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ABSTRACT

Passivity-based control is a well-established technique for coordinating groups of
fully-actuated systems, but existing methods for underactuated systems are limited
to groups of homogeneous systems, coordinate synchronization tasks, and to spe-
cific applications. We propose a generic distributed control method that enables
heterogeneous groups of underactuated and fully-actuated mechanical systems to
cooperatively assume desired task-space formations, with or without leaders with
constant task-space references.
Extending the method of passivity-based control by interconnection and damping

assignment (IDA-PBC) to distributed networks of mechanical systems, we derive
matching conditions and control laws to achieve the desired stable group behavior.
For a suitable choice of virtual coupling forces between the systems in the task space,
we can decouple the matching conditions into three conditions local to each agent,
independent of the topology of the undirected and connected network. If these local
conditions are satisfied, we show how existing single-system IDA-PBC solutions can
be used to construct distributed control laws, thereby enabling distributed control
design for a large class of applications.
By shaping the input-output behavior of a system in addition to shaping its

total energy, we also show how human operators can interact with groups of under-
actuated mechanical systems using the proposed distributed control scheme. The
procedure is illustrated using simulation studies of networks of unmanned aerial
vehicles that can assume formations and dock with underactuated flexible-joint
manipulators.
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1INTRODUCTION

1.1 motivation

The transition from linear control to nonlinear control methods and the rapid in-
crease in computational power has led to robust and adaptive control methods that
are now being implemented successfully, even for complex nonlinear plants [1]. More
recently, accelerated by the miniaturization and ever decreasing cost of electrome-
chanical systems, there has been an increasing demand for distributed systems,
where a complex plant is replaced by a set of simpler plants that cooperatively
achieve a similar or superior goal compared to the original plant, by communicat-
ing process information or objectives between the subsystems [2]. A distributed
approach can reduce operational cost, ease system requirements and increase ro-
bustness to failure. The decomposition into small units also allows systems to be
scaled up or down, possibly beyond the capabilities of a single complex plant, or to
be adapted to changing task requirements [2].

1.1.1 Applications and objectives of distributed control

These advantages of a distributed approach are promising for applications such as
autonomously operating vehicle platoons [3] or spacecraft constellations [4, 5], col-
laborative transportation [6], exploration of unknown or dangerous terrains [7], large
scale sensing and quality inspection [8, 9], and collaborative construction [10, 11].
Such high level tasks can be decomposed into different, simpler objectives executed
sequentially or in parallel [2]. For example, a group of autonomous vehicles may
first drive towards a commonly agreed location and then maintain a desired vehicle
formation while traversing a stretch of road, to optimize overall fuel efficiency.

This thesis focuses on such low-level cooperative group objectives, known as con-
sensus, agreement, synchronization, or formation problems [2]. These problems are
mathematically similar across the wide spectrum of previously mentioned appli-
cations, where the cooperative objective is expressed in relevant quantities of the
systems under consideration. For example, a group of robotic arms can synchronize
(agree on; reach consensus on) their end-effector locations to collaboratively grasp
an object, by communicating this position information with one other.
The synchronization and formation control problems are extensively studied in

literature, and can be further specialized into studies that address numerous com-
plications that can arise in their practical implementation [12]. One broad class
of studies is devoted to communication constraints between the components of a
distributed system, where communication delays or connectivity problems can dras-
tically reduce performance or even incur instability of the group.
A second class of distributed control studies addresses the challenges of complex

system dynamics, such as nonlinearities or limited actuation capabilities, often while
simplifying any adverse affects of communication constraints. This thesis can be
placed in this category. In particular, we address the challenges of the distributed
control of underactuated mechanical systems, where one or more subsystems have
fewer independent actuators than kinematic degrees of freedom.

1
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1.1.2 Passivity-based distributed control of underactuated mechanical systems

The solution to the distributed control problem of mechanical systems is well-
established for fully-actuated systems, where one typically relies on energy-based
analysis techniques such as passivity [13–17]. Although there exist other distributed
control techniques including backstepping and optimization-based strategies, we fo-
cus on passivity-based techniques due to its potential for proving stability results.

In the context of mechanical systems, passivity implies that the rate at which a
system stores energy must be equal to or less than the energy supplied to the system
through its input-output pair [1, 18]. This property has been used successfully for
individual nonlinear systems such as robotic manipulators [19, 20], resulting in wide
range of methods ultimately named passivity-based control (PBC) [21, 22].
While passivity-based control techniques provide simple and effective control so-

lutions for fully-actuated agents or groups thereof, many practical systems are un-
deractuated, such as many ground, aerial [23], water, and space vehicles, as well as
some compliant or flexible robotic manipulators [24, 25]. Passivity-based schemes
usually do not rule out underactuated applications, but often do not give a con-
structive solution for such systems.
The single-agent control problem of underactuated mechanical systems is histori-

cally a popular research topic both due to its practical applications and challenging
nonlinear nature, which has spurred numerous variants of passivity-based control
for specific classes of underactuated systems [26]. A successful method for control-
ling underactuated mechanical systems is passivity-based control by interconnection
and damping assignment (IDA-PBC) introduced in [27]. This passivity-based con-
trol method uses a static state feedback law to change the open-loop dynamics to
match a desired class of stable dynamics, with an asymptotically stable equilib-
rium at a desired setpoint, corresponding to the minimum of prescribed kinetic and
potential energy functions. Constructive single-agent solutions exist for classes of
underactuated systems, such as those with only one unactuated coordinate [28].
The distributed control problem of fully-actuated mechanical systems has well-

established solutions for various applications, from fully-actuated point masses to
systems with Lagrangian and Hamiltonian dynamics [13–17, 29–31], while capturing
aspects such as synchronization, formation tasks, obstacle avoidance, and group
reference tracking. In some of these methods, solutions are provided to achieve
synchronization or formations with or without leaders in a group. Without leaders,
a group attains a desired formation, but the final location of the group is arbitrary.
When there are one or more leaders in a group, they can guide the followers in
the formation to a desired location. Unfortunately, methods such as [13–17] do not
extend trivially to networks with one or more underactuated agents.

1.1.3 Relation to existing work

An early result for the synchronization of underactuated mechanical systems was
given by [32], based on the method of controlled Lagrangians [33, 34], of which
the single-agent solution is a special case of IDA-PBC [35]. The method [32] pro-
vides control laws for leaderless coordinate synchronization of homogeneous systems
which satisfy the so-called simplified matching conditions [33, 34].

An IDA-PBC approach was used to stabilize coordinate synchronization error
dynamics in [36]. While this method reduces the synchronization recovery time
after a disturbance on a subsystem, all agents require knowledge of the absolute
reference, making it technically no longer a distributed control method. Additionally,
the communication topology is restricted to a directed ring graph, where each agent
communicates state information to one adjacent agent. The solution hinges on the
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solvability of a large partial differential equation regarding the error dynamics, for
which no systematic solution is provided beyond two examples.

Other passivity-based approaches for controlling networks of underactuated sys-
tems provide control laws for specific applications. For example, a coordinate syn-
chronization result for networks of flexible-joint robots was presented in [37]. There,
the result amounts to showing that control laws taken from fully-actuated methods
can be proven to work for a limited class of underactuated applications as well.
The previously mentioned passivity-based distributed control approaches for un-

deractuated systems share several properties that limit their theoretical and prac-
tical applicability, summarized as follows.

• Coordinate and task-space coordination: The methods [32, 36, 37] coopera-
tively control the generalized coordinates of each underactuated system in the
network. In practice, it is more useful to cooperatively control a task-space
coordinate, which is generally a nonlinear function of the coordinates. For ex-
ample, robotic manipulators may control their end-effectors to cooperatively
grasp an object, independently from where their base is located. As a special
case, coordination of the coordinates remains possible if desired. Task-space
coordination is already well-established for the fully-actuated case [38].

• Formations and synchronization: The methods [32, 36, 37] provide control
laws for synchronization, whereas formations are more useful in practice.
Robotic end-effectors can assume a formation with a desired inter-agent spac-
ing equal to the dimension of the objected to be grasped. On the contrary,
synchronization implies zero inter-agent distance, leading to collisions by defi-
nition unless they operate, somewhat artificially, in a parallel workspace. Syn-
chronization can still be obtained as special case of a formation. Formations
are already possible with methods for fully-actuated agents such as [14].

• Heterogeneity and generality: The method [32] requires that all agents have an
identical configuration space, while [37] requires all agents to be of the same
system class. In practice, it would be useful if systems can cooperate whether
they are underactuated or fully-actuated, regardless of their parameter values
or number of coordinates. This is especially useful when combined with the
previously mentioned generalizations to task-space formations.

• Methodology and constructiveness: To make a distributed control method
useful in practice, it is helpful if it is modular. This means that the ability of
an agent to participate in a particular group task can be determined using
properties of that agent alone, while the interaction between agents can be
constructively obtained based on this capability of each agent. This decoupling
of necessary conditions can be found in [32], but not in [36], where a single
condition must in general be evaluated for the whole network. Applicability
is further enhanced if existing single-agent solutions can be constructively
reused and coupled to devise the distributed control laws.

We aim to address each of these generalizations in a constructive distributed
control method for achieving stationary heterogeneous formations in the task-space.

1.2 problem statement

Our aim is to develop a constructive distributed control method that enables het-
erogeneous groups of underactuated and fully-actuated mechanical systems to co-
operatively assume a desired formation in one or more task coordinates, with or
without leaders that steer the formation to a desired location.
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Inspired by the generality of the single-agent IDA-PBC problem and solutions [26,
27], and based on the existing synchronization result of homogeneous underactuated
agents using the controlled Lagrangians approach [32], our hypothesis is that the
single-agent IDA-PBC method can be extended to achieve the desired distributed
control objectives. We wish to investigate this hypothesis using the following re-
search question:

How can passivity-based control by interconnection and damping assignment (PBC-
IDA) be used as a constructive design tool for distributed control of heterogeneous
task-space formations of underactuated and fully-actuated mechanical systems?

The desired outcomes are control laws, one for each agent, that make the group
achieve the desired task-space formation in a demonstratively stable fashion. To
help find these control laws, we pose the following questions with a more limited
scope.

1.2.1 What conditions must an agent with a local controller satisfy to allow coop-
erative control in a distributed network?

Inspired by results for fully-actuated systems [13–17], it is anticipated that the total
control law for each agent is the sum of two control signals. One signal pertains
to a local objective, such as canceling gravity, inserting damping, or stabilizing a
coordinate that is not collaboratively controlled. The other signal could account for
helping achieve the group objective.

1.2.2 How must the coordinates and the equilibrium of each agent be chosen?

Because underactuated agents have fewer independent actuators than degrees of
freedom, not all coordinates can be independently controlled. Single-agent IDA-
PBC solutions typically stabilize some coordinates to a fixed setpoint while the
setpoints of other coordinates can be chosen freely. When considering a network of
distributed systems, the equilibrium or setpoint of all agents may not be known in
advance. Does this place constraints on how existing single-agent solutions can be
re-used in the distributed control scenario?

1.2.3 Which information must be communicated with other agents for task-space
coordination?

It is expected that agents must communicate partial state information to one an-
other in order to achieve the group objective. Is it sufficient to communicate only
generalized coordinates, or must velocity information also be shared?

Moreover, because task-space objectives are generally of lower dimension than the
whole configuration space, it is expected that only part of the configuration space
must be coordinated across the network. But which part should that be exactly?

1.2.4 What degrees of freedom and constraints are there in the distributed control
law, and what group objectives can be achieved?

For underactuated systems, the signals for internal stabilization and for contributing
to the group objective are possibly not so easily separated, putting constraints on
control signals that make the agents contribute to the group objective. It is therefore
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necessary to determine precisely what these conditions are, and whether they pose
limitations to the achievable group objectives.
The single-agent PBC-IDA method is especially suited for point tracking, but is

less suited for trajectory tracking. This suggests that leaders in a group can track
fixed references. However, leaders and followers also move toward one another in
synchronization and formation tasks, which implies a moving target. The question
then becomes whether existing single-agent solutions can be adapted for this control
objective.

1.2.5 How can human operators interact with underactuated and distributed sys-
tems in a stable way?

In addition to operating autonomously, groups of robots or vehicles can also operate
in environments shared with humans, leading to human-machine interaction. This
may allow a human operator to steer one or more robots in a supervisory manner
while they stabilize themselves or maintain a previously assumed formation. Be-
cause the human interaction force cannot be modeled or predicted accurately, it is
of interest to investigate how control laws and interaction mechanisms can be de-
signed to maintain stability and the group objective when subjected to an arbitrary
human input force. This is especially the case for underactuated systems, which
cannot arbitrarily offset all human input force.

1.3 report overview

This thesis is split into six parts. Part I introduces passivity-based modeling and
control concepts for single agents. The IDA-PBC control problem and solutions are
given for several generic classes of systems, along with a coordinate partitioning
to prepare for the distributed control approach. Part II gives network modeling
concepts from graph theory and gives control objectives that can be pursued by
distributed systems. It also presents several existing passivity-based distributed
control procedures for fully-actuated mechanical systems in a unified way.
Part III presents the main result of this thesis, by deriving a distributed control

law and so-called matching conditions for stable cooperation of underactuated me-
chanical systems in a distributed system. Part IV extends the proposed method of
energy shaping to shaping of the input and output of each system in a network, pro-
viding a different interpretation of cooperation between systems, while also allowing
a human operator to interact with a group of mechanical systems.
Part V provides two sets of simulation case studies that demonstrate the appli-

cability of the proposed method. This includes a simulation of a group of under-
actuated unmanned aerial vehicles as well as a simulation of a docking procedure
of such a vehicle with two underactuated robotic arms. Part VI summarizes the
results and reflects on the achieved results and the research questions.

1.4 terminology and notation

This section gives a brief overview of the notation used throughout this thesis,
including the notation for vectors, matrices and partial derivatives.

1.4.1 Scalars, vectors, matrices, zeros, and identities

A scalar symbol c is non-bold and italicized, a vector z is bold and italicized, and
a matrix A is bold and non-italicized. The n× n identity and zero matrices are
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denoted In and 0n. Non-square zero matrices are indexed by the number of rows and
columns, respectively (e.g. 0n×m). The vectors 0 = [0 · · · 0]> and 1 = [1 · · · 1]>
are assumed to have a compatible dimension depending on context.

1.4.2 Vector, matrix and agent indexing

Vectors z ∈ R` and matrices A ∈ Rm×n have the following elements

z =

z1...
z`

 , A =


A11 · · · A1n
...

...
Am1 · · · Amn

 . (1)

In a multi-agent context, agents are usually indexed as i = 1, . . . ,N . When multiple
subscripts are necessary, the last subscript denotes the agent index:

zi =

z1,i...
z`,i

 , Ai =


A11,i · · · A1n,i
...

...
Am1,i · · · Amn,i

 . (2)

A bar is used to designate a property of a network of systems, which is often a
collection of the corresponding variables of each agent:

z̄ =

z1...
zN

 . (3)

1.4.3 Gradients and Jacobian matrices

A partial derivative of a scalar c(q) ∈ R, where q ∈ Rn, is denoted as a column
vector, while a Jacobian matrix of a vector function z(q) ∈ R` is an `× n matrix:

∂c

∂q
=


∂c

∂q1
...
∂c

∂qn

 , ∂z

∂q
=


∂z1
∂q1

· · · ∂z1
∂qn

...
...

∂z`
∂q1

· · · ∂z`
∂qn

 . (4)

For brevity, we introduce the following notation for transposes of these derivatives:

∂>c

∂q
=

(
∂c

∂q

)>
, ∂>z

∂q
=

(
∂z

∂q

)>
. (5)

See also Appendix a.3.1 for a definition of the partial derivative ∂c(z(q))
∂q

.

1.4.4 Lagrangian versus Hamiltonian notation

A tilde notation is used to indicate a Lagrangian context, when a function depends
on the generalized velocities q̇. For example, the total energy of a Lagrangian me-
chanical system is H̃ = H̃(q, q̇). Without the tilde notation, the Hamiltonian con-
text is assumed by default: H = H(q,p). No tilde notation is used when a term
depends only on the generalized coordinate q, such as M(q), in which case the La-
grangian and Hamiltonian interpretation is identical. In most cases, the arguments
are dropped after a symbol is first introduced.



Part I

MODEL ING AND CONTROL OF A S INGLE
UNDERACTUATED MECHANICAL SYSTEM

Before considering control methods for distributed systems, this part
reviews modeling and passivity-based control techniques for single sim-
ple mechanical systems. Chapter 2 gives the Lagrangian and Hamilto-
nian equations of motion of an uncontrolled system, and reviews rele-
vant passivity and stability properties. Chapter 3 reviews the method
of passivity-based control by interconnection and damping assignment,
in order to achieve setpoint control for a single mechanical system.



2MODEL ING S IMPLE MECHANICAL SYSTEMS

This chapter provides the equations of motion of so-called simple mechanical sys-
tems in Sections 2.1–2.3, based on [22, 25]. This class includes ground, water, aerial,
and space vehicles, and machines such as robotic manipulators. Passivity and sta-
bility of the uncontrolled systems are discussed in Section 2.4, while Section 2.5
provides several modeling assumptions used throughout the thesis.

2.1 energy and input forces

At some time instant t, a simple mechanical system can be uniquely described by
a set of generalized coordinates q(t) ∈ Rn and their time derivatives q̇(t) ∈ Rn.
The rate of change of the generalized coordinates is closely related to the energy

stored in the system. The total stored energy, denoted H̃(q, q̇) ∈ R, is the sum of
the kinetic energy T̃ (q, q̇) ∈ R and the potential energy V (q) ∈ R, giving

H̃(q, q̇) = T̃ (q, q̇) + V (q). (6)

The kinetic energy of a simple mechanical system can be described in terms of its
generalized mass matrix M(q) = M>(q) > 0n as

T̃ (q, q̇) = 1
2 q̇
>M(q)q̇. (7)

The system is subject to generalized input forces F(q)τ ∈ Rn, where τ ∈ Rm

is the control input, F(q) ∈ Rn×m is the input matrix, and m is the number of
independent actuators. The system is fully actuated if m = n and rank F(q) = n

for all q. Otherwise, if m < n, it is underactuated.
Internal dissipative (friction) forces are of the form −R̃(q, q̇)q̇ with a dissipation

matrix R̃(q, q̇) ≥ 0n [22].

2.2 lagrangian equations of motion

The Lagrangian equations for systems with the preceding properties are [25]

M(q)q̈ + C̃(q, q̇)q̇ + ∂V

∂q
(q) + R̃(q, q̇)q̇ = F(q)τ . (8)

Denoting the k-th row and j-th column of M(q) and C̃(q, q̇) as mkj(q) and
c̃kj(q, q̇) respectively, the matrix C̃(q, q̇) is derived from the mass matrix as [39]

c̃kj(q, q̇) =
n∑
`=1

c`jk(q)q̇`, (9)

where

c`jk(q) =
1
2

(
∂mkj

∂q`
(q) +

∂mk`

∂qj
(q)−

∂m`j

∂qk
(q)

)
. (10)

As a consequence of (9), (10), the matrix ˜̇M(q, q̇) = d
dtM(q) satisfies [25]

˜̇M(q, q̇) = C̃(q, q̇) + C̃>(q, q̇). (11)

9
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The state vector of the Lagrangian model is ξ̃ = [q> q̇>]>∈ R2n. The state change
is d

dt ξ̃ = [q̇> q̈>]>, where q̈ is obtained from (8), given the current state. The system
output ỹ ∈ Rm is commonly chosen as:

ỹ = F>(q)q̇. (12)

2.3 hamiltonian equations of motion

The Lagrangian equations of motion can be equivalently expressed using gener-
alized momenta p(t) ∈ Rn instead of using generalized velocities. The invertible
transformation between momenta and velocities is given by

p = M(q)q̇. (13)

Expressed in the new coordinates, the total energy (6), (7) is the Hamiltonian:

H(q,p) = 1
2p
>M−1(q)p+ V (q). (14)

Likewise, the equations of motion (8) and the conjugate output (12) become [25]

[
q̇

ṗ

]
=

[
0n In
−In −R(q,p)

]
∂H

∂q
(q,p)

∂H

∂p
(q,p)

+

[
0n×m
F(q)

]
τ , (15)

y = F>(q)∂H
∂p

(q,p). (16)

The state vector of the Hamiltonian model is ξ = [q> p>]>∈ R2n.

2.4 passivity and stability

A conjugate pair of inputs τ (t) ∈ Rm and outputs y(t) ∈ Rm allows a system to
exchange energy with other systems or its environment. The rate at which energy
flows into the system is called the supply rate, denoted s(τ (t),y(t)) ∈ R. During a
time interval [0, t], the input τ (t) steers the state from ξ(0) to ξ(t), while changing
the stored energy from H(ξ(0)) to H(ξ(t)). The change in the stored energy due
to the supply during this time interval can be described using dissipativity.

2.4.1 Dissipativity

A system with a state ξ, an input τ and an output y is dissipative if there exists a
storage function S(ξ(t)) ≥ 0 such that the dissipation inequality

S(ξ(t))− S(ξ(0)) ≤
∫ t

0
s(τ (σ),y(σ))dσ (17)

holds for all admissible controllers τ (·) that drive the state from ξ(0) to ξ(t) on
the interval [0, t] [18, 25]. For continuously differentiable storage functions, the
dissipation inequality can be equivalently written as

Ṡ ≤ s(τ ,y). (18)

Furthermore, if the system satisfies the dissipation inequality

Ṡ ≤ τ>y− εinτ>τ − εouty>y (19)

for some εin ≥ 0 and εout ≥ 0 then it is passive. It is input strictly passive if the
condition holds for some εin > 0, and output strictly passive if it holds for some
εout > 0 [40]. The system is lossless if Ṡ = τ>y.
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2.4.2 Passivity of the Lagrangian model

The Lagrangian system (8), (12) with the storage function (6) is passive. This can
be shown by evaluating (19) as

d
dt H̃(q, q̇) = 1

2 q̇
>˜̇M(q, q̇)q̇ + q̇>M(q)q̈ + q̇>G(q)

= q̇>
(

1
2

(
C̃(q, q̇) + C̃>(q, q̇)

)
q̇ +F(q)τ − C̃(q, q̇)q̇− R̃(q, q̇)q̇

)
= q̇>F(q)τ − q̇>R̃(q, q̇)q̇

≤ τ>ỹ. (20)

The terms containing C̃(q, q̇) drop because C̃(q, q̇)− C̃>(q, q̇) is skew symmetric.
The system is output strictly passive if R̃(q, q̇) > 0.

2.4.3 Passivity of the Hamiltonian model

The equivalent Hamiltonian system (15), (16) is naturally also passive, which can
be shown similarly by evaluating (19) as:

d
dtH(q,p) = ∂>H

∂q
(q,p)q̇ + ∂>H

∂p
(q,p)ṗ

=
∂>H

∂q
(q,p)∂

>H

∂p
(q,p)

+
∂>H

∂p
(q,p)

(
−∂H
∂q

(q,p)−R(q,p)∂H
∂p

(q,p) +F(q)τ

)
= −∂

>H

∂p
(q,p)R(q,p)∂H

∂p
(q,p) + ∂>H

∂p
(q,p)F(q)τ (21)

≤ τ>y.

The system is output strictly passive if R(q,p) > 0n.

2.4.4 Stability

This section gives a Lyapunov stability result for uncontrolled simple mechanical
systems due to Lagrange and Dirichlet [25], summarized here for the Hamiltonian
model for the case that the potential energy V (q) is locally convex around its
minimum V (q#) = 0 for a unique q# ∈ Rn. This requires that

∂V

∂q
(q) = 0 ⇔ q = q#, (22)

∂2V

∂q2 (q
#) > 0n. (23)

Given (22), the state (q,p) = (q#, 0 ) is an equilibrium of the unforced (τ = 0 )
dynamics (15). It is detectable because if τ ≡ 0 and p ≡ 0 , then ∂V

∂q (q) = 0 ,
implying q = q#. Then the fixed point (q#, 0 ) is Lyapunov stable [25]. To prove
this, note that the point (q#, 0 ) is a locally strict minimum of the storage function
(14), and because the system is passive, the unforced system satisfies (17) with

H(q(t),p(t)) ≤ H(q(0),p(0)) ∀ t ≥ 0, (24)

implying stability. If the potential energy is globally convex, the equilibrium is
globally stable. If additionally R(q,p) > 0n, the equilibrium is asymptotically
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stable. This follows from (21) and the observation that only invariant set inside the
set {(q,p) : p ≡ 0} is the equilibrium (q#, 0 ) [25]. Stability of controlled systems
and systems with more than one equilibrium are discussed in the next chapter.

2.5 practical aspects of selected system model

Although the presented mechanical Lagrangian model (8) and the equivalent me-
chanical Hamiltonian model (15) can be extended with more realistic friction mod-
els, electromechanical actuator dynamics, or phenomena such as motor backlash, we
will restrict our analysis to the idealistic case of frictionless systems (R(q,p) = 0n),
and where the control forces τ ∈ Rm can be chosen as desired.

It is assumed that the whole state can be used to define the feedback control
law, implying that both generalized positions and velocities can be measured with-
out noise or other measurement errors. Likewise, it is assumed that the state and
control signal are measured and implemented in continuous time, without delay
or discretization errors. We will briefly reconsider these simplifications and their
implications for control in Section 3.7, as well as throughout this thesis by giving
references to solutions that address some of these phenomena.



3PASS IV ITY -BASED CONTROL BY INTERCONNECTION
AND DAMPING ASS IGNMENT ( IDA -PBC)

Passivity-based control (PBC) is a form of nonlinear control that relies on passiv-
ity properties to systematically derive asymptotically stabilizing control laws for
systems with a known model or model structure. The control goal is achieved by
energy shaping instead of assigning a fully-prescribed set of dynamics, in order to
exploit rather than destroy the internal dynamics of the original system, thereby
reducing the need for high-gain feedback while increasing robustness [1].
Various types of PBC control strategies exist, where the main classification per-

tains to whether the control signal is determined by a static feedback law or gen-
erated by a dynamical system [41]. Among the different state feedback variants,
the most general form is known as passivity-based control by interconnection and
damping assignment (IDA-PBC) as introduced in [27], which has been successfully
used to control various underactuated mechanical systems [42].
Sections 3.1–3.5 review IDA-PBC in the context of simple mechanical systems,

when the control objective is tracking of a known, constant setpoint q∗ ∈ Rn.
Anticipating the application to networks of mechanical systems, we propose a par-
titioning of the generalized coordinates of a single agent into coordinates that must
be stabilized internally and coordinates that must be cooperatively controlled with
other systems. A generic class of IDA-PBC solutions is identified that stabilizes
such systems at fixed setpoints, and several classes of systems that have a solution
of this form are described in Section 3.6. Finally, Section 3.7 considers the practical
applicability of the IDA-PBC method along with several shortcomings.
Related nonlinear control techniques beyond the scope of this thesis are control

by interconnection [41], immersion and invariance [43, 44], partial contraction [45,
46], and backstepping [47]. The relation between PBC and the method of controlled
Lagrangians is briefly discussed in Section 3.8.

3.1 energy shaping for setpoint tracking

Because the open-loop equilibrium q# generally differs from the desired setpoint q∗,
the IDA-PBC method uses state feedback to shape the dynamics and the energy
function of the system such that the energy attains a minimum at the desired
setpoint, while inserting damping to settle at this setpoint asymptotically.
It is assumed that the open-loop system is frictionless, such that its dynamics

are described by

[
q̇

ṗ

]
=

[
0n In
−In 0n

]
∂H

∂q

∂H

∂p

+

[
0n×m

F

]
τ , (25)

y = F>∂H
∂p

= F>M−1p, (26)

H =
1
2p
>M−1p+ V . (27)

This model is equivalent to (15) with the dissipation matrix selected as R = 0n.

13
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3.1.1 Desired closed-loop dynamics

The state feedback law has the form [41]

τ = β+ τ d, (28)

where β(q,p) is the state feedback to be designed and τ d is a new input to the
resulting closed-loop system.
The control objective is to design β(q,p) such that the dynamics (25)–(27) attain

the desired (“d”) closed-loop dynamics given by [28, 41]

[
q̇

ṗ

]
=

[
0n M−1Md

−MdM−1 J−FKvF>

]
∂Hd
∂q

∂Hd
∂p

+

[
0n×m

F

]
τ d, (29)

yd = F>∂Hd
∂p

= F>M−1
d p, (30)

Hd =
1
2p
>M−1

d p+ Vd, (31)

where Kv = K>v > 0m is the desired dissipation matrix and J = −J> ∈ Rn×n

is a free skew-symmetric matrix. The matrix J does not instantaneously affect
stability but it can be chosen freely both to help solve the IDA-PBC problem in
the underactuated case and to shape the transient response [28]1.

The desired dynamics and its energy function Hd(q,p) are defined in the original
coordinates (q,p) but with a desired mass matrix 0n <Md(q)<αIn, α > 0 and
a desired potential energy function Vd(q) which is selected to be minimal at the
setpoint q∗:

q∗ = arg min
q

Vd(q). (32)

By choosing Vd(q) ≥ 0 without loss of generality, we may equivalently write

Vd(q
∗) = 0. (33)

Because Vd is minimal at q∗ we also have

∂Vd
∂q

∣∣∣∣
q=q∗

= 0 . (34)

More generally, there may be a continuum of equally desired equilibria rather
than a distinct one. The equilibrium set is defined as

q∗ ∈ Q∗ with Q∗ = {q | Vd(q) = 0}, (35)

where each equilibrium point q∗ ∈ Q∗ satisfies the minimality conditions (32), (33).
The control objective is then to reach any equilibrium in this set.

If it is possible to obtain the desired closed-loop dynamics (29)–(31), with the
previously mentioned minimality properties of the desired potential energy, the
asymptotic stability analysis of the desired setpoint (q,p) = (q∗, 0 ) can be carried
out as in [28].
We review this stability analysis for the cases where Vd has a minimum for a

unique configuration q∗ in Section 3.1.3, and for a range of configurations q∗ ∈ Q∗
in Section 3.1.4. In both cases, the equilibrium and passivity properties of the
following subsection apply.

1 The matrix J is historically referred to as J2, to distinguish it from another matrix with a similar
role not used in this thesis. We omit the subscript “2” to avoid confusion with other subscripts in
subsequent chapters.
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3.1.2 Equilibria and passivity properties

The point (q∗, 0 ) is an equilibrium of (29), because p ≡ 0 and τ d ≡ 0 implies that
q̇ = 0 and likewise

ṗ = −MdM−1 ∂Hd
∂q

∣∣∣∣
(q∗,0 )

+ J∂Hd
∂p
−FKvF>

∂Hd
∂p

= −MdM−1 ∂Vd
∂q

∣∣∣∣
q∗

+ JM−1
d p−FKvF>M−1

d p = 0 . (36)

Passivity of the desired closed-loop system is demonstrated using the shaped
energy (31) as a storage function and computing its time derivative as

Ḣd =

[
∂>Hd
∂q

∂>Hd
∂p

][
0n M−1Md

−MdM−1 J−FKvF>

]
∂Hd
∂q

∂Hd
∂p

+
∂>Hd
∂p

Fτ d

= −∂
>Hd
∂p

FKvF>
∂Hd
∂p

+
∂>Hd
∂p

Fτ d

= −y>d Kvyd + y
>
d τ d. (37)

Because Kv > 0, the system is output strictly passive. For the externally unforced
closed loop, where τ d = 0 , we further have

Ḣd = −y>d Kvyd

= −p>M−1
d FKvF>M−1

d p ≤ 0

= −λmin(Kv)||F>M−1
d p||

2 ≤ 0, (38)

where λmin(Kv) is the minimum eigenvalue of Kv [28].

3.1.3 Stability of a unique equilibrium

If an equilibrium q∗ is (locally) a strict minimum of Vd(·), that is if (locally)

Vd(q) > Vd(q
∗) = 0 ∀ q 6= q∗, (39)

then the problem is equivalent to [28], in which it is proven that the setpoint (q∗, 0 )
is asymptotically stable if it is (locally) detectable from the output yd.

A summary of the argument is as follows. The continuously differentiable storage
function Hd (31) is a positive definite function in a neighborhood of (q∗, 0 ). Hence
there exists a bounded level set Ωc = {(q,p) ∈ R2n | Hd ≤ c} for sufficiently small
c > 0 [48]. From (38), Ḣd ≤ 0 everywhere including in Ωc. Defining the set S at
which the storage function is stationary as

S = {(q,p) ∈ R2n | Ḣd = 0}

= {(q,p) ∈ R2n | F>M−1
d p = 0}, (40)

then under the detectability assumption, no solution can stay in S other than
M = {(q,p) ∈ R2n | p = 0 , q = q∗}, because for p = 0 we have from (29) that

ṗ = −MdM−1∂Vd
∂q
6= 0 (41)

if there are no local minima or saddle points for which ∂Vd
∂q = 0 outsideM. With

M ⊂ S ⊂ Ωc, asymptotic stability of the equilibrium (q∗, 0 ) then follows from
Barbashin’s theorem as a corollary of LaSalle’s theorem [28, 39, 48].
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3.1.4 Stability of a continuum of desired equilibria

If there is a continuum of configurations q∗ ∈ Q∗ for which Vd(q∗) = 0, the function
Vd is not positive definite and Barbashin’s theorem ceases to apply [48]. The energy
function Hd in (31) and its time derivative (37) are unchanged, but the set Ωc is
not bounded in general, which means that the conditions for applying LaSalle’s
theorem also no longer hold.
For the controlled mechanical systems under consideration, this implies that for

those coordinates within q that are free within Q∗ (in which they have equally
desired values), we do not prove that they become stationary. For example, for
an inverted pendulum-cart system one may choose a Vd that equals zero if the
pendulum is upright regardless of the cart position, if the cart position is not of
interest in the application. Then the level set Ωc is unbounded due to the free cart
translation. However, because Kv > 0m, the system does come to standstill due
to the enforced dissipation (38); that is, the trajectories may be bounded due to
dissipation. This conjecture is supported by several simulations in Part V.
Another approach to such a problem is to reduce the configuration space by elimi-

nating the coordinate that is not of interest (the cart position in this example), such
that the objective for the remaining coordinates is again to attain a unique equilib-
rium. However, it is often not trivial to obtain such coordinate transformation, and
the dynamics may lose the simple structure (29), complicating the stability analy-
sis further. Likewise, in light of the subsequent analysis of networks of mechanical
systems, we wish to maintain the structure of the coordinates and the dynamics.

