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Abstract
More andmore devices are gaining some form of smartness either by sensing their environment on their
own or by communication. An example of this is Smart Lighting, a field in which Chess Wise is active
for over 6 years. By adding sensors and communication lighting can be controlled more efficiently.
For example motion sensors to turn off lighting where no movement is detected, or a light level sensor
to achieve the same light level throughout the day. This saves energy when natural light is available.
Extending the wireless network with a gateway to the internet opens even more possibilities to control
and monitor the wireless network.

The technology used by Chess Wise, calledMyMesh, is a proprietary mesh network. One node is a
small embedded device with limited resources. TheMyMesh network is self­organizing. All nodes have
the same function in the network. All nodes cooperate to get messages from node A to node B. Being
self­organizing allows nodes to be added or removed at any time. By leveraging the communication
between nodes their limited resources can be combined into a big shared resource.

The MyMesh network currently uses an protocol, SharedState, to combine the limited memory
capacity (cache) of the nodes. During communication nodes exchange memory items, called Tokens.
By moving these tokens around each node has access to the combined memory space of the whole
network.

In this thesis a renewed algorithm is proposed that improves the overall storage capacity of the
network. This renewed algorithm also scales better with the number of nodes compared to the current
algorithm. SharedState used a probabilistic approach to transmit tokens and replace tokens in the
cache. With the renewed algorithm per cache entry two additional fields (age, rx) are added. These
fields are stored to calulate the informational value by Shannon[19].

The age field indicates how long ago the token was placed in the cache. The rx indicates how
many times the token was received during that time. Using the age, rx and the average number of
tokens received per round the informational value can be calculated. This informational value is higher
for tokens that are received less often. Each round the cache is reordered saving the tokens with the
highest informational value at the top. Tokens that do not fit in the local cache are discarded. These
discarded tokens carry a low informational value.

To transmit tokens the renewed algorithm uses the cache position as the probability of ending up
in the transmit message. The higher the position in the cache, and the higher the informational value,
the more likely a token is to end up in the transmit message.

Using this new proposed algorithm the storage capacity now grows with the number of nodes. And
more tokens are retained in smaller networks.

M. Vonk
Delft, Jan 2020
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1
Introduction

This thesis is conducted at Chess Wise. Chess Wise has developed a wireless sensor network called
MyMesh that is scalable, secure and energy­efficient. Chess Wise currently utilizes MyMesh to control
lighting. Having all light sources, sensors and switches interconnected brings advantages. Being able
to set the correct light level by sensing presence for each fixture at any time brings comfort and reduces
energy consumption. This thesis focuses on a data dissemination algorithm that is part of MyMesh.
The wireless nature brings in a lot of challenges while still having to solve problems that can also be
found in wired distributed systems. A brief introduction to these subjects will be given in this chapter.

1.1. Distributed Systems
All around us devices become interconnected. This process started in the 1960s when a large expen­
sive machine needed to be shared between users. For this to work multiple processes in the same
system needed interconnection. Later devices became more affordable and network connections be­
tween devices were made. The network can be either local (LAN) or wide spread (WAN) and range
from a hand­full to millions of devices in a large network like the internet. A single element of a dis­
tributed system is often referred to as a node. The nodes of a distributed system communicate with
each other. By exchanging messages actions can be coordinated. This makes the whole distributed
system act as one coherent system. One of the characteristics that are present in both small and large
distributed systems is that these are dynamic: devices can enter and leave. Anyone can turn their
system on or off but the internet is still there.

Having a similar notion of time in a system that consists of multiple autonomous systems is not
easy any more. All devices have their own clock, without synchronization these clocks will drift apart.
For example to monitor the traffic in a neighborhood two sensors are placed. The order in which the
sensors are activated indicates which direction the object is traveling. Counting will be off when the
order of events is reversed. Even more if the sensors are used for speed measurement the time must
be equal at both devices to perform precise calculations.

1.2. Wireless Sensor Networks

Figure 1.1: Mesh topology

Wireless Sensor Networks (WSN) are a type of distributed system in
which multiple small, autonomous and energy­efficient devices com­
municate wirelessly. These devices usually monitor and control their
environment; environmental measurements can for example be light,
sound or humidity­level. These measurements are either aggregated
in the network itself or transferred to another network through a node
called the gateway. One form of aggregation could be to check if more
than one node in an area notices a sudden high temperature increase,
which could be an indication of fire. Because multiple nodes have the
same observation the chance of a malfunction in a single device is
eliminated. Another example could be to measure soil humidity. A
farmer could create a large network of small battery or solar powered
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2 1. Introduction

nodes in his fields to report the soil humidity. This data collected through the gateway gives the farmer
an indication of which parts of a field need more water.

The communication that exists between nodes and the gateway can be direct or relayed by other
nodes creating a multiple hop path. By using multiple hops communication can be extended beyond the
radio range of one node. If more than one hop is used for communication the nodes between the sender
and receiver are used as relays. Between the sender and receiver multiple paths can exist. Usually
some routing algorithm is used to determine the path with the least cost to relay communication between
two nodes. If one of the relaying nodes stops working a new path must be established to restore
communication. A small example network is shown in fig. 1.1. Each of the green circles corresponds to
a node and a black line for the communication paths. If for instance node A and B want to communicate
there are multiple paths; one consisting of two hops, through C, and one with three hops, trough D and
E. So either C or D can fail whilst communication between A and B is not impeded. The shown network
is a partially connected mesh; when all nodes have a direct connection to every other node it is called
a fully connected mesh.

1.2.1. MyMesh
ChessWise uses a proprietary WSN calledMyMesh. Multiple types of actors and sensors are available
for different use cases, most are developed for smart lighting. Some products are battery operated like
sensors, whilst the light controllers are operated on mains.

As previously mentioned a distributed system such as a wireless sensor network has its challenges.
The essential core of the MyMesh network, called MyriaCore, takes care of these challenges. For
one the system maintains a global synchronized clock on which the network runs. By knowing when
communication takes place the radio can be set to standby when other nodes are not transmitting to
reduce power usage. Using periodic communication we can speak of rounds. In each round a nodemay
transmit one message whilst receiving multiple messages from its neighbors. After a communication
round ends the received messages are processed and a new message is prepared to transmit in the
next round. The remainder of the time for the next round is spent sleeping, conserving energy.

The complete distributed system appears to the user as a single system. To support this system
as a whole a distributed virtual machine is placed on top of the networking stack. This machine, called
the Token Machine, uses Tokens as instructions. A Token has an identifier and one or multiple bytes
of data. A message can consist of one or multiple tokens. This Token Machine makes it possible
to run multiple applications on the MyMesh platform, which share the underlying radio link. A small
figure representing the token machine can be seen in fig. 1.2. An application can show interest in a
specific token identifier by registering a Token Handler. By distributing a single token the behaviour of
the whole system can be changed. For example flicking a switch to put the whole building into night
mode in which all interior lighting turns off. For this to happen each node in the network must receive
this token. To spread tokens the token handlers can determine their own dissemination strategy.

Figure 1.2: Token Machine[15]

When looking at the application on Node level it
will only receive tokens from its neighbors within radio
range. One of the strategies that an application can
take is to forward all received tokens. This strategy
is called Flooding. Flooding is a dissemination proto­
col in which a huge number of nodes can be reached
within a short amount of time without knowing the un­
derlying network structure. One of the challenges in
flooding is to know when to stop forwarding a token.
Otherwise each token will keep recirculating indefi­
nitely. One way to limit flooding is to add a time­to­live
counter to the token. Each time the token is forwarded
the counter is decreased until it is zero, which indicates
to stop forwarding the token. For this strategy the di­
ameter of the network must be known. If for example
the whole network from end to end has 20 intermedi­
ate hops the counter must start at least at 20 to transfer
this token to all nodes. Once the counter has reached
zero and flooding has stopped, nodes that join the network will not be able to receive the token. These
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nodes will thus not be informed.
The spreading of data between two nodes through flooding is costly. If we take fig. 1.1 as an example

network, if we want to transmit a token from node A to C both E and D will repeat this token which is a
waste of resources. In some cases data has to travel from or to a node. Node C can for instance be
a node with more storage or a gateway to another network. To transfer data to a known point in the
network it is more efficient to know the underlying network structure and route the data from A to C.
In a dynamic system such as MyMesh this underlying structure is not something that is programmed
in. The network must be able to determine this at run­time. This can be done using a routing strategy.
And once the structure is known it must be updated periodically to allow nodes to enter and leave the
network. The addition or removal of a node can add and remove paths between nodes. Once C leaves
the network routing a token between A and B should go through E and D.

Flooding or routing a token from A to B are just two example strategies that an application can imple­
ment. The token machine allows to use different priorities and strategies to share the communication
medium between applications. In this way an application moving large amounts of data, like a software
update, can run in the background whilst other applications can still operate in a timely fashion. When
the software update is distributed a single token with a different priority and strategy can switch the
whole network to the new version at once. For light control MyMesh uses a proprietary dissemination
strategy called SharedState.

1.2.2. SharedState
The SharedState algorithm designed by D. Gavidia [7] presents itself in MyMesh as a dissemination
protocol. A node can distribute a token that travels throughout the whole network. By constantly moving
the tokens around new nodes will also receive this token whilst they were not present in the network
during the originating event. So besides being a dissemination strategy SharedState is also a storage
system for the whole network. This gives way for a message passing pattern named Publish­Subscribe.
In this pattern the Publisher does not keep track of all interested parties, called Subscribers. Instead
usually a broker keeps track of the subscribers. A publisher instead publishes a message to a topic
after which a broker distributes the message to the subscribed parties. With SharedState no broker is
needed. Since the tokens travel around, each token will pass by each node in time. SharedState can
be seen as a Distributed State­full Publish Subscribe System for the MyMesh network.

The SharedState algorithm is an adaptation of a shuffle operation. This can best be explained by
example: shuffling a deck of playing­cards by a group. Each member starts out with a subset of the
cards. Then all members search another member to exchange cards with, they give a subset of cards
away and in return receive the same number of cards from the other member. Applied to the MyMesh
network, cards are represented by tokens and communication is different. We do not exchange cards
but let our neighbours know which cards we want to exchange, communication becomes one­to­many.
So when a token is sent multiple receivers receive the same token, essentially creating a number of
copies of the token. Copying tokens leads to the number of tokens growing each round. An advantage
of creating copies is that new members without tokens will also receive tokens and join in on the shuf­
fling. Since memory is finite at some point a node has to discard tokens when this capacity is reached.
A cache­replacement strategy must be in place to determine which tokens to replace. All nodes now
have to check if a token that they receive is a duplicate of what is already stored at the node. When a
node receives a copy of a token that is already in its storage this is an indication that other parties also
have this token. So when a node has reached its storage capacity these tokens are less favorable to
store than other tokens.

Copying brings in another advantage: redundancy. Nodes can now leave the network without the
network losing the tokens that are stored at the leaving node.

1.3. Gossiping
The concept of gossiping has been around for a while. In 1987 Demers et al. published a paper on
”Epidemic algorithms for replicated database maintainance”[6]. An epidemic algorithm, synonym for a
gossip protocol [13], uses gossip to exchange information.

The terminology used in epidemic algorithms is inspired by spreading a virus. Each member can
be in one of three states:

• Susceptible (𝑆): the node is unaffected
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• Infected (𝐼): the node is affected and participates in spreading

• Removed (𝑅): the node is affected but stopped spreading.

