enforce the special requirement for each type of block

order. Given a group of exclusive block orders, inequality 5.1e forces the sum of all

the decision variables of the blocks in this group to be smaller or equal than 1. With
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respect to the linked family blocks, 5.1f forces the decision variable of the parent block

to be greater than or equal to the decision variable of the child. Finally, 5.1g forces the

decision variables of the two blocks in the loop family group to be equal. The remaining

constraints force the variables to be within their respective bounds.

We now follow the reasoning in Madani and Van Vyve (2018) and assume we know

the optimal set of blocks for 5.1. For this, consider the partition Ja = Ja
a ∪ Jr

a , with

Ja
a the accepted blocks and Jr

a the rejected blocks for each area. We now add con-

straints 5.4, and 5.5 and drop 5.1l to obtain a Linear Problem.

−ya,ja ≤ −1 ∀a ∈ A, ja ∈ Ja
a [duaa,j ] (5.4)

ya,jr ≤ 0 ∀a ∈ A, jr ∈ Jr
a [dura,j ] (5.5)

5.3 The dual problem and complementary slackness constraints

Problem 5.1 including constraints 5.2, 5.3, 5.4 and 5.5 but without 5.1b, 5.1c, 5.1d

and 5.1l yields the dual problem found in 5.6. The derivation is a bit arduous due to

the different kind of blocks. We effectively get two constraints for every type of block,

one for an accepted block and one for a rejected block, except for the C88’s that require

four constraints.

Constraints 5.6c and 5.6d apply to linked family (C02) blocks, the variable c02a,j is

there because this linked family block is necessarily a child of another block. The sum

−
∑

j1∈lca,j c02a,j1 exists because this block might also be the parent of some other C02

blocks. Note that this does not have to be the case, lca,j might be empty. lca,j also

appears in constraints 5.6e and 5.6f for regular (C01) blocks since a C01 block can be the

parent of a C02 block. Constraints 5.6g and 5.6h apply to the exclusive (C04) blocks and

are rather straightforward. Finally, there are the loop family (C88) blocks that require

four constraints. If the block appears as the first block in primal constraint 5.1g, then

c88u should be positive and, depending on execution, 5.6i or 5.6j applies. Conversely, if

the block appears last in the primal constraint c88u should negative so that 5.6k or 5.6l

applies. Note that we restricted the range of the settlement prices π to [-500, 3000] as

these are the limit prices for orders.

Dual

min
s,z,c04,v,dua

∑
a∈A,h∈H,i∈Ia,h

sa,h,i+
∑

a∈A,j∈JA

za,j +
∑
g∈G

c04g +
∑

h,k∈K
vh,k ·wh,k−

∑
a∈A,j∈Ja

a

duaa,j

(5.6a)

s.t.

sa,h,i + πa,h · qa,h,i ≥ pa,h,i · qa,h,i ∀a ∈ A, h ∈ H, i ∈ Ia,h

(5.6b)

za,ja + c02a,ja −
∑

j1∈lca,ja
c02a,j1 − duaa,ja+
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∑
h∈H

πa,h · qba,ja,h ≥ pba,ja ·
∑
h∈H

qba,ja,h ∀a ∈ A, ja ∈ La ∩ Ja
a

(5.6c)

za,jr + c02a,jr −
∑

j1∈lca,jr
c02a,j1 + dura,jr+

∑
h∈H

πa,h · qba,jr,h ≥ pba,jr ·
∑
h∈H

qba,jr,h ∀a ∈ A, jr ∈ La ∩ Jr
a

(5.6d)

za,ja −
∑

j1∈lca,ja
c02a,j1 − duaa,ja+

+
∑
h∈H

πa,h · qba,ja,h ≥ pba,ja ·
∑
h∈H

qba,ja,h ∀a ∈ A, ja ∈ Na ∩ Ja
a

(5.6e)

za,jr −
∑

j1∈lca,jr
c02a,j1 + dura,jr+

+
∑
h∈H

πa,h · qba,jr,h ≥ pba,jr ·
∑
h∈H

qba,jr,h ∀a ∈ A, jr ∈ Na ∩ Jr
a

(5.6f)

za,ja + c04g − duaa,ja+∑
h∈H

πa,h · qba,ja,h ≥ pba,ja ·
∑
h∈H

qba,ja,h ∀a ∈ A, g ∈ Ga, j
a ∈ Eg ∩ Ja

a

(5.6g)

za,jr + c04g + dura,jr+∑
h∈H

πa,h · qba,jr,h ≥ pba,jr ·
∑
h∈H

qba,jr,h ∀a ∈ A, g ∈ Ga, j
r ∈ Eg ∩ Jr

a

(5.6h)

