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[ Double strand breaks are lesions to the DNA and
can be fatal for cells. Therefore these breaks are repaired,
primarily by one of the three major repair pathways. Two
of these pathways are non-homologous end-joining (NHEJ)
and theta-mediated end-joining (TMEJ). These pathways
leave genetic alterations in their repair products, a form of
DNA damage. DNA damage is linked to several diseases
such as cancer. Understanding of these pathways is impor-
tant and being able to recognize which pathways are active
can be beneficial for research. In this work, repair products
are used to predict repair-deficient genotypes using Cas9-
induced repair products. Ku80 and PolQ deficient genotypes
are used, impairing NHEJ and TMEJ respectively. The abil-
ity to recognize a repair-deficient genotype is tested using
two predictive tasks. First statistical machine learning al-
gorithms are used to predict the genotype where a repair
product can be found. This is done by only using a single
repair product as input. Secondly, a set of Cas9-induced re-
pair products from a single cell culture is used to predict the
genotype of that cell culture. Results show that when given a
single repair products, models have difficulty predicting the
correct genotype. However, results are modest and the best
classifier achieved an AUC of 0.76. For predicting the geno-
type of a cell culture using multiple repair products of that
culture showed really promising results. When predicting on
cell cultures with breaks induced on a target site which the
model has seen in the training data, results are near perfect.
Predicting on unseen target sites shows that there is room for
improvement but the best performing models showed an av-
erage AUC of 0.879 across target sites. A Results show that
Cas9-induced repair products can be used to predict repair-
deficient genotypes.

1 Introduction

DNA contains the genetic information of a cell and is vi-
tal for all living beings. However, the integrity of DNA is fre-
quently compromised by lesions. One such lesion is a double
strand break (DSB), where both strands of the DNA are sev-
ered. An illustration of a DSB can is shown in[Figure Tp. Left
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untouched DSBs can lead to cell death. Cells have evolved to
handle DSBs and are able to repair these by connecting the
two severed strands of DNA. However DNA repair is not al-
ways flawless and can leave genetic alterations. This form of
DNA damage is harmful and linked to aging [1}2]] the forma-
tion of cancers [2,[3]] and neurodegeneration [4]. Three ma-
jor pathways are known for the repair of DNA, of which two
are known to leave genetic alterations. Understanding these
pathways and DSB repair can be crucial for understanding
the harmful consequences of DNA damage. The ability to
differentiate the DNA repair pathways could lead to new in-
sights and can be done by analyzing genetic alterations left
by repair pathways.

DNA repair is largely done by three different path-
ways. The three major pathways are homologous recom-
bination, non-homologous end-joining (NHEJ) and theta-
mediated end-joining (TMEJ). The HR pathway uses a sister
chromatid as a blueprint to repair a DSB error-free. This
pathway is well known and reviewed here [5,/6]. NHEJ is
known as a largely error-free pathway, but can leave alter-
ations in certain situations [7]. NHE]J is active throughout
the cell cycle [8]] and is expected to repair up to 75% of
all repair events in human cells [9]. NHEJ repair relies on,
among others, the protein Ku80. NHE] is a pathway known
to make use of microhomology, with up to 60% of the repair
in human cells showing microhomology of one or two base
pairs [[10]. Microhomology is the process of using comple-
mentary sequences of a few base pairs on opposing strands
of the DSB in order to connect the severed strands. The final
pathway TMEJ is known as an error-prone pathway. The
pathway thanks its name due to it relying on polymerase
theta (PolQ), which is shown true for several different or-
ganisms [11,{12,|13]]. Polymerase theta is connected to low
fidelity DNA repair [[14]]. TMEJ is not as active as NHEJ,
it is a crucial backup in cells when other pathways cannot
be used [15]. Evidence exists that TMEJ may be active dur-
ing the S phase of a cell, primarily due to genetic alterations
being left from TME] at replication structures [[16L|17]. Sim-
ilar to NHEJ, TMEJ makes use of microhomology. TMEJ is
further known to leave templated insertions [18}/19]. A tem-
plated insertion uses a DNA sequence nearby the DSB as a



blueprint to reconnect the severed strands of the DSB. Es-
sentially, this duplicates a part of the DNA to help repair the
DSB. From these three pathways, NHEJ and TMEJ show the
most distinct DSB repair due to leaving genetic alterations.

The DNA sequence after the repair of a DSB is known
as a repair product. Some repair product will show genetic
alterations, depending on the pathway used to repair a DSB.
Repair products show sufficiently distinct patterns, that three
machine learning exist able to predict the expected repair
products found at Cas9-induced DSBs. One of these works
makes use of a deep neural net [20], while the other two use
logistic regression classifiers [211[22]]. Patterns can be found
in repair products originating from the different pathways.
This is shown by the NHEJ and TMEJ pathway-specific fea-
tures presented in [23]]. Although this is shown in mouse em-
bryonic cells and might differ per organism, one such feature
is that repair products from TMEJ show different deletion
sizes from NHEJ. Thus the pathway used to repair a DSB
plays a large role in which repair products found. Which
pathway is used for DSB repair is dependent on several vari-
ables, best depicted by the decision tree shown in [24]]. Vari-
ables for pathway selection include the chromatin context
and the cell cycle phase.

About a decade ago, CRISPR-Cas9 was first used to
consistently create DSBs at precise locations [25]]. This tech-
nology greatly helps analyzing DNA repair mechanisms and
repair products. DSBs can be induced in a cell culture at a
specific location in the DNA, the target site. This target site
can then be sequenced, making it possible to compare and
analyze large amounts of repair products all formed at the
same target site. This can be extended by using cell cultures
deficient of a DSB repair pathway. Both NHEJ and TMEJ
are dependent on a distinct protein, Ku80 and PolQ respec-
tively. Knocking out these proteins would result in NHEJ and
TMEJ being inactive. Thus the Ku80-/- and PolQ-/- geno-
types contain repair products created by different DNA re-
pair pathways. One question which arises, is whether these
repair products are unique enough to use them to recognize
and predict the genotype in which they were found. | The
goal of this thesis is find the degree in which it is possible
to use repair products for genotype prediction. This will be
tested using two predictive tasks:

1. Can the genotype in which a single repair product is
found be predicted.

2. Can the genotype of a cell culture be predicted using all
repair products from the culture.

To answer these two predictive tasks, statistical machine
learning algorithms will be used. To train models, Cas9-
induced repair products originating from mouse embryonic
stem cells are used. These repair products originate from
three different genotypes, namely Ku80-/- which is NHEJ
deficient, PolQ-/- which is TMEJ deficient and a wild type
which is not deficient in repair pathways. Repair products in
the dataset originate from ten different target sites.

The first predictive task will show if for repair products
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Fig. 1. Toy example of how repair products are obtained. a: A tar-
get site is chosen. b: A double strand break is induced at the target
site. ¢: The cell repairs the double strand break. d: The DNA se-
quence after repair is the repair product. Note that the repair product
left a mutation. Two nucleotides were deleted during the repair.

it can be predicted in which genotype they are found. If mod-
els are able to predict genotypes correctly, it would indicate
that genotypes leave very distinctive repair products. The
second predictive tasks will show how well a genotype can
be predicted using multiple repair products originating from
the same target site. Rather than looking at the distinctive-
ness of a single repair product, a distribution of the repair
products in the cell culture is used to make a prediction.
Rather than showing distinctive features, this can indicate
whether repair products from a genotypes follow a distribu-
tion which can be used to generalize models.

For both predictive tasks several models are created.
First, models are trained using repair products from all target
sites. These models are evaluated on a test set with indepen-
dent repair products from all target sites. This will show how
well models can generalize genotypes on learned target sites.
Secondly, new models are trained using repair products from
nine of the ten target sites. Evaluation will be done on the
left out target site. This gives insight in how well models can
generalize genotypes across new target sites.

2 Methods

Given a dataset containing Cas9-induced repair prod-
ucts, the goal is to predict the repair-deficient genotype in
which the DSB was repaired.

2.1 Dataset

A dataset was kindly provided by the Tijsterman lab at
the Leiden University Medical Center (LUMC). The data set
contains repair products from CRISPR-Cas9 induced DSBs.
The cells used are mouse embryonic stem cells. How repair
products are obtained is shown in[Figure 1]

Repair products are sequenced from Cas9-induced
DSBs from 36 cell cultures. In each cell culture, DSBs
are induced at a single target site. In total, ten differ-
ent target sites have Cas9-induced DSBs. For each target
site, cell cultures are grown with three different genotypes.