Figure 1.3: Gossip Example (White = Susceptible,
Yellow = Infected)

The goal is to reach a pandemic. The susceptible nodes
are uninfected. The infected nodes try to infect as much
susceptible nodes as possible. Once a susceptible node
becomes infected it helps spreading the virus. A removed
node is not contagious any more.

In gossiping communication exists in rounds. Each
round a node pairs up with another node to exchange in­
formation, depicted in rows in fig. 1.3. If a node receives
gossip it deems worthy of sharing it will convey the gossip
the next round when paired up with a different node. The
first round only one node knows the gossip (Node 1), the
second round two and the third round four. If each round
all infected nodes select an uninfected node the number of
infected nodes doubles. In fig. 1.3 the last row show that
node 4 receives gossip from node 3 whilst already being in­
fected. Therefore node 7 remains uninfected after 3 rounds.
One example of such an algorithm previously mentioned in

Section 1.2.1 is Flooding.

Demers et al.[6] split the algorithms into two types.
Simple epidemics Simple epidemics, also called anti­entropy, are aimed at the reduction of total

disorder in a network. Any node can either be Susceptible or Infected. Each of the nodes have a single
value and timestamp. The goal is to have the latest version at all nodes. Three types of algorithms are
proposed, push, pull and push­pull. In the push variant each node pushes their content to the selected
peer. If the information in the message is more recent the peer updates its value. In the pull variant
each node sends a message with their current timestamp. If the peer has a more recent version it will
send a reply containing its newer version and timestamp. In the push­pull these two are combined. If
the pushed version is older than the copy at the peer the peer will send back its more recent version.

Complex epidemics In complex epidemics, also called rumor mongering, a new state is introduced:
Removed. In the removed state the node will no longer actively publish their value. This is done to
reduce traffic. To become removed two types of algorithms are proposed, blind­coin and counter­
feedback. In the coin variant an infected node becomes removed with a probability of 1𝑘 . 𝑘 is a value
chosen between 1 and infinity. In the feedback variant the node will become removed once 𝑛 nodes
replied, acknowledging the transmission.

1.4. Emergent Behavior
In complex systems such as self­organizing distributed systems, the overall behavior does not rely
solely on its individual components of the system but also on the interaction between them. By adding
them together properties arise/emerge that were not a part of the single component.

Many examples can be found in nature, like the behavior of a swarm of birds. Researchers created
simple mathematical models based on the behavior of birds, which contain just three rules: Move in the
same heading as your neighbors, keep close to your neighbors and do not crash into your neighbors.
These rules do not seem that powerful on their own, but by combining many birds with this set of rules
into a flying swarm does result in complex patterns.

The disadvantage of these emerging properties is their unpredictability. A complex system will
usually converge into a specific steady state based on a set of input parameters. It is impossible to
determine which of the start conditionsmust be changed to land on a steady state that is more favorable.
One of the strategies in designing algorithms for complex systems, called a ”genetic” approach, is to
start with a simple version and improve this by small tweaks.
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1.5. Problem Statement
MyMesh currently uses a probabilistic approach, SharedState[7], to create a distributed token­store.
This token­store allows the network to store more elements than a single node can store, whilst nodes
receive all tokens stored in the network over time. These two elements of behavior must be retained.

To make the number of tokens stored measurable we take 𝑛 for the number of nodes, 𝐶𝑠 for the
token storage capacity of a node and a replication factor 𝑟. We say that 𝑡 = 𝐶𝑠𝑛

𝑟 denotes the storage
capacity of unique tokens in the network. Adding nodes(𝑛) or storage (𝐶𝑠) should lead to a higher 𝑡
for scalability to work. To allow node failure the replication factor(𝑟) should be at least 2 to allow for a
single node to fail whilst retaining all elements in the network.

Various tests at Chess Wise have shown that the SharedState algorithm does not scale with the
network size. Experiments with 100 nodes that retain 40 tokens each could lead to a theoretical maxi­
mum of 𝑡 = 100∗40

2 = 2000 unique tokens. In reality only around 100 to 150 tokens can be stored in the
network. This is an order of magnitude lower. Adding more nodes does not increase the total storage
capacity.

Chess Wise currently uses MyMesh to control lighting in public and commercial applications. A
building consists of multiple rooms which all have multiple light­fixtures. The light­fixtures in a room can
be grouped since they have the same desired light level. If for all rooms the desired light level would
be stored in Shared State there could only be around 150 rooms. Controlling lighting in a building such
as EWI building at TU­Delft with 23 floors could be problematic using SharedState.

The network wide storage capacity of the current SharedState implementation does not scale with
the number of nodes in the network. What causes this unexpected upper bound and can we improve
or change the SharedState algorithm to maximize the storage capacity closer to 𝐶𝑠𝑛

2 ?

1.6. Structure
Being able to test and verify the differences to the SharedState implementation a repeatable set of
experiments must be conducted. This setup and reference measurements are explained in chapter 2.
After getting acquainted with the MyMesh network in chapter 3 related sources will be discussed in
connection to MyMesh and SharedState. In chapter 4 multiple algorithms are tested and data filtering
is added. In chapter 5 a conclusion is given and future work is suggested.



2
Analysis of SharedState

Distributed wireless systems such as a WSN are not easily measured. Due to the distributed nature
one cannot determine exactly what is sent and received by each individual node by observing the radio
communication alone. Messages can collide in the air. For each experiment all incoming and outgoing
messages must be stored locally and gathered afterwards to be analyzed. To compare SharedState
with other algorithms a set of specific experiments is created to improve repeatability and comparability.
This chapter motivates which and why this set of experiments is chosen as a test bench.

2.1. Experiments
The goal of these experiments is to measure the number of tokens that can be stored in the network.
Using four parameters which will be described in this section multiple experiments will be conducted.
Each of the parameters has to be tested individually. We can only change one parameter at a time to
check the influence this parameter has on the total storage capacity.

In the previously mentioned storage capacity formula 𝑡 = 𝐶𝑠𝑛
𝑟 there are already two factors (𝑛, 𝐶𝑠)

that could impact the total network storage capacity. This will be our first two parameters, Number of
nodes 𝑛 and Cache Size 𝐶𝑠.

In the current configuration Chess Wise uses a Cache Size of 40 tokens. Adding more storage
per node should increase the distributed storage capacity. Otherwise the added resource usage is not
justified. Perhaps this is already in effect so testing a cache with fewer items is also advisable.

The second parameter Number of nodes can be described as just adding or removing nodes. How­
ever once nodes are added or removed a couple of effects take place. If extra nodes are placed
between existing nodes the neighborhood of these nodes grows. During experimentation this will add
an external influence. A communication round inMyMesh has a defined set of slots to communicate. If
there are less receive slots than nodes in a given radio range the network starts scheduling. With this
scheduling communication changes (this will further be explained in Section 3.1.1). This scheduling
effect should be considered while testing. Therefore a third parameter Density is added which indicates
the network density.

When scaling the 2𝑥𝑁 topology using the Density parameter the network becomes more dense or
spread out, see fig. 2.1. In fig. 2.1 a cross­section of the 2𝑥𝑁 topology is shown. The top­center node
0 can reach all nodes that have a darker border (­7 to 7 for Compact, ­4 to 4 for Normal and ­2 to 2 for
Wide). Note that using normal scaling node 0 can reach ­4 and +4 of the same row but not of the row
below. So node 0 has a neighbour count of: 29, 15 and 9 for respectively Compact, Normal and Wide.

6
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Figure 2.1: Testing Topology Neighbour graph

To minimize the effect of a changing topology when adding nodes a 2𝑥𝑁 topology is chosen. In this
topology there are two rows of nodes. By adding nodes a network is created with more hops but most
nodes are unaffected by this change (only far left or far right gain extra neighbours). This topology
bears similarity to a corridor in a building or roadside lighting. For these experiments a network size of
24, 50 and 100 nodes are used. If instead a 𝑁𝑥𝑁 network is used with these three sets with of nodes
(24, 50 and 100) a network of 5𝑥5 to 10𝑥10 can be created. Using 2𝑥𝑁 we get 2𝑥12 to 2𝑥50 which
allows more hops in the network.

When creating an empty test application there are no additional token handlers registered in the
Token­Machine (for more info see Section 1.2.1). When no limit is added the test application could insert
up to 20 tokens per round into the outgoing message. In a real­life application this is not possible, other
token­handlers will also insert tokens in the outgoing message. Using the fourth parameter Througput
the number of tokens that are sent out each round can be altered. A constant low (5) and high number
(20) of tokens per message shows the difference between worst and best case.

Number of Nodes 24, 50, 100
Storage Size 20, 40, 60, 80
Density Compact, Normal, Wide
Throughput 5, 10, 15, 20

Table 2.1: Test parameters

To check the influence of each parameter only one can be changed per experiment. With just these
4 parameters with 3 or 4 values (see table 2.1) a total set of 144 experiments is needed for each single
parameter to be tested individually.

To do these 144 experiments in a consistent method one node will be selected as the seeder and
deliver an impulse to the network. The steady­state response of the system will be taken as the storage
capacity of the network. The conditions for the seeder node cannot change between experiments.
Therefore the seeder node is in the bottom left of the 2𝑥𝑁 topology such that its neighbours will be
the same between experiments of the same density. This seeder node will wait till the autonomous
network is created and then delivers an impulse to the network by sending out 500 unique tokens. 500
is chosen as a nice goal for the current setup and can be altered if needed later on in the experiments.
Since only a certain amount of tokens can be transmitted each round the spreader starts out with its
cache full of unique tokens and adds a new token each 5 rounds. After the distribution is finished a
specified interval is waited before the experiment is stopped. The number of tokens left in the network
after the experiment is finished will be used as the number of tokens that can be stored in the network.

2.2. Experimentation
For the analysis of SharedState multiple experiments are conducted. Each of these experiments must
be repeatable such that future analysis and comparison on different algorithms can be made. At Chess
Wise multiple options are available, both physical and simulated networks. A number of networks is
dedicated for experiments that scale from a small network on one’s desk to a board with 100 nodes to
a +/­300 node network that spans the whole office floor. These networks can be monitored by so called
”Sniffers” that monitor the messages sent through the air.

To simulate MyMesh networks a simulator called MyriaSim has been developed at Chess Wise to
simulate the behavior of the nodes. The software developed for the nodes has a Hardware Abstraction
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Layer (HAL) that is used to port the MyMesh to different target hardware. MyriaSim utilizes this HAL to
execute the code on a PC and emulate the hardware events.

The main simulation program is a Discrete­event Simulator. The simulator uses a queue of events
that need to occur at specific timestamp. When an event is processed the ”clock” jumps to the next
timestamp to process the following event. In this way no processing power is lost by simulating time in
which nothing occurs. The simulator has a built­in radio model that emulates delivery and radio range.
When two nodes transmit at the same time the radio­model detects this as a collision and drops the
messages.

2.2.1. Physical vs. Simulation
Using real­life tests to check the performance of SharedState is cumbersome. For each experiment
the binary and parameters must be programmed to all nodes in the network. The experiment must be
conducted and the data gathered for all nodes. Whilst wireless software distribution is implemented
in the MyMesh network it would be a tedious task to gather all the data. There is also no control of
the environment that could affect the experiments. The simulator has a clear advantage here, the
experiments can be executed in a controlled environment and the data is stored on the computer that
runs the simulator. A second advantage is the separate communication links. In the air messages
physically collide and as such are lost. In the simulator these collisions are simulated. The other nodes
will not receive the collided messages, but they can be logged to determine what each node sent out.