za,ja1 + c88u − duaa,ja1 +∑
h∈H

πa,h · qba,ja1 ,h ≥ pba,ja1 ·
∑
h∈H

qba,ja1 ,h ∀a ∈ A, u ∈ Ua, j
a
1 ∈ Ou ∩ Ja

a

(5.6i)

za,jr1 + c88u + dura,jr1+∑
h∈H

πa,h · qba,jr1 ,h ≥ pba,jr1 ·
∑
h∈H

qba,jr1 ,h ∀a ∈ A, u ∈ Ua, j
r
1 ∈ Ou ∩ Jr

a

(5.6j)

za,ja2 − c88u − duaa,ja2 +∑
h∈H

πa,h · qba,ja2 ,h ≥ pba,ja2 ·
∑
h∈H

qba,ja2 ,h ∀a ∈ A, u ∈ Ua, j
a
2 ∈ Ou ∩ Ja

a

(5.6k)

za,jr2 − c88u + dura,jr2+
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∑
h∈H

πa,h · qba,jr2 ,h ≥ pba,jr2 ·
∑
h∈H

qba,jr2 ,h ∀a ∈ A, u ∈ Ua, j
r
2 ∈ Ou ∩ Jr

a

(5.6l)

πa,h − πb,h +
∑
k∈Kh

(ch,k,a − ch,k,b) · vh,k ≥ 0 ∀h ∈ H, a ∈ A, b ∈ Ba

(5.6m)

sa,h,i ≥ 0 ∀a ∈ A, h ∈ H, i ∈ Ia,h
(5.6n)

za,j ≥ 0 ∀a ∈ A, j ∈ Ja
(5.6o)

vh,k ≥ 0 ∀h ∈ H, k ∈ Kh

(5.6p)

πa,h ≥ −500 ∀a ∈ A, h ∈ H
(5.6q)

−πa,h ≥ −3000 ∀a ∈ A, h ∈ H
(5.6r)

c02a,j ≥ 0 ∀a, j ∈ L (5.6s)

c04g ≥ 0 ∀g ∈ G (5.6t)

We continue by writing down the complementary slackness constraints correspond-

ing to the primal and dual, these hold in the case of optimality, see Theorem A.1.

Complementary Slackness Constraints

sa,h,i(1− xa,h,i) = 0 ∀a ∈ A, h ∈ H, i ∈ Ia,h (5.7a)

za,j(1− ya,j) = 0 ∀a ∈ A, j ∈ Ja (5.7b)

vh,k(
∑

a∈A,b∈Ba

(wh,k − fa,b,h · (ch,k,a − ch,k,b))) = 0 ∀h ∈ H, k ∈ Kh (5.7c)

(1− ya,j)duaa,j = 0 ∀a ∈ A, j ∈ Ja
a (5.7d)

ya,jdu
r
a,j = 0 ∀a ∈ A, j ∈ Jr

a (5.7e)

xa,h,i(sa,h,i + qa,h,iπa,h − qa,h,ipa,h,i) = 0 ∀a ∈ A, h ∈ H, i ∈ Ia,h (5.7f)

ya,ja(za,ja + c02a,ja −
∑

j1∈lca,ja
c02a,j1 − duaa,ja+

∑
h∈H

πa,h · qba,ja,h − pba,ja ·
∑
h∈H

qba,ja,h) = 0 ∀a ∈ A, ja ∈ La ∩ Ja
a (5.7g)

ya,jr(za,jr + c02a,jr −
∑

j1∈lca,jr
c02a,j1 + dura,jr+

∑
h∈H

πa,h · qba,jr,h − pba,jr ·
∑
h∈H

qba,jr,h) = 0 ∀a ∈ A, jr ∈ La ∩ Jr
a (5.7h)

ya,ja(za,ja −
∑

j1∈lca,ja
c02a,j1 − duaa,ja+
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+
∑
h∈H

πa,h · qba,ja,h − pba,ja ·
∑
h∈H

qba,ja,h) = 0 ∀a ∈ A, ja ∈ Na ∩ Ja
a (5.7i)

ya,jr(za,jr −
∑

j1∈lca,jr
c02a,j1 + dura,jr+

+
∑
h∈H

πa,h · qba,jr,h − pba,jr ·
∑
h∈H

qba,j,h) = 0 ∀a ∈ A, jr ∈ Na ∩ Jr
a (5.7j)

ya,ja(za,ja + c04g − duaa,ja+∑
h∈H

πa,h · qba,ja,h − pba,ja ·
∑
h∈H

qba,ja,h) = 0 ∀a ∈ A, g ∈ Ga, j
a ∈ Eg ∩ Ja

a

(5.7k)