Genotype
Pathway Wild Type Ku80-/- PolQ-/-
HR v’ v’ v’
NHEJ v’ - v’
TMEJ] v’ v’ -
Other v’ v’ v’

Table 1. Shows double strand break repair pathways active
per genotypes. HR: Homologous recombination. NHEJ: Non-
homologous end-joining. TMEJ: Theta-mediated end-joining. Other:
Alternative pathways for DSB repair.

The three genotypes used are Ku80-/-, PolQ-/-, wild-type
(WT). These first two genotypes result in repair pathway
deficiency, as can be seen in Thus, repair prod-
ucts originating from 10 different target sites are present.
For each target site, repair products are retrieved from cul-
tures with a Ku80-/-, PolQ-/- and WT genotype. Two tar-
get sites were sequenced twice with different primers. For
each primer set a unique cell culture is present in the data.
Thus for two target sites, cultures of two of each geno-
type are grown and sequenced with different primers. Thus
the dataset contains sequence data of Cas9-induced repair
products. A total of ten different target sites are used, of
which 2 were sequenced twice with different primers. For
each target site one culture is present with one of the three
genotypes. This results in 8(rargetsites) = 3(genotypes) +
2(targetsites) * 3(genotypes) = 2(primersets) = 36 cell cul-
tures. [

The sequence data of the 36 cell cultures are kindly pre-
processed by Robin van Schendel, a bioinformatician at the
Tijsterman Lab. The sequence data is processed using a cus-
tom code, which applies quality control to sequence data.
Furthermore, additional information is added to each repair
product describing the product. This information includes
whether deletions took place, the length of the deletion or
if microhomology took place. This information is retrieved
by comparing the DNA sequence of the target site with the
DNA sequence of the repair product. Part of the informa-
tion added during the preprocessing can be found in supple-
mentary materials A. Keep in mind that supplementary ma-
terials A only shows information used by machine learning
algorithms presented in this work. More information was
present in the dataset, but has been removed due to not be-
ing used throughout this work. The final step of the pre-
processing groups repair products from the same cell culture
with equal DNA sequences and adds a percentage showing
how frequent the repair product is seen. This value is called
the frequency and has a value of 0 < frequency =< 1. The
higher the frequency, the more probable it is to see that repair
product after repairing a Cas9-induced DSB. A toy example
of how the preprocessed dataset looks can be found in
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A common pattern seen is that most repair products
occur infrequently, with around 75% of the repair products
in a culture having frequency < 0.001. This means that even
though there is a high variety in repair products per target
site and genotype, only a select few are commonly found.

To summarize, the dataset contains repair products cell
cultures with Cas9-induced DSBs. Repair products originate
from one of ten target sites and each cell culture has one
of the Ku80-/-, PolQ-/- and WT genotypes. For each repair
product it is known in which genotype they are created, at
which target site they were found, how frequently the repair
product was found and the information shown in supplemen-
tary materials A. This information is retrieved from compar-
ing the target sites original DNA sequence with the DNA
sequence of the repair products.

2.2 Prediction tasks

The goal is to see how well repair-deficient genotypes
can be predicted using repair products. This is answered us-
ing three predictive tasks. The first task tries to make pre-
diction using only a single repair product. The second task
will see how well genotype can be predicted when using a
set of repair products, all coming from the same cell culture.
The last tasks is set up in order to show how well models
are able to generalize learned patterns across repair products
from new target sites. This is done using by evaluating the
first two prediction tasks in twofold.

For the first prediction task machine learning techniques
will be used to predict the repair-deficient genotype in which
a repair product is created. Thus, when a machine learning
model is supplied with a single repair product it should be
able to predict whether it was formed in a Ku80-/- or a PolQ-
/- cell culture. Logically following, due to the repair-pathway
deficiency in these genotypes it also means models predict by
which repair pathway a DSB is not repaired. For example,
predicting a repair product was formed in a Ku80-/- geno-
type also means that the model predicts it is not repaired by
NHE]J. Such a statement is not possible for a WT genotype
prediction. Therefore, the WT genotype is not used for this
predictive task. Several predictive models are created to test
the predictive task. How and which models are created will
be discussed in [subsubsection 2.3.1] and shown in
orange column.

The second prediction task will also use machine learn-
ing technique in order to predict the repair-deficient geno-
type of a cell culture using repair products originating from
that cell culture. Keep in mind that in a cell culture all re-
pair products originate from the same target site. In order
to make predictions, repair products from a culture will be
grouped and described using summary features. These fea-
tures will be used by machine learning algorithms. The fea-
tures used can be found in supplementary materials A. Due
to using multiple repair products, the general behaviour of
repair products in a genotype can be learned. For exam-
ple, summary features can show different average deletion
lengths in different genotypes. This makes it possible to dif-
ferentiate the WT genotype from the Ku80-/- and PolQ-/-




CultureID Frequency Genotype Targetsite Products DNA Sequence Deletion DellLen Insertion InsLen
1 0.8 Ku80-/- TS_a ..agatgatc.. - 0 - 0
1 0.2 Ku80-/- TS.a ..agaatc.. tg 2 - 0
2 1 PolQ-/- TS_a ..agcatc.. atg 3 c 1
3 1 WT TS.a ..agaatc.. tg 2 - 0

Table 2. Toy dataset for given target site TS_a with DNA sequence ..agatgatc.. Each row depicts a repair product after preprocessing. The
columns from left to right indicate: Cell culture ID, from which culture does the repair product originate. Frequency, a percentage showing how
frequently the repair product was seen. Genotype of the cell culture. Target site where the DSB is induced. Product DNA sequence shows
raw DNA sequenced information. This data is normally around 200 base pairs long. Deletion shows the deleted nucleotides when comparing

the repair product sequence with the original target sites sequence. DelLen shows the number of nucleotides deleted. Insertion shows the
inserted nucleotides when comparing the repair products sequence with the target sites original DNA sequence. Note that it is possible to
find equal repair products in cell cultures with different genotypes (row 1 and 4). More features are present in the data, of which most can be

found in supplementary materials A.

genotypes. Therefore, models trained for cell culture geno-
type prediction will use cell cultures of all three genotypes.
If successful, models could be trained to predict more geno-
types. The ability to predict a cell cultures genotype is tested
with several predictive models, which is discussed in[subsub

section 2.3.2]and shown in|[Figure 2] blue column.

2.2.1 Learning algorithms and training

The predictive tasks will be examined using several pre-
dictive models. For both predictive tasks, three statistical
learning algorithms will be compared. The algorithms used
are the logistic regression classifier, a k-nearest neighbour
(k-nn) classifier and a random forest classifier.

The logistic regression classifier is a linear parametric
classifier which uses regression to fit a logistic function on
the features of the training data. This function is can be used
to determine the probability of a new data sample belonging
to a certain class. The k-nearest neighbour is a distance based
classifier, which memorizes training data. When given a new
data sample, it calculates the distance to each sample in the
training data. The k closest training samples are considered
most similar to the new data and will be used to make a pre-
diction. Each label of the k closest neighbours is counted and
the label with the highest count will be the prediction of the
new sample. K-NN classifiers will be trained with two k val-
ues. First a lower k is used, with value k < 10. Secondly a
higher k is used of value 100 <= k <= 500. The exact value
of k is determined using a grid search, explained below. |

A random forest classifier uses an ensemble of decision
trees and makes predictions based on the predictions of the
set of trees in the forest. Random forest models use 200 trees.
Research has shown that using more trees in a random forest
is beneficial [26]. However, using more trees in the forest
became computationally expensive and therefore the largest
feasible number of 200 trees is chosen. The logistic regres-
sion and random forest classifiers are chosen in order to get
both a linear and non-linear approximations of the prediction
tasks. The k-nearest neighbour classifier was added in order
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to use a distance based model.

Models are implemented using Python 3.7.0 (Python
Software Foundation, https://www.python.org/) and the Sci-
Kit learn package [27]]. For each model, hyperparameters are
selected using a grid search with 10-fold cross validation.
A set of possible hyperparameters is supplied and for each
combination of hyperparameters a model is trained. Each
model is trained using the training data and cross valida-
tion is applied. A custom cross validation function is used
to make sure that each fold contains repair products origi-
nating from all target sites and each genotype. A full list of
hyperparameters tested during the grid search can be found
in supplementary materials C. After the grid search, the best
performing model with the best performing hyperparame-
ters is used as the final model. This process is applied for
each created model. It should be mentioned that using cross-
validation for hyperparameter selection results in biased per-
formance estimates [28[29]. To eliminate this bias a com-
putationally more expensive nested cross-validation loop is
recommended. However, strong evidence exists that mod-
els with few hyperparameters normal cross-validation shows
equal performance with its nested variant [30]]. With the used
learning algorithms having few hyperparameters, no nested
cross-validation is used.

