

Delft University of Technology

On the Shoulders of Giants: A New Dataset for Pull-based Development Research

Zhang, Xunhui; Rastogi, Ayushi; Yu, Yue

DOI
10.1145/3379597.3387489
Publication date
2020
Document Version
Final published version
Published in
MSR 2020 data showcase

Citation (APA)
Zhang, X., Rastogi, A., & Yu, Y. (2020). On the Shoulders of Giants: A New Dataset for Pull-based
Development Research. In MSR 2020 data showcase: 2020 IEEE/ACM 17th International Conference on
Mining Software Repositories (MSR) (pp. 543-547) https://doi.org/10.1145/3379597.3387489

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3379597.3387489
https://doi.org/10.1145/3379597.3387489

On the Shoulders of Giants: A New Dataset for Pull-based
Development Research

Xunhui Zhang
National University of Defense

Technology, Changsha, China.

zhangxunhui@nudt.edu.cn

Ayushi Rastogi
Delft University of Technology,

the Netherlands

a.rastogi@tudelft.nl

Yue Yu
National University of Defense

Technology, Changsha, China.

yuyue@nudt.edu.cn

ABSTRACT

Pull-based development is a widely adopted paradigm for collab-

oration in distributed software development, attracting eyeballs

from both academic and industry. To better study pull-based de-

velopment model, this paper presents a new dataset containing

96 features collected from 11,230 projects and 3,347,937 pull re-

quests. We describe the creation process and explain the features in

details. To the best of our knowledge, our dataset is the most com-

prehensive and largest one toward a complete picture for pull-based

development research.

CCS CONCEPTS

• Software and its engineering→ Programming teams.

KEYWORDS

pull-based development, pull request, distributed software develop-

ment

ACM Reference Format:

Xunhui Zhang, Ayushi Rastogi, and Yue Yu. 2020. On the Shoulders of Giants:

A New Dataset for Pull-based Development Research. In 17th International

Conference on Mining Software Repositories (MSR ’20), October 5–6, 2020,

Seoul, Republic of Korea. ACM, New York, NY, USA, 5 pages. https://doi.org/

10.1145/3379597.3387489

1 INTRODUCTION

The pull-based development model [7] has changed the traditional

way of code contribution [31], code review [28] and process au-

tomation [27]. Since Gousios et al. [8] proposed a firsthand dataset

of pull request, plenty of valuable studies have been designed based

on it, to better understand the essence of modern software develop-

ment, e.g, human aspect of SE, DevOps and collaborative environ-

ment. Meanwhile, those studies demonstrate considerable extended

features, e.g, gender [25], social connection [5], geographical loca-

tion [18, 19], personality [10] and emotion[11], etc. However, there

lacks a comprehensive dataset towards a more complete picture to

support new work investigation and prior work reproduction and

verification for pull-based development.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387489

In this paper, standing on the shoulders of giants [6, 8], we create

a new upgraded dataset, called new_pullreq (10 times larger than

the original one) by adding all new features, as many as possible

to the pool of existing metrics. To the best of our knowledge, our

new_pullreq is the largest dataset for pull-based development

research, which contains 11,230 OSS projects (representative of both

small and large projects), 96 metrics and 3,347,937 pull requests.

Our dataset is publicly available1 and source code2 is open source

for replication as well as extension.

2 FEATURE SELECTION

The feature selection is based on Gousios et. al’s dataset [8] as

well as studies on pull request development from 2009 until 2019.

By combining “pull-based development”, “pull-request”, “Github”,

“open source” with zero or more of the following sub-terms: “model”,

“software”, “accepted”, “rejected”, “review”, “merged”, we searched

the paper title using Google Scholar’s boolean search engine, and

identified 76 papers, a subset of which presented features for de-

cision making. These features broadly falls into three categories:

relating to contributor, project as well as pull request but some fea-

tures lie at their intersection. Below we describe all 69 new features

in addition to the 27 features reported in Gousios et. al’s dataset [8].

2.1 Contributor characteristics

Contributor characteristics relate to submitters (or developer) and

integrator (or committer). Some of the factors relate to individu-

als while others are interactions between two contributors or a

contributor and a project.

• Experience of developers, conceptualized as the count of pre-

vious pull requests, previous pull request acceptance rate [8],

accepted commit count [12], as well as days since account

creation [17], can influence the pull request acceptance. First

pull requests are less likely to be accepted [20, 21]. Similarly,

experience of integrators calculated as the count of prior

reviews influence decision making [2].

