
Adversarial Examples as a defense
against Side­Channel Attacks
A novel approach for countermeasure design

Alexandros Korpas Kamarianos

Te
ch
ni
ca
lU
ni
ve
rs
ity
of
D
el
ft

Adversarial Examples as a defense
against Side­Channel Attacks
A novel approach for countermeasure design

by

Alexandros Korpas Kamarianos

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Science

at the Delft University of Technology,
to be defended publicly on July 14, 2021 at 10:00 AM.

Student number: 4907167
Supervisor: Dr. S. Picek, TU Delft
Thesis committee: Prof.dr.ir. R.L. Lagendijk, TU Delft

Dr. S. Picek, TU Delft
Dr. J. Urbano, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Over the last decades, side­channel attacks (SCAs) have been proven as a substantial weakness of
cryptographic devices, while the recent growth of deep learning (DL) dramatically improved the perfor­
mance of SCA. More and more researches present ways to build lightweight deep neural network (DNN)
models that can retrieve the secret encryption key by analyzing a few power traces of the captured
devices. In the meantime, traditional countermeasures are rendered more or less ineffective against
these sophisticated SCA.

This research aims to present a novel approach in building SCA countermeasures using adversarial
examples, cleverly crafted inputs that trick DNN models and force them to misclassify. As modern
SCAs rely on DNN models, an adversarial­based countermeasure could alter the side­channel leakage
so that the attacking model cannot identify the correct key. To investigate this approach, we add
artificial adversarial noise on an unprotected dataset using evolutionary computation techniques and
see how SCAs are affected. We present different methods on how this noise can be designed and
how the different parameters of each method affect its performance. Our results indicate that an
adversarial­based countermeasure can decrease sufficiently the performance of the attack.

Furthermore, we compare our adversarial­based countermeasures with traditional countermeasures.
We show that our proposal can provide equivalent or better protection in some cases, while it presents
worse performance than others. Through our systematic research, we identify the reasons behind this
weakness and find solutions for future work.

Additionally, we investigate how such a countermeasure can perform against non­profiled SCAs.
We show that our adversarial­based countermeasure is effective against this specific family of SCAs,
even though it is designed against DNN­based attacks. Comparing this performance to traditional SCA
countermeasures, we see that our proposal can be an alternative to noise­based countermeasures,
while it fails to provide better security compared to time­based countermeasures.

iii

Preface

Conducting a master’s thesis during the COVID­19 was the most challenging period I have encountered.
Nevertheless, this journey was something more than rewarding, growing academically and personally.
Starting with very little knowledge about hardware security, side­channel attacks, and deep learning, I
learned so much about these topics that evolved me as potential security professional. Most importantly,
I had the chance to understand more about myself and appreciate the importance of well­being and
personal relationships. In this period, there have been many people who helped and supported me,
and I would like to take the opportunity to thank them on record.

First, I would like to thank Stjepan for supervising this project. Being always available when I need
him, he provided me with guidance on approaching this topic. His advice and insights helped me to
get through all the difficulties that I have encountered. A big ”thank you” for being my supervisor.

Second, I would like to thank people for the AISy Lab for helping me in many phases of this research.
Lichao, Guilherme, and Luca, I am genuinely grateful for supporting me in any possible way.

Next, I would like to thank all the friends I have made the last three years, during my studies. I
could not miss mentioning Fiske, Stefanos, and Chris, who I worked with in many courses and made
this journey enjoyable.

Last but not least, I want to thank my family and my girlfriend. Their constant support helped me
to get through this challenging period. Everything would be much harder if their were not next to me.
Thank you for everything.

Alexandros Korpas Kamarianos
Delft, July 2021

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 1
1.3 Outline . 2

2 Background 3
2.1 Cryptography . 3

2.1.1 Advanced Encryption Standard . 4
2.2 Evolutionary Computation . 4

2.2.1 Differential Evolution . 5
2.3 Machine Learning . 6

2.3.1 Deep Learning. 6
2.3.2 Adversarial Examples . 10

2.4 Side­channel attacks . 11
2.4.1 Leakage Models . 12
2.4.2 Non­profiled Attacks . 13
2.4.3 Profiled Attacks . 13
2.4.4 Performance Metrics . 14
2.4.5 Countermeasures . 14

2.5 ASCAD . 16

3 Related Work 17
3.1 Side­channel attacks based on deep learning . 17
3.2 Adversarial­based countermeasures . 18
3.3 Research Questions . 18

4 Countermeasure Implementation 21
4.1 Notation . 21
4.2 Setup . 22

4.2.1 Feature selection and dataset extraction . 22
4.2.2 Selection of Attacking Models . 23

4.3 Design of adversarial­based countermeasures . 26
4.3.1 Methods . 27
4.3.2 Experimental Process . 28
4.3.3 Results . 30
4.3.4 Conclusions . 35

5 Performance compared to existing countermeasures 37
5.1 Motivation . 37
5.2 Simulation of protected datasets. 37

5.2.1 Hiding countermeasures . 38
5.2.2 Masking techniques . 40

5.3 Results . 40
5.3.1 Experimental process . 40
5.3.2 Hiding countermeasures . 42
5.3.3 Masking countermeasures . 51

5.4 Conclusions . 54

vii

viii Contents

6 Performance against non­profiled side­channel attacks 55
6.1 Motivation . 55
6.2 Protection against non­profiled SCA . 56

6.2.1 Experimental process . 56
6.2.2 Results . 56
6.2.3 Conclusions . 61

6.3 Comparison with existing countermeasures . 63
6.3.1 Experimental Process . 63
6.3.2 Results . 63
6.3.3 Conclusions . 67

7 Conclusion 69
7.1 Answering our Research Questions . 69
7.2 Scientific Contributions . 70
7.3 Future Work. 70

Bibliography 73

A Fine­tuning 81
A.1 MLP architecture . 81

A.1.1 Architecture hyperparameters . 81
A.1.2 Training hyperparamaters . 82

A.2 CNN architecture . 83
A.2.1 Architecture hyperparameters . 83
A.2.2 Training hyperparamaters . 86

B L2 norms of generated datasets 89

C Attacking models 91
C.1 MLPbest . 91
C.2 CNNbest . 91
C.3 CNNRijsdijk . 92

C.3.1 ID model . 92
C.3.2 HW model . 92

C.4 MLPWu . 92
C.4.1 ID model . 92
C.4.2 HW model . 93

1
Introduction

1.1. Motivation
Through the last decades, embedded devices are becoming a big part of our daily life. Fitness trackers,
smart cards, and digital locks are only a few examples that almost anyone uses daily. Usually, these de­
vices act as an identification key, exchange sensitive information with other devices or handle essential
operations, like payments. As malicious entities often target them, they need to perform cryptographic
operations to provide the required security level. At the same time, these devices commonly have
limited resources. Their constant adoption in our lives and their limitations stimulate the academic
community to research secure and efficient cryptographic algorithms for these devices.

An encryption algorithm commonly used by embedded devices is the Advanced Encryption Standard
(AES). AES is a symmetric encryption algorithm that is considered secure, as the known cryptanalytic
attacks can not recover the full encryption key in a timely manner [78]. However, it is shown that
AES implementations are vulnerable to side­channel attacks (SCAs) [5]. This family of attacks does
not focus on the algorithm itself but aims to exploit leakages of the running device, such as power
consumption or electromagnetic emissions of the microprocessor during the encryption algorithm’s
execution. These attacks are usually divided into non­profiled and profiled attacks. In the former case,
the attacker analyzes the leaked information directly from the target device and tries to recover the
encryption key. In the latter case, the attacker first builds a profiler trained to successfully attack a
clone device, identical to the target device. When it is time to attack the target device, the attacker
can retrieve the encryption key by capturing and analyzing less information from the target device. As
these attacks can be practical and surprisingly cheap to perform [22], various countermeasures have
been proposed to make the attack harder by providing higher defense or forcing the attack to acquire
significantly more leaked information to succeed.

In the meantime, the evolution of deep learning has been proven as a potent tool for various applica­
tions. A properly trained deep neural network (DNN) can solve quickly and reliably many classification
problems, such as image and text recognition [70, 81], fraud detection [65, 82], spam filtering [14, 85],
and regression problems, like traffic prediction [54, 86] and product recommendations [80, 80]. There­
fore, it is not surprising that the adaptation of deep learning techniques in the profiled side­channel
improved their performance majorly.

As the interest around the deep neural networks is high and the reasons behind their remark­
able performance are not fully clear, the academia and malicious entities actively explore in­depth its
strengths and weakness. Szegedy et al. [77] presented an exciting discovery: the so­called adversarial
examples, namely input that is intentionally designed to make a machine learning model mispredict.
Usually, adversarial examples are generated by adding small but cleverly crafted perturbations to the
network’s original input. Therefore, the human eye can barely distinguish the difference between the
two inputs, while the deep neural network fails to predict the correct class/value.

1.2. Research Questions
If we connect dots, an appealing observation emerges intuitively. While the application of the deep
neural networks in the profiled SCA rendered the current countermeasures less effective, a novel

1

2 1. Introduction

adversarial­based countermeasure could be a promising alternative. The main questions that we iden­
tify are the following:

RQ1: Can an adversarial­based countermeasure be designed so that DNN­based side­
channel attacks become impractical regarding the observations needed for secret
key retrieval?

RQ2: What is the added value of using our proposed countermeasure compared to exist­
ing SCA countermeasures?

RQ3: Can this adversarial­based countermeasure provide security against non­profiling
side­channel attacks too?

Implementing an adversarial­based countermeasure is by itself an important contribution. On the
one hand, it can force the DNN classifier to mispredict the key, providing solid defense. At the same
time, this countermeasure could possibly work against non­profiled SCAs, even though it is designed
for DNN­based side­channel attacks. Our ultimate goal is to compare the provided security by an
adversarial­based countermeasure with that of existing countermeasures.

1.3. Outline
The following chapters present our research on the above research questions. First, chapter 2 exhibits
the relevant background knowledge required for the comprehension of this report. Then, in chapter 3,
we show previous work related to our topic, and we formulate our research questions and subquestions.
In chapters 4 to 6, we present our experiments and conclusions of our research. Last, we summarize
our conclusions and contributions in chapter 7, giving some ideas on how this project could be used
for future research.

2
Background

This chapter provides background information for this research project. First, we present the basic
cryptography concepts, focusing on the current encryption standard (AES). Next, we present the evo­
lutionary computation and the differential evolution algorithm. Followingly, the concepts of machine
learning, deep learning, and adversarial examples are explained. Furthermore, we present the side­
channel attacks, which is the research area of this project. Last, we give a short overview of the used
datasets for our experiments.

2.1. Cryptography
The term cryptography originates from the Ancient Greek words κρυπτός, which can be translated as
secret or hidden, and γράφειν, which means to write, and is about constructing protocols that protect
the confidentiality, the integrity, and the authenticity of sensitive information. While the first cryptog­
raphy schemes were invented in ancient times, cryptography was majorly advanced during the 20th
century; first because of the high demands of private communication during World War I and World
War II, and then because of the rapid technological evolution and the advance of computational re­
sources. Nowadays, cryptography is an essential component of secure digital communications ensuring
the confidentiality and the integrity of transmitted information throughout the internet [19].

Cryptography consists of two main processes; encryption and decryption. The former transforms a
readable message (plaintext) into an incomprehensible one (ciphertext), usually by following a series
of mathematical operations. At the same time, the latter is the reserve process where the ciphertext is
transformed back to the initial message [71, p. 119]. These two processes, especially the second one,
require a secret key so that a third party, usually called an adversary, cannot retrieve the initial message.
According to the number of the used keys, we define two main cryptography schemes; symmetric­key
cryptography and asymmetric­key cryptography [71, p. 119].

During symmetric­key cryptography, a sender, usually named Alice in the literature, encrypts a
message using a private key and sends it to the receiver, usually called Bob. Assuming that Bob is
aware of the private key, he can decrypt the received ciphertext and read the message. On the other
hand, during asymmetric­key cryptography, Bob generates a pair of keys; a public key used only for
encryption and one private key used only for decryption. When Bob shares the public key with Alice,
she can encrypt a private message that only Bob can decrypt using his private key.

In principle, both approaches might be considered mathematically secure –in practice, their secu­
rity relies on the used algorithm– as the adversary, often named Eve, cannot retrieve the transmitted
messages without knowing the private key [38]. However, the two approaches present significant
practical differences. Even though symmetric­key encryption is highly efficient computationally, it re­
quires an existing secure channel where Alice and Bob can exchange the symmetric private key. On
the other hand, asymmetric­key cryptography is very convenient as Bob can share his public key to
Alice without the need for a secure channel, but the mathematical nature of the asymmetric key adds a
computational overhead to the decryption phase [38]. Thus, a hybrid cryptography scheme is used in
practice, where Alice and Bob are using the convenience of asymmetric­key cryptography to agree on
a symmetric­key algorithm and a private key and, then, the efficiency of symmetric­key cryptography

3

4 2. Background

to exchange their messages.
An essential axiom in cryptography is Kerckhoffs’s principle [71, p. 179] which states that “a cryp­

tosystem should be secure even if everything about the system, except the key, is public knowledge”.
That axiom is very important for our project, too, as we will show later in this report that side­channel
attacks can retrieve the private key of cryptosystems that are considered mathematically secure.

2.1.1. Advanced Encryption Standard
The Advanced Encryption Standard (AES) is an encryption standard established by the U.S. National
Institute of Standards and Technology (NIST) in 2001 [23]. It is widely used for the encryption of
electronic data transmitted throughout the Internet. It is a subset of the Rijndael algorithm family,
developed by Vincent Rijmen and Joan Daemen, proposed to NIST’s AES selection competition in
which it was selected among fifteen other competing algorithms [15]. AES defines three encryption
algorithms, AES­128, AES­192, and AES­256, where the number on the name indicates the private
key’s bit size.

AES is a symmetric­key block cipher, where its input is in fixed­sized blocks of 128 bits. The algorithm
operates on a 4𝑥4 array of bytes called ”state” and initialized by the input block. AES consist of a certain
amount of rounds determined by the size of the key; ten rounds for AES­128, 12 rounds for AES­192,
and 14 rounds for AES­256. First, the algorithm uses the KeyExpansion operation, which derives
some 128­bit rounds keys –as many as the rounds of the algorithm plus one– using the cipher key
and a fixed key scheduling routine. During the rest of the algorithm, there are in total four primitive
operations that modify the last computed state in a certain way, that are described briefly below:

• SubBytes: a non­linear substitution step where each byte of the input state is replaced by
another byte using an 8­bit substitution table, usually called SBOX. This SBOX is derived by the
multiplicative inverse over 𝐺𝐹(28) and provides non­linearity to this operation.

• ShiftRows: a transposition step where the last three rows are shifted cyclically for one, two,
and three steps accordingly.

• MixColumns: a linear mixing operation that operates on the columns of the state, where the
four bytes of each state’s column is multiplied with a fixed 4𝑥4 array.

• AddRoundKey: each byte of the state is combined with a byte of the round key using bitwise
xor.

In total, the order of the executed operations is described followingly, and it is schematically pre­
sented in figure 2.1. First, before the first round, the algorithm executes the operations KeyExpan­
sion and AddRoundKey. Then, from the first round to the round before the last one, it repeats
cyclicly the operations SubBytes, ShiftRows, MixColumns, and AddRoundKey. Finally, during
the last round, the algorithm skips the operation MixColumns operations, and he only executes the
operations SubBytes, ShiftRows, and AddRoundKey.

The first key­recovery attack on full AES, namely when all rounds are completed, was presented
by Bogdanov et al. [4]. In this work, the authors designed a biclique attack that recovers the key
almost four times faster than a brute­force attack. More specifically, this attack requires 2126.2, 2190.2,
and 2254.6 operations to recover an AES­128, AES­192, and AES­256 key, respectively. These results
were improved later by Tao and Wu [78] to 2126.0, 2189.9, and 2254.3, accordingly, which is the best
known key­recovery attack so far against full AES. Since the acceleration of this attack is tiny, AES is
considered very secure from a mathematical perspective. However, as we will show in later sections,
AES is quite vulnerable to side­channel attacks.

2.2. Evolutionary Computation
Evolutionary computation is a family of algorithms inspired by the Darwinian evolution theory that com­
bine ”probabilistic and deterministic driving forces for solving optimization, classification and modeling
problems” [66]. Evolutionary algorithms have been extensively used for the optimization of many real­
world applications, such as local inventory routing [35], vehicle routing and scheduling [56], and task
scheduling [24].

2.2. Evolutionary Computation 5

Figure 2.1: High­level description of AES [11]

First, the evolutionary algorithms (EA) randomly generate an initial population of candidate solutions
(individuals). Then, this population is evolved using specific processes called mutation, recombination,
and selection. Finally, after some iterations, the candidate solutions are evolved toward the optimal
state. Below, we present the operation of these processes briefly.

Mutation Mutation operation refers to the biological mutation that happens naturally on a cell’s DNA
or RNA, usually during its reproduction. Similarly, in evolutionary computation, the EA mutates the
parameters of the population’s individuals by adding a random number.

Recombination Recombination (or crossover) operation refers to the biological process where two
organisms combine their genetic material to generate new offspring that contain genetic traits that
differ from their parent. In evolutionary computation, EA randomly combines the parameters of two
individuals to breed new candidate solutions.

Selection Selection refers to the natural selection or ”survival of the fittest” process. In evolutionary
computation, EAs use the objective function that has to be optimized to evaluate the fitness of the
candidate solutions. Then, they eliminate replacing the least­fit individuals of a population with the
ones generated by the mutation and crossover processes.