The evaluation metric used to select the best hyperpa-
rameters for each model during cross-validation is the f1-
score for the first predictive task. For the second predictive
task, the macro-averaged fl-score is used. Different scoring
metrics are used since the normal fl-score cannot be used
for non-binary classification tasks. The first predictive tasks,
prediction of genotype in which a repair product is formed,
is binary. These models only predicts one of the Ku80-/-
and PolQ-/- genotypes. The second predictive task, which
predicts the genotype of a cell culture, also predicts the WT
genotype and is a non-binary classification task. Therefore
the normal fl-score cannot be used. Macro-averaged f1-
score is arbitrarily chosen over its micro-averaged counter,
since Each class has an equal contribution in the data used
for the second predictive task.



Included genotypes

KUS0-/-

Cell culture genotype prediction

Included genotypes

KUS0-/- WT

Included target sites Ts.1

Features used

Individual repair product features

Repair product training weights

Not Partially
weighted weighted

Fully
weighted

Features used

Summary features calculated on random set of repair
products. Learning on these features.

Learning algorithms Logistic regression
classifier

Random forest
classifier

Evaluation

Hold out samples from all target sites,
evaluation on that set.

Hold out one target site, evaluate on the
left out target site. Repeat for all target sites.

Test set repair product weights

Not weighted

Fully weighted

Fig. 2. Setup of the models build for the predictive tasks. The orange column shows all variables for predicting the genotype in which a repair
product can be found. The blue column shows the variables of the cell culture genotype prediction task. Gray rows indicate that variables are
shared between predictive tasks. Additional target site information can be found in the supplementary materials A.

2.3 Evaluation and metrics

Two predictive tasks are tested in this work. The first
predictive task is a binary prediction where the genotype in
which a repair product is found is predicted. Both predictive
tasks will be evaluated using hold-out test sets. With the first
task being a binary problem, ROC curves and the area un-
der the curve (AUC) will be reported. The second predictive
tasks for cell culture genotype prediction will be evaluated
using a generalization of the AUC for multinomial classifi-
cation [31]]. Scikit-learn has this generalization build in the
roc_auc_score, by setting the *multi_class’ option to ovo’.

||F0r both predictive tasks, a total of 11 models are
trained for each learning algorithm. The first model will be
trained using repair products originating from all target sites.
The hold-out test set will contain independent repair prod-
ucts, also originating from all target sites. This should show
how well models can learn the problem on seen target sites.
Secondly models will be trained with all repair products from
9 target sites. The repair products originating from the tenth
target sites will be used to evaluate the model. A total of ten
models will be trained, so that each target site is evaluated
once without being present in the training data. The eval-
uation of these models should show how well models can
generalize knowledge on new target sites, which were not
present in the training data. For each of the 11 models per
learning algorithm, new hyperparameters are selected.
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2.3.1 Setup:
Repair product genotype prediction
The goal of this prediction task is to predict the geno-
type in which a repair product can be found. Whether this
is possible is tested with the several predictive models. All
variables for the predictive task are shown in [Figure 2| or-
ange column.

Included genotypes - repair products originating from
the Ku80-/- and PolQ-/- genotypes will be used. The wild
type genotype will be excluded, reasoning described in [sub-]
section 2.2

Training sample weights - as mentioned in
the dataset consists of unique repair products ac-
companied by a frequency showing how often they occurred
in a cell culture. Repair products with a higher frequency
are more likely to be formed during the repair of a DSB at
the target site. Repair products with a higher frequency can
therefore be seen as more important. This information can be
used to train the model. This is done using sample weights on
the training data. For this predictive task, models are trained
using one of three different sample weights. Each differ-
ent sample weight introduces a bias towards certain repair
products during training. For each different sample weight
method applied, a models hyperparameters are recalculated.

First, an equally weighted training method is tested.
This method aims to have repair products originating from
the same cell culture have an equal weight. This means that



the frequency of repair products is disregarded and a bias to-
wards infrequent repair products is introduced. For a cell cul-
ture with DSB induced a given target site, the sample weight
of each repair product is calculated as following:
1
~ primer sets x count (products)

In this function w is the sample weight, primer sets are the
number of primer sets used to sequence the target site and
count (products) is the number of repair products in the cell
culture. First of all, due to count(products) the sample
weight of each repair product originating from the same cell
culture will be equal. Secondly, by using primer sets all tar-
get sites have an equal contribution. Depending on the num-
ber of primer sets used, each target site is represented by
one or two cell cultures with the Ku80-/- genotype and one
or two cultures with the PolQ-/- genotype (supplementary
materials B). Thus although target sites TS_9 and TS_10 are
represented by twice the cell cultures, the sample weights
for repair products from those cultures will be halved. Re-
moving the primer sets term from the equation would make
models biased towards TS_9 and TS_10, since more data is
available for these target sites.

The second method used for training sample weights is
the fully weighted method. This method aims to give fre-
quently occurring repair products a sample weight represent-
ing its frequency. This introduces a bias towards the most
frequent repair products. For each repair product, the sample
weight is calculated as:

frequency
"= primer sets
Here, the frequency is the frequency reported in the dataset
which has a value between 0 and 1. Again, primer sets is
used to eliminate bias towards target sites represented by
more cell cultures.
| Finally, a partial weighting method is used. This
method tries to reduce the bias towards frequent or infrequent
repair products as seen by the other two weighting methods.
To do this the following function is used:

log, ((frequency x 100) + 1)?
w =
primer sets

Again primer sets eliminates bias towards a target site. The
frequency is multiplied by 100 and 1 is added so that a
positive number larger than 1 will be used when calculat-
ing the log,. This logarithmic function is used so that the
sample weight does not scale linearly with the frequency.
Finally this value is squared to slightly increase the differ-
ence in sample weights. The final weight for a repair prod-
uct with a frequency between 0 < frequency <=1, will be
0 < frequency <~ 44.33 divided by primer sets.

These three different methods of setting training weights
all favor different repair products. Equal weights is biased to
infrequent repair products, while fully weighted is biased to
frequent repair products. Partial weights reduces the bias to-
wards both. It should be noted that the k-nearest neighbour
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classifier does not support sample weights in Sci-Kit learn.
As an alternative, repair products in the train data are dupli-
cated based on the assigned sample weight. Although has the
same effect as using sample weights, it increases the compu-
tational costs.

Preprocessing - in order for models to properly handle
the data, several preprocessing steps are performed,;

Removal of the WT genotype cell cultures
Removal of error-free repair products
Recalculation of the frequency

Set repair products labels

Adding and encoding features and data imputation
Create a test set

Feature scaling

NN AE RN~

I: any cell culture with the WT genotype is removed
from the data. The reason for WT removal is explained in

2: error-free repair products are removed. Error-free re-
pair products are those without genetic alterations. Error-free
repair products do not show any useful information of re-
pair pathway deficiency. Therefore it was decided to remove
these from the train data for this predictive task.

3: after removal of error-free repair products the sum
of repair products frequency for each cell culture no longer
equals 1. Since the frequencies are used to set training
weights, the summed frequency of all repair products in for
each cell culture should be equal. Therefore, frequencies are
recalculated by normalizing the values per cell culture, so
that the total frequency per cell culture is again 1.

4: the label of a repair product tells machine learning
algorithms what should be predicted when seeing the data.
For this predictive task, the used labels are either Ku80-/-
or PolQ-/-. For each repair product, the label is set to the
genotype of the cell culture a repair product originates from.
In some cases, the same repair product can be found in both
the Ku80-/- and PolQ-/- genotypes. Often in these cases,
the frequency is much higher in one genotype than the other.
Thus a repair product which can be seen in both genotypes,
is more likely to be seen in one of them. Models using the
partial or fully weighted sample weights be able to learn to
predict the more likely label in these cases. Disregarding the
training weight method used, repair products seen in multiple
genotypes should act as noise. This should help make models
more robust.