• Core member’s pull request are more likely to be accepted [1,

3, 16, 21, 24, 29].

• Response time of an integrator, often measured as the time to

first response, likely influences the latency as well as chances

of pull request acceptance [29].

• Gender of developers, when identified as female, reduces the

chances of pull request acceptance [23].

• Country of developers influences pull request acceptance rate

differently for different countries [19]. Further, if developer

1https://zenodo.org/record/3700595#.XmS2GJP0kY1
2https://github.com/zhangxunhui/new_pullreq_msr2020

543

2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR)

and integrator are from the same country the chances of pull

request acceptance increases [19].

• Affiliation of developers and integrators to companies as

well as belongingness of both the developer and committer

to the same company changes the chances of pull request

acceptance [2, 14].

• Personality of developers and integrators individually as well

as difference in personalities between the two, influence

decision making [10]. Here, personality is conceptualized

as Openness to Experience, Conscientiousness, Extraver-

sion, Agreeableness, and Neuroticism (or OCEAN) and dif-

ferences in personality as the difference between respec-

tive scores. For example, Extraversion_submitter - Extraver-

sion_integrator.

• Emotion of developers as well as integrators, characterized

as the percentage of positive and negative emotions, as well

as the emotion of first comment are found to influence ac-

ceptance decision [11].

• Social distance refers to the closeness of code submitter to

the potential integrator as well as the project. Following the

integrator as well as the project prior to code contribution is

seen to positively influence pull request decisionmaking [24].

Relatedly, the fraction of team members who interacted with

a developer over the team size in the last three months is

used as a signal of social strength/trust, which increases the

chances of pull request acceptance [29].

2.2 Project characteristics

• Programming languages tend to have different pull request

acceptance rate [15, 17, 21]. For example, pull requests in

Java and Python have less chance of acceptance and the

opposite for Scala and R.

• Popularity of project, measured as watcher count [8], star

count [8], and fork count [13, 17], negatively influences pull

request acceptance [13, 17, 24].

• Age of project measured as the time interval between project

creation and pull request creation (measured in months),

indicates maturity of project as well as the less likelihood of

pull request acceptance [24, 29].

• Workload of a project, as inferred from the number of open

pull requests decreases the chance of pull request accep-

tance [2, 29].

• Activeness of project, as inferred from the time interval in

seconds between the opening time of two latest pull requests,

influences pull request acceptance [13].

• Openness of a project as inferred from the count of open

issues as well as the pull request acceptance rate increases

the likelihood of pull request acceptance [13].

2.3 Pull request characteristics

• Size of change is measured at commit-level (number of com-

mits), file-level (files added, deleted, modified and changed)

as well as type of files changed (source, document and others).

Some of these metrics are coarse-grained, only discussing

change (like source and test churn) while other metrics sepa-

rate churn into addition and deletion [29]. Typically, increase

in size reduces the chances of acceptance and vice-versa.

• Complexity of a pull request as inferred from the length

of description is seen to negatively influence pull request

acceptance [29].

• Nature of pull request as bug fix, for example, can increase

the chances of PR acceptance [12, 15].

• Test inclusion of pull requests increase the chances of its

acceptance[16, 24, 29].

• Reference of a contributor, issue or pull request can increase

the change of pull request acceptance [4, 29].

• Conflict of a pull request, as explicitly mentioned in com-

ments [7] negatively influences the chances of pull request

acceptance.

• Hotness or relevance of a PR as inferred from the number of

comments during code review process is seen to influence

decision making [7, 12, 14, 20, 24, 29]. In addition to the

issue comment count [8] and commit comment count [8],

we add pull request comment count. Another indicator of

hotness - number of participants [8] is also updated to reflect

participation in issues, commits, and pull requests.

• Emotions (positive, negative and neutral) surrounding a pull

request discussion reflect reviewer’s reaction and is found

to influence decision making [11].

• Continuous Integration of a pull request (its existence or

not), latency, build count, all tests passed, percentage of

tests passed/failed, first and last build status are all seen to

influence pull request decision making [9, 22, 27, 29, 30].

The summary of each category of new_pullreq is shown in

Table 1, which includes feature tag, description and related citations.

The mysql table structure 3 and technical report 4 can be seen in

the Github project.