3.1.5 Semistability

It may also be possible to analyze this problem in the original coordinates using
semistability [49]. An equilibrium is semistable if it is Lyapunov stable and trajecto-
ries starting near it converge to a Lyapunov stable point, not necessarily the same
one (see Section 4.7 in [49] for a mathematically precise definition). A system is
semistable if every equilibrium point is semistable.

The hypothesized application of semistability to this problem is as follows. Define
the set S identically as in (40). For the continuum of equilibria (35), no solution
can stay in S other thanMQ = {(q,p) ∈ R2n | p = 0 , q = q∗ ∈ Q∗}, under the
detectability assumption. Because (38) holds, it may be possible to show that the
system (29) is semistable [49] so that we have limt→∞(q,p) ∈MQ, achieving the
control objective.

3.2 derivation of the control law and matching conditions

The problem of obtaining the desired stable closed-loop dynamics from the open-
loop system amounts to finding the state feedback β(q,p) that makes (29) and
(25) equal. This sections develops the necessary conditions that make this possible,
along with an explicit expression for β(q,p), following the summary given in [28].
Setting the right hand sides of (25) and (29) equal and inserting (28) gives

∂H

∂p
= M−1Md

∂Hd
∂p

, (42)

and

−∂H
∂q

+Fβ = −MdM−1∂Hd
∂q

+ J∂Hd
∂p
−FKvF>

∂Hd
∂p

. (43)
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Equation (42) is automatically satisfied since ∂H
∂p = M−1p and likewise

M−1Md
∂Hd
∂p

= M−1MdM−1
d p = M−1p. (44)

Equation (43) must be satisfied by a suitable choice for the static feedback expres-
sion β, if it exists.
Define a full rank left annihilator of F, denoted F⊥ = F⊥(q) ∈ R(n−m)×n such

that F⊥F = 0(n−m)×m and the matrix [(F⊥)> F]>∈ Rn×n is full rank [28]. Multi-
plying both sides of (43) with this matrix gives[

F⊥

F>

]
Fβ =

[
F⊥

F>

](
∂H

∂q
−MdM−1∂Hd

∂q
+ J∂Hd

∂p
−FKvF>

∂Hd
∂p

)
. (45)

Since F⊥Fβ = 0 , the first n−m rows of (45) must satisfy

F⊥
(
∂H

∂q
−MdM−1∂Hd

∂q
+ J∂Hd

∂p
−FKvF>

∂Hd
∂p

)
= 0 . (46)

This so-called matching condition can be written more explicitly by expanding
the energy functions H and Hd into their kinetic and potential energies, giving

F⊥
1

2

∂
(
p>M−1p

)
∂q

− 1
2MdM−1∂

(
p>M−1

d p
)

∂q
+ JM−1

d p


+F⊥

(
∂V

∂q
−MdM−1∂Vd

∂q

)
= 0 . (47)

The last m rows of (45) yield the expression for β because F>F is full rank:

β =
(
F>F

)−1
F>
(
∂H

∂q
−MdM−1∂Hd

∂q
+ J∂Hd

∂p
−FKvF>

∂Hd
∂p

)
. (48)

3.2.1 The control law

Substituting (48) and (30) in (28) gives the IDA-PBC control law:

τ =
(
F>F

)−1
F>
(
∂H

∂q
−MdM−1∂Hd

∂q
+ JM−1

d p

)
−Kvyd + τ d. (49)

3.2.2 The matching equations

The control law (49) yields the desired closed-loop dynamics (29) if and only if
condition (46) is satisfied. This condition is satisfied if the kinetic energy matching
equation

F⊥
∂
(
p>M−1p

)
∂q

−MdM−1∂
(
p>M−1

d p
)

∂q
+ 2JM−1

d p

 = 0 . (50)

and the potential energy matching equation

F⊥
(
∂V

∂q
−MdM−1∂Vd

∂q

)
= 0 . (51)

both hold. Solving (50), (51) by choosing appropriate Md, Vd, and J is known as
the matching problem. The next sections discuss how this problem can be addressed
in the fully-actuated and underactuated case.
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3.3 cooperative and local goals

When a system works cooperatively in a network, it has two non-conflicting control
objectives, each pertaining to a subset of its generalized coordinates, partitioned
as q = (x,θ) ∈ Rn. The coordinates x ∈ R` are to be controlled in cooperation
with other agents in the network, while θ ∈ Rn−` are controlled by each agent
individually. Before considering a network of systems, this chapter shows how these
separate control goals appear in the single-agent IDA-PBC problem, in which the
goal is to reach the setpoint q∗ = (x∗,θ∗), for prescribed values x∗ and θ∗
For example, consider the systems in Figure 1 consisting of two point masses m1

andm2 located at q1 ∈ R and q2 ∈ R, respectively, interconnected by a linear spring
with stiffness k. The system in Figure 1a is fully-actuated using the control forces
τ1 and τ2. The system in Figure 1b is underactuated because only τ2 is available,
resembling a single-link flexible-joint robot without gravity.

m1 m2

q1

q2

τ2τ1
x θ

m1 m2

q1

q2

k

θ

a) b)

k

a

x

a

τ2

Figure 1: A fully-actuated system (a) and an underactuated system (b).

Suppose that in both cases the control goal is to stabilize both q1 and q2 at a pre-
scribed setpoint a ∈ R. This goal can be equivalently expressed in the coordinates
x = q1 and θ = q2 − q1, in which case the goal is to reach the setpoints x∗ = a and
θ∗ = 0. A candidate desired potential Vd is

Vd(q) =
1
2P1(x− a)2 +

1
2P2kθ

2 =
1
2P1(q1 − a)2 +

1
2P2k(q2 − q1)

2, (52)

where P1 and P2 are positive constants. This potential is positive definite and
minimal at x = a and θ = 0. Further details for this example will be given in
Chapter 12, which considers the case for a multi-link flexible-joint robot.
Whereas in this example it is easy to express the whole equations of motion

directly in new coordinates q̃ = [x θ]>, doing so is not necessary. Avoiding the
change of coordinates, except for expressing the potential energy Vd, considerably
simplifies (or even enables) the analysis of more complicated systems.

3.4 solutions for the fully-actuated case

For the fully actuated case, F is square and full rank, and the condition (43) imme-
diately yields the control law (49) without having to satisfy any matching condition.
In fact, one may assume F = In without loss of generality. (Otherwise, one could
take the system (25)–(27) and use the new signals τ new and ynew with the trans-
formations τ = F−1τ new and y = F>ynew.) With F = In the control law becomes

τ =
∂H

∂q
−MdM−1∂Hd

∂q
+ (J−Kv) yd + τ d. (53)

Because the problem is not constrained by matching conditions, the matrices Md
and J only play a role in shaping the transient response, but they can be chosen
as Md = M and J = 0n in principle. Doing so leaves the kinetic energy and the
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output unchanged (yd = y), resulting in only potential energy shaping, using the
control law

τ =
∂V

∂q
− ∂Vd

∂q
−Kvy + τ d. (54)

In the example of robotic manipulators, this is equivalent to gravity compensa-
tion (∂V∂q ), proportional control (−

∂Vd
∂q with Vd quadratic in q − q∗) and damping

insertion (using −Kvy = −Kvq̇) [21].

3.5 solutions for selected underactuated systems

Whereas stabilization of the setpoint q∗ of an underactuated system primarily re-
quires a suitable choice of Vd to satisfy the minimality condition (32), it is usually
also necessary to shape the kinetic energy through Md in order to ensure that the
potential energy matching condition (51) has a solution. In turn, kinetic energy
shaping may require the assignment of gyroscopic forces through J to satisfy the
kinetic energy matching condition (50). The entangled process of choosing Md, Vd,
and J is a nontrivial task, which has spurred numerous research endeavors aiming
to find constructive solutions for special types of simple mechanical systems.

3.5.1 Solution strategies

The survey [42] states the IDA-PBC problem for systems more general than me-
chanical systems, and proposes several strategies to simplify the IDA-PBC problem
by fixing some degrees of freedom and solving for the remaining terms, if possible.

The results [28, 50] give constructive solutions for systems where only one degree
of freedom is unactuated, also known as underactuation-degree one systems. The
method in [51] simplifies the matching problem through a change of coordinates
and the method in [52] allows the matching conditions to be shaped by the control
action to make them solvable. The paper [53] proposes a method to circumvent
the problem of solving the partial differential equations for mechanical systems by
not requiring that the closed-loop energy function is of the form (29) while [54]
avoids solving them by using a dynamic rather than a static controller. The reader
is referred to the recent survey [26] for a historic overview of IDA-PBC along with
a summary of developments as of 2017.

3.5.2 Structure of the desired potential energy

Among the (classes of) systems that can be controlled by IDA-PBC, we are inter-
ested in identifying those solutions and system properties that we can exploit to
make systems cooperatively control the variable x with other agents in a network
while locally stabilizing the coordinates θ.

In some existing IDA-PBC solutions, the objectives to reach x∗ and θ∗ can be
alternatively represented using a new coordinate z(q) = z(x,θ) ∈ R`, chosen such
that achieving θ = θ∗ and z = z∗ also implies that x = x∗. An appropriate choice
of z ensures that the control signal to stabilize z does not violate the matching
conditions, which is useful for expressing interaction forces between agents in the
network later on. More precisely, we are interested in existing IDA-PBC solutions
in which the desired potential energy can be written as

Vd(q) = Vs(q) + Vc(z(q)), (55)

where z(q) ∈ R`, ` ≤ m, and Vc is free in z as long as Vd remains positive definite
around the setpoint q∗. The term Vs stabilizes the coordinates θ to their fixed
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setpoint θ∗, while Vc stabilizes the cooperative coordinates at the setpoint x∗ by
steering z to z∗, provided Vs and Vc satisfy the matching conditions derived below.
The gradient of Vd(q), which appears in both the control law and the matching

conditions, is given by

∂Vd
∂q

=
∂Vs
∂q

+Ψ∂Vc
∂z

, (56)

where ∂Vc
∂z depends only on z and Ψ depends only on q (see Appendix a.3.1):

Ψ(q) =

[
∂z1
∂q

· · · ∂z`
∂q

]
=


∂z1
∂q1

· · · ∂z`
∂q1

...
...

∂z1
∂qn

· · · ∂z`
∂qn

 ∈ Rn×`. (57)

Suppose now that Vs(q) in (55) satisfies

F⊥
(
∂V

∂q
−MdM−1∂Vs

∂q

)
= 0 , (58)

for a given desired mass matrix Md compatible with the kinetic energy matching
condition (50). In order to satisfy the potential energy matching condition (51)
when Vc(·) in (55) is free, we must additionally require that

F⊥MdM−1Ψ = 0(n−m)×`. (59)

Although requiring (58), (59) to hold is more conservative than requiring (51) to
hold, it ensures that Vc(·) is free in z, crucial in our solution of the distributed
IDA-PBC problem. Classes of IDA-PBC solutions with the partitioning (55)–(59)
that satisfy the conditions (58), (59) are given in Section 3.6.
In summary, for the proposed class of systems with the parametrized potential

energy (55), the matching problem (50), (51) is solved if (50) is solved by a suitable
Md and J, and the parametrized potential energy matching equations (58), (59) are
solved by suitable Vs and Ψ. Furthermore, if the total desired potential energy (55)
is positive definite and minimal at the setpoint, then the single-agent IDA-PBC
problem is solved. Furthermore, this system class satisfies the conditions for stable
cooperation in a network, as will be derived in subsequent chapters.

3.5.3 Splitting the control law

By substituting the proposed parametrization of the desired potential energy (55)
into the control law (49), we obtain

τ =
(
F>F

)−1
F>
(
∂H

∂q
+ JM−1

d p−
1
2MdM−1∂p>M

−1
d p

∂q
−MdM−1∂Vs

∂q

)

−
(
F>F

)−1
F>MdM−1Ψ∂Vc

∂z
−Kvyd + τ d

= σ−Φ∂Vc
∂z
−Kvyd + τ d, (60)

where

σ(q,p) =
(
F>F

)−1
F>
(
∂H

∂q
+ JM−1

d p−MdM−1∂(
1
2p
>M−1

d p+ Vs)

∂q

)
(61)
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shapes the kinetic energy and the potential energy component for internal stabi-
lization, equivalent to single-agent IDA-PBC control except for the control force to
track x∗, and

Φ(q) =
(
F>F

)−1
F>MdM−1Ψ ∈ Rm×` (62)

is an input matrix that ensures that the control force ∂Vc
∂z that steers z to z∗ (and

x to x∗) does not violate the matching conditions.

3.5.4 Generality of the desired potential energy structure

Although beyond the scope of this thesis, it would be useful to investigate the gen-
erality and limitations of the proposed structure (55) and the separation of the po-
tential energy matching condition (51) into the internal stabilization condition (58)
and the tracking condition (59). A counterexample indicating conservativeness of
this approach would be an IDA-PBC solution that allows internal stabilization at
a fixed θ∗ and tracking of a free target x∗ without the explicit separation of the
potential energy and matching conditions. A control by interconnection interpreta-
tion of the proposed coordinate partitioning is given in Section 9.3, which supports
the generality of the approach based on the properties of z and its time derivative.
As in [55], it is possible to use one combined matching condition instead of sepa-

rate kinetic and potential energy matching conditions (50), (51). Such an approach
can be followed here as well, where one could leave (50) and (58) combined, keep-
ing only the cooperation condition (59) separate. This amounts to combining the
goals to reach θ∗ and to stabilize p at zero into a single objective, while tracking
x∗ is the second objective. In this work we maintain the three separate conditions
(50), (58), (59) to emphasize how previously derived single-agent IDA-PBC solu-
tions can be used in our distributed control framework.

3.6 ida-pbc solutions satisfying conditions for cooperation

In this section we discuss three generic classes of systems with the potential energy
(55) that satisfy the previously given conditions (50), (58), (59) to solve the single-
agent IDA-PBC problem and allow systems to cooperate in a network.

3.6.1 Solutions for fully-actuated systems

Although Section 3.4 provides a straight-forward solution to the IDA-PBC prob-
lem for fully-actuated systems, it is useful to consider how the partitioning of the
setpoint q∗ = (x∗,θ∗) and the variable z(q) appears in the control law (60)–(62)
in order to let a fully-actuated system control part or all of its coordinates cooper-
atively with other agents, which may be underactuated.
Choosing the desired potential energy Vd as in (55), and recalling that for fully-

actuated systems we can use F = In, Md = M, J = 0n, the internal control signal
(61) becomes

σ(q,p) = ∂V

∂q
− ∂Vs
∂q

, (63)

such that the total control law (60) becomes

τ =
∂V

∂q
− ∂Vs
∂q
−Φ∂Vc

∂z
−Kvyd + τ d. (64)
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This is a sum of forces, respectively representing: gravity compensation, stabiliza-
tion of the internal coordinate θ, stabilization of the cooperative coordinates x,
damping, and a new external control input τ d. Notice that we could have obtained
the same result directly from (54) by substituting Vd as in (55).
In some applications, it is sufficient to steer z to z∗, without imposing specific

requirements on θ and x other than that they are stationary. Consider the prob-
lem of controlling the end-effector of a fully-actuated robotic manipulator. In this
example q ∈ Rn are the joint angles while z(q) ∈ R`, is the end-effector position
and orientation. For example, ` = 3 for position control in euclidean space. From
the definitions (57), (62) we obtain for the fully-actuated system

Φ = Ψ =

[
∂z1
∂q

· · · ∂z`
∂q

]
= A>, (65)

where A(q) is the Jacobian of the forward kinematics. When choosing a quadratic
potential Vc = 1

2 (z − z
∗)>Kp(z − z∗) for a gain Kp > 0`, the single-agent control

law (64) becomes

τ =
∂V

∂q
+A>Kp(z

∗ − z)−Kvyd, (66)

which is known as Jacobian-transpose control [56] with gravity compensation and
damping insertion. In a redundant robotic arm (n = m > `), there is a multitude
of equilibria for which the end-effector is at the desired location, such that the
stability problem can be carried out as in Section 3.1.4, where we require a full
rank assumption of A(q) to ensure that there are no undesired equilibria away
from the goal in the invariant set.

3.6.2 Solutions for a class of underactuation degree one

This section summarizes the IDA-PBC solution provided in [28] for a class of me-
chanical systems (25)–(27) with underactuation degree one: m = n− 1. The input
matrix F(qn) is assumed to be a function of at most one coordinate, which we
take to be qn for notational convenience. Additionally, the mass matrix M must
not depend on the unactuated coordinate. If the original system does not satisfy
this property, a partial feedback linearization can sometimes transform the dynam-
ics into the desired form. We refer the reader to [28] for several other technical
assumptions.
In [28], the control goal is to stabilize qn at a fixed setpoint determined by the

system dynamics, while stabilizing q1, . . . , qm at a setpoint that can be freely chosen.
In our work, we let the first ` ≤ m coordinates be cooperatively controlled in
the network, while stabilizing q`+1, . . . , qm at an arbitrary desired setpoint, and
stabilizing qn at the fixed setpoint imposed by the system. In the notation of this
chapter we have

q =

[
x

θ

]
with x =

q1...
q`

 , θ =



q`+1
...
qm
...
qn


. (67)

The ordering of the coordinates is chosen for notational convenience and can be
obtained by reordering the coordinates of the original system is necessary.

For systems that satisfy the necessary technical assumptions, [28] derives a con-
structive procedure to find a desired mass matrix Md(qn) which guarantees the
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existence of a J(q,p) that solves the kinetic energy matching condition. The de-
sired mass is defined by

Md(qn) =

∫ qn

q∗
n

F(qn)Ξ(qn)F>(qn) +M0
d, (68)

where q∗n = θ∗ ∈ R is the fixed setpoint of qn determined by the system equilibrium.
The matrices M0

d > 0n and Ξ(qn) = Ξ>(qn) ∈ Rm×m are free. Once Md is
obtained, the matrix J that solves the kinetic energy matching condition (50) can
be obtained algebraically as detailed in [28].

The desired mass matrix (68) ensures the existence of a Vd of the form (55):

Vd(q) = Vs(q) + Vc(z(q)), (69)

z(q) =

a1(q)...
a`(q)

 . (70)

The coordinate transformations aj(q), j = 1, . . . ,m are adopted from [28] as

aj = qj −
∫ qn

0

γj(µ)

γn(µ)
dµ, (71)

γ(qn) =

γ1...
γn

 = M−1Md
(
F⊥
)
>. (72)

and the internal stabilization potential Vs is adapted from [28] as

Vs(q) =

∫ qn

0

b(µ)

γn(µ)
dµ+ φ(a`+1(q), . . . , am(q)), (73)

in which φ is a free function and

b(qn) = F⊥∂V
∂q

. (74)

We now show that the internal stabilization potential satisfies the condition (58).
First, the partial derivatives of the coordinate transformations aj are given by

∂aj
∂qi

=
∂qj
∂qi
− ∂

∂qi

∫ qn

0

γj(µ)

γn(µ)
dµ. (75)

Next, noting that the integral in (73) depends only on qn, the derivative of Vs is

∂Vs
∂q

=



0
...
0
b

γn


+


∂a`+1
∂q1

. . .
∂am
∂q1

...
...

∂a`+1
∂qn

. . .
∂am
∂qn




∂φ

∂a`+1

∂φ

∂am



=



0
...
0
b

γn


+

[
e`+1 −

γ`+1
γn

en · · · em −
γm
γn
en

]
∂φ

∂a`+1

∂φ

∂am

 , (76)
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where ek are n-dimensional vectors with zeros except their k-th entry equals 1.
Finally, left-multiplication with γ gives

γ>
∂Vs
∂q

= b+

[
γ`+1 −

γ`+1
γn

γn · · · γm −
γm
γn
γn

]
∂φ

∂a`+1

∂φ

∂am

 = b.

An assumption γn(q∗n) 6= 0 is imposed to ensure that the above step is well-defined
in a neighborhood of the setpoint q∗n. Another assumption γn(q∗n)

db
dqn (q

∗
n) > 0 is

imposed to ensure positive definiteness of the integral in (73). Substituting the
result into (58) provides matching, since:

F⊥
(
∂V

∂q
−MdM−1∂Vs

∂q

)
= b− γ>∂Vs

∂q
= b− b = 0. (77)

The process to show that the matching condition (59) is similar. First, we compute
the matrix Ψ ∈ Rn×` (57) where zj = aj for j = 1, . . . , `:

Ψ(q) =


∂a1
∂q1

. . .
∂a`
∂q1

...
...

∂a1
∂qn

. . .
∂a`
∂qn

 =

[
e1 −

γ1
γn
en · · · e` −

γ`
γn
en

]
. (78)

The result can be substituted into (59) to obtain

F⊥MdM−1Ψ = γ>Ψ

=

[
γ1 −

γ1
γn
γn · · · γ` −

γ`
γn
γn

]
= 0(n−m)×`. (79)

Hence, the matching conditions and the condition for cooperation (50), (58), (59)
are satisfied for the discussed class of systems.
For the single-agent problem, the free function Vc(z(q)) = Vc(a1(q), . . . , a`(q))

in (69) and the free function φ(a`+1(q), . . . , am(q)) in (73) play a similar role, both
in terms of shaping the total energy Vd and in the matching problem; they are one
and the same free function in [28]. In our case, the distinction between stabilizing
the internal coordinates and the cooperative coordinates is needed for cooperation
between underactuated systems which may have the same ` but different m or n.

In the special case that ` = m, when all controllable coordinates are designated
as cooperative coordinates, the preceding results become more similar to [28]: there
is only one free function Vc, and Vs reduces to only the integral term in (73).

3.6.3 Solutions for systems with flexible couplings

We now consider a class of mechanical systems with n = 2m coordinates, parti-
tioned as q = [α> δ>]>, where the coordinates of interest α ∈ Rm are unactuated
while the coordinates δ ∈ Rm are actuated. The coordinates α are indirectly driven
by potential forces as a function of the differences δ −α. This class includes com-
pliant mechanisms such as flexible-joint robots.
Here we consider systems with the Hamiltonian equations of motion (25) where

q =

[
α

δ

]
, M =

[
Mα 0m
0m Mδ

]
, F =

[
0m
Im

]
, V (δ−α), (80)
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where the matrices Mα(α) and Mδ(δ) are functions of α and δ, respectively, and
potential energy function satisfies V (δ−α) ≥ 0, V (0 ) = 0.
We propose a generic single-agent IDA-PBC solution of the form

Md =

[
cMα 0m
0m Mδ,d

]
, Vs =

1
c
V ,

J = 0n, Kv > 0m, F⊥=
[
Im 0m

]
, (81)

with the constant c > 0, and a desired mass matrix Mδ,d. The variable to be
internally stabilized is θ = δ −α with θ∗ = 0 . The cooperative variable is chosen
as a function of δ only, which gives

z(q) = z(δ) ∈ R`, Ψ =


∂z1
∂α
· · · ∂z`

∂α

∂z1
∂δ
· · · ∂z`

∂δ

 =

[
0m×`
Ψδ

]
. (82)

Although expressing this variable in terms of δ can seem restrictive, note that δ and
α converge to each other as θ converges to 0 . Consequently, z(α) asymptotically
approaches z(δ), and a control goal z∗ can hence be specified as z∗(α∗).
To see that the proposed solution satisfies the matching conditions for coopera-

tion, we write the kinetic energy condition (50) as

[
Im 0m

]


∂
(
p>M−1

α p
)

∂α

∂
(
p>M−1

δ p
)

∂δ

−
[
cMαM−1

α 0m
0m Mδ,dM−1

δ

]
1
c

∂
(
p>M−1

α p
)

∂α

∂
(
p>M−1

δ,dp
)

∂δ


=0 .

(83)

Likewise, the stabilization potential energy matching condition (58) gives

F⊥
(
∂V

∂q
−MdM−1∂Vs

∂q

)

=
[
Im 0m

]

∂V

∂α

∂V

∂δ

−
[
cMαM−1

α 0m
0m Mδ,dM−1

δ

]
1
c

∂V

∂α

1
c

∂V

∂δ




=
∂V

∂α
−
[
Im 0m

]
∂V

∂α

1
c
Mδ,dM−1

δ

∂V

∂δ

 = 0 . (84)

Finally, the condition for cooperation (59) is

F⊥MdM−1Ψ =
[
Im 0m

] [cMαM−1
α 0m

0m Mδ,dM−1
δ

][
0m×`
Ψδ

]
= 0m×`, (85)

which holds independently of Ψδ and hence independently of the structure of z(δ).
An example application for a flexible-joint robot will be given in Chapter 12.

3.7 practical aspects of ida-pbc

Throughout this thesis and in many IDA-PBC results, friction is assumed to be
negligible. Several starting points for including friction models, along with a suc-
cessful experimental demonstration of IDA-PBC, are given in [57] for an inverted
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pendulum-cart model. It is shown that unknown linear friction in the actuated
coordinates can be embedded in the desired dynamics in a similar fashion as the
damping matrix Kv, leading to additional damping which only strengthens the sta-
bility result. Friction compensation techniques can be used to offset some of the
effects of coulomb friction in these coordinates. For friction in the unactuated co-
ordinates however, it leads to an additional dissipation matching condition that
must hold in order to obtain the desired dynamics. This is not always restrictive,
because friction in the unactuated coordinate is sometimes very small precisely be-
cause there are no actuators, as is the case in the pendulum-cart example or the
UAV example discussed later in this thesis.
Furthermore, our focus is on single-agent IDA-PBC solutions that provide track-

ing of a fixed setpoint. It will be shown that these solutions are sufficient for our
intended cooperative control procedure, but a more generic application could also
consider tracking time-varying references. This is addressed for classes of Hamilto-
nian systems in [58]. Another practical extension is to apply IDA-PBC without the
availability of velocity measurements, as addressed in [28]. See also the recent survey
[26] for recent developments on robustness and observers for perturbed systems.

3.8 relation to controlled lagrangians

An alternative approach for designing controllers for underactuated mechanical sys-
tems is the method of controlled Lagrangians, introduced in [33, 34]. Although
derived from different geometric principles, the method of controlled Lagrangians
can be seen as a special case of IDA-PBC. A treatment and comparison of both
methods in a consistent formulation is given in [35]. Similarly, although the geomet-
ric methods can offer mathematical and physical insight when solving the design
problem, the controlled Lagrangians method suffers from the same difficulties in
solving the partial differential equations of the matching conditions (50), (51).
The method of controlled Lagrangians and IDA-PBC have been almost simulta-

neously developed around the year 2000, which has led to some novelty disputes
between the associated research groups. Some comments from the point of view
of the IDA-PBC research groups can be found in [26, 28]. We will readdress the
relation with this method for networks of underactuated systems in Chapter 8.



Part II

MODEL ING AND CONTROL OF DISTR IBUTED
SYSTEMS

This part presents modeling and control techniques for networks of the
simple mechanical systems studied in the previous part. Chapter 4 be-
gins by introducing energy-based network modeling concepts along with
standard tools such as graph theory, and defines control objectives that
can be pursued by a group of agents. Chapter 5 shows how these tech-
niques have been used in literature to devise distributed control strate-
gies for groups of fully-actuated mechanical systems.



4MODEL ING NETWORKS OF MECHANICAL SYSTEMS

High-level, application-specific control objectives of distributed systems can be de-
composed into generic types of group behaviors such as synchronization or assuming
formations [2, 12]. This chapter describes modeling techniques and mathematical
tools to analyze distributed systems that pursue such group behaviors.
Section 4.1 begins by introducing concepts from graph theory to mathematically

specify the role of each agent in the network and the information exchange between
them. Group control objectives are defined in Section 4.2. Section 4.3 describes how
the deviation from the group objectives can be compactly described by a quadratic
error function, which will be used several times throughout this thesis.

4.1 information exchange on graphs

Distributed systems (also called networks) consisting of information-exchanging
agents (also called systems) can be described using graphs. This section reviews
the concepts of graph theory needed to describe several existing and new energy-
based distributed control strategies.
Each agent i has the dynamics (25), with the generalized coordinates qi ∈ Rni ,

the generalized momenta pi ∈ Rni , the input τ i ∈ Rmi , and the output yi ∈ Rmi .
The dimensions ni and mi ≤ ni may be different for each agent.

4.1.1 Modeling communication on graphs

This subsection is based on [12]. A graph represents a group of N systems as a
set of vertices V = {i, . . . ,N}, and it represents their interconnections by a set of
edges E ⊂ V × V. An edge is an ordered pair of distinct vertices. The edge (i, j)
is outgoing from vertex i and incoming on vertex j, as represented by an arrow
pointing from i to j. The existence of an edge implies communication from one
agent to another; the arrow designates the direction of information flow.

If the edges (i, j) and (j, i) both exist, the information exchange between agents
i and j is bidirectional and the edge is undirected (as opposed to directed). Bidirec-
tional information flows are designated using an arrow with two heads, as shown in
Figure 2. All edges in this thesis are undirected unless specified otherwise.

1 2 3

4

Figure 2: A connected undirected graph of four agents

The existence of an undirected edge between agent i and j implies that i is a
neighbor of j and that j is a neighbor of i. A path is a sequence of edges of the
form (i, k), (k, j), . . . , (z, y), (y, a). A graph is connected if there is a path between
every distinct pair of vertices. It is fully connected if there is an edge between every
distinct pair of vertices.

29
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4.1.2 Information exchange

In order to achieve a group objective collaboratively, agents exchange information
with their neighbors in the form of a vector quantity zi ∈ R`. The information
exchange implies that agent i knows its own zi as well as the quantities zj ∈ R` from
its neighbors j. Agent i may obtain these quantities from explicit wireless messages
from the neighbors j, or by sensing the quantities zj through other equipment. In
some of the presented results in this thesis, it is sufficient for agent i to know only
the relative quantities zj − zi for all neighbors j.

The vector quantity zi ∈ R` is the transformed coordinate zi(qi) ∈ R` intro-
duced in Chapter 3. This generalizes many solutions from literature where zi(·) is
the identity map (zi = qi). In some of the presented results, a second objective
is to be achieved collaboratively, and agents use a second graph to exchange the
vector quantity yi ∈ R`. This graph has the same vertices V but may have different
edges E , such that agent i may have different neighbors k on this graph.
In this thesis we assume the quantities zj and yk to be available to agent i

at all times, without delay, without quantization errors, noise, changes in network
topology, or other discrepancies.

4.2 generalized local and group control objectives

Unlike in the previous chapter, where a single agent had to steer zi towards a known
target z∗i , the agents now exchange the information zi to achieve a common goal.
This section formalizes the local group objectives which a distributed system can
pursue in this thesis, expressed in terms of the variables qi = (xi,θi) ∈ Rni and
zi ∈ R`,introduced in the previous chapter.

4.2.1 Stabilization

As before, we restrict the control objective to stationary solutions, which means
that we require pi to reach zero asymptotically for all agents:

lim
t→∞

||pi(t)|| = 0 ∀ i = 1, . . . ,N . (86)

Likewise, each agent must stabilize the coordinates θi ∈ Rni−` at a target θ∗i ,
independently of any interactions with other agents, which requires that

lim
t→∞

||θi(t)− θ∗i || = 0 ∀ i = 1, . . . ,N . (87)

4.2.2 Leaderless formations

The most general group objective discussed in this thesis is the creation of a forma-
tion between all agents, expressed in the variables zi ∈ R`, as shown in Figure 3 for
the planar case (` = 2) when the communication graph corresponds to Figure 2.
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z2

z3

z4

z1

z1,i

z2,i
r∗12
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z1 z2 z3
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r∗32
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z∗4

z∗1

r23

r32

Figure 3: Initial configuration (left) and target formation with two leaders (right).

Initially at an arbitrary state, the communicated variables are at a relative con-
figuration rij(t) = zj(t)− zi(t) that changes in time as a function of the system
dynamics. A formation objective specifies the desired inter-agent configurations
r∗ij = −r∗ji ∈ R` for all neighboring agents. Specifically, the objective is

lim
t→∞

||zi(t)− zj(t) + r∗ij || = 0 ∀ (i, j) ∈ E . (88)

We require the graph to be connected, implying that between every two distinct
agents a and e there is a fixed desired configuration r∗ae = r∗ab + · · ·+ r

∗
de, even

if agents a and e are not connected through a single link (when the edges (a, e)
and (e, a) do not exist). This means that if (88) is achieved, we obtain a unique
formation, specified by the edges that do exist.
Whereas the formation shape is unique, the location at which the formation

comes to standstill (due to the stationarity objective (86)) is not unique, since the
objective (88) would still be satisfied when translating all variables zi and zj by
some constant c ∈ R`

4.2.3 Formations with leaders

One or more agents i ∈ T may additionally have a known, fixed target z∗i , similar
to the single-agent case, as shown in Figure 3. Agents that know such a target are
called leaders. All other agents are followers, and know only inter-agent targets r∗ij .
The objective of all leaders i ∈ T reaching their targets asymptotically becomes

lim
t→∞

||zi(t)− z∗i || = 0 ∀ i ∈ T (89)

The absolute targets z∗i and relative targets r∗ij must be chosen to be mutually
compatible, meaning that the objectives (88), (89) are non-conflicting. For example,
in Figure 3 agents 1 and 4 have fixed targets z∗1 and z∗4, and so we require that
the sum of the inter-agent targets of all paths between 1 and 4 match the desired
difference z∗1 − z∗4. In example, z∗4 − z∗1 = r∗12 + r

∗
24 = r∗12 + r

∗
23 + r

∗
34.