There are many subcategories and algorithms in the field of evolutionary computations. In this
project, we will use the Differential Evolution algorithm that is presented below.

2.2.1. Differential Evolution
Differential Evolution (DE) was firstly introduced by Storn and Price [75]. It is a global optimization
algorithm that is used for continuous and discrete optimization problems. In their work, the authors
introduce a new mutation technique called differential mutation. Then, they present several versions
of the DE algorithm that use different variations of differential mutation and recombination. In this
section, we use the classic DE (also called DE/rand/1/bin by the authors) [75, p. 209] as a black­box
algorithm for our optimization problems. Below, we present in detail how classic DE works.

6 2. Background

Problem statement We define a function 𝑓 ∶ ℝ𝐷 → ℝ (objective function) that has to be minimized.
Goal is to find a solution 𝑚 ∈ ℝ𝐷 that 𝑓(𝑚) ≤ 𝑓(𝑝) for all 𝑝 ∈ ℝ𝐷.

Parameter selection We choose the parameters 𝐶𝑟 ∈ [0, 1], 𝐹 ∈ [0, 2], 𝑁 ≥ 4. 𝐶𝑟 is called crossover
probability, 𝐹 is called differential weight, and 𝑁 is the population size.

Initialization We first initialize randomly all the population’s individuals within the search­space ℝ𝐷.

Execution step For each individual 𝑥 ∈ ℝ𝐷 (called target vector):

• We pick three different individuals 𝑎, 𝑏, 𝑐 ∈ ℝ𝐷 from the population at random (𝑎 is called base
vector).

• We pick a random index 𝑗𝑟𝑎𝑛𝑑 ∈ 1, 2, … , 𝐷.

• We generate a new individual 𝑢 ∈ ℝ𝐷 (called trial vector) as follows:

– We compute the a random mutant 𝑣 = 𝑎 + 𝐹(𝑏 − 𝑐)
– For 𝑗 ∈ 1, 2, … , 𝐷, we compute:

𝑢𝑗 = {
𝑣𝑗 if 𝑈(0, 1) ≤ 𝐶𝑟 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑
𝑥𝑗 otherwise

• If 𝑓(𝑢) ≤ 𝑓(𝑥), we replace the target vector 𝑥 in the population with the trial vector 𝑢.

Theoretically, we can repeat the execution step until the global minimum 𝑚 is found. However,
this is not doable in practice since DE cannot guarantee that the trial vector will become the global
minimum. Therefore, we usually run the DE algorithm for a certain number of iterations. As a result,
we consider that the returned value is close but not always equal to the global optimum 𝑚.

2.3. Machine Learning
The term ”Machine Learning” (ML) refers to the field of artificial intelligence where an algorithm extracts
knowledge from given data and learns how to perform a specific task[57]. Machine learning has
presented a remarkable performance in various tasks, such as speech recognition [18, 58], anomaly
detection [1], spam filtering [30], and medical prognosis and diagnosis [45]. In practice, ML algorithms
can identify patterns on a dataset that can be either labeled or unlabeled. In the former case, the ML
algorithm combines the given data and the labels to identify the patterns (supervised learning). In the
latter case, the ML algorithm extracts knowledge using only the given data (unsupervised learning).
This project focuses on supervised learning and, more specifically, its application to a specific type of
task called classification tasks.

In a classification task, the goal is to identify how a given input 𝑥, called a feature vector, and
consists of 𝑛 features (𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛), is mapped to a class 𝑦. This mapping is described by an
unknown function 𝑓 where 𝑦 = 𝑓(𝑥). The goal of the classification machine learning algorithms is
to build a function ̂𝑓 that returns a predicted class �̂� (�̂� = ̂𝑓(𝑥)) and approximates the function 𝑓.
The algorithm’s performance is measured using the accuracy metric that represents the percentage of
correct predictions (𝑦 = �̂�) over several predictions.

The way machine learning uses a dataset to solve a task differs from algorithm to algorithm. In
this project, we focus on a specific family of machine learning, deep learning. In the next section, we
present in detail how deep learning works. Last, we present a major weakness of the deep learning
(and machine learning) algorithms, the adversarial examples.

2.3.1. Deep Learning
In the last decade, deep learning has been rapidly developed and succeed in outperforming traditional
machine learning. Traditional ML algorithms suffer from handling high­dimensional, which results in an
exponential increase of the execution time. Therefore, a feature selection is a necessary preprocessing
step for these algorithms to decrease the dimensions of the input vector. At the same time, deep

2.3. Machine Learning 7

learning algorithms perform fast and scalable operations. As a result, deep learning achieves high
performance in a short amount of time without the need for a prior feature selection [27]. Deep
learning is widely used in various tasks, such as image recognition [20], autonomous driving [25], and
natural language processing [53].

Deep learning is inspired by the biological neural networks of the human brain. The fundamental
components of deep learning are called neurons, while a group of neurons is a called layer. A neuron is a
computational unit with 𝑚 inputs and an output and has a pair of trainable parameters; a weight vector
associated with each input and a bias. When a neuron receives an input signal 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚),
it uses its weight vector 𝑤𝑘 = (𝑤𝑘1 , 𝑤𝑘2 , … , 𝑤𝑘𝑚) and its bias 𝑏𝑘 (when applicable) to compute the
summation 𝑣𝑘 = ∑𝑚𝑖=1 𝑥𝑖𝑤𝑘𝑖 + 𝑏𝑘. Then, the result 𝑣𝑘 is passed through a non­linear function called
activation function 𝜙. The result of the output function is the output 𝑦𝑘 of the neuron (𝑦𝑘 = 𝜙(𝑣𝑙).
Figure 2.2 visually presents the structure of a single neuron.

Figure 2.2: Computation performed by a single neuron[32]

A structure of connected layers is called a neural network. Each layer’s neurons are connected with
neurons from another layer depending on the neural network’s architecture. The most common neural
network architectures are the multilayer perceptron (MLP) and convolutional neural network (CNN)
architectures.

In the rest of this section, we first present the different activation functions of the neurons used in
this project. Then, we present the MLP and CNN architectures. Finally, we present how deep learning
uses a dataset to extract knowledge during the training phase and tunes the trainable parameters of a
layer to build a robust neural network classifier.

Activation Functions
As explained above, a neuron first computes the weighted sum of the input signals and then adds
a bias. This process is entirely linear. At the same time, most of the classification problems are
non­linear. Therefore, neurons apply a non­linear function on this summation that introduces the non­
linearity property, which results in the neuron’s output. This non­linear operation is called the activation
function.

There are several activation functions. Below, we present the most common ones that are also
used in this project: the ReLU, ELU, SELU, sigmoid, tanh, and softmax functions.

Rectified Linear Unit (ReLU) The ReLU function is a simple activation function that returns the
input if it is positive or, otherwise, zero. Its mathematical definition is presented in equation 2.1.

𝑅𝑒𝐿𝑈(𝑥) = {0 if 𝑥 ≤ 0
𝑥 if 𝑥 > 0 = 𝑚𝑎𝑥(0, 𝑥) (2.1)

Exponential Linear Unit (ELU) Similar to ReLU, ELU returns the input if it is positive. However, for
negative inputs, ELU approaches smoothly −𝛼. Its mathematical definition is presented in equation 2.2.

8 2. Background

𝐸𝐿𝑈(𝑥) = {𝛼(𝑒
𝑥 − 1) if 𝑥 ≤ 0

𝑥 if 𝑥 > 0 (2.2)

Scaled Exponential Linear Unit (SELU) SELU is very similar to ELU, with the only difference that
it is scaled using a parameter 𝜆. Also, the 𝛼 and 𝜆 are fixed parameters determined by the input
distribution. For standard scaled inputs (mean 0, stddev 1), the values are 𝛼 = 1.6732, 𝜆 = 1.0507.
Its mathematical definition is presented in equation 2.3.

𝑆𝐸𝐿𝑈(𝑥) = 𝜆 {𝛼(𝑒
𝑥 − 1) if 𝑥 ≤ 0

𝑥 if 𝑥 > 0 (2.3)

sigmoid Sigmoid is an S­shaped curve with values in the range (0, 1), presented in equation 2.4.

𝜎(𝑥) = 1
1 + 𝑒−𝑥 (2.4)

Hyperbolic tangent (tanh) Hyperbolic tangent is another S­shaped curve with values in the range
(−1, 1). Its mathematical definition is presented in equation 2.5.

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (2.5)

Softmax Contrary to the other activation functions that use only the output of a single neuron,
softmax uses the output of all the neurons of the layer. It is used to scale the outputs of the layer’s
neurons so that they are all between zero and one, and their sum is one. It is usually used as the
activation function of the output layer in classification problems to convert the output of the hidden
layers to a probability for each class. Its mathematical definition is presented in equation 2.6.

𝜎(𝑥)𝑖 =
𝑒𝑥𝑖

∑𝑛𝑗=1 𝑒𝑥𝑗
(2.6)

Multilayer perceptron (MLP)
The architecture of an MLP model is standard. We logically divide the layers of the MLP model into
three categories: the input layer, the hidden layer(s), and the output layer. The input layer’s size (i.e.,
the total neurons) is equal to the feature vector’s size. Next, the hidden layers are fully connected;
namely, all the layer nodes are connected with nodes of the previous layer. In case that there is exactly
one hidden layer, the neural network is called a swallow. Otherwise, it is called a deep neural network
(DNN). Finally, the output layer is also a fully connected layer with a size equal to the number of class
classification classes. The structure of a small MLP neural network is presented in figure 2.3.

Figure 2.3: A simple MLP neural network

2.3. Machine Learning 9

Convolutional neural network (CNN)
CNN models have an input and output layer with the same specification as the MLP models. However,
the structure of the hidden layers is not standard. The minimum requirement for a model to be a CNN
model is that a least one convolutional layer [27, p. 321]. The rest of the hidden layers is usually a
combination of different types of layers. Below, we present the type of layers relevant to this project:
the convolutional, pooling, flatten, and fully connected layers.

Convolutional layer Unlike the fully connected layers, convolutional layers’ neurons are not con­
nected with all the neurons of the previous layer. Instead, they perform the convolution operation. As
presented in figure 2.4, the convolutional layer uses a small matrix with trainable parameters called
kernel or filter. Then, it takes the input, divides it into equally sized chunks, and computes the sum
of the element­wise product of the two matrices. An important parameter of the convolutional layer is
the stride, which is the step that the kernel slides for each convolution operation.

Figure 2.4: Example of a 2D convolution[87]

Pooling layer A convolution layer is usually followed by a pooling layer [27, p. 330]. The pooling
layer combines small chunks of the input’s features by computing their maximum (max pooling) or
average (average pooling) value. That allows the CNN model to be more generalized and more robust
to small changes of the input. In figure 2.5, we present examples of maximum and average pooling.

Figure 2.5: Example of max and average pooling[21]

Flatten layer As its name indicates, the flatter layer reduces the depth of the layer’s input to one. It
is usually used after the convolutional and pooling layers as they usually operate with multidimensional
vectors. In this way, the input is flattened and prepared to be processed by the next layers.

Fully­connected layer As presented in the MLP architecture, fully connected layers are those that
their neurons are connected with all the input features.

Training & Testing phases
As explained earlier, a classification problem aims to build a function ̂𝑓 that approximate the behavior
of an unknown function 𝑓. In deep learning, this function ̂𝑓 is represented by a DNN model. Upon its

10 2. Background

creation, the parameters of the model (neuron’s weight and bias) are randomly initialized. It is logical
that these random parameters are insufficient to approximate the function 𝑓 sufficiently. Therefore,
the model’s parameters need to be tweaked so that its predictions approximate the behavior of the
unknown function 𝑓. That can be achieved through the training process.

The training process of a DNN model is an optimization problem; we want to minimize the distance
between the functions 𝑓 and ̂𝑓. To achieve this, we use a loss function to measure this distance using
the model’s parameters. Then using an optimization algorithm called gradient descent (equation 2.7,
we can iteratively update the model’s parameters so that the loss is minimized. This optimization
algorithm uses a process called back­propagation that calculates the derivative of the loss function
with respect to trainable parameters. Then, the gradient descent algorithm subtracts the derivative
from the original parameters1. By repeating this process multiple times (epochs), gradient descent
succeeds in minimizing the loss function.

𝑤𝑛+1 = 𝑤𝑛 − 𝛾∇𝐿(𝑤𝑛) (2.7)

The parameter 𝛾 is called the learning rate and affects how big or small steps are the gradient
descent steps in each iteration. A common practice is to use an optimizer method that updates the
learning on each training epoch.

After the training phase, there is the testing phase. First, the model uses the input of a testing
dataset to make its predictions. Then, using the true labels of the testing dataset, the model’s accuracy
can be computed.

Hyperparameters
Next to the model’s parameters, another equally important factor for the model’s performance is its
hyperparameters. On the one hand, there are the architecture hyperparameters related to the neural
network structure (number of hidden, layer’s size, activation function, type­specific parameters). On
the other hand, there are the training hyperparameters related to the training process (epochs, learning
rate, optimizer).

Architecture hyperparameters are non­trainable and cannot change after the neural network is built.
At the same time, they are essential for the performance of the neural network. Therefore, there has
been a lot of research on hyperparameter optimization.

2.3.2. Adversarial Examples
Adversarial examples (AE) refer to specially crafted input designed in a way that looks normal to a
human but forces a machine learning model to misclassify. They have been firstly introduced by Dalvi
et al. [16] for traditional machine learning, while Szegedy et al. [77] presented their first application
against deep learning models.

Adversarial examples have to look like the original input. Thus, the added perturbation has to be
small. The 𝑙𝑝 distance metric is usually used to measure the added perturbation, which is presented in
equation 2.8. The most commonly used are the 𝑙0, 𝑙2, and 𝑙∞. The 𝑙0 metric represents the number of
changed features in the adversarial example. The 𝑙2 metric describes the euclidean distance between
the original input and the adversarial example. The 𝑙∞ metric represents the maximum change among
all the features of the adversarial example [88].

𝑙𝑝 = ‖𝑥‖𝑝 = (
𝑛

∑
𝑖=1
‖𝑥𝑖‖𝑝)

1
𝑝 (2.8)

The generation of an adversarial example is an optimization problem. The goal of this optimization is
to minimize the DNN’s prediction for the true class. Thus, an adversarial method uses an optimization
technique to distort the original input and force the DNN model to misclassify. In the rest of this
section, we present two adversarial example generation methods; the fast gradient sign method and
the one­pixel attack.

1A derivative of a function indicates the direction that the function increases. Thus, its negative shows the direction that function
decreases

2.4. Side­channel attacks 11

Fast gradient sign method
The most simple and fast adversarial example method is the fast gradient sign method (FGSM) pre­
sented by Goodfellow et al. [28]. In practice, FGSM uses the gradient descent method to compute the
gradients of the neural network and design an adversarial example using the equation 2.9, where 𝑥′
is the adversarial example, 𝑥 is the original input, 𝑦 is the original output, 𝜃 is the model’s parameters,
𝐽 is a loss function, 𝜖 is the magnitude of the added distortion.

𝑥′ = 𝑥 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥, 𝑦)) (2.9)
An example of this method is illustrated in figure 2.6. In this example, we see that the original

image is classified correctly as a panda. After adding a small noise that is not visible to a human eye,
the adversarial example is classified incorrectly as a gibbon.

Figure 2.6: An example of the FGSM method

One­pixel attack
Another interesting method for AE generation is the one­pixel attack presented by Su et al. [76]. In
this project, the author presents a method that changes only a single pixel of the original image to
design an adversarial example. The process to find which pixel needs to change and the final color is
a discrete optimization problem, as the pixel position is not continuous. For this reason, the authors
use the different evolution algorithms presented in section 2.2.1. In figure 2.7, we see some examples
from the original paper.

Figure 2.7: Examples of the one­pixel attack. The black label is the true class of the input, while the blue label is
the predicted class, alongside with the prediction confidence. [76]

2.4. Side­channel attacks
Side­channel attacks (SCAs) are a family of passive attacks where the attacker does not focus on weak­
nesses related to a targeted cryptosystem, but he uses information leaked by the running computing

12 2. Background

system in secondary channels. These channels can be electromagnetic emissions, power consumption,
timing information, or even sound generated by the targeted device. For the recovery of the full key,
side­channel attacks are following the divide­and­conquer approach, namely, each byte of the secret
key (subkey) is retrieved separately.

Side­channel attacks are mainly divided into two categories; the non­profiled and the profiled side­
channel attacks. In both categories, the targeted device is considered as an encryption oracle, i.e.,
the attacker can request from the cryptosystem to encrypt messages of his choice while he gathers
information from the leakage channel, for example, the power consumption of the microprocessor.
However, the main difference between the two categories is the way that this information is used for
the extraction of the secret key. Briefly, in the former category, the attacker uses a certain heuristic
function to analyze the acquisitions from the targeted device in addition to the known plaintext and
ciphertext to find key candidates. On the other hand, in the latter attacks, before the attacking phase,
the attacker uses a clone device that has the same technical specifications as the target devices to
create a profiling model. Since the attacker can manipulate the encryption key of the clone device,
he can train his profiling model to match the leaked information of his device with the various keys.
Then, using a small number of acquisitions from the targeted device, his profiling model can retrieve
the secret key.

Side­channel attacks are known to the scientific communities for years [43]. The advance of ma­
chine learning and, more significantly, deep learning have only improved their efficiency in the last
decade. At first, published works aimed DES, AES predecessor, but since the launch of the AES and
its wide adoption, AES has been heavily scrutinized and has been proven extremely vulnerable to side­
channel attacks that exploit the EM radiation or the power consumption of the device’s processor during
the encryption. In practice, these attacks exploit the non­linearity of the SubBytes operation in the
first round. Since the attacker can feed the cryptosystem with plaintexts of his choice, this non­linear
operation evinces the position of the operation on the captured observations and allows the attacker
to model the leakage according to the used plaintext and eventually retrieve the secret key. Due to
the popularity of these attacks, this project focuses on side­channel attacks on AES that attack at that
certain step of the algorithm.