5: information from the dataset are used as features
for machine learning algorithms. The dataset contains sev-
eral non-numeric features, categorical features and features
containing null-values. Non-numeric features have been re-
moved, categorical features are one-hot encoded. The lo-
gistic regression classifier cannot handle null-values, thus
these are imputed with 0. Null-values in the dataset show
something did not happen. E.g. a homologyLength with a
null-value means no microhomology took place. Therefore,
values are imputed with O rather than other frequently used
methods. A full list of used features can be found in supple-
mentary materials A.1.



6: ahold-out test set is created. As mentioned in[subsec]
different models are created to evaluate on known
and new target sites. For models which are trained using nine
out of ten target sites, all repair products from the excluded
target site are used as the hold-out test set. For evaluation
on known target sites, a hold-out test set is created. This
test set must meet the following criteria. First, the test set
must contain repair products from each cell culture. This
ensures that the test set contains repair products from each
target site and all genotypes. Secondly, the test set must con-
tain both infrequent and frequently occurring repair products
from each culture. With only a small percentage of repair
products having a high frequency, it should be ensured that
these are found in both the training and test set. Finally, re-
pair products in the test set should be unique from those in
the train set. As mentioned above, the same repair products
can be found in cell cultures of both the Ku80-/- and PolQ-/-
genotypes. Repair products from different cell cultures are
considered equal when they are found at the same target site
and all feature values are equal (see supplementary materi-
als A.1. for used features). If a repair product is found in
both the Ku80-/- and PolQ-/- genotype, both their instances
should be placed in either the training or the test set. To
reach these three criteria, a custom function is used. First,
repair products are split into two groups. The first group con-
tains unique repair products, found only in a single genotype.
The second group contains repair products found in both the
Ku80-/- and PolQ-/- genotypes. Both groups are sorted on
cell culture and secondary sorted on the frequency of repair
products. For the first group, every 5™ repair product in the
list is selected for the test set. Due to the list sorting, the test
set will receive a fair amount of high frequently found repair
products of each culture. For the second group every 5" re-
pair product is selected as well. This time however, we know
there is a duplicate repair product found in another genotype.
The two equal repair products found in different genotypes
genotypes are both added to the test set. Furthermore, they
are both removed from the list. This ensures that the test set
is unique from the training set. Due to the sorting of both
lists, all cell cultures are found in both the train and test set
and both frequent and infrequent repair products should are
present in both sets. By selecting every fifth repair product
the test set contains approximately 20% of all repair prod-
ucts. Keep in mind that this test set is only used for models
where all target sites are used during training. For models
trained on all target sites, a single hold-out test set is created.
This way different models can be evaluated using the same
test set, ensuring a fairer comparison between classifiers.

7: the final preprocessing step applies a feature scaling.
Feature scaling is used to reduce the range of feature values.
This procedure can help improve a models ability to gen-
eralize and therefore improving performance. Numeric fea-
tures are standardized, which transforms the values so that
the mean of the feature becomes 0 and has unit-variance.
Other methods such as MinMax scaling, normalization and
log-transformation have been tried but performed worse. |
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Test sample weights - all models are evaluated using
a hold-out test set. With similar reasoning as using train-
ing sample weights, repair products in the test set can be
weighted as well. Therefore, each model will be evalu-
ated twice with different test set weights applied. The first
method is equal to the equally weighted method used for
training. Within each cell culture, repair products will be
weighted equally. Secondly, evaluation will be done using
full weights, the same as its fully weighted training weights
counterpart. This method will use the frequency of a repair
product as sample weight. Keep in mind that for both the
equally and fully weighted evaluation, the hold-out test set
does not change. Thus any increase or decrease in perfor-
mance is directly linked to the used sample weights.

2.3.2 Setup: Cell culture genotype prediction

The goal of this prediction task is to predict the genotype
of a cell culture using a set of repair products from that cell
culture. To make predictions, the set of repair products are
described using summary features. These summary features
are used to train models. The extend to which models are
able to predict a cell cultures genotype is tested with mod-
els described below. The variables describing this predictive
task are shown in the blue column.

Included genotypes - models created for this predic-
tive task will use repair products originating from each of
the Ku80-/-, PolQ-/- and wild type genotypes. This is shortly
discussed in [subsection 2.2]

Preprocessing - for this predictive task the following
preprocessing steps are performed;

1. Create copies of repair products based on their fre-
quency

Distribute copies over groups, representing cell cultures
Label groups

For each group, calculate summary features

Create a test set

Set training and test sample weights

Feature scaling

Nk wD

1: the dataset contains repair products originating from
36 different cell cultures. To properly train classifiers, hav-
ing more cell cultures in the training and test data would be
preferable. In this step, groups are created, each represent-
ing a cell culture. This way, more cell cultures can be used
for training and evaluating models. Groups are created us-
ing the repair products frequency. The first step is to create
copies of repair products based on the frequency of the repair
product. For each repair product, the frequency is multiplied
by a fixed value. This value is named the duplicationFactor.
Three different duplicationFactors are used, 1.000, 10.000
or 100.000. If the multiplication results in a decimal num-
ber, the number is rounded up. Thus, for a repair product
with an frequency of 0.00015 a total of 1, 2 or 15 copies
will be created, respective to the three duplicationFactors.
Rounding up is done to make sure that repair products with a
low frequency are copied at least once. Secondly, the dupli-
cationFactor introduced a bias towards repair products with



a lower frequency. As seen in the above example, a repair
product with a frequency of 0.00015 will have a single copy
made when using a duplicationFactor of 1.000. In contrast, a
repair product with a frequency of 0.015 will have 15 copies
with the same duplicationFactor. While the frequency is 100
times larger, only 15 times as many copies will be created.
This introduces a bias to infrequent repair products for lower
duplicationFactors.

2: now the copies of repair products are distributed over
groups. Per cell culture, all copies are randomly distributed
over 200 groups. Each group therefore contains copies of re-
pair products originating from a single cell culture. The first
two steps of copying and distributing repair products over
groups is fairly similar to sampling without replacement,
where the chance of sampling equals a repair products fre-
quency. However, there is one key difference. In the first step
a bias is introduced towards infrequent repair products using
the duplicationFactor. This can act beneficial. With all 200
groups being sampled with repair products from a single cell
culture, groups are likely to have a similar repair products in
a group. With the introduced bias, groups are more likely
to contain infrequent repair products than without an intro-
duced bias. These infrequent repair products being included
more result in more different repair products being present in
a group, thus increasing the variance in repair products. This
increase could contribute in making models more robust. Ro-
bustness is especially preferred when models are evaluated
on a left-out target sites. Furthermore it should be noted that
all data is distributed over the groups. With higher duplica-
tionFactors creating more copies, this also means that groups
created with higher duplicationFactors will contain more re-
pair products than groups created with a lower factor.

3: groups need to be labeled with Ku80-/-, PolQ-/- or
WT in order for models known what they generalize on.
Since all repair products in a group originate from the same
cell culture, a group will be labeled with the genotype of that
cell culture.

4: with each group having a number of repair products
in it, they must be described in a way so that the machine
learning algorithms are able to handle them. For this work,
summary features are used to describe all repair products of
a group. These features can be found in supplementary mate-
rials A.2, and mainly consist of the mean values and standard
deviations of features used in the first predictive task. For ex-
ample, repair products have a feature deletionLength which
describes the number of deleted nucleotides in a repair prod-
uct. Using a feature as AVGdeletionLength will be used to
describe each group. It is the average deltionLength calcu-
lated over all repair products in the group. Furthermore, the
deviation in the deletionLength of all repair products will be
reported as STDdeletionLength. All summary features are
calculated using the NumPy library in Python.

[ 5: the data is now ready to be split into a training and
test set. Again, models will be created for evaluation on seen
and unseen target sites. For the model trained on seen tar-
get sites, it is important to include groups containing repair
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products from each target site. As described above repair
products from a single cell culture are used to create 200
groups, each described by summary features. Of each cell
culture, a random 20% of the created groups will be selected
for the test set. This makes sure that all target sites and all
genotypes are equally represented in the test set. Secondly,
ten models are trained using all groups from nine of the ten
target sites. The all groups with repair products originating
from the left-out target site are used as the hold-out test set.

6: sample weights in the training and test set will again
be used to eliminate bias towards target sites. With target
site TS_9 and TS_10 being sequenced with two primers (sup-
plementary materials B), more cell cultures exists for them.
Twice as many groups will be created for these target sites
compared to other target sites. In order for models to not be
biased to these target sites, the weights of groups summariz-
ing repair products of these two target sites will be set to 0.5.
Groups summarizing repair products from other target sites
will receive a sample weight of 1. This makes sure that all
target sites are equally represented. Furthermore, when look-
ing at all groups describing a single target site each group has
an equal weight.