In this group objective, not only the shape of the formation is uniquely specified,
but also the location at which the group comes to standstill.

4.2.4 Internal objectives and the communicated variable

Depending on the application, the true group objective may not be to obtain a
formation in the variables zi(xi,θi) but rather directly in the variables xi. Because
the formation goals in either xi or zi are both expressed as an asymptotic objective,
they are related by the asymptotically stabilized variable θ∗i . Therefore, a desired
formation in the variables xi can be obtained using the same control objectives
(88), (89) by an appropriate choice of r∗ij and z∗, if possible.
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As an example, we consider the case where zi(qi) = xi + gi(θi) for some func-
tion gi(·), in which case the objective (88) becomes equivalent to

lim
t→∞

||xi(t)−xj(t) + gi(θi(t))− gj(θj(t)) + r∗ij || = 0 ∀ (i, j) ∈ E . (90)

We already require that all θi converge to θ∗i as in (87). Hence, to reach a desired
relative configuration r∗xij for the difference xj − xi, one may aim for a formation
in zi as in (90) and choose r∗ij = r∗xij − gi(θ

∗
i ) + gj(θ

∗
j ). The same extension holds

for the case with leaders, where we obtain

lim
t→∞

||xi(t) + gi(θi(t))− z∗i || = 0 ∀ i ∈ T . (91)

Hence, to reach a desired target x∗i , this example requires z∗i = x∗i + gi(θ
∗
i ) to be

chosen as the target for zi.

4.2.5 Distance-based formations

The objective (88) imposes a rigid configuration and orientation of the formation
in which each agent has a fixed location [59]. This is beneficial in terms of demon-
strating mathematically that the goal can be reached asymptotically, but it may be
restrictive in some applications. The objective (88) can be relaxed in several ways,
such as by imposing the configuration shape but allowing free rotations in addition
to free translations.

Alternatively, the relative configurations may be specified as relative scalar dis-
tances dij [59], resulting in a distance-based formation of the form

lim
t→∞

||zi(t)− zj(t)|| − dij = 0 ∀ (i, j) ∈ E . (92)

Depending on the selected graph, the final configuration may not be unique, which
may or may not be desirable depending on the application. If we additionally al-
low changes in the network topology, applications may be realized where agents
communicate only with their nearest neighbors, which can be advantageous in very
large networks. We refer the reader to [59] for further details on distance-based
formations and non-rigid graphs.
In this thesis we restrict the applications to the configuration-based formation

objective (88) with or without leaders (89) in order to demonstrate mathematically
the feasibility of our proposed methods, and to derive new insights in distributed
control of mechanical systems. Further research can extend these insights to appli-
cations with other formation objectives and network properties, in which case their
validity can be obtained through simulations or more advanced analysis methods.

4.2.6 Synchronization, agreement, rendezvous, consensus

A special case of the formation objective (88) arises when all inter-agent configura-
tions or distances are zero (r∗ij = 0 ∀ (i, j) ∈ E). The resulting objective is

lim
t→∞

||zi(t)− zj(t)|| = 0 ∀ (i, j) ∈ E , (93)

which is commonly called synchronization, agreement, rendezvous, or consensus,
depending on the application and research area [2]. For a connected graph, this
implies that all zi converge to the same constant value asymptotically, following
the same reasoning as for the formation objective in Section 4.2.2.
This goals may be achieved with or without leaders. When there are leaders as

in (89), we require z∗i = c for all i ∈ T and some constant c ∈ R`. In this problem,
one typically considers the case where c = 0 . The special case where all agents
know their target is sometimes called controlled synchronization [15].
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4.3 selected properties of undirected graphs

This section discusses several mathematical properties of graph theory which will
be useful for designing distributed control laws in the remaining chapters, and re-
derives several known properties for the purposes of exchanging vector information.

4.3.1 Adjacency and Laplacian matrices

If agent i is a leader, it has an associated leader weight Bi = B>i > 0`. If agent j
is a follower, its leader weight satisfies Bj = 0`. The leader matrix is defined as

B =

B1 . . .
BN

 ≥ 0N`, Bi =


Bi,11 · · · Bi,1`
...

...
Bi,1` · · · Bi,``

 . (94)

For each pair of edges (i, j), (j, i) between agents, there is associated symmetric
matrix weight Aij = Aji > 0` with Aij = A>ij , defined as

Aij =


Aij,11 Aij,12 · · · Aij,1`
Aij,12 Aij,22

...
. . .

Aij,1` Aij,``

 . (95)

If there are no edges between vertex i and j, then Aij = Aji = 0`. Self-edges are
not allowed, such that Aii = 0`.

The adjacency components Aij can be used to construct a symmetric Laplacian
matrix L ∈ RN`×N` that encodes the network topology, defined as

L =



∑N
j=1 A1j −A12 · · · −A1N

−A12
∑N
j=1 A2j

...
. . .

−A1N
∑N
j=1 ANj

 . (96)

4.3.2 Laplacian properties for scalar adjacency elements

Most literature considers the case where all Aij and Bi are scalars, in which case
the Laplacian matrix (96) has at least one zero eigenvalue with the corresponding
eigenvector 1 [12]. All its nonzero eigenvalues are positive. If the graph is connected,
there is only one zero eigenvalue and the other eigenvalues are positive.
Furthermore, if the graph is connected and there is at least one leader (at least

one Bi > 0), the matrix

L + B > 0N (97)

is symmetric positive definite [12].

4.3.3 Laplacian properties for matrix adjacency elements

When the adjacency weights Aij are matrices, the definition (96) is not a Lapla-
cian matrix in the classical sense. For example, a scalar on the diagonal of (96) is
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generally not the sum of the remaining elements on the same row, as is the case
when Aij are scalars.

In this section we re-derive several necessary positivity properties of the provided
Laplacian matrix (96) and leader matrix (94) to show that they hold equivalently
when the adjacency weights Aij are matrices, which will prove useful for the ex-
change of vector quantities zi on the graph.
All information being exchanged at a given instant is contained in the vector

z̄ ∈ RN`, given as

z̄ =

z1...
zN

 . (98)

Positivity of the matrices L and B can be assessed by expanding a quadratic form
into a sum of scalar quadratic terms, giving

z̄>Lz̄ =
1
2

N∑
i=1

N∑
j=1

(zi − zj)>Aij(zi − zj) ≥ 0, (99)

z̄>Bz̄ =
N∑
i=1

z>i Bizi ≥ 0, (100)

where the steps to obtain the summation (99) are given in Appendix a. It follows
immediately that L ≥ 0N` and B ≥ 0N` are positive semi-definite. Their sum
L + B ≥ 0N` is also positive semi-definite since

z̄>(L + B)z̄ = z̄>Lz̄ + z̄>Bz̄ ≥ 0 (101)

The matrix L + B is positive definite if and only if the graph is connected and
there is at least one leader. Otherwise, it is positive semi-definite.
Proof: From (101) it follows that z̄>(L+B)z̄ ≥ 0, such that L+B is at least pos-

itive semi-definite. To show definiteness, it remains to show that z̄>(L + B)z̄ = 0
if and only if z̄ = 0 . Clearly z̄>(L+B)z̄ = 0 when z̄ = 0 . To see that the reverse
also holds, first note that the quadratic form (101) equals zero if and only if (99)
and (100) equal zero. The term (99) being zero implies that for all neighbors i and
j, which satisfy Aij > 0`, there must hold zi = zj , and hence zi = zj = ... = zy
for all agents i, j, . . . , y on a path. If the graph is connected, there is a path be-
tween every pair of distinct agents, and hence the term (99) being zero implies
that zi = zj ∀ i, j = 1, . . . ,N . The term (100) being zero implies that all leaders
i, which satisfy Bi > 0`, must have zi = 0 . Therefore, when there is at least one
leader, we have that zi = zj = 0 ∀ i, j = 1, . . . ,N and hence we must have z̄ = 0 ,
completing the proof.

4.3.4 Quadratic forms

When pursuing the formation control objectives (88), (89), it is useful to define an
error function ϕ(t) that expresses the deviation from the desired formation at any
given time. Throughout this thesis we will frequently use a scalar quadratic error
function given by

ϕ =
1
4

N∑
i=1

N∑
j=1

(
zi − zj + r∗ij

)>Aij

(
zi − zj + r∗ij

)
+

1
2

N∑
i=1

(zi − z∗i )>Bi (zi − z∗i ) ≥ 0, (102)
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which is a weighted sum of the deviations of the inter-agent configurations zj − zi
from their desired values r∗ij , and the distances of the leaders from their targets z∗i .

The function (102) is nonnegative since Aij ≥ 0` and Bi ≥ 0`, and it equals zero
when the desired formation is reached. It is convex in z̄, which can be shown by
writing it as a single quadratic function of the form

ϕ =
1
2 z̄
>(L + B)z̄ + c>1 z̄ + c0, (103)

with a constant vector c1 ∈ RN` and a constant c0 ∈ R given by

c1 =



−B1z∗1 +
N∑
j=1

A1jr
∗
1j

...

−BNz
∗
N +

N∑
j=1

ANjr
∗
Nj


(104)

c0 =
1
4

N∑
i=1

N∑
j=1

(r∗ij)
>Aijr

∗
ij +

1
2

N∑
i=1

(z∗i )
>Biz

∗
i (105)

A derivation for (103)–(105) is given in Appendix a. Convexity in z̄ follows from
L + B ≥ 0N` as determined previously. The Jacobian of (103) is given by

∂ϕ

∂z̄
= (B + L)z̄ + c1 (106)

=



B1(z1 − z∗1) +
N∑
j=1

A1j(z1 − zj + r∗1j)

...

BN (zN − z∗N ) +
N∑
j=1

ANj(zN − zj + r∗Nj)


(107)

The minimum is reached when the Jacobian is zero:
∂ϕ

∂z̄
= 0 ⇔ ϕ = 0 (108)

At this point, all elements of the Jacobian are zero, which leads to

∂ϕ

∂z̄
= 0 ⇔ Bi(zi − z∗i ) +

N∑
j=1

Aij(zi − zj + r∗ij) = 0 ∀ i = 1, . . . ,N (109)

4.3.5 Minimizing the quadratic function with one or more leaders

If L + B > 0Nm, there is a unique z̄∗ for which the minimum of (102)–(103) is
reached when (109) holds. This happens when the desired formation (88), (89) is
obtained, such that zi = z∗i and zj − zi = r∗ij . Because the minimum is unique,
the reverse is also true, implying that the formation is reached when the Jacobian
of the error function is zero. Hence, for a connected graph with at least one leader
there holds

∂ϕ

∂z̄
= 0 ⇔ ϕ = 0 ⇔


zi = z∗i

zj − zi = r∗ij

∀ i, j = 1, . . . ,N . (110)
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4.3.6 Minimizing the quadratic function without leaders

If there are no leaders (B = 0N`), then L + B = L ≥ 0N`. Although the vector z̄
for which the minimum is reached is then not unique, it satisfies

∂ϕ

∂z̄
= Lz̄ + c1 = 0 ⇔

N∑
j=1

Aij(zi − zj + r∗ij) = 0 ∀ i = 1, . . . ,N (111)

For some free variable zf ∈ R`, (111) is satisfied by all solutions of the form

z̄∗ =
[
z>f z>f · · · z>f

]
+
[
0> (r∗12)

> · · · (r∗1N )>
]>

(112)

since then zj −zi = zf + r
∗
1j −zf − r∗1i = r∗ij . For the same reason, these solutions

satisfy the leaderless formation control objectives (88).
Hence, for a connected graph without leaders (Bz = 0N , Lz ≥ 0N ) there holds

∂ϕ

∂z̄
= 0 ⇔ ϕ = 0 ⇔ zj − zi = r∗ij ∀ i, j = 1, . . . ,N (113)

Proof: It is easy to see from (103)–(105) that zj − zi = r∗ij implies that ϕ = 0. It
remains to show that the reverse must also hold. From (103), ϕ = 0 if and only if
zj − zi = r∗ij for all agents connected by an edge (with Aij > 0). Hence, all agents
a and b on a path are at a configuration zb− za = r∗a... + · · ·+ r∗...b = r∗ab. Because
the graph is assumed to be connected, every pair of distinct agents is connected by
a path. Hence, all agents zj − zi are at the desired relative configuration r∗ij , which
completes the proof.



5EXIST ING PASS IV ITY -BASED DISTR IBUTED CONTROL
OF FULLY -ACTUATED SYSTEMS : A UNIF IED APPROACH

This chapter reviews and compares five existing passivity-based distributed control
methodologies for networks of fully-actuated mechanical systems [13–17]. While
these distributed control methods are derived from similar passivity principles, the
control laws differ depending on the desired group behaviors, the information ex-
change (positions, velocities, or both), the method of energy dissipation (by the
network, the agents, or both), and the presence of a group reference.
It will be shown that for undirected networks without time delays, each control

method can be derived from a unified control scheme (Sections 5.1–Section 5.4).
Each specialization to obtain the methods [13–17] has a physical or task-specific
interpretation, facilitating a comparison between the control schemes (Section 5.5).
This unified presentation of existing methodologies for fully-actuated systems

also provides a benchmark for analyzing the distributed control method for under-
actuated systems proposed in Part III. Specifically, the unified scheme presented
here will later be shown to be a special case of the newly proposed scheme for un-
deractuated systems, in case of constant reference signals or leaderless consensus.
As the subsequent chapters take a different distributed control design approach,

this stand-alone chapter may be considered as optional reading. The results of this
chapter have been previously presented in [60].

5.1 local and distributed control objectives

The overlapping objective between the methods [13–17] is asymptotic synchroniza-
tion of the generalized coordinates qi:

lim
t→∞

||qi(t)− qj(t)|| = 0 ∀ (i, j) ∈ E . (114)

Additionally, the method [14] facilitates tracking of a group velocity reference q̇d(t)
while [15] also specifies an absolute group reference qd(t). The method [17] specifies
a constant group reference qd. These objectives may be summarized as:

lim
t→∞

||qi(t)− qd(t)|| = 0 ∀ i = 1, . . . ,N . (115)

For brevity, this literature survey chapter will not elaborate on the case where only
a subset of the agents knows the reference qd; this will be discussed for the newly
proposed distributed control scheme in Part III.

5.2 equivalent single-agent behavior

The dynamics of fully-actuated (F = In) mechanical systems are commonly repre-
sented using the frictionless Lagrangian equations of motion (8), repeated here for
agent i as

Miq̈i + C̃iq̇i +
∂Vi
∂qi

= τ i, (116)

with the generalized coordinates qi ∈ Rn and control signal τ i ∈ Rn, with an equal
number of coordinates (n) for all agents. Passivity of input-output pair (τ i, q̇i) with
respect to the total energy H̃i is obtained using (20).
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5.2.1 Desired single-agent dynamics

The key similarity in the methods [13–17] is that each agent uses a control law τ i
to transform the dynamics (116) into the form

Miẏi + C̃iyi +Kiyi = ui, (117)

with different choices for a new input ui ∈ Rn, a new output yi(qi, q̇i) ∈ Rn, and
a damping matrix K ∈ Rn×n. Regardless of the choice of yi, this system is passive
with respect to the input ui, output yi and the storage function Si given by

Si =
1
2y
>
i Miyi. (118)

Passivity is demonstrated by taking the time derivative of Si and exploiting the
mass matrix property (11) to write

Ṡi = y>i Miẏi +
1
2y
>
i

(
C̃i + C̃>i

)
yi,

= y>i ui − y>i Kiyi +
1
2y
>
i

(
C̃>− C̃i

)
yi,

= y>i ui − y>i Kiyi. (119)

The system is passive if Ki = 0n and output strictly passive if Ki > 0n.

5.2.2 Modified passive output

The modified output yi is a linear combination of the generalized velocities and
coordinates, and an optional reference signal qd(t):

yi = (q̇i − q̇d) +Λ(qi − qd) (120)

where, depending on the method, Λ = 0n or Λ > 0n, and qd(t) ∈ Rn is either
a twice differentiable function of time or identically set to zero. For notational
convenience, we introduce the modified reference velocity v(t) as

v = q̇d +Λqd, (121)

such that (120) can also be written as yi = q̇i +Λqi − v.

5.2.3 Internal control law

To obtain the desired agent dynamics (117) from the original dynamics (116), each
agent uses the control law

τ i =
∂Vi
∂qi

+Mi(v̇−Λq̇i) + C̃i(v−Λqi)−Kiyi + ui, (122)

where the implementation varies depending on the presence of a reference, and
whether the matrices Λ and Ki are zero or positive definite. No acceleration mea-
surements are required for any of the resulting variants.

5.3 unified distributed control scheme

Although the distributed control schemes [13–17] are presented in different ways
and for different applications, they can be represented by the unified control scheme
shown in Figure 4, consisting of N agents (116) with the internal feedback law (122)
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and a distributed feedback block Γ, interconnected through negative feedback. This
section covers the design and implementation of the distributed control law.

+

B

∫
. . . ∫ ω1 . . .

ωk

˙̄ρ ρ̄ −ū

−

B>

ȳ

ū

φ1 . . .
φk

˙̄ρ

+

+

∂Vi
∂qi

+Mi(v̇−Λq̇i)

Ki

τ i

−

+ ui

i = 1, . . . ,N

Γ

+C̃i(v−Λqi) + ui

Miq̈i + C̃iq̇i +
∂Vi
∂qi

yi

Figure 4: Unified passivity-based distributed control scheme for fully-actuated agents.
Adapted from [14].

5.3.1 Incidence matrix

The network is modeled using the techniques introduced in Chapter 4. In a network
with ν undirected edge pairs, all pairs (i, j), (j, i) are numbered (arbitrarily) from
1 to ν. For each undirected edge with the number k, the agent with the highest
index is said to be the positive end of the k-th edge. The other end is its negative
end. Then the incidence matrix B of the network can be defined as [14]

B =


b11In · · · b1νIn
...

...
bN1In · · · bNνIn

 , (123)

where

bik =


+1 if the i-th agent is at the positive end of link k,

−1 if the i-th agent is at the negative end of link k,

0 otherwise.

(124)

The (arbitrary) assignment of a positive end serves only for mathematical conve-
nience; the information flow between two neighboring agents remains bidirectional.

If we now define the vectors

ȳ =

y1...
yN

 , ū =

u1...
uN

 , ρ̄ =

ρ1...
ρν

 , (125)
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then an important property is that the product of B> and y gives the differences
in the output signals ya and yb for each edge (a, b). Specifically,

ρ̇k =
N∑
i=1

bikyi =


ya − yb if the a-th agent is at the positive end of link k,

yb − ya if the b-th agent is at the positive end of link k,

0 otherwise.
(126)

From the definition of the modified output signals (120), this gives the differences

ya − yb = (q̇a − q̇d) +Λ(qa − qd)− ((q̇b − q̇d) +Λ(qb − qd))
= q̇a − q̇b +Λ(qa − qb). (127)

When Λ = 0n, the output differences ρ̇k hence represent relative velocities and
their integrals ρk represent relative positions qa − qb. If Λ > 0n, then ρk also
includes an integral of the relative positions.

5.3.2 Distributed control law

The relative velocities ρ̇k and positions ρk are then passed through the vector
functions φk(·) and ωk(·), respectively, as shown in Figure 4. The vector function
φk(ρ̇k) ∈ Rn satisfies [13]

φk(0 ) = 0 ,
φk(−ρ̇k) = −φk(ρ̇k), (128)

ρ̇>k φk(ρ̇k) ≥ 0,

and the functions ωk(ρk) ∈ RN are gradients of potential functions Ωk(ρk) ≥ 0:

ωk(ρk) =
∂Ωk

∂ρk
. (129)

In the simplest case, both φk(·) and ωk(·) are positive linear maps. With ρ̇k as
in (126) the total distributed control law is

u = −B(φ̄+ ω̄), φ̄ =

φ1...
φν

 , ω̄ =

ω1...
ων

 . (130)

5.3.3 Passivity of the feedback path and closed loop

The system highlighted as the dashed block Γ in Figure 4 has the input y and
output −u. It is passive with respect to the storage function

Ω̄ =
ν∑
k=1

Ωk, (131)

since its time derivative is

˙̄Ω =
ν∑
k=1

∂>Ωk

∂ρk
ρ̇k

= ˙̄ρ>(ω̄ + φ̄)− ˙̄ρ>φ̄

= ȳ>B(ω̄ + φ̄)− ˙̄ρ>φ̄

= ȳ>(−ū)− ˙̄ρ>φ̄

≤ ȳ>(−ū), (132)
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where the last step follows from (128). Strict passivity is obtained if the inequality
in (128) is strict for all ρ̇k 6= 0 .

The system Γ is connected with the internally controlled mechanical agents with
the passive dynamics (117) through a negative feedback interconnection, yielding
an overall passive system [14] with respect to the total storage function S:

S̄ = Ω̄ +
N∑
i=1

Si =
ν∑
k=1

Ωk +
N∑
i=1

Si. (133)

The storage function can be interpreted as the total energy contained in each system
and each undirected edge between them. The storage function also serves as a
Lyapunov function to assess closed-loop stability.

Combining (119) with (132), the rate of change of this storage function is

˙̄S = ˙̄Ω +
N∑
i=1

Ṡi = −
ν∑
k=1

ρ̇>k φk −
N∑
i=1

y>i Kiyi ≤ 0. (134)

Energy contained in the closed loop can hence be dissipated by each system i at a
rate y>i Kiyi and by each undirected edge k at a rate ρ̇>k φk.

5.4 existing results as special cases

The generic single-agent control law (122) and the distributed control law (130) can
be implemented in several different ways. The possible variations include:

• Λ = 0n or Λ > 0n,

• Ki = 0n or Ki > 0n,

• qd(t) is either undefined or defined as a function of time,

• q̇d(t) is either zero or equal to d
dtqd,

• φk(·) is either the zero map or satisfies (128),

• ωk(·) is as in (129), either for Ωk = 0 or Ωk ≥ 0.

Table 1 summarizes how each of the methods discussed in [13–17] can be obtained
from the previously given single-agent and distributed control laws for a specific
combination of design choices, for undirected networks without time delays.

Ki Λ qd q̇d φ Ω,ω Storage Dissipation Exchange

[13] = 0n > 0n 0 0 (128) 0 agents network qi, q̇i
[14] > 0n = 0n n/a q̇d 0 (129) both agents qi

[15] > 0n > 0n qd q̇d (128) 0 agents both qi, q̇i
[16] > 0n = 0n 0 0 (128) (129) both both qi, q̇i
[17] > 0n = 0n 0 0 0 (129) both agents qi

Table 1: Specializations to obtain the control laws of [13–17].

Although the necessary notational conversions to each method are quite straight-
forward to obtain using Table 1, it is worth noting that the modified reference
velocity called “qi,r” in [15] corresponds to v − Λqi = q̇d + Λ(qd − qi) in the
notation of this chapter.
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5.5 methodological differences

Each design choice corresponds to a specific task objective or damping mechanism,
and also defines which information agents must exchange over the network. Each
choice also effects the transient response and can have consequences for robustness.

5.5.1 Model-based and model-free distributed control

Depending on the selected design, the resulting control law requires knowledge of
the model matrices Mi and C̃i. The need for these matrices in the internal control
law (122) arises from v−Λqi being nonzero, which happens for two distinct reasons.
First, a nonzero reference velocity v implies that the model matrices are needed

to provide a generalized feed-forward force Miv̇ + C̃iv in order to keep tracking
the reference. A second model dependency arises from the selection of Λ > 0,
which is done in order to simultaneously control the generalized coordinates qi and
the velocities q̇i by controlling only yi. By this definition, [16] and [17] (and [14] if
q̇d = 0 ) are model-free distributed PD controllers, though knowledge of the gravity
compensation term ∂Vi

∂qi
is still required in all cases.

The need for model matrices can pose robustness constraints and makes imple-
mentation comparatively more complex than the distributed PD control methods.

5.5.2 Storage and dissipation mechanisms, and velocity information exchange

The total energy (133) contained in the closed-loop system is distributed across the
systems and the edges between them. The methods [14, 16, 17] use both storage
mechanisms, while [13, 15] store energy only in the agents, as reflected by Ωk being
zero in Table 1.
Independently of where the energy is stored, energy can be dissipated by either

the agents or the edges between them, or both, as clarified by (134). Dissipation by
the agents is achieved through damping their individual generalized velocities by
choosing Ki > 0N (in [14–17]). Dissipation in the edges occurs due to damping of
relative velocities between the agents using nonzero φk(·) (in [13, 15, 16]).

Although damping relative velocities may lead to faster convergence to the group
objective, applying damping internally does not require velocity information to be
coordinated over the network, potentially enhancing robustness in the presence of
time delays and noise.

5.5.3 Position coupling mechanisms

The generalized coordinates qi and qj of agents i and j are coupled in two distinct
ways. First, when Ωk > 0, the coupling forces arise as the gradients of potentials
between coupled agents, as in (129), (130). Otherwise, if Λ > 0, the relative po-
sitions are coupled because the damping forces φk(·) act on the relative outputs
yi − yj = q̇i − q̇j +Λ(qi − qj) that relate both the positions and the velocities.
None of the previously discussed control schemes uses both coupling mechanisms

simultaneously (no method has both Ωk > 0 and Λ > 0). Both couplings being
active would imply a form of integral control because the control scheme in Figure 4
integrates the signals ρ̇k (126), (127), which contains both velocities and positions
when Λ > 0. The resulting distributed PID controller could be further explored to
investigate its potentially more robust response to small disturbances.



Part III

D I STR IBUTED CONTROL OF UNDERACTUATED
AND HETEROGENEOUS MECHANICAL SYSTEMS

This part presents the main result of this thesis. We present the prob-
lem and solution of cooperatively controlling a group of fully-actuated,
underactuated, and heterogeneous mechanical systems in a distributed
control scheme. Chapter 6 presents the generic distributed IDA-PBC
control problem for a network of mechanical systems, and contrasts it
to existing distributed control design techniques. Chapter 7 uses the
proposed method to derive control laws for networks of fully-actuated
agents, while Chapter 8 gives a solution for the case where one or more
systems are underactuated.



6THE DISTR IBUTED IDA -PBC PROBLEM

This chapter shows how the distributed control problem of mechanical systems can
be cast as a control problem described in the language of passivity-based control
by interconnection and damping assignment. By considering the network of uncon-
trolled systems as one large mechanical system, we show how IDA-PBC can be used
to derive control laws and matching conditions for the whole network.
Section 6.1 gives an explicit description of the uncontrolled dynamics of a network

of decoupled mechanical systems. Section 6.2 gives the prescribed desired dynamics,
and Section 6.3 provides the control law and matching conditions to obtain these
dynamics. Section 6.4 interprets the resulting design problem and its implications
for a network of mechanical systems, preparing for the solutions given in the next
chapters. Finally, Section 6.5 contrasts this top-down control design procedure to
the more commonly used bottom-up procedure of designing internal control laws
for each agent and finding stable interconnections.

6.1 a network of mechanical systems as one system

As introduced in Part II, we consider a network of N agents, where each agent has
the uncontrolled and frictionless dynamics (25)–(27), given for each agent i as

[
q̇i

ṗi

]
=

[
0ni Ini
−Ini 0ni

]
∂Hi

∂qi
∂Hi

∂pi

+

[
0ni×mi

Fi

]
τ i, (135)

yi = F>i
∂Hi

∂pi
= F>i M−1

i pi, (136)

Hi =
1
2p
>
i M−1

i pi + Vi, (137)

where as before, qi ∈ Rni are the generalized coordinates of agent i, pi ∈ Rni are
its generalized momenta, τ i ∈ Rmi and yi ∈ Rmi are its generalized input and
output, Fi(qi) ∈ Rni×mi is its input matrix, Mi(qi) = M>

i (qi) > 0ni is its mass
matrix, and Vi ∈ R is its potential energy. All terms may be different for each
agent, including the dimensions ni and mi ≤ ni.

Then we can write the open-loop dynamics of all agents in the network as a single
simple mechanical system of the form

[
˙̄q
˙̄p

]
=

[
0n̄ In̄
−In̄ 0n̄

]
∂H̄

∂q̄

∂H̄

∂p̄

+

[
0n̄×m̄

F̄

]
τ̄ , (138)

ȳ = F̄>∂H̄
∂p̄

= F̄>M̄−1
p̄, (139)

H̄ =
1
2 p̄
>M̄−1

p̄+ V̄ , (140)

where the coordinate and input dimensions are

n̄ =
N∑
i=1

ni, m̄ =
N∑
i=1

mi, (141)

45
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and the corresponding network terms are given by

q̄ =

q1...
qN

 , p̄ =

p1...
pN

 , τ̄ =

 τ 1...
τN

 , ȳ =

y1...
yN

 , (142)

M̄ =

M1 . . .
MN

 , F̄ =

F1 . . .
FN

 , V̄ =
N∑
i=1

Vi. (143)

A brief derivation is given in Appendix a.
We assume that there is no physical contact between the systems, but interaction

arises due to their control signals. Generally, the control law τ i of agent i can
be a function of its own state and of information it receives from other agents.
Because the uncontrolled network is still a simple mechanical system, the previously
introduced IDA-PBC control law, matching conditions, and stability analysis still
apply. This concept forms the basis of this chapter and the next.

6.2 desired closed loop network dynamics and interaction

Similar to single system case discussed in Chapter 3, the feedback control law is de-
signed to turn the open-loop network dynamics (138)–(140) into the asymptotically
stable or semi-stable closed-loop dynamics given by

[
˙̄q
˙̄p

]
=

[
0n̄ M̄−1M̄d

−M̄dM̄−1 J̄− F̄K̄vF̄>

]
∂H̄d
∂q̄

∂H̄d
∂p̄

+

[
0n̄×m̄

F̄

]
τ̄ d, (144)

ȳd = F̄>∂H̄d
∂p̄

= F̄>M̄−1
d p̄, (145)

H̄d =
1
2 p̄
>M̄−1

d p̄+ V̄d. (146)

A control objective is achieved by shaping the closed-loop energy of the network
and inserting damping such that the system asymptotically reaches a desired equi-
librium q̄∗ or a desired set of equilibria Q̄∗, as discussed further in Section 6.4.
In principle, the definitions of the design variables J̄ = −J̄>2 ∈ Rn̄×n̄, K̄v > 0m̄,

0n̄ < M̄d < αIn̄, α > 0, and V̄d ∈ R extend equivalently to the distributed case,
but they now play roles in both the local agent behavior and in the interaction
between agents. This will be discussed for each term in the sections and chapters
that follow.

6.3 distributed control law and matching conditions

Extending (49) to the networked case gives the distributed IDA-PBC control law:

τ̄ =
(
F̄>F̄

)−1
F̄>
(
∂H̄

∂q̄
− M̄dM̄

−1∂H̄d
∂q̄

+ J̄M̄−1
d p̄

)
− K̄vȳd + τ̄ d. (147)

Equivalently to the single-agent case, the control law (147) achieves the desired
dynamics (144)–(146) only if the matching conditions are satisfied. From (50), the
distributed kinetic energy matching condition becomes:

F̄⊥
∂
(
p̄>M̄−1

p̄
)

∂q̄
− M̄dM̄−1∂

(
p̄>M̄−1

d p̄
)

∂q̄
+ 2J̄M̄−1

d p̄

 = 0 . (148)
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From (51), the distributed potential energy matching equation becomes:

F̄⊥
(
∂V̄

∂q̄
− M̄dM̄−1∂V̄d

∂q̄

)
= 0 . (149)

6.4 distributed potential and kinetic energy shaping

While the distributed IDA-PBC strategy is mathematically identical to the single-
agent case, the uncontrolled system (138)–(140) is not a single physical system but a
decoupled set of mechanical systems. This has implications for the implementation
of the control law, the conditions for matching, as well as the design problem of
potential and kinetic energy shaping. This section briefly elaborates on these topics
before addressing them one at a time in subsequent chapters.

6.4.1 Local and distributed implementation

The distributed control signal τ̄ ∈ Rm̄ (142), (147) is implemented as N separate
control signals τ i ∈ Rmi . Most generally, each control signal τ i(q̄, p̄) may be a func-
tion of its own state and the states of all other agents in the system. Which state
information is needed by each agent defines which information must be communi-
cated between the agents. In turn, this depends on the selected design parameters of
the desired dynamics (144)–(146). Consequently, if constraints are imposed on the
allowed communication, this limits the choices that can be made in energy shaping.

