TU Delft

Edge-aware Bilateral Filtering
Reducing across-edge blurring for the bilateral filter

Glenn Weeland
Supervisor(s): Elmar Eisemann, Mathijs Molenaar

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Glenn Weeland
Final project course: CSE3000 Research Project
Thesis committee: Elmar Eisemann, Mathijs Molenaar, Jing Sun

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

The bilateral filter is a popular filter in image
processing and computer vision. This comes
from the fact that it is able to blur images
while keeping the structure intact. However,
the bilateral filter allows for blurring to happen
across edges. This can result in halo-like effects
around the edges of structures if both sides are
made up of different intensities. In this paper,
we propose an extension to the bilateral filter
that reduces this phenomenon of blurring across
edges. By giving the filter knowledge of the
edges beforehand, it is possible to prevent the
filter from blurring past them. When we filter
a pixel, its surrounding area within the kernel
is checked for edges. If a pixel within this area
lies on or beyond an edge, its weight for blurring
is reduced. As a consequence, pixels that lie past
an edge have less influence on blurring. We show
that this new edge-aware bilateral filter reduces
across-edge blurring compared to the standard
bilateral filter. Furthermore, when we allow a
bigger range of intensities to mix, the new filter
is also able to prevent the filtered image from
appearing washed out, unlike the bilateral filter.

1 Introduction

The bilateral filter is an edge-preserving image filter [15]. It
is used extensively in computer graphics and computer vision
for a multitude of applications such as denoising, creating
cartoon renditions [17] and enhancing low-light photography
[7]. The bilateral filter works by mixing pixels in a specific
region around the target pixel with weights that depend on
how close their intensities are to each other. The closer the
intensity value of a neighboring pixel is to the target pixel,
the higher its weight will be, and vice versa. This is then
combined with a weight specified by the spatial distance to
the target pixel to create bilateral filtering. This filter blurs
the image while keeping the structures in the image mostly
intact [15].

However, the simplicity of the bilateral filter comes with a
caveat: pixels across edges can still be mixed by the filter,
resulting in blurring across them. This happens because
the bilateral filter only takes the spatial distance and the
color difference between a neighbor and the target pixel into
account. The structure of the image itself is not considered
while filtering, allowing the bilateral filter to sample from
pixels across edges, as long as their spatial distance and
color difference are not too high. This phenomenon is
demonstrated in Figure 1, where the resulting image after
bilateral filtering is shown in Figure 1b. The filtered image
contains halo effects around the edges of the black lines in
between the grayscale planes in the background. This, in
turn, creates a gradient-like area around these edges, instead
of preserving the exact gray levels seen in the original image
in Figure la. For these areas close to the edges, the pixels
on both sides are mixed a little because the intensities and

distances are close enough to influence each other while
filtering. In some situations, this works in favor of the filter
as it will be able to sample colors from more pixels, while
in other situations like in Figure 1, it does not and produces
undesired effects. Giving the bilateral filter knowledge of the
edges in the image would help prevent these cases and may
improve the performance of the filter in terms of conserving
edges and colors on a local level.

In this paper, we propose extensions that combine the
knowledge of the edges or segments in an image with the
bilateral filter. These aim to prevent the previously discussed
across-edge blurring of the filter. We use two types of edge
detection to segment the image: one which produces hard
binary edges and the other creating softer gradient-like edges.
Interpolating between the results of both edge detectors
allows us to create a combination of both. We then reduce the
influence of pixels that lie beyond those edges for bilateral
filtering. Depending on the chosen mix of the detected edges,
the result can include harder, more defined edges or softer
gradient-like edges. This new edge-aware bilateral filter
keeps the edge-preserving smoothing and emphasizes it by
preventing the filter from blurring beyond the edges. This
results in better-defined edges and less washed-out colors.

To address the findings in this paper, first the related work
is discussed, where more background information on the
bilateral filter and its applications can be found. Next,
the methodology to create the edge-aware bilateral filter is
explained. Following that, the results of the experiments
are presented and interpreted. = The found conclusions
about the edge-aware extensions to the bilateral filter are
then discussed after. Finally, this paper ends with a section
about responsible research and possible ideas for future work.

