
Introduction
Design problems require a multiplicity of view-
points each distinguished by particular interests
and emphases. For instance, an architect is con-
cerned with aesthetic and configurational aspects
of a design, a structural engineer is engaged by
the structural members and their relationships,
and a building performance engineer is engaged
by the thermal, lighting, or acoustical perform-
ance of the eventual design. Each of these views
- derived from an understanding of current prob-
lem solution techniques in these respective
domains - require different representations of the
same entity. Even within the same task and by the
same person, various representations may serve

different purposes defined within the problem
context and the selected approach. Especially in
architectural design, the exploratory nature of the
design process invites a variety of approaches
and representations.

When exchanging data and information
between various participants, there is a need to
convert these into a format or representation that
is useful to the recipient. Such conversions are
often automated, extracting those parts of the
data or information that fit the requirements of the
recipient, and presenting these in an understand-
able way. Information that is not of explicit con-
cern to the recipient in his or her subsequent
manipulation or adaptation of the data may not be

328 eCAADe 20 [design e-ducation] Information Processes in Design. Session 8

Visualizing Representational Structures for
Improving Data Conceptualization

STOUFFS Rudi, CUMMING Michael

Faculty of Architecture, Delft University of Technology, The Netherlands
http://www.bk.tudelft.nl/users/stouffs/internet/

Design problems require a multiplicity of viewpoints each distinguished by particular
interests and emphases. Alternative viewpoints necessitate different representations of
the same entity, albeit a building or building part, a shape or other complex attribute.
Even within the same task and by the same person, various representations may serve
alternative purposes defined by the problem context and the selected approach.

Understanding a representational structure serves to comprehend its use within the
context of one’s own intent. This requires the visualization of the representation and
data, and the ability to manipulate and alter the data structure in order to explore its
composition and scope and compare it to what may be desired or required.

We report on an active research effort to provide a 3D graphical interface for the
manipulation of representational and data structures in terms of composition and
scope. The interface and system make use of a particular framework for representa-
tional flexibility. This additionally supports the integration of data functions into data
structures for the purpose of querying derived data.

Keywords: Representation, data visualization, data conceptualization.

retained in the conversion, even though it could
serve to clarify some aspects of the data to the
recipient. Instead, if given the ability to view the
information as presented by the author and to
interpret it in light of his or her own needs and
actions, the recipient may still take advantage of
this additional information.

The need to interpret a current representation
in light of subsequent activities also applies in the
process of a single actor, if different representa-
tions serve different stages or activities within this
process. Descriptions of computational design
approaches (e.g. by Greg Lynn, Lars Spuybroek,
and others) often articulate the choice of repre-
sentation to express ideas and methodologies.
Also, in the selection of software tools to assist a
certain activity, understanding the data represen-
tation of the tool may serve to comprehend and
conceive the functionalities and possibilities
offered by this tool, with respect to the user’s
intention.

To understand a representational structure
requires a visualization of this structure that dis-
tinguishes the individual entities and their compo-
sitional relationships. These entities and relation-
ships can be reasonably abstracted such as to be
able to compare different representations, and
data collections thereof (Stouffs and Krishnamurti
2002). Effectively understanding a representation
and its use within the context of one’s own intent
also necessitates the ability to manipulate and
alter the structure. This allows one to explore its
composition and scope and compare it to what
may be desired or required.

In this paper, we report on an active research
effort to provide a 3D graphical interface to repre-
sentational and data structures that allows for the
manipulation of these structures in terms of com-
position and scope. This research builds upon a
particular framework for representational flexibili-
ty.

Representational flexibility
Stouffs and Krishnamurti (2002) present a repre-
sentational framework, denoted sorts, that pro-
vides support for developing alternative represen-
tations of a same entity or design, for comparing
representations with respect to scope and cover-
age, and for mapping data between representa-
tions, even if their scopes are not identical. A sort
is defined as a complex structure of elementary
data types and compositional operators, and is
typically a composition of other sorts. Comparing
different sorts, therefore, requires a comparison of
the respective data types, their mutual relation-
ships, and the overall construction.