6.4.2 Local and distributed potential energy shaping

The desired potential energy V̄d(q̄) of the closed-loop system is generally a function
of the generalized coordinates qi of all agents. This energy must be chosen such
that it attains a minimum when the control objectives are achieved:

q̄∗ = arg min V̄d(q̄), (150)

where q̄∗ is either a unique equilibrium or an element of a set of equally desired
equilibria. Agents can pursue a group objective such as a formation as well as local
objectives like stabilizing one or more internal coordinates, as discussed in Chapter 4.
The potential energy V̄d(q̄) must be minimal when both the group objective and the
local objectives are achieved. As in the single-agent case, this choice is constrained
by the potential energy matching condition (149).
The energy V̄d(q̄) appears in the distributed control law (147) through the gradi-

ent of H̄d. Local objectives to agent i are expressed in an energy term that depends
only on qi, which through the gradient results in a control force acting only on agent
i. A group objective shared by agent j and k appears as an energy function of both
qj and qk, leading to interaction control forces on both agent j and k and the need
to exchange information. This is equivalent to the principle of energy storage in
the interconnections discussed in Chapter 5. Potential energy shaping is of critical
importance for the distributed IDA-PBC solutions presented in Chapter 7 and 8.
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6.4.3 Local and distributed kinetic energy shaping

The desired kinetic energy is determined by the desired mass matrix M̄d = M̄>
d ,

which we may partition without loss of generality as

M̄d =


Md,1 Md,12 · · · Md,1N

Md,21 Md,2
...

. . .
Md,N1 Md,N

 , (151)

where symmetry implies Md,ij = M>
d,ji ∈ Rni×nj and Md,i = M>

d,i ∈ Rni×ni .
The kinetic energy expression 1

2 p̄
>M̄−1

d p̄ in (146) is generally not simply the sum of
the desired kinetic energies for the single systems, unless Md,ij = 0ni×nj . Choosing
nonzero Md,ij creates energy terms expressed simultaneously in qi, pi, qj and pj .
Even if Md,ij = 0n, the diagonal blocks Md,i can be used to change the inter-

action between agents. Increasing or decreasing the desired mass of one agent com-
pared to another enables cooperation between heterogeneous systems with signifi-
cantly different masses. For example, pure potential shaping without kinetic energy
shaping would set a lightweight system in oscillatory motion while the heavyweight
system would hardly move. Kinetic energy shaping can normalize these relative
effects to considerably improve the transient response. This is illustrated for an
example application in Chapter 11.

6.4.4 Local and distributed damping

The damping matrix K̄v = K̄v
>> 0m̄ can be partitioned as

K̄v =


Kv,1 Kv,12 · · · Kv,1N

Kv,21 Kv,2
...

. . .
Kv,N1 Kv,N

 , (152)

where Kv,i ∈ Rmi×mi and Kv,ij = K>v,ji ∈ Rmi×mj . Damping forces appear in the
control law (147) as the expression

−K̄vȳd = −K̄vF̄>M̄−1
d p̄. (153)

Depending on the chosen M̄−1
d and K̄v, the damping force for agent i is a function

of its own coordinates and momenta as well as those of other agents j. Chapter 7
discusses several special choices of K̄v that minimize the need to exchange momenta
information between agents.

6.4.5 Local gyroscopic forces and energy routing

The skew symmetric matrix J̄ may be partitioned as

J̄ =


J1 J12 · · · J1N

J21 J2
...

. . .
JN1 JN

 , (154)
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where Ji = −J>i ∈ Rni×ni and Jij = −J>ji ∈ Rni×nj . In principle, all elements of J̄
may be functions of all q̄ and p̄, so long as the distributed kinetic energy matching
condition (148) is satisfied. As in the single-agent case, the matrix J̄ does not change
the stability result, but can be used to help solve the matching conditions and alter
the transient response.
The corresponding “gyroscopic” control forces appear in the control law (147) as(

F̄>F̄
)−1

F̄>J̄M̄−1
d p̄, (155)

in which the matrices Ji assign gyroscopic forces as in the single-agent case and the
matrices Jij are responsible for routing energy between systems without changing
the overall energy balance, an extension discussed in Section 13.4.

6.5 top-down and bottom-up distributed control

This section discusses two generic approaches for designing distributed control laws.
In the commonly used bottom-up approach, each agent is given its own controller
and interactions are sought to devise a stable network. In the top-down approach,
the starting point is a stable class of network dynamics, from which the internal
and distributed control laws are derived.

6.5.1 Bottom-up: from local and distributed control to a stable network

Typical passivity-based distributed control methods follow bottom-up design ap-
proaches, which consider how passive systems can be interconnected to preserve
passivity. Weighted sums of the storage functions of each subsystem are used as
candidate Lyapunov functions in order to assess closed-loop stability [13–17].

This approach is especially successful for networks of fully-actuated systems like
robot manipulators, where internal control laws render each system passive with re-
spect to an output that ensures synchronization of both generalized coordinates and
velocities between systems, as discussed in Chapter 5. Unfortunately, this approach
does not easily generalize to underactuated systems, complicating the procedure of
finding internal control laws and stable interconnections.

6.5.2 Top down: from a stable network to local and distributed control

This thesis uses a top-down approach instead, starting from a class of stable desired
dynamics (144) for the whole network (138), and deriving the control law (147)
and interconnection conditions (148), (149) to preserve the desired dynamics and
stability. Any remaining degrees of freedom (151)–(154) can be used to address
the transient response of the network and its subsystems, and to find a distributed
implementation of the control law.

This approach is well-suited for networks of fully-actuated and underactuated sys-
tems, and combinations thereof. Whereas choosing a desired class of dynamics may
appear more restrictive than allowing arbitrary dynamics and Lyapunov functions,
the structure of the solution reveals both the potential force and damping mech-
anisms commonly found in a bottom-up approach, but also non-trivial gyroscopic
coupling forces (155) while preserving stability.
If the resulting control laws and matching conditions can be sufficiently decoupled,

such that all energy terms in the total storage function can be assigned to specific
subsystems or interconnections, the top-down result can be equivalently written as
a bottom-up design. Then the main difference is the transparent derivation and
simplified stability analysis, which is the case for the solutions in the next chapters.



7SOLUTIONS FOR THE FULLY -ACTUATED CASE

This chapter uses the proposed approach of passivity-based control by damping
and interconnection assignment to re-derive several known results in distributed
control of fully-actuated mechanical systems, setting the stage for new results for
the underactuated case in Chapter 8.
Section 7.1 gives the generic distributed control law, while Sections 7.2 and 7.3

specialize this result to coordinate formations and task-space formations.

7.1 distributed control law

Repeating the steps in Section 3.4 for the fully-actuated network of mechanical
systems, there are no matching conditions that have to be satisfied, and we may
assume F̄ = In̄. If there are no further external inputs to the network (τ̄ d = 0 )
the total control law (147) reduces to

τ̄ =
∂H̄

∂q̄
− M̄dM̄

−1∂H̄d
∂q̄

+ (J̄− K̄v) ȳd. (156)

Likewise, in the absence of matching conditions, the matrices M̄d and J̄ only
play a role in shaping the transient response, and they can be chosen as M̄d = M̄
and J̄ = 0n̄. This results in only potential energy shaping, using the control law

τ̄ =
∂V̄

∂q̄
− ∂V̄d

∂q̄
− K̄vȳ. (157)

As in the single-agent case, the term ∂V̄
∂q̄ amounts to gravity compensation. Recall-

ing that V̄ (q) = Vi(qi)+ · · ·+VN (qN ), it follows that the associated component in
the control signal τ i for each agent equals ∂Vi

∂qi
(qi), which each agent can implement

using only the local information qi.
Following the standard single-agent IDA-PBC design procedure, a control objec-

tive can be achieved by shaping the potential energy in such a away that it attains
its minimum when the control objectives are satisfied. In the distributed scenario,
the total closed-loop potential energy Vd should be minimal when the group forma-
tion objective is satisfied, which is when q̄ = q̄∗ or q̄ ∈ Q̄∗.

7.2 potential energy shaping for coordinate formations

A common distributed control objective is to cooperatively control all coordinates
qi ∈ Rn of a set of N fully-actuated mechanical systems with an equal number of
coordinates (mi = ni = m = n = ` for all i). This means that the coordinated
variable reduces to zj = xj = qj , with no coordinates θi to be stabilized internally.

The group objective can be described as in Section 4.2, such that the objective
of a stationary formation with or without leaders becomes

lim
t→∞

||pi(t)|| = 0 ∀ i = 1, . . . ,N , (158)

lim
t→∞

||qi(t)− qj(t) + r∗ij || = 0 ∀ (i, j) ∈ E , (159)

lim
t→∞

||qi(t)− q∗i || = 0 ∀ i ∈ T . (160)
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When the group objective is coordinate synchronization, r∗ij = 0 . When there
are no leaders, the objective (160) vanishes, and the group comes to standstill at
one of a range of possible states q̄∗ ∈ Q̄∗, all satisfying the formation objective.

7.2.1 Quadratic potential energy function

The simplest coupling potential can be obtained directly as a sum of squares of the
deviation from the formation objective. Using the adjacency and leader weights,
this sum can be compactly written by summing over the agents and each of their
neighbors as detailed in Section 4.3. This gives

V̄d =
1
4

N∑
i=1

N∑
j=1

(
qi − qj + r∗ij

)>Aij

(
qi − qj + r∗ij

)
+

1
2

N∑
i=1

(qi − q∗i )>Bi (qi − q∗i ) ≥ 0. (161)

The choice (161) ensures that Vd ≥ 0 and Vd = 0 if and only if the formation
objective is achieved. Likewise, the Jacobian

∂V̄d
∂q̄

=



B1(q1 − q∗1) +
N∑
j=1

A1j(q1 − qj + r∗1j)

...

BN (qN − q∗N ) +
N∑
j=1

ANj(qN − qj + r∗Nj)


(162)

equals zero if and only if the formation goal is satisfied.

7.2.2 Absolute and relative damping

In this section we show how the damping condition K̄v > 0n̄ can be satisfied either
locally or by communicating velocity information across the network. Assume we
have a second communication graph for velocity or momenta information exchange,
which need not be the same as the graph for position exchange. For this second
graph, we denote the Laplacian matrix as Lv and the leader matrix as Bv. An
agent is a leader on the velocity graph if it can measure its own velocities q̇i or its
momenta pi = Miq̇i.

Damping is inserted through the damping force −K̄vȳ in (157). A necessary
damping condition for asymptotic stability is K̄v > 0n̄. Following (152), we propose
to partition K̄v as

K̄v = Lv + Bv > 0. (163)

This matrix is positive definite if the graph is connected and there is at least one
velocity leader. It is also positive definite if all agents are leaders on the velocity
graph (when Bv > 0n̄). An intermediate variant is also possible, were all agents are
connected to at least one leader, but this case is not discussed here. Using (107),
the damping force expressed in velocities q̇i = M−1

i pi equals

−K̄vȳ = −K̄vM̄−1
p̄ = −K̄v ˙̄q =



−Bv
1q̇1 −

N∑
j=1

Av
1j(q̇1 − q̇j)

...

−Bv
N q̇N −

N∑
j=1

Av
Nj(q̇N − q̇j)


. (164)
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The first component in each block row damps the absolute velocity q̇i whereas the
second component damps the relative velocities between agent i and its neighbors j.

Several practical results can be obtained from the damping condition (163) and
the implementation (164). The first term in (164) can be implemented using only
local information, achieving absolute damping. If all Bv

i > 0, then (163) is satisfied
without having to communicate velocity information between neighbors (Av

ij = 0),
thus reducing the detrimental effects of communication time delays.
The single-agent damping conditions Bv

i > 0n can be relaxed to Bv
i ≥ 0n as long

as (163) holds. This is achieved if the velocity communication graph is connected
and at least one Bv

j > 0n. This situation may occur in practice if only leaders in a
swarm of UAVs have accurate ground velocity information, while the other agents
can only sense velocities relative to their neighbors, to apply relative damping.

7.2.3 Control law for coordinate formations

From (157), (162), and (164), the distributed control law to achieve a desired for-
mation in all coordinates becomes, for each agent,

τ i =
∂Vi
∂qi

+Bi(q
∗
i −qi)−Bv

i q̇i+
N∑
j=1

Aij(qj −qi− r∗ij) +
N∑
j=1

Av
ij(q̇j − q̇i). (165)

The control law simplifies depending on the group objective, summarized as:

• Formation with one or more leaders: ∃ i |Bi > 0n, and ∃ (i, j) | r∗ij 6= 0 ,

• Synchronization with one or more leaders: ∃ i |Bi > 0n, and r∗ij = 0 ,

• Leaderless formation: B = 0N`, and ∃ (i, j) | r∗ij 6= 0 ,

• Leaderless synchronization: B = 0N` and r∗ij = 0 .

Each objective may further be specialized to either absolute damping where all
agents satisfy Bv

i > 0n, and all Av
ij = 0n, or relative damping, where at least one

Bv
i > 0n and the velocity graph is connected.
The resulting distributed PD control law is equivalent to a special case of the

unified control scheme for fully-actuated systems discussed in Chapter 5, when the
reference trajectory is constant.

7.3 potential energy shaping for task-space formations

Another practical distributed control objective of fully-actuated systems is a forma-
tion in workspace coordinates rather than in configuration coordinates. For exam-
ple, a group of fully-actuated robotic manipulators can place their end-effectors in
a formation in order to collaboratively grasp an object.
The task-space coordinate of one system is a nonlinear function of its generalized

coordinates, denoted as zi(qi) ∈ R`, as shown in Figure 5 for ` = 2. In this section
we show that the quantities zi can be collaboratively controlled using the previously
introduced methods and control laws combined with the single-agent result given
in Section 3.6.1.
As before, the network is made up of N agents, but they are allowed to have a

different number of coordinates as long as each agent satisfies ` ≤ ni = mi. There
is no secondary goal of stabilizing θi, other than making all coordinates stationary.
The objectives of obtaining a stationary formation in zi with or without leaders is
summarized in (86), (88), (89).
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z2

z3

z4

z1

z1,i

z2,i

Figure 5: A heterogeneous group of fully-actuated robots collaboratively assume a forma-
tion in the task space by aiming to reach desired inter-agent configurations r∗ij .

7.3.1 Control law for task-space formations

In evaluating the fully-actuated distributed control law (157), a key role is played
by the gradient of the desired potential energy, which we write as a function of the
zi variables, as V̄d(z1(q1), . . . , zN (qN )). As shown in Appendix a.3.1, the gradient
of such a scalar function with respect to the original coordinates qi becomes:

∂Vd
∂qi

=


∂z1,i
∂q1,i

. . .
∂z`,i
∂q1,i

...
...

∂z1,i
∂qni,i

. . .
∂z`,i
∂qni,i


∂Vd
∂zi

= Ψi
∂Vd
∂zi

= A>i
∂Vd
∂zi

,

where Ai is often called the task-space Jacobian [56]. Choosing the absolute damp-
ing method of Section 7.2.2 and using the quadratic formation error potential (102),
the distributed control law becomes, for each agent,

τ i =
∂Vi
∂qi

+A>i Bi(z
∗
i − zi) +A>i

N∑
j=1

Aij(zj − zi − r∗ij)−Kv,iyi. (166)

This result is similar to [38, 61], but it does not suffer from excessive joint rates
near singular configurations, as briefly addressed for a simulation example in Sec-
tion 12.2.3. A variation where damping is inserted using the absolute or relative
end-effector velocities instead of through the joint rates is also possible (see Chap-
ter 9).



8SOLUTIONS FOR SELECTED UNDERACTUATED SYSTEMS

This chapter presents a solution to the distributed IDA-PBC problem of Chapter 6
for underactuated mechanical systems of the class described in Chapter 3.
Section 8.1 begins by formulating the assumptions for the single-agent solution

in the context of the distributed IDA-PBC problem problem and shows how this
leads to a solution of the distributed kinetic energy matching condition. Section 8.2
proposes a particular structure for the distributed closed-loop potential energy such
that the distributed potential energy matching condition is always satisfied.
Section 8.3 continues by presenting a closed-loop potential energy that not only

satisfies the matching condition, but which also satisfies the necessary positivity
properties to achieve group objectives such as synchronization or formations. The
resulting local and distributed control laws are given in Sections 8.4 and 8.5. Sec-
tion 8.6 discusses the relation to the previously referenced stability proof, and Sec-
tion 8.7 relates the result to distributed controlled Lagrangian systems.

8.1 distributed kinetic energy matching condition

The main assumption in this chapter is that for each system in the network, a
single-agent IDA-PBC solution of the form given in Section 3.5.2 is known. This
implies that Md(q), J(q,p), and Vs(q) in (29), (55) are known for each agent i.
Using these known terms, we introduce the block diagonal matrices

F̄⊥=

F⊥1 . . .
F⊥N

 with F⊥i = F⊥i (qi), (167)

M̄d =

Md,1 . . .
Md,N

 with Md,i = Md,i(qi), (168)

J̄ =

J1 . . .
JN

 with Ji = Ji(qi,pi), (169)

where each block corresponding to the i-th agent depends only on the state of the
i-th agent. The inverse M̄−1

d is a block diagonal matrix of the inverses M−1
d,i.

Substituting these block matrices into the distributed kinetic energy matching
condition (148) gives

F̄⊥
∂
(∑N

i=1 p
>
i M−1

i pi

)
∂q̄

− M̄dM̄
−1∂
(∑N

i=1 p
>
i M−1

d,ipi

)
∂q̄

+ 2J̄M̄−1
d p̄

=0 . (170)

Because each element i in the summed terms above only depends on on the state
of agent i and because of the block diagonal structure, this gives N independent
kinetic energy matching conditions of the form

F⊥i

∂
(
p>i M−1

i pi

)
∂qi

−Md,iM−1
i

∂
(
p>i M−1

d,ipi

)
∂qi

+ 2JiM−1
d,ipi

 = 0

∀ i = 1, . . . ,N . (171)
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Each matching condition corresponds directly to the single-agent kinetic energy
matching condition (50), which is satisfied by the assumption that a single-agent
solution is known for each agent.

8.2 distributed potential energy matching condition

Using the proposed partitioning of M̄d in (168), the distributed potential energy
matching condition (149) becomes

F⊥1 . . .
F⊥N





∂V1
∂q1
...

∂VN
∂qN

−
Md,1M−1

1 . . .
Md,NM−1

N



∂V̄d
∂q1
...

∂V̄d
∂qN



 = 0 , (172)

which can be separated into N block rows, given by

F⊥i
(
∂Vi
∂qi
−Md,iM−1

i

∂V̄d
∂qi

)
= 0 ∀ i = 1, . . . ,N . (173)

Whereas the term ∂Vi
∂qi

in (173) depends only on qi, the term ∂V̄d
∂qi

generally de-
pends on all coordinates q̄. This means that the distributed potential energy match-
ing condition is not trivially satisfied using only the single-agent solution. Rather,
we must choose a V̄d that satisfies (173) for all agents, while simultaneously ensuring
that the desired group objective is achieved when V̄d reaches its minimum.

8.2.1 Splitting the potential energy matching condition

This section follows the steps in Section 3.5.2 to split the potential energy into
components for internal stabilization of each agent and a component for achieving
the group objective. To this end, we propose a desired potential energy of the
network of the form

V̄d = V̄c +
N∑
i=1

Vs,i, (174)

where Vs,i are the known potentials Vs for each single-agent solution, and V̄c is a
potential to be designed for achieving the group objective. Inserting (174) into the
matching conditions (173) we obtain

F⊥i
(
∂Vi
∂qi
−Md,iM−1

i

∂Vs,i
∂qi

−Md,iM−1
i

∂V̄c
∂qi

)
= 0 ∀ i = 1, . . . ,N . (175)

Because the single-agent solution is known, we know a Vs that solves (58) for
each agent. Specifically, for each agent we know that there holds:

F⊥i
(
∂Vi
∂qi
−Md,iM−1

i

∂Vs,i
∂qi

)
= 0 ∀ i = 1, . . . ,N (176)

This simplifies the distributed potential energy matching condition (175) to

F⊥i Md,iM−1
i

∂V̄c
∂qi

= 0 ∀ i = 1, . . . ,N . (177)



8.3 control objectives and the closed-loop potential energy 57

8.2.2 Solving the potential energy matching condition

The condition (177) does not immediately extend from the single-agent condition (59)
because V̄c generally depends on the coordinates of all agents. Instead, we propose
a structure for V̄c of the form

V̄c(z̄(q̄)) = V̄c(z1(q1), . . . , zN (qN )). (178)

For this choice, the partial derivative to the coordinates of the i-th agent is

∂V̄c
∂qi

= Ψi
∂V̄c
∂zi

, (179)

where as derived explicitly in Appendix a.3.2, the matrices Ψi are given by

Ψi(qi) =
∂>zi
∂qi

=


∂z1,i
∂q1,i

. . .
∂z`,i
∂q1,i

...
...

∂z1,i
∂qni,i

. . .
∂z`,i
∂qni,i

 ∈ Rni×`. (180)

For the single-agent solution (59) holds, meaning that all agents satisfy

F⊥i Md,iM−1
i Ψi = 0(ni−mi)×` ∀ i = 1, . . . ,N . (181)

Then it follows that (177) holds since

F⊥i Md,iM−1
i

∂V̄c
∂qi

= F⊥i Md,iM−1
i Ψi

∂V̄c
∂zi

= 0 ∀ i = 1, . . . ,N . (182)

From the fact that (176), (177) hold, it follows that (175) and in turn (173), (172)
hold, and we finally obtain that the distributed potential energy matching condition
(149) holds. Because we have previously established that the distributed kinetic
energy matching condition holds, the distributed matching problem is solved by
choosing (168), (169), (174) if each agent has a single-agent solution of the form
(55) and satisfies the conditions (50), (58), (59).

It is important to note that (171), (176), (177) are local matching conditions to
each agent, depending only on their own coordinates and parameters. Consequently,
no communication is required to satisfy the distributed potential energy matching
condition or the distributed kinetic energy matching condition, enhancing robust-
ness against communication delays or switching network topologies. Matching still
holds if the agents are heterogeneous, whether they have different parameter values,
different dynamics, or a different number of coordinates.

8.3 control objectives and the closed-loop potential energy

Although V̄c(z̄) may be chosen freely as far as the matching problem is concerned, it
should be chosen such that the total closed-loop potential energy (174) is positive
(semi-)definite, and such that it reaches its minimum when the local and group
objectives are met.
The local stabilization objectives are specified by (86)–(87) and the distributed

formation objective in the cooperative coordinate zi is specified by (88). If the



8.4 distributed damping condition 58

group has leaders that pursue fixed targets z∗i the objective (89) also applies. These
objectives are repeated here for completeness, giving

lim
t→∞

||pi(t)|| = 0 ∀ i = 1, . . . ,N ,

lim
t→∞

||θi(t)− θ∗i || = 0 ∀ i = 1, . . . ,N ,

lim
t→∞

||zi(t)− zj(t) + r∗ij || = 0 ∀ (i, j) ∈ E ,

lim
t→∞

||zi(t)− z∗i || = 0 ∀ i ∈ T .

As before, r∗ij = 0 simplifies the group objective to (partial) synchronization.
The simplest coupling potential can be obtained directly as a sum of squares of

the deviation from the formation objective. Using the adjacency and leader weights,
this sum can be compactly written by summing over the agents and each of their
neighbors as detailed in Section 4.3, giving

V̄c =
1
4

N∑
i=1

N∑
j=1

(
zi − zj + r∗ij

)>Aij

(
zi − zj + r∗ij

)
+

1
2

N∑
i=1

(zi − z∗i )>Bi (zi − z∗i ) ≥ 0, (183)

The choice (183) ensures that V̄c ≥ 0 and V̄c = 0 if and only if the formation
objective is achieved. Likewise, the Jacobian

∂V̄c
∂z̄

=



B1(z1 − z∗1) +
N∑
j=1

A1j(z1 − zj + r∗1j)

...

BN (zN − z∗N ) +
N∑
j=1

ANj(zN − zj + r∗Nj)


(184)

equals zero if and only if the formation goal is satisfied. The total potential energy
V̄d (174) equals zero when additionally all Vs,i are zero, which is when the local
control objectives are also achieved.

8.4 distributed damping condition

The damping criterion is similar to the fully-actuated case in Section 7.2.2. We
now repeat those steps for the underactuated case. Damping is inserted through
the damping force −K̄vȳd in (147), based on the closed-loop output ȳd given in
(145) In addition to detectability, a damping condition for asymptotic stability is
K̄v > 0m̄. We propose to partition K̄v ∈ Rm̄×m̄ as

K̄v = Lv + Bv > 0m̄, (185)

where Lv and Bv are the Laplacian and leader matrix corresponding to the closed-
loop output information exchange graph. Using (184), the damping force equals

−K̄vȳd =



−Bv
1yd,1 −

N∑
j=1

Av
1j(yd,1 − yd,j)

...

−Bv
Nyd,N −

N∑
j=1

Av
Nj(yd,N − yd,j)


, (186)
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where

yd,i = F>i M−1
d,ipi ∈ Rmi . (187)

The first component in each block row damps the closed-loop output yd,i whereas
the second component damps the relative closed-loop output between agent i and
its neighbors j.

Note that in this form, relative damping occurs in the configuration space, which
is only possible if each system has an equal number of coordinates. A generalization
that avoids this restriction is the exchange of task-space velocity information, as
discussed in Part IV.

8.5 distributed control laws

Having satisfied the necessary matching conditions and having derived a total
closed-loop potential energy function that satisfies the stability requirements, this
section provides explicit descriptions of the control laws that must be implemented
to achieve the desired closed-loop behavior.
The total control law is equal to (147) with, but we can use the previously made

design choices to simplify the control expression and derive an explicit implemen-
tation for each agent in the network.

8.5.1 Gradient of closed-loop energy

We begin by deriving the expression ∂H̄d
∂qi

for each agent, with M̄d given by (168)
and V̄d given by (174):

∂H̄d
∂qi

=
1
2
∂p̄>M̄−1

d p̄

∂qi
+
∂V̄d
∂qi

=
1
2

∂
(∑N

i=1 p
>
i M−1

d,ipi

)
∂qi

+

(
N∑
i=1

∂Vs,i
∂qi

)
+
∂V̄c
∂qi

=
1
2

∂
(
p>i M−1

d,ipi

)
∂qi

+
∂Vs,i
∂qi

+Ψi
∂V̄c
∂zi

. (188)

Substituting now the quadratic potential Vc (183) and its Jacobian (184) we obtain

∂H̄d
∂qi

=
1
2

∂
(
p>i M−1

d,ipi

)
∂qi

+
∂Vs,i
∂qi

−Ψi

Bi(z
∗
i − zi) +

N∑
j=1

Aij(zj − zi − r∗ij)

 . (189)

8.5.2 Inserting known terms

The next step is to substitute the damping force (186) into the control law (147).
Setting τ̄ d = 0 and restricting the result to absolute damping, we obtain for each
agent

τ i =
(
F>i Fi

)−1
F>i
(
∂Hi

∂qi
−Md,iM−1

i

∂H̄d
∂qi

+ JiM−1
d,ipi

)
−Bv

i yd,i. (190)
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Finally, inserting (189) gives

τ i =
(
F>i Fi

)−1
F>i

∂Hi

∂qi
+ JiM−1

d,ipi −Md,iM−1
i

∂
(

1
2p
>
i M−1

d,ipi + Vs,i
)

∂qi


+
(
F>i Fi

)−1
F>i Md,iM−1

i Ψi

Bi(z
∗
i − zi) +

N∑
j=1

Aij(zj − zi − r∗ij)


−Bv

i yd,i. (191)

8.5.3 Control law per agent

Following Section 3.5.3, the control laws may be abbreviated as

τ i = σi +Φi

Bi(z
∗
i − zi) +

N∑
j=1

Aij(zj − zi − r∗ij)

−Bv
i yd,i, (192)

where

σi(qi,pi) =
(
F>i Fi

)−1
F>i

∂Hi

∂qi
+ JiM−1

d,ipi −Md,iM−1
i

∂
(

1
2piM

−1
d,ipi + Vs,i

)
∂qi


(193)

locally shapes the kinetic energy and the potential energy component for internal
stabilization, and

Φi(qi) =
(
F>i Fi

)−1
F>i Md,iM−1

i Ψi (194)

is an input matrix that ensures that the tracking control force ∂Vc
∂zi

does not violate
the matching conditions local to each agent i.

The distributed control law (192) has a stabilization term σi(qi,pi) ∈ Rmi and
a damping term −Bv

i yd,i, each depending only on local information, and a cou-
pling force −Φi(qi)

∂V̄c
∂zi

that depends on both local information and information zj
received from neighboring agents.
The control law simplifies depending on the group objective, summarized as:

• Formation with one or more leaders: ∃ i |Bi > 0`, and ∃ (i, j) | r∗ij 6= 0 ,

• Synchronization with one or more leaders: ∃ i |Bi > 0`, and r∗ij = 0 ,

• Leaderless formation: B = 0N`, and ∃ (i, j) | r∗ij 6= 0 ,

• Leaderless synchronization: B = 0N` and r∗ij = 0 .

8.5.4 Relation to the fully-actuated result

The control law (192)–(194) is a generalization of the fully-actuated control law
(166). Recall that for the fully-actuated case Fi = In and Ψi = A>i . The mass
matrix is unchanged (Md,i = Mi) and accordingly (194) gives Φi = Ψi = A>i .
Finally, Vs,i = 0 and Ji = 0ni further reduces (193) to σi =

∂Vi
∂qi

. This amounts to
gravity compensation. Substituting these simplification into the distributed IDA-
PBC control law (192) gives precisely the distributed Jacobian-transpose controller
with gravity compensation given in (166).
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8.6 relation to stability result

Although the closed-loop system (144) has arguably more complex dynamics than a
single controlled system (29), the structure of the dynamics and the corresponding
stability analysis is equivalent. With the proposed solution in this chapter, the
closed-loop potential energy V̄d has a unique minimum if the control objective is
a stationary formation with one or more leaders, following Section 4.3.5 and the
fact that all Vs,i are minimal at the desired setpoints θ∗i . The stability analysis
then corresponds to the single-agent problem with a fixed target as discussed in
Section 3.1.3.
If one or more coordinates θi are free, or if the objective is a stationary formation

without leaders, there is a range of equilibria and the analysis of Sections 4.3.6 and
3.1.4 applies. Care must be taken to analyze local extrema of the potential energy,
where ∂V̄d

∂q = 0 , which may prevent the group from reaching their objective if
simultaneously p̄ = 0 . This is discussed for a simulation example in Chapter 12.

8.7 relation to the method of controlled lagrangians

The method presented in this chapter has parallels to the distributed control method
that uses the method of controlled Lagrangians [32], by virtue of the similarities
of the single-agent solutions of CL and IDA-PBC [35]. This section treats several
methodological and mathematical similarities and differences, and gives an overview
of the additions provided by the method of this thesis.

8.7.1 Distributed control approach

Although the methods of controlled Lagrangians (CL) and IDA-PBC both suffer
from the complexity of solving partial differential equations [35], the so-called simpli-
fied matching conditions [33, 34] used in CL reduce their complexity by restricting
applications to systems that satisfy certain algebraic conditions on the uncontrolled
mass matrix Mi and potential energy Vi.

The work [32] restricts treatment to networks of mechanical systems that satisfy
these simplified matching conditions. Using a similar top-down approach, a single
Lagrangian model of the total uncontrolled network dynamics is constructed, and
conditions and control laws are derived to obtain a desired controlled Lagrangian
model that again satisfies the simplified matching conditions.
Through an appropriate set of coordinate transformations, a potential energy

coupling mechanism is derived that can be satisfied by each agent independent of
the network topology. This property is similar to (or possibly a special case of) the
properties of the potential energy coupling mechanism and the decoupled matching
conditions discussed in Section 8.2.2.

8.7.2 Additions of distributed IDA-PBC

For the single-agent case, the increased generality of IDA-PBC compared to CL
has been a source of debate during the simultaneous development of both methods
[26, 35]. Rather than restating the single-agent differences, we focus instead on
the practical additions of the proposed distributed IDA-PBC method in terms of
network interaction coupling mechanisms and task objectives.

Although some mechanisms exist to include dissipation and gyroscopic forces ex-
ternally in CL methods [35], the assignable matrices J̄ and K̄v are absent in [32],
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complicating the application and analysis of damping (Section 8.4), and conserva-
tive energy exchange (Section 13.4).
Additionally, the four main practical advantages of the method of this thesis are

cooperation in task-space coordinates, cooperation between heterogeneous systems
with a different configuration space, and the ability to create formations, with or
without leaders. This contrasts to leaderless coordinate synchronization of homoge-
neous systems in [32].
These additions are made possible in part due to the simplified stability analy-

sis followed in this thesis. By avoiding the explicit coordinate transformations in
the desired dynamics (144), the conditions on the task-space variables zi reduce to
minimality conditions of the total desired potential energy. This contrasts to mak-
ing zi or zi − zj a state variable and deriving its closed-loop dynamics to prove
convergence to a (relative) target, which may not be possible if the mapping zi(qi)
is not invertible, as is typically the case with the end-effector of robotic manipula-
tors. This poses no restrictions in our approach, as highlighted with an example in
Chapter 12.



Part IV

INTERACTION WITH UNDERACTUATED AND
DISTR IBUTED SYSTEMS

In the previous parts, the agents operated autonomously or coopera-
tively in a network. This part investigates how the presented single-
agent and distributed control solutions can be used to shape not only
the agent or network dynamics, but also how the agents or network can
interact with external inputs and outputs.
Chapter 9 begins by further analyzing the single-agent IDA-PBC solu-
tion for shaping the input matrix of the desired dynamics, while Chap-
ter 10 extends this result to the networked case. In both cases, we study
how a human operator can use the altered input-output behavior to con-
trol a system or network in a supervisory manner, to alter its trajectory
while the systems stabilize themselves internally.