ya,jr(za,jr + c04g + dura,jr+∑
h∈H

πa,h · qba,jr,h − pba,jr ·
∑
h∈H

qba,jr,h) = 0 ∀a ∈ A, g ∈ Ga, j
r ∈ Eg ∩ Jr

a

(5.7l)

ya,ja1 (za,ja1 + c88u − duaa,ja1 +∑
h∈H

πa,h · qba,ja1 ,h − pba,ja1 ·
∑
h∈H

qba,ja1 ,h) = 0 ∀a ∈ A, u ∈ Ua, j
a
1 ∈ Ou ∩ Ja

a

(5.7m)

ya,jr1 (za,jr1 + c88u + dura,jr1+∑
h∈H

πa,h · qba,jr1 ,h − pba,jr1 ·
∑
h∈H

qba,jr1 ,h) = 0 ∀a ∈ A, u ∈ Ua, j
r
1 ∈ Ou ∩ Jr

a

(5.7n)

ya,ja2 (za,ja2 − c88u − duaa,ja2 +∑
h∈H

πa,h · qba,ja2 ,h − pba,ja2 ·
∑
h∈H

qba,ja2 ,h) = 0 ∀a ∈ A, u ∈ Ua, j
a
2 ∈ Ou ∩ Ja

a

(5.7o)

ya,jr2 (za,jr2 − c88u + dura,jr2+∑
h∈H

πa,h · qba,jr2 ,h − pba,jr2 ·
∑
h∈H

qba,jr2 ,h) = 0 ∀a ∈ A, u ∈ Ua, j
r
2 ∈ Ou ∩ Jr

a

(5.7p)

We will now prove some Lemmas regarding the interpretation of the dual variables.

Keep in mind that for bids, quantity parameters qa,h,i, qba,j,h > 0, while for offers

qa,h,i, qba,j,h < 0.

Lemma 5.1 (Interpretation of s and equilibrium for hourly orders). Variables sa,h,i
correspond to the surplus of order xa,h,i, i.e.:

sa,h,i = (qa,h,ipa,h,i − qa,h,iπa,h)xa,h,i (5.8)

In addition, the following equilibrium conditions are valid, so that no agent prefers

another level of execution (Definition 2.2):

1. An hourly order that is fully accepted is ITM or ATM and the surplus is non-

negative.
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2. An hourly order that is partially accepted is ATM

3. An hourly order that is fully rejected is OTM or ATM

Proof. We omit subscripts in this proof as we use the same a, h, i for all parameters

and variables.

1. If the order is fully executed, x = 1, now from 5.7f and 5.6n we have that s =

qp− qπ ≥ 0, so the bid is ITM or ATM. Multiplying the inequality by x = 1 we

obtain 5.8.

2. If 0 < x < 1, then from 5.7a we have s = 0 = sx. Now 5.7f gives s = qp− qπ = 0,

so the bid is ATM, multiplying by x gives 5.8.

3. If x = 0, then s = 0 according to 5.7a. 5.6b gives pq − πq < 0 so the order it

OTM or ATM. Since x = 0 = s, 5.8 is trivially true.

�

Lemma 5.2 (Interpretation of za,j , du
a
a,j , du

r
a,j). Variables za,j correspond to the poten-

tial surplus of a block order. Variables duaa,j can be interpreted as a limit on the allowed

loss of an accepted block order and dura,j as an upper bound on missed opportunity costs

of a rejected block order. Moreover, for an accepted regular block order without any

children blocks equality 5.9 holds.

za,j − duaa,j = (
∑
h∈H

pba,jqba,j,h − πa,hqba,j,h)ya,j ∀a ∈ A, j ∈ Na ∩ Ja
a (5.9)

Proof. The first equality follows immediately from 5.7i with ya,j = 1 and lca,j empty.

As za,j , du
a
a,j ≥ 0 the interpretation follows straight away.

Now, as a rejected block implies ya,j = 0, then from 5.7b we have za,j = 0 as well.

Finally 5.6f with lca,j empty then gives dura,j ≥
∑

h∈H pba,jqa,j,h − πa,hqa,j,h, which

implies dura,j is an upper bound on the missed profit. �

Theorem 5.1 (Non-negative profits for blocks). If duaa,j = 0 for an accepted block then

it is ITM.