7: similarly as in the previous previous experiment, fea-
tures will be scaled in order for machine learning algorithms
to better use them. This time, a MinMaxScaler([0, 1]) is used
to scale all features to have a minimum value of 0 and a max-
imum value of 1. The transformation is learned on the train-
ing data and applied on the test data.

3 Results and discussion

In this section, the the results of the models built for
each of the two proposed prediction tasks are reported. First
of all, prediction of genotype in which a repair product is
formed is reported and discussed. Secondly, results of cell
culture genotype prediction will be shown. As mentioned
in models are evaluated either using repair
products originating from all target sites or repair products
from a target site left out from the train data.

3.1 Repair product genotype prediction

For this prediction task, models are trained to predict the
repair-deficient genotype which produces a repair product.
A prediction of the PolQ-/- and Ku80-/- genotypes is made,
which shows in which genotype the repair product is created.
most likely found in that genotype. First results of classifiers
trained using all target sites are discussed. Secondly, results
of models trained on all but one target site are discussed.

3.1.1 Evaluation: all target sites

shows ROC curves for each of the classifiers.
In the upper row, the test set is equally weighted. In the lower
row, the test set is weighted using repair products frequency.
Results seem to be modest. The AUCs range between 0.574
and 0.699 for equal weighted test set and between 0.584 and
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Fig. 3. Receiver operator characteristic curves of each models trained. During training, products from all target sites were present. Equal,
partial and full train weights are indicated by the different curves. The area under the curve can be seen in the legend. The upper row shows
results when test data is equally weighted, the lower shows results on a full weighted test data. Keep in mind that the upper and lower row
are evaluated on the same data, only the sample weights of the data in the test set is different.

0.76 for the full weighted test set. Although these perfor-
mances are better than a random guessing method, models
are far from optimal.

[}

Comparing the two the equally weighted and fully
weighted test set evaluation (Figure 3| upper vs lower row),
a minor increase in the AUCs is seen. This increase is
seen across all classifiers and for all training weight meth-
ods. For the logistic regression and random forest classi-
fiers, the largest increase in AUC is seen when using the
fully weighted training samples method. Each model is be-
ing evaluated twice on the same hold-out set, with the first
using equal test sample weights (upper row) and then using
a full weighted test sample weights (lower row). Models and
the test set do not change for these two evaluations, just the
test set sample weights. This means that the increase in AUC
for each model is directly linked to the different test set sam-
ple weights used. An increase of AUC would only be pos-
sible if higher weighted test data is predicted correctly more
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often than those with low weights. Since the fully weighted
test set evaluation uses repair products frequency as sample
weight, this means models are more likely to predict repair
products with a higher frequency correctly. Thus models are
able to generalize better to more frequent repair products.

Comparing the different training sample weights used,
shown by the different colored graphs in only mi-
nor differences in AUCs can be seen. With the K-NN classi-
fiers, almost no difference in the AUC of the different train-
ing weights can be seen. Only when evaluation is done us-
ing a weighted test set for the logistic regression model, a
slightly clearer difference in AUCs can be seen. With the dif-
ferent training sample weights used, biases are introduced to
either frequent or infrequent occurring repair products. One
possibility for the minor difference is that infrequent repair
products contain irrelevant information, also known as noise.
Models can learn on this noise and when use it to general-
ize models become over fitted. Over fitting can be seen by
comparing the training error and performance on the test set.
Over fitting is a possible explanation for the minor gain in
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Fig. 4. ROC per target site of logistic regression (a) and random forest (b) models trained on all target sites using partial train weights.
Evaluation is done using weighted test data. The number 1 till 10 in the legend indicates the target site used for evaluation, the value behind

it is the AUC achieved on the target site.

AUC from using different training sample weights. A com-
ment is made on over fitting of these models in supplemen-
tary materials D.

When looking at the three learning algorithms, the ran-
dom forest algorithms performs best. The other classifiers
perform fairly similar. Interestingly, for the K-NN models
the number of neighbours chosen has a very little effect on
the models performance. Computationally speaking, the K-
NN classifiers are a bad choice. The K-NN models are time
consuming to train. Remember that K-NN models do not
support sample weights and repair products in the dataset are
duplicated instead. This means that K-NN models need to
handle much more data increasing the computation time sig-
nificantly. Furthermore their results are comparable to those
of the logistic regression classifier. The random forest clas-
sifier seems to be the best option.

[ The results in[Figure 3]|show the performance of models
trained using repair products originating from all ten target
sites. The evaluation is also done using repair products orig-
inating from all ten target sites. For both logistic regression
and random forest classifiers, the model trained using par-
tial weights is arbitrarily chosen. These two models are then
evaluated with the hold-out test set, however all repair prod-
ucts from each unique target site are evaluated separately.
This results in ten ROC curves achieved by the model, each
one showing the curve obtained at for a specific target site.
For the logistic regression model, these curves can be seen
in|Figure 4p. The ROC curves of the random forest classifier

per target site are shown in[Figure 4b. Interestingly, the vari-
ance in the AUC achieved on different target sites is quite

large. The logistic classifier (Figure 4p) shows an AUC of
0.485 on TS_8, while TS_1 has an AUC of 0.81. There is also

a high variance in performance per target site for the random

forest classifier (Figure 4p), with TS_10 achieving an AUC
of 0.525 and TS_9 achieving an AUC of 0.944. This vari-
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ance is likely due to models being able to generalize better to
certain target sites. This would indicate that repair products
from some target sites show similar patterns. Likely, repair
products from for example TS_4 show similar characteristics
as those from a few other target sites. This makes the per-
formance of that particular target site really consistent across
different classifiers. The variance over the performance of
the different target sites is then directly correlated with how
many similar behaving target sites there are in the dataset.

Interestingly, on target site TS_8, TS_9 and TS_10 show
very different performances are reported when comparing
the logistic regression model (Figure 4h) and the random for-
est model (Figure 4p). A possible explanation of this differ-
ence can be the difference in the models. Logistic regression
is a linear learning algorithm, while random forest is non-
linear. A possible explanation is that repair products origi-
nating from certain target sites can be generalized better by
either linear or non-linear models. However, the difference
is most likely due to the over fitting seen in models (supple-
mentary materials D).

3.1.2 Evaluation: leave target site out

This section evaluates repair product prediction where
models are evaluated on a target site left out from the train
data. This gives insights in the generalization across new
target sites. Again, models are trained using different train-
ing sample weights. This time however, only the logistic
regression and random forest models are reported. Due to
the computational cost of K-NN and it not showing any sig-
nificant difference in the ROC curves compared to logistic
regression (Figure 3)), no K-NN models were trained.

A new model is trained to evaluate cell cultures from
each unique target site. This results in 10 logistic regres-
sion and 10 random forest classifiers, each trained with repair
products originating from all but one target site. The dif-
ferent AUCs obtained by the logistic regression models are
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Fig. 5. Bloxplot showing the AUC of 10 logistic regression (a) and 10 random forest (b) models. Each model is trained on 9 target sites and
evaluated on a single. The model is then evaluated using all repair products originating from the left out target site. In the upper row, repair
products originating from the evaluated target site are equally weighted. In the lower row, they are weighted. Significance between training

weight methods is only shown when P<=.05

shown in [Figure 5p, the AUCs from random forest models
can be found in[Figure 5p. A two-tailed U-test is performed
between the different training sample weight methods, using
the AUCs as values.

When comparing the different weight samples of the test
set (upper and lower row of a clear increase is seen
in the average AUCs achieved. This is the case for both lo-
gistic regression and random forest classifiers, across all train
sample weight methods. As the full weighted test evaluation
uses the frequency of repair products, it is shown again that
models perform best on the more frequent repair products.
This is in compliance with results conclusions made in
[subsection 3.1.11

| Comparing the different train sample weights used, lo-
gistic regression shows a clear and significant differences.
Significance is obtained between equal and partial train
weights, and obtained between equal and full train weights.
Thus when models are to make predictions for new target
sites, models can generalize better when the emphasis is put
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on more frequent repair products in the train data. By giving
these higher weights, a performance increase is seen for lo-
gistic regression. This performance gain is not seen with sig-
nificance for the random forest models. However, for logistic
regression applying full or equal sample weights is defini-
tively preferred.