The nature of this attack requires knowledge of the system and usually physical access to the device
so that the leaked information can be captured and analyzed for the extraction of the cryptosystem’s
secret key. As Kerckhoff’s principle demands that the security of a cryptosystem should rely exclusively
on the secrecy of the private key, all these requirements should consider public and, thus, these
leakages render side­channel attacks a serious threat of the modern implementations.

2.4.1. Leakage Models
The power consumption of electronic devices depends on two factors. First, there is the static power
consumption that is the power that the device demands to run and is relatively constant. Then, there
is the dynamic power consumption that occurs by processing data during the runtime. Every time the
processor needs to flip a bit from zero to one or vice versa, a small but significant current must charge
or discharge the data lines. Side­channel attacks aim to model the dynamic power consumption using
functions called leakage models.

A leakage model focuses on a specific point of the encryption algorithm where a register changes
from a state A to another state B and assumes that the leaked observations of the power consumption
are proportional to that transition. Regarding AES, side­channel attacks usually focus on the output
of the SBOX during the first round, usually called intermediate value. Depending on the used leakage
model, this value is mapped to a class representing the device’s leaked information.

The common leakage models used in the side­channel attacks are the identity (ID) model and the
Hamming Weight (HW). The ID model is directly related to the intermediate value, and, thus, it has 256
classes. On the other side, the HW model classifies the intermediate value depending on the amount
of one’s of its binary representation, and it is used mostly because of its small number of classes. As
the possible amount of ones are within the range [0, 8], this model has nine classes which decrease
the attack’s complexity. The significantly larger amount of classes of the ID model compared to the
HW model leads to more observations for constructing a strong leakage model. However, the ID model
is usually stronger as it provides higher precision. For these reasons, non­profiled attacks often use
the HW model as the attack needs to be fast, while profiled attacks are using the ID model since the
processed data are usually imbalanced.

2.4. Side­channel attacks 13

2.4.2. Non­profiled Attacks
Some of the very first non­profiled side­channel attacks that have been proposed for DES are the simple
power analysis (SPA) and differential power analysis (DPA) [42]. SPA relies on the visual interpretation
of the power consumption of the targeted device that can provide useful information about the order of
the execution of certain operations, such as repeating patterns that can reveal the number of iterations
of a for­loop. On the other hand, DPA performs statistical analysis on the observations taking advantage
of the data dependencies in the power consumption patterns [73]. With the introduction of AES, Brier
et al. [5] proposed the correlation power analysis (CPA) that extends the aforementioned attacking
methods by using them, and it is considered the most effective non­profiled attack on AES. The key
component of this attack is the Pearson correlation function presented in equation 2.10.

𝑟 =
∑𝑛𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

√∑𝑛𝑖=1(𝑥𝑖 − 𝑥)2(𝑦𝑖 − 𝑦)2
(2.10)

For a correlation power analysis, the attacker uses the target device to encrypt 𝑁 different plaintexts
and records the power consumption during each encryption. Then, using the divide­and­conquer
strategy, he attacks each byte of the key using the following approach:

1. For all the possible options of the subkey (candidates), the attacker:

(a) computes the modeled power consumption for each trace based on the selected leakage
model using the corresponding plaintext and the key candidates.

(b) computes the Pearson correlation between the modeled power consumption and the actual
power consumption for every tracepoint.

(c) sets as the correlation of the specific candidate the maximum observed correlation (absolute
value).

2. The attacker picks the candidate with the highest correlation for his guess.

3. The attacker repeats steps 1 and 2 to get the best candidates for each subkey.

4. The attacker constructs his guess for the full key using the best subkey candidates.

2.4.3. Profiled Attacks
Profiled attacks take advantage of the attacker’s knowledge regarding the specifications of the targeted
device and introduce a prior phase to the attacking phase, called the profiling or training phase. In
profiled attacks, the attacker builds a profiler using a clone device that runs the same encryption
algorithm on the same (or equivalent) hardware. According to Kerckhoff’s principle, these specifications
should be considered known, and the cryptosystem’s security should not rely on these.

Profiled attacks consist of two phases, the profiling phase and the attacking phase. During the
profiling phase, the attacker uses the clone device to encrypt plaintexts of his choice using keys, again,
of his choice that can be either constant or variable, while he captures the side­channel observations
(profiling traces). Using the profiling traces, he uses a learning algorithm to train a profiler who learns
how a trace should ”look like” for each class of the leakage model. Coming to the attacking phase,
where the key is unknown, the attacker uses the targeted device as an encryption oracle and encrypts
plaintexts of his choice, and captures the side­channel observations (attacking). As the attacker knows
the plaintext, he can predict the probability of each leakage model’s class for a given trace using the
trained profiler.

The main difference between the different types of profiled attacks lies in how the profiler is learned.
Below, we present briefly the most common learning algorithms used for the training of the profiler.

Template attacks Template attacks are one of the oldest profiled attacks, firstly introduced by Chari
et al. [10] in 2002. Template attacks describe the side­channel attack as a multivariate Gaussian distri­
bution problem and construct a probability density function using the captured traces that describes the
probability of each leakage model’s class based on the values of a small number of tracepoints (POIs).
The selection of the POIs can be made using various feature selection algorithms (sum of differences,
Pearson correlation, etc.) that are out of this project’s scope.

14 2. Background

Traditional Machine Learning As presented in section 2.3, machine learning algorithms present
remarkable performance on the classification problems in different domains such as image, sound,
and natural language processing. Therefore, many researchers used the most common classification
machine learning algorithms, such as Random Forest, Decision Trees, k­Nearest Neighbors, and Support
vector machines [33, 34, 49, 50, 60, 62]. Applying these classification algorithms to the side channel
domain is straightforward, as the training and testing phases are used for the profiling and the attacking
phases, respectively. The adaptation of classic machine learning into the side­channel analysis domain
improved the performance of the SCAs significantly by reducing the required traces to guess the correct
key [34, 59].

Deep Learning In general, statistical and machine learning algorithms suffer on scalability and need
to execute a feature selection algorithm in the preprocessing phase to keep the input dimensionality
low[51]. On the other hand, deep learning techniques can process larger input in a shorter time while
presenting better performance than their predecessors. Thus, the adaption of deep learning in the
side­channel analysis domain stands to reason. By mapping the training and testing phases with the
profiling and the attacking phases, respectively, the Deep neural networks (DNN) have been extensively
used in the last few years SCAs [6, 55, 61, 64]. Section 3.1 presents in detail the related work in the
application of deep learning in the side­channel domain.

2.4.4. Performance Metrics
To evaluate the performance of side­channel attacks, there are two main metrics; the guessing entropy
(GE) and the success rate (SR). For the computation, the evaluator performs the attack, but instead
of using the best candidate as a prediction of the secret subkey, he uses a guess vector, which is an
ordered list of all the candidates (leakage model’s classes) based on their correlation (for CPA attacks)
or their likelihood (for profiled attacks) in decreasing order. These metrics are usually presented in
plots where the x­axis represents the number of the used attacking traces and the y­axis the measured
metric. In this way, the evaluator can measure the performance of the attack in relation to the used
attacking traces. Even though these metrics refer to attack to the whole secret key, it is common that
the evaluator executes the performance evaluation only for one subkey under the assumption that the
results would be similar for the rest of the subkeys.

The GE and SR metrics were firstly defined mathematically under the SCA context by Standaert
et al. [74]. In this section, we knowingly avoid the formal definition and explain their meaning in
simple words, so it is more understandable to the reader.

Guessing entropy The guessing entropy describes the trials that an attacker needs to find the secret
(sub)key. The guessing entropy is equal to the average rank of the true (sub)key in the guess vector
over a relatively large number of attacks (usually 100). Rank is the position of the true (sub)key in the
guess vector after a single attack with starting from either 0 or 1 (in our project, we use the second
approach).

Success Rate The success rate describes the percentage of an attack to retrieve the correct (sub)key
with the first trial. To compute the success rate, the evaluator executes a relatively large number of
attacks (usually 100) and computes the percentage of those whose true (sub)key is placed first for the
guess vector.

2.4.5. Countermeasures
Since the first appearance of the side­channel attacks, there has been a lot of research on defensive
techniques that protect the secret key entirely or decrease the performance of the attack by increasing
the amount of the required attacking traces for the key retrieval. However, as we explain in sec­
tion 3.1, the introduction of deep learning techniques in SCAs decreased the performance of these
countermeasures significantly. The SCA countermeasures are divided into two families, hiding and
masking countermeasures, and presented below.

Hiding countermeasures
Hiding techniques are those that aim to decrease the side­channel leakage by altering the captured
observations in a way that decreases their correlation with sensitive information. These techniques

2.4. Side­channel attacks 15

affect the captured traces, they can often be simulated for research purposes by applying them a
posteriori in a clean dataset. Some of the most common hiding techniques that will concern us during
this particular project are presented below.

Gaussian noise The presence of Gaussian noise in observations is natural, as all the electronic
components in a device’s circuit and the measurement equipment can produce Gaussian noise. That
noise decreases the signal­to­noise ratio (SNR), decreasing signal processing algorithms’ performance
[17].

While this effect is negative in other domains, it is often used for security purposes in the side­
channel analysis domain. This is because the reduction of the SNR leads to the proportional drop of
the correlation between the captured power traces and the sensitive information. Hence, the attacker
usually needs to capture more observations from the targeted device to run a successful attack. This
countermeasure is implemented by the introduction of a Gaussian noise generator inside the device’s
microprocessor.

Desynchronization An important pre­processing step for side­channel attacks is synchronizing the
captured traces, namely the alignment of similar patterns on the time domain. That step aims to
align the same parts of the executed algorithm, increasing the correlation of the sensitive data and
improving the attack’s performance. For a successful synchronization, a reference point is required,
which is usually an easily detectable pattern of one trace. Nevertheless, the identification of such as
pattern is not always easy, mainly for two reasons. First, this pattern has to be easily distinguished
from others; otherwise, different steps of the algorithm –and thus different sensitive data– with low
correlation will be aligned together. Furthermore, these patterns have to be around at the same area
of the x­axis, as an exhaustive pattern matching across the whole length of each trace would forbid
the application of this pre­processing step in a large number of traces. Consequently, synchronization
of a dataset is not a trivia task, even in the case of an unprotected device.

Regarding the side­channel domain, one could exploit the complexity of synchronization and intro­
duces delays of arbitrary length before each execution of the encryption algorithm. That technique
is called desynchronization and, in essence, forces the attacker to execute the difficult and time­
consuming step of synchronization to perform a successful attack. To implement this countermeasure,
the defender introduces small arbitrary delays before each encryption [83].

Random delay interrupts (RDIs) Similar to the desynchronization technique, random delay inter­
rupts add randomness in the time domain of the traces. However, instead of adding a global delay to
every trace, the RDIs split the traces into fragments, and the random delay is placed locally in between
these fragments. Hence, the misalignment of similar patterns is increased, and the correlation of the
captured traces drops significantly [31]. This countermeasure is applied at the software level, where
the algorithm randomly decides to execute delay routines of arbitrary length during the execution of
sensitive parts.

Clock jitters A clock jitter is the natural deviation of the true periodicity of a microprocessor’s clock
from its theoretical frequency. However, they are also a classical hardware countermeasure against side­
channel attacks that aim to introduce randomness in the time domain of every point of the captured
traces. That leads to significant deformation of the clean trace and, as a result, to a proportional drop
in the correlation of the captured observations with the sensitive data [6].

Masking countermeasures
Masking techniques aim to decrease the side­channel leakage by applying a mask to the sensitive
parts of the encryption algorithms (intermediate values in case of AES). The application of the masks
randomizes the mapping of the sensitive information with the leakage [7, 13, 72]. A simple and popular
masking technique that provides security against first­order attacks, like those described above, is to
perform an XOR operation between the sensitive data and the mask. For example, in the case of AES,
the masked intermediate value for the 𝑖­th byte of the key/input can be computed as:

𝑚𝑎𝑠𝑘𝑒𝑑_𝑆𝐵𝑂𝑋 = 𝑆𝐵𝑂𝑋[𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑖⊕ 𝑟𝑜𝑢𝑛𝑑𝑘𝑒𝑦𝑖] ⊕𝑚𝑎𝑠𝑘𝑖 (2.11)

16 2. Background

That mask can be random, fixed, or rotated [3, 72, 79]. As a result, the attacker has to design
a leakage model that includes the mask, increasing the space complexity of the side­channel attack.
Furthermore, the defender can adopt masking techniques with multiple masks, providing higher­order
defense to his device [40, 68, 69]. More formally, the usage of 𝑁 masks provides 𝑁­order security
against the traditional attacking techniques described above. Consequently, the attack has to design a
𝑁 + 1­order attack, namely to recover each mask separately beside the secret key.

2.5. ASCAD
For this project, we use the ASCAD dataset [2, 64], a public dataset widely used by the SCA research
community. However, the extracted traces on the ASCAD dataset are protected using first­order mask­
ing. Thus, we use the raw dataset used to extract the ASCAD traces, which is also provided publicly
by the authors.

ASCAD uses a masked implementation of AES running on an ATMega8515 microprocessor. However,
the first two bytes of the mask are 0x00. That means that we can consider the first two bytes
unprotected and, using the ASCAD’s raw traces, we can extract an unprotected dataset.

The authors provide two different raw datasets. The first version consists of 60,000 traces (100,000
trace points each) where the key was constant during the whole acquisition process. The second version
consists of 300,000 traces (250,000 trace points each) where only 1/3 of the traces have the same
key, and the rest have a variable key. It is considered easier to attack a fixed key dataset rather than
a random key dataset. That happens because the registers that hold the secret key are not changing
during the execution, and, thus, the traces are cleaner. As a result, the attacker builds a strong profiler
that can break the specific key. However, this scenario is not realistic, as the attack does not know the
secret key during the training phase. Thus, he usually trains his profiler using a random key. Hence,
in our experiments, we use the version with the random key.

3
Related Work

This chapter aims to present the related work in academia, as well as the questions that this particular
project is about to examine. At first, we present how deep neural networks managed to overpower pro­
posed countermeasures against side­channel attacks and what is the direction of the current research
on DNN­based SCAs. Furthermore, we present works that have a similar direction to our project and
point the unanswered questions that motivate us to conduct our research.

3.1. Side­channel attacks based on deep learning
Classical machine learning techniques have been extensively used for side­channel attacks by [34, 36,
49, 59]. These works test how several ML classifiers, such as SVMs, Random Forest, and Naive Bayes,
are performing on SCAs, concluding that they can perform better than template attacks most of the time
in many different cases, e.g., when the traces are noisy. However, with the introduction of effective
countermeasures, such as the masked implementation of AES, the proposed attacks became more
time­consuming and thus less efficient [50]. These countermeasures increased the order of the attack;
namely, the attacker first needs to remove the mask and then recover the key, which usually requires
more power traces and more computational power for a successful attack. Hence, the researchers had
to appeal to other more powerful techniques.

With the significant advance of deep learning in the last decade, it stands to reason that the re­
searchers examined DL methods in the side­channel analysis domain. Gilmore et al. [26] were the first
that used an MLP to speed up the mask removal. Soon other works followed that showed that DNN­
based classifiers, such as CNNs and LSTMs, outperform traditional machine learning models [6, 55], as
these models can learn from the raw input and locate the most interesting features without the need of
prepossessing techniques. Interestingly, their results show that they retrieve the key directly without
prior mask profiling in the case of masking countermeasures [61].

Another win of the deep learning technique against traditional countermeasures for SCAs is pre­
sented in the work of Wu and Picek [83]. First, the authors simulated datasets by applying the most
common hiding countermeasures a posteriori to a clean dataset and show that the simulated datasets
are sufficiently protected against different side­channel attacks. Then, using a deep learning technique
called denoising autoencoder as a preprocessing step before the attack, they show that the effective­
ness of these countermeasures can be reduced and make the attack feasible.

A notable application of DNN in SCAs is the research of Kim et al. [41]. In this project, the authors
propose an attacking strategy where they add noise to a VGG­like architecture. More specifically,
after the first batch normalization of the input, they add gaussian noise with mean zero and standard
deviation 𝛼. This approach improves the performance of the attack significantly and reduces overfitting
that commonly happens during the training of the DNNs.

As the usage of DNN in SCAs appears to be promising, Prouff et al. [64] decided to release a
public dataset named ASCAD that could work as a standard reference between different researches,
similarly to the role of popular datasets on other domains such as the MNIST dataset on the image
recognition domain. In other words, this project aims to be a basis for comparing different DNN
models proposed by the research community by simply comparing their SCA performance metrics on

17

18 3. Related Work

the ASCAD. Furthermore, they propose two different DNN architectures, an MLP and a CNN, and they
tweak different hyperparameters at a time to maximize their performance. This particular research
mainly inspires the architecture of the DNN models and the discovery of their hyperparameters in our
work.

3.2. Adversarial­based countermeasures
Although adversarial examples for deep learning models were recently introduced in the research com­
munity [77], much research has been conducted on various domains and several scopes. Many works
are trying to explain the nature of their existence or their transferability [28]. Furthermore, several
projects are present different types of attacks [9, 44, 46]. Moreover, some projects present a detection
mechanism, namely to distinguish original input from adversarial examples [39, 52]. We can observe
a similar pattern in the works mentioned above; adversarial examples are investigated as a weakness
exploited from the attacker’s side for malicious purposes.