Proof. Remember that a block is in the money if
∑

h∈H pba,jqba,j,h − πa,hqba,j,h ≥ 0,

as for a purchase (qa,j,h > 0) it means that the buyer wants to pay more than the

settlement price, and for a seller (qa,j,h < 0) it means he wants to produce for less

than the settlement price. If duaa,j = 0, then since za,j ≥ 0 the left hand side of 5.9 is

non-negative. Since ya,j = 1, this means that
∑

h∈H pba,jqba,j,h − πa,hqba,j,h ≥ 0. �

Lemma 5.3 (Interpretation of c02a,j). c02a,j transfers the surplus of a child block to

its parent.

Proof. Take a, j1 ∈ Na∩Ja
a as the parent block, and a, j2 ∈ La∩Ja

a as its child block. We

set duaa,j1 = duaa,j2 = 0 to not allow any losses for blocks. We consider two situations:

1 the parent is ITM while the child is OTM and 2 the parent is OTM while the child

is ITM.
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1. Assume the parent block is ITM by δ1 > 0, so
∑

h∈H pba,j1qba,j1,h−πa,hqba,j1,h =

δ1, and the child block is OTM by δ2 < 0, so
∑

h∈H pba,j2qba,j2,h−πa,hqba,j2,h = δ2.

Furthermore, assume that δ1 + δ2 ≥ 0, i.e. the profit of the child is greater or

equal than the loss of the parent. Then the corresponding dual constraints for

parent and child are 5.6e and 5.6c respectively and simplify to:

za,j1 − c02a,j2 ≥ δ1
za,j2 + c02a,j2 ≥ δ2

Remember that the objective of the dual is to minimize z. The optimal solution

for the first equation is za,j1 = δ1, c02a,j2 = 0, while for the second equation any

value of za,j2 suffices (as z ≥ 0). Its important to note here that changing the

value of co2a,j2 does not help.

2. Assume now that the parent is OTM by δ2 and its child is ITM by δ1. The dual

constraint become:

za,j1 − c02a,j2 ≥ δ2
za,j2 + c02a,j2 ≥ δ1

Now the optimal solution is c02a,j2 = −δ2, za,j1 = 0 and za,j2 = δ1 + δ2. These

observations show that c02a,j2 can transfer surplus from a child to its parent while

the other way around is impossible.

�

Lemma 5.4 (Interpretation of c88u). c88u distributes the surplus over the two blocks

in the group u.

Proof. Take j1, j2 ∈ Ou ∩ Ja
a . We will again consider two situations, in the first one j1

is ITM by δ1 > 0 while j2 is OTM by δ2 < 0, in the second one the cases are reversed.

The corresponding dual constraints are 5.6i and 5.6k for j1 and j2 respectively, and

we set again duaa,j1 = duaa,j2 = 0.

1. In the first case these constraints simplify to:

za,j1 + c88u ≥ δ1
za,j2 − c88u ≥ δ2

and optimal values are za,j1 = δ1 + δ2, c88u = δ2, za,j2 = 0.

2. In the second case the constraints become

za,j1 + c88u ≥ δ2
za,j2 − c88u ≥ δ1

and optimal values are za,j1 = 0, c88u = δ2, za,j2 = δ1 + δ2.

Therefore c88u can transfer surplus from j1 to j2 and vice versa. �
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The difference between c88u and c02a,j is that c88u can be negative, unlike c02a,j
which can therefore only transfer surplus in one direction. In Section 5.4 below we define

an MILP feasible region that exactly matches the region described by the constraints

of the primal 5.1e - 5.1m, 5.2 - 5.5, its dual 5.6b - 5.6t and complementary slackness

constraints 5.7a - 5.7p.

5.4 The final model

The system in 5.10 describes a region that contains all possible combinations of blocks

given by Ja = Ja
a ∪ Jr

a , ∀a ∈ A. In addition, each combination will satisfy the primal,

dual and complementary slackness constraints, this is made precise in Theorem 5.2.

Most importantly, it contains inequality 5.10a that enforces all complementary slackness

conditions without containing any quadratic terms. Moreover, “Big Ms” are introduced

that limit the loss of rejected blocks (5.10p) and missed opportunity costs of accepted

blocks (5.10q) to 0.

Feasible Region∑
a∈A,h∈H,i∈Ia,h

xa,h,i · pa,h,i · qa,h,i +
∑

a∈A,j∈JA

ya,j · pba,j ·
∑
h∈H

qba,j,h

≤
∑

a∈A,h∈H,i∈Ia,h

sa,h,i +
∑

a∈A,j∈JA

za,j +
∑
g∈G

c04g +
∑

h,k∈K
vh,k · wh,k −

∑
a∈A,j∈Ja

a

duaa,j

(5.10a)

∑
i∈Ia,h

xa,h,i · qa,h,i +
∑
j∈JA

ya,j · qba,j,h+

∑
b∈Ba

fa,b,h − fb,a,h = 0 ∀a ∈ A, h ∈ H (5.10b)