Therefore most of the testing will be done in MyriaSim. Information can be logged from each indi­
vidual node to determine its cache content and which tokens it received and sent each round. Upon
this information extended graphs and analysis can be run to optimize the algorithms. Simplified graphs
are useful later on to verify the algorithm in a real­life network. These graphs can only be based upon
”Sniffing” data.

2.3. SharedState
In the dissertation of D. Gavidia the pseudo code for SharedState is listed, see appendix B.1. From this
pseudo­code an implementation has beenmade for theMyMesh network. Over time some adjustments
were made. One adjustment is the addition of ”resident” tokens. These tokens cannot be discarded
from the cache. For these experiments and thesis no resident tokens are defined. A resident token will
always be stored on at least one node and clouds the total storage capacity of the protocol.

Figure 2.2: SharedState Buffers

TheSharedState algorithm knows two phases, Passive and Active, andmultiple buffers (see fig. 2.2).
The InputBuffer is used to collect all incoming tokens in a round, the cache is the local storage and the



2.4. Results 9

output buffer is the collection of tokens that are sent out next round.
In the Passive phase received tokens are stored in an input­buffer and de­duplicated. The Active

phase moves the received tokens over to the cache and tokens are put into the output­buffer.
One difference between the pseudo code and the current version is the addition of a Mark­Free flag

to each of the cache items. Before the tokens in the input­buffer are copied to the cache a cleanup
action is done. For each token of the input­buffer that is already in the cache the Mark­Free flag is set
at the corresponding cache entry and the token is removed from the input buffer. When in the active
phase the tokens from the input are moved to the cache there is potentially more free space to store
incoming tokens. Tokens stored in the cache that have the Mark­Free flag can be overwritten without
moving them to the output­buffer.

This feature can be reverted by setting a flag in the code. To get a feeling for comparing algorithms
this part shows both the ”Frits” and ”Daniela” variant, indicating the version of Chess Wise and the
dissertation version respectively.

2.4. Results
Running the set of 144 experiments leads to a large amount of data points which result in a cluttered
unreadable graph. Therefore in this section the steady­state response of the experiments are repre­
sented as a bar graph. These numbers are comparable with real­life experiments done at Chess Wise.
For the rest of this thesis it is more interesting to see the development of tokens in the network over
time. For this two topologies are chosen with single and multi hop communication.

2.4.1. Full data­set
In the first comparison the current implementation is tested with and without the Mark­Free flag in the
simulator. These results can be found in table A.1 and table A.2 in the appendix. Overall these two
tables show roughly the same amount of tokens stored in the network. The Normal density fares better
without the Mark­free flag whilst Compact and Wide are in favor of the addition of the flag by Frits. The
overall difference is ­3.2% to 1.2%. Since Chess Wise currently uses the extension added by Frits this
data­set is visually represented in fig. 2.3.

In this figure each bar represents the number of tokens left in the system at the end of the experi­
ment. From left to right the three network sizes are displayed with the individual cache sizes in different
groups. Each of these groups is separated by an empty bar. So ”2x12: 20” shows the 2x12 topology
with 24 nodes and a cache size of 20. In this group there are 12 bars that represent the topology density
and throughput. Each bar being a combination of throughput and network density, ”C5” represents the
transmission of 5 tokens each round in a compact network.

Figure 2.3: Full test measurement
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These are arranged in such a way that the number of nodes or cache size increases from left to
right. Adding nodes or increasing the cache size leads to a larger combined token­space (𝐶𝑠 ∗ 𝑁 is
the total token space). In fig. 2.3 adding either nodes or increasing the cache size does lead to more
storage. Within the three groups an ascending line can be seen. It can however be seen that the
replication does not stay the same. Looking at the left and right­most groups of bars in fig. 2.3 the
node count goes from 24 to 100 and the cache size from 20 to 80. Combined a factor of nearly 16
(10024 ∗

80
20 ). The total storage capacity of the network goes from +/­ 50 to +/­ 300. Only a factor of 6. In

appendix A.1 the numbers used for fig. 2.3 can be found. In these tests SharedState has a replication
factor between 6 and 22.

2.4.2. Future comparison

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 2.4: SharedState results (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

Figure 2.3 shows just the steady­state results. The seeder inserted 500 tokens into the network during
an experiment, at what time these tokens were lost cannot be seen. To explain why these tokens got
lost and to make the graphs comparable between algorithms a set of images over time is made. These
experiments were made using two smaller networks composed of twelve nodes. In one network all
nodes can reach any other node (single hop network, full­mesh). The second network is more spread
out to create a multi hop network. The two remaining test parameters, cache size and throughput, are
set to 40 and 5 respectively. These settings are comparable to a real­life network. The twelve nodes
in the network cannot store the whole impulse injected by the seeder. With a replication factor of 2 and
the used settings a storage capacity of 40∗122 = 240 could be reached.

The results of these two experiments are shown in fig. 2.4. These figures show the number of
tokens on the vertical axis and the time in rounds on the horizontal axis. These four figures have the
same axis throughout this document such that a comparison can be made with future algorithms. The
y­axis is set to 500 such that the complete impulse can be seen.

For each experiment there are two images; tokens in the air and stored. The tokens in air shows
the number of unique tokens which go through the air and can be picked up by the sniffer. The tokens
stored shows the number of unique tokens that are stored in the combined cache of the nodes. This
is done to show how many tokens are stored in the system and how many are exchanged between
nodes. If for example the storage graph indicates that there are 300 tokens stored and there are just
10 tokens in the air we do have storage, but the exchange of information is low.

The in the air graph is made using the message output of the simulator. Using this a comparison
could be made to a real­life network with sniffers. The orange line (with square points) in the air plots
shows the number of unique tokens over the last 10,000 sent tokens. If the network kept all the tokens
that are fed in by the spreader node the orange line should reach the 500. The blue line indicates the
number of unique tokens over the last 100 received tokens. This is a measure of the distribution of the
tokens. If only one token was sent 100 times the blue line would be at 1, if 100 tokens were sent 1 time
the line would be at 100.

In fig. 2.4 it is shown that just shy of 100 tokens are stored while the seeder is adding tokens
(indicated in the storage graph with the orange line with squares). The network where the nodes are
more spread out performs better than the single hop.
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(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 2.5: SharedState results (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

To check if the total storage capacity is limited by the seeder a second experiment is conducted. At
time 250 each node fills its own cache with unique tokens. This should result into 480 unique tokens
throughout the network. In the graph fig. 2.5{b,d} we can see that indeed that at time 250 the 480
tokens are injected in the network (the orange squared graph goes from 0 to 480 at time 250). The
blue line also indicates 480 at time 250. After a couple of rounds this drops back to around 80, the
same when the spreader is used.

2.4.3. Discussion
The default setting in which Chess Wise conducted experiments has a cache size of 40 and the mes­
sage is shared with other Applications that are running on the nodes. The SharedState dissemination
algorithm can then only use around 5 to 10 tokens per outgoing message. During experiments con­
ducted previously by Chess Wise a storage capacity of about 150 tokens was reached. Looking in
either Figure 2.3 or the tables in appendix A.1 it is shown that the numbers of tokens stored in the
network range from 91 to 189 tokens.

This shows that the real life testing is not that different from experimentation in the simulator.
From the second set of graphs (fig. 2.4) can be seen that the algorithm cannot process the 500

unique tokens. In the air plots (fig. 2.4{a,c}) the orange line (with square points) should reach the
injected 500 tokens, instead it maxes out at 120 and declines to the number of tokens that are kept
in the network (which can be seen in the stored plots (fig. 2.4{b,d}) indicated by the blue line). Good
news is that the orange line is close to the number of tokens that are stored in the network, the orange
line of the air plots lays close to the blue line of the corresponding stored graph. This shows that the
tokens that are saved are also exchanged.

So it is not all bad, the network accepts a subset of tokens and as long as new tokens are fed
in the capacity is somewhat higher than in the steady state. The effect between one­ and multi hop
is also visible, the multi­hop network outperforms the single hop network. Due to the random cache
replacement there is no preference for any token, incoming tokens will replace information that could
potentially be only stored at this node in the network. By having all nodes in a single hop they act upon
the same information and their caches will converge to the same tokens. Due to the probabilistic nature
this will always eventually happen. By adding nodes the probability will decrease.



3
Related Work

This chapter describes work related to this thesis. It contains two parts, in the first part the background
of MyMesh and in the second part algorithms for the networking nature of MyMesh will be discussed.

3.1. MyMesh
TheMyMesh network is somewhat different from other wireless sensor networks. It relies on broadcast­
only traffic, a node sends out a message and each node in its radio range receives this message. This
without acknowledging the reception of the message; a node does not know if anyone received this
message, but more than one could have heard the message. This is somewhat different than common
mesh networks like Z­Wave, which use point­to­point traffic. To allow point­to­point communication an
overlay network is created to determine routes between nodes. To support an overlay network a routing
protocol is used to create this overlay and it is to be updated when nodes enter or leave.

MyMesh does not create an overlay network or support routing. Each node has the same role
and software to determine whether a message must be re­broadcasted; One of the easier ways has
already been shown by using a TTL for flooding (Section 1.2.1). Applications on the MyMesh network
can however implement their own routing algorithm.

3.1.1. gMAC
To support the broadcast­only nature ofMyMesh a medium access control layer (MAC) called gMAC is
used. The ”g” in gMAC stands for Gossip, the full name is ”Gossip based Medium Access Control”. To
share the medium (radio communication) between nodes the gMAC provides synchronization as well
as medium access.

Figure 3.1: gMac Scheduling

The gMAC works in frames that have a speci­
fied duration. On a network level a frame is called
a round. Using synchronization each node be­
gins each frame at the same time. The start of a
frame is used for communication after which the
nodes have time to process the received mes­
sages and prepare a transmit message for the
next round (active period). When a node is not
communicating or processing the node is sleep­
ing to conserve energy (idle period).

gMAC utilizes Time Division Multiple Access
(TDMA) to allow more than one user to use the
same medium. TDMA divides time into slots. So

each frame is split up into slots, which are grouped into a schedule (see fig. 3.1). During a frame each
node can use at most 1 slot to transmit its message, and listen to one schedule.

By default one slot schedule is used, as long as there are fewer nodes than slots this is ok. Each
node can transmit in one slot and listen to the other slots in the schedule. When there are more nodes
than slots within radio range the gMAC starts scheduling. Scheduling is done by transmission and

12
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receive scheduling. In transmission scheduling a node only transmits once in 𝑥 frames. So a node
starts skipping transmission of its own message to allow other nodes to transmit. A second scheduling
strategy is to add an additional slot schedule to increase capacity. If a slot schedule is added a node
will still listen to just one of the schedules (receive scheduling) and transmit in one of the available slots.
The next frame the node will listen during the next schedule. Both strategies are used together.

gMAC can autonomously create a network. If a node is powered on it will initialize its peripherals
and the gMAC starts listening to determine if there is already a network present. If there is a network
present it will synchronize itself to the network and join it. When no messages are received this node
starts its own network.

If multiple nodes that are not in the same radio range are started at the same time they cannot hear
each other and will create two independent networks. When these nodes are brought closer to each
other the networks should be merged into one network to allow communication between nodes. These
networks 𝐴 and 𝐵 can operate in each others idle period, 𝐴 can communicate while 𝐵 is not listening.
Since the goal is to create one network these networks must be joined. To aid this process gMAC
sends out a Join message in the idle period. This join message is sent out at a random time in the idle
period. By doing this at random this join message of network 𝐴 will eventually land into an active slot
of network 𝐵 or vice versa. Based upon the network age of 𝐴 it will either join the other network or wait
till 𝐵 joins. An application on MyMesh can insert data into the join message, which can be received by
external sniffers, for development or debugging purposes.