3 DATASET

Similar to the previous study by Gousios et al. [8], the new dataset

for pull-based development research builds on the publicly avail-

able datasets hosted on GHTorrent5. We use the latest version of

Mysql data dump 6 (created on 1 June 2019) and complement it

with additional information (e.g. issue comments) provided in the

comparable version of MongoDB dump 7.

To create a large dataset of active and representative software

repositories, we applied several inclusion and exclusion criteria.

(1)We selected all source (base) repositories and removed forks or

otherwise deleted repositories from GHTorrent dataset or GitHub.

Forks with shared history as the source repository can influence

the representativeness while deleted repositories are not active any-

more. Further, to select actively developed repositories, we included

repositories with new pull requests in the last three months.

3https://github.com/zhangxunhui/new_pullreq_msr2020/blob/master/table_
structure.pdf
4https://github.com/zhangxunhui/new_pullreq_msr2020/blob/master/technical_
report.pdf
5http://ghtorrent.org/
6http://ghtorrent-downloads.ewi.tudelft.nl/mysql/mysql-2019-06-01.tar.gz
7http://ghtorrent-downloads.ewi.tudelft.nl/mongo-daily/mongo-dump-2019-06-
30.tar.gz

544

Table 1: Factors influencing pull-based development

Feature Description Feature Description

Contributor Characteristics

acc_commit_num The number of accepted commits of a contributor before the
creation of a pull request[12]

account_creation_days The time interval in days from the contributor’s account cre-
ation to the pull request creation[17]

first_pr Whether it is the first pull request of a contributor[20, 21] prior_review_num The number of prior reviews of an integrator[2]
core_member Whether the contributor is a core member or not[1, 3, 16, 21,

24, 29]
first_response_time The time interval in minutes from pull request creation to the

first response by a reviewer[29]
contrib_gender The gender of a contributor[23] contrib/inte_country Country of residence of contributor/integrator[19]
same_country Whether contributor and integrator come from the same

country[19]
prior_interaction Number of times that the contributor interacted with the

project in the last three months[24]
same_affiliation Whether the contributor and the integrator belong to the same

affiliation[2, 14]
contrib/inte_affiliation The affiliation that the contributor/integrator belongs to[2, 14]

contrib/inte_X The Big Five personality traits of contributor/integrator (open:
openness; cons: conscientious; extra: extraversion; agree:
agreeableness; neur: neuroticism)[10]

perc_contrib/inte_X The percentage of contributor/integrator’s emotion in com-
ments (neg: negative/pos: positive/neu: neutral)[11]

X_diff The absolute difference of Big Five personality traits between
contributor and integrator[11]

contrib/inte_first_emo The emotion of the contributor/integrator’s first comment[11]

social_strength The fraction of team members that interacted with the con-
tributor in the last three months[29]

contrib_follow_integrator Whether the contributor follows the integrator when submit-
ting a pull request[24]

Project Characteristics

language Programming language of project[15, 17, 21] open_issue_num Number of opened issues when submitting the pull request[13]
project_age Time interval in months from the project creation to the pull

request creation[24, 29]
open_pr_num Number of opened pull requests when submitting the pull

request[2, 29]
pushed_delta The time interval in seconds between the opening time of the

two latest pull requests[13]
fork_num Number of forks of project when submitting the pull

request[13, 17]
pr_succ_rate Acceptance rate of pull requests in the project[13]

Pull Request Characteristics

churn_addition Number of added lines of code[29] churn_deletion Number of deleted lines of code[29]
bug_fix Whether pull request fixes a bug[12, 15] description_length Word count of pull request description[29]
test_inclusion Whether test code exists in a pull request[16, 24, 29] comment_conflict Whether the keyword "conflict" exists in comments[7]
hash/at_tag Whether #/@ tag exists in comments or description[4, 29] pr_comment_num Number of pull request comments[8]
part_num_X Number of participants in comment (issue: issue comment; pr:

pull request comment; commit: commit comment)[8]
part_num_code Number of participants in both pull request comment and

commit comment[8]
ci_exists Whether a pull request uses continuous integration tools[27] ci_build_num Number of CI builds[30]
ci_latency Time interval in minutes from pull request creation to the first

build finish time of CI tools[29]
perc_neg/pos/neu_emotion Percentage of negative/positive/neutral emotion in

comments[11]
ci_test_passed Whether passed all the CI builds[9, 22] ci_first_build_status First build result of CI tool[30]
ci_failed_perc Percentage of failed CI builds[30] ci_last_build_status Last build result of CI tool[30]

