
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

Master Thesis
The Effect of a Topology Optimization based Generative
Design tool on the Engineering Design Process

Emma Vercoulen



Master Thesis
The Effect of a Topology Optimization based Generative Design tool on the

Engineering Design Process

by

Emma Vercoulen
to obtain the degree of

Master of Science

in Mechanical Engineering

at the Delft University of Technology,

to be defended publicly on 22 June 2023 at 12:00.

Student number: 4389662
Project duration: September 2022 – June 2023
Thesis committee: Dr. ir. M. Langelaar, TU Delft, supervisor

Dr. ir. Y. B. Eisma, TU Delft, supervisor
Dr. ir. G. Radaelli, TU Delft

This thesis is confidential and cannot be made public until further notice

Cover: Lightyear 0 in Autumn

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Acknowledgements
I would like to express my gratitude to the following individuals who have played a crucial role in the
completion of this thesis:

First of all, I am very grateful to both of my supervisors, Matthijs Langelaar and Yke Bauke Eisma. Your
guidance, constructive criticism, and thoughtful suggestions have elevated this thesis and helped me
navigate through the complexities of the research process. I could not have wished for better super-
visors as you both were always very approachable and willing to help. Your constant encouragement,
expertise and insightful feedback have helped me shape this work and pushed me to achieve my best.

I would also like to express my appreciation to Andrea Carpi for his ideas and supervision during the
first part of this thesis. This helped to lay a strong foundation for the rest of the project. I am grateful for
the intellectual stimulation and discussions that have supported my understanding of the subject and
its value in real life applications from an industry perspective.

I would like to thank my family for their love and support, which has helped me through not only this
thesis, but all the years of studying at the TU Delft.

Last but not least, I would like to thank my partner for always being there for me, providing me with
mental support and understanding.

To everyone who has contributed, directly or indirectly, to the completion of this thesis, I offer my grati-
tude. Your support, guidance, and encouragement have been invaluable in shaping this work and my
personal growth.

i



Abstract
In the engineering industry, all structural parts have to be designed as efficient and lightweight as
possible. Traditionally, the design process has been carried out throughmanual design iterations, which
can be time-consuming and require significant engineering expertise. Over the last decades however,
several computational design techniques like Topology Optimization and Generative Design have been
developed to support engineers in the structural part design process. Even though these techniques
can have a positive influence on the design process, they both also have their downsides. Topology
Optimization only gives a single result that is often a local optimum, influenced by boundary conditions
and numerical settings. Commercial Generative Design tools explore multiple design options in a single
run using AI algorithms, but need cloud-based systems to carry out their demanding simulations which
still take several hours per run. It is however expected that a combination of the two, a Topology
Optimization basedGenerative Design approach in the form of an auxiliary tool, has potential to improve
the early stages of the design process even more. With such a design approach, multiple design
solutions are explored quickly to study the effect of boundary conditions or numerical settings. This
can help designers by giving direction and insight in trade-offs between multiple objectives, early on in
the design process when design decisions still have the highest impact.

The goal for this research was therefore to research the effect of such a TopologyOptimization based
Generative Design approach on the design performance and experience. In order to do so, a robust
and user-friendly TOP-GD tool was created. In this tool, multiple design solutions are explored quickly
by implementing a batch-run setup that varies several chosen parameters, without needing to manually
run several optimizations consecutively. Calculations are done with a simple TO script using coarse
geometries, and without taking into account manufacturing methods yet. This asks for less demanding,
detailed and complicated calculations than AI-based Generative Design tools currently offer, while at
the same time moving from a single TO result to generating a range of candidate solutions. A lot of
effort was put in the user-friendliness of the TOP-GD tool, enabling an easy workflow for the setup of
design problems and a clear presentation of the results by means of a simple GUI.

The use of the TOP-GD tool in the design process was evaluated in an experiment, where it was
compared with a more simple TO tool and a basic manual design approach using just pen and paper.
This was done by giving the participants of the experiments three simple design assignments, that they
had to carry out using each of the design approaches one by one. Evaluation of the approaches was
done by comparing the design performance, and assessing the design experience with a survey and
using Eye-tracking techniques.

The results of this experiment did not show enough evidence to conclude that the different design
approaches had an effect on the design performance for the simple assignments executed during the
experiment. However, the results of the survey show a clear positive impact of both the TO tools on the
design experience, compared to manually designing. Furthermore, the TOP-GD tool has the largest
positive impact on the design experience and its use in the design process is considered a big im-
provement, especially in quickly exploring new design directions and creating overview. This confirms
the expectation that a Topology Optimization based Generative Design approach has a positive effect
on the early stages of the design process. The differences found with Eye-tracking between the TO
tools support this, although a more extensive experiment should be done to convincingly confirm this
conclusion.

ii



Contents

Acknowledgements i

Abstract ii

Nomenclature vii

1 Introduction 1
1.1 Motivation, Aim and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4
2.1 The Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Topology Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 SIMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 Convergence Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Design Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Multi-objective Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Generative Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Computational Design Techniques in Research Approach . . . . . . . . . . . . . . . . . 10
2.5 Software Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Z88Arion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Toptimiz3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 TOP-GD tool 14
3.1 Introduction and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Development Process TOP-GD tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Extending the top3D125 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Translation to GUI Controlled Input Variables . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Moving from Single to Multiple Solutions . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Optimizing the Presentation of Results . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.5 Extra Added Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Experiment Methods 23
4.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Materials and Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Experiment Results 28
5.1 Part Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Survey Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Eye-tracking Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Discussion 38
6.1 Part Performance Data Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Survey Data Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Eye-tracking Data Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



Contents iv

7 Conclusion 41
7.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

References 43

A TOP-GD tool Source Code 46

B Experiment Design Assignments 81
B.1 Assignment A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.2 Assignment B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.3 Assignment C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C Experiment Survey 88

D Gaze Density Heat Maps 113
D.1 Basic TO tool heat maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
D.2 TOP-GD tool heat maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



List of Figures

2.1 The general Topology Optimization Scheme [20] . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Mesh refinement dependency for the optimal topology. Solutions for a discretization with:

1350, 2400 and 8600 elements [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Pareto frontier [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Screenshot from a video by Autodesk Fusion 360 Generative Design tool presenting

results [36] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Plots from an explorative study done by Buonamici et al. in the Autodesk Fusion 360

Generative Design tool [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 GUI available in Toptimiz3D [41] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Schematic Overview top3D125 in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Schematic Overview working principles TOP-GD tool . . . . . . . . . . . . . . . . . . . . 15
3.3 Voxelization of an arbitrarily shaped 3D geometry [46] (edited) . . . . . . . . . . . . . . 16
3.4 Overview of all elements on the Home Screen ”Setup” Tab of the TOP-GD tool . . . . . 17
3.5 Overview of the ”Density Plots” Tab of the TOP-GD tool . . . . . . . . . . . . . . . . . . 19
3.6 Overview of the ”Compliance-Mass Graph” Tab of the TOP-GD tool . . . . . . . . . . . 20
3.7 Overview of the ”Data Table Overview” Tab of the TOP-GD tool . . . . . . . . . . . . . . 21

4.1 Simple version of TO App with single-run functionalities . . . . . . . . . . . . . . . . . . 24
4.2 SR Research’ EyeLink Portable Duo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Remote Head Tracking Stickers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Front View Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Results for Assignment A for each approach . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Results for Assignment B for each approach . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Results for Assignment C for each approach . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Overall Experience in Design Process per Approach . . . . . . . . . . . . . . . . . . . . 30
5.5 Confidence Optimal Solution found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Understanding of Structurally Important Areas . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Improved Understanding of Design Problems compared to Manual Design . . . . . . . . 31
5.8 Improved Understanding compared to Basic TO tool . . . . . . . . . . . . . . . . . . . . 31
5.9 User Friendliness of Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.10 Overview generated by Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.11 Use of tool considered Improvement in the Design Process . . . . . . . . . . . . . . . . 32
5.12 Heat Map Gaze Location Basic TO tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.13 Heat Map Gaze Location TOP-GD tool setup tab . . . . . . . . . . . . . . . . . . . . . . 35
5.14 Heat Map Gaze Location TOP-GD tool Compliance-Mass Graph tab . . . . . . . . . . . 35
5.15 Boxplots showing the distribution of Fixation durations per tool . . . . . . . . . . . . . . 36
5.16 Fitted distributions of the fixation duration data for the Basic TO tool (left) and the TOP-

GD tool (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.17 Boxplots showing the distribution of saccade amplitudes per tool . . . . . . . . . . . . . 37
5.18 Fitted distributions of the saccade amplitude data for the Basic TO tool (left) and the

TOP-GD tool (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.1 Assignment A: Design space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.2 Assignment A: Fixed Constraint, Solid Areas and Force Surface . . . . . . . . . . . . . 82
B.3 Assignment B: Design space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.4 Assignment B: Fixed Constraint and Solid Areas . . . . . . . . . . . . . . . . . . . . . . 84
B.5 Assignment B: Load Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



List of Figures vi

B.6 Assignment C: Design space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.7 Assignment C: Fixed Constraint and Solid Areas . . . . . . . . . . . . . . . . . . . . . . 85
B.8 Assignment C: Load case 1, standing on the first step . . . . . . . . . . . . . . . . . . . 86
B.9 Assignment C: Load case 2, standing on the second step . . . . . . . . . . . . . . . . . 86
B.10 Assignment C: Load case 3, sitting on the step . . . . . . . . . . . . . . . . . . . . . . . 87

D.1 Heat Map Gaze Density Basic TO tool Participant 1 . . . . . . . . . . . . . . . . . . . . 113
D.2 Heat Map Gaze Density Basic TO tool Participant 2 . . . . . . . . . . . . . . . . . . . . 114
D.3 Heat Map Gaze Density Basic TO tool Participant 3 . . . . . . . . . . . . . . . . . . . . 114
D.4 Heat Map Gaze Density TOP-GD tool Setup tab Participant 1 . . . . . . . . . . . . . . . 115
D.5 Heat Map Gaze Density TOP-GD tool Setup tab Participant 2 . . . . . . . . . . . . . . . 115
D.6 Heat Map Gaze Density TOP-GD tool Setup tab Participant 3 . . . . . . . . . . . . . . . 116
D.7 Heat Map Gaze Density TOP-GD tool Compliance-Mass Graph tab Participant 1 . . . . 116
D.8 Heat Map Gaze Density TOP-GD tool Compliance-Mass Graph tab Participant 2 . . . . 117
D.9 Heat Map Gaze Density TOP-GD tool Compliance-Mass Graph tab Participant 3 . . . . 117



Nomenclature

Abbreviations

Abbreviation Definition

TO Topology Optimization
GD Generative Design
GUI Graphical User Interface
BESO Bi-directional Evolutionary Structural Optimization
SIMP Solid Isotropic Material with Penalization
FE Finite Element
OC Optimality Criteria
MMA Method of Moving Asymptotes
MO Multi-Objective
AI Artificial-Intelligence
CAD Computer-Aided Design
IPOTP Interior Point Optimizer
TOP-GD tool Topology Optimization based Generative Design

tool
DoF Degrees of Freedom
HCI Human-Computer Interaction

vii



1
Introduction

1.1. Motivation, Aim and Approach
In many engineering industries, structural parts have to be designed as efficient as possible. That
means that besides being able to withstand certain loads for given boundary conditions, they should
also be lightweight. The structural part design process is therefore about obtaining the lightest geometry
possible, that can still endure a certain set of loads under given boundary conditions. Traditionally, the
design process has been carried out through manual design iterations, which can be time-consuming
and require significant engineering expertise. Over the last decades however, several computational
design techniques like Topology Optimization (TO) and Generative Design (GD) have been developed
to support engineers in the structural part design process [1, 2, 3]. Topology optimization uses al-
gorithms to generate optimal design solutions based on predefined constraints and objectives [4, 5,
6], while generative design uses artificial intelligence to generate multiple design alternatives at once,
allowing for the exploration of multiple design options and support designers’ creativity [1, 3].

Even though at many companies the preferred way of working is still by manual design, it is ex-
pected that a tool using computational design techniques can offer valuable guidance in part design
also in this context. Especially at the early stages of the design process, a quick study using Topology
Optimization can be used to quickly determine the optimal load path and provide a minimum mass
target. Explorative techniques like Generative Design can be used to explore and compare different
design options, especially when dealing with multi-objective optimizations by giving insight in the trade-
off between stiffer or lighter solutions. This has the potential to improve the final design of structural
parts, as well as the overall design process.

Topology Optimization platforms that perform a single simulation and give a single result, already
exist. However, this single result is typically a local optimum which is strongly influenced by the start-
ing point of the optimization, the boundary conditions and other numerical settings. A single result
therefore gives no information on whether this initial setup gave the best result possible [7]. To explore
different solutions or study the effect of the starting point, boundary conditions and numerical settings
with such TO software, multiple runs have to be done iteratively. This increases the amount of work
needed significantly since every time the optimization has to be set up again with different parameters.
On the other hand, commercial Generative Design tools have been developed more recently, which
explore multiple design options in a single run by using AI-based algorithms. The largest differences
in the designs generated are usually due to the evaluation of different manufacturing methods or ma-
terials. However, these tools use cloud-based systems to carry out their demanding simulations, still
take several hours per run and only produce a percentage of actually converged or usable results [3].
Moreover, although a GD tool can help with creating overview by presenting the generated solutions
in different plots, it is still not an easy or trivial task for the user to select the ’best’ result when dealing
with multi-objective problems.

What is missing however, is something in between: a user-friendly tool that quickly helps to explore
multiple design solutions, and study the effect of boundary conditions, numerical settings or starting
points on the optimization problem. This can be done without needing to manually run several opti-
mizations consecutively, by implementing a batch-run setup that varies several chosen parameters,

1



1.2. Scope 2

through a user-friendly Graphical User Interface (GUI). Calculations can be done using coarse geome-
tries and without taking into account manufacturing methods yet, to support the designers in the earliest
stages of the part design process. This can help give direction earlier on, and give insight in trade-offs
between multiple objectives. Gathering as much information as fast as possible enables early changes
of the design, which is crucial to both the efficiency and performance of a design, and the cost of the
final designed product [2, 8, 9]. This asks for less demanding, detailed and complicated calculations
than AI-based Generative Design tools currently offer, while at the same time moving from a single
TO result to generating a range of candidate solutions. The goal for the thesis is therefore to research
whether the design process can be improved by an auxiliary tool using a combination of computational
design techniques like described above. The main research question of this thesis is:

“What is the effect of using a Topology Optimization based Generative Design tool or a simple
Topology Optimization tool compared to manual design on the design performance and experience?”

Instead of generally speaking about the design process, the design performance and experience are
consciously separated in the main research question. It could be possible that in simple assignments,
the effect of the proposed approach is less noticeable on the ”performance” of the designed parts (e.g.
its weight, compliance or maximum stress value), but does however improve the design experience of
the engineer using the tool. This would still be a positive impact on the overall design process.

In order to answer the main research question, a working and robust user-friendly Topology Opti-
mization based Generative Design tool has to be created and its potential has to be tested. The tool has
to be able to perform multiple topology optimization runs in batches to explore the design space and
the influence of boundary conditions and parameter settings. In combination with a GUI, the control of
such a batch-run optimization has to be made possible. In order for the tool to have a positive impact
on the design process, it should be easy for the designer to set up the problem, control the optimization
and interpret the results. To make all these functionalities possible, a big part of the time set out for this
thesis will be spent on the development of the proposed tool. After the creation of this tool, the main
research of this thesis can be done. This will be focused on the influence of the tool on the design
performance and experience. To be able to review this, it is interesting to do a comparison study of the
design process with different approaches: designing manually without any aid of computational design
techniques, using a simple ’single run’ TO tool to design, or designing with the new proposed approach
using a topology optimization based generative design tool. In this way it can be researched by means
of an experiment what the effect of the different approaches is on both the design performance and
experience, and how they compare to each other.

1.2. Scope
For the rest of the Thesis project, the scope is limited to researching and applying computational design
techniques in the context of:

• 3D parts
• structural static load cases
• the Linear Elastic regime
• isotropic materials

To test the effect of a Topology Optimization based Generative Design tool on the design process, it has
to be able to perform realistic 3D design assignments. Dynamic load-cases, non-linear deformations
and anisotropic materials can potentially be implemented in future research, but are not of interest in
this thesis. Moreover, different manufacturing methods do not have to be considered by this tool during
the design process. As will be further elaborated in Section 2.1, manufacturing constraints are not of
high importance yet in the earliest design stages.
The target group for this tool consists of Mechanical and Structural Engineers. It can be assumed that
they have general engineering knowledge, but no specific knowledge on TO, GD or other computa-
tional design techniques.



1.3. Structure of the report 3

1.3. Structure of the report
To arrive to this context, research question and project proposal, a literature research has been done
prior to the thesis. In this literature review [10], both the design process as well as different com-
putational design techniques have been reviewed to identify the above explained gap. Besides that,
different software tools have been tested to see whether they would be usable for the development
of a Topology Optimization based Generative Design tool within the scope of this thesis. The most
important and relevant findings of this literature review are summarized in the next chapter, to make
the thesis independently readable and give the necessary background information.

In Chapter 3, first the requirements for the tool are listed, followed by a description of its development
process while explaining all functionalities. In this description, the GUI is presented and the workflow
for the user is demonstrated as well. Next in Chapter 4, the methods for the performed experiments
are discussed. The results of the experiments and the created tool are presented in Chapter 5. This is
followed by a discussion of the results in Chapter 6. Lastly, themost important findings of the experiment
and thesis are presented in the conclusion, followed by recommendations for future research.



2
Literature Review

To identify where there is most potential for computational design techniques to improve the design
process, it is first important to describe what the engineering design process actually entails. This is
followed by a section about the basics of Topology Optimization, focused only on the approach used
in this thesis, with extra added details about the different parameters of importance. In Section 2.3,
two different types of design exploration methods relevant for this thesis are explained. Lastly, different
existing software tools are reviewed and one is selected to develop a Topology Optimization based
Generative Design tool with.

2.1. The Design Process
The engineering design process consists of a series of stages or steps that are used to create new
products or parts. Although there is no standard definition of what the specific steps entail, resem-
blances are found among all the variations. A literature comparison indicates that the engineering
design process can generally be distributed into four steps: [11, 12]

1. Problem definition
2. Conceptualization
3. Preliminary / Prototype design and evaluation
4. Detailed design and evaluation

After finishing these stages, the production process can be prepared and started. However, the design
process is highly iterative since it frequently involves a repetition of several steps as a result of insights
later on in the process. In general, design modifications brought about by these iterations become
more and more expensive to realize as the design process progresses [11].

Moreover, in many engineering companies, engineers are working on a very tight schedule. This
makes it hard to do many design and testing iterations. This emphasizes the importance of a well
chosen concept to work out in the following design process steps, and to be sure the concept is a good
solution as early as possible. This will reduce the number of iterations needed later in the process to
improve the design. Therefore, it is expected that the conceptual or early design stage has the most
room for improvement within the design process.

This aligns with other remarks found in literature. The conceptual design stage is said to be key to
both the efficiency of a design and the cost of the final designed product [2]. At the start of the design
process, design decisions still have a big impact. But as the design develops, their impact reduces
rapidly [9]. Consequently, the conceptual and preliminary design stages offer the largest window of
opportunity to improve the process and the design, as the concept that is chosen to further develop
throughout these stages has a large influence on the core features of the final design. It is quite difficult
to make up for an inferior concept choice during the subsequent detailed design stage [9]. That is why it
is important to collect as much information about the product as soon as possible in the design process,
to prevent a poor concept choice by enabling early changes of the design [8].

4



2.2. Topology Optimization 5

2.2. Topology Optimization
Topology optimization is a form of structural optimization, where the goal is to determine the optimal lay-
out of a structure within a predefined domain [6]. During this optimization process, the topology of the
design is completely flexible. This means there are no prior assumptions about the shape or topology
of that structure. Only the applied loads, the boundary conditions and the volume of the structure are
defined before starting the optimization [6].

In topology optimization, the problem is generally formulated to minimize an objective function F (x),
by finding the optimal material distribution within a specified design domain. The objective can be the
minimization of compliance, mass or stress. x is then the set of design variables, representing the
distribution of material for which the optimal values have to be found. To ensure realistic results, the
optimization problem is subjected to a set of (in)equality constraints, for example to ensure a nonzero
volume [13, 14].

The principle of topology optimization was introduced for the first time by Bendøe and Kikuchi in
1988 [4]. In this paper, a homogenization approach is used that varies the micro structure of discretized
elements to optimize the performance of the overall structure. After this first publication, topology opti-
mization has developed enormously in a lot of different directions [14]. Multiple topology optimization
approaches exist, such as the Level-set Method [15, 16] and the Bi-directional Evolutionary Structural
Optimization (BESO) method [17, 18, 19]. In principle, any TO method could be used for this thesis.
However, only the conventional density-based Solid Isotropic Material with Penalization (SIMP) method
has been used, due to the software choice explained in Section 2.5. The principles of the SIMP method
are described in the next section.

2.2.1. SIMP
The SIMP method is one of the most recognized and commonly used density-based methods. In
density-based methods, the design domain is discretized into many small, finite elements in order to
solve the fundamental topology optimization problem [7]. Each of these elements get assigned a density
value, which all together are the design variables. An element with a density value of 1 represents a
solid material element, and an element with a value of 0 density represents a void element. The
material distribution described by all these element density values is optimized to minimize the objective
function [13, 14].

Treating a problem with this discrete approach however, is very computationally expensive [20]. In
the SIMP method, this is solved by using continuous variables for the densities of the elements instead.
Having continuous density values allows for sensitivity analysis and more efficient gradient-based op-
timization. However, this regularization also means that elements can have an intermediate value
between 0 and 1 for the density, which is physically hard to interpret and impossible to manufacture.
The SIMP approach therefore penalizes these intermediate density values, which makes them unattrac-
tive for the optimization. This forces the design to a more distinct solid-void solution. The penalization
is done by using a power-law to define the relationship between the elastic properties and the element
density with the following formula [13]:

E (ρe) = ρpeE0, p ≥ 1 (2.1)

with ρe being the element density, p as penalization parameter and E0 is the Young’s modulus of the
solid material. For p ≥ 1, intermediate densities get penalized, which makes the optimization algorithm
favor clear solid-void solutions. This penalization effect only works if there is some volume constraint
present [14].

Generally speaking, topology optimization algorithms like the density based SIMP method follow
the same series of steps to get to a useful result, shown in the scheme in Figure 2.1 below.



2.2. Topology Optimization 6

Figure 2.1: The general Topology Optimization Scheme [20]

For clarity, the order of steps shown here will be followed in the coming sections to explain the basic prin-
ciples of topology optimization. First, the structural problem is initialized by setting up the geometry, the
finite element (FE) mesh, the loads and boundary conditions and initializing the density distribution [20].
At this point, the optimization loop can be started where the equilibrium equations are assembled and
solved using Finite Element Analysis. This is followed by a Sensitivity Analysis, applying a filter and
updating the design variables in the optimization step. The updated design variables are consequently
checked for convergence to decide whether another loop is started or the result has converged. What
happens during these last mentioned steps is described in the following sections.

2.2.2. Sensitivity Analysis
In an optimization problem, the displacement field is a function of the design variables. By calculating
the derivatives of the displacements, or other structural performance quantities, with respect to the
continuous design variables, a sensitivity analysis can be carried out. A sensitivity analysis can be
used to understand the effect of changing each design variable. In density-based methods like SIMP,
an element’s sensitivity corresponds to the change in the structure’s overall compliance when this
element is removed [21]. This indicates the effect of a change in density. This information is used
later in the optimization step to update the design variables in each iteration, based on the elemental
sensitivity values. In this way, the most efficient elements will stay in the structure, while the elements
that do not have a large influence on the total compliance of the structure, get removed. Gradient-
based optimization makes use of this sensitivity information to update the design. In addition, when
this information is visualized, a sensitivity analysis can provide a designer valuable insights on the
impact of specific design variables or particular constraints on the objective(s).

In Topology Optimization a problem usually includes a large amount of design variables that need
to be considered. Therefore, the adjoint method is most effective for doing a sensitivity analysis. The
derivatives of the displacement are not explicitly calculated in this method [6].

2.2.3. Filtering
Before the design variables can be updated, first a filtering technique should be applied to the obtained
sensitivity field. This is because the obtained solutions are dependent on the level of mesh refinement
when using the SIMP method, which can be problematic. When applying the same loads and bound-
ary conditions, an increased mesh density results in a different and more detailed solution with more
members of a smaller size, compared to a coarse mesh [22]. This is illustrated in Figure 2.2.



2.2. Topology Optimization 7

Figure 2.2: Mesh refinement dependency for the optimal topology. Solutions for a discretization with: 1350, 2400 and 8600
elements [6]

This mesh dependency effect can be decreased by applying a blurring filter on the density or sensitivity
field to smooth out the values. This removes patterns with fine details, and only leaves the core features
of the design. This is a highly efficient method to achieve mesh-independency [6]. The filtering is done
per element with a distanced-weighted averaging of the sensitivities (calculated in the previous step)
within a certain region around that element. The sensitivities of the elements in close proximity of the
concerned element therefore contribute more than the values of the elements on the outer edge of the
filtered area. The value for the filter radius determines the size of the total filtered area, and how many
elements are included in the averaging for each element. Therefore, this also controls the size of the
features that are maintained in the solution. A larger filter radius results in a larger minimum member
size. This gives less detailed solutions, but often gives a smoother and more realistic overall result.

2.2.4. Optimization Methods
After a filter has been applied on the sensitivity field, the design variables can be updated in the opti-
mization step. Usually, topology optimization problems are large-scale nonlinear optimization problems
that can be handled using a large variety of different numerical optimization approaches [23]. As was
previously stated, a large amount of design variables need to be taken into account, for which gradient-
based methods converge much faster than non-gradient-based methods. In topology optimization,
therefore the two most used methods are the Optimality Criteria (OC) [24, 25] and the Method of Mov-
ing Asymptotes (MMA) [26, 27].

OC methods are very effective in solving optimization problems with few constraints in comparison
to the number of design variables. Especially when dealing with just one constraint, like in a standard
compliance minimization problem with a single volume constraint, the OC algorithm is very useful [28].
The reason why OC is an effective algorithm, is because each design variable is updated independently
of the others in every iteration. This is done by computing the Langrange multipliers for the (active)
constraints in every iteration, which are then used with the gradients to update the design variables in
such a way that they satisfy the optimality conditions obtained from the Lagrangian [6].

Compared to OC methods, the Method of Moving Asymptotes is more versatile. When problems
become more complicated, large scale and with multiple constraints, MMA has better convergence
properties. For simple compliance minimization problems as considered in this thesis however, the OC
method is the best choice [6].

2.2.5. Convergence Check
After the design variables have been updated, the updated density values can be compared with the
design variables from the previous iteration. If these values differ a lot, it means that a lot of change
has still been implemented in the last iteration step, and that it is useful to repeat the optimization loop
once more. As shown in Figure 2.1, the loop will start again from the FEA step. However if the value
for the change in the design variables is below a certain threshold, it means that the updated topology
differs minimally from the previous iteration and has converged. The optimization loop can be exited
and the final topology for this optimization run has been determined.

In 2001, a simple 99-line code written in Matlab was presented using the SIMP method [29], which
follows the optimization scheme shown in Figure 2.1 as well. This code formed the basis for many
other codes and improvements. In this code, the optimization loop can be terminated in two ways.
A threshold ”change” parameter is set, which terminates the optimization loop as described above
when the topology has converged. However if for example time is limited, the optimization loop can
also be terminated by setting a maximum amount of iterations. If after these amount of iterations
the topology has still not converged according to the set change threshold, the optimization loop will
terminate anyway.



2.3. Design Exploration 8

2.3. Design Exploration
As was explained in Section 2.1, a single TO run does not contribute to the exploration of different solu-
tions that are comparably optimal but vary geometrically, especially in multi-objective optimizations [1].
Therefore it is also interesting to look at Pareto solution sets and the use of computational design
techniques like Generative Design during the conceptual design stage. Both will be discussed in the
sections below.

2.3.1. Multi-objective Optimization
Objective functions in algorithms are typically presented as minimization functions for the provided
design parameters. In the simplest case, an optimization method has just one objective to guide the
design process. Nonetheless, it commonly occurs that an engineer needs to take multiple objectives
into account while defining a problem. These Multi-objective (MO) problems are more challenging to
solve, especially when the different objectives are conflicting. Instead of one unique optimal solution,
this typically results in multiple different solutions that each meet the requirements in their own way.
When various objectives or criteria have to be considered, Multi-objective optimization is a method to
find solutions. In structural design problems where different criteria such as minimizing weight and
maximizing stiffness are frequently in conflict, this approach is quite useful [1, 30].

Figure 2.3: The Pareto frontier [31]

The aim of a MO optimization is to simultane-
ously consider all the criteria and find the best
trade-off solutions with respect to the relevant ob-
jectives. These solutions will inevitably improve
in one or more aspects, but worsen in others [30,
1]. By collecting a set of these equal trade-off so-
lutions that cannot improve with respect to any of
the objectives without compromising another, a
Pareto-optimal front is obtained in the objective
space [32]. An example of the Pareto frontier
is depicted in Figure 2.3. Here, f1 and f2 stand
for two objectives. The minimum values for both
these individual objectives combined provide the
”Utopia” point. To find the closest feasible Pareto
frontier point, the minimum distance criterion is
used. This point is denoted with ”UPF” in the fig-
ure [31].

When the exploration of multiple designs is
desired, generating such a Pareto set offers numerous advantages. The Pareto set helps the designer
to make an informed decision by providing a variety of solutions that are all optimal from an ”overall”
point of view. In a single-objective optimization, this trade-off viewpoint is likely to be overlooked. More-
over, a Multi-objective approach is also helpful in understanding and exploring the consequences of a
design decision with respect to all the relevant objectives considered [30].

There are multiple ways to explore the Pareto-optimal front, but one of the simplest ways to find
different optimized results is to iterate optimization runs while altering some optimization settings such
as the volume fraction, target objectives or material parameters [1].

2.3.2. Generative Design
Generative Design is a broad term used in numerous fields and applications, with no clear definition [1].
In some literature, the terms Generative Design and Topology Optimization are occasionally even used
interchangeably. In the context of heat conduction, Lohan for example calls the SIMP method already
a ”Generative Design Algorithm”, because parameters get evolved parameters over time and a (single)
design s generated [33]. It is therefore important to clarify that in this thesis, the term Generative Design
is used for methods to create not one, but multiple designs.