2 Related work

This section will briefly explain some of the background this
paper builds upon, combined with related research, starting
with the definition of the bilateral filter and how it works.
After which a couple of relevant optimizations, extensions
and use cases for it are explored. Lastly, various approaches
for image segmentation and edge detection are discussed with
their specific use cases and strengths and weaknesses.

2.1 The bilateral filter

The bilateral filter was first introduced by Aurich, et al. [3],
which they called the “nonlinear Gaussian filter”. It was
later rediscovered by Tomasi and Manduchi [15] who called
it the "bilateral filter”, which it is still named, to this day.
The filter works by taking a weighted average over the close
neighbors of a pixel. This weight depends on two different
kernels: the first is the distance between the target pixel and
the neighbor, decreasing the further the neighbor lies from the
target pixel (the spatial kernel). The second is the intensity
difference between the target pixel and the neighboring pixel,
which also decreases when the difference becomes higher
(the range kernel). These filter functions are chosen as
Gaussian functions, resulting in the following formulas for
the bilateral filter:

()

Figure 1: An example of across-edge blurring with the bilateral filter. (a) The original image. (b) The image after bilateral filtering with
s =10and = 80. (c) The absolute difference between (a) and (b) boosted 3.

1
187 (x) = W, I(P)Gs(x pPNGAGIC) 1(Pi) (D
p
Where W), is the normalization factor:
Wp = Gs(x pGGI) 1)) (2)

p

Here in both Equation 1 and Equation 2, Gg stands for
a Gaussian spatial kernel with standard deviation s, G, a
Gaussian range kernel with standard deviation r, 1 () for the
intensity of pixel , the kernel window centered on target
pixel X and p for a pixel which lies within this kernel window.

Most of the work on improving the bilateral filter is related
to runtime performance, as the filter is non-linear and thus
difficult to optimize. Achieving faster runtime performance
needs complex approximations via, for example, signal
processing by Paris, et al. [11] or integral histograms by
Porikili [13] to name a few, though the quality of the result
can suffer depending on the type of approximation. Other
research has focused on improving the bilateral filter for a
specific use case, such as the joint or cross bilateral filter with
a flash and no-flash photo in the works of Eisemann, et al. [7]
and Petschnigg, et al. [12], texture filtering with conditional
constraints [5], shorter runtime for displaying high dynamic
range images [6] and many more that apply an altered or
extended version of the bilateral filter.

Improvement of denoising with the bilateral filter has
been reached by incorporating edge detection while filtering.
Changing the spatial kernel of the filter depending on the
orientation and anisotropy of the structures in the image as
demonstrated by Venkatesh, et al. [16] has shown to improve
PSNR metrics for denoising. Adding another kernel on top
of the bilateral filter using the Roberts cross operator for
edge preservation as suggested by Kaur, et al. [10] also has
demonstrated to improve PSNR in denoising applications.

There is also the guided filter proposed by He, et al. [9],
which closely resembles the behavior of the bilateral filter
and improves upon it in terms of runtime performance and
preservation of edges and gradients.

2.2 Image segmentation and edge detection

Image segmentation and edge detection are very prevalent
in modern computer vision applications. They help with
identifying structures and can assist in recognizing specific
objects in combination with other image filters.

Image segmentation attempts to find separate connected
regions based on the structure of the image. One of the
most popular and common methods to segment images is
the SLIC algorithm proposed by Achanta et al. [1] as it is
fast and allows to specify the amount of desired segments.
This algorithm creates a grid of points on the image and
then finds the connected regions by expanding the pixels into
connected regions with k-means clustering. The resulting
segmentation adheres to edges, but it also oversegments the
image, as all original points in the grid create a separate
segment centered on themselves. Felzenszwalbs graph-based
approach for segmentation [8] prevents these unnecessary
segments and creates less regular-sized segments. However,
this comes at the cost of not being able to specify the exact
amount of segments.