∑
a∈A,b∈Ba

fa,b,h · (ch,k,a − ch,k,b) ≤ wh,k ∀h ∈ H, k ∈ Kh (5.10c)

∑
j∈Eg

ya,j ≤ 1 ∀a ∈ A, g ∈ Ga (5.10d)

ya,j − ya,lpa,j ≤ 0 ∀a, j ∈ L (5.10e)

ya,j1∈Ou − ya,j2∈Ou = 0 ∀a ∈ A, u ∈ Ua (5.10f)

xa,h,i, ya,j , fa,b,h ≥ 0 (5.10g)

xa,h,i, ya,j ≤ 1 (5.10h)

ya,j ∈ Z (5.10i)

sa,h,i + πa,h · qa,h,i ≥ pa,h,i · qa,h,i ∀a ∈ A, h ∈ H, i ∈ Ia,h
(5.10j)

za,j + c02a,j −
∑

a,j1∈lca,j

c02a,j1−

duaa,j + dura,j +
∑
h∈H

πa,h · qba,j,h ≥ pba,j ·
∑
h∈H

qba,j,h ∀a ∈ A, j ∈ La (5.10k)
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za,j −
∑

j1∈lca,j

c02a,j1−

duaa,j + dura,j +
∑
h∈H

πa,h · qba,j,h ≥ pba,j ·
∑
h∈H

qba,j,h ∀a ∈ A, j ∈ Na (5.10l)

za,j + c04g − duaa,j + dura,j+∑
h∈H

πa,h · qba,j,h ≥ pba,j ·
∑
h∈H

qba,j,h ∀a ∈ A, g ∈ Ga, j ∈ Eg

(5.10m)

za,j + c88u − duaa,j + dura,j+∑
h∈H

πa,h · qba,j,h ≥ pba,j ·
∑
h∈H

qba,j,h ∀a ∈ A, u ∈ Ua, j1 ∈ Ou

(5.10n)

za,j − c88u − duaa,j + dura,j+∑
h∈H

πa,h · qba,j,h ≥ pba,j ·
∑
h∈H

qba,j,h ∀a ∈ A, u ∈ Ua, j2 ∈ Ou

(5.10o)

dura,j ≤Ma,j · (1− ya,j) ∀a ∈ A, h ∈ H, i ∈ Ia,h
(5.10p)

duaa,j ≤Ma,j · ya,j ∀a ∈ A, j ∈ Ja (5.10q)

πa,h − πb,h +
∑
k∈Kh

(ch,k,a − ch,k,b) · vh,k ≥ 0 ∀h ∈ H, a ∈ A, b ∈ Ba

(5.10r)

sa,h,i, za,j , vh,k, c02a,j , c04g ≥ 0 ∀a ∈ A, h ∈ H, i ∈ Ia,h
(5.10s)

πa,h ≥ −500 ∀a ∈ A, h ∈ H (5.10t)

−πa,h ≥ −3000 ∀a ∈ A, h ∈ H (5.10u)

We now need to prove that the two regions are the same, which will be the task of

Theorem 5.2.

Theorem 5.2 (Equality of feasible regions). Let (x, y, f, s, z, c02, c04, c88, π, v, dua, dur)

be a point inside the feasible region of 5.10, in addition define for all a ∈ A Ja
a =

{j|ya,j = 1} and Jr
a = {j|ya,j = 0}. Then:

1. (x, y, f, s, z, c02, c04, c88, π, v, duaj∈Ja , durj∈Jr) of 5.10 satisfies all the the condi-

tions in 5.1e - 5.1m, 5.2 - 5.5, 5.6b - 5.6t and 5.7a - 5.7p.

2. Conversely, let (x, y, f, s, z, c02, c04, c88, π, v, duaj∈Ja , durj∈Jr) be any point satis-

fying the conditions 5.1e - 5.1m, 5.2 - 5.5, 5.6b - 5.6t and 5.7a - 5.7p related to

some block selection Ja = Ja
a ∪ Jr

a for every a ∈ A, then this point can be lifted to

obtain a point (x, y, f, s, z, c02, c04, c88, π, v, dua, dur) that satisfies all conditions

in 5.10.

Proof. 1. The conditions from the primal problem 5.1b - 5.1m, 5.2 and 5.3 are
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trivially satisfied as they also appear in 5.10. The partitions Ja
a ∪ Jr

a from 5.4

and 5.5 are defined using the values of ya,j , so that the constraints 5.10k - 5.10q

make sure that 5.6c - 5.6l are satisfied. The remaining constraints from 5.6

can directly be found in 5.10. The complementary constraints in 5.7a - 5.7p

are fulfilled since the solution adheres to all primal and dual constraints and

inequality 5.10a.