There are several methods for doing this. Traditionally, only a small number of parameters concern-
ing the geometry or the problem definition were modified in generative design, but this results in a set
of solutions with limited diversity [21, 34]. Moreover, Topology Optimization algorithms can be used to
generate different designs by doing multiple TO runs consecutively. This means that for example the



2.3. Design Exploration 9

Multi-objective optimization approach described in the previous section, is a form of Generative Design
as well.

However, the most common form of Generative Design described in literature, are the tools or ap-
proaches that employ Artificial-Intelligence (AI) techniques to generate a set of different design options,
while respecting the provided objectives and constraints. Therefore, the rest of this section is focused
on these AI-based Generative Design tools. The key difference of these techniques compared to TO-
based generative design is the ”first level” generation of a set of multiple solutions simultaneously,
which subsequently can be explored [3].

Only recently a number of commercial Computer-Aided Design (CAD) software programs were able to
add generative design modules using AI, due to the substantial rise of available computing power [1,
35]. Compared to traditional designing methods, the advantage of such AI-based Generative Design
tools lies especially in the fact that it can propose a variety of ’out of the box’ design possibilities which
otherwise would not have been considered by the designer [35].

Examples of AI-techniques that are used in Generative Design tools are neural networks and ge-
netic algorithms [35]. Unfortunately, both methods require a lot of computing power to produce flexible
designs of high quality. Besides that, some systems do not integrate a mechanical analysis in the
generative design process, making it hard to guarantee the engineering performance of the generated
parts [21].

Nonetheless, a fewGD tools included in commercial CAD software run simulations on a cloud-based
platform, enabling demanding GD studies even when the designer works with a limited computer. After
setting up the design problem, the tool traverses the design space while generating many optimized
geometries [35]. After the cloud-based GD study is finished, the found geometries are presented to
the designer. In Figure 2.4 a series of solutions is shown that are generated by Autodesk’s Fusion 360
Generative Design tool [36].

Figure 2.4: Screenshot from a video by Autodesk Fusion 360 Generative Design tool presenting results [36]

Tools like these help designers to identify the best concept for their study, by enabling comparison
and trade-off studies based on specified performance indicators [35]. In Figure 2.5 below a plot by Au-
todesk’s Fusion 360 Generative Design tool can be seen, showing the mass vs. the max displacement
of various solutions generated. This plot, which is actually a type of Pareto plot, demonstrates how
these commercial GD tools also apply the MO optimization principles like discussed in Section 2.3.1 to
support trade-off studies.



2.4. Computational Design Techniques in Research Approach 10

Figure 2.5: Plots from an explorative study done by Buonamici et al. in the Autodesk Fusion 360 Generative Design tool [3]

Commercial AI-based GD tools are excellent at fostering creativity when it comes to design exploration.
However, even though cloud-based systems are used to run these substantial simulations, it still takes
several hours for a simulation to complete. A topology optimization run only needs a few minutes for
the same design problem. The GD tool does provide a lot more diverse solutions during its processing
time, but many of them are less optimal and of worse quality than those that more advanced TO tools
can generate [1]. The significant computational processing power required and the lesser quality of
results therefore make these AI-based Generative Design tools less favourable for the tool required
for this thesis. Furthermore, within the time limits of this thesis project, it is extremely challenging to
build an AI-based Generative Design tool from scratch, without using the commercially available tools.
However, the way AI-based Generative Design tools present multiple solutions to the designer and
show a Pareto plot for better comparison, can be used in a Topology Optimization based Generative
Design approach as well.

2.4. Computational Design Techniques in Research Approach
Having more information about the design process, Topology Optimization and useful Design Explo-
ration techniques, the research aim and approach can be further specified. To improve the overall
design process, the focus for this thesis is set on improving the early design stages. Computational
design techniques are expected to support the early design stages, in several ways. The use of Topol-
ogy Optimization during conceptual design can give beneficial guidance in part design by determining
the optimal load path, and giving a minimum weight potential for the given loads and the design space
available [1]. This can serve as a mass target later on during the preliminary or detailed design stages,
which gives information on whether a design is more or less converged. With that, a better estimation
can be made on whether there is still potential for significant mass reduction or the iterating process
can be stopped, which can save valuable time from engineers.

Traditionally however, topology optimization only provides a single optimal solution, that is typically
a local optimum as well [3]. Consequently, a single TO run does not contribute to the exploration of
different solutions that are comparably optimal but vary geometrically, especially in multi-objective op-
timizations [1]. Therefore it is also interesting to use a computational design technique like Generative
Design during the conceptual design stage, and look at Pareto solution sets. When implementing Gen-
erative Design, alternative solutions can be generated that the designer did not think of or consider
with one single TO run, while these could possibly be better solutions for the design problem [1, 3].
Assessing as many alternative solutions as possible in an early stage of the design process also helps
in making a more confident final decision on which design to continue with.

Moreover, it is important to understand that in topology optimization, the defined boundary con-
ditions and numerical settings also influence the solution. Besides that, most topology optimization
methods still rely on their starting points [7]. One single run does therefore not give any information on



2.5. Software Choice 11

this influence of starting guesses, physical and numerical parameters, and whether by varying these a
better overall solution can be found. Especially when a designer is unfamiliar with topology optimization
and its settings, it can be helpful if a tool using computational design techniques provides understand-
ing on the effects of these settings and boundary conditions. When doing more topology optimization
runs consecutively, a range of numerical and physical parameters can be explored, which results in a
set of data points that describe different parameter combinations. This can be used to understand the
macroscopic behavior of the optimization problem, and the influence of numerical settings or boundary
conditions on the design problem. In this way the designer not only gets information and understanding
of the part itself, but it also makes topology optimization less of a ”black box” approach.

Recapitulating that, the conceptual design stage offers plenty of opportunities for improvement. The
goal for the thesis project is therefore to utilize computational design techniques in the form of an
auxiliary tool, to quickly explore a variety of concepts at the very start of the design process in order
to provide guidance and inspiration. Manufacturing constraints are not of high importance yet at this
early stage and can be considered later in the design process. This also simplifies and speeds up
the optimization runs. By quickly exploring multiple solutions, it is possible to obtain not only one
single point solution like in TO, but also a notion of how good solutions are distributed or how they
relate to each other statistically. This will give guidance and supports exploration, understanding and
making well-founded and unbiased decisions. Potentially, this will contribute to the improvement of the
conceptual design stage, and with that the overall design process.

It is however very important that the tool to be developed is practical and user-friendly. If the tool gets
too complicated or time-consuming to run, it will most probably not get used by designers during the
conceptual design stage at all. This means that for example ’quick and dirty’ TO results are preferred
during the conceptual design stage, as it is about quickly exploring design directions and giving an
idea of the ideal load path and a rough minimum weight. It is not necessary to run optimizations with
high resolution for that, and a short computational time better serves the engineers during this stage.
Besides that, a simple workflow that does not need a lot of implementation time and can be easily
learned by new users is highly preferable. For a tool, simplicity both in functionality and usability is very
important. Even though the scope of a tool may be more limited because of that, it will be easier to use
and more likely to get adopted by users. Additionally, simpler tools are usually more robust [37].

2.5. Software Choice
After reviewing multiple Topology Optimization and Generative Design approaches and their applica-
tions, a gap has been identified in a simple and quick exploration approach of multiple solutions. As
explained in the previous section and introduction, this has been translated into a Generative Design
tool that does not rely on AI and cloud-based systems, but uses multiple Topology Optimization runs
with different settings to explore the design space and give insight in the trade-off between multiple
objectives. For the development of such a tool, suitable software had to be found. Therefore, dif-
ferent software programs that use topology optimization or generative design techniques have been
searched and evaluated on their potential to be used or extended for the creation of the tool for this
thesis. At the basis for this was a comparative study of Tyflopoulos and Steinert that was recently
published and looked at the application of different commercial and open source software for Topology
Optimization [38]. Open-source software has the preference, to save costs and enable wider usage.
Two software platforms with the most potential, that were also included in the library of the Tyflopoulos
and Steinert paper [38], have been reviewed more extensively at the start of this thesis. These plat-
forms can potentially be used as basis for a tool, but need to be extended to provide the necessary
functionalities. Besides these existing platforms, the new generation 3D version of the 99-line code in
MATLAB [29], called top3D125 [39] is also considered as an option to build a tool with in MATLAB from
scratch, and is included in the comparison.

2.5.1. Z88Arion
The first platform reviewed further was Z88Arion [40], which is a complete desktop app that already
includes a GUI as well. Although Z88Arion is free to use and has great capabilities in terms of pre- and
post-processing and user-friendliness during the setup of the problem, the source code has not been
made available. This makes the software hard to edit or extend. Correspondence with the makers of



2.5. Software Choice 12

the software unfortunately did not result in any easy option to automate the workflow of the software
either, which made the use of Z88Arion less favourable for this thesis.

2.5.2. Toptimiz3D
The second software platform that seemed promising was Toptimiz3D, which is a python-coded GUI
working on Linux, that solves TO problems with the C++ open-source FreeFem++ software. The GUI
allows the designer to set up the topology optimization problem in a user-friendly environment. All
relevant data for defining a TO problem can be specified in the application, different options for solving
can be selected and it can be solved directly from the interface. The software uses the SIMP method
for compliance minimization problems, with three different optimization methods: MMA, Interior Point
Optimizer (IPOPT) and OC. For finite element analysis, the MFEM library is used [41]. A screenshot
of the Toptimiz3D GUI is shown in Figure 2.6 below.

Figure 2.6: GUI available in Toptimiz3D [41]

The software is not able to generate meshes itself, so a suitable mesh has to be build in an external
tool and imported in Toptimiz3D, which complicates the workflow. When the mesh has been imported
and loaded, it can be visualized and moved in the graphic panel of the GUI. After all information is
entered by the user in this python coded interface, a C++ code gets generated, compiled and executed.
This makes a relatively fast solving speed possible, which is an advantage when wanting to multiple
runs consecutively. During the optimization run, a separate window pops up showing the result of each
iteration. When the optimization is completely finished the final design is shown in the graphic panel
of the GUI again. Density, stress and deformed configuration plots are available for reviewing. The
software is then able to export the results as well, however only in VTK format for post-processing with
ParaView [41]. Before the result can be used by a CAD program it therefore first has to be converted
in another external program to for example .STL format.
The source code of Toptimiz3D has been made available on GitLab (https://gitlab.com/e-aranda/
topt-mfem#ipopt), and although it seemed a promising platform for this thesis, testing and installing
was more complicated than expected. First of all, Linux was installed, followed by the installation of
Toptimiz3D. However, themanual provided onGitLab wasmissing a lot of crucial installation information
and lacked clear and user-friendly instructions. Moreover, the installation did not seem very robust as
different errors kept popping up.

After finishing the installation however, the program could be tried out further and compared with
the more simple MATLAB code approach. For the same amount of design variables, an optimization
run in Toptimiz3D was about 10 times faster than the top3D125 code in MATLAB. However, its biggest

https://gitlab.com/e-aranda/topt-mfem#ipopt
https://gitlab.com/e-aranda/topt-mfem#ipopt


2.5. Software Choice 13

downsides turned out to be editability and a complicated workflow. Even though the GUI provided was
made with the wxPython GUI toolkit, editing the layout of the GUI would require so many changes at
the basis, that it would probably be easier to build a new GUI from scratch. Especially with limited
experience in Python and having the difficulties during the installation in mind, this is not the most
user-friendly environment to build, edit or share a tool. Therefore, it is very probable that a lot of
implementation time will be needed to edit the existing tool which leaves less time for developing new
functionalities. Besides that, the fact that for both meshing and post-processing an external program
has to be used next to Toptimiz3D when working with an .STL file as input and output format, makes
the workflow more cumbersome as well. It has the preference to provide all these functionalities in one
tool, to make the workflow as user-friendly as possible.

2.5.3. MATLAB
Therefore, the approach of using the top3D125 [39] code as a basis in MATLAB to build a tool from
scratch, was also considered more seriously. This code is a simple 3D compliance minimization algo-
rithm using the SIMP method, which follows the same steps as shown in Figure 2.1. Together with its
predecessors, the 99-line code [29] and the 88-line code [42], there is moreover a lot of documentation
on how the individual pieces of code in the algorithm work or can be extended. Starting from scratch
to build a GUI was first considered less favorable. However, this would also allow to start at an easy
level and progress in complexity of the tool during the project. Compared to dealing with complete and
complex GUI right from the start with less documentation available, this is probably more efficient.

To design a tool, MATLAB has an app development environment called ”App Designer”, which pro-
vides a user-friendly graphical interface. This drag-and-drop interface allows the creation of a visual
representation of the tool’s functionality, which can help to quickly iterate on the design and make
changes as needed. Matlab App Designer includes a large number of pre-built components and li-
braries that can be used to add functionalities to the tool. These components range from basic buttons
and sliders to more advanced visualization tools and data analysis functions. This can save time and
effort in building the tool’s functionalities, and helps to ensure that the tool becomes robust and reliable.
Besides that, MATLAB is a widely used tool for scientific computing, and has a large community of users
and developers who have created lots of resources and documentation for both the programming lan-
guage, and the App Designer environment. When working under time constraints, this can make it
easier and faster to develop a tool. The fact that MATLAB is used widely in the scientific community
also improves the conditions for sharing or distributing the tool. Using Matlab App Designer ensures
that it runs correctly on other systems, is therefore easily accessible and can be used to its full potential,
in contrast to the complicated, timely and not robust installation of for example Toptimiz3D on Linux. On
a more personal note, the exisiting familiarity with MATLAB also lowers learning and implementation
time which leaves more time for the actual development of new functionalities in a tool.

The top3D125 code only provides simple compliance minimization functionalities, and is quite a bit
slower in solving time compared to Toptimiz3D. However, when using simple parts and coarse geome-
tries as is the intended functionality of this tool in the early design stages, this does not outweigh the
advantages of using MATLAB as the development platform for the tool. Moreover, MATLAB has the
ability to both import and export .STL files, and generate meshes without needing any other external
software. This makes it possible to provide all these functionalities within the tool when using MATLAB,
which makes the workflow a lot more user-friendly than if Toptimiz3D were to be used together with
multiple external programs. As explained in Section 2.1, a user-friendly workflow is important as it
makes it more likely that a tool will actually be implemented by designers and have a positive impact
on the design process.

Altogether, it was therefore decided to use MATLAB and its App Designer environment as the main
platform in this this thesis for the creation of a new tool, from scratch. In this tool, the top3D125 code
[39] forms the basis for solving compliance minimization problems.



3
TOP-GD tool

3.1. Introduction and Requirements
As was explained in the introduction and substantiated in the Literature Review, a new approach is
proposed using an auxiliary Topology Optimization based Generative Design tool in the early stages
of the design process. This tool should enable the quick exploration of multiple design solutions, and
study the effect of boundary conditions and numerical settings. This can be accomplished by imple-
menting a batch-run setup that varies several chosen parameters through a user-friendly GUI, rather
than having to manually run several optimizations consecutively or make use of demanding AI-based
calculations. This can help give direction earlier on, and give insight in trade-offs between multiple
objectives. Potentially, this has a large positive impact on the design performance and experience. In
order to evaluate this potential in an experiment, a robust and working product has to be tested, which
emphasizes the importance of spending quite some time set out for this thesis on the development of
the TOP-GD tool and implementing the proposed functionalities. Moreover, the tool should be practical,
simple and user-friendly, while still being able to deal with realistic structural problems. A user should
be able to setup and edit a problem in the tool in an easy and quick manner, and an exploration run
should not take too long. This makes it more likely that the tool will get adopted by users. Therefore,
requirements for the functionalities have been set up prior to the development of the TOP-GD tool,
which are summarized below. The tool should be able to:

• import and export 3D .STL geometry files
• enable a simple setup process with a GUI
• deal with multiple load cases
• solve compliance minimization problems
• give stress information
• evaluate multiple material options
• evaluate ranges of input parameters
• generate a clear overview of the results

With these requirements and the important user-friendliness aspect in mind, a Topology Optimization
based Generative Design (TOP-GD) tool was developed in MATLAB App Designer. A simple TO script
formed the starting point for the tool, adding more functionalities step by step. The following section
will describe its development process and present the final GUI of this tool.

3.2. Development Process TOP-GD tool
The starting point for the development process was the compact 3D extension of the compliance
topology optimization code written in MATLAB by Ferrari and Sigmund in 2020, top3D125 [39]. This
code is a function containing 125 lines, and is a successor of the well known 99-line [29] and 88-
line [42] MATLAB codes. The complete MATLAB code can be downloaded from the website https:

14

https://www.topopt.mek.dtu.dk/apps-and-software
https://www.topopt.mek.dtu.dk/apps-and-software


3.2. Development Process TOP-GD tool 15

//www.topopt.mek.dtu.dk/apps-and-software. A schematic overview of the working principles of
the top3D125 code in MATLAB is shown in Figure 3.1.

Figure 3.1: Schematic Overview top3D125 in MATLAB

In the top3D125 code, the design domain is simplified to a rectangular grid that is discretized by cubic
finite elements [29, 39]. This keeps the numbering of elements and their corner nodes relatively simple,
but also puts a limit on the shape of the input domain. The top3D125 function can be called with
one line in the Command Window, while giving some variables as input. Inside the function, more
input variables are provided hard coded, to set up the rest of the structural problem. Constraints and
loads are defined by selecting nodes and the corresponding Degrees of Freedom (DoF) in the targeted
direction by number. Besides that, passive void or solid areas can be defined by the targeted element
numbers. Even though the numbering system is straight forward, it takes quite some time to setup a
new problem. The standard version of the code performs a single compliance minimization run, with a
single load case. It shows a simple density plot of the solution while running, and prints the values of
the compliance and volume of the part in each iteration, next to some optimization settings.

Figure 3.2: Schematic Overview working principles TOP-GD tool

https://www.topopt.mek.dtu.dk/apps-and-software
https://www.topopt.mek.dtu.dk/apps-and-software


3.2. Development Process TOP-GD tool 16

To satisfy all the requirements defined in Section 3.1 and implement a more user-friendly workflow, the
top3D125 code was extended and complemented with a GUI. This extensive development process
took around 4 months, resulting in the TOP-GD tool. The complete source code of the TOP-GD tool
can be found in appendix A, totalling around 2300 lines. A schematic overview of its working principles
and functionalities is shown in Figure 3.2.

The TOP-GD tool is an app created in MATLAB App Designer, which contains a GUI and has
structured functions running in the background to provide all functionalities. In the GUI, the problem can
be set up using a visual 3D representation of the design domain, and several components to control all
input variables. Once the problem is set up, all information is send to the topology optimization function,
which performs a batch run of all given combinations of input settings and material parameters. This
function then sends the results back to the GUI of the TOP-GD tool, where all solutions are displayed
and can be compared by the user.

The development approach to create the TOP-GD tool can be roughly divided in 4 steps; Extending
the top3D125 code, Translation to GUI controlled input variables, Moving from a single to multiple solu-
tions, and Optimizing the presentation of results. To keep the description of the code and development
process within limits, a summary of these steps is presented below.

3.2.1. Extending the top3D125 Code
As was explained, the starting point for the development process is the top3D125 code [39]. Here
the design domain is simplified to a discretized rectangular grid, which enables a simple numbering
system for elements end their corner nodes. This numbering system is used to define all hard-coded
input variables, such as the loads and constraints. A convenient feature of the code is that it is able to
set elements to passive ”Void” elements or passive ”Solid” elements as well. All elements are initialized
with a density value of 0. Defining an element as part of the passive void or passive solid set, excludes
them from the active design variables. This means that the density values of the elements in the passive
void set are kept at 0 throughout the optimization, and the density values of the elements in the passive
solid set are set to 1. After an .STL file is imported using the MATLAB function stlread [43], this feature
of passive elements can be utilized together with a voxelization approach to enable the optimization
of arbitrarily shaped design domains. During voxelization, a continuous geometric object such as an
.STL file or a 3D triangular mesh is converted to a discretized voxel-based representation [44]. This
is schematically illustrated in Figure 3.3. A rectangular design domain that fits around the complete
geometry is defined, and divided into small cubic ”voxels” or elements. All elements in this larger
rectangular domain that do not correspond to the freely shaped continuous geometry, are identified with
the VOXELISE.m function [45], and consequently set to passive void elements that do not participate
in the optimization. The finer the voxel grid is set up, the better the voxelized model will approximate
the geometry in the .STL file, but the more demanding the TO runs will be. Since the goal for the TOP-
GD was to explore multiple solutions quickly using coarse geometries, the voxelization approach is an
effective way to enable arbitrary design domain optimizations in combination with the top3D125 code.

Figure 3.3: Voxelization of an arbitrarily shaped 3D geometry [46] (edited)

Furthermore, the code was extended to be able to handle multiple load cases, by extending the force
and displacement vectors to multiple column vectors and changing the calculation of the objective
function to the sum of the calculated compliances for each load case. This was done with the help of
the instructions given in the 88-line code paper [42] and applying those with some adjustments to the
newer top3D125 code. The number of columns of the force and displacement vectors will be coupled
to the number of load cases defined in the GUI in the next development step.



3.2. Development Process TOP-GD tool 17

In order to give the user information on the stresses in the part, the code was also combined with a
part of the 146-line stress-based topology optimization code written by Deng et al. [47]. This is used to
calculate the Von Mises stress in each element of the topology, and find the maximum value. To make
sure these calculations do not slow down the optimization too much, the Von Mises stress distribution
is only calculated for the last iteration of the compliance optimization run, purely informative and not
providing stress constraint functionality. Still, this enables the user to check the maximum Von Mises
stress value in the solution, and take this into account when picking a solution.

3.2.2. Translation to GUI Controlled Input Variables
As was explained above and can be seen in Figure 3.1, the top3D125 code is a function that has
two types of input variables. Only a few basic settings are given as input variables to the function
in the command line, e.g. the amount of elements of the design domain in x, y and z direction, the
volume fraction and the filter radius. The rest of the problem definition and settings, such as the loads,
constraints or material parameters are provided hard-coded inside the function. This is however not
user-friendly at all, since the user has to go through the code manually, and figure out the numbering
system of elements and nodes in 3D. Furthermore, every time a new problem is to be investigated, the
code has to be edited. Since one of the main attention points for the TOP-GD tool is user-friendliness,
the TO code is therefore altered to be usable with a newly created GUI to control all settings. In
order to achieve this, all the interesting hard-coded settings are defined as input parameters for the TO
function, just like the command line input variables. Next, each of these input variables were coupled
to a controllable input element in the GUI. In this way, the setup of a design problem is made possible
entirely from the GUI in a visual and user-friendly way, without needing to have a single look at the TO
code running in the background. The TOP-GD GUI consists of multiple ’tabs’, the first one being the
”Setup” tab shown in Figure 3.4, where all needed input variables are defined to run an optimization.

Figure 3.4: Overview of all elements on the Home Screen ”Setup” Tab of the TOP-GD tool

The easiest input parameters to define are controlled by so called ’spinners’ in the GUI, shown in the
”Input Parameters” section. These are simple numerical value boxes, of which the value can be edited
by the user. These values will be directly used as input variables for the TO function once the problem
is set up. The input variables defined here are the Maximum iterations per run, the volume fraction



3.2. Development Process TOP-GD tool 18

and the filter radius. Besides that, the material parameters that should be considered for the part are
defined by the user with more spinners for the Young’s modulus, density value and Poisson ratio of the
material, which are directly used as input variables as well.

To define the constraints, forces, passive solid and void elements as input variables, the workflow
involves a fewmore steps. First of all, a geometry is imported as an .STL file with the ”Import Geometry”
button. This opens the file explorer for the user to select an .STL file. This file is imported and shown in
the ”Setup Node View”, where the geometry can be rotated and moved using MATLAB’s 3D navigation
features. In the Nodes section, the user can subsequently press the ”Show Nodes” button, which plots
a rectangular grid of nodes, representing the elements of the mesh, over the geometry. The mesh
refinement slider can be used to control the amount of elements that are used for the optimization.
In case a non rectangularly shaped geometry is used, the ”Voxelize” button can be pressed to set
redundant areas to passive void elements, as was explained in the previous section. This will also
visually remove the corresponding nodes in the ”Setup Node View”. The visual representation of all
active nodes can now be used to define the rest of the problem, using MATLAB’s ”brush” functionality.
Thismakes the user able to select nodes in the ”Setup Node View”, and defining them as constraints and
forces. This is done by extracting the targeted nodes, defining which direction should be constrained
or loaded, and clicking the ”Add Constraint” or ”Add Force” buttons. How this works in the back-end
is that the selected nodes in the figure are coupled to the node numbering system of the rectangular
grid, and the targeted DoF’s are added to an array. These arrays are used as input variables to the TO
function once the complete problem is set up. To define solid or void regions, nodes can be selected and
extracted in the same way as for forces and constraints. The only difference with selecting individual
nodes for constraints or forces, is that all 8 corner nodes of an element should be selected in order to
target it completely. If that is the case, the corresponding element number will be added to either the
passive void or solid array. By working with arrays in this way, multiple constraints, loads, passive void
or solid elements can be added after each other, or simultaneously.

To define multiple load cases, an extra load cases spinner is added to the Force setup area in the
lower left corner of the GUI. If the value in this input box is for example set to 2, an extra load cases
tab is created which contains another independent force list. Each tab corresponds to one load case,
and clicking on them will show only that load case in the ”Setup Node View” figure. This value is also
used as input to change the number of columns of the force and displacement vectors in the back-end
of the tool, enabling the combined objective calculations.

Every time a constraint, load, solid or passive region is added, an item is added to the corresponding
list of these sections in the lower left part of the GUI. By clicking on the name of an item, the nodes
that are linked with it are highlighted in the ”Setup Node View”. In this way it is clear to the users what
constraints, loads, solid or passive regions have been added so far and where they are located. Any
of these items can be selected and removed again as well, which also removes the node or element
numbers from the corresponding input variable array.

When the user has completed the problem setup by adding at least one constraint and one force,
and filled in the optimization settings and material parameters, pressing the ”Run” button will start the
TO code. All values and arrays that have been defined with the help of the GUI as described above,
are transferred as input variables to the TO function in the background.

3.2.3. Moving from Single to Multiple Solutions
After enabling the complete setup of a topology optimization problem in the new TOP-GD GUI, a single
optimization could be ran from there, which was already a user-friendly Basic TO tool. For the new
approach however, the goal was to explore multiple solutions and the influence of optimization settings
automatically, without the need for the user to repeat the same setup process. Therefore, the GUI was
extended in such a way that the user can give a range of values to be explored for certain optimization
settings, instead of providing just one value. This was done for the volume fraction and the filter radius,
because these parameters influence the geometries and performance values of the designs signifi-
cantly. Varying this therefore contributes to a diverse set of solutions, and increases the understanding
of the effect of these parameters on the results. In the ”Input Parameter” section in the top left part of
the GUI (see Figure 3.4), extra spinners were added to specify the minimum and maximum values for
the volume fraction and filter radius to be explored. Moreover, a step size value was added for both of
these settings to control the level of detail the range is explored with, and the time necessary for the



3.2. Development Process TOP-GD tool 19

combined runs.
Regarding the material section, the exploration of multiple materials was also enabled. Different

material parameters like the Young’s modulus and density strongly influence the compliance and mass
values of the output solutions, and are therefore interesting to explore for multi-objective problems.
Instead of giving the material parameters of one material as input variables, these values are therefore
added to a material array and shown in the materials table in the lower right area of the setup tab of the
GUI, shown in Figure 3.4. To this array, the material parameters of other materials can optionally be
added as well, which will be shown in a new row in the materials table. To make the workflow easier for
the user, some presets have been defined for common used materials like Structural Steel, Aluminium
and a Titanium alloy. These can be selected from a drop down menu, after which the corresponding
material parameters appear in the spinner boxes. These can first be edited, or added directly to the
material array by pressing the ”Add Material” button. A material can be removed from the material array
again by selecting the corresponding row in the table and pressing the ”Remove Material” button. All
parameters of the materials present in the material array are used as input variables for the TO function
once the ”Run” button is pressed.

With these ranges of input settings and different materials, multiple nested for loops were build in the
back-end of the TOP-GD tool to explore all combinations of settings. This lets the TOP-GD tool quickly
provide a range of solutions, faster than a user could edit the settings and repeatedly run the single TO
tool. All these solutions are plotted one by one while the tool is running on the Density Plots tab, shown
in Figure 3.5. In the title of each plot, information is given on their weight, compliance, material and
optimization settings used. This shows to the user live how the exploration run with different settings
is changing the solutions, and makes the waiting time while the TOP-GD tool is running useful and
insightful. However, next to just plotting all density plots of the solutions side by side, there was still
potential to generate a better overview of the influence of different settings and boundary conditions
and compare the solutions.

Figure 3.5: Overview of the ”Density Plots” Tab of the TOP-GD tool

3.2.4. Optimizing the Presentation of Results
With different solutions as data points, the next challenge was to present the output of the explorative
TOP-GD run in a user-friendly way. As was explained, it is of added value to show the trade-off be-



3.2. Development Process TOP-GD tool 20

tween multiple objectives because it helps the designer to understand the essence of a design problem,
and make well-founded decisions. For the compliance minimization problems solved in the TOP-GD
tool, the interesting objectives to look at are the mass and compliance values of each solution. To vi-
sualise the trade-off between these objectives, another tab was therefore created in the GUI (shown in
Figure 3.6) with a Compliance-Mass graph showing every solution plotted as a data point. This makes
it easier to compare the performances of the solutions in terms of each of these objectives. Different
colors are used in the Compliance-Mass Graph for the data points corresponding to each material, to
highlight their influence on the solutions’ performance.

To further inspect a solution, the user can select a data point which will show all the corresponding
performance values and settings used in a table below the graph: the Compliance, Mass and Maximum
Von Mises Stress values, and the Volume Fraction, the Filter Radius and the Material. Besides that,
the solution’s geometrical features will be displayed next to the graph, twice (see Figure 3.6). In the
top right figure, extra information is added to the density plot by means of a coloring scheme. This
coloring scheme corresponds to the compliance sensitivity values calculated in the TO code, and have
been transformed in such a way that they could be visualised. Consequently, useful extra information
is provided to the user, because critical areas of the solution with a higher compliance sensitivity (see
Section 2.2.2) are clearly highlighted. The Von Mises Stress values calculated in the last iteration
of the optimization were transformed in the same way as the compliance sensitivities, resulting in the
lower right density plot. Here, the coloring scheme represents the Von Mises stress per element, giving
information on the distribution of stress in the solution and visualizing possible stress concentrations.