3.2. Gossiping Algorithms
The focus of this thesis is data­dissemination. Gossiping can however be used for different applications
as well. Three commonly used fields are: Membership management, Data aggregation and Overlay
networking. Systems in which gossip algorithms are used are commonly large­scale and node failure
is unpredictable. Therefore the usage of gossip protocols is rather limited and commercial implemen­
tations are hard to find.

Amazon S3 built on Dynamo is one known implementation in literature [5]. This object storage
service ticks the box of being large­scale, in 2013 it stored one­trillion objects[3]. Having a gossiping
algorithm also comes with some caveats. In 2008 a data­corruption lead to an outage of the S3 platform
[1]. The resolution was to shutdown all servers and boot them up again. This event gives an indication
of how successful but also how aggressive a gossip algorithm can be. Only a full reboot restored
communication.

Examples of gossiping algorithms in different fields are:

• T­Man[8] Gossip­based Overlay Topology Management
• Cyclon[22] inexpensive membership management for unstructured p2p overlays
• AVCOL[14] Availability­aware information aggregation in large distributed systems under uncol­
laborative behavior.

VICINITY[21] by Spyros Voulgaris and Maarten van Steen is a paper that shows the influence of
randomness in an algorithm. The VICINITY algorithms tries to create an overlay network using gossip­
ing. This algorithm uses a view of neighbours. This view can be filled at random or deterministic. They
experiment with multiple variants: full random, full deterministic or a mix of both. The results show that
having either full random or full deterministic does not give the best result. Adding either a ”pinch” of
randomness or determinism helps the performance of the algorithm.

3.3. Shared State in Components
The Shared State algorithm is more than a data dissemination protocol. It aims on an even distribution
of tokens throughout the network and makes all items available for all nodes through a push­style al­
gorithm. The SharedState algorithm can be seen as two parts: Distribution and Maintainance. During
distribution a token should travel as fast as possible throughout the network (new elements are impor­
tant). In the Maintainance part the token is still distributed such that nodes that do not have this token
in their cache still have access to the token. The transition of a token from distribution to maintenance
should be automatic. In reference to Demers et al. [6] this algorithm falls in the category of Push­based
simple epidemics (see Section 1.3).
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3.3.1. Different Approaches
During research the following algorithms were found that have some resemblance to the target appli­
cation of SharedState. Each algorithm will be summarized after which the applicability to the two parts
(Distribution and Maintainance) of the SharedState algorithm will be discussed.

Flooding Optimalization
Flooding is a more common algorithm in broadcast networking. Many studies have tried to optimize
the number of messages sent by flooding. A couple of examples are:

Probabilistic Flooding [18] In probabilistic flooding a node uses a factor 𝑝 to determine if it rebroad­
casts (and thus forwards) the message. This corresponds with the complex epidemics with blind­coin
described in Section 1.3. A number 𝑘 can be used to allow one in 𝑘 messages to be forwarded:
𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑 =

1
𝑘 . If 𝑘 = 1, 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 1 it is basic flooding and all messages are rebroadcasted by each

node. If 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑 goes to zero total coverage can no longer be guaranteed. The flooding can starve
before reaching all nodes. In a dense network 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑 can be set to 0.65 whilst still reaching 90% of
the nodes[18]. In a paper by Crisostomo et al.[4] a mathematical approach for random networks is used
to determine a 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑 based upon the number of nodes 𝑛 and the probability of connection between
two nodes 𝑝𝑒. This research can be used as a starting point when implementing a probablisitic flooding
algorithm.

Counter­based Flooding,[12] A different approach is to use feedback to stop flooding, a number 𝑘
is used to determine when to stop rebroadcasting. This corresponds with the complex epidemics with
counter­feedback using push pull. A node will start broadcasting once a gossip is received. Once the
gossip is heard more than 𝑘 times the node stops the rebroadcasting. An implementation based upon
this idea is Trickle[9]. When a node receives a message it is temporarily placed on hold. The Hold time
is chosen at random by each node. If within the hold time the node hears the same message two times
it will discard this message without rebroadcasting. Otherwise the message will be rebroadcasted upon
expiration of the hold time.

Location­based Flooding,[17] If for each node a location is known a node can determine if a
message is to be rebroadcasted. When in a rectangular network the left­most node broadcasts a
message this message can only travel to the right. For any node in between it makes no sense to
rebroadcast a message when this is received from the node on its right side.

Of these three types of optimizations Location­based is the most efficient[16]. If no location infor­
mation is available counter­based is preferred over probabilistic flooding. In probabilistic flooding the
𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑 is based upon the number of nodes and how well the network is connected. If 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑 is too
small the gossip may not reach all nodes.

Figure 3.2: Complex epidemic, copied from [13]

Both Counter and Probabilistic based flooding are shown in fig. 3.2, where blind/coin uses probabilis­
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tic flooding and feedback/counter counter­based flooding. In these example implementations complex
epidemics are used to get the latest copy of 𝑣𝑎𝑙𝑢𝑒 to each node in 𝑃. Each round a node selects a
gossiping partner 𝑞 from all nodes 𝑃, and pushes its 𝑣𝑎𝑙𝑢𝑒 to node 𝑞.

Broadcast Disks: Data Management for Asymmetric Communications Environments
In BroadcastDisks[2] a server transmits multiple elements over a channel. For the following examples
the items are known as the letters of the alphabet (A,B,C,D,...). The basic solution for broadcasting
would be to transmit the elements in a round robin fashion through the channel (A,B,...,Y,Z,A,...). This is
known as a single disc. If for example A would be a more important element this could be interleaved
such that the transmission becomes (A,B,C,A,D,E..). In this way A travels through the channel at a
higher frequency than other elements, this could be described as two discs. Disc 1 containing element
A and Disc 2 containing the rest of the alphabet. Where Disc1 has a higher priority than Disc2.

Based upon this communication channel the paper describes a way to manage a local cache. Items
that are transmitted more frequently do not have to be cached, the access latency is lower when it is
transmitted more often.

This works for purely asymmetric communications in which one transmitter has access to all data
and regularly transmits this data to multiple clients which only listen.

pCache ­ Global Data Management
The pCache algorithm, which is described in Global Data Management[11], is aimed at Mobile Ad­
Hoc Networks(MANETs). This type of networks is comparible to WSN’s since they are formed au­
tonomously. MANETS generally have a higher throughput and are more mobile than WSN’s. Nodes
are constantly on the move.

PCache is an algorithm that, just as SharedState, is based upon epidemic gossiping. Each node
has a local buffer in which a limited set of data elements can be kept. Each of these data elements has
a key, value, version and expiration. Within MyMesh a token has just a key and value. The application
itself can however implement a version number. The PCache algorithm tries to store as much data
within one hop for rapid access. It varies its buffer contents to achieve a better distribution of data
elements in the network. The node that started the distribution of the data element is the owner. It is
assumed that at all times the owner keeps its own data elements such that there is always at least one
copy. PCache tries to store any element at most 1 hop away. If a node has interest in a specific data
element it sends a request. Since pCache tries to store data at 1 hop away the direct neigbours can
directly send back the data element if it is in their local cache. If no reply is received the neighbours
don’t seem to have it and a request that spans more than 1 hop must be done and routed back to this
specific node. In this case an overlay network is needed to relay data back.

HOOD
Hood is a neighbourhood abstraction [23]. In a sensor network each node will usually save some in­
formation of their direct neighbours, like when it was last seen. In Hood a neighbourhood is defined
by a set of criteria and can share a set of attributes, a node can be part of multiple neighbourhoods.
For example defining a one hop neighbourhood in which the light state is shared and a two hop neigh­
bourhood in which temperature is shared. The abstractions in Hood allow the programmer to read the
shared values of each neighbour. Hood is hiding complexity by managing discovery and data sharing.

Hood uses broadcasting and filtering, when a node transmits its attributes it is only cached at the
receivers if they consider it valuable. The transmitting node does not know if and who cached their
attributes. To indicate this asymmetry the terms neighbour and co­neighbour are used. A neighbour is
a node of which you got attributes cached, a co­neighbour has your attributes cached. Upon updating
an attribute it is rebroadcasted such that the co­neighbours are updated.

Unfortunately the criteria for a neighborhood are unknown for the application of SharedState. The
publishers and subscribers cannot be seen directly as neighbors or co­neighbors. Also the total storage
capacity is bound by the number of neighborhoods that are used.

3.3.2. Distribution
Shared state uses a probabilistic approach to Distribute elements. The output buffer is filled with ran­
dom entries from the cache (either when being replaced or at random to fill the message). If all caches
are unique each of the tokens in the network should have an equal probability of being broadcasted.
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Some applications add the network time to the token. While a token is ”fresh” it will be flooded through­
out the network using the time as a time­to­live indicator.

PCache distribution is based upon the Trickle [10] algorithm in which each data element which is
received is put on hold. The hold time is chosen proportional to the receive strength. A signal which is
weaker is assumed to be further away and yields a shorter hold time than a strong reception. During the
hold time the node listens for this same data element. Upon receiving the same data element another
two times it will not be rebroadcasted. If a node received less than two copies during the hold time the
node rebroadcasts the data element. Because each node generally has a different reception strength
the hold time will be different for each node for the same broadcast. In this way a message is flooded
throughout the network whilst using less messages. The weaker message are considered to be further
away. Using a shorter hold time this should result in less hops used throughout the network.

In Broadcast Disks a single server has the whole list of items and knows their priority. Being just
a single system and knowing all information the scheduling of the items from the various disks can be
calculated up front. This is much harder in a distributed system. Each node has their own radio range
in which the tokens are distributed. This cannot be seen as a single communication channel in which
elements can pass through. Grouping tokens into multiple groups, with or without priority, could be
considered in this research.

3.3.3. Maintenance
In the maintenance stage of shared state a token is not fresh anymore. Each of the elements of the
cache now has the same probability of being broadcasted again. When SharedState stores more
elements than a single cache can store a cache­replacement policy comes in play. If a token is received
whilst it is already in the cache it will be removed from the cache and inputbuffer, making space for other
tokens. Whenmore tokens need to be stored than free places in the cache random elements aremoved
to the output buffer.

The PCache algorithm adds a counter to outgoing messages which indicates when it was stored,
increasing with each hop since storage. This counter is called Time From Storage(TFS). During the
hold time of a data element each node saves the lowest value of TFS it received (𝑚𝑖𝑛𝑡𝑓𝑠). If at the
end of the hold time a data element is received more than two times and 𝑚𝑖𝑛𝑡𝑓𝑠 < 2 the data element
will be discarded. A low 𝑚𝑖𝑛𝑡𝑓𝑠 value indicates that one of the neighbours has already saved this data
element. By receiving a data element more than two times during its hold time we can assume that
the neighbours already propagated this data element. If this was not the case the node saves the data
element and re­transmits it with a probability of 𝑒𝑚𝑖𝑛𝑡𝑓𝑠−2. If a data element is saved more than 2 hops
away this is probability is 1. To remove full deterministic behaviour a node has a probability to store
this data element whilst a copy might be only 1 hop away. Note that so far a data element is stored
and the TFS is reset to zero upon rebroadcasting. Neighbours where the hold time is not yet reached
will have their 𝑚𝑖𝑛𝑡𝑓𝑠 reset to 0 and thus have a lower probability of storing and rebroadcasting this
data element. When the hold time expires and the data element was not received more than two times
and it was not saved by the probability of 𝑒𝑚𝑖𝑛𝑡𝑓𝑠−2 the node will rebroadcast the data element with a
𝑇𝐹𝑆 + 1.