9INPUT MATRIX SHAP ING FOR CONTROL BY
INTERCONNECTION AND HUMAN INTERACTION

Typical single-agent IDA-PBC control techniques focus on assigning desired stable
closed-loop dynamics, where less attention is given to the response of the closed-
loop system to new external inputs, other than satisfying a passivity property. An
overview of most standard PBC variants is given in [41], where the control laws are
of the form τ = β+ τ d. This is the form (28) we have considered until now.

In this chapter we generalize this approach for the single-agent case, and derive
how new control inputs can be designed to benefit from the energy shaping prop-
erties already obtained by the state feedback β ∈ Rm. This augments the shaping
process to include shaping of the input-output dynamics rather than shaping of
only the energy of the internal dynamics.
Section 9.1 and 9.2 generalize standard IDA-PBC to obtain the desired input-

output shaping with an extended control law and an extended set of matching
conditions. Section 9.3 interprets the result to stabilize systems using dynamical
controllers connected to input-output pairs, while Section 9.4 uses the proposed
control law to shape the way a human operator interacts with a mechanical system.

9.1 original and desired dynamics

We now extend the original single-agent dynamics of Chapter 3 with the effect of
an external input τ h ∈ R` acting on the system at the location z(q) ∈ R`. The
variable z(q) is defined as before, and may be considered to be a generalized “end-
effector” position or task coordinate. The generalized input force τ h acts on this
point, yielding a generalized force Ψτ h, where Ψ is as in (57). This gives

[
q̇

ṗ

]
=

[
0n In
−In 0n

]
∂H

∂q

∂H

∂p

+

[
0n×m

F

]
τ +

[
0n×`
Ψ

]
τ h, (195)

y = F>∂H
∂p

= F>M−1p, (196)

H =
1
2p
>M−1p+ V . (197)

The input force τ h can be a disturbance or a human input force, which is assumed
to be measurable by a sensor whose deformations are assumed to be negligible.
The desired dynamics are similar to (29), augmented with an additional dissipa-

tion term with the matrix Kd, a new external control input τ e ∈ R` acting through
a new input matrix Fd ∈ Rn×`, and a new output ye ∈ R`, given by

[
q̇

ṗ

]
=

[
0n M−1Md

−MdM−1 J−FKvF>−FdKdF>d

]
∂Hd
∂q

∂Hd
∂p

+

[
0n×`
Fd

]
τ e, (198)

ye = F>d
∂Hd
∂p

= F>d M−1
d p, (199)

Hd =
1
2p
>M−1

d p+ Vd. (200)
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The desired dynamics are passive with respect to the input τ e, output ye and the
storage function Hd, which can be shown as before, using

Ḣd =

[
∂>Hd
∂q

∂>Hd
∂p

][
0n M−1Md

−MdM−1 J−FKvF>−FdKdF>d

]
∂Hd
∂q

∂Hd
∂p


+

[
∂>Hd
∂q

∂>Hd
∂p

][
0n×`
Fd

]
τ e

= −∂
>Hd
∂p

(
FKvF>+FdKdF>d

) ∂Hd
∂p

+
∂>Hd
∂p

Fdτ e

≤ y>e τ e. (201)

9.2 control law and matching conditions

This section follows the strategy of Chapter 3 to re-derive the IDA-PBC control
law and matching conditions that turn the augmented open-loop dynamics (195)
into the augmented desired dynamics (198), by setting them equal and solving for
the control signal τ . This yields the equality[

F⊥

F>

]
Fτ =

[
F⊥

F>

](
∂H

∂q
−MdM−1∂Hd

∂q
+ JM−1

d p

)
(202)

+

[
F⊥

F>

](
−FKvF>M−1

d p−FdKdF>d M−1
d p+Fdτ e −Ψτ h

)
,

where the top block row yields the matching condition and the bottom row yields
the control law, given by

τ =
(
F>F

)−1
F>
(
∂H

∂q
−MdM−1∂Hd

∂q
+ JM−1

d p

)
−Kvyd

−
(
F>F

)−1
F>FdKdF>d M−1

d p+
(
F>F

)−1
F>(Fdτ e −Ψτ h) . (203)

Standard IDA-PBC control (49) is obtained when Kd = 0`, Fd = F, and τ e = τ d.
The matching condition obtained from (202) is

0 = F⊥
(
∂H

∂q
−MdM−1∂Hd

∂q
+ JM−1

d p

)
+F⊥

(
−FKvF>M−1

d p−FdKdF>d M−1
d p+Fdτ e −Ψτ h

)
, (204)

where the first term is equal to the standard IDA-PBC condition (46) that we
(conservatively) split to the kinetic and potential energy conditions (50), (58), (59),
and the second term simplifies to

F⊥
(
−FdKdF>d M−1

d p+Fdτ e −Ψτ h
)
= 0 . (205)

The augmented IDA-PBC problem thus comes with an additional matching condi-
tion that imposes limitations on the new external input τ e and the assignable input
matrices Fd, for a given human input or disturbance τ h.

Two separate solutions are presented in the next sections, which differ in whether
a human input is present (τ h 6= 0 in Section 9.4) or not (τ h = 0 in Section 9.3).
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9.3 control by interconnection

This section revisits the single-agent IDA-PBC solution of Chapter 3 (without hu-
man input) to obtain identical closed-loop behavior using a control by interconnec-
tion approach [41], by splitting the desired closed-loop dynamics into a dynamically
shaped system with the input τ e and output ye, and a dynamical controller.

9.3.1 Solution to the input matrix matching condition

Without human input (τ h = 0 ), the input matching condition (205) becomes

F⊥
(
−FdKdF>d M−1

d p+Fdτ e
)
= 0 . (206)

Because we wish the new input τ e ∈ R` to be free, we obtain a matching condition
for the shaped input matrix Fd ∈ Rn×`, given by

F⊥Fd = 0(n−m)×`. (207)

This condition can be satisfied by the previously imposed matching condition (59),
which implies that we can choose

Fd = MdM−1Ψ. (208)

9.3.2 Passive input-output pair

For the selected input matrix Fd, we obtain an explicit expression for the output ye,
which shows that the output is the time derivative of the coordinate z(q):

ye = F>d
∂Hd
∂p

= F>d M−1
d p = Ψ>M−1p =

∂z

∂q
q̇ =

d
dtz. (209)

9.3.3 Externalizing the feedback signal

Recall from Chapter 3 that the desired Hamiltonian is of the form

Hd(q,p) = 1
2p
>M−1

d (q)p+ Vs(q) + Vc(z(q)). (210)

If we introduce an energy term Hd/c(q,p) = Hd(q,p)− Vc(z(q)) we can write the
dynamics (198) equivalently as

[
q̇

ṗ

]
=

[
0n M−1Md

−MdM−1 J−FKvF>

]
∂Hd/c
∂q

∂Hd/c
∂p

+

[
0n×`
Fd

]
τ e

+

[
0n

−MdM−1

]
∂Vc
∂q

+

[
0n

−FdKdF>d

]
∂Hd/c
∂p

. (211)
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Using definition (208) for Fd, this can be compactly written as the dynamical
system

[
q̇

ṗ

]
=

[
0n M−1Md

−MdM−1 J−FKvF>

]
∂Hd/c
∂q

∂Hd/c
∂p

+

[
0n×`
Fd

]
ud, (212)

ye = F>d M−1
d p =

d
dtz, (213)

Hd/c =
1
2p
>M−1

d p+ Vs, (214)

ud = τ e + τ z, (215)

where the signal τ z ∈ R` must be defined as τ z = −∂Vc
∂z −Kdye. We have obtained

a system equivalent to (198), but part of the stabilization and damping forces are
externalized in τ z rather than being embedded in the energy function gradient and
dissipation.

9.3.4 Control signal generation

The feedback signal τ z can be obtained as the negative of the output of a dynamical
controller. Define the controller with input uξ ∈ R`, output yξ ∈ R`, state ξξ ∈ R`

and storage function H(ξξ) ∈ R as

ξ̇ξ = uξ, (216)

yξ =
∂Hξ(ξξ)

∂ξξ
+Kduξ. (217)

The control signal is obtained as the negative feedback interconnection τ z = −yξ
and uξ = ye. In this case the state ξξ is the integral of ye, such that it plays the
role of z in the original dynamics, when initialized at time t0 as ξξ(t0) = z(q(t0)).

9.3.5 Port-controlled dynamics

The dynamical controller and its interconnection with the system can be represented
schematically as shown in Figure 6. Because the closed-loop dynamics are equivalent
to the stable system (198), this interconnection is also stable.

uξ = ye

yξ ud

ye

τ e+

Hξ

Hd/c

uξyξ = −τ z

ud yeτ e

−

Hξ Hd/c

Figure 6: Negative feedback interconnection of the dynamical controller (216), (217) with
the shaped IDA-PBC system (212)–(214). The feedback diagram (left) is equiv-
alent to the power-based representation [41] (right).

A different stability analysis can be carried out based on passivity properties, by
noting that the two subsystems are passive and that they are connected using a
passivity preserving interconnection. Passivity (or strict passivity) of the shaped
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IDA-PBC system can be obtained as before. To see that the dynamical controller
is passive with respect to its storage function Hξ we can write

d
dtHξ =

∂>Hξ

∂ξξ
ξ̇ξ = (y>ξ −u

>
ξ Kd)uξ = y>ξ uξ −u

>
ξ Kduξ, (218)

which gives input strict passivity if Kd > 0`. An in-depth passivity analysis of
negative feedback interconnections is given in [25].
The properties of the resulting single-agent input-output behavior are closely

related to the requirements for agents in a bottom-up distributed control scheme.
Some implications of this are discussed for further exploration in Section 13.2.

9.4 input shaping for human-machine interaction

This section considers the control problem of shaping the dynamics of a system along
with its input-output behavior, to alter the way a system responds to a human input
force, as shown in Figure 7. For example, if the physical system has a high mass, an
internal control law can be used to amplify the measured human force to make it
easier to manipulate the system. Likewise, it can be used to simplify the end-effector
behavior of a nonlinear robotic manipulator. The next chapter describes how this
approach can be extended to teleoperation of a remote system.
The internal control objective is to choose the actuator signals τ such that we

obtain a desired system behavior as a function of the human input τ h, while si-
multaneously canceling any effects of the real force τ h acting on the system, as
shown in Figure 7. The uncontrolled dynamics subject to the human input are
given by (195).

τ h

τ (q,p, τ h)z(q)

Figure 7: The controlled system exerts a control force τ as a function of the measured
human input τh. This yields a total force τh + τ that results in an acceleration
as a function of τh through a desired set of dynamics. This makes it possible to
prescribe the perceived mass of the system.

9.4.1 Desired dynamics

In order to emulate any desired mechanical system, the desired behavior is described
by (198), where we wish the virtual input τ e to be the human input τ h, giving

[
q̇

ṗ

]
=

[
0n M−1Md

−MdM−1 J−FKvF>−FdKdF>d

]
∂Hd
∂q

∂Hd
∂p

+

[
0n×`
Fd

]
τ h, (219)

ye = F>d
∂Hd
∂p

= F>d M−1
d p, (220)

Hd =
1
2p
>M−1

d p+ Vd. (221)

The control law (203) and and input shaping matching condition (205) are as before,
with τ e replaced by τ h.
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9.4.2 Human input matching condition

With τ e = τ h the matching condition (205) becomes

F⊥
(
−FdKdF>d M−1

d p+Fdτ h −Ψτ h
)
= 0 . (222)

Like any previously given matching condition, this condition imposes constraints
on the forces and desired dynamics that can be produced or assigned, in the case
of underactuation.
In this case, the condition imposes limitations on the assignable damping of the

output ye as well as on the allowed human input forces τ h. This arises because the
physical effect of the human input force in (195), given by Ψτ h, does not appear
in the desired dynamics (198); it is canceled and a new desired force Fdτ h is added
instead. This is possible only if the matching condition holds, which reflects the
presence of the term Fdτ h −Ψτ h.

Limitations on the human input and conjugate output are clearly undesirable, as
the human operator may produce unknown input forces and ultimately unknown
changes in the output. Hence, we are interested in solving the condition for any
input τ h, at the cost of imposing more constraints on other design parameters.
Allowing any τ h and any damping Kdye implies that we must require

F⊥Fd = 0(n−m)×`, (223)

F⊥Ψ = 0(n−m)×`. (224)

The potential energy condition (59) already imposes that F⊥MdM−1Ψ = 0(n−m)×`.
This means that a conservative way to satisfy (223), (224) is to choose Fd = Ψ and
to require that Md = M, implying that we can only shape the input matrix of
underactuated systems when there is no kinetic energy shaping.
A less conservative statement is to require that only the kinetic energy of unac-

tuated coordinates cannot be shaped when allowing free human inputs. This will
be exploited in Chapter 10, where a human operator can control a group of under-
actuated robots through a fully-actuated control interface.

9.4.3 Human input force shaping in the fully-actuated case

Contrary to the underactuated case, no matching conditions are imposed on fully-
actuated systems, implying that Fd may be chosen as desired. However, choosing

Fd = MdM−1Ψ (225)

provides several beneficial effects in terms of amplifying the human input force in
a desired way, while still allowing the mass Md to be as desired, as discussed next.

9.4.4 Passive input-output pair

In the fully-actuated case, the input matrix Fd = MdM−1Ψ results in an output ye,
which is the time derivative of the coordinate z(q):

ye = F>d
∂Hd
∂p

= F>d M−1
d p = Ψ>M−1p =

∂z

∂q
q̇ =

d
dtz. (226)

In the underactuated case without kinetic energy shaping and Fd = Ψ we obtain
equivalently,

ye = F>d
∂Hd
∂p

= F>d M−1p =
∂z

∂q
q̇ =

d
dtz. (227)
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The power supplied by the human operator to the system is the inner product
of the input force τ h and the velocity d

dtz = ye at the application point of the
generalized force, such that the supplied power is τ>h ye, which corresponds to the
power balance (201), as expected.

9.4.5 Passive force and power supply amplification

Whereas the increase of Hd (201) equals the power supplied by the human operator
minus dissipation, the actual energy contained in the system grows at a different
rate because the real system also has an input τ . The actuators supply energy at
a rate of τ>q̇ = τ>M−1p (see Figure 7). From (195) the real energy rate is

Ḣ =

[
∂>H

∂q

∂>H

∂p

]([
0n×m

F

]
τ +

[
0n×`
Ψ

]
τ h

)
= p>M−1Fτ + p>M−1Ψτ h. (228)

If we insert the control law (203) with τ e = τ h and represent all terms that are
not a function of τ h by (?), we have

τ = (?) +
(
F>F

)−1
F>(Fdτ h −Ψτ h) , (229)

which gives

Ḣ = p>M−1F (?) + p>M−1F
(
F>F

)−1
F>(Fdτ h −Ψτ h) + p>M−1Ψτ h.

Finally, for the fully-actuated case (F = In) with Fd as in (225), we obtain

Ḣ = p>M−1 (?) + p>M−1Fdτ h

= p>M−1 (?) + p>M−1MdM−1Ψτ h. (230)

Consequently, the real power supply due to the generalized input forces Ψτ h and
their conjugate velocities q̇ = M−1p is amplified by a factor MdM−1. Likewise,
from (229), the total force acting on the system equals the human input amplified
by MdM−1:

τ +Ψτ h = (?) +Fdτ h −Ψτ h +Ψτ h = (?) +MdM−1Ψτ h. (231)

An important result is that although the real power supply and force can be
amplified as desired through a suitable choice of Md, passivity is preserved with
respect to the metric Hd and the human power supply.

9.4.6 Perceived mass

Counter-intuitively, the desired mass matrix Md is not the mass perceived by the
human operator. To get a better understanding of the perceived mass, consider
again the fully-actuated case and assume M(q) and V(q) are constant. In this case
ṗ = Mq̈, which yields

ṗ = Mq̈ = (?) +MdM−1Ψτ h, (232)

and hence

MM−1
d Mq̈ = MM−1

d (?) +Ψτ h. (233)

Consequently, the observed acceleration q̈ resulting from a given operator force τ h
corresponds to a perceived mass of MM−1

d M. Consequently, choosing a higher Md
yields a lower perceived mass, and vice versa.
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The previous chapter presented a method to shape the dynamics of a single mechan-
ical system to obtain a desired input-output behavior, and showed how this enables
a form of human-machine interaction. This chapter extends this result to interaction
with a distributed system consisting of fully-actuated and underactuated agents. In
addition to enabling interaction with groups of systems, this approach can be used
to alleviate constraints imposed by the human input matching condition, enabling
haptic control of one or more underactuated systems even when direct interaction
is not possible.
Although haptic control and teleoperation is a broad research field, this chapter

does not aim to provide an in-depth comparison with existing methods. Rather, this
chapter illustrates a potential range of additional applications of our main result,
which is the distributed IDA-PBC framework.

A thorough introduction to teleoperation is given in [62] and references therein.
A detailed study of teleoperation of a group of fully-actuated point-mass robots
including force feedback through a haptic manipulator is given in [63]. The recent
work [64] considers teleoperation of groups of fully-actuated robots with physical
coupling constraints in the Hamiltonian framework. In this chapter, fully-actuated
haptic manipulators are used to control fully-actuated and underactuated systems.
The opposite problem is considered in [65], where an underactuated haptic manip-
ulator is used to control a manipulator in a virtual environment.

Section 10.1 begins by describing several task objectives when interacting with
one or more systems, while Section 10.2 shows how these objectives can be captured
by a unified class of desired dynamics. The objective of obtaining these dynamics
leads to matching conditions for the human interaction force as well as a set of
control laws, as described in Sections 10.3 and 10.4. Extensions to teleoperation at
different spatial scales and to remote force sensation are discussed in Sections 10.5
and 10.6.

10.1 control objectives in the task space

Human interaction can be used to steer a robot towards its goal. The robot stabilizes
internally, for example to compensate for gravity, while the human exerts a small
force to guide the robot. Depending on the task to be executed, this guidance
force may be exerted directly on the system (equivalent to Chapter 9), as shown in
Figure 8a, or remotely through a teleoperation control device (Figure 8b).

a) b)

Figure 8: Direct interaction (a) and teleoperation (b) to control the robot end-effector
location. A dashed arrow indicates information exchange between systems.
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10.1.1 Teleoperation through synchronization

The field of teleoperation is broad, with many conceptually different ways to control
a robot using a human input from a distance. In this chapter we demonstrate how
our previously presented distributed IDA-PBC approach can be used to synchronize
the control device and one or more remote machines in the variables zi(q). By
exerting forces to manipulate the control device, the remote machine moves along,
while the human operator experiences force feedback trough the control device when
the systems are not completely synchronized. We also consider the case where the
measured force generates an immediate effect on the remote system to improve its
response to manipulation of the input device.

10.1.2 Controlling groups of systems

A similar direct or remote control procedure can be used to guide a group of robots
towards their goal. For example, a leaderless group of robots may attain a prescribed
formation while the human leader steers the group towards the desired location,
either directly (Figure 9a) or through a teleoperation device (Figure 9b).

a)

b)

Figure 9: Direct interaction with a group of cooperative robots (a) and interaction through
a teleoperation device (b).

10.1.3 Haptic control of underactuated agents

A suitable definition of zi(q) variables across heterogeneous systems can be ex-
ploited to stably control underactuated agents using fully-actuated input devices
that allow arbitrary human input forces, thereby simplifying the process of remotely
controlling such systems.
To illustrate this procedure, Figure 10 shows the process of interactively and

remotely controlling an unmanned aerial vehicle (UAV) through a two-link input
manipulator. The manipulator end-effector in the plane is synchronized with the
landing gear location of the UAV, while the UAV autonomously stabilizes its at-
titude to remain horizontal. The UAV can be steered to a desired vertical and
horizontal position by moving the end-effector of the manipulator. Several impor-
tant considerations such as achieving large translations with comparatively small
movement of the input device are discussed in Section 10.5.
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Figure 10: Haptic control of an underactuated UAV through a fully-actuated input device.

10.2 dynamics with a haptic control interface

In the teleoperation scenarios of Figure 8b and Figure 9b, the haptic control input
device is considered to be a simple mechanical system that together with the remote
machines forms a distributed mechanical system.When viewing the input device as
yet another mechanical system, these schemes are equivalent to the direct interac-
tion scenarios of Figure 8a and Figure 9a. Consequently, we can treat all scenarios
mathematically as a distributed system of simple mechanical systems where one
system is subject to an additional physical and measured human input force.

10.2.1 Uncontrolled dynamics

The physical human input is assumed to act on agent 1, for notational convenience.
Agent 1 is assumed to be fully-actuated while the other agents are allowed to be
either fully-actuated or underactuated, as long as each one has a known single-agent
IDA-PBC solution. Extending the network dynamics (138) with a single human
input as in (195), we can write the open-loop dynamics of all agents in the network
as a single simple mechanical system of the form

[
˙̄q
˙̄p

]
=

[
0n̄ In̄
−In̄ 0n̄

]
∂H̄

∂q̄

∂H̄

∂p̄

+

[
0n̄×m̄

F̄

]
τ̄ +

 0n̄×`
Ψ1

0(n̄−n1)×`

 τ h, (234)

ȳ = F̄>∂H̄
∂p̄

= F̄>M̄−1
p̄, (235)

H̄ =
1
2 p̄
>M̄−1

p̄+ V̄ , (236)

where τ̄ ∈ Rm̄ are the actuator control inputs and τ h ∈ R` is a physical human
input force acting on system 1 at its end-effector location z1(q) where it is also
measured, and Ψ1 is defined using z1(q1) as in (57).

10.2.2 Desired dynamics with human input

Similarly, combining the desired network dynamics (237) with the desired dynamics
of a single system with human input (219), we propose to write the desired dynamics
of the distributed system with human input as

[
˙̄q
˙̄p

]
=

[
0n̄ M̄−1M̄d

−M̄dM̄−1 J̄− F̄K̄vF̄>− F̄dK̄dF̄>d

]
∂H̄d
∂q̄

∂H̄d
∂p̄

+

[
0n̄×m̄
F̄d

]
D̄τ h,

(237)
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ȳd = F̄>M̄−1
d p̄, (238)

ȳe = D̄>F̄>d M̄−1
d p̄, (239)

H̄d =
1
2 p̄
>M̄−1

d p̄+ V̄d. (240)

where the shaped input matrix F̄d and the measured input distribution matrix D̄
are given by

F̄d =

Fd,1 . . .
Fd,N

 , D̄ =

D1...
DN

 . (241)

The desired dynamics (237) are similar to the stable distributed system dynamics as
discussed in Chapter 6, with an optional additional damping term when K̄d ≥ 0N`,
and an adjustable input matrix F̄d that determines the response to the external
input. The input acting on this system is D̄τ h, where Di is I` if we wish τ h to act
on the shaped system i and Di = 0` otherwise.

10.2.3 Deriving the control law and matching conditions

As before, the control law and matching conditions are obtained by setting the
uncontrolled dynamics and desired dynamics equal and solving for τ̄ . For the dis-
tributed system with human input this yields the necessary equality

− ∂H̄

∂q̄
+ F̄τ̄ +

[
Ψ1τ h

0(n̄−n1)×1

]
=

− M̄dM̄−1∂H̄d
∂q̄

+
(
J̄− F̄K̄vF̄>− F̄dK̄dF̄>d

) ∂H̄d
∂p̄

+ F̄dD̄τ h. (242)

Because agent 1 is fully actuated, its input matrix is F1 = In1 without loss of
generality. This means that the network input matrix F̄ and its annihilator can be
written as

F̄ =


In1

F2
. . .

FN

 , F̄⊥=


0(n2−m2)×n1 F⊥2...

. . .
0(nN−mN )×n1 F⊥N

 . (243)

Following the same procedure as in Chapter 3, left-multiplication by the full-rank
matrix [(F̄⊥)> F̄]> gives

−

[
F̄⊥

F̄>

]
∂H̄

∂q̄
+

[
F̄⊥

F̄>

]
F̄τ̄ +

[
F̄⊥

F̄>

][
Ψ1τ h

0(n̄−n1)×1

]
=

[
F̄⊥

F̄>

]
F̄dD̄τ h

−

[
F̄⊥

F̄>

]
M̄dM̄−1∂H̄d

∂q̄
+

[
F̄⊥

F̄>

](
J̄− F̄K̄vF̄>− F̄dK̄dF̄

>
d

) ∂H̄d
∂p̄

.

The top and bottom block rows give the matching conditions and control law,
respectively. The matching condition becomes

F̄⊥
(
∂H̄

∂q̄
− M̄dM̄−1∂H̄d

∂q̄
+ J̄∂H̄d

∂p̄

)
+ F̄⊥

(
−F̄dK̄dF̄>d

∂H̄d
∂p̄

+ F̄dD̄τ h
)
= 0 ,

(244)
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while the control law becomes, for F1 = In1 ,

τ̄ =
(
F̄>F̄

)−1
F̄>
(
∂H̄

∂q̄
− M̄dM̄−1∂H̄d

∂q̄
+ J̄M̄−1

d p̄

)
− K̄vȳd (245)

−
(
F̄>F̄

)−1
F̄>F̄dK̄dF̄>d M̄−1

d p̄+
(
F̄>F̄

)−1
F̄>F̄dD̄τ h −

[
Ψ1τ h

0(m̄−m1)×1

]
,

both of which are analyzed next.

10.3 human input matching condition

The first part of the matching condition (244) is equivalent to the distributed IDA-
PBC matching problem of Chapter 6, and can hence be satisfied using the solutions
presented in Chapter 8. The combined matching condition is then satisfied if we
additionally require that

F̄⊥
(
−F̄dK̄dF̄>d M̄−1

d p̄+ F̄dD̄τ h
)
= 0 , (246)

which imposes restrictions on the allowed task-space damping and the allowed hu-
man input τ h. If we choose block diagonal matrices F̄d and K̄d of the form

F̄d =

Fd,1 . . .
Fd,N

 , K̄d =

Kd,1 . . .
Kd,N

 , (247)

and if we note that the first block column of F̄⊥ (243) are zeros, this reduces to
N − 1 matching conditions of the form

F⊥i
(
−Fd,iKd,iF>d,iM

−1
d,ipi +Fd,iDiτ h

)
= 0 ∀ i = 2, . . . ,N . (248)

As anticipated, no conditions are imposed on system 1 because it is fully actuated.
For Di = I` the conditions (248) are equal to the single-agent matching condition
for input matrix shaping without human input (206). This is also expected, because
no physical input force acts on these systems. The condition was previously shown
to be satisfied by (208), which gives for each agent, including agent 1,

Fd,i = Md,iM−1
i Ψi ∀ i = 1, . . . ,N . (249)

This choice also satisfies the matching condition if Di = 0`.
The result is that the direct response of each system (i = 1, . . . ,N) to the force τ h

sensed at system 1 can be adjusted through an appropriate choice of Md,i, or
disabled entirely by choosing Di = 0`.

10.4 distributed control law

The distributed control law (245) consists of two parts. The first line is equivalent
to the standard distributed IDA-PBC control law (147), which can be implemented
in a distributed fashion as discussed in Chapter 8. This section discusses the imple-
mentation aspects of the second line, which concerns the additional control terms
for input shaping and canceling the physical human force input.

10.4.1 Implementation

The second line of (245) expands to the distributed implementation

−
(
F>1 F1

)−1
F>1 Fd,1Kd,1F>d,1M−1

d,1p1 +
(
F>1 F1

)−1
F>1 Fd,1D1τ h −Ψ1τ h.

(250)
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for agent 1 and,

−
(
F>i Fi

)−1
F>i Fd,iKd,iF>d,iM

−1
d,ipi +

(
F>i Fi

)−1
F>i Fd,iDiτ h. (251)

for agents i = 2, . . . ,N . In both cases, the first term provides damping of the
velocities d

dtzi and the second term provides a virtual input force due to the human
input τ h measured at agent 1, which is active if Di = I` and inactive when Di = 0`.
The third term (−Ψ1τ h) is unique to agent 1, and is used to cancel the physical
input force acting on it.

10.4.2 Remote force transmission

When choosing to apply τ h to one of the subsystems i = 2, . . . ,N , the effect
of the measured force τ h at system 1 is transfered to this system, generating an
immediate feedforward signal. This allows a group of robots to move at once while
maintaining their formation. Coupling forces between the agents serve as feedback
to offset errors in the feedforward control signal. Without this feedforward term,
the agents i = 2, . . . ,N only follow due to coupling feedback forces that arise from
the deformation of the group when agent 1 is set in motion by the human operator.

Communicating this force information to the remote systems can be highly ad-
vantageous for haptic control of underactuated agents, as shown in Figure 10. In
a direct control approach, there is no easy way for an operator to directly apply
a force precisely at z(q). Doing so is unintuitive, and any error immediately pro-
duces an unwanted torque about this point, possibly destabilizing the UAV. On
the other hand, actuation through the haptic manipulator allows arbitrary input
motions while the measured force immediately yields a desired feedforward effect
on the UAV, providing a transparent control mechanism.
A downside of using the measured force τ h as an input to other agents is that

these agents require knowledge of the input force for the actuation signal (251),
implying that it must be transfered over the network, which is susceptible to delays.

10.5 interaction at micro and macro scale

In some teleoperation tasks, it is practical for the human to operate the input device
at a different spatial scale than the remote system. For example, a UAV might
operate in a laboratory workspace of tens of meters along all dimensions while
the human operator interacts with a haptic device with a workspace of several
decimeters. Conversely, a surgeon may wish to perform precision surgery while
using a haptic control device at a larger scale. This section shows how scaling of
the task-space variables can be incorporated in the proposed control scheme.

10.5.1 Scaling of the communicated variable

The distributed IDA-PBC scheme cooperatively controls the quantities zi(qi) of
each system in the network, but the numeric values need not have the same units
of measurement. For example, if z1(q1) is an end-effector location measured in
centimeters while z2(q2) is an end-effector location expressed in meters, synchro-
nization of z1(q1) and z2(q2) implies that they reach the same numeric value
(say, 2.5), but the systems end up at 0.025m and 2.5m respectively (see Figure 11).
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In general, we may express the communicated numeric value zi(qi) in terms of
the physical end-effector location ẑi(qi), measured in SI units, scaled by a matrix
Ci = C>i > 0`, which gives

zi(qi) = Ciẑi(qi), (252)

Ψi(qi) =
∂>zi
∂qi

=
∂>ẑi
∂qi

Ci = Ψ̂iCi. (253)

While most of the control laws remain unchanged due to this scaling, an important
modification is that the effect of the physical human input force on the uncontrolled
dynamics (234) is not affected by this scaling. Its effect remains the physical gen-
eralized force Ψ̂1τ h. By re-deriving the control law, this can be accounted for by
likewise replacing the cancellation force Ψ1τ h in (245), (250) by Ψ̂1τ h.

τh

τ1

z1(q1) = C1q1

τ2

z2(q2) = q2

q1

M1

M2

Figure 11: Controlling a remote system at a different spatial scale.

10.5.2 Scaling the transient response

Although the scaling procedure does not alter the asymptotic stability result of
the distributed IDA-PBC scheme, scaling one system variable affects the transient
response of that system as well as those of other systems in the network, which can
addressed by a suitable choice of coupling potentials and desired mass matrices.

We illustrate several of these aspects using a simple example, where a point mass
input device operating at a centimeter scale (C1 = 100) is used to telemanipulate a
larger point mass at a meter scale (C2 = 1), when both masses translate horizontally
(` = 1, V1 = V1 = 0), as shown in Figure 11. This gives z2 = q2, z1 = C1q1, Ψ1 = C1,
Ψ̂1 = 1, and Ψ2 = 1.
The network consists of two agents with one undirected edge that connects them.

There are no leaders. With both systems being fully-actuated (F1 = F2 = 1), there
are no matching conditions to be satisfied, and we can choose the coupling potential

V̄c =
1
2k(z1 − z2)

2, Vs,1 = Vs,2 = 0. (254)

Because the end-effectors are merely a scaled version of the actual coordinates, we
consider only Kv = diag(Kv,1,Kv,2) while setting Kd = 02. We use J̄ = 02 for
simplicity. The previously derived control laws (245), (192), and (250), (251) give

τ1 =Md,1M
−1
1 Ψ1k(z2 − z1)−Kv,1M

−1
d,1p1 +Md,1M

−1
1 Ψ1D1τh − Ψ̂1τh, (255)

τ2 =Md,2M
−1
2 Ψ2k(z1 − z2)−Kv,2M

−1
d,2p2 +Md,2M

−2
2 Ψ2D2τh. (256)

Expressed in physical distances by substituting zi and Ψi, and with D1 = D2 = 1
to let the force τh act on both systems in the desired dynamics, this becomes

τ1 =Md,1M
−1
1 C1k(q2 −C1q1)−Kv,1M

−1
d,1p1 +Md,1M

−1
1 C1τh − τh, (257)

τ2 =Md,2M
−1
2 k(C1q1 − q2)−Kv,2M

−1
d,2p2 +Md,2M

−1
2 τh. (258)
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The first term in both control laws represents the coupling force that steers the
systems toward each other until q2 = C1q1, demonstrating the distance amplification
by a factor C1. The desired spring force for a given extension can be adjusted using
the parameter k. The mass Md,2 can be selected to adjust the response of the
remote system to the measured force τh, while Md,1 can be used to reduce the
forces enacted on the human operator, to account for the amplification factor C1.

10.6 extension to remote force sensation

To further enhance the transparency in teleoperation tasks, it can be helpful to
explicitly sense external forces acting on the remote systems. In the previously
discussed control strategy, the human operator only senses spring-like force feedback
when the remote system and input device are not fully synchronized or fully in
formation. Enabling such additional force feedback can be accomplished in a similar
way as the human input force is transmitted to the other agents.