Figure 3.6: Overview of the ”Compliance-Mass Graph” Tab of the TOP-GD tool

Both the coloring schemes showing the compliance sensitivities and Von Mises stress per element,
moreover provide the user with extra information on for example the boundary conditions or design
space. If one specific area of the design space turns out to be critical in most solutions, the designer
can decide to locally enlarge the design space there, or move the force application location if that is
possible. This is usually a more effective measure to improve the efficiency of the part, compared to
finding the optimum within worse boundary conditions. Because the TOP-GD tool is quick and easy to
use and is meant for the early design stages, it is still possible to make design changes and very useful
to have this kind of information early on in the design process.



3.2. Development Process TOP-GD tool 21

After the Density Plots tab and the Compliance-Mass Graph tab, another tab was added to the GUI
to help the user in having more overview. This ”Data Table Overview” tab, depicted in Figure 3.7, is
a table overview where each row represents one of the solutions. The different columns contain both
the input settings information, and the resulting compliance, mass and maximum Von Mises Stress
present in the geometry. What makes this table interesting however, is that each column can be sorted
with a simple mouse click. This shows all solutions instantly in ranked order, from e.g. stiffest to
most compliant, or from the lowest mass to the highest mass. Because all input settings are visible
simultaneously, this data table overview can help to discover patterns between all solutions, or improve
the understanding of the effect of the different input settings. Each row in the table can be selected to
show both a compliance sensitivity plot and a Von Mises Stress plot of the corresponding solution next
to the table again.

Figure 3.7: Overview of the ”Data Table Overview” Tab of the TOP-GD tool

When the user is done exploring the different solutions and has picked one to continue working with,
they have the possibility to export that solution in .STL format. Both on the Compliance-Mass Graph
and Data Table Overview tab shown in Figure 3.6 and Figure 3.7 respectively, a solution can be selected
and exported using the ”Export Selected Solution as .STL” button. This opens the file explorer of the
computer to save the solution.

3.2.5. Extra Added Functionalities
Besides the functionalities described in the previous sections that already satisfy all the requirements
mentioned in Section 3.1, some small extra functionalities were added to improve the user experience
while using the TOP-GD tool. For example, it was made possible to save and import a setup file, con-
taining all the necessary information regarding a geometry, loads, constraints, solid and void regions,
materials and input parameter settings. This enables a user to continue with a setup at a later time,
without needing to repeat the setup process after the TOP-GD app has been closed. Next to that, a
reset button was added to start with a fresh problem without needing to close and reopen the TOP-GD
tool or removing all loads and constraints one by one.

To speed up the process of adding multiple forces or load cases, it is also possible to import an
Excel into the TOP-GD tool. In this Excel worksheet, the load case, attachment location, magnitude
and direction of each force should be specified. Moreover, it is possible to define the force attachment



3.2. Development Process TOP-GD tool 22

location as a line, circle or sphere with a variable radius. Especially when working with various load
cases and forces, this feature is more efficient compared to manually selecting nodes and specifying
a direction and magnitude for each force. Besides that, this feature makes it possible to select nodes
internally in the geometry, which is harder to do with the brush functionality in the 3D ”Setup Node View”
provided by MATLAB.

A complete video tutorial has been made to show the TOP-GD tool and explain the workflow for users,
which is used for the experiment described in the next chapter. This video can be found on YouTube
with the following link: https://youtu.be/UauV1bRjx8M

https://youtu.be/UauV1bRjx8M


4
Experiment Methods

After the creation of the TOP-GD tool, its influence on the design performance and experience had
to be tested and this is therefore the focus of the experiment performed for this thesis. Like was
explained in the introduction, it is interesting to do a comparison study of the design process with
different approaches to be able to review this. Three approaches of the design process are therefore
formulated to compare within the experiment: designing manually without any aid of computational
design techniques, using a simple ’single run’ TO tool to design, and designing with the new topology
optimization based generative design TOP-GD tool. The main research question of this thesis therefore
was: ”What is the effect of using a Topology Optimization based Generative Design tool or a simple
Topology Optimization tool compared to manual design on the design performance and experience?”

4.1. Experimental design
In order to compare these three approaches, a within-subject experiment has been set up with multiple
design assignments of similar complexity to study the effect of the different approaches on the design
performance and experience.

Independent Variable: Design approach
The independent variable is therefore the approach used to design. The three different approaches
are defined below:

1. To design manually, the participants were only given pen and paper, and no access to any additional
aid or computer.

2. For the Basic ’single run’ TO tool, a simpler earlier version of the tool was used in MATLAB, with
a GUI that was as similar to the advanced app as possible. The GUI of this simple app is shown in
Figure 4.1 below. This GUI only has one screen, showing the same setup sections as the setup tab
of the TOP-GD tool. The workflow for the setup is exactly the same as in the TOP-GD tool, and it has
the same functionalities in terms of for example multi-load case problems and importing or exporting
.STL files. The only difference is that under the ”Input Parameters” section, no ranges can be set for
different parameters, but only one value can be given. Moreover, instead of adding multiple materials
that need to be evaluated in a separate material section, the material parameters of one type of mate-
rial can be entered under the ”Input Parameters” section. When hitting the ”Run” button, a single TO
run is performed, and the result is directly plotted in the lower right corner of the screen. The coloring
scheme representing the sensitivity information has been left out and only the final volume, mass and
compliance values are shown in the text area. Another run can then be performed by adjusting the input
parameters or the constraints, forces, void and solid regions, which overwrites the resulting geometry
shown.

3. For the last Topology Optimization based Generative Design approach, the TOP-GD tool is used
with all functionalities as described in the previous chapter.

23



4.1. Experimental design 24

Figure 4.1: Simple version of TO App with single-run functionalities

Participants
The participants for this experiment are all Mechanical and Structural Engineers, working at the Dutch
solar car company Lightyear. They therefore have general engineering knowledge, and experience
with designing structural parts. However, not all of them are experienced with Topology Optimization
or Generative Design and therefore need a basic instruction to partake in the experiment.

This thesis was originally started in cooperation with Lightyear, and the experiments were planned to
be held at their facilities in Helmond. However, just before the experiment sessions were executed,
Lightyear was declared bankrupt in the beginning of February 2023. The originally 15 volunteers for
the experiment were therefore unfortunately reduced to only 3 engineers willing and able to come to
the TU Delft to participate in the experiment set out for this thesis. It was considered to try to find
more participants at other engineering companies, but since this would mean more delay in the thesis
project and would provide a less homogeneous set of participants, it was decided in consultation with
the supervisors to continue with the experiment in this smaller setting.

Design Task
Three different design assignments of similar complexity were formulated for this experiment. One of
the assignments was to design a structural arm, another was about designing a bracket and the third
assignment was to design a kitchen step. All three assignments including instructions are included in
Appendix B, exactly as they were given during the experiment. The participants were given 15 minutes
to finish each of the assignments, and come up with a solution that was both realistic and as efficient
as possible.

Dependent variables
The effect of the different approaches on the design performance and experience can be measured in
multiple ways. First of all, the performance of the parts can be measured with different performance
measures. Of the designed parts, therefore themass and compliance are taken as dependent variables
that can be measured and compared.



4.2. Materials and Equipment 25

Besides the part performance, survey questions are asked to asses the subjective design experi-
ence each participant had with the different design approaches, and be able to compare them. The
answers to these questions are for example used to asses the user-friendliness of both the tools.

And lastly, Eye-tracking is used to evaluate and compare the two digital tools in the Basic TO
approach and the TOP-GD approach. Eye-tracking is a method used to record and analyze where
individuals focus their visual attention. This technique has been used in a variety of research fields,
including human-computer interaction (HCI) [48], to understand how users interact with software tools.
Eye-tracking data can provide several insights into how individuals use software tools. For example, it
can reveal the areas of the tool that users focus on the most, indicating which features are most salient
and attracting the user’s attention. Besides that, eye-tracking data can be used to identify where users
experience difficulties or challenges when using the tool. This can be indicated by prolonged fixation
times or saccades, which suggest that users are struggling to locate or process information.

4.2. Materials and Equipment
For manual design, only pen and paper were used to execute the design assignment.
Both the Basic TO tool and the TOP-GD tool were installed and evaluated on the ROG Zephyrus S
GX531. This is a 64-bit laptop with Windows 10, Intel core i7 processor and 16 GB of RAM [49]. For
the installation, first MATLAB and the necessary toolboxes were installed on the laptop, after which
both tools immediately ran smoothly and could be used for the experiments.
The Eye-tracking part of the experiment has been done with the EyeLink Portable Duo [50], shown
below in Figure 4.2:

Figure 4.2: SR Research’ EyeLink Portable Duo Figure 4.3: Remote Head Tracking Stickers

When a participant puts a Head Tracking Sticker (shown on the lower left corner of the box in Figure 4.3)
on their forehead, this device is able to track both their eyes and pupils after calibration. This allows the
collection of gaze data on the screen of the laptop used. The complete setup of the EyeLink Portable
Duo mounted on top of the ROG Zephyrus laptop as was used in the experiment is shown in Figure 4.4.



4.3. Procedure 26

Figure 4.4: Front View Experiment Setup

The software used together with the equipment for Eye-tracking is WebLink [51]. In this software the
tracker can be calibrated and screen recordings can be started in order to start data collection sessions
during the design tasks with the Basic TO and TOP-GD tool in the experiment. Once the experiments
have been finished, WebLink can be used to export the data in Excel format to further process it in
MATLAB.

4.3. Procedure
A test experiment was conducted twice, with both supervisors separately. The feedback given dur-
ing these test experiments was processed before performing the final experiments. The steps of the
procedure followed during each experiment are enumerated chronologically below:

1. (5 min) Explanation of what the experiment will entail
2. (5 min) Survey Part 0, basic information on experience participant in Google Forms
3. (9 min) Watch Video: Crash Course Basics Topology Optimization
4. (15 min) Design task 1: Manual design assignment with pen and paper
5. (5 min) Survey Part 1 about Manual Designing in Google Forms
6. (9 min) Watch Video: Instruction Basic Topology Optimization tool
7. (2 min) Set up and calibrate Eye-tracker
8. (15 min) Design task 2: Design assignment with Basic TO tool
9. (5 min) Survey Part 2 about designing with the Basic TO app in Google Forms

10. (7 min) Watch Video: Instruction TOP-GD tool
11. (2 min) Set up and calibrate Eye-tracker
12. (15 min) Design task 3: Design assignment with TOP-GD tool
13. (5 min) Survey Part 3 about designing with the TOP-GD tool in Google Forms

Before the start of the experiment, a short introduction and explanation of what to expect during the
experiment was given to each participant. A general survey (part 0) containing questions about their
engineering background and experience on Topology Optimization was given on a laptop using Google
Forms. The complete survey can be found in Appendix C. Because some basic knowledge on Topology
Optimization is necessary to be able to usefully use both the basic TO tool and the TOP-GD tool, a
video was recorded explaining the basics of TO. Each participant was shown this same video, to make
sure all participants had the same background information regardless of their experience with TO. The
introduction video can be found on YouTube with this link: https://youtu.be/hmw3SqCsua0.
At this point the first manual design task was given to the participant, with only the availability of pen and
paper. After 15 minutes, the next part of the survey was given with questions about their experience
while manually designing.

https://youtu.be/hmw3SqCsua0


4.3. Procedure 27

Another video was made introducing the participants to the Basic TO tool made for this experiment.
The most important functionalities needed to set up a structural problem and run an optimization are
shown in this video, making them able to use the tool on their own for the next design task. This video
introducing the Basic TO tool can be found on YouTube with this link: https://youtu.be/FpK0-JoCjkI.
After the Eye-tracker had been activated and calibrated on the participant, the second design assign-
ment was given with the Basic Tool. Their experience of designing with the Basic Tool was reviewed in
the next survey part.

Finally, a third video was shown to the participants introducing the TOP-GD tool and the extra func-
tionalities available. This video can be found on YouTube with the following link: https://youtu.be/
UauV1bRjx8M. The third assignment was then performed followed by the last survey questions to review
their design experience with the TOP-GD tool.

The three assignments (shown in Appendix B) were alternated among the three participants to minimize
the influence of differences within the assignments on the results. This was done in the following way:

Task #: 1: Design Manually 2: Design with basic TO tool 3: Design with TOP-GD tool
Participant 1 Assignment A Assignment B Assignment C
Participant 2 Assignment B Assignment C Assignment A
Participant 3 Assignment C Assignment A Assignment B

Table 4.1: Order of Assignments given per Participant and per Design Approach

The use of repetitions using more assignments per participant was considered, but since the total
experiment already takes up to 2 hours per participant it was decided to do the experiment with just
these three assignments.

Because of the many instructions and tutorials needed in the experiment, it was deemed more
logical to stick to this chronological order of the design tasks, increasing in complexity from designing
manually to the Basic TO tool and ending with the TOP-GD tool. Even though there might be a slight
learning curve effect in the results, it does not make sense to do the experiment in another order.
This would mean already seeing all introduction videos right at the start of the experiment, which totals
about a half an hour of information. This takes a lot of the attention span of the participants and can also
influence their experience in for example the Basic TO app, by knowing there are extra functionalities
that are not available for use yet. Therefore, starting simple and increasing in complexity and given
information during the experiment was chosen as approach.

https://youtu.be/FpK0-JoCjkI
https://youtu.be/UauV1bRjx8M
https://youtu.be/UauV1bRjx8M


5
Experiment Results

The experiment was conducted at the TU Delft and only 3 participants took part in the final study, due
to Lightyear’s bankruptcy. They were all Dutch, male and under 35. All participants completed the
experiment successfully, generating at least one solution for each design task within 15 minutes. As
was explained in Chapter 4, the effect of the different approaches on the design performance and
experience is measured in multiple ways. The geometries of the designed parts are presented in the
next section, together with the compliance and mass values of the two solutions generated in the Basic
TO and TOP-GD app. Furthermore, a survey was conducted to assess the design experience of the
participants, of which the results are presented in Section 5.2. Lastly, the Basic TO and TOP-GD tool
have been tested while collecting eye-tracking data. This data is presented in Section 5.3.

5.1. Part Performance Results
An overview of the designed and selected solutions for assignment A (see Appendix B) can be seen in
Figure 5.1. The manually designed solution is still rectangularly shaped on the outside like the design
space, but with two internal crossing members. The solutions generated with the Basic TO and TOP-
GD tool are shaped more like a parallelogram, and have a plated but hollow section near the fixed ring
on the top right corner. The TOP-GD solution has a more open structure compared to the Basic TO
solution. Moreover, the Basic TO solution shows some disconnected areas around the outer rings, due
to a coarse mesh choice.

Figure 5.1: Results for Assignment A for each approach

28



5.1. Part Performance Results 29

An overview of the designed and selected solutions for assignment B (see Appendix B) can be seen
in Figure 5.2. The manually designed solution is similar but simpler to the digitally designed solutions,
with only one crossing member. Again, the TOP-GD solution has a more open structure compared to
the Basic TO solution in the middle part of the geometry.

Figure 5.2: Results for Assignment B for each approach

An overview of the designed and selected solutions for assignment C (see Appendix B) can be seen in
Figure 5.3. In this case, the manually designed solution is more complex with many internal connecting
bars. The Basic TO solution has two organically shaped legs both on the front and backside. The TOP-
GD solution has two legs supporting the backside, and three legs in the front.

Figure 5.3: Results for Assignment C for each approach

The compliance and mass values for the solutions generated with the Basic TO and TOP-GD tool are
given in Table 5.1. The lowest compliance and mass values are highlighted in green per assignment.
Moreover, the compliance and mass values have been combined in a total performance score. For a
simple tensile bar, half the compliance can be achieved with twice the mass. Therefore, the product
of the compliance and mass values is an indication of optimality, where a lower score is better. For
assignment A, both the compliance and mass values are lower for the TOP-GD solution, resulting in
the lowest product score as well. For both assignment B & C, one solution has a lower mass, and
the other a lower compliance value. The Mass*Compliance score is best for the Basic TO tool in
Assignment B, and the TOP-GD tool scores better for assignment C. A two-tailed paired T-test shows
no significant difference for the Compliance*Mass scores between the Basic TO and TOP-GD tools for
the three assignments, with a p-value of 0.4226 far above the 5% significance level.



5.2. Survey Results 30

Assignment Tool used Compliance (J) Mass (kg) Compliance*Mass (J*kg)
A Basic TO 1.786 E+13 43.96 7.851 E+14
A TOP-GD 1260 12.39 1.561 E+4
B Basic TO 54.99 0.077 4.234
B TOP-GD 342.3 0.022 7.531
C Basic TO 208.1 12.25 2549
C TOP-GD 148.4 14.49 2150

Table 5.1: Objective Values of the Solutions Generated with the Basic TO and TOP-GD tool in the Experiment

5.2. Survey Results
An overview of the survey questions can be found in Appendix C. In most questions, the participants
were asked to rate the different approaches on certain aspects with a number between 1 and 5. The
results of their answers on those questions have been presented in graphs below. The scores for the
overall experience of each approach in the Design Process, are shown in Figure 5.4 below. The TOP-
GD approach scores best with a mean score of 4.33, followed by the Basic TO approach and lastly the
Manual design approach with a mean score of 3.

Figure 5.4: Overall Experience in Design Process per Approach



5.2. Survey Results 31

Figure 5.5: Confidence Optimal Solution found Figure 5.6: Understanding of Structurally Important Areas

Moreover, after each design assignment the participants were asked how confident they were that they
found the optimal solution for the design problem. The scores per approach are shown in Figure 5.5.
The TOP-GD approach gave the most confidence with a mean score of 4.33, the manual design ap-
proach the least again with a mean score of 3.
The participants were also asked after each design assignment whether they understood what were
structurally the most important areas of the part to be designed. The scores per approach are shown in
Figure 5.6. The Basic TO approach scored slightly better than the TOP-GD tool, mainly because of the
5-point score of 1 participant. Both tools gave a better understanding than when designing manually.

Figure 5.7: Improved Understanding of Design Problems
compared to Manual Design

Figure 5.8: Improved Understanding compared to Basic TO
tool

After the design tasks with the Basic TO tool and the TOP-GD tool, the participants were asked whether
the use of this tool improved their understanding of the design problems, compared to manually design-
ing. The scores of the answers are shown in Figure 5.7. The TOP-GD tool scored the maximum possi-
ble mean score of 5. Also the Basic TO tool considerably improved the participant’s understanding of
the design problems compared to manually designing, with a score of 4.67.

After the last design tasks performed with the TOP-GD tool, the participants were asked whether
they thought the TOP-GD tool approach improved their understanding of Design problems compared to
the Basic TO tool, and whether the TOP-GD app improved their understanding of Topology Optimization
and its settings compared to the Basic TO tool. The scores of the given answers are given in Figure 5.8,
with a mean of 4.33 and 3.67 for each aspect respectively.



5.2. Survey Results 32

Figure 5.9: User Friendliness of Tool Figure 5.10: Overview generated by Tool

Moreover, the participants were asked to rate both the user friendliness of the Basic TO and the TOP-
GD tool, and the Overview generated by each tool. The scores are plotted in Figure 5.9 and Figure 5.10
respectively. The TOP-GD tool was rated slightly more user-friendly than the Basic TO tool, with a mean
score of 4.33 compared to 4. The overview generated by the TOP-GD tool scored a lot higher than the
overview given by the Basic TO tool, with a mean score of 4.33 compared to 2.67.

Lastly, the participants were asked after the design task performed with the Basic TO tool and the
TOP-GD tool, whether they considered the use of that tool in the design process as an improvement.
This directly relates to themain research question. The scores of their answers are shown in Figure 5.11.
Both tools were actually considered an improvement, but the TOP-GD tool scores highest with a mean
score of 4.67 out of 5.

Figure 5.11: Use of tool considered Improvement in the Design Process

Besides the scoring questions, some open questions were asked in the survey as well. For each
approach, the participants were asked to point out its positive and negative aspects, and what could
be improved. For designing manually, the positive aspects that were mentioned are the following:

1. Manually sketching allows for fast iterations
2. As a designer, you really have to think about what is the optimal solution, and why



5.2. Survey Results 33

The negative aspects of manual design mentioned by the participants are:

1. Limitations due to drawing skills in 3D
2. Not knowing where to start
3. The tendency to get ’fixed’ on a certain idea and get tunnel vision
4. Easy to overlook certain options or design directions because the design is based on previous

experience

For the Basic TO tool, the positive aspects mentioned are enumerated below:

1. Harder problems can be tackled compared to manually designing (e.g. with more load cases or
constraints)

2. The use of the app gives more confidence since it is backed with calculations instead of guesses
3. Not limited by drawing skills
4. Clear what needs to be done to setup a problem
5. Easy to change some settings to investigate the influence
6. The 3D handling is very user friendly
7. Node selection is very easy
8. Clear and concise naming of buttons
9. Not too many parameters you have to play with to make it work

The majority of these mentioned positive aspects can be applied to the TOP-GD tool as well, as the
setup of a problem is almost the same. The negative aspects or points for improvement mentioned of
the Basic TO tool are:

1. Not able to change the mesh size without losing the other settings for forces and constraints
2. Voxelise button could be automated
3. 3D space is a bit too small
4. Not able to compare different designs next to each other

The first three negative aspects also hold for the TOP-GD tool, but comparing different designs next to
each other is of course something that has been integrated in the TOP-GD tool.
For the TOP-GD approach in the design process, the positive aspects mentioned are:

1. Much better understanding of influence of input parameters to the final design
2. You will not get tunnel vision on one idea, as by playing around in the tool new solutions arise

(e.g. 3 legs on a stair instead of 2)
3. The tool gives fast feedback on influence of materials and mass on stiffness
4. The tool gives clear feedback on important areas in the design space
5. The Compliance-Mass graph explains a lot and helps to clearly understand the best design prin-

ciples
6. Easy selection of different materials
7. Optimization method can be clearly seen looking at each iteration, which helps to understand how

the tool works and what the important structural features are of the design problem

The negative aspects mentioned or points for improvement of the TOP-GD tool are:

1. The mesh size cannot be changed without needing to repeat the setup of the problem
2. Have the option to select multiple designs and compare the topology next to each other
3. Automatic extraction of nodes when selecting them
4. Have an indication of the selected range of options or amount of runs the tool is going to do (and

how long that will take approximately)

Again, these aspects overlap with the functionalities of the Basic TO tool as well, but contain useful tips
for the improvement of the TOP-GD tool, which will be discussed in the recommendations in Section 7.2.



5.3. Eye-tracking Results 34

5.3. Eye-tracking Results
As was explained in the previous chapter, eye-tracking was used during the experiment to asses and
compare the two digital tools in the Basic TO approach and the TOP-GD approach. A lot of data was
gathered with the the Eye-tracking equipment andWebLink software described in Section 4.2. This data
has been processed and evaluated in MATLAB. Eye movements are typically analyzed with regard to
the gaze location, fixations and saccades. Fixations are moments that the eyes stay in one position,
focusing on a certain point of interest. Saccades are fast ocular movements, generally occurring when
the gaze is reoriented to a new target, between fixations [52].

About 10% of the collected data was discarded due to system failures in tracking the eye position by
the eye tracker. This track loss was linked to blinking and squinting by the participant, or moving of the
body or head outside the trackable range of the Eyelink Portable Duo tracker. Besides that, the gaze
location was sometimes tracked outside the 1920x1080 pixel range of the computer screen displaying
the tools. This data has also been removed from the dataset.

First of all, a heat map could be created for both of the tools, based on the gaze location data collected
during the experiments. The coloring of the heat map shows what spots of the interfaces have been
looked at the most. For the Basic TO tool, the generated heat map showing the gaze location of
all participants combined is shown in Figure 5.12 below. Clear highlights can be seen for the Input
Parameters section, the Mesh Refinement slider, the Setup Node View and the Result view. The
highlighted area in the top middle is attributed to the popup figure MATLAB shows of the evolving
solution while running an optimization. More subtle highlights are visible at the Constraints, Forces, Void
and Solid definition areas. To see the differences in gaze density between the participants, separate
heat maps have been generated for each participant during the Basic TO design assignments, which
can be found in Appendix D.

Figure 5.12: Heat Map Gaze Location Basic TO tool

A heat map summarizing the gaze location of all participants combined for the TOP-GD tool is also
generated. However, this tool consists of multiple tabs that the participants have been switching be-
tween. Therefore, the gaze heat map has been plotted over the two most used tabs, the Setup tab in
Figure 5.13 and the Compliance-Mass Graph tab in Figure 5.14. On the Setup tab, highlighted areas
can be attributed to the Input Parameters section, the Mesh Refinement slider and the Setup Node
View again. On the Compliance-Mass Graph tab, more subtle highlights are visible around the data



5.3. Eye-tracking Results 35

points in the Compliance-Mass Graph, and the sensitivity and Von Mises stress plots of the selected
solution shown on the right top and bottom of the screen. The highlighted area in the top middle again
corresponds to the location of the popup figures MATLAB shows of the evolving solutions while running
each optimization. To see the differences in gaze density between the participants, separate heat maps
have been generated for each participant during the TOP-GD design assignments, which can be found
in Appendix D.

Figure 5.13: Heat Map Gaze Location TOP-GD tool setup tab

Figure 5.14: Heat Map Gaze Location TOP-GD tool Compliance-Mass Graph tab



5.3. Eye-tracking Results 36

Regarding eye fixations, especially their duration is interesting to look at. A box plot containing the data
of all fixations during the experiments is shown in Figure 5.15, visualising the differences in fixation
duration for each tool. Outliers have been removed of the data outside the 3 sigma (99.7%) interval.

Figure 5.15: Boxplots showing the distribution of Fixation durations per tool

The mean value for the fixation duration of the Basic TO tool is 258.6 ms, with a standard deviation
of 135.3 ms. For the TOP-GD tool, the mean value is 253.6 ms, and the standard deviation 126.5
ms. A fitted distribution is plotted for both tools in Figure 5.16. As can be seen in these distributions
and the box plot, the mean values of the fixation duration are really close for both tools. The standard
deviation differs slightly more, giving a wider distribution for the fixation duration data of the Basic TO
tool. Comparing the data sets in a two-tailed unpaired T-test gives a p-value of 0.0966. This is just
above the 5% significance level, which means there is no proof for a significant statistical difference
between the fixation durations during the use of the two tools.

Figure 5.16: Fitted distributions of the fixation duration data for the Basic TO tool (left) and the TOP-GD tool (right)

When looking at saccades, the amplitude represents the distance travelled by a saccade during an
eye movement [53] and is measured by visual degrees. A Boxplot containing the data of all saccades



5.3. Eye-tracking Results 37

during the experiments is shown in Figure 5.17, visualising the differences in saccade amplitudes for
each tool. Again, outliers have been removed of the data outside the 3 sigma (99.7%) interval.

Figure 5.17: Boxplots showing the distribution of saccade amplitudes per tool

The mean value for the saccade amplitude of the Basic TO tool is 2.878 degrees, with a standard
deviation of 2.160 degrees. For the TOP-GD tool, the mean value is 3.368 degrees, and the standard
deviation 2.750 degrees. A fitted distribution is plotted for both tools in Figure 5.18. Both the mean and
standard deviation of the saccade amplitude is slightly higher for the TOP-GD tool. Comparing the data
sets in a two-tailed unpaired T-test gives a p-value of 1.784E-21. This is far below the 5% significance
level, which means there is a significant statistical difference between the saccade amplitudes during
the use of the two tools.

Figure 5.18: Fitted distributions of the saccade amplitude data for the Basic TO tool (left) and the TOP-GD tool (right)

The interpretation of all these results will be discussed in the next chapter.



6
Discussion

In the experiment conducted, the goal was to research the effect of different design approaches on the
design performance and experience, in order to answer the main research question: ”What is the effect
of using a Topology Optimization based Generative Design tool or a simple Topology Optimization tool
compared to manual design on the design performance and experience?”. This was done by giving
participants simple design tasks while letting them use different designing approaches. During the ex-
periments, different types of data have been collected, of which the results have been presented in the
previous chapter. Among this data was the part performance data to assess the design performance,
subjective answers to the survey questions to assess the design experience, and eye-tracking data to
assess the user interaction of the Basic TO tool and the TOP-GD tool.

An important first remark to make regarding all the data of the experiment, is that only 3 engineers were
available to participate due to the unfortunate bankruptcy of Lightyear. Therefore, only limited data has
been collected, and any conclusion drawn from this data is statistically not significant. However, it is
still interesting to look at the data that has been collected during the experiment.

6.1. Part Performance Data Interpretation
To assess the design performance, the geometries of the designed solutions are assessed visually and
the Compliance and Mass values of the solutions design with the Basic TO and TOP-GD tool are com-
pared in Section 5.1. The geometries of the solutions show that there is especially a difference between
manually designed solutions and the other TO based solutions. The manually designed solutions have
not been interpreted digitally to assess their compliance and mass values, since many assumptions
would have to be made on their geometry. This interpreted data would therefore not be accurate or
scientifically meaningful. Therefore, no clear conclusion can be drawn from a numerical comparison of
their performance values. Based on their topology, it is however likely that their performance is inferior
to the solutions generated with the Basic TO and TOP-GD tool.

The solutions generated by the Basic TO tool and the TOP-GD tool show more similarities, which
was to be expected as both use TO to get to a result. The compliance and mass values for these TO
generated solutions, shown in Table 5.1, do not show a clear and significant difference regarding the
part performance. For assignment A, both the compliance and mass values are lower for the TOP-GD
solution. This can however be attributed to the coarse mesh used in the Basic TO solution, resulting
in some disconnected parts in the rings of the generated geometry. Mesh dependency is something
that can occur in both tools, and therefore does not necessarily means an inferior performance for the
Basic TO tool. Furthermore, the design tasks had to be performed within 15 minutes, which may have
influenced the mesh refinement choice made by the participant, and the lack of time to redo the design.
For both assignment B & C, one solution has a lower mass, and the other a lower compliance value.
This shows the conflicting multi-objective trade-off designers have to choose between [1, 30]. Looking
at the total score of Compliance*Mass of each solution, the Basic TO tool scores better for assignment
B and the TOP-GD tool for assignment C. It is therefore hard to say, based on the part performance
data, that either the TOP-GD or Basic TO approach results in an overall better part performance in

38



6.2. Survey Data Interpretation 39

this limited in experiment. There are moreover very few data points, and a T-test does not show a
significant difference in the part performance values per approach either. More extensive research and
experiments are needed to determine whether the different approaches have an effect on the design
performance.