The first time, to the best of our knowledge, that adversarial examples were used for defensive
purposes was in the brief research conducted by Inci et al. [37]. The authors used Hardware Perfor­
mance Counters (HPCs) of the targeted CPU as a leakage channel, namely special purpose registers
that provide low­level information about the CPU, such as the number of cache hits and misses. These
observations allowed them to retrieve secret keys from various ciphers from the OpenSSL library by
using various ML and DNN classifiers. Then, they applied several methods adversarial methods to the
captured observations and generated adversarial examples. Their approach was reasonably effective,
according to their findings, as the attacker’s classifier failed to predict most of the time correctly. The
most interesting point of their work was their approach to the generation of adversarial examples. The
targeted device posses a classifier that constantly uses various defenses against adversarial examples.
Since this classifier is used for the generation of the perturbation, these defensive techniques result in
crafting powerful adversarial examples that can force the attacker’s classifier to misclassify.

Another work that proposed an adversarial­based countermeasure is the one by Picek et al. [63].
The authors designed an adversarial­based countermeasure that uses the gradient­based optimization
technique [8]. This countermeasure works as a noise generation device that operates in parallel with the
execution of the cipher and aims to alter the observed power traces of the device. For their tests, they
used power traces from a protected implementation of AES that uses a mask. As they wanted to test
their implementation on an unprotected dataset, they considered the mask known, and they removed
it by using it on the dataset labels. After the mask removal, they trained several models on the clean
training data and tested their performance on the testing data. Then, they used their adversarial­based
countermeasure to add small perturbation on the testing data and remeasured the performance of their
attacking model. Even though their results were remarkable and their countermeasure was effective
in all cases, their choice of using their countermeasure only on the testing data veers significantly
from the conventional threat model of profiled SCAs. As the attacker is supposed to train his attacking
model on an identical device to the targeted one, the perturbation generated by the adversarial­based
countermeasure should be applied to both training and testing data. In this particular project, we aim
to answer our question questions under that scope.

A different approach is presented by Gu et al. [29]. In their research, the authors tried to use
existing techniques for the generation of adversarial examples that change either the whole input or
a single feature, using the one­pixel attack technique [76]. However, both of their trials showed that
the countermeasure is ineffective. The attack’s performance remains the same when the distortion
is applied in both training and testing data. Hence, they followed a different strategy; they used
adversarial techniques to add noise instructions on the encryption algorithm’s machine code. However,
we consider unsatisfying their motivation on why their initial trials failed since they did not examine
these approaches in­depth. This particular project aims to dive into these approaches and look for
solutions that do not require changing the source code of the cipher but only cloak the leakage of the
device.

3.3. Research Questions
Revising the related work by academia, we identify some undiscovered directions that we would like
to explore. Thus, we formulate the following research questions that this particular project aims to
answer.

3.3. Research Questions 19

RQ1: Can an adversarial­based countermeasure be designed so that DNN­based side­
channel attacks become impractical regarding the observations needed for the se­
cret key retrieval?

RQ1.1: Which adversarial method can be used for such a countermeasure?
RQ1.2: What are the minimum parameters of that method so that the distortion is

minimal but the attack is still infeasible (or difficult enough)?

RQ1.3: How does an adversarial­based countermeasure designed to provide perfor­
mance against a specific attacking model perform against other attacking mod­
els (transferability)?

RQ2: What is the added value of using our proposed countermeasure compared to exist­
ing SCA countermeasures?

RQ2.1: How an adversarial­based countermeasure performs compared to existing de­
fensive techniques countermeasures?

RQ2.2: What are the advantages and disadvantages of using our proposed counter­
measure instead of existing techniques?

RQ3: Can this adversarial­based countermeasure provide security against non­profiling
side­channel attacks too?

RQ3.1: Does the adversarial­based countermeasure that is generated for DNN­based
SCAs protect against CPA attacks?

RQ3.2: Does this adversarial­based countermeasure provide any added value for non­
profiled attacks compared to existing SCA countermeasures?

In the following chapters, we will examine the above questions in depth. In particular, chapter 4
provides the answer for RQ1 by presenting the methodology for the development of our proposed
countermeasure, and the results of our experiments that show its effectiveness. In chapter 5, we
examine the RQ2 by comparing the performance of our proposal with well­known countermeasures
proposed by the research community. Chapter 6 presents how our adversarial­based countermeasure
performs in non­profiled attacks seeking an answer for our RQ3.

4
Countermeasure Implementation

This chapter aims to answer the first research question. First, we present the notation that we use
across this chapter, hoping to increase its readability. Second, we present the methodology of the
preliminary steps for our experiments, such as extracting the used dataset and the design of the DNN
models. Last, we present in detail how we implement our proposed adversarial­based countermeasure,
and we test its performance against DNN­based side­channel attacks.

4.1. Notation
This section aims to present the various notations used in this chapter. To describe our dataset, we
denote with 𝑋 our leakage observations (inputs) and with 𝑌 their labels. To represent the dimensions of
our observations, we use 𝑁 for the number of observations (traces) and 𝑀 for the sample size of each
observation (features or tracepoints). To indicate the observations in a certain time sample 𝑡, we use
the indexed variable 𝑋𝑡. Furthermore, we use the small letters 𝑥 and 𝑦 to denote a single observation
and label of our dataset, while the 𝑥′ represents an adversarial example. With 𝛿 we represent the
added perturbation on an observation 𝑥 and it holds that 𝛿 = 𝑥′ − 𝑥. Moreover, we denote with 𝑃 and
𝐾 the sets of plaintexts and keys used by the cryptosystem while the observations were captured. Both
of these variables have a size of 16 bytes, where each byte is defined in the domain 𝔹 ∶ {0, 1, … , 255}.
The indexed 𝑃𝑖 and 𝐾𝑖 represent a collection of all the 𝑖­th bytes of 𝑃 and 𝐾 accordingly. Last, the
secret key that our side­channel attacks are aiming to retrieve is indicated with 𝑘∗. A summary of
these notations is presented in table 4.1.

Notation Description
𝑁 Total observations
𝑀 Number of features per observation
𝑋 Dataset inputs, 𝑋 ∈ ℝ𝑁×𝑀
𝑌 Dataset labels
𝑥 Single observation 𝑥 ∈ ℝ𝑁×1
𝑦 Label for observation 𝑥
𝑥′ Adversarial example based on observation 𝑥
𝛿 Added perturbation so that 𝑥′ = 𝑥 + 𝛿
𝑃 Dataset’s plaintexts, 𝑃 ∈ 𝔹𝑁×16
𝐾 Dataset’s keys, 𝐾 ∈ 𝔹𝑁×16
𝑘∗ Secret key

Table 4.1: Notations

Furthermore, for the description of our models’ architecture, we use the name of the model fol­
lowed by a followed by a tuple with its hyperparameters. More precisely, we use the notations
MLP(𝑛layers, 𝑛units, 𝛼) and CNN(𝑛blocks, 𝑛filters,1, 𝑛kernels, 𝜏, 𝑛dense, 𝑛units, 𝛼) to describe MLP and CNN models
respectively. Similarly, we use the notation Training(𝑛epochs, 𝑏, 𝑂, 𝑙) to refer to the training hyperpa­

21

22 4. Countermeasure Implementation

rameters of each model. The interpretation of each hyperparameter will be explained extensively on
the corresponding chapter.

Last, we denote ordinary mathematical terms with their commonly used notation when it is possible.
For example, with the notation 𝑁(𝜇, 𝜎), we refer to the normal distribution with mean 𝜇 and standard
deviation 𝜎.

4.2. Setup
Before implementing our adversarial­based countermeasure and testing its performance, we need a
dataset with observations on AES’s unprotected version. This dataset will be the base for comparison;
we will modify it by applying our proposed adversarial­based countermeasure, and we will execute
DNN­based side­channel attacks. Ideally, we will see that the modified dataset that includes our pro­
posed countermeasure is more difficult to be attacked. That would confirm the effectiveness of our
proposal. Furthermore, we would like to test our models on different DNN architectures, as we want
our countermeasure’s effectiveness to be independent of the model that the attacker uses. Thus, we
need to define a set of models that will work as a reference for our experiments. The following sections
present our approach for the extraction of our dataset and selecting our reference models.

4.2.1. Feature selection and dataset extraction
Our experiments will be based on the ASCAD dataset [64]. However, as we want to run our experiments
on an unprotected AES implementation and the provided dataset contains features focused on the third
subkey, we need to extract a new dataset for our project. To do so, we will use the raw traces that
Prouff et al. [64] used to extract their dataset. These traces are captured from a masked AES­128
implementation (1/3 fixed key, 2/3 variable key) where the first two bytes of the mask are 0x00. That
allows us to consider the first two bytes of the key as unprotected (for more details on the raw and
ASCAD datasets, see section 2.5). In total, the dataset consists of 300, 000 observations, where each
one of those has a size of 250, 000 features. For a successful attack on the first subkey of the secret
key 𝑘∗, we need to find a target area that leaks information about the key’s first byte. We can do that
by performing correlation analysis.

Our goal is to detect areas on the captured observations correlated with the label, resulting from a
combination of plaintext and encryption keys. For our experiments, we choose to work with the identity
leakage model; thus, our labels are calculated using equation 4.1.

𝑌 = 𝐴𝐸𝑆_𝑆𝐵𝑂𝑋(𝑃0⊕𝐾0) (4.1)

Such detection can be done using Pearson’s correlation function (see equation 2.10). Applying this
formula on the observations 𝑋𝑡 of a certain time sample 𝑡 and the labels 𝑌 for the first subkey, we can
identify if a change of the label results in a similar change to the observation on that time sample; if
no, then the output would be close to 0. Any other value reveals a small or big correlation between
the two samples. Thus, repeating this for all the time samples of our observation, we can find areas
that present high correlation, which are the areas that we are interested in. A detailed description of
our correlation analysis for the first subkey is presented in algorithm 1.

Algorithm 1: Correlation analysis procedure on ASCAD’s raw traces
Input :𝑋 ∈ ℝ𝑁×𝑀, 𝑃 ∈ 𝔹𝑁×16, 𝐾 ∈ 𝔹𝑁×16
Output :corr ∈ ℝ1×𝑀

1 Initialize corr array with 𝑀 zeros.
2 𝑌 = 𝐴𝐸𝑆_𝑆𝐵𝑂𝑋(𝑃0⨁𝐾0)
3 for 𝑖 ← 0 to 𝑀 − 1 do
4 corr𝑖 ← |𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑋𝑖 , 𝑌)|
5 end for
6 return 𝑐𝑜𝑟𝑟

The correlation analysis results are displayed in figure 4.1a. It is visible that three areas present a
high Pearson correlation. We choose to attack the last area presented in higher resolution in figure 4.1b.
In particular, we select the 1, 000 features in the interval [165600, 166600), as it looks the densest area.

4.2. Setup 23

Even though the dataset with the raw traces provides 300, 000 observations, for our purposes, we select
50, 000 observations with a variable key for our training dataset and 10, 000 traces with a fixed key for
our testing dataset. We consider that the training size is sufficient for an attacker to build a profiling
model, while an attack should not be considered feasible if the attacker needs more than 10, 000 to
retrieve the key. For the labels of our dataset, equation 4.1 is used.

(a) Full input size (b) Zoom at the interval [163000, 168000)

Figure 4.1: Correlation analysis for the first subkey

Figure 4.2 presents the performance of an MLP attacking model (we will explain its architecture
further in the next section) on our dataset. For the attack –and for any attack that we execute in
this particular project, we first normalize the profiling and attacking data before the training and test­
ing phase. This preprocessing step speeds up the training and increases the chances of finding a
global optimum [48]. As a normalization technique, we use the z­normalization method presented in
equation 4.2 with the mean and the standard deviation of observations 𝑋 to be denoted as �̄� and 𝑆,
respectively.

𝑍 = 𝑋 − �̄�
𝑆 (4.2)

Our model succeeds in achieving 𝐺𝐸 = 1 and 𝑆𝑅 = 100% using three attacking traces. Ideally, we
would like to have a successful attack using more traces from our testing dataset. That would give us
a better resolution when we compare our adversarial­based countermeasure performance. A common
practice to achieve that is to add Gaussian noise to our observations. To be specific, we modify our
observations 𝑋 by adding random values from a Gaussian distribution with a mean equal to zero and
standard deviation 𝜎, namely:

𝑋∗ = 𝑋 + 𝑁(0, 𝜎) (4.3)

Originally, the clean dataset has values in the range [−116, 85]. Thus, we add Gaussian noise with
𝜎 = {10, 20, 30}, which corresponds to the 5%, 10%, and 15% of the initial dataset’s value range,
respectively, and repeat the attack using the same MLP model on the modified datasets. In figure 4.2,
the results of these attacks are also presented. Indeed, the attack is relatively harder after the noise
addition. We arbitrarily choose to run our experiments using the modified dataset with 𝜎 = 30, as we
consider that it provides that necessary resolution for evaluating our countermeasures. For the rest
of our report, we assume that this noise is generated naturally by the device, and thus, we use these
observations as our clean dataset.

4.2.2. Selection of Attacking Models
The generation of an adversarial example demands the existence of a pre­trained model. As an adver­
sarial example is considered a clever perturbation that forces a model to misclassify, that model needs
to be trained with our training dataset before the adversarial examples generation. Furthermore, this
project aims to find out if and how an adversarial­based countermeasure can make the side­channel
attacks harder. Therefore, these models will be used to compare the evaluation metrics of the attack

24 4. Countermeasure Implementation

Figure 4.2: Performance of attack on our dataset

with and without the usage of the proposed countermeasures. Hence, we will need a set of attacking
models that present decent performance when attacking our testing dataset for our experiments.

Prouff et al. [64] presented an interesting methodology to find attacking models that present good
performance on the ASCAD dataset. In their methodology, they attack directly on the ASCAD dataset.
However, a common practice in deep learning is to standardize the input of a DNN for practical reasons,
as explained in the previous section. Their choice of not applying standardization led to significantly
large models in terms of total parameters. For this reason, we decided to perform our own exploration
for attacking models by applying their methodology after we use the z­normalization algorithm(see
equation 4.2) to standardize our input. That will help us to find smaller models that can be trained
faster and speed up our experiments.

To find our reference models, first, we define some basic architecture models for those, and we will
explore how changing different hyperparameters can improve their performance. The most common
classes of DNN used in side­channel attacks are the MLP models and the CNN models. Thus, we define
two skeletons that we will use to construct our reference models, one for each class, that are presented
below. The hyperparameters that are changed during our exploration are given with variables, while
those that remain the same are defined with constant values.

MLP architecture
Our MLP model follows the standard structure of this kind of DNN classifiers, which is presented in
figure 4.3. In detail, it consists of an input layer, 𝑛layers fully connected layers, and an output layer.
The input layer has a length equal to our input size, while the dense layers have size 𝑛units units and
use an activation function 𝛼. The output layer has a respective size to our leakage model and uses
the activation function softmax, commonly used in classification problems. Regarding the training
parameters, we use our whole training dataset (50,000 traces), and we train for 𝑛epochs epochs, and
we split the input into batches of size 𝑏. Finally, the models are training using the optimizer 𝑂 with a
learning rate 𝑙.

Figure 4.3: Architecture of our MLP reference models

To explore how changing different hyperparameters affect the attack’s performance, we define a
base MLP model 𝑀𝐿𝑃𝑏𝑎𝑠𝑒 where its hyperparameters are randomly defined within the corresponding
exploration space. Then, we train multiple models by changing one of these hyperparameters and
keeping the rest constant, and we measure their performance. To compare the extracted models, we
need to define a point that an attack is considered successful. For this purpose, we select the amount
of attacking traces needed, so the guessing entropy and the success rate of the attack are stabilized to

4.2. Setup 25

the values 𝐺𝐸 = 1 and 𝑆𝑅 = 100%. Thus, we compare and select the specific hyperparameter’s best
value based on how many attacking traces are needed for the attack to be successful. We update our
base model, and we move to the tuning of the next hyperparameter. Note that we select the value
that reduces the model’s total size in case of similar performance.

Initially, we define the MLP𝑏𝑎𝑠𝑒 with random values for its hyperparameters that are MLP(3, 400,
relu), while its training hyperparameters are Training(10, 20,RMSprop, 10−3). After the hyper­
parameter exploration that we described, we conclude to the best MLP model, that is denoted as
MLPbest for the rest of the report, with architecture hyperparameters MLP(5, 100,tanh) and training
hyperparameters Training(10, 20,RMSprop, 10−4). Table 4.2 displays the examined range for each
of the hyperparameters during our benchmarks, as well as the value we select for our MLPbest, while
appendix A.1 presents in detail the results of the hyperparameter exploration.

Parameter Reference Range Best
Architecture hyperparameters

Number of fully connected layers 𝑛layers [2..6] 5
Units per layer 𝑛units {100, 200, 300, 400, 500} 100
Activation function 𝛼 {relu, sigmoid, tanh} tanh

Training hyperparameters
Epochs 𝑛epoch {10, 20, 30} 10
Batch size 𝑏 {1, 50, 100, 200, 400} 200
Optimizer 𝑂 {RSMprop, Adam, SGD} RSMprop
Learning rate 𝑙 {10−2, 10−3, 10−4, 10−5} 10−4

Table 4.2: Benchmarks summary for MLP architecture

CNN architecture
In contrary to the MLP models, the CNN models do not follow a standard architecture. For our project,
we use the architecture proposed by Prouff et al. [64] presented in figure 4.4. Our CNN model consists
of an input layer with a length equal to the size of the dataset’s input. It has 𝑛blocks convolution blocks,
where each one of these includes a convolution layer and a pooling layer. The convolution layers have a
convolution window of 𝑛kernels kernels, output size of 𝑛filters, i filters and they use an activation function
𝛼. For the calculation of the convolution layer’s output size 𝑛filters, i, we define an output size 𝑛filters, 1 for
the first layer and for each next layer we double it, i.e. 𝑛filters, i = 2×𝑛filters, i­1. We name the type of the
pooling layer as 𝜏. Then, a flatten layer converts the data from the previous layers into a 1­dimensional
array. Next, there are 𝑛dense fully connected layers with size of 𝑛units units and an activation function
𝛼. Last, there is an output layer that uses the activation function softmax. Regarding the training
hyperparameters, similarly to our MLP model, we train for 𝑛epochs epochs with a batch of size 𝑏 using
the optimizer 𝑂 with learning rate 𝑙.