10.6.1 Measured force distribution

This can be accomplished by augmenting the desired dynamics (237) with additional
inputs based on the measured force at one or more of the remote system end-
effectors. For example, when one a force τ r is sensed at one of the remote systems,
it can be incorporated by changing the term F̄dD̄τ h in (237) to

F̄d


D1,h D1,h
...

...
DN ,h DN ,h


[
τ h

τ r

]
, (259)

where the matrix D1,h can be assigned to enable (I`) or disable (0`) the force τ h
acting on system i, and the matrix D1,r can be assigned likewise to control the
desired effect of the force τ r. For teleoperation tasks with one input device and one
remote agent with a force sensor, a transparent force feedback scheme would imply
using D1,h = D2,h = D1,r = D2,r = I`.

The procedure of this chapter can be used to derive the corresponding control law
and matching conditions, where the main additional constraint imposes that the
remote system has sufficient actuation degrees to cancel the physical and measured
force τ r if it is desired to shape its mass matrix. Extending this result to groups of
robots, this technique can be used to slow down all agents in a group when one or
more agents experience an input force due to an obstacle that is encountered.

10.6.2 A note on generality and notational complexity

While the presented approach is fairly generic, its notation can be somewhat cum-
bersome, despite not even covering the most general distributed IDA-PBC case.
For example, the solutions given in this chapter do not exploit relative damping
between systems (Section 7.2.2) or energy-transfer control using the matrix J̄ to
avoid unnecessary complexity.
It is emphasized that the generic procedure of using the uncontrolled dynamics

and the desired stable closed-loop dynamics to derive the control law and matching
conditions can always be followed directly instead, directly incorporating scaling
and force measurements. This leads to control laws and matching conditions ex-
pressed in terms of explicit model descriptions, parameters, and scaled variables,
while omitting irrelevant terms, which may considerably simplify the resulting so-
lution.



Part V

CASE STUDIES

This part combines and illustrates several results that can be obtained
using the methods introduced in Parts III and IV, by providing simula-
tion results for groups of underactuated and heterogeneous systems.
Chapter 11 begins with a simulation of identical but underactuated
unmanned aerial vehicles that cooperatively assume a formation at
a desired altitude. Another simulation demonstrates how these vehi-
cles can synchronize with a fully-actuated landing platform in order
to achieve a soft landing. Chapter 12 highlights the aspect of coopera-
tion between heterogeneous agents, in which an unmanned aerial vehicle
autonomously docks with two flexible-joint robotic arms. A second sim-
ulation demonstrates how a human operator can interact with the group
of systems in order to adjust the final formation location.



11COOPERATION BETWEEN UNDERACTUATED SYSTEMS

This chapter describes a simulation study that captures the main result of the pro-
posed distributed IDA-PBC method. We demonstrate the asymptotic convergence
of a group of underactuated unmanned aerial vehicles to a prescribed formation in
the cooperative coordinates, while each agent stabilizes its internal coordinates.
Formations of unmanned aerial vehicles (UAVs) have applications in cooperative

transportation and surveillance tasks. UAV formation and synchronization tasks
have previously been considered using techniques such as backstepping or second-
order consensus [66–68]. This chapter does not necessarily aim to improve these
methods or provide a detailed comparison, but rather to demonstrate the imple-
mentation and transient behavior of our method for a practical application.
This chapter is built on a single-agent solution for planar UAV models, where

each agent can translate vertically and horizontally and rotate about an axis perpen-
dicular to the translation plane. This simpler model allows us to focus on the main
contributions of our method, and makes the simulation results easier to interpret.
However, single-agent IDA-PBC solutions also exist for the full 3D dynamics [23],
and there are solutions for UAVs with robotic manipulators attached to them [69].
Section 11.1 provides the dynamics of two UAV models which can be shown

to be equivalent for a suitable coordinate and input transformation. Section 11.2
summarizes a single-agent IDA-PBC solution from literature. Section 11.3 gives two
simulations where six UAVs assume a desired formation at a reference altitude. In
addition to a standard formation result, Section 11.4 provides a simulation where
several UAVs synchronize with a landing platform in order to make a soft landing.

11.1 two equivalent planar uav models

The results provided in this chapter apply to two classes of unmanned aerial vehicles,
which have the same uncontrolled dynamics after a suitable change of inputs. This
section gives the equations of motion and an input transformation for each model, as
well as the resulting equivalent model used in the subsequent analysis. The model
description corresponds to a generic class of thrust propelled vehicles, and may
hence be applicable to other systems as well.

q3

(q1, q2)

u1

u2

cy

cx

εu2

g

Figure 12: Lateral view of the vertical take-off and landing vehicle discussed in [28], with
a center of mass at (q1, q2), and a tilt angle q3. It is actuated with a thrust
force u1 and a tilt torque u2, which also yields a lateral force εu2.

83
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11.1.1 Strongly laterally coupled aircraft

The basis for the developments in this chapter is the vertical take-off and landing
vehicle discussed in [28], as shown in Figure 12. It consists of a single body actuated
with a vertical thrust force u1 and a thrust torque u2. The wing shape results in
a coupling between the thrust torque and the lateral motion with a force εu2 for
some positive constant ε.

For a gravity acceleration g, and normalized body mass and inertia, its dynamics
are described by [28]q̈1

q̈2

q̈3

 =

 0
−g
0

+

− sin q3 ε cos q3

cos q3 ε sin q3

0 1


[
u1

u2

]
. (260)

Using new inputs τ = [τ1 τ2]>, and an input transformation corrected from [28]
given by[

u1

u2

]
=
g

ε

[
ε cos q3

sin q3

]
+

1
ε

[
−ε sin q3 ε cos q3

cos q3 sin q3

][
τ1

τ2

]
, (261)

we obtain the uncontrolled dynamics used throughout this chapter, given byq̈1

q̈2

q̈3

 =
g

ε

 0
0

sin q3

+

 1 0
0 1

ε−1 cos q3 ε−1 sin q3


[
τ1

τ2

]
. (262)

11.1.2 Quadrotor model

We also consider the presently more common quadrotor vehicle, as shown in Fig-
ure 13, which does not have an intrinsic lateral coupling force. For a vehicle with a
mass M , inertia I, vertical thrust u1 and torque u2, a center of mass (cx, cy), and
a tilt angle q3, its dynamics are given byc̈xc̈y

q̈3

 =

 0
−g
0

+

−
1
M sin q3 0

1
M cos q3 0

0 1
I


[
u1

u2

]
, (263)

where friction and aerodynamic effects are assumed to be negligible.

ε
(q1, q2)

q3

(cx, cy)

u1

u2

cy

cx

Mg

Figure 13: Lateral view of a conventional quadrotor with a center of mass (cx, cy), and
a tilt angle q3. It is actuated with a thrust force u1 and a tilt torque u2. Its
landing gear is placed at a distance ε below its center of mass.
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For the purpose of landing the vehicle, we are more interested in the dynamics
of the landing gear, located at a distance ε below its center of mass, at (q1, q2), of
which the kinematics are related to (cx, cy) asq1

q2

q3

=
cx + ε sin q3

cy − ε cos q3

q3

 ,

q̈1

q̈2

q̈3

=
c̈xc̈y
q̈3

+
−εq̇

2
3 sin q3

εq̇2
3 cos q3

0

+
cos q3

sin q3

0

 εq̈3. (264)

Inserting (263), the equations of motion in the coordinates q = [q1 q2 q3]> becomeq̈1

q̈2

q̈3

 =

 0
−g
0

+


− 1
M sin q3

ε

I
cos q3

1
M cos q3

ε

I
sin q3

0 1
I


[
u1

u2

]
+

−εq̇
2
3 sin q3

εq̇2
3 cos q3

0

 . (265)

These dynamics are similar to the coupled aircraft model (260) except for a quadratic
velocity term. Inspired by [28], we propose to use new inputs τ = [τ1 τ2]> and the
transformation[

u1

u2

]
= −

[
εMq̇2

3
0

]
+
g

ε

[
εM cos q3

I sin q3

]
+

1
ε

[
−εM sin q3 εM cos q3

I cos q3 I sin q3

][
τ1

τ2

]
, (266)

which yields, after some algebraic manipulation, the modelq̈1

q̈2

q̈3

 =
g

ε

 0
0

sin q3

+

 1 0
0 1

ε−1 cos q3 ε−1 sin q3


[
τ1

τ2

]
, (267)

which is indeed the same model as (262).

11.1.3 Simple mechanical system model

The previously obtained equivalent quadrotor model and the strongly coupled air-
craft model can be written as a simple mechanical system using the terminology of
Chapter 2. For agent i, this gives ni = 3, mi = 2, Mi = I3, pi = Miq̇i = q̇i, and

qi =

q1,i

q2,i

q3,i

 , Vi(qi) =
g

εi
cos q3,i, F(qi)=

 1 0
0 1

ε−1i cos q3,i ε−1i sin q3,i

 . (268)

Both the quadrotor and the strongly coupled aircraft will henceforth be referred to
as an unmanned aerial vehicle, or UAV.

11.2 single-agent uav ida-pbc solution

The UAVmodel belongs to the class of systems discussed in Chapter 3, for which [28]
provides an explicit solution to the single-agent tracking problem. The original goal
is to stabilize a desired equilibrium q∗ = [q∗1 q∗2 0]>, corresponding to asymptotic
tracking of a desired vertical and horizontal location, with a fixed horizontal attitude
angle.
In the distributed control case, the agents control q1,i and q2,i collaboratively

while stabilizing the angle q3,i to zero (` = 2). This section repeats the main result
of the example in [28], adopted to the notation of this thesis.
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11.2.1 Kinetic energy matching equation

The input matrix annihilator is given by

F⊥i =
[
cos q3,i sin q3,i −εi

]
. (269)

Combined with the simple form of Mi, and because Md,i will be chosen as a function
of q3,i, this reduces the kinetic energy matching equation (171) of agent i to[

cos q3,i sin q3,i −εi
](
−Md,i

∂

∂q3,i

(
p>i M−1

d,ipi

)
+ 2JiM−1

d,ipi

)
= 0, (270)

where the desired mass matrix Md,i > 03 and gyroscopic force interconnection
matrix Ji = −J>i are to be designed to satisfy this equality. A solution is [28]

Md,i =

k1,iεi cos2 q3,i + k3,i k1,iεi cos q3,i sin q3,i k1,i cos q3,i

k1,iεi cos q3,i sin q3,i −k1,iεi cos2 q3,i + k3,i k1,i sin q3,i

k1,i cos q3,i k1,i sin q3,i k2,i

 , (271)

with the constants k1,i > 0 and k2,i, k3,i satisfying

k3,i > 5k1,iεi,
k1,i
εi

> k2,i >
k1,i
2ε , (272)

in order to ensure that Md,i is globally positive definite and bounded. The matrix
Ji can be solved from (270) algebraically, which gives [28]

Ji = −
k1,iγ0

3
2

 0 J1,i J2,i

−J1,i 0 J3,i

−J2,i −J3,i 0

 , (273)

with the scalars

J1,i = p>M−1
d,i

−2εi cos q3,i

2εi sin q3,i

1

 , J2,i = p>M−1
d,i

0
1
0

 , J3,i = p>M−1
d,i

−1
0
0

 ,

and the constant γ0
3,i = k1,i − εik2,i. The constant γ0

3,i equals γ3,i in the definition
of γi (72):

γi(q3,i) =

γ1,i

γ2,i

γ3,i

 = Md,i
(
F⊥i
)
>, (274)

while the remaining terms γ1,i and γ2,i become

γ1,i = k1,iεi cos3 q3,i + k3,i cos q3,i + k1,iεi cos q3,i sin2 q3,i − k1,iεi cos q3,i

= k3,i cos q3,i, (275)
γ2,i = k1,iεi cos2 q3,i sin q3,i − k1,iεi cos2 q3,i sin q3,i + k3,i sin q3,i − k1,iεi sin q3,i

= (k3,i − k1,iεi) sin q3,i. (276)

11.2.2 Desired stabilization potential energy

The desired stabilization potential energy is obtained using (73) which yields

bi(q3,i) =
[
cos q3,i sin q3,i −εi

]
0
0

− g
εi

sin q3,i

 = g sin q3,i, (277)
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Vs,i(qi) =
1
γ0

3,i

∫ q3,i

0
b(µ)dµ =

g

γ0
3,i

∫ q3,i

0
sinµdµ =

g

γ0
3,i

(1− cos q3,i). (278)

11.2.3 Communicated variable

From (71) and the preceding definitions we obtain

aj,i = qj,i −
1
γ0

3,i

∫ q3,i

0
γj,i(µ)dµ, (279)

which yields for j = 1, 2 and agent i,

a1,i = q1,i −
k3,i
γ0

3,i

∫ q3,i

0
cosµdµ

= q1,i −
k3,i
γ0

3,i
sin q3,i, (280)

a2,i = q2,i −
k3,i − k1,iεi

γ0
3,i

∫ q3,i

0
sinµdµ

= q2,i −
k3,i − k1,iεi

γ0
3,i

(1− cos q3,i). (281)

Since ` = mi, we obtain from (70) that the communicated variable zi is

zi(qi) =

[
a1,i

a2,i

]
=

[
q1,i

q2,i

]
− 1
γ0

3,i

[
k3,i sin q3,i

(k3,i − k1,iεi)(1− cos q3,i)

]
. (282)

When q3,i stabilizes at zero, this reduces to zi(q1,i, q2,i, 0) = [q1,i q2,i]>, meaning
that any target formation in zi can immediately be expressed in absolute and
relative distances expressed in the Euclidean coordinates (q1,i, q2,i).

11.3 formation flying

This section demonstrates the implementation and simulation of a distributed sys-
tem of six identical UAV systems with the previously given dynamics and single-
agent IDA-PBC solutions.

11.3.1 Formation objective and graph structure

The control objective of each UAV i is to stabilize its tilt angle at q∗3,i = 0 while com-
municating the variable zi with neighboring UAVs to assume a desired formation,
as shown in Figure 14. The target formation is a pyramid shape composed of four
equilateral triangles with sides of length c, which uniquely specifies the inter-agent
distances for each edge. For example, r∗23 = −1

2c[1
√

3]> and r∗32 = −r∗23.
Each agents has either two or four neighbors that exchange the vector signals zi,

as shown in Figure 15. Only the leading agents 1 and 2 know a prescribed reference
hovering altitude a∗. No horizontal target is specified, meaning that the group
comes to standstill at an arbitrary horizontal position but with a fixed geometry
and altitude.
For each of the edges (1, 2), (6, 3), (3, 5), (3, 1), (5, 2), (2, 4), (2, 3), (4, 1), (1, 6)

and their opposite counterparts (2, 1), · · · (6, 1), the adjacency matrices are chosen
as Aij = diag(1, 2). The leader target altitude is specified using z∗1 = z∗2 = [? a∗]>

where the undefined horizontal target ? is ignored by selecting the leader matrix
gains as B1 = B2 = diag(0, 5).
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Figure 14: UAV communication graph (left) and target formation (right)

11.3.2 Single-agent parameters

The single-agent parameters are selected equal for each agent, as given in Table 2.
Note that the open-loop model (268) is already normalized for properties such as
mass and inertia through the input transformations (261), (266), meaning that they
do not alter the simulation result.

Any parameters satisfying the previously given constraints (such as positive def-
initeness of Md,i) yield an asymptotically stable result, but the parameters effect
the transient response considerably. For this simulation, the parameters have been
selected based on trial and error as in [28], to obtain a quickly damped response.

Par. c a∗ g εi k1,i k2,i k3,i Kv,i Kd,i

Value 1 m 2 m 9.81 m/s2 0.1 2 6.67 1.02 diag(0, 0) diag(2, 2)

Table 2: UAV system and control parameters for all agents i.

11.3.3 Damping method

Two damping insertion techniques were discussed in this thesis. The standard IDA-
PBC technique is to insert it through the actuated coordinates and the output yd,i,
by choosing nonzero Kv,i > 0mi , as discussed in Chapter 3 for the single-agent
case and in Part III for distributed systems. The other technique is to damp the
velocities ye,i = d

dtzi by shaping the input matrix and choosing nonzero Kd,i > 0`,
as discussed in Part IV. Both techniques can be used simultaneously, either to damp
the individual agent outputs or their relative outputs, or both.
For the UAV models used in this chapter, better-damped transient responses were

obtained by damping only the velocities d
dtzi using Kd,i > 0` and Kv,i = 0mi .

11.3.4 Control law

The solution of the decoupled matching problem and the resulting control law is a
direct implementation of the methods discussed in Chapter 8, augmented with the
damping technique introduced in Chapter 9. From (192) and (251) we obtain

τ i = σi +Φi

Bi(z
∗
i − zi)+

N∑
j=1

Aij(zj − zi − r∗ij)−Kd,iΨ>i M−1
i pi

 . (283)

where the internal stabilization term σi (194) stabilizes the angle qi,3 and the shaped
input matrix Φi (194) ensures that the coupling and damping forces on zi do not
violate the matching conditions. Recall that Ψ>i M−1

i pi =
d
dtzi, which reveals the

analog with fully-actuated distributed PD controllers.
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11.3.5 Implementation

The simulations throughout this thesis are a direct implementation of the previously
given open-loop dynamics and control laws, with the same idealizations like the
absence of time delays. At each time instant, this yields the vectors ˙̄p and ˙̄q of
the whole system (138), which can be represented as a single ordinary differential
equation. Given the initial conditions q̄(0) and p̄(0), this equation is integrated to
find the trajectories p̄(t) and q̄(t) for a given time range.
The centralized ordinary differential equation is automatically generated from

the open-loop dynamics of the agents i, their internal control laws, and their dis-
tributed interactions along the network edges (i, j). This generic procedure is im-
plemented in a newly developed Python package called systemsim. Further de-
tails are given in Appendix b. An animation of each simulation can be viewed at
https://github.com/laurensvalk/underactuated-systems.

11.3.6 Formation forming

The UAVs are initialized with different uniformly distributed pseudo-random initial
configurations qi in the range −1 ≤ q1,i ≤ 1 , 1 ≤ q2,i ≤ 3, and −1 ≤ q3,i ≤ 1.
The momenta pi = I3 q̇i = q̇i, are all pseudo-randomly initialized in the range
[−0.5, 0.5], as shown in Table 3. Figure 15 shows the trajectories of each UAV as
they move from their initial configuration towards the desired formation.
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Figure 15: Formation of the pyramid configuration of Figure 14 with six identical UAVs.
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The coordinates (q1,i, q2,i) reached at the end of the simulation are marked with
an × symbol, which indeed coincide with the required shape pictured in Figure 14.
Furthermore, the leading agents 1 and 2 reach the prescribed altitude a∗ = 2m,
whereas agents 3, 5, and 6 synchronize their altitudes at a fixed distance from the
leaders. After the horizontal and vertical motion has subsided, all tilt angles also
converge to zero. It is also visible that the vertical formation shape converges before
the group altitude target converges.
Collisions are not explicitly avoided in this simulation. A possible extension to

address this practical problem is discussed in Chapter 13.

Table 3: Initial conditions for all agents i corresponding to Figure 15.

q1,i (m) q2,i (m) q3,i (rad) p1,i (m/s) p2,i (m/s) p3,i (rad/s)

1 -0.1280 1.0519 0.0993 -0.0647 -0.0796 -0.1697
2 -0.5907 2.2385 -0.4007 -0.2332 0.1211 0.0291
3 -0.7308 2.0272 -0.6311 0.2853 0.3540 -0.0058
4 0.6931 1.1593 0.0105 -0.4347 -0.0719 -0.4035
5 -0.7457 2.1935 -0.5480 -0.3931 -0.2797 -0.1502
6 -0.0644 1.4035 0.2808 -0.0169 0.0052 -0.1131

11.3.7 Inverted initial conditions

In the next simulation, the UAVs are initialized with pseudo-random initial config-
urations qi in the range −1 ≤ q1,i ≤ 1 , 2 ≤ q2,i ≤ 4, and π − 1 ≤ q3,i ≤ π + 1,
as shown in Table 4. This implies that the UAVs are initialized upside down, to
demonstrate the transient response of a more aggressive maneuver. Figure 16 shows
the trajectories of each UAV as they move from their initial configuration towards
the desired formation.
The result is similar as before, and convergence to the final formation takes little

extra time. It is worth noting that some UAVs converge to the tilt angle 2π, which
is equivalent to the orientation 0 after making one full rotation. This can happen
because the stabilization potential (278) has minimum at every 2π, each of which
corresponds to the desired objective.

Table 4: Initial conditions for all agents i corresponding to Figure 16.

q1,i (m) q2,i (m) q3,i (rad) p1,i (m/s) p2,i (m/s) p3,i (rad/s)

1 -0.1660 3.4406 2.1418 -0.1977 -0.3532 -0.4077
2 -0.6275 2.6911 2.9351 0.0388 -0.0808 0.1852
3 -0.5911 3.7562 2.1964 0.1705 -0.0827 0.0587
4 -0.7192 2.3962 3.7431 0.4683 -0.1866 0.1923
5 0.7528 3.7892 2.3117 -0.4609 -0.3302 0.3781
6 -0.8033 2.8422 4.0574 0.0332 0.1919 -0.1845
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Figure 16: Creation of the formation when all agents are initially upside down.

11.3.8 Almost global asymptotic stability

The single-agent solution in [28] is almost globally asymptotically stable, in the
sense that if it is initialized stationary, precisely upside down (q3,i = π), and at its
target location, it remains upside down at that location. For all other initial condi-
tions, it recovers to the desired orientation (q3,i = 0). The upside down orientation
is an (unstable) equilibrium because the gradient of the stabilization potential en-
ergy (278) is zero at (q3,i = 0). This behavior is similar to a pendulum initialized
in its upright orientation.
For the group of UAVs, this occurs only if the group is already in its target

configuration, and at the target location if there are leaders. For any deviation
from the target formation, the potential forces between the agents would perturb
the unstable equilibria, such that the group eventually converges to the desired
formation with each UAV in the regular orientation.
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11.4 controlled landing on cooperating vehicle

This section discusses the distributed control problem of landing a group of three
UAVs on an autonomously controlled platform that can translate horizontally, as
shown in Figure 17. It is assumed that only one UAV can communicate with the
autonomous cart. UAV 3 synchronizes its horizontal translation with the cart while
UAVs 2 and 4 synchronize their altitude with UAV 3 while maintaining a fixed
relative horizontal distance from UAV 3.
The horizontally translating landing platform is modeled as a fully-actuated fric-

tionless point mass M1 > 0, with F1 = 1 and V = 0, whose single-agent control
parameters are Md,1 > 0, J1 = 0, Vs,1 = 0, Kv,1 > 0 and Kd,1 = 0.

2 3 4
2 3 4

c

q2,i

q1,i

1

c

Figure 17: UAV and lander communication graph (left) and intermediate target formation
before starting the descent (right).

11.4.1 Graph structure and the communicated variable

The previously described communication graph is summarized in Figure 17. The
communicated variables zi ∈ R2 of the UAVs are as before (282). Although the au-
tonomous cart does not have a vertical coordinate, we can define its communicated
variable as

z1(q1,1) =

[
q1,1

0

]
, Ψ1 =

[
1 0
0 0

]
. (284)

This definition violates the condition ` ≤ ni since ` = 2 > n1 = 1. Hence,
this simulation is an example of an extension that not only allows heterogeneous
systems but also certain constraints. In this view, the cart may be considered to have
a vertical coordinate, but a constraint force keeps it at zero. The desired formations
can still be achieved if the targets r∗ij and z∗i do not violate these constraints.

11.4.2 Vehicle mass shaping

Because the autonomous cart is fully-actuated, it is possible to assign an arbitrary
desired mass matrixMd,1 > 0. While doing so is not necessary to achieve the group
objective asymptotically, the mass matrix can be shaped to change its relative
magnitude with respect to the UAV vehicles.
The horizontal synchronization objective of the landing vehicle with UAV 3 yields

a virtual coupling force between these two agents. When we consider a more massive
landing vehicle of 50 kg compared to a UAV of 1 kg, this force makes the landing
vehicle move much less than the UAV, to an extent that the landing vehicle remains
almost stationary.
By choosing a higher Md,1 > M1, this relative mass effect can be adjusted to

make the landing vehicle contribute more to the group objective. This speeds up
the transient response, which may conserve battery power of the UAVs, at the
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expensive of higher energy consumption of the landing platform. Recall that the
apparent inverse effect of increasing the desired mass matrix Md,1 to speed up a
system was addressed in Section 9.4.6.
To illustrate this effect in the simulations, we select M1 = 50 kg and choose

Md,1 = 2500 kg to amplify the effect of the coupling forces on the vehicle by a factor
50. This results in perceived mass of 1 kg, which is the same order of magnitude as
the UAV models with normalized mass. Because the damping force scaled inversely
proportionally withMd,1, Kv,1 = 2500 is selected to obtain a well-damped response.

11.4.3 Formation forming and controlled descent

The simulation takes place in two separate phases. First, the UAVs attain a desired
relative horizontal formation while synchronizing their altitudes. Meanwhile, UAV
3 synchronizes its horizontal translation with the autonomous cart (system 1). After
six seconds all three UAVs also steer towards a target altitude of zero, for a con-
trolled descent. The separation of the two phases ensures that the desired formation
is attained before the landing is attempted.
To attain the leaderless formation in the initial phase, the adjacency matrices

and relative targets are A23 = A34 = diag(1, 2), r∗23 = r∗34 = [c 0]>, c = 1 while
having no leaders implies (B1 = B2 = B3 = B4 = 02). In the second phase (t > 6),
the UAVs have a target of z∗2 = z∗3 = z∗4 = [? 0]> and a corresponding leader
matrix of B2 = B3 = B4 = diag(0, 1), corresponding to a vertical target of 0 while
imposing no additional constraints on the horizontal motion.
The UAV parameters are the same as in Table 2. The initial conditions are given

in Table 5 and the simulation results are shown in Figure 18.

Table 5: Initial conditions for all agents i corresponding to Figure 18.

q1,i (m) q2,i (m) q3,i (rad) p1,i (m/s) p2,i (m/s) p3,i (rad/s)

1 -1 - - 0 - -
1 -0.5560 2.7415 -0.5866 0.4186 -0.0116 0.1117
2 0.5318 2.0368 -0.4064 -0.3123 -0.4193 0.2384
3 -0.1174 1.3166 0.7599 -0.2259 -0.0858 -0.2039

During the first phase (0 ≤ t ≤ 6) the desired formation of the UAVs is achieved in
a similar fashion as in the previous simulations. In this case, however, the landing
vehicle also synchronizes with the horizontal location of UAV 3. Because of the
shaped mass of the landing vehicle, potential forces between the systems yield
motion on the same order of magnitude among all vehicles. This means that the
landing vehicle actively participates creating the formation, rather than waiting for
the UAVs to fly towards it.
During the second phase (t > 6), the vehicles slowly descend while maintaining

their horizontal formation, resulting in a simulated soft landing.
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Figure 18: Synchronization of a group of UAVs with an autonomous lander (0 ≤ t ≤ 6)
and a subsequent soft landing (t > 6).



12TASK -SPACE COORDINATION AND HUMAN SUPERVISORY
CONTROL OF HETEROGENEOUS MECHANICAL SYSTEMS

This chapter combines most of the modeling and control techniques introduced
throughout this thesis in two simulations. The first simulation highlights the aspect
of creating task-space formations between heterogeneous underactuated systems,
where a UAV and two different flexible-joint robotic manipulators agree on a dock-
ing location (Section 12.2). The second simulation extends this result with a haptic
manipulator, through which a human operator can alter the final docking loca-
tion while the docking procedure itself remains autonomous (Section 12.3). Before
presenting the simulations, a derivation of the single-agent control solution of a
flexible-joint manipulator is given in Section 12.1.

12.1 flexible-joint manipulator dynamics and control

This section derives the equations of motion of a planar m-link flexible-joint ma-
nipulator using the modeling techniques discussed in Chapter 2. The manipulator
consists of m links with length Lk, and mass Mk. The center of mass of link k is
located at the position (xk, yk), assumed to be in the middle of the link. The inertia
around its center of mass is Ik. The links are connected through frictionless hinges,
with αk defined as the counterclockwise rotation of link k with respect to link k− 1,
as shown in Figure 19. The absolute angle γk of link k is the sum of the relative
angles, given by

γk = α1 + · · ·+ αk. (285)
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ζ2

ζ1
α2

ζm

αm

z(α)

g

y

x
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Figure 19: A flexible-joint manipulator with m links and an end-effector location z(α).
Each link is driven through a linear torsional spring between the link and a
motor, with a spring extension angle ζk − αk.
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Each link k is driven by a torsional spring with stiffness ck. The spring connects a
motor shaft to the joint segment (at angle ζk), such that the spring extension angle
is ζk −αk. The motor that drives spring k is mounted at segment k− 1, embedded
in the total mass and inertia of that link. It can be controlled using a torque signal
uk. Finally, gravity acts at each center of mass in the downward direction.

The angles αk and ζk uniquely describe the configuration q ∈ R2m of the system:

α =

α1...
αm

 , ζ =

 ζ1...
ζm

 , q =

[
α

ζ

]
. (286)

12.1.1 Kinematics

If the manipulator base is located at (x0, y0), the positions of the center of mass
locations (xk, yk) of each link k = 1, . . . ,m are given recursively as

x1 = x0 +
1
2L1 cos(γ1),

y1 = y0 +
1
2L1 sin(γ1),

x2 = x1 +
1
2L1 cos(γ1) +

1
2L2 cos(γ2),

y2 = y1 +
1
2L1 sin(γ1) +

1
2L2 sin(γ2), (287)

...

xm = xm−1 +
1
2Lm−1 cos(γm−1) +

1
2Lm cos(γm),

ym = ym−1 +
1
2Lm−1 sin(γm−1) +

1
2Lm sin(γm).

The end-effector, presumed to be a gripper, is located at the end-point of the final
link, denoted as z(α), given by

z(α) =

xm +
1
2Lm cos(γm)

ym +
1
2Lm cos(γm)

 . (288)

12.1.2 Mass matrix

The mass matrix M(q) can be inferred from the kinetic energy in the system. First,
define the joint positions and velocities as

w =
[
γ1 x1 y1 · · · γm xm ym

]
>, ẇ =

∂w

∂α
α̇. (289)

The kinetic energy of the system is the sum of the kinetic translational energy and
rotational energy of each link. This sum can be expressed as a quadratic function
of the velocities w, which gives

Tα =
1
2ẇ
>diag(I1,M1,M1, . . . , Im,Mm,Mm)ẇ (290)

=
1
2 α̇
>Mαα̇, (291)

where

Mα =
∂>w

∂α
diag(I1,M1,M1, . . . , Im,Mm,Mm)

∂w

∂α
. (292)



12.1 flexible-joint manipulator dynamics and control 97

The motor shafts and drive train of each link have an inertia Iζ , which gives a mass
matrix of

Mζ = IζIm. (293)

The total mass matrix M(q) > 0n of the system with coordinates q is

M(q) =

[
Mα(α) 0m

0m Mζ

]
. (294)

12.1.3 Potential energy

The potential energy in the system consists of the gravitational energy and the
energy due to the spring extensions, which gives

V = Vα +
1
2 (ζ −α)

>Υ(ζ −α), (295)

where Υ = diag(c1, . . . , cm) > 0m is the spring stifness matrix. The gravitational
potential energy is

Vα = g

m∑
k=1

Mkyk(α). (296)

12.1.4 Gravity compensation

The equations of motion are the standard Hamiltonian equations (15). Relying on
the partitioning (286) and introducing pα = Mαα̇ and pζ = Mζ ζ̇, the total energy
and equations of motion can be written as

[
q̇

ṗ

]
=


0m 0m Im 0m
0m 0m 0m Im
−Im 0m 0m 0m
0m −Im 0m 0m





∂Ĥ

∂α

∂Ĥ

∂ζ

∂Ĥ

∂pα

∂Ĥ

∂pζ


+


0m
0m
0m
Im

u (297)

Ĥ =
1
2p
>
αM−1

α pα +
1
2p
>
ζ M−1

ζ pζ + Vα +
1
2 (ζ −α)

>Υ(ζ −α) (298)

The system is underactuated because only the coordinates ζ are actuated, ham-
pering the ability to directly compensate for gravity. We now define a control law
that compensates for the effects of gravity, adapting the Lagrangian formulation
from [37] to the Hamiltonian framework. To do so, we introduce a new coordinate
δ ∈ Rm, with a momentum pδ = Mδβ̇, Mδ = Mζ , and a control law u, as

δ = ζ −Υ−1∂Vα
∂α

, (299)

u = τ +
∂Vα
∂α

+MζΥ−1 d2

dt2
∂Vα
∂α

, (300)

where τ ∈ Rm is a new input.
This transformation and control law can be implemented without acceleration

measurements because the second time derivative of the gravity torque can be
expressed as a function of the state variables α, ζ,pα,pζ [37].
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Substituting the transformations and the control law into the dynamics (297)
gives the new dynamics

α̇ = M−1
α pα, (301)

β̇ = M−1
δ pδ, (302)

ṗα = − ∂

∂α
(
1
2p
>
αM−1

α pα + Vα) +Υ
(
δ +Υ−1∂Vα

∂α
−α

)
= − ∂

∂α
(
1
2p
>
αM−1

α pα) +Υ (δ−α) , (303)

ṗδ = Mδ ζ̈ −MδΥ−1 d2

dt2
∂Vα
∂α

= ṗζ −MδΥ−1 d2

dt2
∂Vα
∂α

= −Υ(ζ −α) + u−MδΥ−1 d2

dt2
∂Vα
∂α

= −Υ(δ−α) + τ . (304)

These dynamics can in turn be written as Hamiltonian equations similar to (297),
but now in the coordinates α and δ, and without the gravity term. This gives the
flexible-joint model used throughout this chapter, which for agent i is given in the
standard notation of (135), with

qi =

[
αi

δi

]
, pi =

[
pα,i

pδ,i

]
, Vi =

1
2 (δ−α)

>Υ(δ−α)

Mi =

[
Mα,i 0m
0m Mδ,i

]
, Fi =

[
0m
Im

]
. (305)

In order to give a physical interpretation of the new angles δ (299), it is useful to
note that the relative angles δ−α are the torsional spring extensions compensated
for the (static) extension due to gravity, given the current arm pose α. Alternatively,
the angles δ can be thought of as the motor angles of a corresponding flexible-joint
robot operating in a gravity-free environment, as shown in Figure 20.