6.2. Survey Data Interpretation
Regarding the design experience, the answers given by the engineers in the survey show a quite con-
sistent trend. Both the use of the Basic TO tool and the TOP-GD tool are considered an improvement in
the design process compared to manually designing, and give a better overall design experience. The
TOP-GD tool moreover outperforms the Basic TO tool in almost all aspects. Participants feel more con-
fident to have found the optimal solution when using the TOP-GD tool for a design task, and besides
that their understanding of both design problems and TO settings improved. The biggest difference
between the Basic TO tool and the TOP-GD tool is the overview generated. This was to be expected
since the Basic TO tool does not provide side by side comparisons of different solutions, and a new run
overwrites the previous result. In the development process of the TOP-GD tool, a lot of focus was put
on generating overview, by implementing a Pareto Compliance-Mass graph and a separate tab with a
sortable table showing all the results. As was explained in Section 2.3.1, a Multi-Objective approach
and showing a Pareto set helps the designer to have a trade-off overview and understand the conse-
quences of a design decision with respect to all the relevant objectives [30]. This therefore corresponds
with the results found with the survey.

Furthermore, the TOP-GD tool was rated slightly more user friendly than the Basic TO tool. This
means that the extra functionalities the TOP-GD tool provides are not considered too complex, and
not having them is experienced as a limitation. The setup of the problem in the TOP-GD tool only
requires a few extra input settings, but is hardly more complex. The extra information given and the
overview generated by the TOP-GD tool contribute to the understanding and confidence of the partici-
pants, which increases their design experience and would also explain why they consider the TOP-GD
tool more user friendly. However, it should be kept in mind that the higher scoring of the TOP-GD tool
on user-friendliness and overall experience can be partially due to the learning effect of the participants
in the experiment. The setup of the Basic TO tool and the TOP-GD tool was kept as similar as possi-
ble. Therefore, when the participants got to the third design task with the TOP-GD tool, they already
practiced the setup in the previous design task with the Basic TO tool.

The Basic TO tool only scores slightly better on the understanding of structurally important areas
compared to the TOP-GD tool, due to one 5-point score of one participant. This does not follow the
trend of the rest of the survey. Basic Topology Optimization does show important areas by altering
the topology of the design during an optimization run, but the TOP-GD tool does the same and adding
to that gives information on the compliance sensitivities by means of a coloring scheme. This higher
scoring of the Basic TO tool is moreover in conflict with the other aspect scores. It could be possible
that due to the chronological setup of the experiment, this participant especially felt the increase in
understanding of structurally important areas of TO compared to manually designing.

The answers to the open questions further confirm that both tools improve the design experience com-
pared to manually designing, and that the TOP-GD tool is considered to have the biggest positive effect
on the design process. It is reported to generate a much better understanding of the influence of input
parameters to the final design, and making Topology Optimization less of a black box approach. The
tool is said to give fast feedback on the influence of materials and mass on stiffness, and the sensitivity
coloring gives clear feedback on important areas in the design space. One participant explained af-
terwards that with this information, he could also decide early on in the design process to for example
have another look at the design space, because giving more space to a certain critical narrow area will
probably be more effective than optimizing a part within that narrow design space. This aligns with the
remarks made in Section 2.1, where it is explained that it is important to collect as much information as
soon as possible in the design process to prevent a poor concept choice by enabling early changes of
the design [8], and that design decisions at the start of the design process have a bigger impact [9].

Also the advantage of Generative Design, where alternative and possibly better solutions can be
generated and explored that the designer did not think of themselves [1, 3], is mentioned as a posi-
tive aspect of the TOP-GD tool in the survey. This proves that also a Topology Optimization based



6.3. Eye-tracking Data Interpretation 40

Generative Design approach can have this effect, without the need for extensive cloud-based AI imple-
mentations.

However, for both tools the participants pointed out some details in the workflow that were not ideal,
so there is definitely still room for improvement on user-friendliness as well.

6.3. Eye-tracking Data Interpretation
As shown in Section 5.3, the heat maps for both tools show a good distribution of the gaze location,
which indicate a good use of space. However, for both the Basic TO tool (Figure 5.12) and the setup
tab of the TOP-GD tool (Figure 5.13), the lower left area of the screen shows a lower gaze density
which indicates it is an area of less relevance for the users. This area contains the lists of constraints,
forces, passive void and solid regions, which are only needed for a part of the setup process. Although
these areas do have to be present, they could have been designed occupying a smaller part of the total
setup tab. In this way, more space would have been available for the 3D areas or the input parameter
section that did attract more attention.

The rest of the Eye-tracking data showed a slight difference between the Basic TO tool and the
TOP-GD tool. The mean fixation duration for both tools was very close with 258.6 ms and 253.6 ms
respectively, which corresponds to a general fixation duration of 200-300 ms mentioned in literature [53,
54]. Also the typical positively skewered distribution of the fixation duration compared to a normal Gaus-
sian aligns with other data and literature [53, 55, 56]. The Basic TO fixations were distributed a bit wider
as shown in Figure 5.15, showing slightly more long fixations. Longer fixations could indicate deeper
cognitive processing [53, 54, 57]. Shorter mean fixation duration indicate that users are spending less
time looking at each item on the screen, which suggests that they are processing the information more
quickly and efficiently in the TOP-GD tool. However, the difference between the mean fixation duration
of the tools is very small and the two-tailed unpaired T-test showed no statistical difference within the
5% significance level. Therefore, no clear conclusion can be drawn from the differences measured in
fixations of the Basic TO and TOP-GD approach.

A somewhat larger difference between the tools is shown in the distribution of the saccade am-
plitudes measured during the experiment. The TOP-GD tool has a larger mean saccade amplitude
compared to the Basic TO tool, with a wider distribution as well. The two-tailed unpaired T-test compar-
ing the saccade amplitudes measured during the use of both tools therefore showed a clear statistical
difference within the 5% significance level. Saccade amplitudes often lower as task complexity and
cognitive load increase [53, 58, 59]. The larger saccade amplitudes found with the TOP-GD tool sug-
gest that users are moving their eyes more extensively across the screen. This can indicate that users
are navigating through the TOP-GD tool’s features more efficiently and may be able to complete tasks
more quickly.

When looking at the combination of the two measures, an increase in fixation duration and a de-
crease in saccadic amplitude is said to indicate an increased task difficulty and the need to gather more
fine-grained information [60]. This is consistent with what was found for both measures, although again
the difference in fixation duration is too small to be a convincing difference.

Altogether, the eye-tracking data suggests that the TOP-GD tool is experienced as less complex and
more effective to use than the Basic TO tool, which also aligns with the interpretation of the survey
results. However, an important note should again be made regarding the effect of learning behaviour.
The complexity of the design task in the TOP-GD tool can be experienced as less complex because the
participants are more used to the setup and the GUI already, after completing the design task with the
Basic TO tool. This can also explain the slightly lower fixation duration and higher saccade amplitude
found for the TOP-GD tool during the experiment, indicating a more efficient navigation through the
GUI. Nevertheless, it is clear that the TOP-GD tool does definitely not perform worse than the Basic
TO tool on complexity and user-friendliness despite its extended functionalities, even if the difference in
eye-tracking data is completely attributed to the learning effect. Together with the positive assessment
of the TOP-GD tool by the participants in the survey, it is therefore concluded that the TOP-GD tool
outperforms the Basic TO app and has the largest positive impact on the design experience.



7
Conclusion

7.1. Main Findings
The goal for this thesis was to research the effect of different design approaches on the design perfor-
mance and experience, in order to answer the main research question:

“What is the effect of using a Topology Optimization based Generative Design tool or a simple
Topology Optimization tool compared to manual design on the design performance and experience?”

This research was set up because of the expectation that there was potential to improve the early stages
of the design process, by implementing a topology optimization based generative design approach in
the form of an auxiliary tool. With such a design approach, multiple design solutions are explored
quickly to study the effect of boundary conditions or numerical settings. This can help designers by
giving direction and insight in trade-offs between multiple objectives, early on in the design process
when design decisions still have the highest impact. In order to test the effect of this approach on the
design process, a robust and user-friendly Topology Optimization based Generative Design tool had
to be created. The development process to create such a tool resulted in the TOP-GD tool presented
in Chapter 3. In the TOP-GD tool, multiple design solutions are explored quickly by implementing
a batch-run setup that varies several chosen parameters, without needing to manually run several
optimizations consecutively. Calculations are done with a simple TO script using coarse geometries,
and without taking into account manufacturing methods yet. This asks for less demanding, detailed
and complicated calculations than AI-based Generative Design tools currently offer, while at the same
time moving from a single TO result to generating a range of candidate solutions. A lot of effort was put
in the user-friendliness of the TOP-GD tool, enabling an easy workflow for the setup of design problems
and a clear presentation of the results by means of a simple GUI.

The use of the TOP-GD tool in the design process was evaluated in an experiment, where it was
compared with a more simple TO tool and a basic manual design approach using just pen and paper.
This was done by giving the participants of the experiments three simple design assignments, that they
had to carry out using each of the design approaches one by one. Evaluation of the approaches was
done in threefold. First of all, the design performance was assessed by visually inspecting the geometry
of the designed solutions, and comparing the mass and compliance values of the solutions generated
with the Basic TO and TOP-GD tools. The design experience of the participants was mapped with
an extensive survey, asking them to judge the different approaches on numerous aspects. Lastly, the
user interaction of the Basic TO and TOP-GD tool was assessed using Eye-tracking techniques, by
looking at gaze location data, fixations and saccades. The results of this experiment showed no clear
or significant difference in the design performance between the solutions designed with the TOP-GD
tool and the Basic TO tool. For the design experience however, a clear difference was found between
all approaches. The manual design approach was outperformed by both the Basic TO approach and
the TOP-GD approach, on all aspects, which was expected. Moreover, the TOP-GD approach scored
higher on almost all aspects assessed compared to the Basic TO approach. The TOP-GD approach is
rated as more user-friendly, helps to better understand design problems and the influence of topology
optimization settings, and especially improved the overview generated during the design process. The

41



7.2. Recommendations 42

TOP-GD approach also gave the best overall experience in the design process, and its implementation
in the design process was considered a big improvement. This was further substantiated with the
data gathered with Eye-tracking. A slightly smaller mean fixation duration was found for the TOP-GD
tool, however this difference is not statistically significant when analyzed with a T-test. Besides that, a
larger mean saccade amplitude was found for the TOP-GD tool, which is a clear significant difference
according to the T-test. This indicates that the participants navigated through the tool more efficiently,
and experienced a lower task complexity. However, it is also possible that these differences are due to
the learning effect experienced by the participants during the experiment. Therefore further analysis is
required in a more extensive experiment to determine the exact cause of these differences.

To come back to the main research question; there was not enough evidence to conclude that
the TOP-GD approach had a significant effect on the design performance compared to the Basic TO
approach for the simple assignments executed during the experiment. However, the results of the
survey show a clear positive impact of both the TO tools on the design experience compared tomanually
designing. Furthermore, the TOP-GD tool has the largest positive impact on the design experience
and its use in the design process is considered a big improvement, especially in quickly exploring new
design directions and creating overview. This confirms the expectation that a Topology Optimization
based Generative Design approach has a positive effect on the early stages of the design process. The
small differences found with Eye-tracking between the TO tools support this, although more research
should be done to convincingly confirm this with Eye-tracking data.

7.2. Recommendations
First of all, the experiment performed during this thesis with only 3 participants, was unfortunately limited.
As was mentioned as first remark in the discussion, therefore the validity of any conclusions drawn is
questionable and could be improved by gathering more data through the repetition of the experiment
with more test subjects.

Regarding the TOP-GD tool, there is still room for improvement as well, even though it is already
considered to be user-friendly and have a positive effect on the design process. The Eye-tracking data
showed that the space used by the elements in the GUI is not always proportionate to the gaze density
in that location. The layout of the GUI could therefore be iterated to give more space to elements that
get more attention, and tested more extensively with Eye-tracking experiments.

For further development of the TOP-GD tool’s capabilities, for example natural frequency optimiza-
tion and stress constraints functionalities can be added next to the standard compliance minimization
functionality present, to enable the exploration of more complex and realistic problems that appear in
the engineering industry. Next to that, the diversity of the solutions could also be improved by varying
the starting points of the different optimization runs, by for example implementing stochastic techniques
instead of only varying input parameters like the filter radius and the volume fraction. Moreover, it would
be interesting to add manufacturing constraints. Even though this is not a requirement in a first explo-
ration in the earliest stages of the design process, it is still of added value to have the possibility to look
for easily manufacturable solutions.

Furthermore, the experiment showed that the workflow of the TOP-GD tool can still be improved as
well. Even though the app was already experienced as easy to use, minor changes such as automating
the voxelization of the geometry, or the automatic extraction of nodes after selecting them, would make
the GUI handling even more intuitive. Besides that, a big limitation was experienced by the participants
due to the inability to change the refinement of the mesh after the problem had been set up. This
is not possible yet in this version of the TOP-GD tool, because the node numbering that is defined
with the mesh refinement slider is used to define all other aspects of the problem setup. However, it
is undoubtedly possible with more development time to enable the transformation of all constraints,
forces, passive solid and void elements to another node numbering system if the mesh refinement is
changed at a later point in the problem setup.

And lastly, with some more development time, the TOP-GD tool could be extended in such a way
that it becomes more ’intelligent’. This includes giving more predictive feedback, such as a range of
volume fractions that are deemed interesting to explore, or providing the user with an indication of
solving time. Moreover, the tool could be programmed differently to explore the design space first in
a rough manner with big parameter steps, and then with increasing detail explore the most interesting
parameter combinations.



References

[1] Daria Vlah, Roman Žavbi, and Nikola Vukašinović. “Evaluation of topology optimization and gen-
erative design tools as support for conceptual design”. In: Proceedings of the design society:
DESIGN conference. Vol. 1. Cambridge University Press. 2020, pp. 451–460.

[2] Uwe Schramm andMing Zhou. “Recent developments in the commercial implementation of topol-
ogy optimization”. In: IUTAM symposium on topological design optimization of structures, ma-
chines and materials. Springer. 2006, pp. 239–248.

[3] Francesco Buonamici et al. “Generative design: an explorative study”. In: Computer-Aided De-
sign and Applications 18.1 (2020), pp. 144–155.

[4] Martin Philip Bendsøe and Noboru Kikuchi. “Generating optimal topologies in structural design
using a homogenization method”. In: Computer methods in applied mechanics and engineering
71.2 (1988), pp. 197–224.

[5] Martin P Bendsøe and Ole Sigmund. “Material interpolation schemes in topology optimization”.
In: Archive of applied mechanics 69.9 (1999), pp. 635–654.

[6] Martin Philip Bendsoe and Ole Sigmund. Topology optimization: theory, methods, and applica-
tions. Springer Science & Business Media, 2003.

[7] Evangelos Tyflopoulos et al. “State of the art of generative design and topology optimization
and potential research needs”. In: DS 91: Proceedings of NordDesign 2018, Linköping, Sweden,
14th-17th August 2018 (2018).

[8] Andreas Wilhelm Meyer, Sándor Vajna, et al. “Support of searching for solutions by automated
structural optimization”. In: DS 92: Proceedings of the DESIGN 2018 15th International Design
Conference. 2018, pp. 369–380.

[9] LihuiWang et al. “Collaborative conceptual design—state of the art and future trends”. In:Computer-
aided design 34.13 (2002), pp. 981–996.

[10] Emma S. Vercoulen. “Improving the Engineering Design Process by using Computational Design
Techniques”. In: (2022). Literature Research.

[11] Madara Ogot and Gul Kremer. Engineering design: a practical guide. Trafford Publishing, 2004.
[12] Yousef Haik, Sangarappillai Sivaloganathan, and Tamer M Shahin. Engineering design process.

Third Edition. Cengage Learning, 2015.
[13] Chao Wang et al. “A comprehensive review of educational articles on structural and multidis-

ciplinary optimization”. In: Structural and Multidisciplinary Optimization 64.5 (2021), pp. 2827–
2880.

[14] Ole Sigmund and Kurt Maute. “Topology optimization approaches”. In: Structural and Multidisci-
plinary Optimization 48.6 (2013), pp. 1031–1055.

[15] Stanley Osher and James A Sethian. “Fronts propagating with curvature-dependent speed: Algo-
rithms based on Hamilton-Jacobi formulations”. In: Journal of computational physics 79.1 (1988),
pp. 12–49.

[16] Haipeng Jia et al. “Evolutionary level set method for structural topology optimization”. In: Com-
puters & Structures 89.5-6 (2011), pp. 445–454.

[17] Osvaldo M Querin, Grant P Steven, and Yi Min Xie. “Evolutionary structural optimisation (ESO)
using a bidirectional algorithm”. In: Engineering computations (1998).

[18] XY Yang et al. “Bidirectional evolutionary method for stiffness optimization”. In: AIAA journal 37.11
(1999), pp. 1483–1488.

43



References 44

[19] XiaodongHuang and Yi-Min Xie. “Convergent andmesh-independent solutions for the bi-directional
evolutionary structural optimization method”. In: Finite elements in analysis and design 43.14
(2007), pp. 1039–1049.

[20] ShunWang. “Krylov subspacemethods for topology optimization on adaptivemeshes”. In: (2007).
[21] Hongbo Sun and Ling Ma. “Generative design by using exploration approaches of reinforcement

learning in density-based structural topology optimization”. In: Designs 4.2 (2020), p. 10.
[22] M Zhou, YK Shyy, and HL Thomas. “Checkerboard andminimummember size control in topology

optimization”. In: Structural and Multidisciplinary Optimization 21 (2001), pp. 152–158.
[23] Susana Rojas-Labanda and Mathias Stolpe. “Benchmarking optimization solvers for structural

topology optimization”. In: Structural and Multidisciplinary Optimization 52.3 (2015), pp. 527–
547.

[24] GIN Rozvany and Ming Zhou. “The COC algorithm, part I: Cross-section optimization or sizing”.
In: Computer Methods in Applied Mechanics and Engineering 89.1-3 (1991), pp. 281–308.

[25] M Zhou and GIN Rozvany. “The COC algorithm, Part II: Topological, geometrical and generalized
shape optimization”. In: Computer methods in applied mechanics and engineering 89.1-3 (1991),
pp. 309–336.

[26] Krister Svanberg. “The method of moving asymptotes—a newmethod for structural optimization”.
In: International journal for numerical methods in engineering 24.2 (1987), pp. 359–373.

[27] Krister Svanberg. “A class of globally convergent optimization methods based on conservative
convex separable approximations”. In: SIAM journal on optimization 12.2 (2002), pp. 555–573.

[28] Raphael T. Haftka and Zafer Gürdal. Elements of structural optimization. Third revised and ex-
panded edition. Springer Science & Business Media, 1992.

[29] Ole Sigmund. “A 99 line topology optimization code written in Matlab”. In: Structural and multidis-
ciplinary optimization 21.2 (2001), pp. 120–127.

[30] Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. “Pareto multi objective optimization”. In:
Proceedings of the 13th international conference on, intelligent systems application to power
systems. IEEE. 2005, pp. 84–91.

[31] Long Tang et al. “Adaptive heuristic search algorithm for discrete variables based multi-objective
optimization”. In: Structural and Multidisciplinary Optimization 48.4 (2013), pp. 821–836.

[32] KalyanmoyDeb. “Multi-objective optimization”. In:Searchmethodologies. Springer, 2014, pp. 403–
449.

[33] Danny J Lohan, Ercan M Dede, and James T Allison. “Topology optimization for heat conduction
using generative design algorithms”. In: Structural and Multidisciplinary Optimization 55.3 (2016),
pp. 1063–1077.

[34] Sivam Krish. “A practical generative design method”. In: Computer-Aided Design 43.1 (2011),
pp. 88–100.

[35] Loris Barbieri and Maurizio Muzzupappa. “Performance-Driven Engineering Design Approaches
Based on Generative Design and Topology Optimization Tools: A Comparative Study”. In: Applied
Sciences 12.4 (2022), p. 2106.

[36] Autodesk. Autodesk Fusion 360 Generative Design tool. URL: https://www.autodesk.com/
solutions/generative-design (visited on 10/07/2022).

[37] Filippo A Salustri, Nathan L Eng, and Janaka SWeerasinghe. “Visualizing information in the early
stages of engineering design”. In: Computer-Aided Design and Applications 5.5 (2008), pp. 697–
714.

[38] Evangelos Tyflopoulos and Martin Steinert. “A Comparative Study of the Application of Different
Commercial Software for Topology Optimization”. In: Applied Sciences 12.2 (2022), p. 611.

[39] Federico Ferrari and Ole Sigmund. “A new generation 99 line Matlab code for compliance topol-
ogy optimization and its extension to 3D”. In: Structural and Multidisciplinary Optimization 62
(2020), pp. 2211–2228.

[40] Z88. Z88Arion. URL: https://en.z88.de/z88arion/ (visited on 07/12/2022).

https://www.autodesk.com/solutions/generative-design
https://www.autodesk.com/solutions/generative-design
https://en.z88.de/z88arion/


References 45

[41] Ernesto Aranda, José Carlos Bellido, and Alberto Donoso. “Toptimiz3D: A topology optimiza-
tion software using unstructured meshes”. In: Advances in Engineering Software 148 (2020),
p. 102875.

[42] Erik Andreassen et al. “Efficient topology optimization in MATLAB using 88 lines of code”. In:
Structural and Multidisciplinary Optimization 43 (2011), pp. 1–16.

[43] MathWorks. stlread. URL: https://nl.mathworks.com/help/matlab/ref/stlread.html
(visited on 04/26/2023).

[44] Daniel Cohen-Or and Arie Kaufman. “Fundamentals of surface voxelization”. In: Graphical mod-
els and image processing 57.6 (1995), pp. 453–461.

[45] Adam H. Aitkenhead. MathWorks File Exchange. 2013. URL: https://nl.mathworks.com/
matlabcentral/fileexchange/27390-mesh-voxelisation (visited on 04/26/2023).

[46] Xinchang Zhang, Wenyuan Cui, and Frank Liou. “Voxel-based geometry reconstruction for re-
pairing and remanufacturing of metallic components via additive manufacturing”. In: International
Journal of Precision Engineering and Manufacturing-Green Technology (2021), pp. 1–24.

[47] Hao Deng, Praveen S Vulimiri, and Albert C To. “An efficient 146-line 3D sensitivity analysis
code of stress-based topology optimization written in MATLAB”. In:Optimization and Engineering
(2021), pp. 1–29.

[48] Robert JK Jacob and Keith S Karn. “Eye tracking in human-computer interaction and usability
research: Ready to deliver the promises”. In: The mind’s eye. Elsevier, 2003, pp. 573–605.

[49] Asus. Asus ROG Zephyrus S GX531. URL: https://rog.asus.com/nl/laptops/rog-zephyru
s/rog-zephyrus-s-gx531-series/spec/ (visited on 04/25/2023).

[50] SR Research. EyeLink Portable Duo. URL: https://www.sr-research.com/eyelink-portabl
e-duo/ (visited on 04/25/2023).

[51] SRResearch.WebLink. URL: https://www.sr-research.com/weblink/ (visited on 04/25/2023).
[52] Dario D Salvucci and Joseph H Goldberg. “Identifying fixations and saccades in eye-tracking

protocols”. In:Proceedings of the 2000 symposium on Eye tracking research & applications. 2000,
pp. 71–78.

[53] Bhanuka Mahanama et al. “Eye movement and pupil measures: A review”. In: Frontiers in Com-
puter Science 3 (2022), p. 733531.

[54] Keith Rayner. “Eye movements in reading and information processing.” In: Psychological bulletin
85.3 (1978), p. 618.

[55] Boris M Velichkovsky et al. “Visual fixations and level of attentional processing”. In: Proceedings
of the 2000 symposium on eye tracking research & applications. 2000, pp. 79–85.

[56] Adrian Staub and Ashley Benatar. “Individual differences in fixation duration distributions in read-
ing”. In: Psychonomic Bulletin & Review 20 (2013), pp. 1304–1311.

[57] Timothy A Salthouse and Cecil L Ellis. “Determinants of eye-fixation duration”. In: The American
journal of psychology (1980), pp. 207–234.

[58] Matthew H Phillips and Jay A Edelman. “The dependence of visual scanning performance on
search direction and difficulty”. In: Vision research 48.21 (2008), pp. 2184–2192.

[59] James G May et al. “Eye movement indices of mental workload”. In: Acta psychologica 75.1
(1990), pp. 75–89.

[60] Canan Karatekin. “Eye tracking studies of normative and atypical development”. In: Developmen-
tal Review 27.3 (2007). Developmental Cognitive Neuroscience, pp. 283–348. ISSN: 0273-2297.
DOI: https://doi.org/10.1016/j.dr.2007.06.006. URL: https://www.sciencedirect.com/
science/article/pii/S0273229707000238.

https://nl.mathworks.com/help/matlab/ref/stlread.html
https://nl.mathworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation
https://nl.mathworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation
https://rog.asus.com/nl/laptops/rog-zephyrus/rog-zephyrus-s-gx531-series/spec/
https://rog.asus.com/nl/laptops/rog-zephyrus/rog-zephyrus-s-gx531-series/spec/
https://www.sr-research.com/eyelink-portable-duo/
https://www.sr-research.com/eyelink-portable-duo/
https://www.sr-research.com/weblink/
https://doi.org/https://doi.org/10.1016/j.dr.2007.06.006
https://www.sciencedirect.com/science/article/pii/S0273229707000238
https://www.sciencedirect.com/science/article/pii/S0273229707000238


A
TOP-GD tool Source Code

The complete source code of the created TOP-GD tool during this thesis is annexed in this appendix.
The tool was made in the MATLAB App Designer environment.

1 classdef TOPGD_App < matlab.apps.AppBase
2

3 % Properties that correspond to app components
4 properties (Access = public)
5 UIFigure matlab.ui.Figure
6 GeneralMenu matlab.ui.container.Menu
7 SaveSetupMenu matlab.ui.container.Menu
8 ResetAllMenu matlab.ui.container.Menu
9 ImportMenu matlab.ui.container.Menu

10 ImportGeometryMenu matlab.ui.container.Menu
11 ImportSetupMenu matlab.ui.container.Menu
12 RunButton matlab.ui.control.Button
13 TextArea matlab.ui.control.TextArea
14 TabGroup matlab.ui.container.TabGroup
15 SetupTab matlab.ui.container.Tab
16 MaterialsPanel matlab.ui.container.Panel
17 RemoveMaterialButton matlab.ui.control.Button
18 AddMaterialButton matlab.ui.control.Button
19 UITableMaterials matlab.ui.control.Table
20 PresetsDropDown matlab.ui.control.DropDown
21 PresetsDropDownLabel matlab.ui.control.Label
22 MaterialNameEditField matlab.ui.control.EditField
23 MaterialNameEditFieldLabel matlab.ui.control.Label
24 PoissonratioSpinner matlab.ui.control.Spinner
25 PoissonratioSpinner_2Label matlab.ui.control.Label
26 DensitySpinner matlab.ui.control.Spinner
27 Densitykgm3SpinnerLabel matlab.ui.control.Label
28 YoungsModulusSpinner matlab.ui.control.Spinner
29 YoungsModulusMPaSpinnerLabel matlab.ui.control.Label
30 FixedconstraintPanel matlab.ui.container.Panel
31 RemoveConstraintButton matlab.ui.control.Button
32 ConstraintsListBox matlab.ui.control.ListBox
33 ConstraintsListBoxLabel matlab.ui.control.Label
34 AddConstraintButton matlab.ui.control.Button
35 ZdirectionCheckBox matlab.ui.control.CheckBox
36 YdirectionCheckBox matlab.ui.control.CheckBox
37 XdirectionCheckBox matlab.ui.control.CheckBox
38 AppliedforceNPanel matlab.ui.container.Panel
39 ImportExcelButton matlab.ui.control.Button
40 LoadCasesSpinner matlab.ui.control.Spinner
41 LoadcasesLabel matlab.ui.control.Label
42 TabGroupLC matlab.ui.container.TabGroup
43 LC_1Tab matlab.ui.container.Tab
44 ForcesListBox matlab.ui.control.ListBox
45 ForcesListBoxLabel matlab.ui.control.Label
46 ZEditField matlab.ui.control.NumericEditField
47 ZEditFieldLabel matlab.ui.control.Label

46



47

48 YEditField matlab.ui.control.NumericEditField
49 YEditFieldLabel matlab.ui.control.Label
50 RemoveForceButton matlab.ui.control.Button
51 XEditField matlab.ui.control.NumericEditField
52 XEditFieldLabel matlab.ui.control.Label
53 AddForceButton matlab.ui.control.Button
54 SolidRegionsPanel matlab.ui.container.Panel
55 RemoveSolidButton matlab.ui.control.Button
56 AddSolidButton matlab.ui.control.Button
57 SolidsListBox matlab.ui.control.ListBox
58 SolidsListBoxLabel matlab.ui.control.Label
59 VoidRegionsPanel matlab.ui.container.Panel
60 RemoveVoidButton matlab.ui.control.Button
61 AddVoidButton matlab.ui.control.Button
62 VoidsListBox matlab.ui.control.ListBox
63 VoidsListBoxLabel matlab.ui.control.Label
64 InputParametersPanel matlab.ui.container.Panel
65 StepFilterRadiusSpinner matlab.ui.control.Spinner
66 FilterradiusLabel_3 matlab.ui.control.Label
67 StepVolFracSpinner matlab.ui.control.Spinner
68 VolumeFractionLabel_3 matlab.ui.control.Label
69 FilterRadiusSpinner_2 matlab.ui.control.Spinner
70 FilterradiusLabel_2 matlab.ui.control.Label
71 VolFracSpinner_2 matlab.ui.control.Spinner
72 VolumeFractionLabel_2 matlab.ui.control.Label
73 FilterRadiusSpinner matlab.ui.control.Spinner
74 FilterradiusLabel matlab.ui.control.Label
75 MaxIterationsperrunSpinner matlab.ui.control.Spinner
76 MaxIterationsperrunSpinnerLabel matlab.ui.control.Label
77 VolFracSpinner matlab.ui.control.Spinner
78 VolumeFractionLabel matlab.ui.control.Label
79 NodesPanel matlab.ui.container.Panel
80 MeshrefinementSlider matlab.ui.control.Slider
81 MeshrefinementSliderLabel matlab.ui.control.Label
82 VoxelizeButton matlab.ui.control.Button
83 ExtractNodesButton matlab.ui.control.Button
84 ShowNodesButton matlab.ui.control.Button
85 UIAxesNodes matlab.ui.control.UIAxes
86 DensityPlotsTab matlab.ui.container.Tab
87 ComplianceMassGraphTab matlab.ui.container.Tab
88 ExportSelectedSolutionasSTLButton matlab.ui.control.Button
89 ShowDesignDataButton matlab.ui.control.Button
90 UITableSelection matlab.ui.control.Table
91 UIAxesSelection_2 matlab.ui.control.UIAxes
92 UIAxesSelection matlab.ui.control.UIAxes
93 UIAxes matlab.ui.control.UIAxes
94 DataTableOverview matlab.ui.container.Tab
95 ExportSelectedSolutionasSTLButton_2 matlab.ui.control.Button
96 UITableData matlab.ui.control.Table
97 UIAxesTableSelection_2 matlab.ui.control.UIAxes
98 UIAxesTableSelection matlab.ui.control.UIAxes
99 end