Figure 4.4: Architecture of our CNN reference models

We follow the same hyperparameter tuning process, as explained in the previous section for the MLP
model. Initially, we define the CNN𝑏𝑎𝑠𝑒 with random values for its architecture and training hyperpa­
rameters that are CNN(4, 32, 7,average, 2, 512,relu) and Training(10, 20,RMSprop, 10−3), respec­
tively. After the hyperparameter exploration that we described, we conclude to the best MLP model,
that is denoted as CNNbest for the rest of the report, with architecture hyperparameters CNN(3, 64, 9,
average, 3, 512,relu) and training hyperparameters Training(10, 20,RMSprop, 10−5).

26 4. Countermeasure Implementation

Table 4.3 displays the examined range for each of the hyperparameters during our benchmarks,
as well as the value we select for our reference CNN model, while appendix A.2 presents in detail the
results of the hyperparameter exploration.

Parameter Reference Range Best
Architecture hyperparameters

Number of convolution blocks 𝑛blocks [2..5] 3
Output size of the first convolution layer 𝑛filters, 1 {16, 32, 64, 128} 64
Length of the 1D convolution window 𝑛kernels {5, 7, 9, 11} 9
Type of pooling layer 𝜏 {average, max} average
Number of fully connected layers 𝑛dense [1..3] 3
Units per FC layer 𝑛units {128, 256, 512, 1024, 2048} 512
Activation function 𝛼 {relu, sigmoid, tanh} relu

Training hyperparameters
Epochs 𝑛epoch {10, 20, 30} 10
Batch size 𝑏 {1, 50, 100, 200, 400} 200
Optimizer 𝑂 {RSMprop, Adam, SGD} RSMprop
Learning rate 𝑙 {10−2, 10−3, 10−4, 10−5} 10−5

Table 4.3: Benchmarks summary for CNN architecture

4.3. Design of adversarial­based countermeasures
Before presenting our research on the adversarial­based countermeasure, it is crucial to establish the
threat model and the assumptions taken into consideration. First, we visualize our countermeasure as
a noise generator unit inside the crypto device’s microprocessor that works parallel with the encryption
process. For this project, we want to investigate the ideal scenario: how added noise should look to
the original traces to provide security against DNN­based side­channel attacks. Thus, we consider that
our noise generator has unlimited capabilities and can insert noise of a certain amplitude to a specific
time sample (feature) of our input.

There are two options regarding the threat model of our experiments. We can apply the counter­
measure only on the attacking phase or in both the profiling and attacking phases. The first approach
is trivial and investigated by Picek et al. [63], showing positive results. We find the latter to be more
attractive for two reasons. On the one hand, it is the most common threat model of profiling attacks on
protected devices. The attacker has to use a clone device with the same configuration and specification
as the targeted one. Thus, the attacker has to train his profiler using a device that is protected by the
adversarial­based countermeasure. On the other hand, this approach has already been explored by Gu
et al. [29] showing negative results, but we believe that there is still room for investigation, as we will
explain later in this section. Therefore, we use the following threat model in our experiments. First, the
attacker trains a profiling model using a device that applies the proposed adversarial­based counter­
measure. Then, the attacker uses his trained model to execute the attack against the targeted device
by capturing a set of power traces that include the noise generated based on our countermeasure.

The noise generation as a countermeasure against side­channel attacks is not a new idea. However,
our goal is to describe a method that is calculated cleverly instead of adding random noise. This
approach can have multiple benefits compared to the old­fashioned approach. When adding random
noise to the observations, there is no guarantee that the outcome would be perturbed enough to force
the attacking model to misclassify. On the other hand, an adversarial­based noise cloaks the original
input and leads to a false prediction by definition. Another significant benefit is that such an adversarial­
based noise generator is more cost­efficient than a random one. The former can identify which features
need to change to trick the attacking model, while the latter modifies all the input features under the
same distribution. Thus, it is certain that some features could be modified with less magnitude or not
modified at all. This redundant noise is translated to extra power consumption and higher operational
costs. The rest of this section aims to research the specifications of such an adversarial­based noise
generator that can protect against DNN­based side­channel attacks.

4.3. Design of adversarial­based countermeasures 27

4.3.1. Methods
For the generation of the adversarial­based noise, we consider two approaches; we can use a method
that adds either small noise to all the features or larger noise to a subset of the input’s feature. Both
approaches have already been investigated by previous researches, as presented in chapter 3.

Picek et al. [63] followed the first approach and showcased that such a countermeasure could work
when used only in the attacking phase. At the same time, their approach seems ineffective when
adversarial examples are used during the training phase [29]. A possible explanation for that effect
would be that, after the adversarial training, the attacking model becomes more generalized and thus
more robust against small perturbations on the whole input. In the second approach, Gu et al. [29] used
the one­pixel attack [76] to modify a single input feature. They concluded that this method could not
provide additional security against SCAs when used in both phases. However, they did not investigate
the latter approach in­depth, and we consider that there is room for further research. In detail, it
would be interesting to explore if we can use the one­pixel attack to build an effective adversarial­
based countermeasure against DNN­based side­channel attacks when applied to multiple features of
the input, and, if so, what is the minimal bounds of the added noise.

Hence, we decide to build an adversarial­based method that applies high magnitude distortion to a
small number of input features. In more formal words, our method generates an adversarial example
𝑥′ for input 𝑥 using a trained DNN model by changing 𝑘 features of the original input and reduces
the secret key’s 𝑘∗ confidence. The generation of such adversarial examples can be translated to an
optimization problem; the position and the magnitude of the noise are the problem’s parameters and
the DNN classifier that returns the key’s confidence is the objective function that needs to be minimized.

Many adversarial methods could be used as a basis for our adversarial­based countermeasure.
The most common methods, such as the fast gradient method [8] and the basic iterative method
[47], use the gradient descent optimization algorithm, which can quickly converge to a solution to
continuous optimization problems. However, our optimization problem is discrete, as it requires the
modification of features that are spread throughout the input’s length. Thus, we decide to implement
our countermeasures based on the one­pixel attack [76], as its approach could be considered an
analogy of our problem in the image domain. This method uses the differential evolution optimization
algorithm, which is suitable for discrete optimization problems. As presented in section 2.2.1, this
algorithm uses evolutionary computation techniques to optimize an objective function. As explained
above, our objective function is DNN classifier and the position and the magnitude of the adversarial
noise are the problem’s parameters. Below, we introduce three different approaches to selecting the
affected features and their new value.

Normal 𝑘­Point Protection
The normal 𝑘­Point Protection method is a full adaptation of the one­pixel attack on our input; we
change the name to comply with our domain and our defensive purposes. In detail, this method uses
the differential evolution as an optimization algorithm to find which 𝑘 features will have to change and
how so the attacking model fails to predict the correct label. The major change compared to the authors’
method is that instead of replacing the original value of a certain feature of the input with one from a
given range, our algorithm adds a perturbation within given bounds to the original value of the input’s
feature. To refer to this method, we define the notation 𝑘𝑃𝑃normal(𝑚𝑜𝑑𝑒𝑙, 𝑘, 𝑏𝑜𝑢𝑛𝑑lower, 𝑏𝑜𝑢𝑛𝑑upper),
where 𝑚𝑜𝑑𝑒𝑙 is the DNN model that the method uses for the generation of the adversarial examples,
𝑘 the number of the affected features, and 𝑏𝑜𝑢𝑛𝑑lower, 𝑏𝑜𝑢𝑛𝑑upper the lower and upper bound of the
added noise accordingly. For simplicity reasons, we omit the 𝑏𝑜𝑢𝑛𝑑lower when the lower bound is
set to zero using the notation 𝑘𝑃𝑃normal(𝑚𝑜𝑑𝑒𝑙, 𝑘, 𝑏𝑜𝑢𝑛𝑑upper). In figure 4.5a, we present a random
trace from our dataset before and after the application of the normal 𝑘­Point Protection method with
parameters 𝑘𝑃𝑃normal(MLPbest, 40, 100).

Random 𝑘­Point Protection
The random 𝑘­Point Protection method follows a different approach regarding the selection of the
modified points. This method picks randomly a set input’s features that remains the same during
the execution of the optimization algorithm. In other words, the DE algorithm tries to optimize the
perturbation on certain 𝑘 features of the input that are chosen randomly at the beginning of the
adversarial example generation. As this random subset is recomputed upon each method’s call, each
input (row) of the dataset is changed on different features. Similarly to the previous method, we refer to

28 4. Countermeasure Implementation

(a) Normal 𝑘­Point Protection (b) Random 𝑘­Point Protection

(c) Correlation 𝑘­Point Protection

Figure 4.5: Comparison of a trace before and after the proposed methods

this method using the notation 𝑘𝑃𝑃random(𝑚𝑜𝑑𝑒𝑙, 𝑘, 𝑏𝑜𝑢𝑛𝑑lower, 𝑏𝑜𝑢𝑛𝑑upper), or simply 𝑘𝑃𝑃random(𝑚𝑜𝑑𝑒𝑙,
𝑘, 𝑏𝑜𝑢𝑛𝑑upper) when the lower bound is set to zero. In figure 4.5b, we present a random trace from
our dataset before and after the application of the random 𝑘­Point Protection method with parameters
𝑘𝑃𝑃random(MLPbest, 40, 100).

Correlation 𝑘­Point Protection
The correlation 𝑘­Point Protection follows another approach when it comes to how the distorted features
are selected. The algorithm computes the Pearson correlation of each feature with the label and then
selects the top 𝑘 features with the highest correlation. Finally, the optimization algorithm computes
the required perturbation for the generation of the adversarial example. This method presents a few
noteworthy points. First, this method cannot be executed on a single trace and requires a larger amount
of traces so that the correlation analysis is reliable. Finally, unlike the random variant, the 𝑘 modified
features will be in the same position for each dataset entry. Similarly to the previous methods, we refer
to this method using the notation 𝑘𝑃𝑃corr(𝑚𝑜𝑑𝑒𝑙, 𝑘, 𝑏𝑜𝑢𝑛𝑑lower, 𝑏𝑜𝑢𝑛𝑑upper), or simply 𝑘𝑃𝑃corr(𝑚𝑜𝑑𝑒𝑙, 𝑘,
𝑏𝑜𝑢𝑛𝑑upper) when the lower bound is set to zero. In figure 4.5c, we present a random trace from our
dataset before and after the application of the correlation 𝑘­Point Protection method with parameters
𝑘𝑃𝑃corr(MLPbest, 40, 100).

4.3.2. Experimental Process
To confirm the effectiveness of our proposed adversarial­based countermeasure, we investigate how the
aforementioned approaches can decrease the performance of DNN­based side­channel attacks under
specific metrics. First, we execute the attacking scenario against the clean dataset. Then, we use our
methods (separately) to generate our protected datasets, and we execute the same attacking scenario
against them. Last, we use a set of metrics to quantify the performance of our adversarial­based
countermeasure based on these attacks.

4.3. Design of adversarial­based countermeasures 29

Part of our research question is to explore how different parameters of our methods affect their
effectiveness. Thus, we apply our methods with different values for each parameter and, we evaluate
their importance on the methods’ effectiveness using the above metrics. The first parameter of our
methods is the trained model that operates as the objective function of our optimization problem. For
our experiments we use our MLPbest and CNNbest. For the number of the affected features, we select
a 𝑘 value that corresponds from 1% to 10% of the input size, namely 𝑘 = {10, 20, ..., 100}. Last, other
important parameters of our method are the bounds of added perturbation, in which the differential
evolution algorithm will explore solutions. We want our method not to add any noise to a feature if
required. Thus, we set the lower bound of the added noise to be zero for all of our experiments. At
the same time, we set the upper bound of the added noise to be from 100 to 500 with step 100, i.e.
𝑏𝑜𝑢𝑛𝑑upper = {100, 200, 300, 400, 500}. As our clean dataset’s features have values within the range
(−250, 250) approximately, the overall noise added to a feature corresponds to 20%, 40%, 60%, 80%,
or 100% of the original range, respectively. Regarding the differential evolution algorithm parameters,
we keep the ones use on the original attack, as described in section 2.3.2. In particular, the population
size is set to 400, the crossover probability 𝐶𝑟 is set to 1, the differential weight 𝐹 is set to 0.7, and
the maximum iterations are 75.

An important aspect that we have to remark is that our countermeasures are stochastic; differential
evolution uses randomness to initialize the first round’s population, and random 𝑘­Point Protection is
choosing the affected features randomly explained above. Hence, we create a set of instances for each
value of 𝑘 to guarantee that these factors do not bias our experiments’ conclusions. To summarize, we
generate 1,500 modified datasets, using 3 methods, 2 base models, 10 values for 𝑘, 5 values for the
noise upper bound, and repeating each execution 5 times.

Another noteworthy point is the label that we use to generate the adversarial examples of the
testing dataset. In machine learning, the methods that compute the adversarial perturbation for the
testing samples commonly use the trained model’s predictions as a label. This label is required by the
method, so it is aware of the predicted class and computes a distortion that forces the trained model
to predict any other. On the contrary, for our adversarial­based countermeasures, we are using the
true labels. Our motivation on this choice is that the perturbation is calculated by the same device that
executes the encryption algorithm. Thus, the secret key is known to the device and can generate an
adversarial example. Also, our model threat demands that the training and the testing datasets are
built under the same procedure.

Using the modified datasets, we execute a profiling attack using 2,000 from our testing dataset.
We consider that an attack is successful when the attacking model achieves 𝐺𝐸 = 1 and 𝑆𝑅 = 100%.
When that it is not achieved using at most that many traces, the attack is considered infeasible. The
examined research question is to test our proposed methods’ transferability. We run the attacks twice,
once using the same model that the countermeasure uses to generate adversarial examples and once
using a different model to execute the attack. For the latter scenario, when the method uses the
MLPbest model, we attack using the CNNbest model and vice versa.

As mentioned above, it is important to set specific metrics that will allow us to evaluate the perfor­
mance of our adversarial­based countermeasure. Commonly, the evaluation of an adversarial method
is done based on two factors. First, generated adversarial examples have to be effective, namely to
trick the classifier and misclassify. Second, the generated adversarial examples have to be indistin­
guishable from the original samples. This last property is important, usually in many domains. An
image of a panda, for example, still looks like a panda after the distortion but is classified wrongly by
a trained DNN classifier. Hence, we need to adapt these two properties to the side­channel analysis
domain to evaluate our defensive techniques properly.

The effectiveness of an adversarial­based countermeasure depends on its effect on SCA perfor­
mance. Thus, we define a set of SCA metrics that will facilitate us to evaluate what is the performance
drop after applying our methods. More precisely, we define the 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metric, which represents the
number of traces that need to be processed by the attacking model so it can achieve 𝐺𝐸 = 1 and
𝑆𝑅 = 100%. In case that 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 > 2000, we consider that this attack is infeasible. Moreover, we
define the metrics 𝐺𝐸𝑥 and 𝑆𝑅𝑥 representing the achieved guessing entropy and success rate when
the attacking model process 𝑥% of the total attacking traces (2,000 in our experiments). In our exper­
iments, we measure for 𝑥 = {10, 50, 100}.

On the other side, the indistinguishability property is not directly transferable to our domain. In
the side­channel analysis domain, it is not important to keep the traces similar, as the human eye

30 4. Countermeasure Implementation

cannot classify the original input correctly. However, the ”minimality of perturbation” introduced by
the indistinguishability property can be interpreted as ”minimality of power consumption” generated
by our adversarial­based noise generator. Hence, we can use metrics commonly used to measure that
property to simulate the additional power consumption that our proposed countermeasure introduces
to the original traces. This parameter can be a secondary evaluation metric for our adversarial­based
countermeasure, as we would ideally want to achieve sufficient protection with the lowest possible
introduced additional consumption.

In the machine learning domain, indistinguishability is usually measured using the 𝑙0, 𝑙2, and/or 𝑙∞
distance metrics. As explained in section 2.3.2, the first norm measures the number of affected features
in the original input without taking into account the added perturbation. This metric is represented
by our method’s parameter 𝑘, which defines the amount of the modified tracepoints. The 𝑙2 distance
metric measures the metric that describes the euclidean distance, namely the minimum distance in
the dataset’s space, between the original and the adversarial. The 𝑙∞ distance metric describes the
maximum added noise among all the tracepoints. Out of these three metrics, we believe that the
𝑙0 and 𝑙∞ cannot be used to measure the additional power consumption that our adversarial­based
countermeasure introduces, as they don’t take into account the total added noise. On the other hand,
𝑙2 seems to fits our needs entirely as it can describe how small or big our added noise needs to be, so
we construct the perturbed traces. Hence, by comparing the distances of these modified datasets from
the clean dataset, we can safely assume that the one with a smaller 𝑙2 metric consumes less power
for its generation. The average 𝑙2 distance metric of our modified datasets is presented in detail in
appendix B, and we refer to them during the following sections when necessary.