Unlike image segmentation, however, edge detection does
not have to find separate connected regions out of the edges.
A simple approach for finding edges is approximating the
local gradient. The Sobel operator by Sobel et al. [14] is a
popular method for this and approximates the gradient in both
the vertical and the horizontal directions. The magnitude of
these can then be calculated resulting in gradient-like edges
with varying intensities. To find the most important edges
in the image, the Canny edge detector [4] by Canny identifies
the local maxima in the Sobel edge detection. It then removes
unwanted edges depending on multiple thresholds, creating
thin binary edges. Detecting edges can also be done with
a physics-based approach. The Phase stretch transform [2]
proposed by Asghari et al. which emulates light, can detect

edges of different strengths similar to the Sobel operator. It
is also able to include smaller details, where the gradient
approximations fail to create significantly intense edges.
Furthermore, the resulting edges can be thresholded to create
binary edges just like the Canny edge detector.

3 Methodology and experiments

In this paper, we propose extensions to the bilateral filter
which combine it with edge detection and segmentation to
reduce across-edge blurring. This section describes the setup
of the conducted experiments and the reasoning behind them.
The version of the bilateral filter that we extend in this paper
is the one proposed by Tomasi and Manduchi [15] defined by
Equation 1 and Equation 2, which uses a Gaussian spatial and
a Gaussian range kernel.

3.1 Range kernel based segmentation

Giving the bilateral filter the knowledge of the edges in the
to-be-filtered image can be done in a multitude of ways. A
simple approach to stop the filter from blurring across edges
would be to find the surrounding connected segment for every
single pixel. This method adds an extra kernel to the bilateral
filter: one that specifies if pixels lie in the segment of the
target pixel. If a pixel is not located in the connected region
of the target pixel, it is not included for mixing intensities,
even if they are located close to each other and have similar
intensity values. To create this segment, a threshold value
based on the amount of standard deviations in the range
kernel is chosen. Every intensity value that lies beyond this
threshold value, is seen as a border for the unique segment
of the target pixel. The segment is then found by searching
every directly reachable pixel from the target pixel which has
an intensity that differs less from the target intensity than the
chosen threshold. This method makes sure that pixels with
intensity values close to the target, but lie beyond a detected
border, are not included for filtering that specific target pixel.
The segmentation can be included in the filter by an inclusion
kernel as in the following formulas:

IRSBF(x) = I(P)Gs(x pi)
Wrsbf pe (3)
Gr(1C) 1(PICr(X; p; 1)
Wispr = Gs(x pGrGIx) 1(PI)
pe “4)
Ce(X; p; 1)
Crlx p: 1) = 1 if p2Connected(x; t))

0 else

In these three equations for the range kernel segmented
bilateral filter, all the previous variables from Equation 1
and Equation 2 are equivalent. The only changed part
is the inclusion kernel: C,(X; p; t), which as specified in
Equation 5, takes three parameters: X, the target pixel,
p, the neighboring pixel and t, the amount of allowed
standard deviations before thresholding. Furthermore, the

Connected(x; d) function creates a set of all pixels that are
directly reachable from target pixel X, without crossing any
pixels with an intensity difference higher than d compared
to X. This kernel returns 1 if the intensity difference is
lower than the specified threshold and is located within
the connected segment, otherwise, it returns 0. This new
inclusion kernel is then combined with the bilateral filter as
seen in Equation 3 and Equation 4, where it decides if pixels
are included for filtering.

A comparison of this thresholded bilateral filter with the
standard one can be seen in Figure 2. Both the filters
are able to reduce or even remove the noise from the one-
dimensional data in Figure 2a. However, there are multiple
visible differences between both filters which can be seen
in the regions around the peaks at every one hundred pixels
in Figure 2b. Here the bilateral filter samples from pixels
on both sides of the peaks, creating gradients that approach
the intensity levels beyond the peaks. The thresholded
bilateral filter is not able to sample from both sides as this
is prevented by the inclusion kernel. Another difference is
that the bilateral filter attempts to smooth out the intensity of
the peaks to their surroundings. The range segmented filter is
not allowed to do that and preserves the original levels.