100

101 properties (Access = public)
102 Volume
103 Materials
104 stlfile
105 nelx
106 nely
107 nelz
108 nel
109 sz
110 maxit
111 nodes
112 nodeNrs
113 elemNrs
114 Snodes
115 actnod
116 Constr
117 Forces
118 Voids



48

119 Solids
120 geom
121 grid %plots
122 extracted
123 selected
124 con
125 fcs
126 sol
127 arrow
128 LCtabs
129 Data
130 Result
131 DataTable
132 T
133 FT
134 MatCheck
135 FRCheck
136 VFCheck
137 axess
138 axesL
139 LocTab
140 LocNodPlot
141 LocPan
142 DTab
143 PosFTab
144 maxmass
145 maxcomp
146 resplot
147 end
148

149 methods (Access = public)
150

151 function ResetAll(app)
152 delete(app.UIAxesNodes.Children)
153 delete(app.DensityPlotsTab.Children)
154 delete(app.UIAxes.Children)
155 delete(app.UIAxesSelection.Children)
156 delete(app.UIAxesSelection_2.Children)
157 delete(app.UIAxesTableSelection.Children)
158 delete(app.UIAxesTableSelection_2.Children)
159 app.UITableMaterials.Data = [];
160 app.UITableSelection.Data = [];
161 app.UITableData.Data = [];
162 app.TextArea.Value = '';
163 app.VoidsListBox.Items = {};
164 app.ConstraintsListBox.Items = {};
165 app.ForcesListBox.Items = {};
166 app.SolidsListBox.Items = {};
167 if app.LoadCasesSpinner.Value > 1
168 for i = 2:length(app.TabGroupLC.Children)
169 delete(app.TabGroupLC.Children(end))
170 end
171 end
172 app.LoadCasesSpinner.Value = 1;
173 app.XdirectionCheckBox.Value = 0;
174 app.YdirectionCheckBox.Value = 0;
175 app.ZdirectionCheckBox.Value = 0;
176 app.XEditField.Value = 0;
177 app.YEditField.Value = 0;
178 app.ZEditField.Value = 0;
179 app.MaxIterationsperrunSpinner.Value = 50;
180 app.VolFracSpinner.Value = 0.15;
181 app.VolFracSpinner_2.Value = 0.35;
182 app.StepVolFracSpinner.Value = 0.1;
183 app.FilterRadiusSpinner.Value = 1.7;
184 app.FilterRadiusSpinner_2.Value = 2;
185 app.StepFilterRadiusSpinner.Value = 0.3;
186 app.YoungsModulusSpinner.Value = 206000;
187 app.DensitySpinner.Value = 7850;
188 app.PoissonratioSpinner.Value = 0.3;
189 app.MeshrefinementSlider.Value = 10;



49

190 app.Volume = [];
191 app.stlfile = [];
192 app.nelx = app.MeshrefinementSlider.Value;
193 app.nely = [];
194 app.nelz = [];
195 app.nel = [];
196 app.sz = [];
197 app.geom = [];
198 app.nodes = [];
199 app.nodeNrs = [];
200 app.elemNrs = [];
201 app.Snodes = [];
202 startupFcn(app)
203 end
204

205 function [result, perf, rdcc, risovals, VonMisesMax, vonmises] = TOPGD_TO(app,nelx,
nely,nelz,volfrac,penal,rmin,ft,ftBC,eta,beta,move,E0,nu,maxit,pasV,pasS,fixed,
lcDof,Fl)

206 % ---------------------------- PRE. 1) MATERIAL AND CONTINUATION PARAMETERS
207 q = 0.5; %

Stress Relaxation factor
208 Emin = 1e-9; %

Young modulus of "void"
209 penalCnt = { 1, 1, 25, 0.25 }; %

continuation scheme on penal
210 betaCnt = { 1, 1, 25, 2 }; %

continuation scheme on beta
211 if ftBC == 'N', bcF = 'symmetric'; else, bcF = 0; end %

filter BC selector
212 % ----------------------------------------- PRE. 2) DISCRETIZATION FEATURES
213 nEl = nelx * nely * nelz; %

number of elements #3D#
214 NodeNrs = int32(app.nodeNrs); % nodes

numbering #3D#
215 cVec = reshape( 3 * NodeNrs( 1 : nely, 1 : nelz, 1 : nelx ) + 1, nEl, 1 ); %

#3D#
216 cMat = cVec+int32( [0,1,2,3*(nely+1)*(nelz+1)+[0,1,2,-3,-2,-1],-3,-2,-1,3*(nely

+...
217 1)+[0,1,2],3*(nely+1)*(nelz+2)+[0,1,2,-3,-2,-1],3*(nely+1)+[-3,-2,-1]]);%

connectivity matrix #3D#
218 nDof = ( 1 + nely ) * ( 1 + nelz ) * ( 1 + nelx ) * 3; %

total number of DOFs #3D#
219 [ sI, sII ] = deal( [ ] );
220 for j = 1 : 24
221 sI = cat( 2, sI, j : 24 );
222 sII = cat( 2, sII, repmat( j, 1, 24 - j + 1 ) );
223 end
224 [ iK , jK ] = deal( cMat( :, sI )', cMat( :, sII )' );
225 Iar = sort( [ iK( : ), jK( : ) ], 2, 'descend' ); clear iK jK %

reduced assembly indexing
226 Ke = 1/(1+nu)/(2*nu-1)/144 *( [ -32;-6;-6;8;6;6;10;6;3;-4;-6;-3;-4;-3;-6;10;...
227 3;6;8;3;3;4;-3;-3; -32;-6;-6;-4;-3;6;10;3;6;8;6;-3;-4;-6;-3;4;-3;3;8;3;...
228 3;10;6;-32;-6;-3;-4;-3;-3;4;-3;-6;-4;6;6;8;6;3;10;3;3;8;3;6;10;-32;6;6;...
229 -4;6;3;10;-6;-3;10;-3;-6;-4;3;6;4;3;3;8;-3;-3;-32;-6;-6;8;6;-6;10;3;3;4;...
230 -3;3;-4;-6;-3;10;6;-3;8;3;-32;3;-6;-4;3;-3;4;-6;3;10;-6;6;8;-3;6;10;-3;...
231 3;8;-32;-6;6;8;6;-6;8;3;-3;4;-3;3;-4;-3;6;10;3;-6;-32;6;-6;-4;3;3;8;-3;...
232 3;10;-6;-3;-4;6;-3;4;3;-32;6;3;-4;-3;-3;8;-3;-6;10;-6;-6;8;-6;-3;10;-32;...
233 6;-6;4;3;-3;8;-3;3;10;-3;6;-4;3;-6;-32;6;-3;10;-6;-3;8;-3;3;4;3;3;-4;6;...
234 -32;3;-6;10;3;-3;8;6;-3;10;6;-6;8;-32;-6;6;8;6;-6;10;6;-3;-4;-6;3;-32;6;...
235 -6;-4;3;6;10;-3;6;8;-6;-32;6;3;-4;3;3;4;3;6;-4;-32;6;-6;-4;6;-3;10;-6;3;...
236 -32;6;-6;8;-6;-6;10;-3;-32;-3;6;-4;-3;3;4;-32;-6;-6;8;6;6;-32;-6;-6;-4;...
237 -3;-32;-6;-3;-4;-32;6;6;-32;-6;-32]+nu*[ 48;0;0;0;-24;-24;-12;0;-12;0;...
238 24;0;0;0;24;-12;-12;0;-12;0;0;-12;12;12;48;0;24;0;0;0;-12;-12;-24;0;-24;...
239 0;0;24;12;-12;12;0;-12;0;-12;-12;0;48;24;0;0;12;12;-12;0;24;0;-24;-24;0;...
240 0;-12;-12;0;0;-12;-12;0;-12;48;0;0;0;-24;0;-12;0;12;-12;12;0;0;0;-24;...
241 -12;-12;-12;-12;0;0;48;0;24;0;-24;0;-12;-12;-12;-12;12;0;0;24;12;-12;0;...
242 0;-12;0;48;0;24;0;-12;12;-12;0;-12;-12;24;-24;0;12;0;-12;0;0;-12;48;0;0;...
243 0;-24;24;-12;0;0;-12;12;-12;0;0;-24;-12;-12;0;48;0;24;0;0;0;-12;0;-12;...
244 -12;0;0;0;-24;12;-12;-12;48;-24;0;0;0;0;-12;12;0;-12;24;24;0;0;12;-12;...
245 48;0;0;-12;-12;12;-12;0;0;-12;12;0;0;0;24;48;0;12;-12;0;0;-12;0;-12;-12;...
246 -12;0;0;-24;48;-12;0;-12;0;0;-12;0;12;-12;-24;24;0;48;0;0;0;-24;24;-12;...



50

247 0;12;0;24;0;48;0;24;0;0;0;-12;12;-24;0;24;48;-24;0;0;-12;-12;-12;0;-24;...
248 0;48;0;0;0;-24;0;-12;0;-12;48;0;24;0;24;0;-12;12;48;0;-24;0;12;-12;-12;...
249 48;0;0;0;-24;-24;48;0;24;0;0;48;24;0;0;48;0;0;48;0;48 ] ); %

elemental stiffness matrix #3D#
250 Ke0( tril( ones( 24 ) ) == 1 ) = Ke';
251 Ke0 = reshape( Ke0, 24, 24 );
252 Ke0 = Ke0 + Ke0' - diag( diag( Ke0 ) ); %

recover full matrix
253

254 D = 1./((1+nu)*(1-2*nu))*[1-nu nu nu 0 0 0; nu 1-nu nu 0 0 0;... %
elastic matrix formulation

255 nu nu 1-nu 0 0 0; 0 0 0 (1-2*nu)/2 0 0; 0 0 0 0 (1-2*nu)/2 0;...
256 0 0 0 0 0 (1-2*nu)/2];
257

258 B_1=[-0.044658,0,0,0.044658,0,0,0.16667,0 %
strain matrix formulation

259 0,-0.044658,0,0,-0.16667,0,0,0.16667
260 0,0,-0.044658,0,0,-0.16667,0,0
261 -0.044658,-0.044658,0,-0.16667,0.044658,0,0.16667,0.16667
262 0,-0.044658,-0.044658,0,-0.16667,-0.16667,0,-0.62201
263 -0.044658,0,-0.044658,-0.16667,0,0.044658,-0.62201,0];
264 B_2=[0,-0.16667,0,0,-0.16667,0,0,0.16667
265 0,0,0.044658,0,0,-0.16667,0,0
266 -0.62201,0,0,-0.16667,0,0,0.044658,0
267 0,0.044658,-0.16667,0,-0.16667,-0.16667,0,-0.62201
268 0.16667,0,-0.16667,0.044658,0,0.044658,-0.16667,0
269 0.16667,-0.16667,0,-0.16667,0.044658,0,-0.16667,0.16667];
270 B_3=[0,0,0.62201,0,0,-0.62201,0,0
271 -0.62201,0,0,0.62201,0,0,0.16667,0
272 0,0.16667,0,0,0.62201,0,0,0.16667
273 0.16667,0,0.62201,0.62201,0,0.16667,-0.62201,0
274 0.16667,-0.62201,0,0.62201,0.62201,0,0.16667,0.16667
275 0,0.16667,0.62201,0,0.62201,0.16667,0,-0.62201];
276

277 B=[B_1,B_2,B_3];
278

279 % ----------------------------- PRE. 3) LOADS, SUPPORTS AND PASSIVE DOMAINS
280 F = [];
281 for i=1:size(Fl,2)
282 FF = fsparse(cell2mat(lcDof(i)), 1, cell2mat(Fl(i)), [nDof, 1] );
283 F = [F FF]; %

Define Loads
284 end
285 free = setdiff( 1 : nDof, fixed ); % set

of free DOFs
286 act = setdiff( ( 1 : nEl )', union( pasS, pasV ) ); % set

of active d.v.
287 % --------------------------------------- PRE. 4) DEFINE IMPLICIT FUNCTIONS
288 prj = @(v,eta,beta) (tanh(beta*eta)+tanh(beta*(v(:)-eta)))./...
289 (tanh(beta*eta)+tanh(beta*(1-eta))); %

projection
290 deta = @(v,eta,beta) - beta * csch( beta ) .* sech( beta * ( v( : ) - eta ) ).^2

.* ...
291 sinh( v( : ) * beta ) .* sinh( ( 1 - v( : ) ) * beta ); %

projection eta-derivative
292 dprj = @(v,eta,beta) beta*(1-tanh(beta*(v-eta)).^2)./(tanh(beta*eta)+tanh(beta

*(1-eta)));% proj. x-derivative
293 cnt = @(v,vCnt,l) v+(l>=vCnt{1}).*(v<vCnt{2}).*(mod(l,vCnt{3})==0).*vCnt{4};
294 % -------------------------------------------------- PRE. 5) PREPARE FILTER
295 [dy,dz,dx]=meshgrid(-ceil(rmin)+1:ceil(rmin)-1,...
296 -ceil(rmin)+1:ceil(rmin)-1,-ceil(rmin)+1:ceil(rmin)-1 );
297 h = max( 0, rmin - sqrt( dx.^2 + dy.^2 + dz.^2 ) ); % conv

. kernel #3D#
298 Hs = imfilter( ones( nely, nelz, nelx ), h, bcF ); %

matrix of weights (filter) #3D#
299 dHs = Hs;
300 % ------------------------ PRE. 6) ALLOCATE AND INITIALIZE OTHER PARAMETERS
301 [ x, dsK, dV ] = deal( zeros( nEl, 1 ) ); %

initialize vectors
302 dV( act, 1 ) = 1/nEl/volfrac; %

derivative of volume



51

303 x( act ) = ( volfrac*( nEl - length(pasV) ) - length(pasS) )/length( act );%
volume fraction on active set

304 x( pasS ) = 1; % set
x = 1 on pasS set

305 [ xPhys, xOld, ch, loop, U ] = deal( x, 1, 1, 0, zeros( nDof, size(Fl,2) ) );
% old x, x change, it. counter, U

306 % ================================================= START OPTIMIZATION LOOP
307 figure
308 h1 = axes;
309 set(h1,'xdir','reverse')
310 while ch > 1e-6 && loop < maxit
311 loop = loop + 1; %

update iter. counter
312 % ----------- RL. 1) COMPUTE PHYSICAL DENSITY FIELD (AND ETA IF PROJECT.)
313 xTilde = imfilter( reshape( x, nely, nelz, nelx ), h, bcF ) ./ Hs; %

filtered field #3D#
314 xPhys( act ) = xTilde( act ); %

reshape to column vector
315 if ft > 1 %

compute optimal eta* with Newton
316 f = ( mean( prj( xPhys, eta, beta ) ) - volfrac ) * (ft == 3); %

function (volume)
317 while abs( f ) > 1e-6 %

Newton process for finding opt. eta
318 eta = eta - f / mean( deta( xPhys, eta, beta ) );
319 f = mean( prj( xPhys, eta, beta ) ) - volfrac;
320 end
321 dHs = Hs ./ reshape( dprj( xPhys, eta, beta ), nely, nelz, nelx ); %

sensitivity modification #3D#
322 xPhys = prj( xPhys, eta, beta ); %

projected (physical) field
323 end
324 ch = norm( xPhys - xOld ) ./ nEl;
325 xOld = xPhys;
326 % -------------------------- RL. 2) SETUP AND SOLVE EQUILIBRIUM EQUATIONS
327 sK = ( Emin + xPhys.^penal * ( E0 - Emin ) );
328 dsK( act ) = -penal * ( E0 - Emin ) * xPhys( act ) .^ ( penal - 1 );
329 sK = reshape( Ke( : ) * sK', length( Ke ) * nEl, 1 );
330 K = fsparse( Iar( :, 1 ), Iar( :, 2 ), sK, [ nDof, nDof ] );
331 L = chol( K( free, free ), 'lower' );
332 U( free , : ) = L' \ ( L \ F( free , : ) ); % f/b

substitution
333 % ------------------------------------------ RL. 3) COMPUTE SENSITIVITIES
334 C = 0;
335 dc = 0;
336 for i = 1:size(Fl,2)
337 Ui = U(:,i);
338 Fi = F(:,i);
339 C = C + Fi'*Ui;
340 dc = dc + dsK .* sum( ( Ui( cMat ) * Ke0 ) .* Ui( cMat ), 2 );

% derivative of compliance
341 end
342 dc = imfilter( reshape( dc, nely, nelz, nelx ) ./ dHs, h, bcF ); %

filter objective sens. #3D#
343 dV0 = imfilter( reshape( dV, nely, nelz, nelx ) ./ dHs, h, bcF ); %

filter compliance sens. #3D#
344 % ----------------- RL. 4) UPDATE DESIGN VARIABLES AND APPLY CONTINUATION
345 xT = x( act );
346 [ xU, xL ] = deal( xT + move, xT - move ); %

current upper and lower bound
347 ocP = xT .* sqrt( - dc( act ) ./ dV0( act ) ); %

constant part in resizing rule
348 l = [ 0, mean( ocP ) / volfrac ]; %

initial estimate for LM
349 while ( l( 2 ) - l( 1 ) ) / ( l( 2 ) + l( 1 ) ) > 1e-4 % OC

resizing rule
350 lmid = 0.5 * ( l( 1 ) + l( 2 ) );
351 x( act ) = max( max( min( min( ocP / lmid, xU ), 1 ), xL ), 0 );
352 if mean( x ) > volfrac, l( 1 ) = lmid; else, l( 2 ) = lmid; end
353 end



52

354 [penal,beta] = deal(cnt(penal,penalCnt,loop), cnt(beta,betaCnt,loop)); %
apply conitnuation on parameters

355 % -------------------------- RL. 5) PRINT CURRENT RESULTS AND PLOT DESIGN
356

357 V=mean(xPhys(:));
358 fprintf( 'It.:%5i C:%6.5e V:%7.3f ch.:%0.2e penal:%7.2f beta:%7.1f eta:%7.2f lm

:%0.2e \n', ...
359 loop, C, V, ch, penal, beta, eta, lmid );
360 isovals = shiftdim( reshape( xPhys, nely, nelz, nelx ), 2 );
361 isovals = smooth3( isovals, 'box', 1 );
362 dcc = smooth3(shiftdim(dc,2));
363 sur = isosurface(isovals, .5);
364 cap = isocaps(isovals, .5);
365 p = patch(sur);
366 cp = patch(cap);
367 isonormals(isovals,p)
368 isonormals(isovals,cp)
369 isocolors(dcc,p)
370 isocolors(dcc,cp)
371 tur = turbo;
372 tur = flipud(tur);
373 colormap(tur)
374 p.FaceColor = 'interp';
375 cp.FaceColor = 'interp';
376 drawnow; view( [ 145, 25 ] ); axis equal tight off;
377

378 if loop == maxit || ch <= 1e-6
379 result.faces = [sur.faces; cap.faces+length(sur.vertices(:,1))];
380 result.vertices = [sur.vertices; cap.vertices];
381 rdcc = dcc;
382 risovals = isovals;
383 rp = patch(result);
384 isonormals(isovals,rp)
385 isocolors(dcc,rp)
386 colormap(tur)
387 rp.FaceColor = 'interp';
388 perf.C = C;
389 perf.V = V;
390

391 MISES=zeros(nEl,size(Fl,2)); %von Mises stress vector
392 misesmax=zeros(nEl,1);
393 for j = 1:size(Fl,2)
394 Uj = U(:,j);
395 for i=1:nEl
396 temp=xPhys(i)^q*(D*B*Uj(cMat(i,:)))';
397 MISES(i,j)=sqrt(0.5*((temp(1)-temp(2))^2+(temp(1)-temp(3))^2....
398 +(temp(2)-temp(3))^2+6*sum(temp(4:6).^2)));
399 if abs(MISES(i,j)) > abs(misesmax(i))
400 misesmax(i)=MISES(i,j);
401 end
402 end
403 end
404 VonMisesMax = max(MISES,[],'all');
405 vonmises = shiftdim(reshape(misesmax,nely,nelz,nelx),2);
406 else
407 cla();
408 end
409 end
410 end
411 end
412

413 methods (Access = private)
414

415 function FcslistboxValueChanged(app,~,~)
416 delete(app.selected)
417 if ~isempty(app.ConstraintsListBox.Items)
418 app.ConstraintsListBox.Value = {};
419 end
420 if ~isempty(app.VoidsListBox.Items)
421 app.VoidsListBox.Value = {};
422 end



53

423 if ~isempty(app.SolidsListBox.Items)
424 app.SolidsListBox.Value = {};
425 end
426

427 LC = find(strcmp(string(app.TabGroupLC.SelectedTab.Title),cat(1,app.LCtabs.Title)
));

428

429 allforces = cat(1,app.Forces.lc);
430 jndex = find(allforces==LC);
431 lcforces = app.Forces(jndex);
432

433 if LC == 1
434 index = find(ismember(app.ForcesListBox.Items, app.ForcesListBox.Value));
435 else
436 index = find(ismember(app.LCtabs(LC).lbx.Items, app.LCtabs(LC).lbx.Value));
437 end
438

439 app.selected = plot3(app.UIAxesNodes,app.nodes(lcforces(index).nodes,1),app.nodes
(lcforces(index).nodes,2),app.nodes(lcforces(index).nodes,3),'m*');

440 end
441

442 function ImportMyGeometry(app, filename)
443 data = stlread(filename);
444 delete(app.geom)
445 gray = [.6 .6 .6];
446 app.geom = trisurf(data,'Parent',app.UIAxesNodes,'FaceAlpha',0.5,'edgecolor',gray,

'facecolor',gray);
447 axis(app.UIAxesNodes,'equal')
448 hold(app.UIAxesNodes,'on')
449 model = createpde;
450 importGeometry(model,filename);
451 mesh = generateMesh(model);
452 app.Volume = volume(mesh); %in mm^3, *10^-9 voor m^3
453 end
454

455 function [result] = GetResultFromSelectedDataPoint(app)
456 cla(app.UIAxesSelection)
457 cla(app.UIAxesSelection_2)
458 tur = turbo;
459 tur = flipud(tur);
460 app.TextArea.Value = "";
461 for k = 1:length(app.Materials)
462 Y = get(app.resplot(k), 'YData');
463 brush = get(app.resplot(k), 'BrushData');
464 if ~isempty(Y(logical(brush)))
465 by = Y(logical(brush));
466 by = round(by*app.maxcomp);
467 end
468 end
469 if length(by)==1
470 [I1,~,I3] = ind2sub(size(app.Data(:,2,:)),find(ismember(round(app.Data(:,2,:)

),by)));
471 result.faces = app.Result(I1).faces;
472 result.vertices = app.Result(I1).vertices;
473 dcc = app.Result(I1).dcc;
474 isovals = app.Result(I1).isovals;
475 vonmises = app.Result(I1).vonmises;
476

477 xlabel(app.UIAxesSelection, 'Y')
478 ylabel(app.UIAxesSelection, 'X')
479 zlabel(app.UIAxesSelection, 'Z')
480 set(app.UIAxesSelection,'XTickLabel',[])
481 set(app.UIAxesSelection,'YTickLabel',[])
482 set(app.UIAxesSelection,'ZTickLabel',[])
483 set(app.UIAxesSelection,'xdir','reverse');
484 title(app.UIAxesSelection,'Compliance Sensitivity (J)')
485

486 rp = patch(app.UIAxesSelection, result);
487 isonormals(isovals,rp)
488 isocolors(dcc,rp)
489 rp.FaceColor = 'interp';



54

490 colormap(app.UIAxesSelection,tur)
491 colorbar(app.UIAxesSelection)
492 view(app.UIAxesSelection, [ 145, 25 ]);
493 axis(app.UIAxesSelection, "equal");
494

495 xlabel(app.UIAxesSelection_2, 'Y')
496 ylabel(app.UIAxesSelection_2, 'X')
497 zlabel(app.UIAxesSelection_2, 'Z')
498 set(app.UIAxesSelection_2,'XTickLabel',[])
499 set(app.UIAxesSelection_2,'YTickLabel',[])
500 set(app.UIAxesSelection_2,'ZTickLabel',[])
501 set(app.UIAxesSelection_2,'xdir','reverse');
502 title(app.UIAxesSelection_2,'Von Mises Stress (MPa)')
503

504 rps = patch(app.UIAxesSelection_2, result);
505 isonormals(isovals,rps)
506 isocolors(vonmises,rps)
507 rps.FaceColor = 'interp';
508 colormap(app.UIAxesSelection_2,'turbo')
509 colorbar(app.UIAxesSelection_2)
510 view(app.UIAxesSelection_2, [ 145, 25 ]);
511 axis(app.UIAxesSelection_2, "equal");
512

513 tabresult=struct();
514 tabresult.comp = app.Data(I1,2,I3);
515 tabresult.mass = app.Data(I1,4,I3);
516 tabresult.stress = app.Data(I1,5,I3);
517 tabresult.VF = app.Data(I1,1,I3);
518 tabresult.fr = app.Data(I1,3,I3);
519 tabresult.mat = app.Materials(I3).name;
520

521 app.UITableSelection.Data = struct2table(tabresult);
522 else
523 app.TextArea.Value = "Please select a single data point";
524 result=0;
525 end
526 end
527 end
528

529

530 % Callbacks that handle component events
531 methods (Access = private)
532

533 % Code that executes after component creation
534 function startupFcn(app)
535 app.maxit = app.MaxIterationsperrunSpinner.Value;
536 app.Constr = [];
537 app.Forces = [];
538 app.Voids = [];
539 app.Solids = [];
540 app.actnod = [];
541 app.LCtabs = [];
542 app.Materials = [];
543 tab1 = struct();
544 tab1.Tab = app.LC_1Tab;
545 tab1.Title = app.LC_1Tab.Title;
546 tab1.lbx = app.ForcesListBox;
547 tab1.lbl = app.ForcesListBoxLabel;
548 app.LCtabs = tab1;
549 app.axess = [];
550 app.DataTable = [];
551 app.UITableData.SelectionType = 'row';
552 app.UITableData.ColumnSortable = true;
553 close all
554 end
555

556 % Value changed function: MeshrefinementSlider
557 function MeshrefinementSliderValueChanged(app, event)
558 app.nelx = round(app.MeshrefinementSlider.Value);
559 app.MeshrefinementSlider.Value = app.nelx;
560 end



55

561

562 % Button pushed function: ShowNodesButton
563 function ShowNodesButtonPushed(app, event)
564 app.Voids = [];
565 app.actnod = [];
566 app.Constr = [];
567 app.Forces = [];
568 app.Voids = [];
569 app.Solids = [];
570 app.VoidsListBox.Items = {};
571 app.ConstraintsListBox.Items = {};
572 app.SolidsListBox.Items = {};
573 for i=1:app.LoadCasesSpinner.Value
574 app.LCtabs(i).lbx.Items = {};
575 end
576

577 [stlcoords] = READ_stl(app.stlfile);
578 xco = squeeze( stlcoords(:,1,:) )';
579 yco = squeeze( stlcoords(:,2,:) )';
580 zco = squeeze( stlcoords(:,3,:) )';
581

582 app.nelx = round(app.MeshrefinementSlider.Value);
583

584 app.sz = (max(xco,[],'all')-min(xco,[],'all'))/app.nelx;
585 app.nely = round((max(yco,[],'all')-min(yco,[],'all'))/app.sz);
586 app.nelz = round((max(zco,[],'all')-min(zco,[],'all'))/app.sz);
587 app.nel = app.nelx*app.nely*app.nelz;
588 app.nodeNrs = reshape(1:(1+app.nelx)*(1+app.nely)*(1+app.nelz),1+app.nely,1+app.

nelz,1+app.nelx);
589 app.elemNrs = reshape(1:(app.nelx)*(app.nely)*(app.nelz),app.nely,app.nelz,app.

nelx);
590

591 app.nodes = zeros((app.nelx+1)*(app.nely+1)*(app.nelz+1),3);
592 n=1;
593 for i=min(xco,[],'all'):app.sz:max(xco,[],'all')
594 for k=(min(zco,[],'all')):app.sz:((min(zco,[],'all'))+(app.sz*app.nelz))
595 for j=(min(yco,[],'all')):app.sz:(min(yco,[],'all')+(app.sz*app.nely))
596 app.nodes(n,1)=i;
597 app.nodes(n,2)=j;
598 app.nodes(n,3)=k;
599 n=n+1;
600 end
601 end
602 end
603

604 if ~isempty(app.grid)
605 delete(app.grid)
606 end
607

608 app.actnod = (1:length(app.nodes))';
609 app.grid=plot3(app.UIAxesNodes,app.nodes(:,1),app.nodes(:,2),app.nodes(:,3),'bx')

;
610 end
611

612 % Button pushed function: VoxelizeButton
613 function VoxelizeButtonPushed(app, event)
614 if ismember('Voxelization',app.VoidsListBox.Items) == 0
615 app.actnod=[];
616 void=struct();
617 [OUTPUTgrid] = VOXELISE(app.nelx,app.nely,app.nelz,app.stlfile,'xyz');
618 void.elem = zeros(1,(app.nel-sum(OUTPUTgrid,'all')));
619 void.nodes = [];
620 m = 0;
621 n = 0;
622 for i=1:app.nelx
623 for k=1:app.nelz
624 for j=1:app.nely
625 n = n+1;
626 [y,z,x] = ind2sub(size(app.elemNrs),find(app.elemNrs == n));
627 if OUTPUTgrid(i,j,k) == 0
628 m = m+1;



56

629 void.elem(1,m) = n;
630 void.nodes = unique([void.nodes; app.nodeNrs(y,z,x); app.

nodeNrs(y+1,z,x); app.nodeNrs(y,z+1,x); app.nodeNrs(y+1,z
+1,x); app.nodeNrs(y,z,x+1); app.nodeNrs(y+1,z,x+1); app.
nodeNrs(y,z+1,x+1); app.nodeNrs(y+1,z+1,x+1)]);

631 else
632 app.actnod = unique([app.actnod; app.nodeNrs(y,z,x); app.

nodeNrs(y+1,z,x); app.nodeNrs(y,z+1,x); app.nodeNrs(y+1,z
+1,x); app.nodeNrs(y,z,x+1); app.nodeNrs(y+1,z,x+1); app.
nodeNrs(y,z+1,x+1); app.nodeNrs(y+1,z+1,x+1)]);

633 end
634 end
635 end
636 end
637

638 void.nodes = setdiff(void.nodes,app.actnod);
639

640 if isempty(void.nodes)
641 app.TextArea.Value = 'No elements to exclude for this geometry...';
642 else
643 void.name='Voxelization';
644 app.VoidsListBox.Items{end+1} = void.name;
645

646 if isempty(app.Voids)
647 app.Voids=void;
648 else
649 app.Voids=[app.Voids; void];
650 end
651

652 delete(app.grid)
653 app.grid = plot3(app.UIAxesNodes,app.nodes(app.actnod,1),app.nodes(app.

actnod,2),app.nodes(app.actnod,3),'bx');
654 end
655 else
656 app.TextArea.Value = 'Already voxelized... If mesh refinement has changed, 

first push Show Nodes button again';
657 end
658 end
659

660 % Button pushed function: ExtractNodesButton
661 function ExtractNodesButtonPushed(app, event)
662 if ~isempty(app.nodes)
663 if ~isempty(app.extracted)
664 delete(app.extracted)
665 end
666

667 X = get(app.grid, 'XData');
668 Y = get(app.grid, 'YData');
669 Z = get(app.grid, 'ZData');
670 brush = get(app.grid, 'BrushData');
671 bx = X(logical(brush));
672 by = Y(logical(brush));
673 bz = Z(logical(brush));
674

675 app.Snodes=zeros(length(bx),1);
676

677 for i=1:length(bx)
678 app.Snodes(i,1) = find(ismember(app.nodes,[bx(i) by(i) bz(i)],"rows"));
679 end
680 app.extracted = plot3(app.UIAxesNodes,app.nodes(app.Snodes,1),app.nodes(app.