4.3.3. Results
This section presents the experiments’ results for each of the three proposed methods in separate
subsections to increase our results’ readability.

In each subsection, we first present the performance of our reference models (MLPbest and CNNbest)
against the modified datasets that consist of adversarial examples based on the MLPbest model. Next,
we use our reference models to attack against datasets generated using the CNNbest model. Using the
𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metric, we first identify which configurations are decreasing the performance of the attacks.
Then, using this metric, we select the configurations that provide a decent level of protection. Next,
we highlight which method’s parameters present better performance using the SCA and, when neces­
sary, the distance metrics. Last, we present our conclusions about the specific method’s performance
regarding the provided security and transferability.

As described in the previous section, for each examined combination of parameters, we generate
five instances. Thus, our metrics represent the average value of the five measurements. Regarding the
𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metric, we first measure how many traces are needed for an attack against each instance for
the key retrieval, and we compute the average. If an attack is infeasible using the maximum amount
of the attacking traces (2,000 traces in this chapter), we do not take this execution to calculate the
average, and we denote it properly on our results. If all of the attacks against a specific configuration
are infeasible, we use the notation ”>2000” in our results. About the 𝐺𝐸𝑥 and 𝑆𝑅𝑥 metrics, we compute
the average value of the 𝐺𝐸 and 𝑆𝑅 when 𝑥% of the attacking traces are processed.

Normal 𝑘­Point Protection
According to figure 4.6a, the normal 𝑘­Point Protection that uses the MLPbest model for the noise
generation provides notable security when the added noise is bounded in a small range, while the attack
becomes easier when the noise is bounded in larger ranges. In detail, when the countermeasure tries
to find noise within the range [0, 100), the more features we change, the better protection we achieve.
When the upper bound of the noise is set to 200 or 300, we observe that the method’s performance
peak is achieved when we change 30 and 10 features, respectively, and drops when the method alters
more features. Last, we see that when the upper bound is bigger, the method is not effective, and, in
particular, the attack becomes easier when the number of the affected features increases. Overall, we
notice that, following this approach, this method can make the attack about six to seven times harder,
in the cases of 𝑘𝑃𝑃normal(MLPbest, 10, 300), 𝑘𝑃𝑃normal(MLPbest, 20, 200), 𝑘𝑃𝑃normal(MLPbest, 30, 200).

Regarding its transferability, figure 4.6b shows that this implementation can still provide security
against CNNbest­based attacks, when the upper bound is set to 100, in proportion to the number
of features that are modified. However, when the upper bound is increased, the countermeasure is

4.3. Design of adversarial­based countermeasures 31

ineffective, and the attack becomes even easier as the number of the required traces for a successful
attack drops. The maximum protection is observed in the case 𝑘𝑃𝑃normal(MLPbest, 80, 100), where the
attack is successful after processing around 580 attacking traces.

(a) Attack using the same model (MLPbest) (b) Attack using different model (CNNbest)

Figure 4.6: Performance of normal 𝑘­Point Protection using the MLPbest model. Bar’s pattern describes the
number of feasible attacks within 2,000 attacking traces. If a bar is missing, then all of the corresponding attacks

were infeasible.

On the other hand, when the normal 𝑘­Point Protection method generates the adversarial examples
using the CNNbest model, the results are quite different. More precisely, as presented in figure 4.7a in
the cases that the upper bound of the noise is 100 and 200, we do not observe any significant change
in the attack’s performance. On the other hand, when the upper bound is increased, we see that the
attack becomes harder and harder, proportionally with the number of affected features. In particular,
we notice that when the upper bound is set to 500, our method needs to change only 70 features to
make the attack infeasible, which is significantly better performance compared to the implementations
that we present in figure 4.6.

(a) Attack using the same model (CNNbest) (b) Attack using different model (MLPbest)

Figure 4.7: Performance of normal 𝑘­Point Protection using the CNNbest model. Bar’s pattern describes the
number of feasible attacks within 2,000 attacking traces. If a bar is missing, then all of the corresponding attacks

were infeasible.

The results about this approach’s transferability are presented in figure 4.7b. Unlike the case that
our method generated the modified datasets based on the MLPbest model, we observe that, in this
situation, the results are consistent with each other. To be more precise, smaller bound ranges do not
affect the performance of the attack, whereas the attack becomes harder when the bound range and
the modified features are increased.

In table 4.4, we present in detail the SCA metrics for the selected configurations that present the
notable performance, as presented above. As we can identify, methods that are using the MLPbest model
cannot provide significant performance, as the GE and SR converge close to 1 and 100%, respectively,

32 4. Countermeasure Implementation

when only 10% of the total attacking traces is used for the attack. Regarding the CNNbest­based
configurations, we see that the selected configurations offer strong protection against the MLPbest
model, as none of these attacks can retrieve the correct subkey using 2,000 traces. Furthermore,
attacks based on the CNNbest model are always successful only in the case of 𝑘𝑃𝑃normal(CNNbest, 100,
400), while in the case of 𝑘𝑃𝑃normal(CNNbest, 90, 500) the attack always fails.

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Att. model

𝑘𝑃𝑃normal(MLPbest, 80, 100) MLPbest 389.2 (5/5) 1.79 0.82 1.00 1.00 1.00 1.00
CNNbest 561.6 (5/5) 2.86 0.71 1.00 1.00 1.00 1.00

𝑘𝑃𝑃normal(MLPbest, 90, 100) MLPbest 363.2 (5/5) 1.54 0.87 1.00 1.00 1.00 1.00
CNNbest 452.6 (5/5) 2.24 0.78 1.00 1.00 1.00 1.00

𝑘𝑃𝑃normal(CNNbest, 100, 400) MLPbest >2000 57.70 0.04 13.59 0.39 4.45 0.63
CNNbest 1445.0 (5/5) 22.40 0.25 1.14 0.94 1.00 1.00

𝑘𝑃𝑃normal(CNNbest, 80, 500) MLPbest >2000 71.79 0.03 27.86 0.15 13.38 0.31
CNNbest 1236.0 (1/5) 34.89 0.14 2.59 0.68 1.05 0.96

𝑘𝑃𝑃normal(CNNbest, 90, 500) MLPbest >2000 78.02 0.03 38.97 0.17 23.23 0.36
CNNbest >2000 47.25 0.09 7.32 0.54 1.61 0.84

𝑘𝑃𝑃normal(CNNbest, 100, 500) MLPbest >2000 89.05 0.02 47.11 0.09 28.95 0.24
CNNbest 1966.0 (1/5) 42.31 0.12 4.18 0.68 1.13 0.92

Table 4.4: SCA metrics for attacks against datasets generated by normal 𝑘­Point Protection. Values are the
average of attacks on 5 different instances per configuration. The parenthesis in column 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 represents the
number of successful attacks out of the 5 instances. The ”>2000” denotes that all five attacks were unsuccessful.

Overall, we observe that the general superiority of the CNN models against the MLP models is
present in our results. On the one side, datasets that achieve effectiveness against the MLPbest model
fail to protect the CNNbest model. On the other side, when normal 𝑘­Point Protection uses the CNNbest
model for generating the modified datasets, the method can provide security against both models.
Furthermore, the method’s performance regarding the feasibility of the attack in the two cases dif­
fers majorly. In the former case, the attack was successful after using less than 600 traces in the
best scenario, while in the latter case, the proposed countermeasure was achieved to prevent the at­
tack. Last, the best performance of the normal 𝑘­Point Protection is observed using the parameters
𝑘𝑃𝑃normal(CNNbest, 90, 500), as the attack is infeasible regardless the using attacking model.

Random 𝑘­Point Protection
As we can observe in figure 4.8a, the random 𝑘­Point Protection performance is quite notable in the
case that we use the MLPbest model both for the generation of the adversarial examples and for the
attacks. More precisely, we notice that in all the cases except the ones that the added noise is within
the range [0, 100), the attack becomes significantly harder or, in most cases, infeasible. By picking the
smaller amount of affected features for these upper bounds, we can see that the best combinations
of the parameters that the attack is infeasible are the 𝑘𝑃𝑃random(MLPbest, 90, 200), 𝑘𝑃𝑃random(MLPbest,
50, 300), 𝑘𝑃𝑃random(MLPbest, 30, 400), and 𝑘𝑃𝑃random(MLPbest, 20, 500). In table B.3, we see that the
corresponding average 𝑙2 distance metric of these implementations is 1087.43, 1216.76, 1259.31, and
1287.60, accordingly. We see that these combinations combine sufficient protection with a relatively
small 𝑙2 metric compared to other combinations, and they can be selected as the top­performing
configurations for this approach.

However, when we use the CNNbest model for the attack to examine this approach’s transferability,
the results are again different. As presented in figure 4.8b, the implementations in which the upper
bound is set to 200 perform better than others, but in this case, the attack is feasible. In the best
scenario, when this method affects 100 features and the upper bound of the added noise 200, the
attack requires 350 traces approximately to be successful, which is significantly lower compared to the
attack using the MLPbest model. Regarding the implementations with different 𝑏𝑜𝑢𝑛𝑑upper, they barely
provide more security, as the performance metrics are not changed significantly.

In the scenarios that our method is applied using the CNNbest model (figure 4.9a), we notice a
similar behavior with the one observed in the method normal 𝑘­Point Protection. More precisely, small
values for the upper bound of the added do not provide significant security regardless of the number
of modified features, whereas when this parameter is increased, the attack performance drops. Never­
theless, the amount of features that need to be altered is decreased compared to the previous method.

4.3. Design of adversarial­based countermeasures 33

(a) Attack using the same model (MLPbest) (b) Attack using different model (CNNbest)

Figure 4.8: Performance of random 𝑘­Point Protection using the MLPbest model. Bar’s pattern describes the
number of feasible attacks within 2,000 attacking traces. If a bar is missing, then all of the corresponding attacks

were infeasible.

(a) Attack using the same model (CNNbest) (b) Attack using different model (MLPbest)

Figure 4.9: Performance of random 𝑘­Point Protection using the CNNbest model. Bar’s pattern describes the
number of feasible attacks within 2,000 attacking traces. If a bar is missing, then all of the corresponding attacks

were infeasible.

In particular, we can make the attack infeasible when we add noise of range [0, 400) in 70 features or
noise of range [0, 500) in 50 features. The 𝑙2 metric of these configurations is 1932.63 and 2042.48
based on table B.4, respectively, which is quite similar. Hence, we conclude both of these configura­
tions provide significant security with the same power consumption. The same observations apply to
figure 4.9b, which presents this method’s performance when we attack using the MLPbest model.

Based on the above observations, we select the implementations that perform better against both
attacking models. Table 4.5 presents the SCA metrics for the attacks against the corresponding gen­
erated datasets. First of all, we clearly notice that the configurations that use the MLPbest are inferior
regarding the transferability of the adversarial examples. Moreover, regarding the configurations that
use the CNNbest model and the upper bound of the noise is set to 400, only the 𝑘𝑃𝑃random(CNNbest, 100,
400)renders all the attack infeasible. Last, we notice that the 𝑘𝑃𝑃random(CNNbest, 70, 500)is superior to
others with the same 𝑏𝑜𝑢𝑛𝑑𝑠. On the one hand, the configurations that change fewer features present
a significantly higher 𝑆𝑅100 for the two attacks. In comparison, the ones that alter more features intro­
duce more power consumption without a respective drop in the performance of the attacks. Hence, the
𝑘𝑃𝑃random(CNNbest, 100, 400)and 𝑘𝑃𝑃random(CNNbest, 70, 500)present the top performance for the ran­
dom 𝑘­Point Protection. These two methods have euclidean distance 𝑙2 = 2307.70 and 𝑙2 = 2413.72.
As the former introduces smaller consumption while it provides the worst performance and the latter
opposite, we nominate both methods as the top­performing configurations. The suggestion that the
first can be used when power consumption is critical for the encryption device.

34 4. Countermeasure Implementation

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Att. model

𝑘𝑃𝑃random(MLPbest, 80, 200) MLPbest 1010 (1/5) 43.37 0.11 4.83 0.68 1.74 0.89
CNNbest 496 (5/5) 4.10 0.73 1.00 1.00 1.00 1.00

𝑘𝑃𝑃random(MLPbest, 90, 200) MLPbest >2000 56.09 0.07 13.81 0.42 5.77 0.74
CNNbest 504 (5/5) 5.43 0.75 1.00 1.00 1.00 1.00

𝑘𝑃𝑃random(MLPbest, 100, 200) MLPbest 1839 (1/5) 54.01 0.07 14.37 0.38 5.81 0.73
CNNbest 624 (5/5) 4.85 0.62 1.00 1.00 1.00 1.00

𝑘𝑃𝑃random(CNNbest, 70, 400) MLPbest 1573 (1/5) 47.81 0.09 8.44 0.56 2.89 0.79
CNNbest >2000 54.17 0.07 10.20 0.43 2.78 0.76

𝑘𝑃𝑃random(CNNbest, 80, 400) MLPbest 1994 (1/5) 69.13 0.05 29.67 0.26 16.43 0.45
CNNbest 1782 (1/5) 46.48 0.08 8.53 0.50 2.08 0.82

𝑘𝑃𝑃random(CNNbest, 90, 400) MLPbest >2000 64.70 0.03 23.47 0.19 9.43 0.41
CNNbest 1657 (1/5) 60.61 0.08 17.71 0.32 4.85 0.59

𝑘𝑃𝑃random(CNNbest, 100, 400) MLPbest >2000 72.93 0.02 25.30 0.15 11.53 0.35
CNNbest >2000 66.85 0.03 20.06 0.22 5.54 0.49

𝑘𝑃𝑃random(CNNbest, 50, 500) MLPbest 1572 (1/5) 58.06 0.07 17.84 0.39 8.23 0.67
CNNbest >2000 64.85 0.06 16.59 0.30 3.73 0.64

𝑘𝑃𝑃random(CNNbest, 60, 500) MLPbest >2000 85.98 0.02 43.96 0.10 26.21 0.22
CNNbest >2000 53.47 0.07 10.62 0.42 3.95 0.74

𝑘𝑃𝑃random(CNNbest, 70, 500) MLPbest >2000 97.86 0.01 59.02 0.06 39.63 0.15
CNNbest >2000 78.65 0.02 37.09 0.11 18.94 0.27

𝑘𝑃𝑃random(CNNbest, 80, 500) MLPbest >2000 91.41 0.01 60.12 0.03 38.27 0.07
CNNbest >2000 75.86 0.03 30.17 0.16 15.57 0.39

𝑘𝑃𝑃random(CNNbest, 90, 500) MLPbest >2000 101.52 0.01 72.56 0.04 56.06 0.07
CNNbest >2000 95.52 0.02 50.11 0.07 24.92 0.13

𝑘𝑃𝑃random(CNNbest, 100, 500) MLPbest >2000 108.98 0.01 82.50 0.02 67.55 0.04
CNNbest >2000 88.66 0.02 47.22 0.05 28.83 0.16

Table 4.5: SCA metrics for attacks against datasets generated by random 𝑘­Point Protection. Values are the
average of attacks on 5 different instances per configuration. The parenthesis in column 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 represents the
number of successful attacks out of the 5 instances. The ”>2000” denotes that all five attacks were unsuccessful.

Regarding the used model for the generation of the adversarial examples, our observations are
similar to those about the normal variant of the method. Using the CNNbest model upon the generation
of the modified datasets results in stronger adversarial examples that are transferable to attacks with
the MLPbest model. On the other hand, adversarial examples that are generated using the MLPbest
model cannot provide sufficient protection against attacks that are based on the CNNbest model.

Correlation 𝑘­Point Protection
The performance of the MLPbest­based correlation 𝑘­Point Protection is presented in figure 4.10. In
figure 4.10a, we see that this specific method fails woefully, as the performance of the attack remains
almost steady when the upper bound of the added noise is set to 100 and arises when this parameter
increased. Surprisingly, the results are slightly different when using the CNNbest model for the attack
(figure 4.10b. In this case, the smaller values for the upper bound provide a small security level that
cannot be compared to what the other methods can provide, while larger ranges seem not to affect
the attack’s performance.

In figure 4.11, we observe that the correlation 𝑘­Point Protection can provide small security against
the side­channel attacks based on either the MLPbest or CNNbest. Figure 4.11a shows that when the
upper bound is set to 100 or 200, the performance of attack using the CNNbest is hardly increased.
In contrast, the attack becomes harder when the added noise is bounded within larger ranges. How­
ever, this approach’s security level is still away from what other methods can offer when using the
CNNbest model for the generation of the adversarial examples. We can derive similar outcomes from
figure 4.11b.

Overall, we conclude that this approach cannot increase the security of the target devices against
DNN­based side­channel attacks. We will present possible reasons for this behavior in the next section,
presenting our general conclusions derived from our experiments.

4.3. Design of adversarial­based countermeasures 35

(a) Attack using the same model (MLPbest) (b) Attack using different model (CNNbest)

Figure 4.10: Performance of correlation 𝑘­Point Protection using the MLPbest model. Bar’s pattern describes the
number of feasible attacks within 2,000 attacking traces. If a bar is missing, then all of the corresponding attacks

were infeasible.

(a) Attack using the same model (CNNbest) (b) Attack using different model (MLPbest)

Figure 4.11: Performance of correlation 𝑘­Point Protection using the CNNbest model. Bar’s pattern describes the
number of feasible attacks within 2,000 attacking traces. If a bar is missing, then all of the corresponding attacks

were infeasible.