3.3.4. Interesting parts
The communication used in theMyMesh network is different frommost applications. By using broadcast
only communication many algorithms found are not applicable. The basics by Demers et al.[6] give us a
good basic understanding and terminology for future algorithms. Though still being random one­to­one
gossiping, where MyMesh is many­to­many.

The PCache (and therein Trickle) has some interesting features like the hold time to limit number
of messages used for flooding a message throughout the network and adding metadata to the cache.
Using this metadata a more deterministic approach on cache replacement can be made. The downside
being a MANET algorithm is ability to transfer more data, having an extra TFS field per data element
is more costly on the MyMesh network.

Hood has a huge replication factor and needs a lot of memory to operate, for each of the co­
neighbours a set of attributes is stored and pre­allocated.
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The MyMesh network is a complex system. Designing an algorithm by means of exploration seems
like a good approach to find a improvement that scales better with the number of nodes and lowers the
replication factor. As explained previously in Section 1.4 complex systems can land into a steady state
based upon a set of variables. By keeping these variables static and changing the algorithm a different
steady state can be found which could be more or less desirable. Inspired by VICINITY [21] both fully
random and fully deterministic approaches will be tested in the first section of this chapter. Based upon
a mention of a fellow student (Kees Kroep) the second part of this chapter focuses on filtering incoming
data.

These algorithms are tested using the test­bench described in Section 2.1. The data set which
results form these experiments is too large to represent in a meaningful manner in this thesis. Therefore
the network for the figures in this chapter consist of 12 nodes in a single hop or multi hop network. The
nodes in the network have a cache of 40 tokens and can transmit 5 tokens per round. This configuration
resembles the current settings used by Chess Wise. This network cannot save the whole impulse
applied by the seeder (500 tokens). There is only space for 440 tokens in the network (seeder is
excluded from total storage capacity). Using a replication factor of 2 the total network storage should
reach 220 which is in the center of the figures.

In the appendix fig. C.1 shows all algorithms placed side by side on one page. The axis scales of
the graphs are kept equal between all algorithms to make an easy comparison.

4.1. Algorithmic changes
The current SharedState is a probabilistic storage algorithm. It is not fully probabilistic as it has some
semantic purging of the cache. So in comparison to VICINITY it is random with a pinch of determinism.
In this chapter both extremes (Random and Deterministic) are explored and another mix is made.

The same structure as the shared state algorithm will be used for these algorithms. There are three
buffers named input, cache and output buffer. And there are two phases, the Passive phase places
the incoming tokens into the input­buffer and the Active phase copies the tokens from the input buffer
to the cache and output buffer.

4.1.1. Random
Figure 4.1: Random implementation ­ Deduplicate, transmit and cache at
random

In the random approach, shown in
fig. 4.1 and pseudo­code listed in ap­
pendix B.3, a random approach is pro­
posed. In the passive phase the re­
ceived tokens are placed into the input­
buffer if these are not known in the
cache. In this way each token is known
at most once. In the active phase the
tokens in the cache and input­buffer
are combined and reduced such that

17
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at most 𝐶𝑠 tokens are kept. Each of the tokens carry the same weight in the selection process and are
placed back at random in the cache. Since the tokens are placed back at random the top 𝑥 items can
be copied into the output buffer.

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.2: Random ­ one seeder (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

In these experiments the cache size used is 40. Only when there are tokens injected into the
network the lines in the air and storage plots reach above 40. Once the seeder stops injecting the
number of tokens quickly drop to about 40 where the line stabilizes. This is way worse than Shared
State (see fig. C.1 for easy comparison). In fig. 4.2 the orange line (with square points) in figures b and
d shows the number of tokens injected by the seeder. This goes to 500 while the number of stored
tokens just reaches above the cache size of 40. All 500 tokens are injected in the system and only
about 40 tokens remain in the system. The end storage capacity is 42 for the single hop network and
46 for the multi­hop network.

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.3: Random ­ all unique (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

In the second set of experiments all nodes fill their cache at time 250 with unique tokens. So the
system has 480 tokens at time 250. At that time all nodes will start to exchange their tokens. The in the
air figures of fig. 4.3{a,c} show that the orange line (with square points) reaches back to 40 again within
a couple of rounds. Having this plot lead to the same amount of tokens as when the seeder injected
tokens shows that the result is a maximum bound and not an effect of the seeder.

4.1.2. Deterministic ­ Entropy
In the paper by Demers et al. mentioned in Section 1.3 anti­entropy is mentioned. Here only one value
is used and no caching is added. Entropy within information theory is introduced by Claude Shannon
in 1948[19], and has an analogous in statistical thermodynamics.

This is useful to discuss properties of the network. For example when there is no activity in the
network it could be considered in a frozen state. Being overactive as a gas state. Being in a gas state
means more movement and a higher chance of losing data. Having a new token at a certain position
in the network leads to an increase of entropy. That needs to flow out such that entropy is the same
throughout the network.
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𝑆 = −∑
𝑖
𝑃𝑖 log2(𝑃𝑖) (4.1)

𝐼(𝑝) = log2 (
1
𝑝) = − log2(𝑝) (4.2)

The equation by Shannon gives the total entropy eq. (4.1) or informational capacity of a communi­
cation channel. For example if a node receives 4 tokens the informational value can range from 0 to
2. This is demonstrated in eq. (4.3) in which gradually more information is added. In the first equation
a single token is received 4 times, this gives an informational value of 0 since there is no information
added. In the second example two different tokens are received and the entropy rises. Even more
information is in the next example where one token is received twice and two tokens received once.

𝑆1 = −(
1
1 log2 (

1
1)) = 0 (4.3)

𝑆2 = −(2 ⋅
1
2 log2 (

1
2)) = 1 (4.4)

𝑆3 = −(
1
2 log2 (

1
2) + 2 ⋅ (

1
4 log2 (

1
4)) = 1.5 (4.5)

𝑆4 = −(4 ∗ (
1
4 log2 (

1
4))) = 2 (4.6)

Figure 4.4: Entropy implementation ­ Fill output based on highest informa­
tional value

A node can only act upon data
it receives. The general idea is to
track the informational value of each
token locally without using too much
resources. A counter is added to each
token in the cache and input­buffer to
count the number of times the token
is received. For the current round the
number of tokens received is given.
Using the number of tokens received
𝑁𝑡𝑜𝑡𝑎𝑙 and the number of times the cur­
rent token 𝑡 in the input buffer is re­
ceived 𝑁𝑟𝑥(𝑡) the value 𝑝 for eq. (4.2)
can be calculated (𝑝 = 𝑁𝑟𝑥(𝑡)

𝑁𝑡𝑜𝑡𝑎𝑙
) and

the informational value 𝐼 can be calcu­
lated.

Once a token enters the cache the
informational value should be calcu­
lated over all received tokens since

placement in the cache. For this 𝑁𝑡𝑜𝑡𝑎𝑙 should be saved with each token in the cache. This is rather
costly and in our experiments the number of tokens in a message is static. Instead the average number
of tokens per round is stored globally 𝑁𝑎𝑣𝑔𝑟𝑥 and per token in the cache 𝑡 an age counter 𝐴(𝑡) is added.
Using these values the informational value of the cached tokens can be calculated 𝑝 = 𝑁𝑟𝑥(𝑡)

𝐴(𝑡)∗𝑁𝑎𝑣𝑔𝑟𝑥
.

In the passive phase of the algorithm de­duplication is done in the cache and input­buffer. If a token
exists in either the cache or input buffer the corresponding counter 𝑁𝑟𝑥(𝑡) is increased. If a token is
unknown it is added to the input buffer. In the Active phase the cache is filled with tokens with the highest
informational value at the top and tokens with the lowest informational value at the bottom. In this way
the cache and input buffer are combined and only the most unique tokens are stored. For transmission
the top 𝑥 items are copied into the output buffer. These items carry the highest informational value.
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(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.5: Entropy ­ one seeder (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

In the figures shown in fig. 4.5 the 4 plots as shown previously for the SharedState (fig. 2.4) and
random (fig. 4.2) algorithm are shown in the same scale. In these experiments the cache size used is
40. The in the air plots of the single and multi hop networks show that the exchange of information is low
throughout most of the experiment. Less than 40 tokens are exchanged. In the multiple hop in the air
figure (fig. 4.5.c) the exchange of information is higher while the seeder is adding information (depicted
by the orange line, with squared points). While the seeder is injecting new tokens the multi hop does
accept new information, the storage count in fig. 4.5.d rises. Once the seeder stops the exchange of
information quickly freezes showing a horizontal line in the graphs.

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.6: Entropy ­ all unique (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

When a different seeder strategy is used where each node contains 40 unique tokens we see that
nothing happens. All lines in fig. 4.6 are horizontal. For the storage figures horizontal lines can be seen
as a positive outcome, no tokens are lost and a replication factor of 1 is achieved. The horizontal line in
the air graphs lays at 60. This coincides with the number of tokens transmitted each round (12 nodes,
5 tokens per message). Since these lines do not exceed 60 the same information is exchanged each
round. The network is in a frozen state. The orange line shows the unique tokens over the last 10000
received tokens. If each round a different token is exchanged this line would lay above 60.

4.1.3. Comparing results
Both random and entropy seem to do a worse job than SharedState. Only after creating the algorithms
and doing the experiments the flaws of both approaches really come forward. On one hand the random
algorithm does not favor any token. The latest token which is distributed by the injector is discarded
with the same probability of all other tokens in the cache. So new tokens are not easily accepted. Once
the seeder stops adding tokens the number of tokens quickly reduces to the cache size. All caches
contain the same tokens.

The flaw in the entropy variant can be explained by an example with three fully connected nodes
which transmit 1 token and can store up to three tokens. Each node has a unique token (see fig. 4.7).
In round 𝑁 all nodes transmit their own unique token and receive the tokens of the other two nodes.
These new tokens are added to the cache and the age of all tokens is updated. Since the node never
heard its own unique token its informational value will in increase and remain at the top of the cache.
This token will be re­transmitted in round N+1,N+2,... etc.

Looking at the total network as one system each token has the same entropy. A token which has a
high entropy level at Node 1 has a low entropy value at Node 2 and 3. The goal however was to achieve
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Figure 4.7: Entropy: Why is this not working?

the same entropy value for each token at each node. In this way all tokens are evenly distributed across
the network storage and the messages sent by the nodes.

There needs to be some feedback in the system. When a node transmits a token the informa­
tional value decreases at the neighbors for this token. Since the informational value decreases the
neighboring nodes will stop to distribute this token and eventually discard the token.

4.1.4. Algorithm 2.0
The entropy variant creates a list of all tokens ordered by their informational value. Tokens at the top will
not be discarded as long as they have a high informational value. Tokens at the bottom are less unique
and have a lower informational value. These will be replaced by tokens with a higher informational
value. Among these bottom tokens there are tokens that are received recently from our neighbors. By
sending feedback on these tokens the entropy decreases at the sender (given that they receive the
feedback). Therefore the neighbouring node will transmit this token less often. This is more the way
that was envisioned by creating an even distribution of entropy across the network.