How well the structure of the original data is preserved,
depends on threshold parameter t in Equation 5. A low
threshold will result in smaller segments that have similar
intensity values. This creates very localized blurring, which
possibly retains noise from the original data. In the case that
the threshold is set to 0, the image would only be blurred
with pixels of the exact same intensity, resulting in the exact
same image as the original. Increasing this threshold allows
the filter to sample from more different pixels and therefore
increases overall blur. This converges to the same result as
the standard bilateral filter when t 3int |, because a
threshold after three standard deviations in a Gaussian curve
includes more than 99% of the possible values. Changing
the threshold parameter allows to partially apply the bilateral
filter: smoothing more with high values and retaining more
structure with low values. An appropriate threshold can then
be chosen to create the desired result.

A problem with this approach is that far outliers, in terms
of intensity values, are treated as separate segments, which
would result in no change after filtering. Forcing segments to
have a minimum amount of pixels makes sure that outliers
still mix with adjacent pixels even though the intensity
difference is bigger than the threshold. If a segment does not
reach the minimum size requirement, we expand the segment
by also including all pixels directly adjacent to it. This
process is then repeated until the segment is at least as big
as the desired size that would reduce the outliers.

In Figure 3, the behavior of the filter on an image with outliers
is shown. Without a minimum segment size, the filter is not
able to smooth out the noise as seen in Figure 3b, because
of the reasons discussed earlier. A forced minimum segment
size results in the outliers being filtered to an intensity closer
to their surroundings as demonstrated in Figure 3c. Pixels
that do meet the minimum size requirement do not mix with
the outliers, as their segments are not altered.

(@) (b)

Figure 2: (a) One dimensional data of multiple increasing intensity levels with increasing peaks in between them. Gaussian noise has been
added with a standard deviation of 2. (b) The data from the left gure Itered with the bilateral Iter (red) and the thresholded bilateral Iter
(blue). For both lters the parameters are; = 15, ; =50 andt = 0:5.

an appropriate minimum segment size can be chosen to Iter
them appropriately. Images that have both details that need to
be conserved and outliers that need to be reduced, do not work
well with this approach of reducing across-edge blurring of
the bilateral lter.

3.2 Global image segmentation

Finding a unique segment per individual pixel is not the only
@) (b) (© method for adding the knowledge of edges or segments to the
ilateral Iter. Performing edge detection or segmentation of

Iter. (a) Image with 0.5% salt and peppers noise. (b) Image Itered tﬂe 'g.]la?e t:el;torehart]cti)lcar] also yield tf:je deswgd behaf[w?r of
with the range kernel segmented lter. (c) The same lter, but with € bilateral lter not biurmng across edges. segmentation

a minimum segment size of 15 pixels. The parameters of the Iterdlgorithms nd certain connected regions depending on the
are: s =10, , =50 andt =0:5. implementation, which then can be used by the bilateral Iter

to only mix pixels from the same connected region as the
target pixel. This is unlike the thresholded Iter discussed
earlier, where pixels were allowed to mix with pixels that
had different unique segments. Another difference is that
segmentation algorithms do not produce overlapping regions,
which the previous method did allow.

Figure 3: Filtering outliers with the range kernel segmented bilater

@ ®) coop= LT S00=5m) ©)

Figure 4: (a) Filtering with no minimum size. (b) Details are ltered
with their surroundings as the minimum segment size (15 pixels) iszgain, for this approach, we add an additional kernel to the
too high. standard bilateral Iter. This kernel as seen in Equation 6
takes the target pixek and another pixep from within
While solving the outlier issue, this approach introducesthe kernel window. The&S() function takes a pixel and
another problem: the chosen minimum size needs to be bigeturns the segment in the image it belongs to. If both
enough to reduce outliers, but also not too big, as it wouldsegments match, 1 is returned, otherwise it returns 0. Now
then start blurring small details as seen in Figure 4. For somany segmentation algorithm works with our new lter.
images, no minimum segment size needs to be speci ed, A popularapproach to segmentimages for computer vision
as there are no outliers in the image. Others will haveapplications is using superpixels to create connected regions
outliers, but no small details that need to be conserved, sm an image [1, 8]. This creates segments that have similar