4.3.4. Conclusions
Before extracting our conclusions from the aforementioned results, it is important to recall how the
proposed adversarial­based countermeasures operate. The difference of the three proposed methods
is the way that they select which features will be distorted; the normal method lets the differential evo­
lution algorithm decide the positions, the random method chooses uniformly at random these features,
while the correlation method affects the top 𝑘 features ordered by their correlation with the label.

Looking at the bigger picture, we can conclude that our methods can provide better security when
using the CNNbest model for the generation of the adversarial examples instead of the MLPbest model.
This behavior can be explained by the fact that CNN models outperform MLP models in general. Their
convolution blocks can combine information of nearby features and make more accurate predictions.
Thus, when our methods use a CNN model to generate the protective adversarial examples, these
examples are more robust and can lead to a stronger drop of the true label’s predicted probability. As
a result, the generated adversarial examples manage to trick both CNN­based and MLP­based attacks.

Another notable observation is that there are some cases in which our adversarial­based counter­
measure not only fails to decrease the performance of the attack, but the attack becomes easier. Our
explanation on this effect is that our methods operate in these specific cases leaks information that
the attacking models can exploit and, thus, they retrieve the secret subkey faster. This effect is met
more or less in every method except for the random 𝑘­Point Protection method, and it reveals that
this leakage is related to the added noise’s positions. When these are chosen randomly, the attacking

36 4. Countermeasure Implementation

model cannot exploit that information, and the countermeasure works properly. In particular, in the
case of the correlation 𝑘­Point Protection, the addition of large noise to the top 𝑘 highly correlated
features leads to a significant drop in their correlation with the true label. As a result, the DNN models
seem to ignore these features and consider the next highly correlated features. Hence, the input’s
dimension is decreased, and the attack can be succeeded with fewer observations than the attacks
using the clean dataset.

Finally, we can notice that, in some cases, smaller ranges of the added noise perform better than
cases with larger ranges. One could say that this behavior is odd since the smaller ranges are a subset
of the larger ones, and he would expect that the differential evolution algorithm would converge to
the same solutions. However, our explanation for this behavior is that the differential evolution finds
indeed solutions that minimize the prediction of the true label. However, these adversarial examples
are used to train the attacking models and, thus, they become robust against them. Thus, in these
cases, the adversarial example seems to have no effect on the attack’s performance or even make it
easier, for reasons explained above.

5
Performance compared to existing

countermeasures

This chapter aims to answer the second research question, namely, to compare the performance of
our adversarial­based countermeasure with other existing countermeasures proposed by the research
community. First, we explain the motivation and the importance of such a comparison. Then, we
present how we simulate the countermeasures under investigation. We further analyze the experimen­
tal process, the evaluation criteria for the comparison, and the results. Last, based on these results,
we derive our conclusions regarding the second research question.

5.1. Motivation
In chapter 4, we presented a novel approach to design countermeasures against DNN­based side­
channel attacks using adversarial example generation techniques. Besides the effectiveness, which is,
of course, crucial, it is equally important to investigate what is the provided security compared to other
countermeasures that have been proposed in the past by the research community. That comparison
will reveal the added value that our solution provides against the existing ones.

First of all, it is important to classify our adversarial­based defense technique into either the hiding
or the masking family of SCA countermeasures. By observing our proposed countermeasure’s overall
behavior, we notice that it considers a noise generator that cloaks the original traces and hides the
leaked information on the power consumption channel. That approach is followed by hiding counter­
measures, whereas masking introduces an additional secret entity that aims to increase the defense
order. Hence, from our perspective, we classify our adversarial­based countermeasure as a hiding
technique.

All things considered, the comparison of our countermeasure with other hiding techniques occurs
intuitively. In contrast, comparing our proposed countermeasure with masking techniques might sound
a bit odd at first look. However, we consider that this comparison is equally important. It can reveal
the benefits and drawbacks of our technique compared to a family of countermeasures considered the
most effective for protecting against side­channel attacks.

5.2. Simulation of protected datasets
To perform our comparison, we need datasets of power traces protected using the SCA countermea­
sures under examination. These datasets have to be extracted under the same conditions as our clean
dataset. In detail, the source code, the targeted device, and the capturing setup have to be the same
as the one used to extract the raw traces used for our clean dataset. If these conditions are not met,
our comparison will be biased by external factors, and our outcomes will be unreliable.

Such acquisition of datasets is extremely tough. Thus, an alternative approach is needed. In
the following sections, we present our approach to building datasets protected with the existing SCA
countermeasures under examination.

37

38 5. Performance compared to existing countermeasures

5.2.1. Hiding countermeasures
Regarding the hiding countermeasures, a common approach is to simulate their behavior by applying
a proper algorithm a posteriori to a clean dataset, similarly to what we did for our adversarial­based
countermeasure. Wu and Picek [83] present how common hiding countermeasures can be simulated
using this methodology. The rest of the present subsection presents their simulation algorithms in detail,
explaining how a single clean trace can be altered to simulate a specific countermeasure properly. To
apply their simulation techniques to our whole clean dataset, we use the process that is presented in
algorithm 2.

Algorithm 2: Apply a countermeasure to a dataset
Input : 𝑡𝑟𝑎𝑐𝑒𝑠: original traces
Output :𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒𝑠: modified trace

1 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒𝑠 ← [] // container for new trace
2 𝑖 ← 0
3 while 𝑖 < len(𝑡𝑟𝑎𝑐𝑒𝑠) do
4 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒𝑠[𝑖] ← addCountermeasure(𝑡𝑟𝑎𝑐𝑒) // apply countermeasure to

each trace
5 𝑖 ← 𝑖 + 1
6 end while
7 return 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒𝑠

Gaussian noise
The addition of Gaussian noise as a countermeasure is already presented in section 4.2.1, where we
used it to decrease the side­channel attacks’ performance to the clean dataset. For clarity purposes,
we present the simulation algorithm (see algorithm 3). The idea is quite simple; for each feature of the
original trace, we select a random value from the Gaussian distribution with zero mean and standard
deviation of 𝑠𝑡𝑑 add we add to the original value of the feature.

Algorithm 3: Add Gaussian noise to a trace
Input : 𝑡𝑟𝑎𝑐𝑒: original trace, 𝑠𝑡𝑑: the standard deviation of the Gaussian distribution
Output :𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒: modified trace

1 Function addGaussianNoise (trace, std) is
2 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒 ← [] // container for new trace
3 𝑖 ← 0
4 while 𝑖 < len(𝑡𝑟𝑎𝑐𝑒) do
5 𝑙𝑒𝑣𝑒𝑙 ← randomNormal(0, 𝑠𝑡𝑑)
6 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖] ← 𝑡𝑟𝑎𝑐𝑒[𝑖] + 𝑙𝑒𝑣𝑒𝑙 // add noise to the trace
7 𝑖 ← 𝑖 + 1
8 end while
9 return 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒

10 end Function

Desynchronization
To simulate the desynchronization countermeasure, we randomly select a desynchronization level from
zero to 𝑑𝑒𝑠𝑦𝑛𝑐_𝑙𝑒𝑣𝑒𝑙 for each trace. Then, we copy the original trace contents to a new container
using the desynchronization as a shift offset (see algorithm 4). Applying this countermeasure to our
clean dataset will lead to having uneven input lengths across the traces. To overcome this, we pad
with zeros until the size of every trace is the same.

Random delay interrupts (RDIs)
For the random delay interrupts simulation, Wu and Picek [83] use the Floating Mean method [12].
Also, the authors enrich this method to add RDIs to a feature with a probability of 50%. Furthermore,

5.2. Simulation of protected datasets 39

Algorithm 4: Add desynchronization to a trace
Input : 𝑡𝑟𝑎𝑐𝑒: original trace, 𝑑𝑒𝑠𝑦𝑛𝑐_𝑙𝑒𝑣𝑒𝑙: maximum desynchronization level
Output :𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒: modified trace

1 Function addDesync (trace, desync_level) is
2 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒 ← [] // container for new trace
3 𝑙𝑒𝑣𝑒𝑙 ← randomUniform(0, 𝑑𝑒𝑠𝑦𝑛𝑐_𝑙𝑒𝑣𝑒𝑙)
4 𝑖 ← 0
5 while 𝑖 + 𝑙𝑒𝑣𝑒𝑙 < len(𝑡𝑟𝑎𝑐𝑒) do
6 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖 + 𝑙𝑒𝑣𝑒𝑙] ← 𝑡𝑟𝑎𝑐𝑒[𝑖] // add desynchronization to the trace
7 𝑖 ← 𝑖 + 1
8 end while
9 return 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒

10 end Function

they add a small amplitude to the delayed tracepoints to simulate realistically the microprocessor’s
operations. The pseudocode for the addition of RDIs to our clean dataset is presented in algorithm 5.
As this countermeasure randomly affects the time domain, the generated traces won’t be equal in
length. To fix this issue, we pad all the shorter traces with zero until all traces are even.

Algorithm 5: Add RDIs to a trace
Input : 𝑡𝑟𝑎𝑐𝑒: original trace, 𝑎, 𝑏: Floating Mean method parameters, such that 𝑎 > 𝑏,

𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒: injected peak when RDIs are applied
Output :𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒: modified trace

1 Function addRDI (trace, a, b, rdi_amplitude) is
2 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒 ← [] // container for new trace
3 𝑖 ← 0
4 while 𝑖 < len(𝑡𝑟𝑎𝑐𝑒) do
5 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖] ← 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖].𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑟𝑎𝑐𝑒[𝑖])
6 𝑟𝑑𝑖_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 ← randomUniform(0, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 × 2)
7 if 𝑟𝑑𝑖_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
8 𝑚 ← randomUniform(0, 𝑎 − 𝑏)
9 𝑟𝑑𝑖_𝑛𝑢𝑚 ← randomUniform(𝑚,𝑚 + 𝑏) // number of RDIs to be added

10 𝑗 ← 0
11 while 𝑗 < 𝑟𝑑𝑖_𝑛𝑢𝑚 // add RDIs to the trace
12 do
13 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖] ← 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖].𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑟𝑎𝑐𝑒[𝑖])
14 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖] ← 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖].𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑟𝑎𝑐𝑒[𝑖] + 𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒)
15 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖] ← 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖].𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑟𝑎𝑐𝑒[𝑖 + 1])
16 𝑗 ← 𝑗 + 1
17 end while
18 end if
19 𝑖 ← 𝑖 + 1
20 end while
21 return 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒
22 end Function

Clock­jitters
Clock jitters can be simulated by arbitrarily adding or removing features from our input [83]. In detail,
while we iterate through our input’s features, we select a random number 𝑟 within a certain range
[−𝑙𝑒𝑣𝑒𝑙, 𝑙𝑒𝑣𝑒𝑙] representing how many features will be added or removed. If 𝑟 is negative, we remove
the next 𝑟 points of the original trace; otherwise, we add 𝑟 artificial features to the original trace. For
the amplitude of the added tracepoints, we calculate the mean amplitude of the tracepoints before

40 5. Performance compared to existing countermeasures

and after the added features. Similar to the two previous techniques that affect the time domain
of the original input, the modified traces are padded with zeros to preserve an equal input size (see
algorithm 6).

Algorithm 6: Add Clock­jitters to a trace
Input : 𝑡𝑟𝑎𝑐𝑒: original trace, 𝑚𝑒𝑎𝑛: the mean of the Gaussian distribution,

𝑐𝑙𝑜𝑐𝑘_𝑗𝑖𝑡𝑡𝑒𝑟𝑠_𝑙𝑒𝑣𝑒𝑙: maximum size of a clock jitter
Output :𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒: modified trace

1 Function addClockJitter (trace, clock_jitters_level) is
2 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒 ← [] // container for new trace
3 𝑖 ← 0
4 while 𝑖 < len(𝑡𝑟𝑎𝑐𝑒) do
5 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖] ← 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒[𝑖].𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑟𝑎𝑐𝑒[𝑖])
6 𝑟 ← randomUniform(−𝑐𝑙𝑜𝑐𝑘_𝑗𝑖𝑡𝑡𝑒𝑟𝑠_𝑙𝑒𝑣𝑒𝑙, 𝑐𝑙𝑜𝑐𝑘_𝑗𝑖𝑡𝑡𝑒𝑟𝑠_𝑙𝑒𝑣𝑒𝑙) // level of

clock jitters
7 if 𝑟 < 0 then
8 𝑖 ← 𝑖 + 𝑟 // skip points
9 else
10 𝑗 ← 0
11 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ← (𝑡𝑟𝑎𝑐𝑒[𝑖] + 𝑡𝑟𝑎𝑐𝑒[𝑖 + 1])/2
12 while 𝑗 < 𝑟 do
13 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒 ← 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒.𝑎𝑝𝑝𝑒𝑛𝑑(𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) // add points
14 𝑗 ← 𝑗 + 1
15 end while
16 end if
17 𝑖 ← 𝑖 + 1
18 end while
19 return 𝑛𝑒𝑤_𝑡𝑟𝑎𝑐𝑒
20 end Function

5.2.2. Masking techniques
As we explain on section 2.4.5, this technique protects the intermediate value by applying an operation
with a mask that randomizes the relation between the sensor data and the observations. Thus, the
simulation of a masking countermeasure and its application on a clean dataset, as we did in the previous
subsection, is not possible. Thus, we will use the original ASCAD, which consists of tracepoints focused
on the third masked byte, for this comparison [64]. As our clean dataset and ASCAD are extracted
from the same device, we assume that a masked version of our clean dataset would have the same
protection level as ASCAD.

5.3. Results
In this section, we compare the performance of our adversarial­based countermeasure with the de­
fensive techniques presented above. First, we present our experimental process and the metrics we
use to derive our conclusions. Then, we perform our experiments separately for each countermeasure
under examination and present our results and outcomes. Finally, at the end of the present section,
we present our general conclusions regarding our second research question.

5.3.1. Experimental process
Our goal is to compare the performance of the methods presented in section 4.3 with existing defen­
sive techniques. Thus, we need to select implementations of that section that present the maximum
level of protection based on our SCA metrics. Out of the three approaches on selecting the affected
features, we rule out the correlation variant. As presented, this approach did not succeed in protecting
our clean dataset against the performed side­channel attacks. Furthermore. in the previous chapter,
we concluded that the usage of the CNNbest model for the generation of the adversarial examples

5.3. Results 41

could build stronger protection against both attacking models. On the contrary, the configurations
where the MLPbest model is used seem to create adversarial examples that protect the same attacking
model. Hence, as the usage of the latter model cannot provide sufficient overall protection, we do
not take into account these configurations in our comparison. Overall, we select the implementations
𝑘𝑃𝑃normal(CNNbest, 90, 500), 𝑘𝑃𝑃random(CNNbest, 100, 400), and 𝑘𝑃𝑃random(CNNbest, 70, 500) to perform
our comparisons, as these values of affected features and bounded noise make the attacks infeasible
(using 2,000 attacking traces) and keep 𝑙2 distance metric relatively small.

In this section, we decide to enrich the attacking scenarios by performing side­channel attacks using
different leakage models. It is expected that an attacking model has a different performance according
to the leakage model used for the attack. If the attack is on a protected dataset, this difference
can help us compare the effectiveness of each countermeasure under investigation against multiple
leakage models. For our experiments, we perform attacks using the identity and Hamming weight
leakage models, introduced in section 2.4.1.

Moreover, we extend our attacking models by adding two state­of­the­art models from recent liter­
ature. The first model that we include in our experiments is introduced by Rijsdijk et al. [67], where
authors present a method for generating neural networks using Reinforcement Learning for hyperpa­
rameter tuning. The other model we use in our attacks is presented by Wu et al. [84], where the
authors used Bayesian Optimization to tune the attacking model’s hyperparameters. In both works,
the authors use their techniques to produce models for the random key ASCAD, which is extracted
from the same raw traces as our clean dataset but focuses on the third subkey that is protected using
first­order masking. Thus, their common origin is sufficient to consider that these models will have a
relatively strong performance against our clean and simulated datasets. Note that the authors gen­
erate different models according to the used leakage model. Thus, in our experiments, we use the
respective model for each leakage model. We denote the two state­of­the­art models as CNNRijsdijk and
MLPWu, while we describe in detail their structure in appendices C.3 and C.4 respectively. The addition
of these two state­of­the­art models will help us investigate our defensive techniques’ transferability
even further.

The evaluation of our experiments is performed using the metrics presented in section 4.3. In
particular, we measure the metric 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠, which represents the number of the required traces to
achieve 𝐺𝐸 = 1 and 𝑆𝑅 = 100%. Moreover, to evaluate the behavior of each countermeasure to the
number of the processed traces, we use the metrics 𝐺𝐸𝑥 and 𝑆𝑅𝑥 with 𝑥 = {10, 50, 100} that represent
the achieved guessing entropy and success rate after processing 𝑥% of a fixed amount of traces.

In tables 5.1 and 5.2, we present the aforementioned metrics for side­channel attacks against
the clean dataset and the protected datasets using selected implementations of our adversarial­based
countermeasure, respectively. However, before moving to the main goal of this chapter, which is to
compare our countermeasure with existing hiding and masking defensive techniques, it is essential to
evaluate the performance of our methods against the newly introduced attacking and leakage models.