(2) Next, we select projects from six programming languages, dif-

ferent in size and activity count formeaningful analysis.We selected

all projects with at least 33 submitted pull requests. These projects

constitute top 3% of all projects in terms of pull request count (as

against top 1% in case of Gousios et. al’s [8] dataset). We extended

original selection of four programming languages (Ruby, Python,

Java, and Scala) by Go and Javascript. The resulting 19,572 projects

were distributed across projects as follows: Javascript: 6,584; Python:

5,121; Java: 3,044; Ruby: 2,794; Go: 1,497; and Scala: 532. Next, we

selected different-sized projects (small, medium, and large) in terms

of contributor count. The selected small teams comprised of 12 or

less developers, medium-sized teams with 13 and up to 30 devel-

opers, and large teams with more than 30 developers. We selected

4,000 projects from each class, resulting in a total of 12,000 projects.

Among these projects, we removed “everypolitician/everypolitician-

data” which is extremely large, and is used for holding the data for

national legislatures worldwide. Moreover, a large fraction of the

activities on this project are through bots.

(3) Finally, at the pull-request level, we included all pull requests

that were submitted to the default branch of the repository and

are not open otherwise (no decision is being made on open pull

requests). Moreover, we remove those projects that have less than

20 default branch related closed pull requests. This gives us 11,230

projects comprising of 3,347,937 pull requests. In comparison to

Gousios et. al’s dataset of 865 projects and 336,502 pull requests, our

dataset has 12 times more projects but only about 10 times more

pull requests (since we also included small projects).

4 FEATURE COLLECTION

For extracting features from data, we followed the procedure speci-

fied in the respective paper. We retained all variants of a feature

proposed in literature, with a few exceptions (like emotion and per-

sonality) discussed in the below. There were, however, situations

where we had to extrapolate the solution for representativeness. For

example, the existing solution to analyze continuous integration

works only for TravisTorrent. To make our dataset generalizable,

we expanded the existing solution with some heuristics.

Personality Many models of personality are available in liter-

ature and used in existing research. For this dataset, we choose

the state-of-the-practice tool - IBM Watson Personality Insights 8

- to measure the Big Five Personality Traits of each user [10]. We

collected all comments of developers from issue discussions, pull

request discussions as well as commit discussions. We processed

the data to remove code snippets and special characters (including

quotes, # tags, @, IPs, email address, URLs, and numbers) which

otherwise are of no use to infer personality. The resulting data is

feed as input to the Personality Insights tool conditioned only on

the availability of 100 or more words as input to ensure a sizable

text for reliable interpretation.

8https://www.ibm.com/watson/services/personality-insights/

545

Country and Gender We infer country and gender of developers

using the tool proposed by Vasilescu et al. [25].

Emotion Similar to personality, many models exist to infer emo-

tions. We use the best prediction model, known so far - UmlFit [11]

to infer emotions in discussions.

Continuous integration The previous studies used only one tool,

travis-ci [27]. However, for whether a pull request uses CI tool,

using travis-ci only meant that the existing solution no longer

holds. To overcome this challenge, we proposed a few heuristics

applicable to a wider range of CI tools.

To find whether a pull request uses a CI tool or not, we started by

searching for terms commonly used for continuous integration such

as “continuous”, “integration”, “-ci”, “ci-”, “ci/”, “ci.” in the text fields

of pull requests. These fields include context, description as well as

the associated URL, information on which are inferred from GitHub

status API 9. If a term match is found, the pull request uses CI tool,

otherwise we look for keywords “build” and “test” in the context

and description. Alternatively, we compiled a list of widely used

CI tools from GitHub marketplace 10 and verified it manually by

looking at related posts online. Further, we checked for the presence

of tool name in text fields as a sign of CI tool use. We assume that

if the above steps did not link a pull request to a CI tool, CI tool

is not used. To check for the accuracy of the proposed heuristic,

the first author randomly selected 200 pull requests inferred using

CI tools and another 200 pull requests not inferred using CI tools.

The first author then manually checked all 400 pull requests and

found 99.5% precision for pull requests that uses CI tools and 99%

precision for pull requests that do not use CI tools.