For models created with the partial training sample
weights, each ROC curves per classifier are shown in
for logistic regression and in for random
forest classifiers. These figures can be used to compare the
ROC curves achieved on different classifiers shown in
Keep in mind that shows models trained on
all target sites. The variance in AUCs per target site is
is smaller than that of More interestingly,
the target sites having achieving performances for logistic re-
gression and random forest models in (TS_8, TS9
and TS_10), perform much more consistent in[Figure 5} Most

likely, varying results per target site in[Figure 4]are due to the
overfitting.

From comparing [Figure 4{and [Figure 6|it can be argued
that models achieve better results when making predictions
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Fig. 6. ROC per target site for logistic regression (a) and random forest (b) models. These models are trained using repair products from
nine out of ten target sites using partial training weights. Evaluation is done using weighted test data. The number 1 till 10 in the legend
indicates the target site used for evaluation, the value behind it is the AUC achieved on the target site.

on repair products from a left out target sites. When predict-
ing on unseen target sites (Figure 4), models behave more
consistent across different target sites. An explanation for
the more consistent predictions can be due to the repair prod-
ucts used during training. Models trained on all target sites
exclude 20% of repair products originating from each target
site for the test set. Thus each target site is missing 20% of
its repair products in the training data. On the other hand,
models trained using nine out of ten target sites can use all
repair products originating from target sites in the training
data. Models seem to become more robust when all data of a
target site can be used, rather than removing some for eval-
uation. This can explain why results in are much
more consistent than those in[Figure 4
3.2 Cell culture genotype prediction

This section reports the results of models trained to pre-
dict the genotype of a cell culture. To make predictions, re-
pair products are copied by a number of times depending on
the duplicationFactor. A lower duplicationFactor increases
a bias towards infrequent repair products. These are dis-
tributed over multiple groups, simulating a cell culture. A
group is described with summary features, which are used
by models to make predictions.

I

3.2.1 Evaluation: all target sites

Models trained to predict the genotypes of a cell cul-
ture use summary features of repair products. 20% of the
groups are used to evaluate the models, and both the train-
ing and test data contain groups containing repair products
from all target sites. [Figure 7| shows the AUC of the ROC
curve per classifier trained with duplicationFactors. As can
be seen, models performs increases as the duplicationFactor
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Fig. 7. The area under the ROC curve (AUC) achieved per learning
algorithm and duplicationFactor. Numbers above each bar show the
AUC value rounded to 2 decimals. A generalization of the AUC for
multinomial predictions is shown [37].

increases, up to near perfection. Itis clearly indicated that the
repair-deficiency of a cell cultures can be predicted. Keep in
mind that this stands for making predictions on cell cultures
with DSBs induced at a target site which was present in the
training data.

When comparing the different classifiers used for cell
culture genotype prediction, it can be seen in that
models show extremely similar AUCs. While the random
forest classifier seems to work best with a duplicationFactor
of 1.000, the difference is not significant.

For the random forest classifier the test set is evaluated
per target site. The model is trained using cell cultures with
breaks induced at all target sites, but evaluation is done by
calculating the AUC per unique target site in the test set. The
AUC per target site can be seen in For the du-
plicationFactor 1.000, the AUC ranges from approximately
0.68 to 0.95. While the performance differs per target site,
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increasing the duplicationFactor reduces this variance. The
larger variance in the AUC for the 1.000 duplication factor
can be due to the bias. Whether this improves the ability to
generalize cell cultures with DSBs at different target sites,
can be better seen in the leaving one target site out evalua-
tion.

I

3.2.2 Evaluation: leave target site out

Models were trained using cell cultures with breaks in-
duced target sites. Here models were trained with cell cul-
tures from nine out of the ten target sites and evaluated on
the left out target site. AUCs achieved for these models are
shown in

At first sight, it is clear that models are able to predict
across unseen target sites well. For example, when looking
at the duplicationFactor 100.000 for the random forest clas-
sifier, the average AUC per target site achieved is 0.879. The
K-NN classifier seems to be outperformed by the logistic re-
gression and random forest classifiers.

When comparing the different duplicationFactors, it be-
comes clear that introducing a bias towards infrequent repair
products has both advantages and disadvantages. The ad-
vantage is seen well for cell cultures with DSBs induced at
TS_1. Increasing the duplicationFactor removes a bias to-
wards infrequent repair products, resulting in groups having
a distribution fitting more to real data. The summary fea-
tures describing TS_1 seem to follow the patterns learned by
models on other target sites. Thus having no bias towards
infrequent products for a duplicationFactor of 1.000 results
in models recognizing the target site well, even though mod-
els have never seen any cell cultures of that target site. On
the other hand, results obtained at TS_3 suffer from a higher
duplicationFactor. When comparing results obtained with
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duplicationFactor 1.000 with 100.000 at target site TS_3, it
can be seen that the AUCs for K-NN and logistic regres-
sion dropped significantly. The random forest classifier is
an exception here. Likely, the duplicationFactor introducing
a bias towards infrequent repair products has a positive effect
for the K-NN and logistic regression classifiers. With a bias
introduced, groups show a slightly more variance in repair
products. This helps the models make more robust, at least
when evaluating TS_3. Interestingly, at TS_3 with a duplica-
tionFactor of 10.000 logistic regression performs better than
with a factor of 1.000 or 100.000. This effect is also seen for
logistic regression at target sites TS_9 and TS_10.

Finally, it should be noted that the logistic regression
and random forest can show widely varying AUCs on target
sites. For example at TS_3 and TS_10 with a duplicationFac-
tor of 100.000, the random forest clearly outperforms the lo-
gistic regression classifier. On the other hand, logistic regres-
sion achieves substantially better results at TS_1 and TS_7.
Both seem to predict some target sites much worse than other
target sites. For logistic regression predicting the genotype
of cell cultures with DSBs induced at TS_3 and TS_10 is
difficult, with AUCs of 0.513 and 0.665 respectively. For
random forests TS_7 is more problematic, with an AUC of
0.656. Why these models have more trouble with different
target sites, might be due to both models learning slightly
different information. For example, if one model weights the
average deletionLength higher, while the other finds the aver-
age microhomologyLength more important results can differ
per target site. While repair products from cell cultures can
be generalized and a genotype can be predicted, the manner
in which a model does this can differ. This would mean that
repair products from a target site show similar patterns with
products from some other target sites. However, repair prod-
ucts from some target sites behave much less similar mean-
ing repair pathways show slightly differing patterns in their
repair products per target site.

4 Conclusion

This section describes the most important findings of
both experiments. After the conclusions, some limitations
are discussed. Finally recommendations for future work are
made.

4.1 Predicting from single repair products

Two methods are used to evaluate models. First mod-
els are trained with with repair products originating from
all target sites. Secondly, models are trained where a sin-
gle target site is excluded from the training data on which
the model is evaluated. Overall, results seem promising and
a clear indication is made that statistical models are able to
predict repair-deficient genotypes from Cas9-induced repair
products.

For the models trained on data of all target sites, results
are modest. Classifiers seem to have trouble generalizing the
information of single repair products.The best model, a ran-
dom forest classifier, achieves an AUC of 0.76. Other models



Target site (TS) excluded from train data and used to evaluate model

Duplication | fier TS TS2 TS3 TS4 TS5 TS6 TS7 TS.8 TSO TS.I0 AVG
Factor

1.000 K-NN 0664 0770 0592 0656 0.600 0625 0593 0623 0.660 058 0.637

Logistic  0.685 0836 0605 0667 0.624 0614 0609 0620 0850 0.663 0.677

Forest  0.673 0810 0.621 0712 0651 0671 0639 0648 0820 0743 0.699

10000  K-NN 0852 0923 0540 0919 0876 0761 0659 0793 0702 0698 0.772

Logistic  0.881 0936 0683 0943 0879 0731 0733 0812 0881 0756 0.824

Forest 0927 0926 0.660 0943 0900 0754 0.746 0861 0902 0814 0843

100000  K-NN 0899 0877 0500 0982 0959 079 0658 0719 0710 0719 0.782

Logisic 0973 0954 0513 0974 0990 0830 0816 0936 0813 0665 0.846

Forest 0922 0999 0735 1.00% 0994 0793 0.656 0935 0795 0958 0.879

Table 3. AUC scores for models trained on all but one target site. Site excluded is shown in the column, the AUC score is from evaluation
on the excluded target site. Scores are rounded to three decimals. *No AUC of 1, but shows so due to rounding.