Snodes,2),app.nodes(app.Snodes,3),'y*');
681 else
682 app.TextArea.Value = 'First Show Nodes...';
683 end
684 end
685

686 % Button pushed function: AddConstraintButton
687 function AddConstraintButtonPushed(app, event)
688 if ~isempty(app.Snodes)
689 if ~(app.XdirectionCheckBox.Value==0 && app.YdirectionCheckBox.Value == 0 &&

app.ZdirectionCheckBox.Value == 0)



57

690 app.TextArea.Value = '';
691 delete(app.extracted)
692 delete(app.con)
693 constr=struct();
694 constr.nodes=app.Snodes(:,1);
695

696 cn = 1;
697 while ismember(strcat('Constraint_',num2str(cn)), app.ConstraintsListBox.

Items)==1
698 cn=cn+1;
699 end
700

701 constr.name=strcat('Constraint_',num2str(cn));
702 app.ConstraintsListBox.Items{end+1} = constr.name;
703 constr.xyz = [0 0 0];
704

705 if app.XdirectionCheckBox.Value == 1
706 constr.xyz(1) = 1;
707 end
708

709 if app.YdirectionCheckBox.Value == 1
710 constr.xyz(2) = 1;
711 end
712

713 if app.ZdirectionCheckBox.Value == 1
714 constr.xyz(3) = 1;
715 end
716

717 if isempty(app.Constr)
718 app.Constr=constr;
719 else
720 app.Constr=[app.Constr; constr];
721 end
722

723 allconstr = cat(1,app.Constr.nodes);
724

725 app.con = plot3(app.UIAxesNodes,app.nodes(allconstr ,1),app.nodes(
allconstr ,2),app.nodes(allconstr ,3),'r*');

726 app.Snodes=[];
727 else
728 app.TextArea.Value = 'Select at least 1 fixed direction...';
729 end
730 else
731 app.TextArea.Value = 'First extract nodes...';
732 end
733 end
734

735 % Value changed function: ConstraintsListBox
736 function ConstraintsListBoxValueChanged(app, event)
737 index = find(ismember(app.ConstraintsListBox.Items, app.ConstraintsListBox.Value)

);
738 delete(app.selected)
739

740 if ~isempty(app.ForcesListBox.Items)
741 app.ForcesListBox.Value = {};
742 end
743 if ~isempty(app.VoidsListBox.Items)
744 app.VoidsListBox.Value = {};
745 end
746 if ~isempty(app.SolidsListBox.Items)
747 app.SolidsListBox.Value = {};
748 end
749

750 app.selected = plot3(app.UIAxesNodes,app.nodes(app.Constr(index).nodes,1),app.
nodes(app.Constr(index).nodes,2),app.nodes(app.Constr(index).nodes,3),'m*');

751 end
752

753 % Button pushed function: RemoveConstraintButton
754 function RemoveConstraintButtonPushed(app, event)
755 [~,idx] = ismember(app.ConstraintsListBox.Value,app.ConstraintsListBox.Items);
756 app.ConstraintsListBox.Items(idx) = [];



58

757 app.Constr(idx)=[];
758 delete(app.con)
759 delete(app.selected)
760

761 allconstr = cat(1,app.Constr.nodes);
762 app.con = plot3(app.UIAxesNodes,app.nodes(allconstr ,1),app.nodes(allconstr ,2),app

.nodes(allconstr ,3),'r*');
763 end
764

765 % Value changed function: LoadCasesSpinner
766 function LoadCasesSpinnerValueChanged(app, event)
767 value = app.LoadCasesSpinner.Value;
768

769 if value > length(app.LCtabs)
770 for i = (length(app.TabGroupLC.Children)+1):value
771 tab = struct();
772 tab.Tab = uitab(app.TabGroupLC,'Title',['LC_' num2str(i)],'

AutoResizeChildren','off','SizeChangedFcn',@LC_1TabSizeChanged);
773 tab.Title = strcat('LC_', num2str(i));
774 tab.lbx=uilistbox(tab.Tab,'Position',[66,8,(app.PosFTab.w-81),(app.

PosFTab.h-14)],'Items',{},'ValueChangedFcn',@app.
FcslistboxValueChanged);

775 tab.lbl=uilabel(tab.Tab,'Text','Forces','Position',[9,82,42,22],'
HorizontalAlignment','right');

776 app.LCtabs = [app.LCtabs; tab];
777 end
778 elseif value < length(app.LCtabs)
779 for i = value+1:length(app.TabGroupLC.Children)
780 delete(app.TabGroupLC.Children(end))
781 app.LCtabs(end) = [];
782 if ~isempty(app.Forces)
783 allforces = cat(1,app.Forces.lc);
784 index = find(allforces==i);
785 app.Forces(index) = [];
786 end
787 end
788 end
789 TabGroupLCSelectionChanged(app,event)
790 end
791

792 % Value changed function: ForcesListBox
793 function ForcesListBoxValueChanged(app, event)
794 delete(app.selected)
795

796 if ~isempty(app.ConstraintsListBox.Items)
797 app.ConstraintsListBox.Value = {};
798 end
799 if ~isempty(app.VoidsListBox.Items)
800 app.VoidsListBox.Value = {};
801 end
802 if ~isempty(app.SolidsListBox.Items)
803 app.SolidsListBox.Value = {};
804 end
805

806 LC = find(strcmp(string(app.TabGroupLC.SelectedTab.Title),cat(1,app.LCtabs.Title)
));

807

808 allforces = cat(1,app.Forces.lc);
809 jndex = find(allforces==LC);
810 lcforces = app.Forces(jndex);
811

812 if LC == 1
813 index = find(ismember(app.ForcesListBox.Items, app.ForcesListBox.Value));
814 else
815 index = find(ismember(app.LCtabs(LC).lbx.Items, app.LCtabs(LC).lbx.Value));
816 end
817

818 app.selected = plot3(app.UIAxesNodes,app.nodes(lcforces(index).nodes,1),app.nodes
(lcforces(index).nodes,2),app.nodes(lcforces(index).nodes,3),'m*');

819 end
820



59

821 % Button pushed function: AddForceButton
822 function AddForceButtonPushed(app, event)
823 if ~isempty(app.Snodes)
824 if app.XEditField.Value == 0 && app.YEditField.Value == 0 && app.ZEditField.

Value == 0
825 app.TextArea.Value = 'Magnitude of Force should not be 0';
826 else
827

828 app.TextArea.Value = '';
829

830 force=struct();
831 force.nodes=app.Snodes(:,1);
832 force.lc = find(strcmp(string(app.TabGroupLC.SelectedTab.Title),cat(1,app

.LCtabs.Title)));
833

834 cn = 1;
835 while ismember(strcat('LC_',num2str(force.lc),'_Force_',num2str(cn)), app

.LCtabs(force.lc).lbx.Items)==1
836 cn=cn+1;
837 end
838

839 force.name=strcat('LC_',num2str(force.lc),'_Force_',num2str(cn));
840 app.LCtabs(force.lc).lbx.Items{end+1} = force.name;
841

842 lcDofx=[];
843 lcDofy=[];
844 lcDofz=[];
845

846 if ~app.XEditField.Value == 0
847 lcDofx=(3*force.nodes)-2;
848 force.U = app.XEditField.Value*ones(length(force.nodes),1);
849 else
850 force.U = zeros(length(force.nodes),1);
851 end
852

853 if ~app.YEditField.Value == 0
854 lcDofy=(3*force.nodes)-1;
855 force.V = app.YEditField.Value*ones(length(force.nodes),1);
856 else
857 force.V = zeros(length(force.nodes),1);
858 end
859

860 if ~app.ZEditField.Value == 0
861 lcDofz=3*force.nodes;
862 force.W = app.ZEditField.Value*ones(length(force.nodes),1);
863 else
864 force.W = zeros(length(force.nodes),1);
865 end
866

867 force.lcDof = [lcDofx;lcDofy;lcDofz];
868 force.Fl = nonzeros([force.U/length(force.U); force.V/length(force.V);

force.W/length(force.W)]);
869

870 if isempty(app.Forces)
871 app.Forces=force;
872 else
873 app.Forces=[app.Forces; force];
874 end
875

876 TabGroupLCSelectionChanged(app, event)
877

878 app.Snodes=[];
879

880 end
881 else
882 app.TextArea.Value = 'First extract nodes...';
883 end
884 end
885

886 % Button pushed function: RemoveForceButton
887 function RemoveForceButtonPushed(app, event)



60

888 LC = find(strcmp(string(app.TabGroupLC.SelectedTab.Title),cat(1,app.LCtabs.Title)
));

889

890 allforces = cat(1,app.Forces.lc);
891 jndex = find(allforces==LC);
892 lcforces = app.Forces(jndex);
893

894 if LC == 1
895 index = find(ismember(app.ForcesListBox.Items, app.ForcesListBox.Value));
896 else
897 index = find(ismember(app.LCtabs(LC).lbx.Items, app.LCtabs(LC).lbx.Value));
898 end
899

900 app.LCtabs(LC).lbx.Items(index) = [];
901 idx = find(strcmp(string(lcforces(index).name), cat(1,app.Forces.name)));
902 app.Forces(idx) = [];
903

904 TabGroupLCSelectionChanged(app, event)
905 end
906

907 % Button pushed function: AddVoidButton
908 function AddVoidButtonPushed(app, event)
909 if ~isempty(app.Snodes)
910 app.TextArea.Value = '';
911 delete(app.extracted)
912 void=struct();
913 void.nodes=app.Snodes(:,1);
914

915 cn = 1;
916 while ismember(strcat('Void_',num2str(cn)), app.VoidsListBox.Items)==1
917 cn=cn+1;
918 end
919

920 void.name=strcat('Void_',num2str(cn));
921 app.VoidsListBox.Items{end+1} = void.name;
922 void.elem=[];
923

924 for x=1:app.nelx
925 for z=1:app.nelz
926 for y=1:app.nely
927 if ismember(app.nodeNrs(y,z,x),void.nodes) == 1 ...
928 && ismember(app.nodeNrs(y+1,z,x),void.nodes) == 1 ...
929 && ismember(app.nodeNrs(y,z+1,x),void.nodes) == 1 ...
930 && ismember(app.nodeNrs(y+1,z+1,x),void.nodes) == 1 ...
931 && ismember(app.nodeNrs(y,z,x+1),void.nodes) == 1 ...
932 && ismember(app.nodeNrs(y+1,z,x+1),void.nodes) == 1 ...
933 && ismember(app.nodeNrs(y,z+1,x+1),void.nodes) == 1 ...
934 && ismember(app.nodeNrs(y+1,z+1,x+1),void.nodes) == 1
935 void.elem = [void.elem app.elemNrs(y,z,x)];
936 end
937 end
938 end
939 end
940

941 if isempty(app.Voids)
942 app.Voids=void;
943 else
944 app.Voids=[app.Voids; void];
945 end
946

947 allvoids = unique(cat(1,app.Voids.nodes));
948 app.actnod = setdiff(app.actnod,allvoids);
949

950 delete(app.grid)
951 app.grid = plot3(app.UIAxesNodes,app.nodes(app.actnod,1),app.nodes(app.actnod

,2),app.nodes(app.actnod,3),'bx');
952

953 app.Snodes=[];
954

955 else
956 app.TextArea.Value = 'First extract nodes...';



61

957 end
958 end
959

960 % Value changed function: VoidsListBox
961 function VoidsListBoxValueChanged(app, event)
962 index = find(ismember(app.VoidsListBox.Items, app.VoidsListBox.Value));
963

964 delete(app.selected)
965

966 if ~isempty(app.ConstraintsListBox.Items)
967 app.ConstraintsListBox.Value = {};
968 end
969 if ~isempty(app.ForcesListBox.Items)
970 app.ForcesListBox.Value = {};
971 end
972 if ~isempty(app.SolidsListBox.Items)
973 app.SolidsListBox.Value = {};
974 end
975

976 app.selected = plot3(app.UIAxesNodes,app.nodes(app.Voids(index).nodes,1),app.
nodes(app.Voids(index).nodes,2),app.nodes(app.Voids(index).nodes,3),'x');

977 app.selected.Color = [.9 .9 .9];
978 end
979

980 % Button pushed function: RemoveVoidButton
981 function RemoveVoidButtonPushed(app, event)
982 [~,idx] = ismember(app.VoidsListBox.Value,app.VoidsListBox.Items);
983 app.VoidsListBox.Items(idx) = [];
984 app.actnod = [app.actnod; app.Voids(idx).nodes];
985 app.Voids(idx)=[];
986

987 delete(app.grid)
988 delete(app.selected)
989

990 app.grid = plot3(app.UIAxesNodes,app.nodes(app.actnod,1),app.nodes(app.actnod,2),
app.nodes(app.actnod,3),'bx');

991 end
992

993 % Button pushed function: AddSolidButton
994 function AddSolidButtonPushed(app, event)
995 if ~isempty(app.Snodes)
996 app.TextArea.Value = '';
997 delete(app.extracted)
998 delete(app.sol)
999 solid=struct();

1000 solid.nodes=app.Snodes(:,1);
1001

1002 cn = 1;
1003

1004 while ismember(strcat('Solid_',num2str(cn)), app.SolidsListBox.Items)==1
1005 cn=cn+1;
1006 end
1007

1008 solid.name=strcat('Solid_',num2str(cn));
1009 app.SolidsListBox.Items{end+1} = solid.name;
1010 solid.elem=[];
1011

1012 for x=1:app.nelx
1013 for z=1:app.nelz
1014 for y=1:app.nely
1015 if ismember(app.nodeNrs(y,z,x),solid.nodes) == 1 ...
1016 && ismember(app.nodeNrs(y+1,z,x),solid.nodes) == 1 ...
1017 && ismember(app.nodeNrs(y,z+1,x),solid.nodes) == 1 ...
1018 && ismember(app.nodeNrs(y+1,z+1,x),solid.nodes) == 1 ...
1019 && ismember(app.nodeNrs(y,z,x+1),solid.nodes) == 1 ...
1020 && ismember(app.nodeNrs(y+1,z,x+1),solid.nodes) == 1 ...
1021 && ismember(app.nodeNrs(y,z+1,x+1),solid.nodes) == 1 ...
1022 && ismember(app.nodeNrs(y+1,z+1,x+1),solid.nodes) == 1
1023 solid.elem = [solid.elem app.elemNrs(y,z,x)];
1024 end
1025 end



62

1026 end
1027 end
1028

1029 if isempty(app.Solids)
1030 app.Solids=solid;
1031 else
1032 app.Solids=[app.Solids; solid];
1033 end
1034

1035 allsolids = cat(1,app.Solids.nodes);
1036 app.sol = plot3(app.UIAxesNodes,app.nodes(allsolids ,1),app.nodes(allsolids ,2)

,app.nodes(allsolids ,3),'k*');
1037

1038 app.Snodes=[];
1039 else
1040 app.TextArea.Value = 'First extract nodes...';
1041 end
1042 end
1043

1044 % Value changed function: SolidsListBox
1045 function SolidsListBoxValueChanged(app, event)
1046 index = find(ismember(app.SolidsListBox.Items, app.SolidsListBox.Value));
1047 delete(app.selected)
1048

1049 if ~isempty(app.ConstraintsListBox.Items)
1050 app.ConstraintsListBox.Value = {};
1051 end
1052 if ~isempty(app.ForcesListBox.Items)
1053 app.ForcesListBox.Value = {};
1054 end
1055 if ~isempty(app.VoidsListBox.Items)
1056 app.VoidsListBox.Value = {};
1057 end
1058

1059 app.selected = plot3(app.UIAxesNodes,app.nodes(app.Solids(index).nodes,1),app.
nodes(app.Solids(index).nodes,2),app.nodes(app.Solids(index).nodes,3),'m*');

1060 end
1061

1062 % Button pushed function: RemoveSolidButton
1063 function RemoveSolidButtonPushed(app, event)
1064 [~,idx] = ismember(app.SolidsListBox.Value,app.SolidsListBox.Items);
1065 app.SolidsListBox.Items(idx) = [];
1066 app.Solids(idx)=[];
1067

1068 allsolids = cat(1,app.Solids.nodes);
1069

1070 delete(app.sol)
1071 delete(app.selected)
1072

1073 app.sol = plot3(app.UIAxesNodes,app.nodes(allsolids ,1),app.nodes(allsolids ,2),app
.nodes(allsolids ,3),'k*');

1074 end
1075

1076 % Value changed function: VolFracSpinner
1077 function VolFracSpinnerValueChanged(app, event)
1078 value = app.VolFracSpinner.Value;
1079 end
1080

1081 % Value changed function: MaxIterationsperrunSpinner
1082 function MaxIterationsperrunSpinnerValueChanged(app, event)
1083 app.maxit = app.MaxIterationsperrunSpinner.Value;
1084 end
1085

1086 % Value changed function: FilterRadiusSpinner
1087 function FilterRadiusSpinnerValueChanged(app, event)
1088 value = app.FilterRadiusSpinner.Value;
1089 end
1090

1091 % Value changed function: YoungsModulusSpinner
1092 function YoungsModulusSpinnerValueChanged(app, event)
1093 value = app.YoungsModulusSpinner.Value;



63

1094 end
1095

1096 % Value changed function: PoissonratioSpinner
1097 function PoissonratioSpinnerValueChanged(app, event)
1098 value = app.PoissonratioSpinner.Value;
1099 end
1100

1101 % Menu selected function: ResetAllMenu
1102 function ResetAllMenuSelected(app, event)
1103 ResetAll(app)
1104 end
1105

1106 % Button pushed function: AddMaterialButton
1107 function AddMaterialButtonPushed(app, event)
1108 material=struct();
1109 material.name = app.MaterialNameEditField.Value;
1110 material.E = app.YoungsModulusSpinner.Value;
1111 material.rho = app.DensitySpinner.Value;
1112 material.nu = app.PoissonratioSpinner.Value;
1113 app.Materials = [app.Materials; material];
1114 app.UITableMaterials.Data = struct2table(app.Materials);
1115 end
1116

1117 % Button pushed function: RemoveMaterialButton
1118 function RemoveMaterialButtonPushed(app, event)
1119 idx = app.UITableMaterials.Selection(1);
1120 app.Materials(idx) = [];
1121 app.UITableMaterials.Data = struct2table(app.Materials);
1122 end
1123

1124 % Value changed function: PresetsDropDown
1125 function PresetsDropDownValueChanged(app, event)
1126 value = app.PresetsDropDown.Value;
1127 if value == "Structural steel S235JR"
1128 app.MaterialNameEditField.Value = "Structural steel S235JR";
1129 app.YoungsModulusSpinner.Value = 206000;
1130 app.DensitySpinner.Value = 7850;
1131 app.PoissonratioSpinner.Value = 0.3;
1132 elseif value == "Aluminum AlSi12"
1133 app.MaterialNameEditField.Value = "Aluminum AlSi12";
1134 app.YoungsModulusSpinner.Value = 72000;
1135 app.DensitySpinner.Value = 2650;
1136 app.PoissonratioSpinner.Value = 0.27;
1137 elseif value == "Titanium Alloy"
1138 app.MaterialNameEditField.Value = "Titanium Alloy";
1139 app.YoungsModulusSpinner.Value = 110000;
1140 app.DensitySpinner.Value = 4430;
1141 app.PoissonratioSpinner.Value = 0.34;
1142 end
1143 end
1144

1145 % Value changed function: TextArea
1146 function TextAreaValueChanged(app, event)
1147 value = app.TextArea.Value;
1148 end
1149

1150 % Value changed function: XEditField
1151 function XEditFieldValueChanged(app, event)
1152 value = app.XEditField.Value;
1153 end
1154

1155 % Value changed function: XdirectionCheckBox
1156 function XdirectionCheckBoxValueChanged(app, event)
1157 value = app.XdirectionCheckBox.Value;
1158 end
1159

1160 % Value changed function: YdirectionCheckBox
1161 function YdirectionCheckBoxValueChanged(app, event)
1162 value = app.YdirectionCheckBox.Value;
1163 end
1164



64

1165 % Value changed function: ZdirectionCheckBox
1166 function ZdirectionCheckBoxValueChanged(app, event)
1167 value = app.ZdirectionCheckBox.Value;
1168 end
1169

1170 % Value changed function: DensitySpinner
1171 function DensitySpinnerValueChanged(app, event)
1172 value = app.DensitySpinner.Value;
1173 end
1174

1175 % Selection changed function: UITableMaterials
1176 function UITableMaterialsSelectionChanged(app, event)
1177 selection = app.UITableMaterials.Selection;
1178 end
1179

1180 % Button pushed function: ShowDesignDataButton
1181 function ShowDesignDataButtonPushed(app, event)
1182 [~] = GetResultFromSelectedDataPoint(app);
1183 end
1184

1185 % Selection changed function: UITableData
1186 function UITableDataSelectionChanged(app, event)
1187 idx = app.UITableData.Selection;
1188

1189 cla(app.UIAxesTableSelection)
1190 cla(app.UIAxesTableSelection_2)
1191 tur = turbo;
1192 tur = flipud(tur);
1193

1194 result.faces = app.Result(idx).faces;
1195 result.vertices = app.Result(idx).vertices;
1196 dcc = app.Result(idx).dcc;
1197 isovals = app.Result(idx).isovals;
1198 vonmises = app.Result(idx).vonmises;
1199

1200 xlabel(app.UIAxesTableSelection , 'Y')
1201 ylabel(app.UIAxesTableSelection , 'X')
1202 zlabel(app.UIAxesTableSelection , 'Z')
1203 set(app.UIAxesTableSelection ,'XTickLabel',[])
1204 set(app.UIAxesTableSelection ,'YTickLabel',[])
1205 set(app.UIAxesTableSelection ,'ZTickLabel',[])
1206

1207 set(app.UIAxesTableSelection ,'xdir','reverse');
1208 title(app.UIAxesTableSelection ,'Compliance Sensitivity (J)')
1209

1210 rp = patch(app.UIAxesTableSelection , result);
1211 isonormals(isovals,rp)
1212 isocolors(dcc,rp)
1213 rp.FaceColor = 'interp';
1214 colormap(app.UIAxesTableSelection ,tur)
1215 colorbar(app.UIAxesTableSelection)
1216 view(app.UIAxesTableSelection , [ 145, 25 ]);
1217 axis(app.UIAxesTableSelection , "equal");
1218

1219 xlabel(app.UIAxesTableSelection_2 , 'Y')
1220 ylabel(app.UIAxesTableSelection_2 , 'X')
1221 zlabel(app.UIAxesTableSelection_2 , 'Z')
1222 set(app.UIAxesTableSelection_2 ,'XTickLabel',[])
1223 set(app.UIAxesTableSelection_2 ,'YTickLabel',[])
1224 set(app.UIAxesTableSelection_2 ,'ZTickLabel',[])
1225 set(app.UIAxesTableSelection_2 ,'xdir','reverse');
1226 title(app.UIAxesTableSelection_2 ,'Von Mises Stress (MPa)')
1227

1228 rps = patch(app.UIAxesTableSelection_2 , result);
1229 isonormals(isovals,rps)
1230 isocolors(vonmises,rps)
1231 rps.FaceColor = 'interp';
1232 colormap(app.UIAxesTableSelection_2 ,'turbo')
1233 colorbar(app.UIAxesTableSelection_2)
1234 view(app.UIAxesTableSelection_2 , [ 145, 25 ]);
1235 axis(app.UIAxesTableSelection_2 , "equal");



65

1236 end
1237

1238 % Menu selected function: ImportGeometryMenu
1239 function ImportGeometryMenuSelected(app, event)
1240 ResetAll(app)
1241 [filename, ~]=uigetfile('*.stl');
1242 figure(app.UIFigure)
1243 if ~isequal(filename, 0) % User did not press Cancel:
1244 app.stlfile = filename;
1245 ImportMyGeometry(app,app.stlfile)
1246 end
1247 end
1248

1249 % Menu selected function: SaveSetupMenu
1250 function SaveSetupMenuSelected(app, event)
1251 [file, folder] = uiputfile('*.mat');
1252 if ~isequal(file, 0) % User did not press Cancel
1253 master = struct();
1254 master.geom = app.stlfile;
1255 master.clb = app.ConstraintsListBox.Items;
1256 master.vlb = app.VoidsListBox.Items;
1257 master.slb = app.SolidsListBox.Items;
1258

1259 master.maxit = app.MaxIterationsperrunSpinner.Value;
1260 master.volfracmin = app.VolFracSpinner.Value;
1261 master.volfracmax = app.VolFracSpinner_2.Value;
1262 master.volfracstep = app.StepVolFracSpinner.Value;
1263 master.filrmin = app.FilterRadiusSpinner.Value;
1264 master.filrmax = app.FilterRadiusSpinner_2.Value;
1265 master.filrstep = app.StepFilterRadiusSpinner.Value;
1266

1267 master.materials = app.Materials;
1268 master.lc = app.LoadCasesSpinner.Value;
1269

1270 master.nelx = app.nelx;
1271 master.nely = app.nely;
1272 master.nelz = app.nelz;
1273 master.sz = app.sz;
1274

1275 master.constr = app.Constr;
1276 master.forces = app.Forces;
1277 master.voids = app.Voids;
1278 master.solids = app.Solids;
1279 master.nodes = app.nodes;
1280 master.actnod = app.actnod;
1281

1282 master.LCtabs = app.LCtabs;
1283

1284 save(fullfile(folder, file), 'master')
1285 app.TextArea.Value = 'Setup file saved';
1286 end
1287 end
1288

1289 % Menu selected function: ImportSetupMenu
1290 function ImportSetupMenuSelected(app, event)
1291 ResetAll(app)
1292 [filename, ~]=uigetfile('*.mat');
1293 figure(app.UIFigure)
1294 if ~isequal(filename, 0)
1295 warning('off','MATLAB:appdesigner:appdesigner:LoadObjWarning')
1296 load(filename,'master');
1297 figure(app.UIFigure)
1298 app.stlfile = master.geom;
1299 app.MeshrefinementSlider.Value = master.nelx;
1300 app.ConstraintsListBox.Items = master.clb;
1301 app.VoidsListBox.Items = master.vlb;
1302 app.SolidsListBox.Items = master.slb;
1303

1304 app.MaxIterationsperrunSpinner.Value = master.maxit;
1305 app.maxit = master.maxit;
1306 app.VolFracSpinner.Value = master.volfracmin;



66

1307 app.VolFracSpinner_2.Value = master.volfracmax;
1308 app.StepVolFracSpinner.Value = master.volfracstep;
1309 app.FilterRadiusSpinner.Value = master.filrmin;
1310 app.FilterRadiusSpinner_2.Value = master.filrmax;
1311 app.StepFilterRadiusSpinner.Value = master.filrstep;
1312

1313 app.Materials = master.materials;
1314 app.UITableMaterials.Data = struct2table(app.Materials);
1315

1316 app.LoadCasesSpinner.Value = master.lc;
1317

1318 LoadCasesSpinnerValueChanged(app,event)
1319

1320 for i=1:app.LoadCasesSpinner.Value
1321 app.LCtabs(i).lbx.Items = master.LCtabs(i).lbx.Items;
1322 end
1323

1324 app.nelx = master.nelx;
1325 app.nely = master.nely;
1326 app.nelz = master.nelz;
1327 app.sz = master.sz;
1328

1329 app.Constr = master.constr;
1330 app.Forces = master.forces;
1331 app.Voids = master.voids;
1332 app.Solids = master.solids;
1333 app.nodes = master.nodes;
1334 app.actnod = master.actnod;
1335

1336 ImportMyGeometry(app,app.stlfile)
1337

1338 app.nel = app.nelx*app.nely*app.nelz;
1339 app.nodeNrs = reshape(1:(1+app.nelx)*(1+app.nely)*(1+app.nelz),1+app.nely,1+

app.nelz,1+app.nelx);
1340 app.elemNrs = reshape(1:(app.nelx)*(app.nely)*(app.nelz),app.nely,app.nelz,

app.nelx);
1341

1342 if isempty(app.actnod)
1343 app.actnod = (1:length(app.nodes))';
1344 end
1345 app.grid = plot3(app.UIAxesNodes,app.nodes(app.actnod,1),app.nodes(app.actnod

,2),app.nodes(app.actnod,3),'bx');
1346

1347 allconstr = cat(1,app.Constr.nodes);
1348 app.con = plot3(app.UIAxesNodes,app.nodes(allconstr ,1),app.nodes(allconstr ,2)

,app.nodes(allconstr ,3),'r*');
1349

1350 if ~isempty(app.Solids)
1351 allsolids = cat(1,app.Solids.nodes);
1352 app.sol = plot3(app.UIAxesNodes,app.nodes(allsolids ,1),app.nodes(

allsolids ,2),app.nodes(allsolids ,3),'k*');
1353 end
1354 TabGroupLCSelectionChanged(app, event)
1355 end
1356 end
1357

1358 % Button pushed function: ExportSelectedSolutionasSTLButton
1359 function ExportSelectedSolutionasSTLButtonPushed(app, event)
1360 [result] = GetResultFromSelectedDataPoint(app);
1361 [file, folder] = uiputfile('*.stl');
1362 if ~isequal(file, 0) % User did not press Cancel:
1363 stlwrite(fullfile(folder, file), result)
1364 app.TextArea.Value = strcat('.STL file saved: ',file);
1365 end
1366 end
1367