2. For all a ∈ A define duaa,j = 0, ∀j ∈ Jr
a and dura,j = 0, ∀j ∈ Ja

a . Then con-

straints 5.10k - 5.10p are satisfied thanks to 5.6c - 5.6l. 5.10a is satisfied relying

on the optimality conditions for the primal subject to dual constraints 5.6b - 5.6t

and complementarity constraints 5.7a - 5.7p. The remaining constraints from 5.10

can directly be checked.

�

Final model

Since we want to force all accepted blocks to be ITM we apply Theorem 5.1 and set

duaa,j = 0, this means that 5.10q can be dropped. Then 5.10k - 5.10p can be simplified

to 5.11k - 5.11o. We can now add condition 5.11p to force all accepted blocks to be

ITM. It is important that the Big Ms in 5.11 are large enough to not restrain any

values. On the other hand they should not be too big as this can create numerical

difficulties for the solver, that is why we compute the Big Ms individually for every

block.

∑
a∈A,h∈H,i∈Ia,h

xa,h,i · pa,h,i · qa,h,i +
∑

a∈A,j∈JA

ya,j · pba,j ·
∑
h∈H

qba,j,h (5.11a)

∑
i∈Ia,h

xa,h,i · qa,h,i +
∑
j∈JA

ya,j · qba,j,h+

∑
b∈Ba

fa,b,h − fb,a,h = 0 ∀a ∈ A, h ∈ H

(5.11b)∑
a∈A,b∈Ba

fa,b,h · (ch,k,a − ch,k,b) ≤ wh,k ∀h ∈ H, k ∈ Kh

(5.11c)∑
j∈Eg

ya,j ≤ 1 ∀a ∈ A, g ∈ Ga

(5.11d)

ya,j − ya,lpa,j ≤ 0 ∀a, j ∈ L
(5.11e)

ya,j1∈Ou − ya,j2∈Ou = 0 ∀a ∈ A, u ∈ Ua

(5.11f)

xa,h,i, ya,j , fa,b,h ≥ 0 (5.11g)
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xa,h,i, ya,j ≤ 1 (5.11h)

ya,j ∈ Z (5.11i)

sa,h,i + πa,h · qa,h,i ≥ pa,h,i · qa,h,i ∀a ∈ A, h ∈ H, i ∈ Ia,h
(5.11j)

za,j − ya,jMa,j + c02a,j −
∑

a,j1∈lca,j

c02a,j1+

∑
h∈H

πa,h · qba,j,h ≥ pba,j ·
∑
h∈H

qba,j,h −Ma,j ∀a ∈ A, j ∈ La

(5.11k)

za,j − ya,jMa,j −
∑

j1∈lca,j

c02a,j1+

∑
h∈H

πa,h · qba,j,h ≥ pba,j ·
∑
h∈H

qba,j,h −Ma,j ∀a ∈ A, j ∈ Na

(5.11l)

za,j − ya,jMa,j + c04g+∑
h∈H

πa,h · qba,j,h ≥ pba,j ·
∑
h∈H

qba,j,h −Ma,j ∀a ∈ A, g ∈ Ga, j ∈ Eg

(5.11m)

za,j − ya,jMa,j + c88u+∑
h∈H

πa,h · qba,j,h ≥ pba,j ·
∑
h∈H

qba,j,h −Ma,j ∀a ∈ A, u ∈ Ua, j1 ∈ Ou

(5.11n)

za,j − ya,jMa,j − c88u+∑
h∈H

πa,h · qba,j,h ≥ pba,j ·
∑
h∈H

qba,j,h −Ma,j ∀a ∈ A, u ∈ Ua, j2 ∈ Ou

(5.11o)

ya,jMa,j +
∑
h∈H

πa,hqba,j,h ≤ pba,j
∑
h∈H

qba,j,h +Ma,j ∀a ∈ A, j ∈ Ja

(5.11p)

πa,h − πb,h+∑
k∈Kh

(ch,k,a − ch,k,b) · vh,k ≥ 0 ∀h ∈ H, a ∈ A, b ∈ Ba

(5.11q)

ya,jMa,j +
∑
h∈H

πa,hqba,j,h ≤ pba,j
∑
h∈H

qba,j,h +Ma,j ∀a ∈ A, j ∈ Ja

(5.11r)∑
a∈A,h∈H,i∈Ia,h

xa,h,i · pa,h,i · qa,h,i+ (5.11s)