For other metrics, such as CI build count and percentage of failed

CI, in order to make the dataset more generalizable, we present

insights from three widely used CI tools: travis-ci, circle-ci and

drone-ci. For travis-ci, we use the method proposed by Vasilescu

et al. [26] to retrieve CI related metrics. For the other two CI tools,

unlike travis-ci, there did not exist a direct link between a pull

request and CI tool. To link a pull request to a CI tool, we used

repository slug “username/repo” as an argument and matched the

commit sha of each build with a pull request. If such a match exists,

we link a build with a pull request.

Affiliation Studies on affiliation as a feature examinedwell-known

repositories, the solution, however, was not generalizable. In this

study, we introduced a new approach to infer affiliation from com-

pany and email domain information derived from GitHub API. First,

we select the company texts that appear more than 10 times in the

dataset. By manually checking it, the first author identify a list of

stop words including freelancer, student, and remove it. Next, we

look for university affiliation by mapping both the university name

and its abbreviation to university. All other affiliations are seen as

related to a company. To filter company name, we removed prefix

“@” and suffixes such as “ltd.” and “corp.”. Further, we changed some

names to its alias. For example, aws to amazon and qihoo to 360.

We further enrich our inference of affiliation using email domain.

We identified world popular domains11, list of world university

domains12. We removed world popular domains as they cannot

9https://developer.github.com/v3/repos/statuses/
10https://github.com/marketplace?category=continuous-integration
11https://github.com/mailcheck/mailcheck/wiki/List-of-Popular-Domains
12https://github.com/Hipo/university-domains-list

identify company affiliation uniquely. Next, we mapped university

email domain to university affiliation. For all other email domains,

followed by “.org” or “.com”, we mapped them to company. We

also defined some stop words including gmail, github, yahoo and

removed them, as some domains are missed in the popular domain

list. If an email domain uniquely maps to an alias (with at least 30

data points to avoid false positives), we append the known affiliation

to the affiliation inferred from company text.

5 LIMITATIONS

With an objective to create a large and representative dataset for

future research on pull-based development, we collected 96 features

from 11K+ projects and 3 million+ pull requests. In the process,

however, we made many choices or inherited it from previous

studies that can impact the dataset. Our work builds on a decade of

research on pull-based development, extracting features relevant

for decision making. This way we not only stand on the shoulders

of giants, and hence benefiting from it but also inherit limitations

of the features they present. The methodology adopted in this

study is similar to and builds on the original study by Gousios et

al [8]. Similar to their work, we combine data frommultiple sources:

GHTorrent Mysql data dump, MongoDB data dump, as well as git

repository data downloaded from GitHub. Since each of the three

data sources have data at different levels of abstraction, this can

lead to some differences in outcome. We, however, went an extra

mile to improve the representativeness of the dataset. We added two

new programming languages and extrapolated known features (e.g.

continuous integration) to a variety of small and large projects. That

being said, we realize that there can be amore representative dataset

also including code-related metrics which otherwise are found not

important for decision making and less explored or metrics that

cannot be studied objectively.

6 RESEARCH OPPORTUNITIES

The pull-based model provides a synthesized paradigm for dis-

tributed collaboration, which has attracted global attentions in re-

cent years. In this paper, we create a comprehensive and large-scale

dataset collected from 11K+ representative OSS projects in GitHub,

and describe the creation process and explain all features in de-

tails. Our dataset, in addition to supporting research on pull-based

development, provides new opportunities to the related research

fields, spanning from collaborative environments (e.g., code patch

and code review), software maintenance (e.g., bug prediction), soft-

ware process (e.g., continuous integration and DevOps), human

factors in computing systems (e.g., developer personality) and etc.

Researchers can achieve a more complete picture of distributed de-

velopment by empirical study, and even train artificial intelligence

models based on our carefully filtered data samples.

ACKNOWLEDGMENTS

This work is supported by Science and Technology Innovation 2030

of China (Grand No.2018AAA0102304), National Nature Science

Foundation of China (Grand No.61702534) and China Scholarship

Council. Thank you Dr. Georgios Gousios, Rahul N. Iyer, Frenk van

Mil, Celal Karakoc, Leroy Velzel, Daan Groenewegen and Sarah de

Wolf for your technical help.