1368 % Button pushed function: ExportSelectedSolutionasSTLButton_2
1369 function ExportSelectedSolutionasSTLButton_2Pushed(app, event)
1370 idx = app.UITableData.Selection;
1371 result.faces = app.Result(idx).faces;
1372 result.vertices = app.Result(idx).vertices;



67

1373 [file, folder] = uiputfile('*.stl');
1374 if ~isequal(file, 0) % User did not press Cancel:
1375 stlwrite(fullfile(folder, file), result)
1376 app.TextArea.Value = strcat('.STL file saved: ',file);
1377 end
1378 end
1379

1380 % Size changed function: DensityPlotsTab
1381 function DensityPlotsTabSizeChanged(app, event)
1382 position = app.DensityPlotsTab.Position;
1383 app.DTab.w=position(3);
1384 app.DTab.h=position(4);
1385 end
1386

1387 % Size changed function: LC_1Tab
1388 function LC_1TabSizeChanged(app, event)
1389 position = app.LC_1Tab.Position;
1390 app.PosFTab.w=position(3);
1391 app.PosFTab.h=position(4);
1392 for i=1:length(app.LCtabs)
1393 app.LCtabs(i).lbx.Position = [66,8,(app.PosFTab.w-81),(app.PosFTab.h-14)];
1394 end
1395 end
1396

1397 % Selection change function: TabGroupLC
1398 function TabGroupLCSelectionChanged(app, event)
1399 delete(app.extracted)
1400 delete(app.fcs)
1401 delete(app.arrow)
1402 delete(app.selected)
1403

1404 LC = find(strcmp(string(app.TabGroupLC.SelectedTab.Title),cat(1,app.LCtabs.Title)
));

1405 if ~isempty(app.Forces)
1406 allforces = cat(1,app.Forces.lc);
1407 index = find(allforces==LC);
1408 if ~isempty(index)
1409 allforces = cat(1,app.Forces(index).nodes);
1410 allforcesU = cat(1,app.Forces(index).U)/10;
1411 allforcesV = cat(1,app.Forces(index).V)/10;
1412 allforcesW = cat(1,app.Forces(index).W)/10;
1413

1414 app.fcs = plot3(app.UIAxesNodes,app.nodes(allforces ,1),app.nodes(
allforces ,2),app.nodes(allforces ,3),'g*');

1415

1416 app.arrow = quiver3(app.UIAxesNodes,app.nodes(allforces ,1),app.nodes(
allforces ,2),app.nodes(allforces ,3),allforcesU,allforcesV,allforcesW,
'g','LineWidth',2);

1417 end
1418 end
1419 end
1420

1421 % Button pushed function: RunButton
1422 function RunButtonPushed(app, event)
1423 if ~isempty(app.Constr)
1424 if ~isempty(app.Forces)
1425 if ~isempty(app.Materials)
1426 %% Cleaning
1427 delete(app.DensityPlotsTab.Children)
1428 cla(app.UIAxes)
1429 cla(app.UIAxesSelection)
1430 cla(app.UIAxesSelection_2)
1431 cla(app.UIAxesTableSelection)
1432 cla(app.UIAxesTableSelection_2)
1433 app.UITableSelection.Data = [];
1434 app.UITableData.Data = [];
1435 app.axess = [];
1436 app.axesL = [];
1437 app.Data = [];
1438 app.Result = [];
1439 app.DataTable = [];



68

1440

1441 if ~isempty(app.LocTab)
1442 delete(app.LocTab)
1443 end
1444

1445 %% General Parameters
1446 penal=3;
1447 ft=1;
1448 ftBC='N';
1449 eta=0.5;
1450 beta=1;
1451 move=0.2;
1452 tur = turbo;
1453 tur = flipud(tur);
1454

1455 %% Set Passive Voids & Solids
1456 if ~isempty(app.Voids)
1457 pasV = unique(cat(2,app.Voids.elem));
1458 else
1459 pasV = [];
1460 end
1461

1462 if ~isempty(app.Solids)
1463 pasS = unique(cat(2,app.Solids.elem));
1464 else
1465 pasS = [];
1466 end
1467

1468 %% Assemble fixed DoF for Constraints
1469 for i=1:length(app.Constr)
1470 if app.Constr(i).xyz(1) == 1
1471 fixedx=(3*app.Constr(i).nodes)-2;
1472 end
1473

1474 if app.Constr(i).xyz(2) == 1
1475 fixedy=(3*app.Constr(i).nodes)-1;
1476 end
1477

1478 if app.Constr(i).xyz(3) == 1
1479 fixedz=3*app.Constr(i).nodes;
1480 end
1481 app.Constr(i).fixed = sort([fixedx;fixedy;fixedz]);
1482 end
1483 fixed = cat(1,app.Constr.fixed);
1484

1485 %% Assemble lcDof and F for Forces
1486 lcDof = {};
1487 F = {};
1488

1489 for j = 1:app.LoadCasesSpinner.Value
1490 index = find(cat(1,app.Forces.lc)==j);
1491 allforces = app.Forces(index);
1492 lcDof(:,j) = {cat(1,allforces.lcDof)};
1493 F(:,j) = {cat(1,allforces.Fl)};
1494 end
1495

1496 %% Start Run
1497 app.TextArea.Value="Trying out different settings...";
1498 app.TabGroup.SelectedTab = app.DensityPlotsTab;
1499

1500 i = 1;
1501 x = [1 ((app.DTab.w-20)/3)+5 ((app.DTab.w-20)*2/3)+10];
1502 y = 1;
1503 xi = 1;
1504

1505 for volfr = app.VolFracSpinner.Value:app.StepVolFracSpinner.Value:app
.VolFracSpinner_2.Value

1506 for frmin = app.FilterRadiusSpinner.Value:app.
StepFilterRadiusSpinner.Value:app.FilterRadiusSpinner_2.Value

1507 for k = 1:length(app.Materials)



69

1508 [result, perf, dcc, isovals, MaxVonMises, vonmises] =
TOPGD_TO(app, app.nelx,app.nely,app.nelz,volfr,penal,
frmin,ft,ftBC,eta,beta,move,...

1509 app.Materials(k).E,app.Materials(k).nu,app.maxit,pasV
,pasS,fixed,lcDof,F);

1510 app.Data(i,:,k)=[perf.V perf.C frmin perf.V*app.Volume*(
app.Materials(k).rho*10^-6) MaxVonMises];

1511 app.Result(i).faces=result.faces;
1512 app.Result(i).vertices=result.vertices;
1513 app.Result(i).dcc = dcc;
1514 app.Result(i).isovals = isovals;
1515 app.Result(i).vonmises = vonmises;
1516

1517 run.comp = perf.C;
1518 run.mass = perf.V*app.Volume*(app.Materials(k).rho*10^-6)

;
1519 run.stress = MaxVonMises;
1520 run.VF = volfr;
1521 run.fr = frmin;
1522 run.mat = app.Materials(k).name;
1523 app.DataTable = [app.DataTable; run];
1524

1525 ax = uiaxes(app.DensityPlotsTab,'Position',[x(xi),y,((app
.DTab.w-20)/3),((app.DTab.w-20)/4)]);

1526 xlabel(ax, 'Y')
1527 ylabel(ax, 'X')
1528 zlabel(ax, 'Z')
1529 set(ax,'XTickLabel',[])
1530 set(ax,'YTickLabel',[])
1531 set(ax,'ZTickLabel',[])
1532 app.axess = [app.axess; ax];
1533 rp = patch(ax, result);
1534 set(ax,'xdir','reverse');
1535 isonormals(isovals,rp)
1536 isocolors(dcc,rp)
1537 rp.FaceColor = 'interp';
1538 colormap(ax,tur)
1539 view(ax, [ 145, 25 ]);
1540 axis(ax, "equal");
1541 titletext{1} = [strcat("Comp.: ",num2str(perf.C)," J","

Mass: ",num2str(perf.V*app.Volume*(app.Materials(k).
rho*10^-6))," g")];

1542 titletext{2} = [strcat("Material: ",app.Materials(k).name
)];

1543 titletext{3} = [strcat("Vol. frac.: ",num2str(volfr), "
Filter rad.: ",num2str(frmin))];

1544 title(ax,titletext);
1545

1546 i=i+1;
1547 if xi<3
1548 xi = xi+1;
1549 elseif xi == 3
1550 xi = 1;
1551 y = y + ((app.DTab.w-20)/4)+5;
1552 end
1553 end
1554 end
1555 end
1556

1557 app.TabGroup.SelectedTab = app.ComplianceMassGraphTab;
1558 hold(app.UIAxes,'on');
1559 app.maxmass = max(nonzeros(app.Data(:,4,:)),[],'all');
1560 app.maxcomp = max(nonzeros(app.Data(:,2,:)),[],'all');
1561 for k = 1:length(app.Materials)
1562 app.resplot(k) = plot(app.UIAxes,(nonzeros(app.Data(:,4,k))/app.

maxmass),(nonzeros(app.Data(:,2,k))/app.maxcomp),'+');
1563 end
1564 xlabel(app.UIAxes,'Mass (Normalized)');
1565 ylabel(app.UIAxes, 'Compliance (Normalized)');
1566 matrls = struct2cell(app.Materials);
1567 legend(app.UIAxes, matrls(1,:));



70

1568

1569 app.T = struct2table(app.DataTable);
1570 app.UITableData.Data = app.T;
1571 close all
1572 app.TextArea.Value="Results Plotted";
1573 else
1574 app.TextArea.Value = 'No Material defined';
1575 end
1576 else
1577 app.TextArea.Value = 'No Force defined';
1578 end
1579 else
1580 app.TextArea.Value = 'No Constraint defined';
1581 end
1582 end
1583

1584 % Button pushed function: ImportExcelButton
1585 function ImportExcelButtonPushed(app, event)
1586 [filename, ~]=uigetfile('*.xlsx');
1587 figure(app.UIFigure)
1588 if ~isequal(filename, 0)
1589 app.FT = readtable(filename);
1590 app.LoadCasesSpinner.Value = max(app.FT.LoadCase);
1591 LoadCasesSpinnerValueChanged(app,event)
1592 for i = 1:size(app.FT,1)
1593 force.lc = app.FT.LoadCase(i);
1594

1595 force.name=app.FT.Name{i};
1596 app.LCtabs(force.lc).lbx.Items{end+1} = force.name;
1597

1598 Fcoor = [app.FT.LocX(i) app.FT.LocY(i) app.FT.LocZ(i)];
1599

1600 k = dsearchn(app.nodes(app.actnod,:),Fcoor);
1601

1602 ndsx = app.actnod;
1603 ndsy = app.actnod;
1604 ndsz = app.actnod;
1605

1606 if app.FT.VariationX(i) == 0
1607 ndsx = find(app.nodes(app.actnod,1)==app.nodes(app.actnod(k),1));
1608 end
1609 if app.FT.VariationY(i) == 0
1610 ndsy = find(app.nodes(app.actnod,2)==app.nodes(app.actnod(k),2));
1611 end
1612 if app.FT.VariationZ(i) == 0
1613 ndsz = find(app.nodes(app.actnod,3)==app.nodes(app.actnod(k),3));
1614 end
1615 nds = intersect(intersect(ndsx,ndsy),ndsz);
1616

1617 if app.FT.VariationX(i) == 1 && app.FT.VariationY(i) == 1 && app.FT.
VariationZ(i) == 1

1618 ndss = app.nodes(app.actnod,:);
1619 else
1620 ndss=app.nodes(app.actnod(nds),:);
1621 end
1622

1623 ptCloud = pointCloud(ndss);
1624 r = app.FT.Radius(i);
1625

1626 [idx, ~] = findNeighborsInRadius(ptCloud,Fcoor,r);
1627 [~,force.nodes]=ismember(ndss(idx,:),app.nodes,'rows');
1628

1629 lcDofx=[];
1630 lcDofy=[];
1631 lcDofz=[];
1632 if ~app.FT.MagX(i) == 0
1633 lcDofx=(3*force.nodes)-2;
1634 force.U = app.FT.MagX(i)*ones(length(force.nodes),1);
1635 else
1636 force.U = zeros(length(force.nodes),1);
1637 end



71

1638

1639 if ~app.FT.MagY(i) == 0
1640 lcDofy=(3*force.nodes)-1;
1641 force.V = app.FT.MagY(i)*ones(length(force.nodes),1);
1642 else
1643 force.V = zeros(length(force.nodes),1);
1644 end
1645

1646 if ~app.FT.MagZ(i) == 0
1647 lcDofz=3*force.nodes;
1648 force.W = app.FT.MagZ(i)*ones(length(force.nodes),1);
1649 else
1650 force.W = zeros(length(force.nodes),1);
1651 end
1652

1653 force.lcDof = [lcDofx;lcDofy;lcDofz];
1654 force.Fl = nonzeros([force.U/length(force.U); force.V/length(force.V);

force.W/length(force.W)]);
1655

1656 if isempty(app.Forces)
1657 app.Forces=force;
1658 else
1659 app.Forces=[app.Forces; force];
1660 end
1661 end
1662 TabGroupLCSelectionChanged(app, event)
1663 end
1664 end
1665 end
1666

1667 % Component initialization
1668 methods (Access = private)
1669

1670 % Create UIFigure and components
1671 function createComponents(app)
1672

1673 % Create UIFigure and hide until all components are created
1674 app.UIFigure = uifigure('Visible', 'off');
1675 app.UIFigure.Position = [100 100 1221 707];
1676 app.UIFigure.Name = 'MATLAB App';
1677

1678 % Create GeneralMenu
1679 app.GeneralMenu = uimenu(app.UIFigure);
1680 app.GeneralMenu.Text = 'General';
1681

1682 % Create SaveSetupMenu
1683 app.SaveSetupMenu = uimenu(app.GeneralMenu);
1684 app.SaveSetupMenu.MenuSelectedFcn = createCallbackFcn(app, @SaveSetupMenuSelected

, true);
1685 app.SaveSetupMenu.Text = 'Save Setup';
1686

1687 % Create ResetAllMenu
1688 app.ResetAllMenu = uimenu(app.GeneralMenu);
1689 app.ResetAllMenu.MenuSelectedFcn = createCallbackFcn(app, @ResetAllMenuSelected ,

true);
1690 app.ResetAllMenu.Text = 'Reset All';
1691

1692 % Create ImportMenu
1693 app.ImportMenu = uimenu(app.UIFigure);
1694 app.ImportMenu.Text = 'Import';
1695

1696 % Create ImportGeometryMenu
1697 app.ImportGeometryMenu = uimenu(app.ImportMenu);
1698 app.ImportGeometryMenu.MenuSelectedFcn = createCallbackFcn(app,

@ImportGeometryMenuSelected , true);
1699 app.ImportGeometryMenu.Text = 'Import Geometry';
1700

1701 % Create ImportSetupMenu
1702 app.ImportSetupMenu = uimenu(app.ImportMenu);
1703 app.ImportSetupMenu.MenuSelectedFcn = createCallbackFcn(app,

@ImportSetupMenuSelected , true);



72

1704 app.ImportSetupMenu.Text = 'Import Setup';
1705

1706 % Create TabGroup
1707 app.TabGroup = uitabgroup(app.UIFigure);
1708 app.TabGroup.Position = [0 68 1220 639];
1709

1710 % Create SetupTab
1711 app.SetupTab = uitab(app.TabGroup);
1712 app.SetupTab.Title = 'Setup';
1713

1714 % Create UIAxesNodes
1715 app.UIAxesNodes = uiaxes(app.SetupTab);
1716 title(app.UIAxesNodes, 'Setup Node View')
1717 xlabel(app.UIAxesNodes, 'X')
1718 ylabel(app.UIAxesNodes, 'Y')
1719 zlabel(app.UIAxesNodes, 'Z')
1720 app.UIAxesNodes.Position = [638 222 558 381];
1721

1722 % Create NodesPanel
1723 app.NodesPanel = uipanel(app.SetupTab);
1724 app.NodesPanel.Title = 'Nodes';
1725 app.NodesPanel.Position = [295 401 327 148];
1726

1727 % Create ShowNodesButton
1728 app.ShowNodesButton = uibutton(app.NodesPanel, 'push');
1729 app.ShowNodesButton.ButtonPushedFcn = createCallbackFcn(app,

@ShowNodesButtonPushed , true);
1730 app.ShowNodesButton.Position = [17 21 83 23];
1731 app.ShowNodesButton.Text = 'Show Nodes';
1732

1733 % Create ExtractNodesButton
1734 app.ExtractNodesButton = uibutton(app.NodesPanel, 'push');
1735 app.ExtractNodesButton.ButtonPushedFcn = createCallbackFcn(app,

@ExtractNodesButtonPushed , true);
1736 app.ExtractNodesButton.FontWeight = 'bold';
1737 app.ExtractNodesButton.Position = [220 21 96 23];
1738 app.ExtractNodesButton.Text = 'Extract Nodes';
1739

1740 % Create VoxelizeButton
1741 app.VoxelizeButton = uibutton(app.NodesPanel, 'push');
1742 app.VoxelizeButton.ButtonPushedFcn = createCallbackFcn(app, @VoxelizeButtonPushed

, true);
1743 app.VoxelizeButton.Position = [117 21 83 23];
1744 app.VoxelizeButton.Text = 'Voxelize ';
1745

1746 % Create MeshrefinementSliderLabel
1747 app.MeshrefinementSliderLabel = uilabel(app.NodesPanel);
1748 app.MeshrefinementSliderLabel.HorizontalAlignment = 'right';
1749 app.MeshrefinementSliderLabel.Position = [12 86 94 22];
1750 app.MeshrefinementSliderLabel.Text = 'Mesh refinement';
1751

1752 % Create MeshrefinementSlider
1753 app.MeshrefinementSlider = uislider(app.NodesPanel);
1754 app.MeshrefinementSlider.Limits = [5 50];
1755 app.MeshrefinementSlider.MajorTicks = [5 10 15 20 25 30 35 40 45 50];
1756 app.MeshrefinementSlider.ValueChangedFcn = createCallbackFcn(app,

@MeshrefinementSliderValueChanged , true);
1757 app.MeshrefinementSlider.Position = [127 95 180 3];
1758 app.MeshrefinementSlider.Value = 10;
1759

1760 % Create InputParametersPanel
1761 app.InputParametersPanel = uipanel(app.SetupTab);
1762 app.InputParametersPanel.Title = 'Input Parameters';
1763 app.InputParametersPanel.Position = [14 401 263 197];
1764

1765 % Create VolumeFractionLabel
1766 app.VolumeFractionLabel = uilabel(app.InputParametersPanel);
1767 app.VolumeFractionLabel.HorizontalAlignment = 'right';
1768 app.VolumeFractionLabel.Position = [8 124 115 22];
1769 app.VolumeFractionLabel.Text = 'Min Volume Fraction';
1770



73

1771 % Create VolFracSpinner
1772 app.VolFracSpinner = uispinner(app.InputParametersPanel);
1773 app.VolFracSpinner.Step = 0.1;
1774 app.VolFracSpinner.Limits = [0.01 1];
1775 app.VolFracSpinner.ValueChangedFcn = createCallbackFcn(app,

@VolFracSpinnerValueChanged , true);
1776 app.VolFracSpinner.Position = [148 124 97 22];
1777 app.VolFracSpinner.Value = 0.15;
1778

1779 % Create MaxIterationsperrunSpinnerLabel
1780 app.MaxIterationsperrunSpinnerLabel = uilabel(app.InputParametersPanel);
1781 app.MaxIterationsperrunSpinnerLabel.HorizontalAlignment = 'right';
1782 app.MaxIterationsperrunSpinnerLabel.Position = [8 145 125 22];
1783 app.MaxIterationsperrunSpinnerLabel.Text = 'Max. Iterations per run';
1784

1785 % Create MaxIterationsperrunSpinner
1786 app.MaxIterationsperrunSpinner = uispinner(app.InputParametersPanel);
1787 app.MaxIterationsperrunSpinner.Limits = [1 Inf];
1788 app.MaxIterationsperrunSpinner.ValueDisplayFormat = '%.0f';
1789 app.MaxIterationsperrunSpinner.ValueChangedFcn = createCallbackFcn(app,

@MaxIterationsperrunSpinnerValueChanged , true);
1790 app.MaxIterationsperrunSpinner.Position = [148 145 97 22];
1791 app.MaxIterationsperrunSpinner.Value = 50;
1792

1793 % Create FilterradiusLabel
1794 app.FilterradiusLabel = uilabel(app.InputParametersPanel);
1795 app.FilterradiusLabel.HorizontalAlignment = 'right';
1796 app.FilterradiusLabel.Position = [9 63 90 22];
1797 app.FilterradiusLabel.Text = 'Min Filter radius';
1798

1799 % Create FilterRadiusSpinner
1800 app.FilterRadiusSpinner = uispinner(app.InputParametersPanel);
1801 app.FilterRadiusSpinner.Step = 0.1;
1802 app.FilterRadiusSpinner.Limits = [0.1 Inf];
1803 app.FilterRadiusSpinner.ValueChangedFcn = createCallbackFcn(app,

@FilterRadiusSpinnerValueChanged , true);
1804 app.FilterRadiusSpinner.Position = [148 63 97 22];
1805 app.FilterRadiusSpinner.Value = 1.7;
1806

1807 % Create VolumeFractionLabel_2
1808 app.VolumeFractionLabel_2 = uilabel(app.InputParametersPanel);
1809 app.VolumeFractionLabel_2.HorizontalAlignment = 'right';
1810 app.VolumeFractionLabel_2.Position = [8 104 118 22];
1811 app.VolumeFractionLabel_2.Text = 'Max Volume Fraction';
1812

1813 % Create VolFracSpinner_2
1814 app.VolFracSpinner_2 = uispinner(app.InputParametersPanel);
1815 app.VolFracSpinner_2.Step = 0.1;
1816 app.VolFracSpinner_2.Limits = [0.01 1];
1817 app.VolFracSpinner_2.Position = [148 104 97 22];
1818 app.VolFracSpinner_2.Value = 0.35;
1819

1820 % Create FilterradiusLabel_2
1821 app.FilterradiusLabel_2 = uilabel(app.InputParametersPanel);
1822 app.FilterradiusLabel_2.HorizontalAlignment = 'right';
1823 app.FilterradiusLabel_2.Position = [9 42 94 22];
1824 app.FilterradiusLabel_2.Text = 'Max Filter radius';
1825

1826 % Create FilterRadiusSpinner_2
1827 app.FilterRadiusSpinner_2 = uispinner(app.InputParametersPanel);
1828 app.FilterRadiusSpinner_2.Step = 0.1;
1829 app.FilterRadiusSpinner_2.Limits = [0.1 Inf];
1830 app.FilterRadiusSpinner_2.Position = [148 42 97 22];
1831 app.FilterRadiusSpinner_2.Value = 2;
1832

1833 % Create VolumeFractionLabel_3
1834 app.VolumeFractionLabel_3 = uilabel(app.InputParametersPanel);
1835 app.VolumeFractionLabel_3.HorizontalAlignment = 'right';
1836 app.VolumeFractionLabel_3.Position = [7 83 120 22];
1837 app.VolumeFractionLabel_3.Text = 'Step Volume Fraction';
1838



74

1839 % Create StepVolFracSpinner
1840 app.StepVolFracSpinner = uispinner(app.InputParametersPanel);
1841 app.StepVolFracSpinner.Step = 0.1;
1842 app.StepVolFracSpinner.Limits = [0.01 1];
1843 app.StepVolFracSpinner.Position = [148 83 97 22];
1844 app.StepVolFracSpinner.Value = 0.1;
1845

1846 % Create FilterradiusLabel_3
1847 app.FilterradiusLabel_3 = uilabel(app.InputParametersPanel);
1848 app.FilterradiusLabel_3.HorizontalAlignment = 'right';
1849 app.FilterradiusLabel_3.Position = [7 21 96 22];
1850 app.FilterradiusLabel_3.Text = 'Step Filter radius';
1851

1852 % Create StepFilterRadiusSpinner
1853 app.StepFilterRadiusSpinner = uispinner(app.InputParametersPanel);
1854 app.StepFilterRadiusSpinner.Step = 0.1;
1855 app.StepFilterRadiusSpinner.Limits = [0.1 Inf];
1856 app.StepFilterRadiusSpinner.Position = [148 21 97 22];
1857 app.StepFilterRadiusSpinner.Value = 0.3;
1858

1859 % Create VoidRegionsPanel
1860 app.VoidRegionsPanel = uipanel(app.SetupTab);
1861 app.VoidRegionsPanel.Title = 'Void Regions';
1862 app.VoidRegionsPanel.Position = [412 216 210 175];
1863

1864 % Create VoidsListBoxLabel
1865 app.VoidsListBoxLabel = uilabel(app.VoidRegionsPanel);
1866 app.VoidsListBoxLabel.HorizontalAlignment = 'right';
1867 app.VoidsListBoxLabel.Position = [15 122 62 22];
1868 app.VoidsListBoxLabel.Text = 'Voids';
1869

1870 % Create VoidsListBox
1871 app.VoidsListBox = uilistbox(app.VoidRegionsPanel);
1872 app.VoidsListBox.Items = {};
1873 app.VoidsListBox.ValueChangedFcn = createCallbackFcn(app,

@VoidsListBoxValueChanged , true);
1874 app.VoidsListBox.Position = [81 57 116 89];
1875 app.VoidsListBox.Value = {};
1876

1877 % Create AddVoidButton
1878 app.AddVoidButton = uibutton(app.VoidRegionsPanel, 'push');
1879 app.AddVoidButton.ButtonPushedFcn = createCallbackFcn(app, @AddVoidButtonPushed ,

true);
1880 app.AddVoidButton.Position = [12 10 86 23];
1881 app.AddVoidButton.Text = 'Add Void';
1882

1883 % Create RemoveVoidButton
1884 app.RemoveVoidButton = uibutton(app.VoidRegionsPanel, 'push');
1885 app.RemoveVoidButton.ButtonPushedFcn = createCallbackFcn(app,

@RemoveVoidButtonPushed , true);
1886 app.RemoveVoidButton.Position = [111 10 87 23];
1887 app.RemoveVoidButton.Text = 'Remove Void';
1888

1889 % Create SolidRegionsPanel
1890 app.SolidRegionsPanel = uipanel(app.SetupTab);
1891 app.SolidRegionsPanel.Title = 'Solid Regions';
1892 app.SolidRegionsPanel.Position = [412 6 210 202];
1893

1894 % Create SolidsListBoxLabel
1895 app.SolidsListBoxLabel = uilabel(app.SolidRegionsPanel);
1896 app.SolidsListBoxLabel.HorizontalAlignment = 'right';
1897 app.SolidsListBoxLabel.Position = [15 149 62 22];
1898 app.SolidsListBoxLabel.Text = 'Solids';
1899

1900 % Create SolidsListBox
1901 app.SolidsListBox = uilistbox(app.SolidRegionsPanel);
1902 app.SolidsListBox.Items = {};
1903 app.SolidsListBox.ValueChangedFcn = createCallbackFcn(app,

@SolidsListBoxValueChanged , true);
1904 app.SolidsListBox.Position = [81 57 116 116];
1905 app.SolidsListBox.Value = {};



75

1906

1907 % Create AddSolidButton
1908 app.AddSolidButton = uibutton(app.SolidRegionsPanel, 'push');
1909 app.AddSolidButton.ButtonPushedFcn = createCallbackFcn(app, @AddSolidButtonPushed

, true);
1910 app.AddSolidButton.Position = [12 10 86 23];
1911 app.AddSolidButton.Text = 'Add Solid';
1912

1913 % Create RemoveSolidButton
1914 app.RemoveSolidButton = uibutton(app.SolidRegionsPanel, 'push');
1915 app.RemoveSolidButton.ButtonPushedFcn = createCallbackFcn(app,

@RemoveSolidButtonPushed , true);
1916 app.RemoveSolidButton.Position = [110 10 90 23];
1917 app.RemoveSolidButton.Text = 'Remove Solid';
1918

1919 % Create AppliedforceNPanel
1920 app.AppliedforceNPanel = uipanel(app.SetupTab);
1921 app.AppliedforceNPanel.Title = 'Applied force (N)';
1922 app.AppliedforceNPanel.Position = [14 5 381 203];
1923

1924 % Create AddForceButton
1925 app.AddForceButton = uibutton(app.AppliedforceNPanel, 'push');
1926 app.AddForceButton.ButtonPushedFcn = createCallbackFcn(app, @AddForceButtonPushed

, true);
1927 app.AddForceButton.Position = [25 11 100 23];
1928 app.AddForceButton.Text = 'Add Force';
1929

1930 % Create XEditFieldLabel
1931 app.XEditFieldLabel = uilabel(app.AppliedforceNPanel);
1932 app.XEditFieldLabel.HorizontalAlignment = 'right';
1933 app.XEditFieldLabel.Position = [5 154 13 22];
1934 app.XEditFieldLabel.Text = 'X';
1935

1936 % Create XEditField
1937 app.XEditField = uieditfield(app.AppliedforceNPanel, 'numeric');
1938 app.XEditField.ValueChangedFcn = createCallbackFcn(app, @XEditFieldValueChanged ,

true);
1939 app.XEditField.Position = [37 154 40 22];
1940

1941 % Create RemoveForceButton
1942 app.RemoveForceButton = uibutton(app.AppliedforceNPanel, 'push');
1943 app.RemoveForceButton.ButtonPushedFcn = createCallbackFcn(app,

@RemoveForceButtonPushed , true);
1944 app.RemoveForceButton.Position = [149 11 100 23];
1945 app.RemoveForceButton.Text = 'Remove Force';
1946

1947 % Create YEditFieldLabel
1948 app.YEditFieldLabel = uilabel(app.AppliedforceNPanel);
1949 app.YEditFieldLabel.HorizontalAlignment = 'right';
1950 app.YEditFieldLabel.Position = [5 133 13 22];
1951 app.YEditFieldLabel.Text = 'Y';
1952

1953 % Create YEditField
1954 app.YEditField = uieditfield(app.AppliedforceNPanel, 'numeric');
1955 app.YEditField.Position = [37 133 40 22];
1956

1957 % Create ZEditFieldLabel
1958 app.ZEditFieldLabel = uilabel(app.AppliedforceNPanel);
1959 app.ZEditFieldLabel.HorizontalAlignment = 'right';
1960 app.ZEditFieldLabel.Position = [5 112 13 22];
1961 app.ZEditFieldLabel.Text = 'Z';
1962

1963 % Create ZEditField
1964 app.ZEditField = uieditfield(app.AppliedforceNPanel, 'numeric');
1965 app.ZEditField.Position = [37 112 40 22];
1966