For this feedback a pinch of randomness is introduced. By not only treating the position in the
cache as a measurement of informational value but also the probability of being transmitted a system
is created in which the less unique tokens are still distributed to provide feedback.

Each token in the cache has a position 𝑁𝑐 where 0 is the first entry with a high informational value
and 𝐶𝑠 − 1 is the last entry with a low informational value. The entry with the lowest informational
value should still have a minimum probability of being transmitted, Using 𝑃𝑠𝑒𝑛𝑑(𝑁𝑐) the probability to
be broadcasted can be calculated.

𝑃𝑠𝑒𝑛𝑑(𝑁𝑐) = 𝑃𝑚𝑖𝑛 + 𝑃𝑓𝑎𝑐𝑡 ⋅ (𝐶𝑠 − 𝑁𝑐) (4.7)

𝑃𝑠𝑒𝑛𝑑 = Probability of being in transmit message
𝑃𝑚𝑖𝑛 = Minimal probability
𝑃𝑓𝑎𝑐𝑡 = Probability increase per cache position
𝑁𝑐 = Cache position
𝐶𝑠 = Cache size

In these experiments the number of tokens which is sent out each round is static (5 tokens per
message). Applying eq. (4.7) to all elements of the cache should result into the number of tokens that
a node can transmit 𝑁𝑡.

𝑁𝑡 =
𝐶𝑠−1

∑
𝑁𝑐=0

𝑃𝑠𝑒𝑛𝑑(𝑁𝑐) =
𝐶𝑠−1

∑
𝑁𝑐=0

(𝑃𝑚𝑖𝑛 + 𝑃𝑓𝑎𝑐𝑡 ⋅ (𝐶𝑠 − 𝑁𝑐)) (4.8)

𝑁𝑡 = 𝐶𝑠 ⋅ 𝑃𝑚𝑖𝑛 + 𝑃𝑓𝑎𝑐𝑡 ⋅
𝐶𝑠−1

∑
𝑁𝑐=0

(𝐶𝑠 − 𝑁𝑐) = 𝐶𝑠 ⋅ 𝑃𝑚𝑖𝑛 + 𝑃𝑓𝑎𝑐𝑡 ⋅
𝐶𝑠 ⋅ (𝐶𝑠 + 1)

2 (4.9)

𝑃𝑓𝑎𝑐𝑡 =
2 ⋅ (𝑁𝑡 − 𝐶𝑠 ⋅ 𝑃𝑚𝑖𝑛)
𝐶𝑠 ⋅ (𝐶𝑠 + 1)

(4.10)
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For the test setup with 𝐶𝑠 = 40,𝑁𝑡 = 5, 𝑃𝑚𝑖𝑛 = 0.03 the calculated value of 𝑃𝑓𝑎𝑐𝑡 ≈ 0.005. For the
first entry in the cache 𝑃𝑠𝑒𝑛𝑑(0) = 0.03+𝑃𝑓𝑎𝑐𝑡 ⋅40 ≈ 0.22 and the last entry equals 𝑃𝑠𝑒𝑛𝑑(𝐶𝑠−1) ≈ 0.035

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.8: Algorithm 2.0 ­ one seeder (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

Adding this feedback clearly works. From the storage logs in fig. 4.8.{b,d} it is clear the injected
tokens stay in the system better and longer than any algorithm tested before. The multi hop net­
work reaches 200 tokens in the air after which it stabilizes around 150 tokens (orange squared line in
fig. 4.8.d). For a small network (12 nodes) this is a huge improvement. In multi­hop the replication factor
already comes a lot closer to 2, 𝑟 = 11∗40

152 ≈ 2.89. Single hop is lagging a bit behind, 𝑟 = 11∗40
94 ≈ 4.68,

but still an improvement over any of the other implementations.

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.9: Algorithm 2.0 ­ all Unique (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

When all nodes have their own unique tokens the number of tokens that remain in the system
stabilizes around 160 for multi­hop and 90 for single hop. These numbers correspond to the numbers
in fig. 4.8. The seeding strategy has similar results.

4.2. Data filtering
In the previous section the single hop performance is lagging a bit behind the multi hop network. If all
nodes are within one hop the data received is the same for all nodes. If all nodes behave in the same
deterministic way the caches become more alike. Resulting in a reduced overall storage capacity.

A fellow student Kees Kroep suggested to add a filter on the incoming channel. If every node just
processes 20% of the data the number of tokens that each node adds to its cache becomes smaller.
More unique tokens saved, potentially increasing the total network storage capacity.

The proposed algorithms are all in the form of anti­entropy with push as described in Section 1.3.
The paper [20] acknowledges this idea: ”The paper shows that anti­entropy protocols can process only
a limited rate of updates”. In their approach they have two mechanisms. One dependent on token
age, which is not applicable in the current setup (in the current tests each token only carries a unique
identifier and data). The second mechanism adapts the local update rate. By adapting the local update
rate its gossiping partners will receive fewer updates. If all nodes adapt this strategy all nodes will have
to process fewer messages.

An easy way of adapting the update rate is to give each node a unique sequential ID. Based on
this ID each node processes only a specific set of items in the input­buffer. In these experiments the
nodes are numbered sequentially. In the 2𝑥𝑁 topology the most­left two nodes have the ID 101 and
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102, the next column 103 and 104. This ID increases to the right. For these experiments the filtering
is based upon a fixed modulo operator. So if all nodes are labeled 0...𝑋 and the modulo chosen is 5
Node 0 will process tokens 0, 5, 10, ... from its input­buffer. Node 1 will process 1, 6, 11, .... When there
are more than 5 nodes Node 5 will process 0, 5, 10, ... again. The modulo chosen must be smaller than
the number tokens received and the number of neighbors, otherwise tokens will not be processed. In
these experiments the number of nodes and the number of tokens per message is static. Therefore a
static modulo operator can be used. In a future implementation this filtering should be done differently.

For each algorithm a preliminary explanation is given on how this filtering could impact the algorithm.
After the graphs these explanations are tested against the results. For an easy comparison one can
look at fig. C.1 and fig. C.3 in the appendix to see the differences with and without filtering.

4.2.1. SharedState
For SharedState an improvement is expected. By having only one fifth of the data to store in the cache
each cache should become more unique.

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.10: SharedState + Filtering ­ one seeder (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

The addition of this data filter to SharedState has almost no effect. Somehow the lines are almost
the same as in Figure 2.4. It is unclear why the caches do not become more unique. Seeing that the
caches are not becoming unique tokens must be lost.

There is one obvious way for SharedState to ”lose” a token. The following example will demonstrate
this. If we have a network of two nodes (1 and 2) with full caches containing all unique items except
one token A. This token A is present on both nodes. Each round a node can only transmit one token.
The nodes are fully connected and no messages are lost. The following exchange happens:

• Round 1: Both Node 1 and 2 select a random item (not token A) to transmit.
• Round 2:

– Node 1 needs to make space in the cache and randomly selects token A to be removed
from the cache. If removed from the cache it is placed in the output buffer. Node 1 will now
transmit token A.

– Node 2 selects a random token to replace. This token will be selected for transmission.

• Round 3:

– Node 1 receives a random token and needs to select a item from the cache to move to the
output buffer. token A is no longer present in the cache of Node 1.

– Node 2 now receives token A, it will be marked free. Node 2 selects a random item from the
cache (not token A) to transmit.

• Round 4:

– Node 1 receives a random token and selects an item from the cache to move to the output
buffer.

– Node 2 now receives a random token, in round 3 the location of token A is marked free.
Since this is seen as a free spot the received token is placed in the place of token A without
transmitting token A
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As an end result of above exchange token ”A” is lost.
In the above example there are two types of transmission: Unforced and Forced. If Forced a token

will be moved from the cache and transmitted. It is no longer stored in the cache. With Unforced the
token that is being transmitted is still stored in the cache. Only in Round 1 both nodes are unforced. In
round 3 and 4 node 2 is unforced.

When able to transmit more tokens per round this phenomena could become even more apparent.
More nodes are forced to transmit tokens. The remainder of the transmit message is filled with random
unforced tokens. For example; If at round 𝑁 Node 1 contains tokens 𝐴,𝐵,𝐶 and 𝐷 and Node 2 contains
tokens 𝐷,𝐸,𝐹 and 𝐺 the following exchange could occur:

• Round 𝑁:

– Node 1 is forced to transmit a random token(𝐷) due to incoming tokens and a full cache.
Node 1 selects token 𝐵 as a second token to transmit.

– Node 2 is unforced and selects two random tokens to transmit (token 𝐸 and 𝐺).

• Round 𝑁 + 1:

– Node 1 receives token 𝐸 and 𝐺, it has no space and needs to forcefully transmit two random
items. Token 𝐴 and 𝐶.

– Node 2 receives token𝐷 andmarks its location Free. The second incoming token 𝐵 is placed
in the cache at the location of token 𝐷.

In this example within one round one token is eliminated. So far no messages are lost. If the
message from Node 1 in round 𝑁 + 1 is lost even three tokens could be lost.

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.11: SharedState + Filtering ­ all unique (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

When having all unique tokens at each node the algorithm still stabilizes at the same values as
SharedState without filtering, the slope is a bit less steep. The seeding strategy has no effect on the
total storage capacity of the network.

4.2.2. Random
The random algorithm without filtering could only store about 60 tokens in the network whilst the seeder
is injecting tokens (see fig. 4.2). Once the seeder stops the total storage capacity rapidly declines back
to about 40 tokens. Data filtering shouldmake this decline less steep since fewer tokens get overwritten.
In the steady state response no real gain is expected. No token is favored above any other token and
all caches become more alike.
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(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.12: Random + Filtering ­ one seeder (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

The figures lay somewhat higher than previous experiments using the random approach. The max­
imum number of tokens stored is around 80, a bit of an improvement. When the seeder stops injecting
tokens the number of stored tokens quickly goes back down to around 40. This was expected to be
less steep. For the part where the total storage capacity is 60 and goes down to 40 this holds. For the
part from 80 to 60 the line is still very steep. The more elements are stored in the network the lower
the overlap between caches. Having more unique items come in will result in a steeper decline. Even
with filtering.

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.13: Random + Filtering ­ all unique (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

When having all unique tokens at each node again the system quickly loses tokens. The slope is
less steep but within 500 rounds the network is back to around 40 tokens.

4.2.3. Entropy
For entropy no real difference is expected. In fig. 4.7 it is shown that each node only transmits its own
Token which it deems important to share. The other nodes will never transmit this token.

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.14: Entropy + Filtering ­ one seeder (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

For entropy the added modulo filter does not really help. It even becomes worse, the number
of tokens going through the air for single­hop now slowly climbs to 60. This indicates that all nodes
selected their own unique tokens to transmit.
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(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.15: Entropy + Filtering ­ all unique (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

Using all unique tokens the results stay the same as without a filter in fig. 4.6. Once all nodes
created their own unique tokens at 𝑡 = 250 each node sends out their first 5 unique tokens. This
leads to 60 unique tokens through the air. The number of stored tokens stays the same. Essentially
all incoming tokens are discarded. Using the entropy calculation the incoming tokens (Age 1, Receive
count 1) cannot exceed the entropy calculation of tokens already in place (Age 2, Receive count 1).
Filtering has no gain here.

4.2.4. Algorithm 2.0
For algorithm 2.0 a gain is expected. Each of the nodes store the tokens they deem important. The
importance of the tokens is measured by the number of times the token is received whilst also being
stored in the cache. This feedback mechanism will be somewhat impaired, since it only has information
of one fifth of the received tokens.