546

REFERENCES
[1] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. 2012. The Secret Life

of Patches: A Firefox Case Study. In 2012 19th Working Conference on Reverse
Engineering. 447–455. https://doi.org/10.1109/WCRE.2012.54

[2] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. 2013. The influence of
non-technical factors on code review. In 2013 20th Working Conference on Reverse
Engineering (WCRE). 122–131. https://doi.org/10.1109/WCRE.2013.6671287

[3] Amiangshu Bosu and Jeffrey C. Carver. 2014. Impact of Developer Reputa-
tion on Code Review Outcomes in OSS Projects: An Empirical Investigation.
In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (Torino, Italy) (ESEM âĂŹ14). Association
for Computing Machinery, New York, NY, USA, Article Article 33, 10 pages.
https://doi.org/10.1145/2652524.2652544

[4] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2017. A preliminary analysis
on the effects of propensity to trust in distributed software development. In 2017
IEEE 12th international conference on global software engineering (ICGSE). IEEE,
56–60.

[5] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov.
2015. Developer onboarding in GitHub: the role of prior social links and language
experience. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 817–828.

[6] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories (San Francisco, CA,
USA) (MSR ’13). IEEE Press, Piscataway, NJ, USA, 233–236. http://dl.acm.org/
citation.cfm?id=2487085.2487132

[7] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory
Study of the Pull-Based Software Development Model. In Proceedings of the
36th International Conference on Software Engineering (Hyderabad, India) (ICSE
2014). Association for Computing Machinery, New York, NY, USA, 345âĂŞ355.
https://doi.org/10.1145/2568225.2568260

[8] Georgios Gousios and Andy Zaidman. 2014. A Dataset for Pull-Based Develop-
ment Research. In Proceedings of the 11th Working Conference on Mining Software
Repositories (Hyderabad, India) (MSR 2014). Association for Computing Machin-
ery, New York, NY, USA, 368âĂŞ371. https://doi.org/10.1145/2597073.2597122

[9] G. Gousios, A. Zaidman, M. Storey, and A. v. Deursen. 2015. Work Practices
and Challenges in Pull-Based Development: The Integrator’s Perspective. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
358–368. https://doi.org/10.1109/ICSE.2015.55

[10] R. N. Iyer, S. A. Yun, M. Nagappan, and J. Hoey. 2019. Effects of Personality Traits
on Pull Request Acceptance. IEEE Transactions on Software Engineering (2019),
1–1. https://doi.org/10.1109/TSE.2019.2960357

[11] Iyer, Rahul. 2019. Effects of Personality Traits and Emotional Factors in Pull
Request Acceptance. http://hdl.handle.net/10012/14952

[12] Y. Jiang, B. Adams, and D. M. German. 2013. Will my patch make it? And how
fast? Case study on the Linux kernel. In 2013 10th Working Conference on Mining
Software Repositories (MSR). 101–110. https://doi.org/10.1109/MSR.2013.6624016

[13] Nikhil Khadke, Ming Han Teh, and Minghan Shen. [n.d.]. Predicting Acceptance
of GitHub Pull Requests. ([n. d.]).

[14] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and B. de Water. 2018.
Studying Pull Request Merges: A Case Study of Shopify’s Active Merchant. In
2018 IEEE/ACM 40th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP). 124–133.

[15] Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. 2014. A Study of External
Community Contribution to Open-Source Projects on GitHub. In Proceedings
of the 11th Working Conference on Mining Software Repositories (Hyderabad,
India) (MSR 2014). Association for Computing Machinery, New York, NY, USA,
332âĂŞ335. https://doi.org/10.1145/2597073.2597113

[16] Gustavo Pinto, Luiz Felipe Dias, and Igor Steinmacher. 2018. Who Gets a Patch
Accepted First? Comparing the Contributions of Employees and Volunteers. In
Proceedings of the 11th International Workshop on Cooperative and Human Aspects
of Software Engineering (Gothenburg, Sweden) (CHASE âĂŹ18). Association for
Computing Machinery, New York, NY, USA, 110âĂŞ113. https://doi.org/10.1145/
3195836.3195858

[17] Mohammad Masudur Rahman and Chanchal K. Roy. 2014. An Insight into the
Pull Requests of GitHub. In Proceedings of the 11th Working Conference on Mining
Software Repositories (Hyderabad, India) (MSR 2014). Association for Computing

Machinery, New York, NY, USA, 364âĂŞ367. https://doi.org/10.1145/2597073.
2597121