trained achieve lower AUCs when trying to predict the geno-
type in which a repair product is created. However, results
indicate that frequently occurring repair products are pre-
dicted correctly more frequently. When evaluating a model
on an unseen target site, the AUCs achieved range between
0.662 and 0.803, depending on the target site evaluated. Al-
though the results have a lot of room for improvement, there
is a clear indication that statistical learning algorithms can be
used to generalize repair products found in repair-deficient
genotypes. When looking at a single repair product, models
are able to predict the genotype in which it is found with rea-
sonable accuracy. More data created in other repair-deficient
genotypes might show if this can be extended.
I

4.2 Predicting cell cultures

When looking at a group of repair products from a single
cell culture, the repair-deficient genotype can be predicted
well. A generalized AUC for multinomial classifiers shows
that models are able to predict a cell cultures genotype on
seen target sites. When evaluation is done on cell cultures
with induced DSBs on target sites which were also present
in the training data, models are able to predict genotype with
near perfection. This does depend on the duplicationFactor
used. This does however indicate that cell cultures can be
described well with summary features. When evaluation is
done on target sites left out of the training data, results dif-
fer per target site. The best performing model, a random
forest classifier obtained an average AUC of 0.879 across
the different target sites. Summary features describing repair
products can be generalized across target sites, but perfor-
mance differs a lot per target site. Furthermore, introducing
a slight bias towards infrequent repair products is beneficial
for the performance on some target sites. These results indi-
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cate that it is possible to predict one of the Ku80-/-, PolQ-/-
and WT genotypes for a cell cultures, using Cas9-induced
repair products.

4.3 Limitations

Model thresholds - for both predictive tasks, models
are trained with repair products originating from nine of the
ten target sites. Evaluation is done using an AUC of the ROC
curve. The AUC shows the true positive rate against the false
positive rate of models at various thresholds. For evaluation
of different target sites, different thresholds might be opti-
mal. No model has been trained with repair products from
less target sites, making evaluation on multiple unseen tar-
get sites possible. If optimal thresholds would differ signifi-
cantly per target site, AUC scores for evaluation on multiple
unseen target sites are likely lower than those presented in
this work. AUCs presented in this thesis therefore might be
slightly higher than when models are evaluated on multiple
target sites which were not present in the training data.

Test set creation - as mentioned in[subsubsection 2.3.1]
repair product genotype prediction uses a custom function to
select a test set with repair products from all target sites with
a wide variety in the frequency. This function selects every
fifth repair product in sorted lists to create a test set of 20%.
This method removes randomness from the selection of the
test set. Including randomness when selecting test data is
good practice, and therefore this can be seen as a limitation.
A solution would be to select one in every five repair prod-
ucts randomly from the sorted list, rather than the fifth. This
increases the randomness in selection of the test set.

S Future work
This section describes three points options for future
work. The first point goes into how the presented models



can be used to predict repair pathways, rather then a repair-
deficient genotypes. Secondly, some recommendations are
made for predicting different target sites. Finally, an alter-
native method was tried for prediction which might be im-
proved.

5.1 Repair pathway research

This thesis was performed to assist the LUMC with re-
searching theta-mediated end-joining. The goal was to get
new insights in the repair mechanism using the repair prod-
ucts and statistical models. Ideally, models would be able
to predict by which repair pathway DSBs are repaired, by
looking at repair products. This would work likely best for
cell cultures, where looking at a group of repair products it
can be said which pathway was active or multiple in a WT
genotype. Such a model like could be used to find genes re-
lated to repair pathways. This would be done by supplying
a genotype with unknown relation to a repair pathway, and
see which pathway activity is predicted by the model. How-
ever with different gene deficiencies, where genes relate to
repair-pathways, might result in other distribution of repair
products. To train a classifier able to properly predict active
pathways using repair products, more data is needed. Specif-
ically repair product data, where product are created in other
genotypes would be needed.

5.2 Clustering target sites

In both predictive tasks, evaluation on a left out target
site showed variance in the AUC per target site. For the sec-
ond predictive task, this variance was higher especially for
target site TS_3 One question that can be asked is if
different target sites show slightly different patterns in their
repair products. As seen in the table, for all duplicationFac-
tors and classifiers target site TS_3 is one with the lowest
AUC. This indicates that repair products from TS_3 cannot
be generalized as well with the given training data. Models
might be able to generalize better on repair products from
more similar target sites. Models can be altered to account
for this. For example, target sites can be clustered using un-
supervised learning methods to group more similar behaving
target sites. With the given dataset, TS_3 would preferably
be in another cluster than the other target sites. Then mod-
els can then be trained on each cluster. This would result in
models generalizing on more similar behaving target sites.
However, determining when target site are similar might be
a large predictive task. ||

5.3 Cell culture prediction alternative

Cell culture genotype prediction can be done using dif-
ferent methods. Here, cultures are described using summary
features showing good results. However, alternatives can be
tried. One example would be to use models from the first pre-
dictive task to predict the genotype in which a repair product
is found. Using these models, prediction can be made for all
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repair products in a cell culture. This would result in a pre-
diction for each repair product of either Ku80-/- or PolQ-/-.
A second model can be trained on the distribution of predic-
tion to determine the cell cultures genotype. A pipeline like
this might be more robust for cell culture genotype predic-
tion on new target sites. Results showed that predicting cell
cultures genotype using summary features was effective, but
future work can show if alternatives can work or might work
better.
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A: Dataset features

Here, the features used by models are given. A minor description of what it does is given, the format of the feature
and when necessary. Note that the sci-kit learn implementations of Logistic Regression and K-NN classifiers do not support
empty or Null values. Missing values are filled with O rather than the mean of a feature. This is done since missing values
more often indicate that there was no value to measure. For example, a null value in SNV type means no SNV was seen.

A.1. Repair product genotype prediction

Features used for genotype deficiency prediction based on a single repair product are shown in The features
shown here are calculated using the dataset provided by the Tijsterman lab at LUMC. Non cursive features are found directly
in that dataset, while cursive features have been added or modified in preprocessing. The dataset contained more features,
but were removed due to being repetitive or descriptive metadata. Besides the primer distance, no descriptive meta data is
used. It is added in order to help models explain the difference in feature values for repair products with the same genotype
and target site, but sequenced with different primers.

Feature Name Type | Describes
Type OHE | The type of the repair product, one hot encoded. Possible options are:
deletion, insertion, delin, SNV, tandem duplication, WT (error-free product)
SNVType OHE | A one-hot encoded representation of the type of SNV in a repair product (e.g. AT->TA).
delSize int | The number of deleted nucleotides in the repair product. Zero when no deletion took place.
delATRatio float | The AT ratio seen in the deleted nucleotides, between 0 and 1.
delCGRatio float | The CG ratio seen in the deleted nucleotides, between 0 and 1.
insSize int | The number of inserted nucleotides in the repair product. Zero when no insertion took place.
insATRatio float | The AT ratio seen in the inserted nucleotides, between 0 and 1.
insCGRatio float | The CG ratio seen in the inserted nucleotides, between 0 and 1.
homologyLength int | The number of nucleotides which are possible for micro-homology.

Zero when no homology is seen, -1 when no homology is possible (e.g. for insertions)

homATRatio float | The AT ratio seen in the nucleotides used for microhomology, between 0 and 1.
homCGRatio float | The CG ratio seen in the nucleotides used for microhomology, between 0 and 1.
mod3 int | Modulo3(insertion - deletion). Shows the shift in codon of due to the repair product.

Thus values are either a 0, 1 or 2 nucleotides shift.

SflankInsert OHE | Whether a templated insertion is present. Templated insertions occur when the inserted nu-
cleotides are a copy from other nucleotides nearby on the genome.
Values are True, False and not possible (for example in deletions)

delRelativeStart int | The start position of a deletion, relative to the position of the DSB. For insertions, this indi-
cates the relative position where nucleotides were inserted.

delRelativeEnd int The end position of a deletion, relative to the position of the DSB. For insertions, this is equal
to delRelativeStart.

delRelativeStartTD | int | The start position of a tandem duplication, relative to the position of the DSB. If no TD is
present in the repair product, this value equals delRelativeStart.

delRelativeEndTD int | The end position of a tandem duplication, relative to the position of the DSB. If no TD is
present in the repair product, this value equals delRelativeStart.

primerDist int | The number of nucleotides between the two primers used.