1967 % Create TabGroupLC
1968 app.TabGroupLC = uitabgroup(app.AppliedforceNPanel);
1969 app.TabGroupLC.SelectionChangedFcn = createCallbackFcn(app,

@TabGroupLCSelectionChanged , true);
1970 app.TabGroupLC.Position = [152 38 223 138];



76

1971

1972 % Create LC_1Tab
1973 app.LC_1Tab = uitab(app.TabGroupLC);
1974 app.LC_1Tab.AutoResizeChildren = 'off';
1975 app.LC_1Tab.SizeChangedFcn = createCallbackFcn(app, @LC_1TabSizeChanged, true);
1976 app.LC_1Tab.Title = 'LC_1';
1977

1978 % Create ForcesListBoxLabel
1979 app.ForcesListBoxLabel = uilabel(app.LC_1Tab);
1980 app.ForcesListBoxLabel.HorizontalAlignment = 'right';
1981 app.ForcesListBoxLabel.Position = [9 82 42 22];
1982 app.ForcesListBoxLabel.Text = 'Forces';
1983

1984 % Create ForcesListBox
1985 app.ForcesListBox = uilistbox(app.LC_1Tab);
1986 app.ForcesListBox.Items = {};
1987 app.ForcesListBox.ValueChangedFcn = createCallbackFcn(app,

@ForcesListBoxValueChanged , true);
1988 app.ForcesListBox.Position = [66 8 148 100];
1989 app.ForcesListBox.Value = {};
1990

1991 % Create LoadcasesLabel
1992 app.LoadcasesLabel = uilabel(app.AppliedforceNPanel);
1993 app.LoadcasesLabel.HorizontalAlignment = 'right';
1994 app.LoadcasesLabel.Position = [6 56 69 22];
1995 app.LoadcasesLabel.Text = 'Load Cases';
1996

1997 % Create LoadCasesSpinner
1998 app.LoadCasesSpinner = uispinner(app.AppliedforceNPanel);
1999 app.LoadCasesSpinner.Limits = [1 Inf];
2000 app.LoadCasesSpinner.RoundFractionalValues = 'on';
2001 app.LoadCasesSpinner.ValueChangedFcn = createCallbackFcn(app,

@LoadCasesSpinnerValueChanged , true);
2002 app.LoadCasesSpinner.Position = [82 56 53 22];
2003 app.LoadCasesSpinner.Value = 1;
2004

2005 % Create ImportExcelButton
2006 app.ImportExcelButton = uibutton(app.AppliedforceNPanel, 'push');
2007 app.ImportExcelButton.ButtonPushedFcn = createCallbackFcn(app,

@ImportExcelButtonPushed , true);
2008 app.ImportExcelButton.Position = [267 11 100 23];
2009 app.ImportExcelButton.Text = 'Import Excel';
2010

2011 % Create FixedconstraintPanel
2012 app.FixedconstraintPanel = uipanel(app.SetupTab);
2013 app.FixedconstraintPanel.Title = 'Fixed constraint';
2014 app.FixedconstraintPanel.Position = [14 216 381 175];
2015

2016 % Create XdirectionCheckBox
2017 app.XdirectionCheckBox = uicheckbox(app.FixedconstraintPanel);
2018 app.XdirectionCheckBox.ValueChangedFcn = createCallbackFcn(app,

@XdirectionCheckBoxValueChanged , true);
2019 app.XdirectionCheckBox.Text = 'X direction';
2020 app.XdirectionCheckBox.Position = [5 121 79 22];
2021

2022 % Create YdirectionCheckBox
2023 app.YdirectionCheckBox = uicheckbox(app.FixedconstraintPanel);
2024 app.YdirectionCheckBox.ValueChangedFcn = createCallbackFcn(app,

@YdirectionCheckBoxValueChanged , true);
2025 app.YdirectionCheckBox.Text = 'Y direction';
2026 app.YdirectionCheckBox.Position = [5 99 78 22];
2027

2028 % Create ZdirectionCheckBox
2029 app.ZdirectionCheckBox = uicheckbox(app.FixedconstraintPanel);
2030 app.ZdirectionCheckBox.ValueChangedFcn = createCallbackFcn(app,

@ZdirectionCheckBoxValueChanged , true);
2031 app.ZdirectionCheckBox.Text = 'Z direction';
2032 app.ZdirectionCheckBox.Position = [5 77 78 22];
2033

2034 % Create AddConstraintButton
2035 app.AddConstraintButton = uibutton(app.FixedconstraintPanel , 'push');



77

2036 app.AddConstraintButton.ButtonPushedFcn = createCallbackFcn(app,
@AddConstraintButtonPushed , true);

2037 app.AddConstraintButton.Position = [24 10 100 23];
2038 app.AddConstraintButton.Text = 'Add Constraint';
2039

2040 % Create ConstraintsListBoxLabel
2041 app.ConstraintsListBoxLabel = uilabel(app.FixedconstraintPanel);
2042 app.ConstraintsListBoxLabel.HorizontalAlignment = 'right';
2043 app.ConstraintsListBoxLabel.Position = [152 122 62 22];
2044 app.ConstraintsListBoxLabel.Text = 'Constraints';
2045

2046 % Create ConstraintsListBox
2047 app.ConstraintsListBox = uilistbox(app.FixedconstraintPanel);
2048 app.ConstraintsListBox.Items = {};
2049 app.ConstraintsListBox.ValueChangedFcn = createCallbackFcn(app,

@ConstraintsListBoxValueChanged , true);
2050 app.ConstraintsListBox.Position = [218 57 148 89];
2051 app.ConstraintsListBox.Value = {};
2052

2053 % Create RemoveConstraintButton
2054 app.RemoveConstraintButton = uibutton(app.FixedconstraintPanel , 'push');
2055 app.RemoveConstraintButton.ButtonPushedFcn = createCallbackFcn(app,

@RemoveConstraintButtonPushed , true);
2056 app.RemoveConstraintButton.Position = [172 10 118 23];
2057 app.RemoveConstraintButton.Text = 'Remove Constraint';
2058

2059 % Create MaterialsPanel
2060 app.MaterialsPanel = uipanel(app.SetupTab);
2061 app.MaterialsPanel.Title = 'Materials';
2062 app.MaterialsPanel.Position = [638 6 558 212];
2063

2064 % Create YoungsModulusMPaSpinnerLabel
2065 app.YoungsModulusMPaSpinnerLabel = uilabel(app.MaterialsPanel);
2066 app.YoungsModulusMPaSpinnerLabel.HorizontalAlignment = 'right';
2067 app.YoungsModulusMPaSpinnerLabel.Position = [37 138 131 22];
2068 app.YoungsModulusMPaSpinnerLabel.Text = 'Young''s Modulus (MPa)';
2069

2070 % Create YoungsModulusSpinner
2071 app.YoungsModulusSpinner = uispinner(app.MaterialsPanel);
2072 app.YoungsModulusSpinner.Limits = [0.1 Inf];
2073 app.YoungsModulusSpinner.ValueChangedFcn = createCallbackFcn(app,

@YoungsModulusSpinnerValueChanged , true);
2074 app.YoungsModulusSpinner.Position = [177 138 97 22];
2075 app.YoungsModulusSpinner.Value = 206000;
2076

2077 % Create Densitykgm3SpinnerLabel
2078 app.Densitykgm3SpinnerLabel = uilabel(app.MaterialsPanel);
2079 app.Densitykgm3SpinnerLabel.HorizontalAlignment = 'right';
2080 app.Densitykgm3SpinnerLabel.Position = [37 117 95 22];
2081 app.Densitykgm3SpinnerLabel.Text = 'Density (kg/m^3)';
2082

2083 % Create DensitySpinner
2084 app.DensitySpinner = uispinner(app.MaterialsPanel);
2085 app.DensitySpinner.Limits = [0.1 Inf];
2086 app.DensitySpinner.ValueChangedFcn = createCallbackFcn(app,

@DensitySpinnerValueChanged , true);
2087 app.DensitySpinner.Position = [177 117 97 22];
2088 app.DensitySpinner.Value = 7850;
2089

2090 % Create PoissonratioSpinner_2Label
2091 app.PoissonratioSpinner_2Label = uilabel(app.MaterialsPanel);
2092 app.PoissonratioSpinner_2Label.HorizontalAlignment = 'right';
2093 app.PoissonratioSpinner_2Label.Position = [37 96 74 22];
2094 app.PoissonratioSpinner_2Label.Text = 'Poisson ratio';
2095

2096 % Create PoissonratioSpinner
2097 app.PoissonratioSpinner = uispinner(app.MaterialsPanel);
2098 app.PoissonratioSpinner.Limits = [0 1];
2099 app.PoissonratioSpinner.ValueChangedFcn = createCallbackFcn(app,

@PoissonratioSpinnerValueChanged , true);
2100 app.PoissonratioSpinner.Position = [177 96 97 22];



78

2101 app.PoissonratioSpinner.Value = 0.3;
2102

2103 % Create MaterialNameEditFieldLabel
2104 app.MaterialNameEditFieldLabel = uilabel(app.MaterialsPanel);
2105 app.MaterialNameEditFieldLabel.HorizontalAlignment = 'right';
2106 app.MaterialNameEditFieldLabel.Position = [38 162 83 22];
2107 app.MaterialNameEditFieldLabel.Text = 'Material Name';
2108

2109 % Create MaterialNameEditField
2110 app.MaterialNameEditField = uieditfield(app.MaterialsPanel, 'text');
2111 app.MaterialNameEditField.Position = [136 162 139 22];
2112 app.MaterialNameEditField.Value = 'Structural steel S235JR';
2113

2114 % Create PresetsDropDownLabel
2115 app.PresetsDropDownLabel = uilabel(app.MaterialsPanel);
2116 app.PresetsDropDownLabel.HorizontalAlignment = 'right';
2117 app.PresetsDropDownLabel.Position = [298 162 46 22];
2118 app.PresetsDropDownLabel.Text = 'Presets';
2119

2120 % Create PresetsDropDown
2121 app.PresetsDropDown = uidropdown(app.MaterialsPanel);
2122 app.PresetsDropDown.Items = {'Structural steel S235JR', 'Aluminum AlSi12', '

Titanium Alloy'};
2123 app.PresetsDropDown.ValueChangedFcn = createCallbackFcn(app,

@PresetsDropDownValueChanged , true);
2124 app.PresetsDropDown.Position = [359 162 122 22];
2125 app.PresetsDropDown.Value = 'Structural steel S235JR';
2126

2127 % Create UITableMaterials
2128 app.UITableMaterials = uitable(app.MaterialsPanel);
2129 app.UITableMaterials.ColumnName = {'Material'; 'Young''s Modulus (MPa)'; 'Density

 (kg/m^3)'; 'Poisson ratio'};
2130 app.UITableMaterials.RowName = {};
2131 app.UITableMaterials.SelectionChangedFcn = createCallbackFcn(app,

@UITableMaterialsSelectionChanged , true);
2132 app.UITableMaterials.Position = [24 6 512 80];
2133

2134 % Create AddMaterialButton
2135 app.AddMaterialButton = uibutton(app.MaterialsPanel, 'push');
2136 app.AddMaterialButton.ButtonPushedFcn = createCallbackFcn(app,

@AddMaterialButtonPushed , true);
2137 app.AddMaterialButton.Position = [319 104 100 23];
2138 app.AddMaterialButton.Text = 'Add Material';
2139

2140 % Create RemoveMaterialButton
2141 app.RemoveMaterialButton = uibutton(app.MaterialsPanel, 'push');
2142 app.RemoveMaterialButton.ButtonPushedFcn = createCallbackFcn(app,

@RemoveMaterialButtonPushed , true);
2143 app.RemoveMaterialButton.Position = [431 104 106 23];
2144 app.RemoveMaterialButton.Text = 'Remove Material';
2145

2146 % Create DensityPlotsTab
2147 app.DensityPlotsTab = uitab(app.TabGroup);
2148 app.DensityPlotsTab.AutoResizeChildren = 'off';
2149 app.DensityPlotsTab.SizeChangedFcn = createCallbackFcn(app,

@DensityPlotsTabSizeChanged , true);
2150 app.DensityPlotsTab.Title = 'Density Plots';
2151 app.DensityPlotsTab.Scrollable = 'on';
2152

2153 % Create ComplianceMassGraphTab
2154 app.ComplianceMassGraphTab = uitab(app.TabGroup);
2155 app.ComplianceMassGraphTab.Title = 'Compliance-Mass Graph';
2156

2157 % Create UIAxes
2158 app.UIAxes = uiaxes(app.ComplianceMassGraphTab);
2159 xlabel(app.UIAxes, 'X')
2160 ylabel(app.UIAxes, 'Y')
2161 zlabel(app.UIAxes, 'Z')
2162 app.UIAxes.XGrid = 'on';
2163 app.UIAxes.YGrid = 'on';
2164 app.UIAxes.Position = [2 232 597 381];



79

2165

2166 % Create UIAxesSelection
2167 app.UIAxesSelection = uiaxes(app.ComplianceMassGraphTab);
2168 xlabel(app.UIAxesSelection, 'X')
2169 ylabel(app.UIAxesSelection, 'Y')
2170 zlabel(app.UIAxesSelection, 'Z')
2171 app.UIAxesSelection.XTickLabel = '';
2172 app.UIAxesSelection.YTickLabel = '';
2173 app.UIAxesSelection.Position = [719 311 492 302];
2174

2175 % Create UIAxesSelection_2
2176 app.UIAxesSelection_2 = uiaxes(app.ComplianceMassGraphTab);
2177 xlabel(app.UIAxesSelection_2, 'X')
2178 ylabel(app.UIAxesSelection_2, 'Y')
2179 zlabel(app.UIAxesSelection_2, 'Z')
2180 app.UIAxesSelection_2.XTickLabel = '';
2181 app.UIAxesSelection_2.YTickLabel = '';
2182 app.UIAxesSelection_2.Position = [719 4 492 302];
2183

2184 % Create UITableSelection
2185 app.UITableSelection = uitable(app.ComplianceMassGraphTab);
2186 app.UITableSelection.ColumnName = {'Compliance (J)'; 'Mass (g)'; 'Max VonMises 

Stress (MPa)'; 'Volume Fraction'; 'Filter Radius'; 'Material'};
2187 app.UITableSelection.RowName = {};
2188 app.UITableSelection.Position = [64 58 653 81];
2189

2190 % Create ShowDesignDataButton
2191 app.ShowDesignDataButton = uibutton(app.ComplianceMassGraphTab , 'push');
2192 app.ShowDesignDataButton.ButtonPushedFcn = createCallbackFcn(app,

@ShowDesignDataButtonPushed , true);
2193 app.ShowDesignDataButton.Position = [65 187 114 23];
2194 app.ShowDesignDataButton.Text = 'Show Design Data';
2195

2196 % Create ExportSelectedSolutionasSTLButton
2197 app.ExportSelectedSolutionasSTLButton = uibutton(app.ComplianceMassGraphTab , '

push');
2198 app.ExportSelectedSolutionasSTLButton.ButtonPushedFcn = createCallbackFcn(app,

@ExportSelectedSolutionasSTLButtonPushed , true);
2199 app.ExportSelectedSolutionasSTLButton.Position = [196 187 192 23];
2200 app.ExportSelectedSolutionasSTLButton.Text = 'Export Selected Solution as .STL';
2201

2202 % Create DataTableOverview
2203 app.DataTableOverview = uitab(app.TabGroup);
2204 app.DataTableOverview.Title = 'Data Table Overview';
2205

2206 % Create UIAxesTableSelection
2207 app.UIAxesTableSelection = uiaxes(app.DataTableOverview);
2208 title(app.UIAxesTableSelection , 'Title')
2209 xlabel(app.UIAxesTableSelection , 'X')
2210 ylabel(app.UIAxesTableSelection , 'Y')
2211 zlabel(app.UIAxesTableSelection , 'Z')
2212 app.UIAxesTableSelection.XTickLabel = '';
2213 app.UIAxesTableSelection.YTickLabel = '';
2214 app.UIAxesTableSelection.Position = [724 312 492 301];
2215

2216 % Create UIAxesTableSelection_2
2217 app.UIAxesTableSelection_2 = uiaxes(app.DataTableOverview);
2218 title(app.UIAxesTableSelection_2 , 'Title')
2219 xlabel(app.UIAxesTableSelection_2 , 'X')
2220 ylabel(app.UIAxesTableSelection_2 , 'Y')
2221 zlabel(app.UIAxesTableSelection_2 , 'Z')
2222 app.UIAxesTableSelection_2.XTickLabel = '';
2223 app.UIAxesTableSelection_2.YTickLabel = '';
2224 app.UIAxesTableSelection_2.Position = [724 5 492 301];
2225

2226 % Create UITableData
2227 app.UITableData = uitable(app.DataTableOverview);
2228 app.UITableData.ColumnName = {'Compliance (J)'; 'Mass (g)'; 'Max VonMises Stress 

(MPa)'; 'Volume Fraction'; 'Filter Radius'; 'Material'};
2229 app.UITableData.RowName = {};



80

2230 app.UITableData.SelectionChangedFcn = createCallbackFcn(app,
@UITableDataSelectionChanged , true);

2231 app.UITableData.Position = [8 35 710 572];
2232

2233 % Create ExportSelectedSolutionasSTLButton_2
2234 app.ExportSelectedSolutionasSTLButton_2 = uibutton(app.DataTableOverview, 'push')

;
2235 app.ExportSelectedSolutionasSTLButton_2.ButtonPushedFcn = createCallbackFcn(app,

@ExportSelectedSolutionasSTLButton_2Pushed , true);
2236 app.ExportSelectedSolutionasSTLButton_2.Position = [524 5 192 23];
2237 app.ExportSelectedSolutionasSTLButton_2.Text = 'Export Selected Solution as .STL'

;
2238

2239 % Create TextArea
2240 app.TextArea = uitextarea(app.UIFigure);
2241 app.TextArea.ValueChangedFcn = createCallbackFcn(app, @TextAreaValueChanged , true

);
2242 app.TextArea.FontWeight = 'bold';
2243 app.TextArea.FontColor = [1 0 0];
2244 app.TextArea.Position = [243 14 648 40];
2245

2246 % Create RunButton
2247 app.RunButton = uibutton(app.UIFigure, 'push');
2248 app.RunButton.ButtonPushedFcn = createCallbackFcn(app, @RunButtonPushed, true);
2249 app.RunButton.FontWeight = 'bold';
2250 app.RunButton.Position = [96 24 100 23];
2251 app.RunButton.Text = 'Run';
2252

2253 % Show the figure after all components are created
2254 app.UIFigure.Visible = 'on';
2255 end
2256 end
2257

2258 % App creation and deletion
2259 methods (Access = public)
2260

2261 % Construct app
2262 function app = TOPGD_Apd
2263

2264 % Create UIFigure and components
2265 createComponents(app)
2266

2267 % Register the app with App Designer
2268 registerApp(app, app.UIFigure)
2269

2270 % Execute the startup function
2271 runStartupFcn(app, @startupFcn)
2272

2273 if nargout == 0
2274 clear app
2275 end
2276 end
2277

2278 % Code that executes before app deletion
2279 function delete(app)
2280

2281 % Delete UIFigure when app is deleted
2282 delete(app.UIFigure)
2283 end
2284 end
2285 end



B
Experiment Design Assignments

In this Appendix, the three Design Assignments as they ware given to the participants during the ex-
periment are annexed.

B.1. Assignment A
You will be designing a structural arm. The .STL file of your design space looks like shown in Figure B.1:
The rectangular box between the rings is 600 by 300mm.

Figure B.1: Assignment A: Design space

The structural arm should have:

• a fixed constraint in all directions defined at the surface of the upper right mounting hole (red)
• a horizontal force applied to the surface of the lower left mounting hole (green), of 1000 N in the
positive Y-direction

• and solid areas (black) defined around both mounting holes as shown in Figure B.2.

81



B.1. Assignment A 82

Figure B.2: Assignment A: Fixed Constraint, Solid Areas and Force Surface



B.2. Assignment B 83

B.2. Assignment B
You will be designing a bracket. The .STL file of your design space looks like shown in Figure B.3:

Figure B.3: Assignment B: Design space

The bracket should have a fixed constraint in all directions defined at the surfaces of the bottom legs
(red), and solid areas (black) defined around the hole as shown in Figure B.4:



B.2. Assignment B 84

Figure B.4: Assignment B: Fixed Constraint and Solid Areas

There are 2 load cases for this bracket design problem, shown in Figure B.5.

Figure B.5: Assignment B: Load Cases

Load case 1: A distributed load on the surface of the hole in Figure B.5, of 1000 N sideways

Load case 2: A distributed load on the surface of the hole in Figure B.5, of 500 N towards the bottom
legs



B.3. Assignment C 85

B.3. Assignment C
You will be designing a kitchen step. The .STL file of your design space looks like shown in Figure B.6:

Figure B.6: Assignment C: Design space

The kitchen step should have a fixed constraint in all directions defined at the bottom surface (red), and
solid areas (black) defined for the two steps as shown in Figure B.7.

Figure B.7: Assignment C: Fixed Constraint and Solid Areas

There are 3 load cases for this kitchen step design problem.



B.3. Assignment C 86

Load case 1: Standing on the first step, shown in Figure B.8 below. There is one distributed load of
800N downwards attached to the green surface highlighted in the figure.

Figure B.8: Assignment C: Load case 1, standing on the first step

Load case 2: Standing on the second step, shown in Figure B.9 below. There is one distributed load
of 800N downwards attached to the green surface highlighted in the figure.

Figure B.9: Assignment C: Load case 2, standing on the second step

Load case 3: Sitting on the step, shown in Figure B.10 below. There are two distributed loads attached
to the green surfaces highlighted in the figure. F1 is a load downwards of 600 N, and F2 is a horizontal
load backwards of 200 N.



B.3. Assignment C 87

Figure B.10: Assignment C: Load case 3, sitting on the step

Possible Material parameters could be those of Oakwood:
Young’s Modulus: 11 GPa (with the grain) & Density: 600 kg/m3

or HDPE:
Young’s Modulus: 800 MPa & Density: 970 kg/m3



C
Experiment Survey

Starting from the next page, theGoogle Form is annexed that was used to guide the participants through
the experiment, including all introduction videos and survey questions asked.

88



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 1/24

1.

2.

Markeer slechts één ovaal.

I have never heard of it

1

2

3

4

5

I am experienced with it

Topology Optimization Experiment

What is your Engineering Backround? (e.g. Mechanical Engineering, Structural
Engineering)

What is your background knowledge on Topology Optimization?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 2/24

Video Introduction to Topology Optimization

http://youtube.com/watch?
v=hmw3SqCsua0

3.

Markeer slechts één ovaal.

Anders:

Yes

No

Manual Designing

Assignment 1

Do you understand the basics of topology optimization after seeing the
explanation video?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 3/24

4.

Markeer slechts één ovaal.

Very Easy

1

2

3

4

5

Very Hard

How hard do you think the first design problem was? (Not the manual designing
process, but the problem itself)



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 4/24

5.

Markeer slechts één ovaal.

Not Con�dent

1

2

3

4

5

Very Con�dent

How confident are you that you have found the optimal solution for this first
design problem?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 5/24

6.

Markeer slechts één ovaal.

No idea

1

2

3

4

5

Yes, clearly

7.

Markeer slechts één ovaal.

Very Easy

1

2

3

4

5

Very Hard

Do you understand what are structurally the most important areas of this part?

How would you rate the manual design process?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 6/24

8.

9.

Basic Topology Optimization App

Assignment 2

Video Tutorial Basic TO App

http://youtube.com/watch?v=FpK0-
JoCjkI

What are the positive aspects of manually designing?

What are the negative aspects of manually designing, or what could be
improved?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 7/24

10.

Markeer slechts één ovaal.

Not Clear

1

2

3

4

5

Very Clear

Do you think the tutorial of this app, previous to the experiment, was clear?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 8/24

11.

Markeer slechts één ovaal.

Very Easy

1

2

3

4

5

Very Hard

How hard do you think this design problem was? (Not the design process with
the app, but the problem itself)



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 9/24

12.

Markeer slechts één ovaal.

Not Con�dent

1

2

3

4

5

Very Con�dent

How confident are you that you have found the optimal solution for this design
problem?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 10/24

13.

Markeer slechts één ovaal.

No idea

1

2

3

4

5

Yes, clearly

14.

Markeer slechts één ovaal.

Bad Experience

1

2

3

4

5

Good Experience

Do you understand what are structurally the most important areas of this part?

What was the overall experience of using this app in the design process?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 11/24

15.

Markeer slechts één ovaal.

Not at all

1

2

3

4

5

Yes a lot

Does the use of this app improve your understanding of the design problems
compared to manually designing?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 12/24

16.

Markeer slechts één ovaal.

Hard to use

1

2

3

4

5

Easy to use

17.

18.

How would you rate the Basic App on user-friendliness?

What are positive aspects of the app, or designing with the app?

What are negative aspects of the app, or things that need improvement?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 13/24

19.

Markeer slechts één ovaal.

Poor overview

1

2

3

4

5

Clear overview

How would you rate the overview generated by the app?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 14/24

20.

Markeer slechts één ovaal.

No improvement

1

2

3

4

5

Big improvement

Advanced Topology Optimization App

Assignment 3

Video Tutorial Advanced TO App

http://youtube.com/watch?
v=UauV1bRjx8M

Would you consider the use of this app in the design process as an
improvement?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 15/24

21.

Markeer slechts één ovaal.

Not Clear

1

2

3

4

5

Very Clear

Do you think the tutorial of this app, previous to the experiment, was clear?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 16/24

22.

Markeer slechts één ovaal.

Very Easy

1

2

3

4

5

Very Hard

How hard do you think this design problem was? (Not the designing process
with the app, but the problem itself)



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 17/24

23.

Markeer slechts één ovaal.

Not Con�dent

1

2

3

4

5

Very Con�dent

How confident are you that you have found the optimal solution for this design
problem?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 18/24

24.

Markeer slechts één ovaal.

No idea

1

2

3

4

5

Yes, clearly

25.

Markeer slechts één ovaal.

Bad Experience

1

2

3

4

5

Good Experience

Do you understand what are structurally the most important areas of this part?

What was the overall experience of using this app in the design process?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 19/24

26.

Markeer slechts één ovaal.

Hard to use

1

2

3

4

5

Easy to use

How would you rate this app on user-friendliness?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 20/24

27.

Markeer slechts één ovaal.

Not at all

1

2

3

4

5

Yes a lot

Does the use of this app improve your understanding of the design problems
compared to manually designing?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 21/24

28.

Markeer slechts één ovaal.

Not at all

1

2

3

4

5

Yes a lot

Does the use of this app improve your understanding of the design problems
compared to using the previous basic app for designing?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 22/24

29.

Markeer slechts één ovaal.

Not at all

1

2

3

4

5

Yes a lot

Does the use of this app improve your understanding of Topology Optimization
and its settings compared to using the previous basic app for designing?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 23/24

30.

Markeer slechts één ovaal.

Poor overview

1

2

3

4

5

Clear overview

31.

32.

How would you rate the overview generated by the advanced app, compared to
the basic app?

What are positive aspects of the  app, or designing with the app?

What are negative aspects of the app, or things that need improvement?



5/17/23, 4:57 PM Topology Optimization Experiment

https://docs.google.com/forms/d/1eohM5eH7P6af0rPFY82F08TllcgnCPFq1a5n8uXd3dE/edit 24/24

33.

Markeer slechts één ovaal.

No improvement

1

2

3

4

5

Big improvement

Deze content is niet gemaakt of goedgekeurd door Google.

Would you consider the use of this app in the design process as an
improvement?

 Formulieren



D
Gaze Density Heat Maps

In this appendix, the heat map of the average gaze location data collected during the eye-tracking ex-
periment and shown in Figure 5.12, Figure 5.13 and Figure 5.14 have been separated into multiple heat
maps representing the 3 participants and showing any differences of the gaze density plots between
them.

D.1. Basic TO tool heat maps
The gaze density data of each participant has been plotted over the Basic TO GUI in the figures below.

Figure D.1: Heat Map Gaze Density Basic TO tool Participant 1

113



D.2. TOP-GD tool heat maps 114

Figure D.2: Heat Map Gaze Density Basic TO tool Participant 2

Figure D.3: Heat Map Gaze Density Basic TO tool Participant 3

D.2. TOP-GD tool heat maps
The gaze density data of each participant has been plotted over the Setup tab (Figure D.4, Figure D.5
and Figure D.6) and the Compliance-Mass Graph tab (Figure D.7, Figure D.8 and Figure D.7) of the
TOP-GD GUI below.



D.2. TOP-GD tool heat maps 115

Figure D.4: Heat Map Gaze Density TOP-GD tool Setup tab Participant 1

Figure D.5: Heat Map Gaze Density TOP-GD tool Setup tab Participant 2



D.2. TOP-GD tool heat maps 116

Figure D.6: Heat Map Gaze Density TOP-GD tool Setup tab Participant 3

Figure D.7: Heat Map Gaze Density TOP-GD tool Compliance-Mass Graph tab Participant 1



D.2. TOP-GD tool heat maps 117

Figure D.8: Heat Map Gaze Density TOP-GD tool Compliance-Mass Graph tab Participant 2

Figure D.9: Heat Map Gaze Density TOP-GD tool Compliance-Mass Graph tab Participant 3


	Acknowledgements
	Abstract
	Nomenclature
	Introduction
	Motivation, Aim and Approach
	Scope
	Structure of the report

	Literature Review
	The Design Process
	Topology Optimization
	SIMP
	Sensitivity Analysis
	Filtering
	Optimization Methods
	Convergence Check

	Design Exploration
	Multi-objective Optimization
	Generative Design

	Computational Design Techniques in Research Approach
	Software Choice
	Z88Arion
	Toptimiz3D
	MATLAB


	TOP-GD tool
	Introduction and Requirements
	Development Process TOP-GD tool
	Extending the top3D125 Code
	Translation to GUI Controlled Input Variables
	Moving from Single to Multiple Solutions
	Optimizing the Presentation of Results
	Extra Added Functionalities


	Experiment Methods
	Experimental design
	Materials and Equipment
	Procedure

	Experiment Results
	Part Performance Results
	Survey Results
	Eye-tracking Results

	Discussion
	Part Performance Data Interpretation
	Survey Data Interpretation
	Eye-tracking Data Interpretation

	Conclusion
	Main Findings
	Recommendations

	References
	TOP-GD tool Source Code
	Experiment Design Assignments
	Assignment A
	Assignment B
	Assignment C

	Experiment Survey
	Gaze Density Heat Maps
	Basic TO tool heat maps
	TOP-GD tool heat maps