[18] Ayushi Rastogi. 2016. Do Biases Related to Geographical Location Influence
Work-Related Decisions in GitHub?. In Proceedings of the 38th International
Conference on Software Engineering Companion (Austin, Texas) (ICSE âĂŹ16).
Association for Computing Machinery, New York, NY, USA, 665âĂŞ667. https:
//doi.org/10.1145/2889160.2891035

[19] Ayushi Rastogi, Nachiappan Nagappan, Georgios Gousios, and André van der
Hoek. 2018. Relationship between Geographical Location and Evaluation of
Developer Contributions in Github. In Proceedings of the 12th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement (Oulu,
Finland) (ESEM âĂŹ18). Association for Computing Machinery, New York, NY,
USA, Article Article 22, 8 pages. https://doi.org/10.1145/3239235.3240504

[20] D. M. Soares, M. L. d. L. JÃžnior, L. Murta, and A. Plastino. 2015. Rejection Factors
of Pull Requests Filed by Core Team Developers in Software Projects with High
Acceptance Rates. In 2015 IEEE 14th International Conference on Machine Learning
and Applications (ICMLA). 960–965. https://doi.org/10.1109/ICMLA.2015.41

[21] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and
Alexandre Plastino. 2015. Acceptance Factors of Pull Requests in Open-Source
Projects. In Proceedings of the 30th Annual ACM Symposium on Applied Computing
(Salamanca, Spain) (SAC âĂŹ15). Association for Computing Machinery, New
York, NY, USA, 1541âĂŞ1546. https://doi.org/10.1145/2695664.2695856

[22] Y. Tao, D. Han, and S. Kim. 2014. Writing Acceptable Patches: An Empirical Study
of Open Source Project Patches. In 2014 IEEE International Conference on Software
Maintenance and Evolution. 271–280. https://doi.org/10.1109/ICSME.2014.49

[23] Josh Terrell, AndrewKofink, JustinMiddleton, Clarissa Rainear, EmersonMurphy-
Hill, Chris Parnin, and Jon Stallings. 2017. Gender differences and bias in open
source: Pull request acceptance of women versus men. PeerJ Computer Science 3
(2017), e111.

[24] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of Social and
Technical Factors for Evaluating Contribution in GitHub. In Proceedings of the
36th International Conference on Software Engineering (Hyderabad, India) (ICSE
2014). Association for Computing Machinery, New York, NY, USA, 356âĂŞ366.
https://doi.org/10.1145/2568225.2568315

[25] Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark G.J. van den Brand, Alexan-
der Serebrenik, Premkumar Devanbu, and Vladimir Filkov. 2015. Gender and
Tenure Diversity in GitHub Teams. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI
âĂŹ15). Association for ComputingMachinery, New York, NY, USA, 3789âĂŞ3798.
https://doi.org/10.1145/2702123.2702549

[26] B. Vasilescu, S. van Schuylenburg, J. Wulms, A. Serebrenik, and M. G. J. van
den Brand. 2014. Continuous Integration in a Social-Coding World: Empiri-
cal Evidence from GitHub. In 2014 IEEE International Conference on Software
Maintenance and Evolution. 401–405. https://doi.org/10.1109/ICSME.2014.62

[27] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous Integra-
tion in GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Comput-
ing Machinery, New York, NY, USA, 805âĂŞ816. https://doi.org/10.1145/2786805.
2786850

[28] Y. Yu, H. Wang, G. Yin, and C. X. Ling. 2014. Who Should Review this Pull-
Request: Reviewer Recommendation to Expedite Crowd Collaboration. In 2014
21st Asia-Pacific Software Engineering Conference, Vol. 1. 335–342. https://doi.
org/10.1109/APSEC.2014.57

[29] Yue Yu, Gang Yin, Tao Wang, Cheng Yang, and Huaimin Wang. 2016. Determi-
nants of pull-based development in the context of continuous integration. Science
China Information Sciences 59, 8 (2016), 080104. https://doi.org/10.1007/s11432-
016-5595-8

[30] F. Zampetti, G. Bavota, G. Canfora, andM. D. Penta. 2019. A Study on the Interplay
between Pull Request Review and Continuous Integration Builds. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 38–48. https://doi.org/10.1109/SANER.2019.8667996

[31] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. 2016. Effectiveness of code
contribution: From patch-based to pull-request-based tools. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 871–882.

547