intensity values. The downside is that they also create @referable. Depending on how the image is segmented, this
lot of extra edges in the segmentation that do not exist irincreases the staircasing effect of the standard bilateral lter,
the original image. This is a consequence of segments n@s pixels can only sample from their own segment, averaging
being allowed to overlap and not being centered on everghe segments' colors. This increased staircasing effect with
pixel, unlike the range kernel based segmentation discussexversegmentation is demonstrated in Figure 5b.

before. Using this global segmentation for Itering then)

creates visible boundaries in the resulting image, which aré.3 Edge detection

not present with the standard bilateral Iter. Other gIobaI The nal method for pre\/enting across_edge b|urring in
segmentation approaches suffer from the same problenthis paper uses edge detection, which combines the bigger
where they create segments that do not exist in the originadegments from the global segmentation approach with the less
image. An example of using the k-means based SLICje ned and overlapping boundaries of the range kernel based
algorithm [1] for the new lIter is demonstrated in Figure 5. segmentation. Edge detection does not have to create fully
The borders of the resulting segmentation are depicted iBeparate regions like the segmentation algorithms. It also
Figure 5a. This then creates artifacts after using the new Itei|lows for more and less de ned edges in the segmentation,
as shown in the background of Figure 5b. which enables the possibility of blurring along the edges,
smoothing them in the resulting image. This reduces possible
artifacts from hard edges as seen in Figure 5b.

A simple approach for edge detection is the Sobel operator,
also known as the Sobel Iter [14]. This Iter approximates
the local gradient in the image, producing smooth, soft edges.
Applying this Sobel Iter to an image results in another image
where the intensity of a pixel corresponds to its gradient as
depicted in Figure 7. This type of edge detection is able to
generate much more edges than segmentation algorithms,
@ (b) while not p_rodl_Jcing any extra edges. Butjl_Jst like the global

segmentation it has dif culties with detecting small details

Figure 5: (a) Image segmentation using SLIC, boundaries of thdn the image, as the faces of the people seen in Figure 7a are
found segments are colored yellow. (b) The SLIC segmentatiodiardly visible in Figure 7b.
combined with the proposed Iter. The chosen amount of segments
is 250. To amplify the most important edges of the Sobel lter, local
maxima need to be found and the rest of the output needs
to be reduced. This is exactly what the widely used Canny
dge detector does [4]. It suppresses and thresholds the
dients into thin lines and turns them into binary edges.
hese edges are similar to the type of edges seen in Figure 6,
ut missing the extra undesired edges while including more
etails as seen in Figure 7c. This approach still has the same
problem as global segmentation, in the sense that segments
are de ned by binary edges. Another pitfall of this approach
is that the edges often contain small gaps, which produces
bigger segments than would seem at rst glance. This is
demonstrated in the zoomed-in part of Figure 7c where the
connected region is shown. Finally, the Canny edge detection
uses the Sobel operator under the hood, which results in it
missing the same small details in the edge detection. A
different way of nding hard binary edges, that does not rely
on gradient approximation, can be done with the Phase stretch
transform [2] which is shown in Figure 7d. The edges it
produces are thicker and capture more details than those of
(a) (b) the Canny edge detector, but this approach also has problems
with creating a lot of gaps in the found edges.
Figure 6: Felzenszwalb segmentation with the boundaries of the For ltering an image with more de ned edges, like the
found segments colored yellow. (a) Low scale parameter, resultingomic in Figure 7a, hard edges are preferred to preserve the
in a lot of small and extra segments. (b) High scale parametergycture. Images with more gradients like the pepper in
producing bigger but less detailed segments. Figure 3, would need softer edges to reduce the stair casing
effect. Images with both de ned and gradient-like edges need
Another problem for global segmentation as a whole is thasomething in between. Using this information, we can add the
the borders in image segmentation are all treated equallfpllowing extra kernel de ned by Equation 7 to the standard
resulting in harsh edges, while softer edges might be moreilateral lter:

Another part where segmentation algorithms fail is including
smaller details. If the parameters are set to creatin
smaller segments, even more segments start appearing, wh
there should be none. The other way around is als
not satisfactory, as opting for bigger segments reduces t

amount of oversegmentation, but in turn, removes a lot of th
details. Both situations for Felzenszwalb segmentation [8]
are shown in Figure 6.