Alternative design representations can be
defined as variations on a given sort, by altering
the components or the composition. As an exam-
ple, consider a representation for a collection of
drawings given a sort that defines a single draw-
ing. By specifying a composition with a sort of
labels, under an object-attribute relationship, a
named collection of drawings is enabled similar to
a set of layers in a CAD application. Alternatively,
by specifying a composition with a sort of points
or rectangles, a layout can be represented for
these drawings. One step further, this sort can be
modified to enable drawings to relate to parts
within other drawings, allowing for detailing rela-
tionships to be specified in this layout.

Such flexibility in exploring design representa-
tions can give designers the freedom to develop
or adopt representations that serve their inten-
tions and needs, while at the same time these rep-
resentations can be formally compared with
respect to scope and coverage in order to sup-
port information exchange. Consider, as another
example, design information in the form of design
constraints and related information, e.g., for a
steel-framed building project (Lottaz, Stouffs, and
Smith, 2000; Stouffs and Krishnamurti, 2002). The
information consists, minimally, of a set of
authors, a set of constraints for each author, and

329eCAADe 20 [design e-ducation] Information Processes in Design. Session 8

a common set of variables with each variable
linked to the constraints defined over this vari-
able. An organization of the design information by
kind, i.e., constraints, variables, authors, and
other data, with entities linked as appropriate,
presents a straightforward and efficient way of
storing this information into a relational database.

In order to effectively support an actual
design session, the author’s design itself, i.e., his
or her design constraints, should form the focus
of the information organization. Other information
entities can be made accessible from these,
thereby clarifying each constraint’s context and
role in the design. Specifically, each constraint
specifies the variables affected; each variable, in
turn, specifies the constraints from other authors
that are defined over this variable; and each of
these constraints specifies its author. Links to
other data can be additionally provided. This rep-
resentational schema supports the user in evalu-
ating the effect of altering a constraint on the
design and whether such a change may interfere
with other constraints specified by the collabora-
tion partners.

Visualization of representational
structures
Exploring alternative design representations
necessitates an understanding of the representa-
tional structures that can only be achieved using
visual means. Figure 1 offers a VRML visualization

of design data from the steel-framed building
project represented using the latter schema
described above. The visual structure is an inter-
pretation only of the representational structure
and is, with the exception of the individual nodes,
independent of the information kinds.

As another example, DDDiver (Coomans and
Timmermans, 2001) presents a tool for the inter-
active visualization and editing of complex rela-
tional data sets, e.g., found in object-oriented
databases and product models. Its visualization is
based on the distinction between relations of dif-
ferent kinds and on interactive techniques in order
to explore large data sets. It emphasizes the dif-
ferent kinds of relations in order to improve the
understanding of the object model and its
instances. DDDiver is developed in part in
response to the needs of a CAD system for the
building and construction industry that is charac-
terized by an innovative design-information mod-
eling technique (Coomans and Timmermans,
2001; Coomans and van Leeuwen, 2001). As such,
DDDiver not only concerns the visualization of a
design object or database model to improve
understanding of the model, but also provides the
necessary interaction to build instance models,
define new object types, and add instance rela-
tions.

Supporting the exploration of alternative
design representations additionally requires the
ability to change representational structures, e.g.,

330 eCAADe 20 [design e-ducation] Information Processes in Design. Session 8

Figure 1. Snapshots of a
VRML visualization for the
steel-framed building proj-
ect: left, a view of the archi-
tect’s design constraints;
right, a view of the engi-
neer’s data space.

by adding and removing components, or altering
the compositional relationships. The latter may be
achieved simply by altering the relationship type,
e.g., between disjunctive and conjunctive, or
between co-ordinate and subordinate. To a more
complex extent, subordinate (object-attribute)
relations may be reversed, altering the sequence
of data types within the representational struc-
ture. The impact of such manipulations may be
hard to conceive, and simply allowing one to visu-
ally move components within the compositional
structure won’t help much. Instead, altering and
reversing object-attribute relations can also be
considered in an alternative way as an expression
of a different focus onto the data model. In an
object-attribute relationship, the focus is primari-
ly on the object. Reversing the relationship shifts
this focus to the original attribute.