α1,i

δ2,i

δ1,i
α2,i

δmi,i

αmi,i

zi(δi)
zi(αi)

Figure 20: Flexible-joint manipulator i. The physical end-effector is zi(αi), but the com-
municated variable zi(δi) is evaluated using the angles δi.
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12.1.5 Single-agent IDA-PBC solution for task-space coordination

The system dynamics (305) belong to the class of systems for which an IDA-PBC
solution was derived in Section 3.6.3, where it was shown that the communicated
variable zi can be selected as a function of δi, while specifying targets z∗i directly
in terms of the link coordinates α. An interpretation of this concept is shown in
Figure 20, where zi(αi) represents the physical end-effector of robot i while zi(δi)
represents the same zi(·) evaluated using the coordinates δi. As δi and αi converge
to each other, the same happens for the physical and virtual end-effector positions.
By coordinating the variable zi(δi) with other agents in the network, the IDA-

PBC conditions for stability and cooperation are satisfied, while still being able to
cooperatively control the physical end-effector position with other agents. Although
Section 3.6.3 also provides several degrees of freedom to shape the kinetic energy of
the robotic manipulator, this chapter uses Md,i = Mi and Vs,i = Vi for simplicity.

Whereas solutions to the single-agent tracking problem of flexible-joint robots are
well known [24, 25], fewer results are available for networks of such robots. Although
the work [17] provides a distributed control law for multiple flexible-joint robots,
it is restricted to coordinate synchronization of homogeneous systems. Combined
with the distributed IDA-PBC control scheme, our proposed solution extends this
application to heterogeneous formations in the end-effector space of the robots. This
also facilitates formations with very different agents, as discussed next.

12.2 task-space coordination of heterogeneous systems

In this simulation, we consider an autonomous docking task of a UAV with two
flexible-joint robotic arms, which are mounted and initialized as shown in Figure 21.
We re-use the terrestrial UAV model and control solution from Chapter 11 for
brevity, but similar techniques could be used for autonomous docking of spacecraft
with a larger space station.

As before, it is assumed that the systems are not in physical contact. We only
consider docking process up to the point where the desired formation is achieved
and the manipulators are ready to physically couple with the UAV. After grasping
the UAV, the three systems become one system with kinematic constraints, which
is beyond the scope of this thesis. Some extensions are discussed in Chapter 13.

12.2.1 Objective, communication graph, and implementation

The control objective is to obtain a stationary configuration where the UAV is hori-
zontal, while the two manipulator end-effectors coincide with mounting locations on
the UAV, presumed to be at 0.2m to the left and right of its center. A non-unique
example of such a leaderless formation is shown in Figure 21. The final docking
location and arm poses vary depending on the initial conditions. If desired, the
final location can be imposed by designating one or more agents as a leader of the
group, with a fixed target.
The formation objective is to be achieved using bidirectional information ex-

change of the variables zi(qi) between the UAV and each robotic arm. This can
be accomplished using a network with the undirected edges (2, 1), (1, 3), the leader
matrices B1 = B2 = B3 = 02, the adjacency matrices A12 = A23 = I2, and the
relative targets r∗21 = r∗13 = [0.2 0]>.
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3

1

2

z3(δ3)

z3(α3)

z2(δ2)

z2(α2)

z1(q1)

Figure 21: Initial configuration of two flexible-joint manipulators and a UAV (left), and
the final docked configuration at the end of the simulation (right). Although
the flexible-links are slightly displaced here to highlight the difference between
zi(αi) and zi(δi), the initial conditions are chosen as δi = αi.

Although the agents are highly nonlinear, underactuated, and heterogeneous,
the control law of each agent is a direct implementation of the method discussed
in this thesis. The control law is equal to (283), using the preceding modeling and
control definitions for the UAV and the flexible-joint robot. The arm parameters
are summarized in Table 6 and the UAV parameters are given in Table 2.

Parameter 2-link arm 3-link arm haptic manipulator

x0 (m) -1 1 -
y0 (m) 0 1 -
Lk (m) 0.5 0.5 0.1
Mk (kg) 2 2 0.2
ck (Nm/rad) 10 10 -
Ik (kgm2) 0.05 0.05 0.005
Iζ (kgm2) 0.05 0.05 -
Kv,i 0.5I2 0.5I3 0.1I2

Kd,i 0.5I2 0.5I2 0.1I2

Table 6: UAV system and control parameters for all agents i. The haptic manipulator is
used only in the second simulation.

12.2.2 Simulation results

The initial conditions of each system are shown in Table 7. The time traces of the
UAV and the end-effectors of the flexible-joint manipulators are shown in Figure 22,
where the final end-effector positions are designated with a × symbol.

First, we observe that the desired formation is achieved, with the end-effectors
ultimately at a prescribed horizontal distance of 0.2m from the center of the UAV.
While the true endpoints zi(αi) (solid lines) briefly diverge from the communicated
variables zi(δi) (dashed lines) during the maneuver due to the flexibility between
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the motors and the physical links, they eventually converge to the same point as
the arms come to rest.
The rather nonlinear trajectories of the end-effectors can be explained as follows.

Initially, when the UAV is at the lower right, the end-effectors start to move towards
it at a comparatively high pace. This initially causes both arms to move towards
the lower right. As the UAV approaches more closely, overshooting past the robotic
arms, the arms being to reverse. This process repeats once more, leading to a
smaller oscillation in all systems, before converging to the final formation. As the
UAV approaches its final position, its tilt angle stabilizes at zero.

Table 7: Initial conditions corresponding to Figure 21.

Manipulators 2-link 3-link UAV

α1, δ1 (rad) -1 1 q1,i (m) 1
α2, δ2 (rad) 2 2 q2,i (m) -1
α3, δ3 (rad) - 0.5 q3,i (rad) 0.174
pα1 , pδ1 (Nm s) 0 0 p1,i (m/s) 0
pα2 , pδ2 (Nm s) 0 0 p2,i (m/s) 0
pα3 , pδ3 (Nm s) - 0 p3,i (rad/s) 0
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Figure 22: Autonomous docking result with the initial and final configuration correspond-
ing to Figure 21. The dashed lines indicate the communicated variables while
the solid lines indicate the physical trajectories.
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12.2.3 Singular configurations

In robotic manipulator control problems, including in some task-space cooperation
tasks [38, 61], the assumption is commonly made that the end-point Jacobian Ψ>i
remains full rank during the task, implying that the end-effector can move in any di-
rection at all times. A low-rank configuration occurs when a robotic arm is partially
folded (called an “internal singularity”) and when it is fully stretched (“external
singularity”). Singularities instantaneously prevent the end-effector from moving in
one or more directions.
A full-rank assumption prevents the need to address excessive angular rates that

can arise with methods that rely on the pseudo-inverse of the Jacobian. This full-
rank assumption can be restrictive because it limits the usable workspace, particu-
larly when all robots must maintain the full-rank condition simultaneously.
It is worth noting that the full-rank condition is not strictly necessary in our

approach, which is more similar to Jacobian-transpose control [56]. In this case, a
low-rank configuration leads to zero angular-rates at worst, implying a local min-
imum or saddle point of the potential energy in the system. Due to interaction
with other agents in the network, however, a robot can recover from a low-rank
configuration and continue nominal operation.
In our approach, when a robotic arm is fully stretched, it cannot move further

toward a cooperative target, but it rather remains stationary until other agents
move towards it instead. For example, consider the task depicted in Figure 21, but
assume that the UAV is initially very far away. The arms stretch in the direction
of the UAV and effectively pause the docking formation task until the UAV is
sufficiently close.

12.3 human supervisory control

This section reconsiders the previous leaderless formation example, and adds a
haptic input device that allows a human operator to alter the otherwise arbitrary
final docking location. The haptic input device is a small scale, fully-actuated non-
flexible two-link manipulator. It coordinates its scaled end-effector position and
measured force with the UAV, allowing the human operator to remotely adjust the
UAV location.

3

1
2

z3(δ3)

z3(α3)

z2(δ3)
z2(α3)

4

(0, 0)

ẑ4(α4)

z4(α4)

Figure 23: Initial configuration of two flexible-joint manipulators, a UAV, and a haptic in-
put device (left), and the final docked configuration after the simulation (right).
The red dashed manipulator represents the virtual, scaled version of the phys-
ical haptic input device. Its end-effector (right-most black dot) maintains a
relative distance r∗14 = [0.5 0]>m with respect to the UAV.
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12.3.1 Haptic manipulator

The haptic input device is a two-link manipulator to which a human operator can
apply a force τ h ∈ R2, which is also measured. The manipulator dynamics are as in
Section 12.1, but without the joint flexibility or dynamic gravity compensation. Af-
ter canceling gravity with a static feedback law u = τ + ∂Vα

∂α , the system dynamics
are given by (195)

[
q̇4

ṗ4

]
=

[
02 I2

−I2 02

]
∂H4
∂q4
∂H4
∂p4

+

[
02

I2

]
τ i +

[
02

Ψ̂4

]
τ h, (306)

where q4 = α4, M4 = Mα (292), V = 0, and Ψ̂4 = ∂ẑ4
∂q4

, as defined next.
The physical end-effector location ẑ4 is defined with respect to its own origin

(x0, y0) to allow an arbitrary placement of the haptic device. From (288), this gives

ẑ4(q4) =

L1,4 cos(α1,4) + L2,4 cos(α1,4 + α2,4)

L1,4 sin(α1,4) + L2,4 sin(α1,4 + α2,4)

 . (307)

From (252), the scaled end-effector position is

z4(q4) = C4ẑ4(q4), (308)

where we choose C4 = 5I2 in this example, amplifying human displacements by a
factor 5. This scaling corresponds to a virtual robotic manipulator whose base is at
the origin (0, 0) and whose end-effector is at z4(q4), as shown by the red dashed
manipulator in Figure 23.

12.3.2 Objective, communication graph, and implementation

The formation objective and communication graph is the same as discussed in
Section 12.2.1, with one additional undirected edge between the haptic manipulator
and the UAV, as shown in Figure 23. This edge has A14 = I2 and r∗14 = [0.5 0]>m.

The implementation of the distributed control laws follows the strategy of Chap-
ter 10, in which techniques were introduced to optionally apply the measured force
τ h directly to other systems. In this simulation, the effect of the human input is
applied to the haptic manipulator and the UAV: D1 = D4 = I2, D2 = D3 = 02,
to speed up the response of the UAV to the human input that would result from
the formation objective only.

12.3.3 The human controller

While the human operator is able to adjust the position of the UAV, the docking
task remains autonomous. As the operator moves the haptic device to move the
UAV, the manipulator end-effectors automatically follow. This facilitates high-level
remote control, without requiring highly skilled operators.

For this simulation, the human operator is modeled as a PD controller that
steers the position z1 to zero by moving the haptic manipulator: τ h = −2z1−ye,1.
This rather simplified behavioral model is inspired by the crossover model of [70],
which states that an operator tends to control second order systems by acting as a
differentiator.
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12.3.4 Simulation results

The initial conditions for this simulation are given in Table 8, while the position
traces of the end-effectors are shown in Figure 24.

Table 8: Initial conditions corresponding to Figure 24.

Manipulators 2-link 3-link Haptic UAV

α1, δ1 (rad) -1 1 0 q1,i (m) 0.3535
α2, δ2 (rad) 2 2 π/4 q2,i (m) 0.3535
α3, δ3 (rad) - 0.5 - q3,i (rad) 0
pα1 , pδ1 (Nm s) 0 0 0 p1,i (m/s) 0
pα2 , pδ2 (Nm s) 0 0 0 p2,i (m/s) 0
pα3 , pδ3 (Nm s) - 0 - p3,i (rad/s) 0
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Figure 24: Semi-autonomous docking result with the initial and final configuration corre-
sponding to Figure 23. The haptic manipulator trajectory (solid red) is shown
in the top left graph for comparison with its virtual counterpart (red dashed),
but its base location is arbitrary.
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In this simulation, all systems are initially stationary. Furthermore, the UAV tilt
angle is zero and it is already synchronized with the scaled haptic manipulator, at
an initial horizontal distance of 0.5m. This allows us to focus on the subsequent
result of both formation forming and the human supervisory control input.
While the formation is being formed, the human operator is already actively

controlling the position of the UAV. Since the UAV is initially to the top right
of the origin, the operator applies a force in the negative horizontal and vertical
direction, as shown in Figure 24 (top right), causing the virtual manipulator to
move downward and to the left (red dashed line in bottom figures). This causes the
UAV to follow, though at a lower pace as it is held back by virtual coupling forces
of the robotic manipulators.
As the human operator continues to apply a force towards the origin, the UAV

and ultimately the robotic manipulators follow. Regardless of whether the origin is
reached exactly, the robotic manipulators attain the desired formation with respect
to the grasping points at the UAV, as shown in Figures 23 and 24.
Although modeled as a PD controller here, the human operator does not neces-

sarily have to insert damping into the system, which is already accomplished by
the controlled systems and the haptic manipulator itself. Hence, holding the haptic
actuator still at any position will cause the formation to stably converge to the cor-
responding (scaled) location. In this way, the human operator acts primarily as a
supervisory controller, making it possible to adjust the final location of the docked
systems without having to control the precise autonomous docking process.



Part VI

CONCLUS IONS

This part provides several extensions of the proposed distributed IDA-
PBC method for further research in Chapter 13. Chapter 14 gives a
summary and conclusion of the results obtained in this thesis.



13EXTENS IONS OF DISTR IBUTED IDA -PBC

This final chapter gives several starting points for future research that could extend
the proposed methods in this thesis and further establish its relation with currently
existing methods. Section 13.1 gives two practical extensions regarding physical
contact between systems, which was not considered in this thesis. Section 13.2
exploits the previously derived control by interconnection interpretation to extend
the formation control result with applications such as dealing with time delays.
Section 13.3 considers applications where some of the agents in the network do
not represent physical systems but virtual systems to enhance performance of the
physical systems in the network. Section 13.4 extends this idea by discussing energy
exchange mechanisms beyond potential energy coupling.

13.1 energy shaping for collision avoidance and constraints

Throughout this thesis, it has been assumed that there is no physical interaction
between the agents, thereby ignoring the effects of possible collisions between agents
or physical constraints that can arise when agents cooperate. While this is a common
assumption in most synchronization literature, it is not very practical in reality.
This section gives classes of possible solutions in which the proposed scheme can
be adapted or extended to account for these effects.

13.1.1 Potential energy shaping for collision avoidance

Although the network coupling energy V̄c was chosen as a quadratic function (183)
of the zi variables to ensure certain convexity properties and to maintain a generic
treatment of rather different applications, other nonnegative functions V̄c(·) can be
chosen to achieve objectives in addition to assuming and maintaining formations.
For collision avoidance, one can use additional potential functions that increase

rapidly as any two agents become prohibitively close. This leads to repulsive forces
that push them apart as they approach, while decaying to zero when the agents
are sufficiently far apart. Such techniques are known to be effective in robotics
and cooperative control of fully-actuated point masses, despite not providing hard
constraints for collision avoidance [71]. By expressing these potentials in terms of
the variables zi, the repulsive forces can be achieved without violating the matching
conditions.

13.1.2 Physical interaction and constraints

Physical interaction can also arise when one or more agents are kinematically cou-
pled. This is a natural consequence of some cooperative tasks, such as cooperative
manipulation of an object.
Although the special case of decoupled matching conditions and control laws

(Chapters 7 and 8) may no longer apply, the generic top down procedure of Chap-
ter 6 still holds. In this case, the uncontrolled dynamics (138) and desired network
dynamics (144) must be modified to include the physical constraint. Setting the
desired dynamics equal to the uncontrolled dynamics then yields the corresponding
control law and matching conditions.

109
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Energy shaping of kinematically coupled fully-actuated systems is considered in
the Hamiltonian framework in [64]. If the constraints reduce the number of degrees
of freedom more than they reduce the number of independent actuators, constraints
can even serve to simplify or remove the need to solve matching conditions [72].

13.2 control by interconnection

In light of the interpretation of the single-agent IDA-PBC solutions as a control by
interconnection method in Section 9.3, the resulting internally controlled underac-
tuated systems can possibly be used in some of the existing control schemes [13–17],
opening up several useful extensions that relax several conditions imposed in this
thesis, such as bidirectional communication without delays.

13.2.1 Unidirectional communication and directed graphs

Throughout this thesis, agents were coupled using quadratic potential energies of
the form ||zi − zj ||2. Taking gradients of these potentials led to coupling control
forces on both agents i and j, driving them toward one another. Both agents re-
quired knowledge of the difference zi − zj to implement the resulting control laws,
which led to the requirement of bidirectional communication and undirected graphs.

When considering the fully-actuated schemes of Chapter 5, the use of undirected
graphs is common in some passivity-based distributed control approaches [14, 17].
Other methods provide conditions for this to work on directed graphs as well [13,
15], if the interconnections are linear and certain graph theoretic conditions hold.

With the control by interconnection interpretation, it is anticipated that the pro-
posed single-agent solutions can also be used with certain directed communication
graphs, possibly with the control scheme of [13]. The interactions are linear in
zi(qi)− zj(qj), with the nonlinearities and underactuation captured in zi(qi).
To support this expectation, Figures 25 and Figure 26 show a directed graph

and simulation result corresponding to an adapted version of the simulation of
Section 11.3. An important property is that this directed graph is balanced and
connected [13]. All parameters and initial conditions remain the same, but only the
edges (1, 2), (6, 3), (3, 5), (3, 1), (5, 2), (2, 4), (2, 3), (4, 1), (1, 6) have an adjacency
matrix of Aij = diag(1, 2). The matrices of their counterparts (2, 1), · · · (6, 1), are
set to zero. Although the transient response is somewhat slower, the agents eventu-
ally converge to the desired formation and altitude, despite using only unidirectional
communication.

6 3

1 2

4

5

Figure 25: Directed UAV communication graph.
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Figure 26: UAV formation using a balanced and connected directed communication graph.

13.2.2 Time delays and switching graph topologies

If it is found that the proposed single-agent solutions of the underactuated and
heterogeneous agents satisfy the necessary conditions to work with the schemes [13,
14], then existing results regarding delayed inter-agent communication carry over
immediately, for the previously given linear couplings.
In addition to being a very practically useful result for networks of underactu-

ated systems, such a solution could be used to investigate how time delays can be
captured within the top-down distributed control approach used throughout this
thesis. Doing so may allow the presence of time delays even when using more general,
nonlinear inter-agent couplings such as nonzero Jij in (154).
The previously mentioned abstraction to existing passivity-based control methods

may also lead to practical extensions such as switching graph topologies, possibly
allowing agents to achieve their goals while only communicating with a changing
number of neighbors in their vicinity.

13.2.3 Contraction and passivity for reference tracking and integral control

It may be possible to adapt or enhance the single-agent solutions to satisfy certain
contraction properties, which is investigated for single underactuated systems in [73,
74]. Doing so may allow the systems to work in the contraction-based distributed
control scheme [15], providing exponential rather than asymptotic convergence to
the desired formation.
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Similarly, it may be possible to extend the stationary formation control scheme
of this thesis to reference tracking in terms of a suitable (group) reference for the
signals zi or d

dtzi = ye,i. A possible intermediate step would be to prove passivity
or contraction with respect to a velocity error signal ye,i − yref, as done in [13–15]
for fully-actuated systems and in [58] for generic Hamiltonian systems.
If additionally it is possible to demonstrate passivity or contraction of each system

with respect to a signal zi + Λye,i, then distributed PID control schemes may be
feasible, as briefly addressed in Chapter 5. This may lead to improved robustness
against disturbances and reduce steady state errors in the presence of unmodeled
friction.

13.3 distributed ida-pbc and observer systems

In the distributed system analysis throughout this thesis, each system corresponded
to a model of a physical system. However, there is no restriction that prevents
virtual systems with equivalent models to be included in the network. Doing so can
be useful in several applications, two of which are discussed next.

13.3.1 Absence of velocity measurements

In some applications, it is not possible to measure the generalized velocity informa-
tion q̇i that is needed to obtain pi = M−1

i q̇i. Knowledge of pi is required for agent i
to insert damping though a positive dissipation matrix Kv,i > 0mi or Kd,i > 0`.
By adding simulated virtual systems with similar models as the physical systems,

it is possible to insert damping through the virtual systems instead, by coupling
them using potential forces, as shown in Figure 27. This can be achieved by connect-
ing virtual systems to each physical system while keeping the network connection
between the physical systems (top figure), or by interconnecting the virtual sys-
tems (bottom figure). The main requirement is that the zero state is detectable
from the virtual velocity output, implying that sustained zero virtual velocity must
also mean that the physical velocities are zero.

2 31 4

2 31 4

Figure 27: Two possible graph structures for physical robotic manipulators (black) without
velocity measurement capability, and virtual systems (blue) that insert damping
that propagates to the real systems.
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Because it was previously shown that the distributed control method also works
for heterogeneous systems, this approach with virtual systems could still work even
if the physical model parameters are not known precisely.
The bottom scheme in Figure 27 closely resembles the recently published method

for fully-actuated Lagrangian systems without velocity measurements [75]. Further
research may allow the method proposed in this thesis to be extended to the absence
of velocity measurements in underactuated systems.

13.3.2 Virtual systems for robustness to parameter uncertainty

In [76] it was shown that networking can improve robustness of tracking tasks
compared to single systems or multiple decentralized systems in the presence of pa-
rameter uncertainty. This idea can be used with the proposed distributed IDA-PBC
approach as well. Combined with the previously introduced notion of simulated vir-
tual systems, a desired number of virtual systems can be initialized with a desired
random distribution of the uncertain parameters. Interconnecting these virtual sys-
tems with the physical systems may lead to improved robustness to parameter
uncertainty.

13.4 energy-transfer control

The distributed control solutions given in Chapters 7 and 8 were a special case of the
more generic solution of Chapter 6. Although it was found that this special case of
agent coupling was sufficient for achieving the formation objective, the more generic
solution can possibly be used to achieve other objectives as well as to improve the
transient response. In this section we consider the effect of choosing nonzero Jij in
the matrix (154), which leads to interactions between systems called energy-transfer
control [77]. A recent publication [64] used a similar technique for teleoperation of
a group of fully-actuated robots with physical coupling constraints.

13.4.1 Force and power balances

To illustrate several aspects of energy-transfer control in the distributed IDA-PBC
method, we consider a network of two agents that are not coupled using potential
energy, and focus on the additional control signals ∆τ 1 and ∆τ 2 due to selecting a
nonzero J12 = −J>21 ∈ Rn1×n2 :

∆τ 1 = (F>1 F1)
−1F>1 J12M−1

d,2p2, (309)

∆τ 2 = −(F>2 F2)
−1F>2 J>12M−1

d,1p1. (310)

Each agent requires both position and velocity information of the other agent to
implement the additional control signal. Each system has the desired closed-loop
energy Hd,i = p>i M−1

d,ipi + Vd,i and the total energy is Hd = Hd,2 +Hd,2. When
Kv,i = 0mi and τ d = 0 , the closed-loop dynamics (144) can be used to obtain

Ḣd,1 = p1M−1
d,1J12M−1

d,2p2, (311)

Ḣd,2 = −p2M−1
d,2J>12M−1

d,1p1

= −Ḣd,1. (312)

Consistent with the previous observation that the matrix J̄ does not instantaneously
effect the rate of decrease of the energy function, we obtain that indeed

Ḣd,1 + Ḣd,2 = 0. (313)
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This implies that the systems can exchange energy without a net change in the
total energy.

A similar procedure can be carried out for energy-transfer control in terms of
the input-output variables τ e,i and ye,i = d

dtzi with a compatible new definition
of J̄, comparable to the definition of K̄d as a counterpart to K̄v. Doing so may
provide more physical insight, as ye,i represents physical task-space velocities, with
compatible dimensions between the systems.

13.4.2 Energy routing and energy balancing control

While the overall power balance balance is zero, the matrix J12 can be used to
assign the direction of energy flow between two systems. For example, if we choose

J12 = dM−1
d,1p1p

>
2 M−1

d,2, (314)

where d is a scalar, the energy balances (311), (312) become

Ḣd,1 = −Ḣd,2 = dp1M−1
d,1M−1

d,1p1p
>
2 M−1

d,2M−1
d,2p2

= d ||M−1
d,1p1||2||M−1

d,2p2||2. (315)

Because the quadratic terms are nonnegative, a positive d directs energy from sys-
tem 2 toward system 1, while a negative d directs energy from system 2 to 1. There
is only an change of energy when both systems are non-stationary.
A practical application could involve energy distribution between two systems,

where the sign of d is chosen based on the difference in energy of two systems using

d = (Hd,2 −Hd,1 − d0), (316)

where the scalar d0 is the desired difference in energy. When d0 = 0, this leads to
energy balancing, where energy is transfered from one system to the other until the
energy of both systems is equal.

13.4.3 Virtual systems and energy-transfer control

In addition to routing energy between physical systems, systems can be virtual,
analogous to Section 13.3, leading to possible applications for control design.
Because a virtual system can be arbitrarily initialized, it is possible to assign a

desired total energy contained initially in the network of systems. By subsequently
distributing this energy as described above, the physical system can be made to
obtain a desired energy level, provided the systems are sufficiently non-stationary.
While this requirement implies that using nonzero Jij may be of little value for the
stationary formation objective of this thesis, it may have applications in controlling
single oscillators and oscillator networks.
For example, a physical linear mass spring system with a control force acting on

the mass may be oscillating at an initial amplitude corresponding to a constant
energy level E0. By initializing a virtual mass spring system with an energy E∆
and routing all its energy towards the physical system using a fixed d, the physical
system eventually attains the energy E0 + E∆ with a corresponding amplitude.
Moreover, the energy required for this amplitude transition is minimal by definition.



14SUMMARY AND CONCLUS IONS

This chapter summarizes and concludes the report in Section 14.1. Section 14.2
discusses the contributions and limitations of the proposed methods, and gives
suggestions for improvement and further research.

14.1 conclusions

We have proposed a new, practical distributed control method that enables hetero-
geneous groups of underactuated and fully-actuated mechanical systems to coop-
eratively assume desired stationary task-space formations, with or without leaders
with absolute targets. This section summarizes the approach and relates it to the
previously stated research questions.

14.1.1 Summary

This thesis began with a recapitulation of relevant passivity-based modeling and
control methodologies from literature, and summarized the single-agent control
problem of passivity-based control by interconnection and damping assignment
(IDA-PBC). A unified control scheme was presented to compare existing control
methods for groups of fully-actuated systems.

Using a top-down distributed control design approach, we have considered the
distributed coordination problem of multiple underactuated and fully-actuated sys-
tems as the problem of controlling a single, large underactuated mechanical system.
By applying the IDA-PBC control technique to assign a desired class of stable dy-
namics to this large system, we have obtained control laws and matching conditions
that allow the group of systems to accomplish a cooperative formation task, while
each agent locally stabilizes its own coordinates.
The control objectives are achieved by shaping the total kinetic and potential

energy of the systems and the connections between them, such that the energy
minimum corresponds to meeting the local and cooperative objectives. The control
laws ensure that the systems asymptotically converge to the desired configuration
by dissipating the shaped energy until the minimum is reached.
By expressing the potential energy between systems as a positive function of cer-

tain task coordinates shared between heterogeneous systems in the network, it was
shown that the resulting coupling control forces can achieve the group objectives
without violating the total matching conditions. In turn, it was shown that with this
choice of potential energy between the systems, the large matching conditions for
the group of systems could be decomposed into a set of distributed matching con-
ditions that could be satisfied by each individual agent independent of the network
topology. Likewise, the control laws could be implemented in a distributed fashion
using bidirectional information exchange over an undirected, connected network.
The per-agent matching conditions were found to be satisfied for a range of single-

agent IDA-PBC solutions. By allowing these existing solutions to be reused in a
constructive manner, this enables distributed control for a wide range of new ap-
plications, while encompassing several existing applications in a generalized control
scheme. In addition to providing stable interaction between systems using poten-
tial energy gradient forces, several other techniques were identified to adjust the
transient response of the systems. These techniques include conservative energy
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exchange methods and the ability to shape the relative mass of each system to
equalize participation in a group objective when using very different systems.
By extending the energy shaping method to shaping of the input and output

behavior of a system, a connection was made between IDA-PBC and the method
of control by interconnection. In addition to providing a relation to other passivity-
based distributed control methods, this allowed us to study how a human operator
can interact with a single system or a distributed system in a stable way. The latter
has applications in teleoperation of machines that can operate in environments
where humans cannot. For this purpose, techniques were introduced to scale the
human input motion and input forces compared to the controlled systems, while
preserving passivity with respect to the human power supply.
The practical applicability of the proposed distributed control method was demon-

strated using two simulation case studies. These studies highlighted the ability to
make underactuated and heterogeneous systems cooperatively achieve task-space
formations, with or without leaders in the group. The second case study, concerning
formations of flexible-joint robots with an underactuated unmanned aerial vehicle,
is novel result that extends existing work on coordinate synchronization of flexible-
joint robots.

14.1.2 Research questions revisited

We now revisit the research questions of Section 1.2, that have led to the proposed
results. It was found that IDA-PBC was valuable to the distributed control problem
at two different levels. First, it was used as a tool to study the achievable stabi-
lization and formation objectives of the group of systems as a whole. Subsequently,
it was found that the necessary conditions and control laws could be decomposed
into local conditions and control laws that are equal to the conditions of certain
classes of IDA-PBC solutions. This makes the IDA-PBC method also applicable at
this single-agent level, while making it possible to reuse known solutions and couple
them in a network.

This result implicitly also encompasses the answers to the subquestions 1.2.1 and
1.2.2, because the choice of coordinates, equilibria and the local conditions for coop-
eration can be satisfied using existing single-agent IDA-PBC solutions. Additionally,
it was shown that the task coordinate zi(qi) obtained from existing single-agent
solutions is the variable that must be communicated over the network to achieve
stable cooperation between systems. The allowable coupling potentials must be a
function of these variables, although the function is free. This answers the sub-
questions 1.2.3 and 1.2.4 regarding the communicated variable and its constraints
on the allowed control laws. By reshaping the input-output behavior in addition
to shaping the total energy of a system, it became possible to adjust the effects
of interaction of systems and groups of systems with their environment, including
human operators, which has been used to address question 1.2.5.
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14.2 discussion

Having summarized the working principles of existing and new methods presented
in this thesis, we now reflect on the obtained results in relation to existing work
and in light of current limitations and recommendations for further research.

14.2.1 Simplicity and terminology

The results presented in this thesis have been developed in several stages, a process
chronologically similar to the order of the chapters in this thesis. Initially, due
to the apparent incompatibility of underactuated systems with existing bottom-up
approaches for fully-actuated systems (Chapter 5), we pursued a top-down approach
that led to new results for underactuated systems in Chapters 6–8.

Only later while investigating the input-output properties of the shaped mechan-
ical systems for interaction with other systems and human operators (Chapter 9),
we found that a control by interconnection approach could also be used for our pro-
posed class of underactuated systems. Hence, by dissecting the obtained top-down
result into separate components, we have obtained a system form that can be used
in bottom-up approaches similar to those presented in Chapter 5.
Taking this new form as a starting point instead, our method can be presented

much more concisely with fewer intermediate steps, reducing the apparent complex-
ity of the method. Similarly, it then naturally embeds the ability to study human
interaction and input-output behavior (Chapter 10) from the start, rather than as
a seemingly separate addition.
We have deliberately chosen to document the results almost chronologically, both

to highlight the development process, but also because the steps to derive the end
result are useful on their own, as they reveal control solutions (such as exploiting J̄)
not trivially obtained by bottom-up methods. A concise result of the distributed
control law with a brief stability proof (without the lengthy derivation thought
process) is better served for presentation in a separate paper. An initial attempt at
such a presentation, still without the input shaping method, is given in [78].

14.2.2 Practical value and additions to existing work

Distributed control methods for fully-actuated systems [13–17] have well-established
and constructive solutions for groups of heterogeneous systems, task-space coordi-
nation, formation tasks, and leaderless or leader-following tasks. Although some
results have been obtained for underactuated systems, these are limited to (coor-
dinate) synchronization [32, 36, 37], to specific applications [37], or they are not
constructive or implemented in a distributed sense [36].
The proposed approach of distributed IDA-PBC generalizes these results to het-

erogeneous groups of underactuated and fully-actuated systems that pursue task-
space formations with or without leaders. The method is constructive because suit-
able single-agent control solutions can be reused to obtain the distributed control
laws. These features extend the potential of distributed control applications. For
example, we showed how underactuated aerial vehicles can cooperate with robotic
manipulators.
The generality and practicality of the proposed method also arises by noting that

existing control schemes for fully-actuated systems can be obtained as special cases
of the proposed method. This leads to simple distributed control laws for simple
systems, while providing sufficient conditions for cooperation with more complex
systems. This is promising both for deriving extensions that are already known to
hold for fully-actuated systems, and for practical implementation on real systems.
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14.2.3 Practical limitations and recommendations for further research

As addressed separately in Chapter 13, the presented method can be enhanced
by exploiting several features of the distributed control method not yet addressed
in this thesis. This includes accounting for time-delays or the absence of velocity
measurements, as well as extensions such as conservative energy transfer, commu-
nication across directed graphs, reference tracking, and collision avoidance. In this
section we consider some more fundamental limitations that may hamper practical
implementation depending on the type of application.