(@) (b)

(©) (d)
Figure 7: Multiple edge detection methods on a scan of a comic. (a) The original image. (b) The output of the Sobel operator where the result

is normalized to values in between 0 and 1. (c) Canny edge detection with a lower threshold of 100 and a higher threshold of 200. A part of
the image is zoomed in where a connected region is colored yellow. (d) The phase stretch transform with a phase strength of 3.

the path to a pixel takes more steps than the diameter of the kernel

E 1 Cost(x;p;e) if Cost(x;p;e) < 1 window, the pixel is considered too far to reach and is set to 0.
C(x;p:e) = 0 if Cost (x;p;e)! toofar Applylng this ext(_end(_ed bilateral Iter with the Sobel edge detection
0 else is demonstrated in Figure 8.

™ This kernel window in Figure 8b shows that the approach of
This new inclusion kernel takes the target pixela neighboring including certain amounts of edge gradients prevents the across-edge
pixel p that lies within the speci ed kernel window, amgthe edge blurring without introducing a complete cutoff at the edges in the
detection image. Th€ost(x; p; e) function returns the minimal image like binary edge detection or global segmentation. It also
cumulative amount of traversed changes in intensity on the edgesreates the smooth edges that the range kernel-based segmentation
image to reach pixeb from the target pixek. For example: the would create. Now we combine the soft edges of the Sobel operator
target pixel has an edge intensity of 0.2. To reachintensities for smoothing and the hard edges from the Phase stretch transform
0.3 and 0.6 have to be crossed whpralso has an edge intensity to preserve details. We do this by linearly interpolating in between
of 0.2. The Cost function will then return the cumulative change:both edge detectors, the ratio between them being the desired
(jo:2 0:3) +(jo:3 0:6)) +(jo:6 0:2)) = 0:8 setting the smoothness. A smoothness of 0 will result in the hard edges of the
inclusion weight to0:2. If pixel p is reachable from target pixel Phase stretch transform, values between 0 and 1 create interpolations
x by traversing less total change in edge intensity, then that lowebetween both, until a smoothness of 1, where we get the soft edges
cost will be the new return value of the cost function for pigelf of the Sobel operator.

need to be preserved. With low smoothness parameters, the binary
edge detection decides most of the boundaries of the Iter. Both
the Phase stretch transform and the canny edge detector sometimes
leave gaps in between the edges, allowing the lIter to still blur across
an edge. If the amount of gaps is large enough, the halo effect from
the normal bilateral Iter appears like in Figure 10c. Furthermore,
the edge-aware lter is very slow in terms of runtime, taking more
than a minute to lter an image of 512x512 pixels. This makes the
Iter less practical for real-time use cases and ltering images with
higher pixel counts.

5 Conclusions

(@) (b) In this paper, we have presented an extension to the bilateral Iter,
which is able to reduce the phenomenon of across-edge blurring.
Figure 8: Demonstration of the edge-aware bilateral lter kernel This extension takes the structure of an image into account while
with Sobel edge detection. (a) The original image. (b) The kernelltering to prevent mixing pixels across edges. It adds an extra
window of weights of the edge-aware bilateral lter applied on the kernel to the standard bilateral Iter using two edge detection
center pixel of (a) with s =30 and , = 30. algorithms, where one produces smooth gradient-like edges and the
other hard binary edges. We choose how smooth we want the edges
. . to be after blurring by interpolating between the two types of edge
4 Results and Discussion detection. The additional kernel then reduces blurring across the