Visually, such a change of focus can be
expressed by selecting a representational com-
ponent and pulling this component out of the
compositional structure. As a result, all composi-
tional relationships between the selection and the
remainder of the structure reduce to object-attrib-
ute relationships with the selection as the object.
Other changes may also result in an attempt to
maximize compatibility with the original represen-
tation and minimize data loss. We are extending
the VRML visualization in figure 1 to support such
manipulations. This will provide the user with an
enticing way for exploring alternative data repre-
sentations in order to seek particular answers or
otherwise query design representations.

Querying design information
Stouffs and Krishnamurti (1996) show how a query
language for querying design information can be
built from basic arithmetic operations and geo-
metric relations that are defined as part of an
extensible representational model for weighted
geometries. These are augmented with opera-
tions derived from techniques of counting, pattern

matching, and rules for composing more complex
and versatile geometric and non-geometric
queries. For example, by augmenting networks of
lines that are represented using plane segments
or volumes with labels as weights, and by com-
bining these augmented geometries under the
operation of sum, as defined for the representa-
tional model, colliding lines specifically result in
geometries with more than one label. These colli-
sions can easily be counted, while the labels of
each geometry specify the colliding lines and the
geometry itself specifies the location of the colli-
sion (Stouffs and Krishnamurti, 1996).

The representational framework of sorts
extends on this model for weighted geometries.
Firstly, it does not emphasize the use of geome-
tries as basic entities with weights as attributes,
but considers all kinds of entities equal, allowing
even the specification of geometries as attributes
to weights. Secondly, it considers a much broad-
er variety of data kinds, including data functions.
Data functions specify both a functional descrip-
tion and a result value; the result value is auto-
matically recomputed using the functional
description each time the data structure is tra-
versed, e.g., when visualizing the structure. Data
functions apply to a specified sort, which itself
may be a data function. This sort must be related
to the data function’s sort within the composition-
al structure under a sequence of one or more
attribute relationships, with restrictions.

Data functions can introduce specific behav-
iors and functionalities into representational
structures, e.g., for the purpose of counting.
Consider, for example, a composition of two sorts
under an object-attribute relationship where the
attribute sort specifies a cost to the object sort.
Then, by augmenting the composition with a sum
function, applied to the cost sort, as the top enti-
ty in the attribute hierarchy, the value of this func-
tion is automatically computed as the sum of all
cost values. Binary functions, or compositions

331eCAADe 20 [design e-ducation] Information Processes in Design. Session 8

thereof, can be used to compute more complex
derivations, such as the sum of all cost values
multiplied by the respective sizes of the object
entities. If in a larger representational structure,
these object entities are themselves the attributes
to other entities, possibly serving as type or clus-
tering information, moving the data functions
within the compositional structure, by altering the
representational structure, will automatically alter
the scope of the function and thus the result. This
presents another incentive for the visual manipu-
lation of sorts.

References
Coomans, M. and Timmermans, H.: 2001,

DDDiver: 3D interactive visualization of entity
relationships, in D. Ebert, J.M. Favre and R.
Peikert (eds.), Data Visualization 2001,
Springer, Vienna, pp. 291–299.

Coomans, M. K. D. and van Leeuwen, J. P.: 2001,
Abstract but tangible, complex but manage-
able, in K. Nys, T. Provoost, J. Verbeke and J.
Verleye (eds.), AVOCAAD Third International
Conference, Hogeschool voor Wetenschap en
Kunst, Brussels, pp. 50–59.

Lottaz, C., Stouffs, R. and Smith, I.: 2000,
Increasing understanding during collaboration
through advanced representations, Electronic
Journal of Information Technology in
Construction, 5, 1–25.
[www.itcon.org/2000/1/]

Stouffs, R. and Krishnamurti, R.: 1996, On a
query language for weighted geometries, in O.
Moselhi, C. Bedard and S. Alkass (eds.), Third
Canadian Conference on Computing in Civil
and Building Engineering, Canadian Society
for Civil Engineering, Montreal, pp. 783–793.

Stouffs, R. and Krishnamurti, R.: 2002 (in press),
Representational flexibility for design, in J.S.
Gero (ed.), Artificial Intelligence in Design ’02,
Kluwer Academic, Dordrecht, Netherlands.

332 eCAADe 20 [design e-ducation] Information Processes in Design. Session 8