∑
a∈A,j∈JA

ya,j · pba,j ·
∑
h∈H

qba,j,h ≤
∑

a∈A,h∈H,i∈Ia,h

sa,h,i+ (5.11t)
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∑
a∈A,j∈JA

za,j +
∑
g∈G

c04g +
∑

h,k∈K
vh,k · wh,k −

∑
a∈A,j∈Ja

a

duaa,j (5.11u)

sa,h,i, za,j , vh,k, c02a,j , c04g ≥ 0 ∀a ∈ A, h ∈ H, i ∈ Ia,h
(5.11v)

πa,h ≥ −500 ∀a ∈ A, h ∈ H
(5.11w)

−πa,h ≥ −3000 ∀a ∈ A, h ∈ H
(5.11x)
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6 Experiment

6.1 Setup

We have used the OR-Tools package in python to implement the MILP from 5.11

and export it to a .lp file. .lp is a common file format used to represent optimization

problems. We use CPLEX 12.8.0.0, with default settings as the solver. The hardware

being used is a Dell XPS running on Ubuntu 18.04.3. The technical specifications

include an Intel Core i7-8565U CPU, with 8 cores @1.80GHz and 15.3 GB of RAM.

6.2 The algorithm

As the aim is to create intuitive prices, we need to implement a flow based intuitive

model. In order to do this the model needs to be solved and modified several times

until there are no more prices from high to lower priced areas. This is done in the

following way. A first instance of the model is created in python, exported to a .lp

file, and imported and solved with CPLEX. CPLEX solves the model to optimality

and returns the results in the form of a solution file (.sol format). After solving, the

prices, flows and congested Critical Branches are extracted from the .sol file and the

intuitiveness condition is checked for every flow. If there are any non-intuitive flows,

then for every flow the following procedure is performed. We go over all the congested

Critical Branches for the hour where the flow is non-intuitive, and the alleviating effect

of the flow on the branch is removed. This means that for all the non-intuitive flows,

the congested branches in that particular hour are adjusted and 5.11c becomes 6.1 for

these.

∑
a∈A,b∈Ba

fa,b,h ·max(ch,k,a − ch,k,b, 0) ≤ wh,k ∀h ∈ H, k ∈ Kh (6.1)

Now as we change the coefficient in the “primal” constraints of the problem we

should also adjust the “dual” part of the problem. This means that 5.11q becomes 6.2.

πa,h − πb,h +
∑
k∈Kh

max(ch,k,a − ch,k,b, 0) · vh,k ≥ 0 ∀h ∈ H, a ∈ A, b ∈ Ba (6.2)

This cycle is repeated until there are no more non-intuitive flows, figure 7 contains

a flowchart of the algorithm. In order to improve the solving time we use the integer

variables of each previous iteration as a warm start to the next iteration.
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Figure 7: flowchart describing the algorithm to get a spatial equilibrium
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6.3 Results

We test the algorithm with real data. The data for the Netherlands and Belgium

are supplied by APX, while France’s, Germany’s and Austria’s data are published by

EPEX. Table 3 shows the objective value, the total runtime of the algorithm as well

as the amount of constraints for each instance. Table 4 shows the amount of block

orders per type for each instance, as well as the total amount of continuous variables.

Table 5 shows the solving time per iteration. A few comments have to be made here

regarding the solving times. First is that the average solving time is greatly influenced

by the instance of 2019-07-01. Second is that only the first iteration of the instance

of 2019-07-07 was solved. The second iteration was manually aborted after the solving

time exceeded 20000 seconds, so we were unfortunately unable to solve all instances.

It is difficult to compare results with EUPHEMIA though, as EUPHEMIA solves the

market clearing problem for all of Europe and therefore contains many more areas and

borders as well as roughly three times as many hourly orders. In addition, EUPHEMIA

also deals with some products that we did not include here such as PUN orders from

Italy, which are notoriously hard to deal with. Regardless of the larger instances that it

deals with, EUPHEMIA is still considerably faster than our model. The average total

solving time for our model is around 5300 seconds, whereas it takes EUPHEMIA about

5 minutes. Some improvements can possible be made here by tuning the parameters

of CPLEX. An advantage for us is that our model solves to optimality. EUPHEMIA,

on the other hand, is a heuristic, so there is no guarantee that the global optimum is

reached.
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6 EXPERIMENT

Table 3: Total solving time per instance

date objective
total

runtime (s)
constraints

2019-07-01 3970135151.51 42797 89872

2019-07-02 3786400750.3 3124 91189

2019-07-03 3754094836.94 1263 91942

2019-07-04 3654158566.61 2949 85529

2019-07-05 3490973364.51 7812 87303

2019-07-06 3770348336.4 1386 86589

2019-07-07 3753728439.29 1008 90588

2019-07-08 3446584568.23 1270 89178

2019-07-09 3751396896.44 2299 87652

2019-07-10 3901516125.64 3542 93448

2019-07-11 3712081040.49 1592 88510

2019-07-12 3709250371.52 6855 86061

2019-07-13 3261857473.43 721 77312

2019-07-14 3730265221.4 2172 80122

2019-07-15 3835351849.58 1568 84584

Table 4: Size of each instance

blocks

date continuous variables total
reg.