We test the new edge-aware bilateral Iter on two types of imageschosen edges. We show that this new edge-aware bilateral Iter
one is a scan of a comic demonstrated in Figure 9, which containi$ indeed able to reduce the across-edge blurring of the standard
hard edges with well-de ned boundaries. The other image is thedilateral Iter and is able to smooth the boundaries where blurring
full picture of the peppers, which has more soft and gradient_|ike|s preVented. An additional effect of the neW- lter is its ab|l|ty to)
edges shown in Figure 10. Filtering the comic with the bilateral@lso preserve the edges themselves, preventing washed-out-looking
lter as seen in Figure 9b removes the texture from the ground andesults.

smooths the details in the background. It also includes a lot of halo

effects around the edges, which makes the image appear washéd Future work

out. The edge-aware bilateral Iter reduces these halo effects fOT

all smoothness values. A smoothness valueddh Figure 9¢ n this paper we only explore the edge-aware bilateral lIter for

creates grainy edges after Itering and mostly preserves the originasi’r‘?‘ysc"Jlle images, but it can easily be _expanded to color Images
intensities from Figure 9a. By increasing the smoothness paramet s well. .The proposeq edge-aware b!lateral Ite(IS E’}ISO quite
the edges gradually become softer and more details get mixed witie"Putationally expensive, reducing this complexity with better
their surroundings. With higher smoothness values, segments Witﬁpproaches to the edge detection and the cost function are potential
research problems. Furthermore, a better method for choosing softer

similar colors start blending more. A maximum smoothnesk a$ harder edaes would improve the performance of the Iter and
seen in Figure 9f, produces almost the same amount of blur betweel] '9 ould Imp P
could make it more intuitive to use.

similar intensity levels as the bilateral Iter, but still removes most

of the halo effects. .
Similar effects can be seen for the peppers in Figure 10. Low/ Responsible Research

smoothness values create hard edges, which make the image app%’ﬁ]ics

cartoonish in Figure 10c. These hard edges become less visib

with higher smoothness values as shown in both Figure 10d andll the images used in this paper were either made speci cally

Figure 10e. While most of the across-edge blurring is reduced byor this research or fall under the public domain to not violate

the edge-aware lter, the stem of the left pepper with a smoothnes#tellectual property rights. Furthermore, to keep transparency

of 0 in Figure 10c has a halo around it. This effect then graduallyabout the conducted research, all the source code containing

disappears with higher smoothness values. the described algorithms and the visualization methods are made

publicly available onlin&

The proposed edge-aware Iter does show promising results. It .

is able to reduce the across-edge blurring of the standard bilaterd®€producibility

lter and is better at preserving the intensities of the original imageTo make the results as reproducible as possible, all the

with low smoothness values. The binary edges generated with @nplementations of the edge-aware bilateral lters are described

smoothness 00, create hard borders in the resulting image, thisin detail. Parameters for shown images are included in their

can be bene cial if the original image only contains these types ofdescription to make them easier to reproduce. Additionally, the

edges, but it does not look that good for most images. Choosing lowource code is available as discussed in the section above. The code

smoothness values still creates well-de ned edges and blurs themhakes use of OpenCV-4.9.0 library for ltering images which also

slightly to make them smoother. This works great for images withhosts the standard bilateral Iter implementation that was used for

hard edges like the comic as seen in Figure 9d, where intensities at®mparisons. Both the code and openCV were compiled with C++

preserved and the edges are still smooth. Higher smoothness valugsrsion 23 and the MSVC compiler version 19.39.33523 for x64

work better with images containing softer edges as the peppers igrchitecture on the Windows 10 operating system.
Figure 10. The gradients are preserved better and no extra borders

like those in Figure 10c are created. https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-
All of this does not mean the edge-aware bilateral Iter works g4/EisemanrMolenaar/gweeland-Image-Processing-with-the-
for any use case. The edge detection can miss details that migBtlateral-Filter

	Introduction
	Related work
	The bilateral filter
	Image segmentation and edge detection

	Methodology and experiments
	Range kernel based segmentation
	Global image segmentation
	Edge detection

	Results and Discussion
	Conclusions
	Future work
	Responsible Research