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.16: Algorithm 2.0 + Filtering ­ one seeder (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

Adding a simple modulo filtering has a huge impact on algorithm 2.0. The network absorbs the data
at a faster rate. And once the seeder stops injecting tokens the number of tokens that are stored almost
stays the same. In the previous test without filtering (fig. 4.8) the number of tokens declined immediately
once the injector stopped. Now the number of tokens stored in the network lays around 190 and there
is almost no decline in the number of tokens stored (indicated by the blue line in fig. 4.16.b).

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.17: Algorithm 2.0 + Filtering ­ all unique (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

When adding unique tokens to all nodes and adding filtering the number of tokens that are stored
at the end of the experiment is increased. For single hop +/­ 210 tokens are stored and for multiple
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hops almost 300. It seems however that the steady state, which was more apparent in fig. 4.8, is not
yet reached.

4.2.5. Algorithm 2.0 ­ unfair filtering
In the previous filtering all algorithms were presented with the same elements, one in five tokens were
passed through to the algorithm, and the rest was dropped. Algorithm 2.0 uses the incoming data to
determine the informational value for the stored tokens. In this experiment this is changed by notifying
the algorithm of the dropped tokens. These tokens are not stored but their informational value is up­
dated if stored in the cache. This should have an even higher impact than just filtering. The algorithm
has all the information and is just presented with a couple of updates to store.

(a) Tokens in air, SingleHop (b) Tokens stored, SingleHop (c) Tokens in air, MultiHop (d) Tokens stored, MultiHop

Figure 4.18: Algorithm 2.0 + Unfair filtering ­ one seeder (X=Time in rounds / 1000, Y=Number of unique tokens (max=500))

In the multi­hop for the first time the 300 tokens in the air is reached, and the storage stabilizes
around 210 (indicated by the blue line in fig. 4.18.d). For single­hop 280 tokens in the air is reached
and storage stabilizes around 190 (indicated by the blue line in fig. 4.18.b). In the first half of the graphs
the tokens that are injected by the seeder are retained better. In the second half the number of tokens
that is left in the system stabilizes around the same number of tokens as with the ”fair” filtering.

4.2.6. Results
All experiments were conducted in a setup with 12 nodes, in which one is the seeder. One node can
store up to 40 tokens in their cache. The total storage volume is therefore 11∗40 = 440, as the seeder
is excluded from these calculations. In the following table the end result of the experiments is shown
together with the replication factor between braces.

Single hop no Filter Single hop with filter Multiple hops no filter Multiple hops with filter
SharedState 57 (7.72) 63 (6.98) 62 (7.10) 66 (6.67)
Random 42 (10.48) 46 (9.57) 46 (9.57) 49 (8.98)
Entropy 54 (8.15) 54 (8.15) 172 (2.56) 172 (2.56)
Algorithm 2.0 94 (4.68) 175 (2.51) 152 (2.89) 210 (2.10)
Algorithm 2.0 Unfair 94 (4.68) 182 (2.42) 152 (2.89) 202 (2.180)

Table 4.1: Tokens left in network after experiment, replication factor between braces

From this table we can see that the added modulo filter helps for almost all algorithms. For Entropy
no gain is seen, the nodes still pick their own ”unique” tokens. The Algorithm 2.0 almost reaches a
replication factor of 2 for both fair and unfair filtering. Having the unfair filtering did lead to an increase
in storage capacity whilst injecting tokens. The additional token were however lost in the steady state
response. While tokens are lost this is still a good sign, having over 220 tokens stored in the network
results in a replication factor smaller than 2. Having a replication factor lower than 2 indicates that there
are tokens that are stored at just one node. For these tokens there would be no replication within the
network. Making these tokens prone to loss when a node leaves the network.
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Conclusion and Future Work

5.1. Conclusion
The MyMesh network is a Wireless Sensor Network (WSN). The nodes in this WSN are equal, there is
no hierarchy and no structure is defined. The MyMesh network communicates using tokens. A token
consists of an identifier and data. These tokens can be distributed and stored using SharedState.
SharedState is a Distributed State­full Publish Subscribe System for the MyMesh network.

The current implementation of SharedState has an unexpected upper­bound and does not scale
when adding nodes.

This research started with an analysis of SharedState. In this preliminary research a test­bench is
developed. This test­bench is used to test different parameters in a consistent manner. The parameters
that are tested are: Network Size, Network Density, Throughput and Storage capacity.

The results from this research show that there is indeed an upper bound in SharedState (see ta­
ble A.1 and fig. 2.3). The root cause of this phenomena is not clear from these experiments. None of
the tested parameters could be tweaked to show a cause. Later on with Section 4.2.1 a feeling for the
cause of the upper bound is stated. When the cache is full random tokens are moved to the output
buffer to make space for new tokens. This can lead to tokens being erased from the network (see
Section 4.2.1). No experiment was found to demonstrate this. Instead the focus was shifted to creating
an alternative algorithm.

In chapter 4 different algorithms are tested. Based on the paper by S. Voulgaris and M. van
Steen[21] a decision is made to test two algorithms that are on different ends of a scale from Random
to Deterministic. Once both ”extremes” were tested a mix was made to see if a ”pinch of randomness”
helps in this case. For the Deterministic variant an information theory[19] based algorithm is imple­
mented, which stores and transmits tokens based on their informational value (Shannons Entropy).
By storing and transmitting tokens with a high informational value an attempt is made to even out the
informational value for each individual token throughout the network. The Random approach treats the
pile of tokens as all having the same chance of being stored and transmitted.

Both of these implementations performed worse than the currentSharedState implementation. After
analysis of the Entropy based implementation in Section 4.1.3 a flaw in the approach was found. If
zooming out on the network and treating all communication as one channel all stored tokens had the
same informational value. When zooming in on a node one unique token had a high informational
value and all others were lower. Due to transmission of the token with the highest informational value
the informational value at the neighboring nodes decreased. Since the neighboring nodes have a low
informational value for that specific token it will never be transmitted. This results in each node only
transmitting the same ”unique” token.

With Section 4.1.4 the third implementation, called algorithm 2.0, is described. Instead of trans­
mitting the tokens with a high informational value the informational value is used as a probability of
being transmitted. Using this approach each node provides feedback to its neighboring nodes. With
this feedback the informational value for that token will decrease at the neighboring node upon which
it will transmit more diverse tokens.

A final, but important addition was coined by fellow student Kees Kroep, who suggested to add

28
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filtering to the incoming data. As that would help the individual caches of the nodes to become more
unique. Leading to an increased storage capacity in the whole network. Each node has their own
unique identifier (ID). Based upon this ID and a modulo 5 operator each node processes al data but
only stores 20% based on their ID. The other 80% of data is dropped. This 80% is stored at nodes with
a different ID. This filter was first applied to Algorithm 2.0, which had a huge impact. Due too having
such a high gain in Section 4.2 all four algorithms were tested using filtering (SharedState, Random,
Entropy and Algorithm 2.0). This filter was made more generic by only delivering 20% of the incoming
tokens to each of the algorithms for a fair comparison. For the other three algorithms the impact of
this filter was not really significant. For Algorithm 2.0 the unfair filtering (processing all tokens and only
storing 20%) has a performance gain on the first part whilst tokens are injected over the fair filtering.
Both filters perform similarly for net storage.

So far all results have been in a simulated environment. To conclude this research a last comparison
is made to a real­life network of 12 nodes. This to circle back to chapter 2 where the simulation is shown
to behave similarly to real­life testing. The 12 nodes are places on the wall and in a similar configuration
in the simulator. fig. 5.1 shows near identical performance for Simulation (Left) as Real Life(Right).

(a) Tokens in air, Simulated (b) Tokens in air, Real life

Figure 5.1: Algorithm 2.0 real life test (X=time, Y=Number of unique tokens (max=500))

With the SharedState implementation the replication factor goes from 6 for smaller networks (2x12)
to 22 for larger networks (2x50). This can be seen in Table A.1 and Section 2.4.1. In this thesis the
results of a smaller network have been shown for brevity. Note however that the rest of the experimental
results are available and discussed during the thesis work at Chess Wise. To show that the renewed
algorithm handles scaling better than SharedState, the results of the three node counts and densities
are shown in Table 5.1. In this table the replication factor lays between 2.29 for a smaller network and
3.06 for a larger network. This is a huge improvement adding more nodes now result into an increase
in the total storage capacity.

Compact Normal Wide

2x12 390 (2.34) 401 (2.29) 367 (2.51)
2x25 797 (2.46) 727 (2.70) 687 (2.85)
2x50 1442 (2.74) 1348 (2.94) 1294 (3.06)

Table 5.1: Algorithm 2.0 with filtering simulation results for larger networks

5.2. Future Work
Besides total storage capacity the new algorithm should still move the data throughout the network.
In the multi­hop storage graph of Figure 4.5 there was a storage capacity with a replication factor of
two but no movement. With the new algorithm 2.0 all token that are stored are also transmitted (see
Figure 4.8). From the used graphs in this theses we cannot see if the data that is transmitted by the
nodes is also accepted at other nodes and thus travels around.
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In further research this could be measured by using the inter­arrival time at each node for each
token. This could be done on the data set that is generated during this thesis.

5.2.1. Improving input filtering
The MyMesh network is a self­organizing network. Having a nice distribution of Node IDs like in the
experiment is not a given. If input filtering using a simple modulo would be implemented it is advisable
to have a second algorithm distribute the numbers 0­4 in an even way across the network. Among
neighboring nodes the numbers should be evenly distributed. In the current use case of MyMesh (light
control) the nodes are at fixed positions and could be given a fixed number when deployed.

Filtering using a fixed modulo does have some caveats. Situations where networks are not fully
connected and consist of multiple smaller networks that are loosly coupled can be impacted. The
nodes that couple these networks only process 20% of the data received per round. The rest of the
80% cannot be passed through to the other network. Luckily the nodes transmit in a random order
and the tokens they select are selected at random. So the chance that a node processes the tokens
from the neighbor it ignored this round in another round is fairly high. Additional research should be
conducted to see if a different filtering algorithm is better suited.



A
Tables

A.1. Test­bed Measurements
These tables show the measurements done on the test­bed. In the first column the node layout and
storage capacity 𝐶𝑠 is shown. The layout 2x12 means 2 rows of 12 nodes, totaling 𝑁 = 24 nodes. The
number between brackets is the total storage capacity 𝑁×𝐶𝑠, by dividing the total storage capacity by
one of the numbers in the other columns the replication factor 𝑟 can be calculated. The column headers
show the number of tokens per message and the proximity of the nodes to each other, C is Close, N is
Normal and W is Wide.