(C01)

excl.

(C04)

linked fam

(C02)

loop fam

(C88)

2019-07-01 169623 1770 545 1163 62 0

2019-07-02 171994 1669 570 1068 31 0

2019-07-03 173825 1772 669 1069 34 0

2019-07-04 160697 1843 644 1152 47 0

2019-07-05 163761 1860 700 1102 52 6

2019-07-06 163228 1857 614 1158 79 6

2019-07-07 170603 1931 609 1245 77 0

2019-07-08 166760 1845 576 1223 46 0

2019-07-09 163575 1868 612 1234 19 4

2019-07-10 175247 1711 595 1077 38 2

2019-07-11 166106 1877 736 1109 31 2

2019-07-12 161337 1841 666 1125 44 6

2019-07-13 145827 1768 521 1189 52 6

2019-07-14 151390 1678 619 1017 42 0

2019-07-15 159778 1846 637 1176 33 0
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6 EXPERIMENT

Table 5: Solving time (s) per iteration

date 1 2 3 4 5 6

2019-07-01 4529 3076 4939 4238 20925 5090

2019-07-02 809 574 1015 726

2019-07-03 472 189 301 301

2019-07-04 1025 523 484 562 163 192

2019-07-05 1472 2539 2777 1024

2019-07-06 358 157 440 431

2019-07-07 1008

2019-07-08 593 440 237

2019-07-09 860 758 341 340

2019-07-10 1475 1593 235 239

2019-07-11 660 226 222 243 241

2019-07-12 4765 1377 240 237 236

2019-07-13 92 180 199 124 126

2019-07-14 644 396 351 255 263 263

2019-07-15 231 298 203 411 425
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7 CONCLUSION

7 Conclusion

The primary goal of this work was to develop a model that solved the market clearing

problem while abiding by all the special requirements set by the European power ex-

changes. These are (1) uniform prices, (2) a flow based intuitive network model, and

(3) the ability to handle different kind of block orders.

This thesis started with a brief introduction about the European day ahead energy

market. Chapter 2 delved into the concepts of uniform prices and market equilibria,

explaining the advantages and disadvantages of each property. Near the end of the

Chapter a small market clearing problem illustrated the impossibility of having both

properties in the case of a non convex problem. Chapter 3 discussed the most important

academic efforts to solve the market clearing problem as well as the algorithm in use

by the European power exchanges. As the method by Madani and Van Vyve (2018) is

the only one that provides uniform prices, we chose to follow this method and to make

modifications to include more types of block orders and a flow-based intuitive network.

Chapter 4 gave general information about the European market clearing problem, such

as the types of block orders and the transmission models. Chapter 5 saw the derivation

of the model, which was done in a similar way as in Madani and Van Vyve (2018).

Finally, Chapter 6 provided us with results of the test.

At the end of the day we can say that we successfully derived a model that solves

the European day ahead market clearing problem. The secondary goal was to see

if it would be practically feasible to solve the day-ahead auction problem using this

approach. The answer to that is probably no. The reason is that the solution needs

to be published 42 minutes after the market closes, while some of our instances took

longer to solve. Besides that, the actual problem of solving Europe’s entire day-ahead

market clearing problem is even larger than the one tested here.
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A FORMULAS AND PROOFS

Appendices

A Formulas and Proofs

Theorem A.1 (Complementary Slackness). Let x and y be feasible solutions to sym-

metric form primal and dual linear programs. Then x and y are optimal solutions to

the primal and dual respectively if and only if (b−Ax)T y = 0 and (AT y − c)Tx = 0.

Proof. ⇒ Feasibility implies that (b−Ax)T y ≥ 0 and (AT y−c)Tx ≥ 0. Now, if x and y

are optimal solutions to their primal and dual respectively, then strong duality yields:

(b−Ax)T y + (AT y − c)Tx = bT y − cTx = 0

Therefore (b−Ax)T y = 0 and (AT y − c)Tx = 0.

⇐ If (b−Ax)T y = 0 and (AT y − c)Tx = 0 then:

(b−Ax)T y + (AT y − c)Tx = bT y − cTx = 0

Now the optimality of x and y follows again from strong duality. �
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