Although the proposed method has the potential to be used for various practical
applications, this thesis has not addressed many practical and physical challenges
of nonlinear control methods for underactuated systems, such as actuator limita-
tions, sensor inaccuracy, measurement and control signal discretization, modeling
errors, disturbances, friction, or robustness to parameter uncertainty. Similar con-
cerns could be raised regarding accuracy of force measurements for the application
of human interaction with underactuated and distributed systems. All of these as-
pects are known to adversely affect single underactuated systems, and hence also
networks composed of such systems. However, due to the decoupled nature of the
conditions for collaboration, it is expected that some solutions to overcome these
problems for single agents may also be applicable for distributed systems. The true
practical value can only be demonstrated experimentally.
Following Sections 8.6 and 3.1.4, it is also essential to establish a complete, for-

mal proof of the stability result for task-space formations without leaders, and for
the case where some coordinates do not have fixed targets other than becoming
stationary.
Additionally, some properties intrinsic to this type of control method may give rise

to difficulties with avoiding local minima, reaching targets in finite time, imposing
hard constraints, or achieving a desired form of optimality. This is in contrast to
optimization-based methods, which can embed constraints and optimize for desired
metrics, at the expense of higher computational complexity and potentially less
certainty about convergence of a solution. In this view, our method is perhaps most
relevant for larger networks where optimization-based approaches are not feasible.
However, network optimization techniques can be related to passivity-based control
approaches [79], meaning that further research could also combine these fields, and
exploit the passivity properties of the presented class of single-agent solutions for
optimal distributed control techniques.
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a
SELECTED DERIVATIONS

This appendix provides a few short derivations for selected equations in this thesis.

a.1 quadratic potential functions

This section provides a derivation of (99) by expanding the term z̄>Lz̄ into a sum
of squares. The first step is to use the definition (96) to expand the vector Lz̄ as

z̄>Lz̄ = z̄>


(
∑N
j=1 A1j)z1 −A12z2 · · · −A1NzN

...
−A1Nz1 −A2Nz2 − · · ·+ (

∑N
j=1 ANj)zN



= z̄>


∑N
j=1 A1j(z1 − zj)

...∑N
j=1 ANj(zN − zj)


= z>1

N∑
j=1

A1j(z1 − zj) + · · ·+ z>N
N∑
j=1

ANj(zN − zj)

=
N∑
i=1

N∑
j=1

z>i Aij(zi − zj). (317)

Preparing for the next step, we split the previous result into two equal parts:

z̄>Lz̄ =
1
2

N∑
i=1

N∑
j=1

z>i Aij(zi − zj) +
1
2

N∑
i=1

N∑
j=1

z>i Aij(zi − zj). (318)

The second sum may be rewritten by reversing the indexes i and j, bringing the
minus sign to the front, reversing the indexes of Aji (allowed because Aji = Aij),
and reversing the order of summation, giving, respectively

1
2

N∑
i=1

N∑
j=1

z>i Aij(zi − zj) =
1
2

N∑
j=1

N∑
i=1

z>j Aji(zj − zi)

= −1
2

N∑
j=1

N∑
i=1

z>j Aij(zi − zj)

= −1
2

N∑
i=1

N∑
j=1

z>j Aij(zi − zj). (319)

Inserting the rewritten summation into (318) gives the end result (99) as

z̄>Lz̄ =
1
2

N∑
i=1

N∑
j=1

z>i Aij(zi − zj)−
1
2

N∑
i=1

N∑
j=1

z>j Aij(zi − zj) (320)

=
1
2

N∑
i=1

N∑
j=1

(zi − zj)>Aij(zi − zj) ≥ 0. (321)
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We now show how (102) is rewritten to derive (103)–(105). We begin by expand-
ing the weighted sums in (102), while leaving the summations unchanged:

φ =
1
4

N∑
i=1

N∑
j=1

(
zi − zj + r∗ij

)>Aij

(
zi − zj + r∗ij

)
+

1
2

N∑
i=1

(zi − z∗i )
>Bi(zi − z∗i )

=
1
4

N∑
i=1

N∑
j=1

(zi − zj)>Aij(zi − zj) +
1
2

N∑
i=1

z>i Bizi

+
1
2

N∑
i=1

N∑
j=1

(r∗ij)
>Aij(zi − zj)−

N∑
i=1

(z∗i )
>Bizi

+
1
4

N∑
i=1

N∑
j=1

(r∗ij)
>Aijr

∗
ij +

1
2

N∑
i=1

(z∗i )
>Biz

∗
i .

These three lines are quadratic in zi, linear in zi and constant, respectively. The
quadratic terms on the first line can be written in matrix form using (99). The last
line yields the constant c0. The linear terms are left unchanged for now. We get:

φ =
1
2 z̄(L + B)z̄ (322)

+
1
2

N∑
i=1

N∑
j=1

(r∗ij)
>Aij(zi − zj)−

N∑
i=1

(z∗i )
>Bizi

+ c0,

with

c0 =
1
4

N∑
i=1

N∑
j=1

(r∗ij)
>Aijr

∗
ij +

1
2

N∑
i=1

(z∗i )
>Biz

∗
i . (323)

Now we turn our attention to the linear terms on the second line, which we wish
to write in the form c1>z̄. Noting that Aij = Aji and r∗ij = −r∗ji we can write

c1
>z̄ = −

N∑
i=1

(z∗i )
>Bizi +

1
2

N∑
i=1

N∑
j=1

(r∗ij)
>Aijzi −

1
2

N∑
i=1

N∑
j=1

(r∗ij)
>Aijzj

= −
N∑
i=1

(z∗i )
>Bizi +

1
2

N∑
i=1

N∑
j=1

(r∗ij)
>Aijzi +

1
2

N∑
i=1

N∑
j=1

(r∗ij)
>Aijzi

= −
N∑
i=1

(z∗i )
>Bizi +

N∑
i=1

N∑
j=1

(r∗ij)
>Aijzi

=

−(z∗1)>B1 +
N∑
j=1

(r∗1j)
>A1j · · · −(z∗N )>BN +

N∑
j=1

(r∗Nj)
>ANj

 z̄

=



−B1z∗1 +
N∑
j=1

A1jr
∗
1j

...

−BNz
∗
N +

N∑
j=1

ANjr
∗
Nj



>

z̄, (324)

which gives the vector c1.
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a.2 uncontrolled network dynamics

To see that the uncontrolled network dynamics can be written as (138)–(140), take
each of the original dynamics (135)–(137), and stack the equations q̇i and pi into
the vectors ˙̄q and ˙̄p to write




q̇1
...
q̇N



ṗ1
...
ṗN




=

[
0n̄ In̄
−In̄ 0n̄

]




∂H1
∂q1
...

∂HN

∂qN



∂H1
∂p1
...

∂HN

∂pN





+


0n̄×m̄F1 . . .

FN



 τ 1...
τN

 , (325)

y1...
yN

 =

F1 . . .
FN

> M1 . . .
MN

−1
p1...
pN

 , (326)

H̄ =
N∑
i=1

Hi =
1
2

p1...
pN


> M1 . . .

MN

−1
p1...
pN

+
N∑
i=1

Vi. (327)

This equals (138)–(140) after substituting (142), (143).

a.3 derivations for the matched input matrix

This section gives a generic expression for the partial derivative of a scalar that is
a function of z(q) ∈ R`, both for the single-agent and multi-agent case.

a.3.1 Single-agent Case

We wish to know the partial derivative of the scalar

c(z(q)) = c(z1(q1, . . . , qn), . . . , z`(q1, . . . , qn)) ∈ R, (328)

to the coordinate vector q. We first take the derivative of c to each coordinate qj :

∂c

∂qj
=
∂c(z1(q1, . . . , qn), . . . , z`(q1, . . . , qn))

∂qj

=
∂c

∂z1

∂z1
∂qj

+ · · ·+ ∂c

∂z`

∂z`
∂qj

=

[
∂z1
∂qj

. . .
∂z`
∂qj

]
∂c

∂z
.

The complete result is obtained by repeating this derivation for each coordinate
and stacking the result:

∂c

∂q
=


∂c

∂q1
...
∂c

∂qn

 =


∂z1
∂q1

. . .
∂z`
∂q1

...
...

∂z1
∂qn

. . .
∂z`
∂qn

 ∂c

∂z
= Ψ ∂c

∂z
,
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where we have defined the matrix Ψ as

Ψ(q) =
∂>z

∂q
=


∂z1
∂q1

. . .
∂z`
∂q1

...
...

∂z1
∂qn

. . .
∂z`
∂qn

 ∈ Rn×`. (329)

a.3.2 Multi-agent Case

Suppose now that b ∈ R is a function of the coordinates of multiple agents:

b = b(z1(q1), . . . , zN (qN ))

= b

(
z1,1(q1,1, . . . , qn1,1), . . . , z`,1(q1,1, . . . , qn1,1),

. . . ,
z1,i(q1,i, . . . , qni,i), . . . , z`,i(q1,i, . . . , qni,i)
. . . ,

z1,N (q1,N , . . . , qnN ,N ), . . . , z`,N (q1,N , . . . , qnN ,N )

)
, (330)

where a subscript α,β pertains to the α-th vector entry of the β-th agent. The
constants ni and ` are the number of states and dimension of the communicated
variable of each agent.

Each coordinate zi depends only on qi, such that

∂zj,i
∂qk,`

= 0 ∀ i 6= `. (331)

Then we may write

∂b

∂qj,i
= 0 + · · ·+ 0 + ∂b

∂z1,i

∂z1,i
∂qj,i

+ · · ·+ ∂b

∂z`,i

∂z`,i
∂qj,i

+ 0 + · · ·+ 0

=

[
∂z1,i
∂qj,i

. . .
∂z`,i
∂qj,i

]
∂b

∂zi
. (332)

The complete derivative is again obtained by repeating this derivation for each
coordinate and stacking the result:

∂b

∂qi
=


∂b

∂q1,i
...
∂b

∂qni,i

 =


∂z1,i
∂q1,i

. . .
∂z`,i
∂q1,i

...
...

∂z1,i
∂qni,i

. . .
∂z`,i
∂qni,i


∂b

∂zi
= Ψi

∂b

∂zi
,

where it should be noted that matrix Ψi depends only on qi:

Ψi(qi) =
∂>zi
∂qi

=


∂z1,i
∂q1,i

. . .
∂z`,i
∂q1,i

...
...

∂z1,i
∂qni,i

. . .
∂z`,i
∂qni,i

 ∈ Rni×`. (333)



bSYSTEMS IM : A PYTHON MULTI -AGENT S IMULATOR

The simulation results presented throughout have been generated using a Python
package specifically developed for this thesis, called systemsim. It is a general
purpose simulator for networks of systems with the dynamics ẋi = f (xi,ui,di, t)
and the output yi=h(xi, t).

b.1 object oriented system representations

Each system is represented as a System object, characterized by an implementation
of the equations of motion f (·), the output h(·), an optional state feedback law,
and a set of initial conditions. Given an optional exogenous input d as a function of
time and a simulation time range, the object can call an ODE integration routine
to obtain and store state and output trajectories for the given time range.
Inheritance of the System class is used to generate classes for more specific types

of systems, such as linear time invariant systems, or Lagrangian and Hamiltonian
mechanical systems. The generic System attributes and methods remain the same,
but the equations of motion are parametrized by constant or state-dependent system
matrices to simplify the process of initializing such systems.

b.2 network interactions

Any number of heterogeneous systems with compatible input and output dimen-
sions can be interconnected into a single large system of the class Interconnection.
Such an object is initialized from a previously initialized set of System objects and
a set of edges and adjacency matrices that specify how the inputs and outputs of
systems are interconnected. Upon initialization, it extracts the equations of motion
of each subsystem and their interconnections to construct a single ODE for the
networked system.
For example, such a scheme can be used to combine a linear integrator with a

nonlinear mechanical system through a negative feedback interconnection. Because
the Interconnection class is itself inherited from the System class, the resulting
closed-loop system is treated as a regular system and can again be included in a
higher level network of systems.
A further specialization is the DistributedMechanicalSystem class used for the

simulations in this thesis. Though largely similar to the Interconnection class, it
implements the interactions between mechanical systems through the variables zi
rather than the velocity outputs yi.

b.3 installation and examples

The systemsim package is available from the Python Package Index (pypi.org)
using standard installation tools such as pip. It is compatible with Python 3
and requires numpy for matrix and vector operations, sympy for symbolic deriva-
tions, and scipy for ODE integration. Installation instructions are provided at
https://github.com/laurensvalk/systemsim. This page also provides links to
several of the example simulations included in this thesis. The systemsim package
is released under the MIT license.

125



BIBL IOGRAPHY

[1] R. Ortega, A. van der Schaft, I. Mareels, and B. Maschke, “Putting energy
back in control,” IEEE Control Systems Magazine, vol. 21, no. 2, pp. 18–33,
2001.

[2] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in
the study of distributed multi-agent coordination,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 427–438, 2013.

[3] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A survey on platoon-based
vehicular cyber-physical systems,” IEEE Communications Surveys and Tuto-
rials, vol. 18, no. 1, pp. 263–284, 2016.

[4] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of spacecraft forma-
tion flying guidance and control (part I): Guidance,” pp. 1733–1739, 2003.

[5] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of spacecraft for-
mation flying guidance and control (part II): Control,” in Proceedings of the
American Control Conference, IEEE, vol. 4, 2004, pp. 2976–2985.

[6] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Cooperative grasping
and transport using multiple quadrotors,” in Distributed Autonomous Robotic
Systems, Springer, 2013, pp. 545–558.

[7] T. Huntsberger, P. Pirjanian, A. Trebi-Ollennu, H. D. Nayar, H. Aghazarian,
A. J. Ganino, M. Garrett, S. S. Joshi, and P. S. Schenker, “Campout: A
control architecture for tightly coupled coordination of multirobot systems
for planetary surface exploration,” IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 33, no. 5, pp. 550–559, 2003.

[8] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and S. S. Sastry, “Distributed
control applications within sensor networks,” Proceedings of the IEEE, vol. 91,
no. 8, pp. 1235–1246, 2003.

[9] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile
sensing networks,” IEEE Transactions on Robotics and Automation, vol. 20,
no. 2, pp. 243–255, 2004.

[10] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-assembly in
a thousand-robot swarm,” Science, vol. 345, no. 6198, pp. 795–799, 2014.

[11] J. Werfel and R. Nagpal, “Three-dimensional construction with mobile robots
and modular blocks,” The International Journal of Robotics Research, vol. 27,
no. 3-4, pp. 463–479, 2008.

[12] W. Ren and Y. Cao, Distributed Coordination of Multi-agent Networks: Emer-
gent Problems, Models, and Issues. Springer Science & Business Media, 2011.

[13] N. Chopra and M. W. Spong, “Passivity-based control of multi-agent sys-
tems,” in Advances in Robot Control, Springer, 2006, pp. 107–134.

[14] M. Arcak, “Passivity as a design tool for group coordination,” IEEE Trans-
actions on Automatic Control, vol. 52, no. 8, pp. 1380–1390, 2007.

[15] S.-J. Chung and J.-J. Slotine, “Cooperative robot control and concurrent
synchronization of Lagrangian systems,” IEEE Transactions on Robotics, vol.
25, no. 3, pp. 686–700, 2009.

[16] W. Ren, “Distributed leaderless consensus algorithms for networked Euler–
Lagrange systems,” International Journal of Control, vol. 82, no. 11, pp. 2137–
2149, 2009.

127



Bibliography 128

[17] E. Nuno, I. Sarras, and L. Basanez, “Consensus in networks of nonidenti-
cal Euler–Lagrange systems using P+D controllers,” IEEE Transactions on
Robotics, vol. 29, no. 6, pp. 1503–1508, 2013.

[18] J. C. Willems, “The generation of Lyapunov functions for input-output stable
systems,” SIAM Journal on Control, vol. 9, no. 1, pp. 105–134, 1971.

[19] S. Arimoto and M Takegaki, “A new feedback method for dynamic control of
manipulators,” Journal of Dynamic Systems, Measurement, and Control, vol.
102, pp. 119–125, 1981.

[20] J.-J. Slotine and W. Li, “On the adaptive control of robot manipulators,” The
International Journal of Robotics Research, vol. 6, no. 3, pp. 49–59, 1987.

[21] R. Ortega and M. W. Spong, “Adaptive motion control of rigid robots: A
tutorial,” Automatica, vol. 25, no. 6, pp. 877–888, 1989.

[22] R. Ortega, A. Loría, P. J. Nicklasson, and H. Sira-Ramirez, Passivity-based
Control of Euler-Lagrange systems: Mechanical, Electrical and Electromechan-
ical Applications, ser. Communications and Control Engineering. Springer Sci-
ence & Business Media, 1998.

[23] B. Yüksel, C. Secchi, H. H. Bülthoff, and A. Franchi, “Reshaping the physi-
cal properties of a quadrotor through IDA-PBC and its application to aerial
physical interaction,” in IEEE International Conference on Robotics and Au-
tomation, IEEE, 2014, pp. 6258–6265.

[24] M. W. Spong, “Modeling and control of elastic joint robots,” Journal of Dy-
namic Systems, Measurement, and Control, vol. 109, no. 4, pp. 310–319, 1987.

[25] B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative Systems
Analysis and Control: Theory and Applications, ser. Communications and
Control Engineering. Springer Science & Business Media, 2013.

[26] R. Ortega, A. Donaire, and J. G. Romero, “Passivity-based control of me-
chanical systems,” in Feedback Stabilization of Controlled Dynamical Systems,
Springer, 2017, pp. 167–199.

[27] R. Ortega, M. W. Spong, F. Gómez-Estern, and G. Blankenstein, “Stabiliza-
tion of a class of underactuated mechanical systems via interconnection and
damping assignment,” IEEE Transactions on Automatic Control, vol. 47, no.
8, pp. 1218–1233, 2002.

[28] J. A. Acosta, R. Ortega, A. Astolfi, and A. D. Mahindrakar, “Interconnection
and damping assignment passivity-based control of mechanical systems with
underactuation degree one,” IEEE Transactions on Automatic Control, vol.
50, no. 12, pp. 1936–1955, 2005.

[29] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mobile
sensor networks: Adaptive gradient climbing in a distributed environment,”
IEEE Transactions on Automatic Control, vol. 49, no. 8, pp. 1292–1302, 2004.

[30] M. W. Spong and N. Chopra, “Synchronization of networked Lagrangian
systems,” in Lagrangian and Hamiltonian Methods for Nonlinear Control,
Springer, 2007, pp. 47–59.

[31] E. Vos, Formation control in the port-Hamiltonian framework. PhD Thesis.
University of Groningen, 2015.

[32] S. Nair and N. E. Leonard, “Stable synchronization of mechanical system
networks,” SIAM Journal on Control and Optimization, vol. 47, no. 2, pp. 661–
683, 2008.



Bibliography 129

[33] A. M. Bloch, N. E. Leonard, and J. E. Marsden, “Controlled Lagrangians and
the stabilization of mechanical systems I: The first matching theorem,” IEEE
Transactions on Automatic Control, vol. 45, no. 12, pp. 2253–2270, 2000.

[34] A. M. Bloch, D. E. Chang, N. E. Leonard, and J. E. Marsden, “Controlled
Lagrangians and the stabilization of mechanical systems II: Potential shap-
ing,” IEEE Transactions on Automatic Control, vol. 46, no. 10, pp. 1556–1571,
2001.

[35] G. Blankenstein, R. Ortega, and A. van der Schaft, “The matching conditions
of controlled Lagrangians and IDA-passivity based control,” International
Journal of Control, vol. 75, no. 9, pp. 645–665, 2002.

[36] D. Zhu, D. Zhou, J. Zhou, and K. L. Teo, “Synchronization control for a
class of underactuated mechanical systems via energy shaping,” Journal of
Dynamic Systems, Measurement, and Control, vol. 134, no. 4, p. 410 071, 2012.

[37] E. Nuño, D. Valle, I. Sarras, and L. Basañez, “Leader–follower and leaderless
consensus in networks of flexible-joint manipulators,” European Journal of
Control, vol. 20, no. 5, pp. 249–258, 2014.

[38] Y.-C. Liu and N. Chopra, “Controlled synchronization of heterogeneous robotic
manipulators in the task space,” IEEE Transactions on Robotics, vol. 28, no.
1, pp. 268–275, 2012.

[39] A. J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control,
ser. Communications and Control Engineering. Springer Science & Business
Media, 2000.

[40] M. Arcak, C. Meissen, and A. Packard, Networks of Dissipative Systems:
Compositional Certification of Stability, Performance, and Safety. Springer,
2016.

[41] R. Ortega, A. van der Schaft, F. Castanos, and A. Astolfi, “Control by in-
terconnection and standard passivity-based control of port-Hamiltonian sys-
tems,” IEEE Transactions on Automatic Control, vol. 53, no. 11, pp. 2527–
2542, 2008.

[42] R. Ortega and E. García-Canseco, “Interconnection and damping assignment
passivity-based control: A survey,” European Journal of control, vol. 10, no.
5, pp. 432–450, 2004.

[43] A. Astolfi and R. Ortega, “Immersion and invariance: A new tool for stabi-
lization and adaptive control of nonlinear systems,” IEEE Transactions on
Automatic control, vol. 48, no. 4, pp. 590–606, 2003.

[44] L. Wang, F. Forni, R. Ortega, Z. Liu, and H. Su, “Immersion and invariance
stabilization of nonlinear systems via virtual and horizontal contraction,”
IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 4017–4022, 2017.

[45] W. Lohmiller and J.-J. Slotine, “On contraction analysis for non-linear sys-
tems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.

[46] J. Jouffroy and T. I. Fossen, “A tutorial on incremental stability analysis
using contraction theory,” Modeling, Identification and Control, vol. 31, no.
3, p. 93, 2010.

[47] P. Kokotovic, M Krstic, and I. Kanellakopoulos, “Backstepping to passivity:
Recursive design of adaptive systems,” in IEEE Conference on Decision and
Control, IEEE, 1992, pp. 3276–3280.

[48] H. K. Khalil, Nonlinear Systems. Prentice-Hall, New Jersey, 1996.
[49] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Con-

trol: A Lyapunov-Based Approach. Princeton University Press, 2011.



Bibliography 130

[50] M. Ryalat and D. S. Laila, “A simplified IDA-PBC design for underactuated
mechanical systems with applications,” European Journal of Control, vol. 27,
pp. 1–16, 2016.

[51] G. Viola, R. Ortega, R. Banavar, J. Á. Acosta, and A. Astolfi, “Total energy
shaping control of mechanical systems: Simplifying the matching equations
via coordinate changes,” IEEE Transactions on Automatic Control, vol. 52,
no. 6, pp. 1093–1099, 2007.

[52] M. Zhang, R. Ortega, Z. Liu, and H. Su, “A new family of interconnection
and damping assignment passivity-based controllers,” International Journal
of Robust and Nonlinear Control, vol. 27, no. 1, pp. 50–65, 2017.

[53] A. Donaire, R. Mehra, R. Ortega, S. Satpute, J. G. Romero, F. Kazi, and N.
M. Singh, “Shaping the energy of mechanical systems without solving partial
differential equations,” IEEE Transactions on Automatic Control, vol. 61, no.
4, pp. 1051–1056, 2016.

[54] K. Nunna, M. Sassano, and A. Astolfi, “Constructive interconnection and
damping assignment for port-controlled Hamiltonian systems,” IEEE Trans-
actions on Automatic Control, vol. 60, no. 9, pp. 2350–2361, 2015.

[55] A. Donaire, R. Ortega, and J. G. Romero, “Simultaneous interconnection
and damping assignment passivity-based control of mechanical systems using
dissipative forces,” Systems & Control Letters, vol. 94, pp. 118–126, 2016.

[56] J. J. Craig, Introduction to Robotics: Mechanics and Control. Pearson/Pren-
tice Hall, 2005.

[57] J Van Der Burg, R Ortega, J Scherpen, J Acosta, and H Siguerdidjane, “An
experimental application of total energy shaping control: Stabilization of the
inverted pendulum on a cart in the presence of friction,” in Proceedings of the
European Control Conference, IEEE, 2007, pp. 1990–1996.

[58] K. Fujimoto, K. Sakurama, and T. Sugie, “Trajectory tracking control of port-
controlled hamiltonian systems via generalized canonical transformations,”
Automatica, vol. 39, no. 12, pp. 2059–2069, 2003.

[59] H. Bai, M. Arcak, and J. Wen, Cooperative Control Design: A Systematic,
Passivity-Based Approach. Springer Science & Business Media, 2011.

[60] L. Valk and T. Keviczky, “Unified passivity-based distributed control of me-
chanical systems,” in 37th Benelux Meeting on Systems and Control, 2018.

[61] E. Nuño, C. I. Aldana, and L. Basañez, “Task space consensus in networks
of heterogeneous and uncertain robotic systems with variable time-delays,”
International Journal of Adaptive Control and Signal Processing, vol. 31, no.
6, pp. 917–937, 2017.

[62] T. Hatanaka, N. Chopra, M. Fujita, and M. W. Spong, Passivity-based control
and estimation in networked robotics. Springer, 2015.

[63] A. Franchi, C. Secchi, H. I. Son, H. H. Bulthoff, and P. R. Giordano, “Bilateral
teleoperation of groups of mobile robots with time-varying topology,” IEEE
Transactions on Robotics, vol. 28, no. 5, pp. 1019–1033, 2012.

[64] M. Angerer, S. Musić, and S. Hirche, “Port-hamiltonian based control for
human-robot team interaction,” in IEEE International Conference on Robotics
and Automation, IEEE, 2017, pp. 2292–2299.

[65] G. R. Luecke, “Haptic interactions using virtual manipulator coupling with
applications to underactuated systems,” IEEE Transactions on Robotics, vol.
27, no. 4, pp. 730–740, 2011.



Bibliography 131

[66] D. Lee, “Distributed backstepping control of multiple thrust-propelled vehi-
cles on a balanced graph,” Automatica, vol. 48, no. 11, pp. 2971–2977, 2012.

[67] A. Abdessameud, I. G. Polushin, and A. Tayebi, “Motion coordination of
thrust-propelled underactuated vehicles with intermittent and delayed com-
munications,” Systems & Control Letters, vol. 79, pp. 15–22, 2015.

[68] H. Wang, “Second-order consensus of networked thrust-propelled vehicles on
directed graphs,” IEEE Transactions on Automatic Control, vol. 61, no. 1,
pp. 222–227, 2016.

[69] J. Acosta, M. Sanchez, and A. Ollero, “Robust control of underactuated aerial
manipulators via IDA-PBC,” in IEEE Conference on Decision and Control,
IEEE, 2014, pp. 673–678.

[70] D. T. McRuer and H. R. Jex, “A review of quasi-linear pilot models,” IEEE
Transactions on Human Factors in Electronics, no. 3, pp. 231–249, 1967.

[71] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and co-
ordinated control of groups,” in IEEE Conference on Decision and Control,
IEEE, vol. 3, 2001, pp. 2968–2973.

[72] Y.-H. Liu, Y. Xu, and M. Bergerman, “Cooperation control of multiple manip-
ulators with passive joints,” IEEE Transactions on Robotics and Automation,
vol. 15, no. 2, pp. 258–267, 1999.

[73] J. Acosta, R. Ortega, A. Astolfi, and I. Sarras, “A constructive solution for
stabilization via immersion and invariance: The cart and pendulum system,”
Automatica, vol. 44, no. 9, pp. 2352–2357, 2008.

[74] L. Wang, F. Forni, R. Ortega, Z. Liu, and H. Su, “Immersion and invariance
stabilization of nonlinear systems via virtual and horizontal contraction,”
IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 4017–4022, 2017.

[75] E. Nuño and R. Ortega, “Achieving consensus of Euler-Lagrange agents with
interconnecting delays and without velocity measurements via passivity-based
control,” IEEE Transactions on Control Systems Technology, 2017.

[76] E. Nuño, R. Ortega, B. Jayawardhana, and L. Basañez, “Coordination of
multi-agent Euler–Lagrange systems via energy-shaping: Networking improves
robustness,” Automatica, vol. 49, no. 10, pp. 3065–3071, 2013.

[77] A. van der Schaft and D. Jeltsema, “Port-Hamiltonian systems theory: An
introductory overview,” Foundations and Trends® in Systems and Control,
vol. 1, no. 2-3, pp. 173–378, 2014.

[78] L. Valk and T. Keviczky, “Distributed control of heterogeneous underactu-
ated mechanical systems,” in Proceedings of the Conference on Distributed
Estimation and Control in Networked Systems, IFAC, 2018 (Submitted).

[79] M. Bürger, D. Zelazo, and F. Allgöwer, “Duality and network theory in
passivity-based cooperative control,” Automatica, vol. 50, no. 8, pp. 2051–
2061, 2014.


	Dedication
	Abstract
	Publications
	Contents
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Report Overview
	1.4 Terminology and Notation

	Modeling and Control of a Single UnderactuatedMechanical System
	2 Modeling Simple Mechanical Systems
	2.1 Energy and Input Forces
	2.2 Lagrangian Equations of Motion
	2.3 Hamiltonian Equations of Motion
	2.4 Passivity and Stability
	2.5 Practical Aspects of Selected System Model

	3 Passivity-Based Control by Interconnectionand Damping Assignment (IDA-PBC)
	3.1 Energy Shaping for Setpoint Tracking
	3.2 Derivation of the Control Law and Matching Conditions
	3.3 Cooperative and Local Goals
	3.4 Solutions for the Fully-Actuated Case
	3.5 Solutions for Selected Underactuated Systems
	3.6 IDA-PBC Solutions Satisfying Conditions for Cooperation
	3.7 Practical Aspects of IDA-PBC
	3.8 Relation to Controlled Lagrangians


	Modeling and Control of Distributed Systems
	4 Modeling Networks of Mechanical Systems
	4.1 Information Exchange on Graphs
	4.2 Generalized Local and Group Control Objectives
	4.3 Selected Properties of Undirected Graphs

	5 Existing Passivity-Based Distributed Control ofFully-Actuated Systems: A Unified Approach
	5.1 Local and Distributed Control Objectives
	5.2 Equivalent Single-Agent Behavior
	5.3 Unified Distributed Control Scheme
	5.4 Existing Results as Special Cases
	5.5 Methodological Differences


	Distributed Control of Underactuated andHeterogeneous Mechanical Systems
	6 The Distributed IDA-PBC Problem
	6.1 A Network of Mechanical Systems as one System
	6.2 Desired Closed Loop Network Dynamics and Interaction
	6.3 Distributed Control Law and Matching Conditions
	6.4 Distributed Potential and Kinetic Energy Shaping
	6.5 Top-Down and Bottom-Up Distributed Control

	7 Solutions for the Fully-Actuated Case
	7.1 Distributed Control Law
	7.2 Potential Energy Shaping for Coordinate Formations
	7.3 Potential Energy Shaping for Task-Space Formations

	8 Solutions for Selected Underactuated Systems
	8.1 Distributed Kinetic Energy Matching Condition
	8.2 Distributed Potential Energy Matching Condition
	8.3 Control Objectives and the Closed-Loop Potential Energy
	8.4 Distributed Damping Condition
	8.5 Distributed Control Laws
	8.6 Relation to Stability Result
	8.7 Relation to the method of controlled Lagrangians


	Interaction with Underactuated Distributed Systems
	9 Input Matrix Shaping for Control by Interconnection and Human Interaction
	9.1 Original and Desired Dynamics
	9.2 Control Law and Matching Conditions
	9.3 Control by Interconnection
	9.4 Input Shaping for Human-Machine Interaction

	10 Interacting With Distributed Systems
	10.1 Control Objectives in the Task Space
	10.2 Dynamics with a Haptic Control Interface
	10.3 Human Input Matching Condition
	10.4 Distributed Control Law
	10.5 Interaction at Micro and Macro Scale
	10.6 Extension to Remote Force Sensation


	Case Studies
	11 Cooperation Between Underactuated Systems
	11.1 Two equivalent planar UAV models
	11.2 Single-Agent UAV IDA-PBC Solution
	11.3 Formation Flying
	11.4 Controlled Landing on Cooperating Vehicle

	12 Task-Space Coordination and Human SupervisoryControl of Heterogeneous Mechanical Systems
	12.1 Flexible-Joint Manipulator Dynamics and Control
	12.2 Task-Space Coordination of Heterogeneous Systems
	12.3 Human Supervisory Control


	Conclusions
	13 Extensions of Distributed IDA-PBC
	13.1 Energy Shaping for Collision Avoidance and Constraints
	13.2 Control by Interconnection
	13.3 Distributed IDA-PBC and Observer Systems
	13.4 Energy-Transfer Control

	14 Summary and Conclusions
	14.1 Conclusions
	14.2 Discussion


	Appendix
	a Selected Derivations
	b Systemsim: A Python Multi-Agent Simulator
	Bibliography