5 10 15 20
C N W C N W C N W C N W

2x12: 20 (480) 49 48 52 51 55 61 60 65 70 67 72 77
2x12: 40 (960) 91 97 100 98 104 108 102 109 110 111 115 125
2x12: 60 (1440) 139 149 151 139 150 159 143 152 163 152 163 172
2x12: 80 (1920) 188 195 213 189 202 211 193 204 216 193 209 221
2x25: 20 (1000) 64 67 70 76 78 85 92 94 94 107 107 115
2x25: 40 (2000) 123 126 132 132 135 141 141 145 153 155 158 166
2x25: 60 (3000) 181 192 212 190 193 206 196 204 215 207 210 228
2x25: 80 (4000) 239 251 279 243 254 273 246 261 280 262 270 285
2x50: 20 (2000) 85 83 96 106 105 110 130 129 134 150 147 154
2x50: 40 (4000) 156 169 184 170 180 189 194 190 201 214 205 223
2x50: 60 (6000) 229 252 277 237 245 276 262 259 282 276 279 302
2x50: 80 (8000) 309 326 332 311 328 342 317 334 343 345 344 363
Total 1853 1955 2098 1942 2029 2161 2076 2146 2261 2239 2279 2431

Table A.1: Frits
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5 10 15 20
C N W C N W C N W C N W

2x12: 20 (480) 44 50 50 51 58 62 58 66 71 67 75 78
2x12: 40 (960) 90 95 105 99 105 106 104 107 115 107 120 122
2x12: 60 (1140) 137 147 154 143 149 158 147 154 162 153 164 168
2x12: 80 (1920) 182 198 211 188 201 208 195 204 211 195 211 218
2x25: 20 (1000) 65 66 70 76 80 83 93 94 95 103 109 113
2x25: 40 (2000) 120 127 135 128 133 140 140 143 151 156 158 166
2x25: 60 (3000) 149 195 205 183 194 205 195 201 213 206 212 224
2x25: 80 (4000) 236 261 272 241 258 273 251 262 280 258 266 283
2x50: 20 (2000) 83 90 93 108 107 111 130 136 132 148 150 158
2x50: 40 (4000) 155 163 187 168 184 194 196 197 203 212 210 229
2x50: 60 (6000) 231 244 256 233 257 271 257 265 275 274 284 295
2x50: 80 (8000) 301 331 340 307 327 344 323 331 346 333 346 361
Total 1793 1967 2078 1925 2053 2155 2089 2160 2254 2212 2305 2415

Table A.2: Daniella
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Code Listings

B.1. SharedState Algorithm [7]

1: var 𝑙𝑜𝑐𝑎𝑙𝐸𝑛𝑡𝑟𝑦 � Locally generated event/entry

Phase 1 – Update Cache

2: for all 𝑒𝑛𝑡𝑟𝑦 in inputBuffer do
3: if cache.contains(𝑒𝑛𝑡𝑟𝑦) then
4: cache.delete(𝑒𝑛𝑡𝑟𝑦)
5: inputBuffer.delete(𝑒𝑛𝑡𝑟𝑦)
6: while cache.slotsAvailable() < inputBuffer.size() do
7: var 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦 = cache.selectRandomEntry()
8: if outputBuffer.slotsAvailable() then
9: outputBuffer.add(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦)

cache.delete(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦)
10: cache.addAll(inputBuffer)
11: inputBuffer.clear()

Phase 2 – Select Entries to Broadcast

12: if outputBuffer.slotsAvailable() then
13: if !outputBuffer.contains(𝑙𝑜𝑐𝑎𝑙𝐸𝑛𝑡𝑟𝑦) then
14: outputBuffer.add(𝑙𝑜𝑐𝑎𝑙𝐸𝑛𝑡𝑟𝑦)
15: while outputBuffer.slotsAvailable() and !(cache ­ outputBuffer).isEmpty() do
16: var 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦 = cache.selectRandomEntry()
17: if !outputBuffer.contains(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦) then
18: outputBuffer.add(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦)

33
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B.2. Current Implementation

Phase 1 – Message Reception

1: for all 𝑒𝑛𝑡𝑟𝑦 in message do
2: if residentialEntries.contains(𝑒𝑛𝑡𝑟𝑦) then
3: var 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑡𝑟𝑦 = residentialEntries.search(𝑒𝑛𝑡𝑟𝑦)
4: if 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑡𝑟𝑦.isNewer(𝑒𝑛𝑡𝑟𝑦) then
5: 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑡𝑟𝑦.update(𝑒𝑛𝑡𝑟𝑦)
6: else
7: if inputBuffer.contains(𝑒𝑛𝑡𝑟𝑦) then
8: var 𝑖𝑛𝑝𝑢𝑡𝐸𝑛𝑡𝑟𝑦 = inputBuffer.search(𝑒𝑛𝑡𝑟𝑦)
9: if 𝑖𝑛𝑝𝑢𝑡𝐸𝑛𝑡𝑟𝑦.isNewer(𝑒𝑛𝑡𝑟𝑦) then
10: 𝑖𝑛𝑝𝑢𝑡𝐸𝑛𝑡𝑟𝑦.update(𝑒𝑛𝑡𝑟𝑦)
11: else
12: if cache.contains(𝑒𝑛𝑡𝑟𝑦) then
13: var 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦 = cache.search(𝑒𝑛𝑡𝑟𝑦)
14: if 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.isNewer(𝑒𝑛𝑡𝑟𝑦) then
15: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.update(𝑒𝑛𝑡𝑟𝑦)
16: else
17: if inputBuffer.slotsAvailable() then
18: inputBuffer.add(𝑒𝑛𝑡𝑟𝑦)

Phase 2 – Active Process

19: for all 𝑒𝑛𝑡𝑟𝑦 in inputBuffer do
20: if cache.contains(𝑒𝑛𝑡𝑟𝑦) then
21: cache.markFree(𝑒𝑛𝑡𝑟𝑦)
22: inputBuffer.remove(𝑒𝑛𝑡𝑟𝑦)
23: for all 𝑒𝑛𝑡𝑟𝑦 in inputBuffer do
24: if !cache.slotsAvailable() then
25: var 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦 = cache.selectRandomEntry()
26: if !outputBuffer.contains(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑦) and outputBuffer.slotsAvailable() then
27: outputBuffer.add(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦)
28: cache.remove(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦)
29: cache.add(𝑒𝑛𝑡𝑟𝑦)
30: while outputBuffer.slotsAvailable() and !(cache ­ outputBuffer).isEmpty() do
31: 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦 = cache.selectRandomEntry()
32: if !outputBuffer.contains(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑦) then
33: outputBuffer.add(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦)
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B.3. Random Implementation

Phase 1 – Message Reception

1: for all 𝑒𝑛𝑡𝑟𝑦 in message do
2: if inputBuffer.contains(𝑒𝑛𝑡𝑟𝑦) then
3: 𝑖𝑛𝑝𝑢𝑡𝐸𝑛𝑡𝑟𝑦 = inputBuffer.search(𝑒𝑛𝑡𝑟𝑦)
4: if 𝑖𝑛𝑝𝑢𝑡𝐸𝑛𝑡𝑟𝑦.isNewer(𝑒𝑛𝑡𝑟𝑦) then
5: 𝑖𝑛𝑝𝑢𝑡𝐸𝑛𝑡𝑟𝑦.update(𝑒𝑛𝑡𝑟𝑦)
6: else
7: if cache.contains(𝑒𝑛𝑡𝑟𝑦) then
8: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦 = cache.search(𝑒𝑛𝑡𝑟𝑦)
9: if 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.isNewer(𝑒𝑛𝑡𝑟𝑦) then
10: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.update(𝑒𝑛𝑡𝑟𝑦)
11: else
12: if inputBuffer.slotsAvailable() then
13: inputBuffer.add(𝑒𝑛𝑡𝑟𝑦)

Phase 2 – Active Process

14: var 𝑎𝑙𝑙𝐼𝑡𝑒𝑚𝑠 = [cache, inputBuffer]
15: inputBuffer.clear()
16: cache.clear()
17: while cache.slotsAvailable() and !𝑎𝑙𝑙𝐼𝑡𝑒𝑚𝑠.isEmpty() do
18: 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦 = 𝑎𝑙𝑙𝐼𝑡𝑒𝑚𝑠.selectRandomEntry()
19: cache.add(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦)
20: 𝑎𝑙𝑙𝐼𝑡𝑒𝑚𝑠.delete(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦)
21: while outputBuffer.slotsAvailable() and !(cache ­ outputBuffer).isEmpty() do
22: 𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦 = cache.selectRandomEntry()
23: if !outputBuffer.contains(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑦) then
24: outputBuffer.add(𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑛𝑡𝑟𝑦)



36 B. Code Listings

B.4. Entropy Implementation

1: struct CacheEntry = {entry, count[numCounter], totalCount} � numCounter = number of rounds
of history to store

2: var 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑜𝑢𝑛𝑑 = getRound() % numCounter
3: var 𝑛𝑒𝑥𝑡𝑅𝑜𝑢𝑛𝑑 = (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑜𝑢𝑛𝑑 + 1) % numCounter

Phase 1 – Message Reception

4: for all 𝑒𝑛𝑡𝑟𝑦 in message do
5: if cache.contains(𝑒𝑛𝑡𝑟𝑦) then
6: var 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦 = cache.search(𝑒𝑛𝑡𝑟𝑦)
7: if 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.isNewer(𝑒𝑛𝑡𝑟𝑦) then
8: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.update(𝑒𝑛𝑡𝑟𝑦)
9: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.totalCount = 1
10: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.count = [0] * numCounter
11: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.count[𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑜𝑢𝑛𝑑] = 1
12: else
13: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.totalCount += 1
14: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.count[𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑜𝑢𝑛𝑑] += 1
15: else
16: var 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦 = {𝑒𝑛𝑡𝑟𝑦, [0] * numCounter, 0} � Create cacheEntry with zero counters
17: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.totalCount += 1
18: 𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦.count[𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑜𝑢𝑛𝑑] += 1
19: if !cache.slotsAvailable() then
20: 𝑚𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐸𝑛𝑡𝑟𝑦 = cache.getByHighestCount()
21: cache.delete(𝑚𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐸𝑛𝑡𝑟𝑦)
22: cache.add(𝑐𝑎𝑐ℎ𝑒𝐸𝑛𝑡𝑟𝑦)

Phase 2 – Active Process

23: var 𝑛𝑢𝑚𝑇𝑥 = min(outputBuffer.slotsAvailable(), cache.size()) � Get number of items to transmit
24: outputBuffer.add(cache.getMultipleByLowestCount(𝑛𝑢𝑚𝑇𝑥)
25: for 𝑒𝑛𝑡𝑟𝑦 in 𝑐𝑎𝑐ℎ𝑒 do � Clear next Counter, update Total
26: 𝑒𝑛𝑡𝑟𝑦.totalCounter ­= 𝑒𝑛𝑡𝑟𝑦.counter[𝑛𝑒𝑥𝑡𝑅𝑜𝑢𝑛𝑑]
27: 𝑒𝑛𝑡𝑟𝑦.counter[𝑛𝑒𝑥𝑡𝑅𝑜𝑢𝑛𝑑] = 0

𝑐𝑢
𝑟𝑟
𝑒𝑛
𝑡𝑅
𝑜𝑢
𝑛𝑑

𝑛𝑒
𝑥𝑡
𝑅𝑜
𝑢𝑛
𝑑

𝑡𝑜
𝑡𝑎
𝑙𝐶
𝑜𝑢
𝑛𝑡

𝑐𝑎
𝑐ℎ
𝑒𝑆
𝑖𝑧
𝑒 Token 𝑋 1 2 3 6

Token 𝑌 1 0 2 3
⋮ ⋮ ⋮ ⋮ ⋮

Token 𝑍 1 0 0 1

Table B.1: Entropy/Receive count Structure
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C.1. Algorithm Overview ­ Seeder
These figures show a network of 12 nodes in which one seeder distributes 500 tokens.
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Figure C.1: Seeder without Filter
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Figure C.2: Seeder with Unfair filter
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Figure C.3: Seeder with Filter
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C.2. Algorithm Overview ­ All Unique
These figures show a network of 12 nodes, at Time=250 all nodes start distributing their own fully
unique set of tokens.
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Figure C.4: All nodes unique tokens without filter
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Figure C.5: All nodes unique tokens with filter
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