Table 4. Features used by models predicting the genotype of a cell in which repair products are found. Features in cursive are added in
preprocessing. None-cursive features are retrieved directly from the dataset. OHE type means data is one-hot encoded.



A.2. Cell genotype prediction

Cell cultures are described using summary features. These features primarily focus on the mean and standard deviation
of a repair products features. Similar cell cultures are expected to have similar summary features, with not too much variance.
Similar cell cultures would be cultures with the same target sites and genotypes. Features used are shown in [Table 3]

Feature Name Type Describes

TypeRatios float For each type a repair products can be (see [Table 4), the fraction it occurs in the cell
0<=x<=1 | culture. E.g SNVRatio.

AVGdelLen float The average and standard deviation deletion lengths of repair products in a cell culture.

STDdelLen Uses deletions with length O for calculation.

AVGdelLenNoZero | float The average and standard deviation deletion lengths of repair products in a cell culture.

STDdelLenNoZero Only calculated over deletion events, thus excludes deletions of length zero.

AVGdelATRatio float The average and standard deviation in the AT ratio of deletions seen in repair products

STDdelATRatio of a cell culture. Calculated over products with delLen > 0.

AVGdelCGRatio float The average and standard deviation in the CG ratio of deletions in the repair products

STDdelCGRatio of a cell culture. Calculated over products with delLen > 0.

AVGinsSize float The average and deviation of inserted nucleotides. Calculated over all repair products

STDinsSize in a cell culture. Uses insertions of length O for the calculation.

AVGinsSizeNoZero | float The average and deviation of inserted nucleotides. Calculated over all repair products

STDinsSizeNoZero in a cell culture. Only uses insertion types, thus excludes insertions of length 0.

AVGinsATRatio float The average and standard deviation in the AT ratio of insertions seen in repair products

STDinsATRatio of a cell culture. Calculated over products with insLen > 0.

AVGinsCGRatio float The average and standard deviation in the CG ratio of insertions in the repair products

STDinsCGRatio of a cell culture. Calculated over products with insLen > 0.

AVGhomLen float The average and standard deviation in the homology seen in repair products of a cell

STDhomLen culture. Calculated over all repair products.

AVGhomLenNoZero| float The average and standard deviation in the homology seen in repair products, where

STDhomLenNoZero homology is actually present. Calculated over repair products with homLen >= 1.

AVGhomATRatio float The average and standard deviation in the AT ratio of homology seen in repair products

STDhomATRatio of a cell culture. Calculated over products with homologyLength > 0.

AVGhomCGRatio float The average and standard deviation in the CG ratio of homology in the repair products

STDhomCGRatio of a cell culture. Calculated over products with homologyLength > 0.

AVGmod3 float The average and standard deviation in modulo3(insertion - deletion) of all repair prod-

STDmod3 ucts in a culture.

AVGdelRelStart float The average and standard deviation in the relative start position of repair products in

STDdelRelStart a cell culture.

AVGdelRelEnd float The average and standard deviation in the relative end position of repair products in a

STDdelRelEnd cell culture.

AVGdelRelStartTD | float The average and standard deviation in start position of repair products with tandem

STDdelRelStartTD duplications.

AVGdelRelEndTD | float The average and standard deviation in end position of repair products with tandem

STDdelRelEndTD duplications.

Table 5. Features used by models predicting the genotype of a cell in which repair products are found. All features are calculated during
cross-validation using the NumPy library.



B: Target sites

Throughout this thesis double strand breaks are studied originating from ten different target sites. These target sites are
shown in Furthermore, this table shows the different number of primers used for sequencing. For each primer set
used, a cell culture with the genotype Ku80-/-, PolQ-/- and WT is present in the dataset. This means, that for TS_9 and TS_10
the dataset contains two cell cultures for each of the genotypes. Note that sequence data of repair products contains about
200 to 250 base pairs, but only the 40 bp around the DSB are shown.

TargetSite  Primer sets used DNA Sequence at relative position to DSB

-20 —10 ’/ 10 20
TS-1 1 aaggagatgg : gaggccatca cattgtggcc : ctctgtgtgce
TS 2 1 ctataagttc : tttgctgacc tgectggatta : cattaaagca
TS_3 1 ttgtatacct : aatcattatg ccgaggattt : ggaaaaagtg
TS 4 1 catcacattg : tggeccctcetg tgtgctcaag : gggggctata
TS5 1 gtggeccctcet : gtgtgctcaa ggggggctat : aagttctttg
TS_6 1 aaatagtgat i agatccattc ctatgactgt i agattttatc
TS_7 1 taaaagttat : tggtggagat gatctctcaa : ctttaactgg
TS_8 1 taattaacag : cttgctggtg aaaaggacct : ctcgaagtgt
TS9 2 atttgetetg : tatacctaat cattatgccg : aggatttgga
TS_10 2 aagacttgct : cgagatgtca tgaaggagat : gggaggccat

Table 6. The different target sites used during training. Primer sets used shows how many different primers were used to sequence the data.
Note that when using different primers, different repair products will be found. The lightning strike indicates the position of the Cas9-induced
DSB. The numbers above the DNA sequences indicate the relative position with regard to the DSB. This is a value used by several features,
as shown in supplementary materials A.



C: Model parameters search grid

This section briefly describes the hyperparameters supplied for the search grid. Each combination of hyperparameters is
tested during the grid search. Since different learning algorithms use different hyperparameters, each classifier is described
separately.

C.1. Logistic regression

The following set is supplied for selecting the logistic regression hyperparameters. What hyperparameters do can be
found in the scikit-learn documentation of logistic regression. Keep in mind that the max iteration hyperparameter is set, but
all models trained have been stopped early due to a stopping criteria.

’model__max_iter’: 5000,

’model__tol’: 1e-4, le-5,

’model__class_weight’: balanced,

’model__C’: .001, .01, .05, .1, .5, .1, 5, 10, 50, 100,
’model__fit_intercept’: True, False,
’model__intercept_scaling’: 0.01, 0.1, 1, 10, 50, 100,
’model__penalty’: ’12’, ’11°, elastinet’,

’model__1 _ratio’: .1, .2, .3, 4, .5,.6,.7, .8, .9

C.2. Random forest
The following set is supplied for selecting the random forest hyperparameters. What hyperparameters do can be found
in the scikit-learn documentation of the random forest classifier.

’model__class_weight’: balanced, .33, .5,
’model__criterion’: gini’, ’entropy’,
’model__n_estimators’: 200,
’model__max_depth’: 5, 10, 15, 20, 25, 30,
’model__min_samples_split’: 2, 4, 6, 10, 20, 30
’model__min_samples_leaf’: 1, 2, 5, 10, 15, 20
’model__max_features’: ’sqrt’,
’model__ccp_alpha’: 0.0001, 0.001

C.3. K-Nearest neighbour
The following set is supplied for selecting the K-NN hyperparameters. What hyperparameters do can be found in the
scikit-learn documentation of the K-Nearest neighbour classifier.

’model__class_weight’: balanced,
’model__n_neighbors’: 3, 5, 10, 100, 200, 500,
’model__algorithm’: ’ball_tree’, "kd_tree’,
’model__leaf_size’: 20, 30, 40,
’model__metric’: ’euclidean’, 'manhattan’



D: Over fitting in the first predictive task
Models trained for predicting in which genotype a repair product can be found using all target sites have been discussed

in[subsubsection 3.1.1] As shown in[Figure 3] models performance can be described as modest. A possible explanation given
is that over fitting leads to diminished results, also reducing any differences seen in the different training sample weights

used. Evaluation on the training set is shown in This shows the training error for different thresholds. Again,
an increase is seen in AUCs when the evaluation set (the training data in this case) is equally or fully weighted, shown
respectively by the upper and lower row. This increase indicates that more frequent repair products are predicted correctly
more often, correspondingly as said in|subsubsection 3.1.1} When comparing|Figure 9|to [Figure 3| all of the K-NN, logistic
regression and random forest classifiers show clear and significant difference in AUCs. This is especially true or weighted
evaluation. This indicates models are over fitted. Interestingly, a clearer difference can be seen for the different training

sample weights used in However due to this difference is only seen in the training error, this fact cannot be used to
make conclusions about the different training sample weight methods. Over fitting was combated with tuning some model

hyperparameters, but this leaded to diminished results compared to those shown in [Figure 3|
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Fig. 9. Receiver operator characteristic curves of each models trained shown in[subsubsection 3.1.1|while evaluated on the training data.

This information shows the training error and can be used to identify over fitting.