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage Att. model

clean ID MLPbest 80 1.00 1.00 1.00 1.00 1.00 1.00
CNNbest 71 1.00 1.00 1.00 1.00 1.00 1.00
CNNRijsdijk 252 1.05 0.97 1.00 1.00 1.00 1.00
MLPWu 352 1.67 0.82 1.00 1.00 1.00 1.00

HW MLPbest 157 1.00 1.00 1.00 1.00 1.00 1.00
CNNbest 158 1.00 1.00 1.00 1.00 1.00 1.00
CNNRijsdijk 432 1.83 0.77 1.00 1.00 1.00 1.00
MLPWu 301 1.03 0.97 1.00 1.00 1.00 1.00

Table 5.1: SCA metrics for attacks against our clean datasets

First of all, we observe that the performance of our methods drops significantly when the leakage
model of the attack is changed from ID to HW. For the attacks that use the MLPbest attacking model, we
observe that the attacks are still infeasible within 2,000 attacking traces, but the change of the leakage
model increases the success rate by 30% to 50%, depending on the targeted dataset. However, in the
case of the CNNbest attacking model, the performance of the adversarial­based methods drops majorly.
As we see in table 5.2, when the CNNbest is combined with the ID leakage model, it fails to succeed
within 2,000 traces, while it can guess the secret subkey correctly when combined with the Hamming

42 5. Performance compared to existing countermeasures

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage Att. model

𝑘𝑃𝑃normal(CNNbest, 90, 500) ID MLPbest >2000 78.02 0.03 38.97 0.17 23.23 0.36
CNNbest >2000 47.25 0.09 7.32 0.54 1.61 0.84
CNNRijsdijk 283 (5/5) 1.22 0.93 1.00 1.00 1.00 1.00
MLPWu 186 (5/5) 1.02 1.00 1.00 1.00 1.00 1.00

HW MLPbest >2000 52.73 0.06 11.25 0.39 2.44 0.70
CNNbest 452 (5/5) 2.37 0.75 1.00 1.00 1.00 1.00
CNNRijsdijk 514 (5/5) 3.11 0.65 1.00 1.00 1.00 1.00
MLPWu 979 (5/5) 8.81 0.41 1.01 0.99 1.00 1.00

𝑘𝑃𝑃random(CNNbest, 100, 400) ID MLPbest >2000 72.93 0.02 25.30 0.15 11.53 0.35
CNNbest >2000 66.85 0.03 20.06 0.22 5.54 0.49
CNNRijsdijk 257 (5/5) 1.06 0.97 1.00 1.00 1.00 1.00
MLPWu 128 (5/5) 1.00 1.00 1.00 1.00 1.00 1.00

HW MLPbest >2000 41.70 0.07 4.62 0.56 1.29 0.88
CNNbest 428 (5/5) 1.87 0.79 1.00 1.00 1.00 1.00
CNNRijsdijk 459 (5/5) 2.52 0.68 1.00 1.00 1.00 1.00
MLPWu 697 (5/5) 6.14 0.51 1.00 1.00 1.00 1.00

𝑘𝑃𝑃random(CNNbest, 70, 500) ID MLPbest >2000 97.86 0.01 59.02 0.06 39.63 0.15
CNNbest >2000 78.65 0.02 37.09 0.11 18.94 0.27
CNNRijsdijk 243 (5/5) 1.10 0.96 1.00 1.00 1.00 1.00
MLPWu 133 (5/5) 1.00 1.00 1.00 1.00 1.00 1.00

HW MLPbest >2000 62.56 0.04 15.12 0.29 3.69 0.60
CNNbest 451 (5/5) 2.19 0.79 1.00 1.00 1.00 1.00
CNNRijsdijk 473 (5/5) 2.43 0.68 1.00 1.00 1.00 1.00
MLPWu 723 (5/5) 6.70 0.46 1.00 1.00 1.00 1.00

Table 5.2: SCA metrics for attacks against datasets generated by our adversarial­based countermeasure. Values
are the average of attacks on 5 different instances per configuration. The parenthesis in column 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠

represents the number of successful attacks out of the 5 instances. The ”>2000” denotes that all five attacks were
unsuccessful.

weight leakage model. This performance drop can be explained by the fact that our methods design
adversarial examples to hide the true label of the dataset. Thus, when the dataset is re­labeled, the
effectiveness of the adversarial example drops. What is important to explore is how the change of the
leakage model can affect the performance of other existing countermeasures.

Another important observation is the performance of the state­of­the­art models against our adver­
sarial­based countermeasure. We see that the performance of the CNNRijsdijk and MLPWu attacking
models is not affected by the presence of our adversarial­based countermeasure. On the one hand, the
CNNRijsdijk model can successfully retrieve the secret subkey using the same amount of attacking traces
regardless of the used leakage model when it attacks either the unprotected dataset or the adversarial­
protected datasets. That behavior is impressive if we consider that this model is not optimized for these
specific datasets. On the other hand, our methods are also ineffective against the MLPWu attacking
model. When the ID leakage model is used, MLPWu retrieves the secret subkey using fewer traces than
the attack against the unprotected dataset. When the HW leakage model is used, the performance of
the attack slightly drops, but still, the key is retrieved before processing 50% of the attacking traces.

In the next sections, we investigate the effectiveness of each one of the countermeasures presented
in section 5.2. First, we simulate a protected dataset using the corresponding defensive technique1.
Then, we measure the performance of the attacks against the protected countermeasure using the
metrics presented above. Last, we use these metrics and the ones presented in tables 5.1 and 5.2 to
compare the defensive technique under investigation with our adversarial­based countermeasure. For
better visualization, we provide figures that present the achieved guessing entropy and success rate
for the attacks on the countermeasures under examination in each section.

5.3.2. Hiding countermeasures
In this section, we compare our adversarial­based defensive technique with selected existing hiding
countermeasures. In particular, the countermeasures that we consider are Gaussian noise, desynchro­

1The values of the parameters for the simulation are explained in the corresponding section

5.3. Results 43

nization, RDIs, and clock jitters.
Regarding the simulation of datasets that are protected with these hiding countermeasures, we

apply the techniques presented in section 5.2.1. It is important to pick appropriate values for the
algorithms’ parameters to perform a balanced comparison of the attacks on the simulated datasets.
For this reason, we use the 𝑆𝑁𝑅 metric that represents the leaked information of a dataset [64]. In
detail, we first measure the 𝑆𝑁𝑅 values for our generated datasets by the methods 𝑘𝑃𝑃normal(CNNbest,
90, 500), 𝑘𝑃𝑃random(CNNbest, 100, 400), and 𝑘𝑃𝑃random(CNNbest, 70, 500), which are 0.0104, 0.0110, and
0.0098, respectively. Then, we pick a value for the simulation parameter(s) using the ”trial and error”
approach that generates a simulated dataset with a similar 𝑆𝑁𝑅. However, as we will see later in this
section, sometimes we cannot achieve the desired 𝑆𝑁𝑅 metric following the ”trial and error” approach
because it doesn’t change proportionally to the changes on the simulating parameters, but it remains
constant. In these cases, we consult the simulations presented by [83] and pick similar values since it
is proven that these values can provide against side­channel attacks on ASCAD.

Gaussian Noise
To perform our comparison, we need first to generate a dataset protected with the Gaussian noise
countermeasure. We simulate such a dataset by running the simulation technique presented in algo­
rithm 3. To determine the value of the standard deviation of the Gaussian noise, we take the following
steps. First, we measure the 𝑆𝑁𝑅 of the datasets that are protected with our adversarial­based coun­
termeasure. Then, through test and trial, we find a value for the standard deviation that generates
a dataset protected by the Gaussian noise countermeasure with the same 𝑆𝑁𝑅. This approach will
allow us to perform a fair comparison as we compare scenarios with similar leaked information. After
following this methodology, we conclude that the appropriate standard deviation is 𝑠𝑡𝑑 = 80, which
generates a dataset with 𝑆𝑁𝑅 = 0.1034 and 𝑙2 = 2529.01.

We attack the generated dataset using our attacking models. In table 5.3, we present the per­
formance of these attacks based on our metrics, while in figure 5.1, we present the progress of the
guessing entropy and success rate over the amount of processed attacking traces. For reference pur­
poses, we include in the plots the corresponding metrics for the attacks on the clean dataset and the
datasets generated by our selected adversarial­based methods.

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage Att. model

Gaussian noise (𝑁(0, 80)) ID MLPbest >2000 79.87 0.05 36.76 0.14 9.98 0.30
CNNbest >2000 44.54 0.13 3.50 0.62 1.18 0.91
CNNRijsdijk >2000 65.15 0.05 11.57 0.29 2.00 0.71
MLPWu >2000 73.63 0.03 25.05 0.08 11.04 0.27

HW MLPbest >2000 53.46 0.05 5.08 0.58 1.44 0.85
CNNbest >2000 42.75 0.04 7.36 0.40 2.59 0.70
CNNRijsdijk >2000 85.37 0.00 43.68 0.07 24.73 0.07
MLPWu >2000 64.02 0.05 23.46 0.12 5.76 0.51

Table 5.3: SCA metrics for attacks against datasets generated by Gaussian noise

Regarding the attacks based on the MLPbest model, we observe in figures 5.1a and 5.1b that the
Gaussian noise countermeasure performs similarly to our methods. In particular, for that attacks that
use the ID leakage model, the Gaussian noise has almost identical metrics with our 𝑘𝑃𝑃random(CNNbest,
70, 500) which performs better than the other two implementations of our methods. At the same
time, using the HW leakage model for the attacks, Gaussian noise offers similar protection to our
𝑘𝑃𝑃random(CNNbest, 100, 400). This entails that the Gaussian noise countermeasure performs worse
than our 𝑘𝑃𝑃normal(CNNbest, 90, 500) and 𝑘𝑃𝑃random(CNNbest, 70, 500) under this attacking scenario.

As to CNNbest­based attacks, our 𝑘𝑃𝑃random(CNNbest, 100, 400) and 𝑘𝑃𝑃random(CNNbest, 70, 500) seem
to perform better than Gaussian noise when the leakage model is the identity model. In particular, we
observe in figures 5.1c and 5.1d that in this specific setup success rate of the attack after processing all
the 2,000 traces is 80% when the dataset is protected using Gaussian noise or the 𝑘𝑃𝑃normal(CNNbest,
90, 500) method. At the same time, it is 49% and 39% when the 𝑘𝑃𝑃random(CNNbest, 100, 400) or
𝑘𝑃𝑃random(CNNbest, 70, 500) methods are applied on the clean dataset, respectively. However, the re­
sults are different when the attacks are using the Hamming weight model. As we already mentioned
in the previous section, our protection techniques fail to provide significant protection against this

44 5. Performance compared to existing countermeasures

(a) Attack using MLPbest (ID leakage model) (b) Attack using MLPbest (HW leakage model)

(c) Attack using CNNbest (ID leakage model) (d) Attack using CNNbest (HW leakage model)

(e) Attack using CNNRijsdijk (ID leakage model) (f) Attack using CNNRijsdijk (HW leakage model)

(g) Attack using MLPWu (ID leakage model) (h) Attack using MLPWu (HW leakage model)

Figure 5.1: Comparison of our proposal with Gaussian noise

5.3. Results 45

leakage model when the CNNbest model is used for the attack. On the contrary, the Gaussian noise
countermeasure offers significant protection even against this leakage model.

As we see in figures 5.1e to 5.1h, Gaussian noise can protect sufficiently the secret key against the
state­of­the­art attacking models. In particular, all of the attacks we performed against this counter­
measure using the CNNRijsdijk and MLPWu models are infeasible regardless of the used leakage model.
Hence, we see that the Gaussian countermeasure is much stronger than our methods under these
attacking scenarios.

Overall, we conclude that Gaussian noise provides more generic protection than our methods. In
the examined attacking scenarios, our methods succeed to perform better than the Gaussian noise
countermeasure for attacks that use the MLPbest model and for the scenario that is used for the genera­
tion of the adversarial examples; namely, attacks that use the CNNbest attacking model and the identity
leakage models. For the rest of the scenarios, Gaussian countermeasure was achieved to protect the
secret key in the attacking scenarios, while our methods failed.

Desynchronization
Similar to the process we followed above, we first create a dataset that is protected using the desyn­
chronization countermeasure. However, the described approach for determining the parameters using
𝑆𝑁𝑅 seems to be not applicable in this case. In particular, the 𝑆𝑁𝑅 metric drops below the desired
level even by using a small desynchronization. Thus, we follow a different approach to consult other
researchers who used the same simulation technique for this countermeasure. In [83], the authors
propose that a maximum desynchronization of 50 points can provide sufficient protection on ASCAD
against DNN­based SCA. As this dataset is protected with first­order masking, we can safely assume
that it requires less desynchronization than our clean dataset to get protected. Thus, we decide to
simulate this countermeasure by running algorithm 4 using 𝑙𝑒𝑣𝑒𝑙 = {50, 100, 150}, which generates
three datasets with 𝑆𝑁𝑅 of 0.067, 0.066, and 0.065 respectively.

Table 5.4 summarizes the performance of the desynchronization countermeasure based on our
metrics, while figure 5.2 presents the progress of the GE and SR metrics compared to our methods.

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage Att. model

Desync (𝑙𝑒𝑣𝑒𝑙 = 50) ID MLPbest >2000 74.33 0.01 27.41 0.11 11.55 0.29
CNNbest >2000 107.30 0.00 92.44 0.03 70.46 0.01
CNNRijsdijk 79 1.00 1.00 1.00 1.00 1.00 1.00
MLPWu 1305 16.85 0.19 1.17 0.96 1.00 1.00

HW MLPbest 1113 18.65 0.23 1.02 0.99 1.00 1.00
CNNbest 298 1.79 0.76 1.00 1.00 1.00 1.00
CNNRijsdijk 296 1.10 0.93 1.00 1.00 1.00 1.00
MLPWu 1301 15.19 0.20 1.03 0.98 1.00 1.00

Desync (𝑙𝑒𝑣𝑒𝑙 = 100) ID MLPbest >2000 116.75 0.02 90.08 0.00 65.47 0.00
CNNbest >2000 122.21 0.00 91.10 0.01 77.67 0.01
CNNRijsdijk 65 1.00 1.00 1.00 1.00 1.00 1.00
MLPWu >2000 39.66 0.03 2.94 0.66 1.05 0.96

HW MLPbest >2000 40.83 0.09 3.27 0.60 1.11 0.92
CNNbest 642 6.46 0.47 1.00 1.00 1.00 1.00
CNNRijsdijk 219 1.02 0.99 1.00 1.00 1.00 1.00
MLPWu 1558 18.82 0.19 1.17 0.95 1.00 1.00

Desync (𝑙𝑒𝑣𝑒𝑙 = 150) ID MLPbest >2000 91.35 0.02 69.91 0.02 42.18 0.05
CNNbest >2000 115.14 0.00 89.03 0.02 73.43 0.01
CNNRijsdijk 70 1.00 1.00 1.00 1.00 1.00 1.00
MLPWu >2000 66.32 0.06 11.23 0.31 2.58 0.62

HW MLPbest >2000 65.49 0.05 19.06 0.38 3.08 0.59
CNNbest 1734 26.52 0.19 1.10 0.93 1.00 1.00
CNNRijsdijk 319 1.07 0.98 1.00 1.00 1.00 1.00
MLPWu >2000 37.02 0.07 2.79 0.69 1.04 0.97

Table 5.4: SCA metrics for attacks against datasets protected using desynchronization

Regarding the attacks based on the MLPbest model, we observe that our countermeasure can per­
form better than the desynchronization countermeasure in most of the cases. In detail, when the
attacks are using the ID leakage model, we observe that desynchronization of 50 and 100 points have

46 5. Performance compared to existing countermeasures

(a) Attack using MLPbest (ID leakage model) (b) Attack using MLPbest (HW leakage model)

(c) Attack using CNNbest (ID leakage model) (d) Attack using CNNbest (HW leakage model)

(e) Attack using CNNRijsdijk (ID leakage model) (f) Attack using CNNRijsdijk (HW leakage model)

(g) Attack using MLPWu (ID leakage model) (h) Attack using MLPWu (HW leakage model)

Figure 5.2: Comparison of our proposal with desynchronization

5.3. Results 47

worse performance than our countermeasures. In comparison, desynchronization of 150 points per­
forms similarly to our 𝑘𝑃𝑃random(CNNbest, 70, 500), which presents the best performance in this attacking
scenario. Similar observations can be derived regarding the attacking scenario where Hamming weight
is used as a leakage model.

On the contrary, desynchronization seems to work better than our methods when the attacks use the
CNNbest and identity as attacking and leakage model, accordingly. In particular, the success rate of the
attacks against this countermeasure is 0%, 2%, and 8% when the maximum desynchronization is set
to 50, 100, and 150 points, respectively. At the same time, the best performance among our methods
in this attacking scenario is met in 𝑘𝑃𝑃random(CNNbest, 70, 500) with 𝑆𝑅 = 39%. When the leakage
model changes to HW, we observe that the protection of this countermeasure drops significantly, as it
happens to our methods. However, it still performs better than our countermeasures.

Moving to the attacks that use the CNNRijsdijk, we observe that desynchronization is less effective
than our methods. In particular, CNNRijsdijk guesses the secret subkey successfully using fewer traces
compared to when attacking the clean dataset, regardless of the level of the desynchronization.

About the attacks based on the MLPWu model, the performance of the method depends on the
use used leakage model. On the one hand, using the ID leakage model for the attack, we see that
the 𝑆𝑅 slowly converges to 100% for 𝑙𝑒𝑣𝑒𝑙 = 50 after processing around 50% of the traces, while
for 𝑙𝑒𝑣𝑒𝑙 = {100, 150} the 𝑆𝑅100 is 96% and 62%, accordingly. At the same time, our methods
fail to protect this attacking setup. On the other hand, using the HW leakage model decreases the
performance of the attack. For 𝑙𝑒𝑣𝑒𝑙 = {50, 100} the 𝑆𝑅 metric approaches 100% after processing
around 1,000 attacking traces, while our methods converge to this percentage using 750 traces. For
𝑙𝑒𝑣𝑒𝑙 = 150, the final 𝑆𝑅 is 97%.

To summarize, we could say that the desynchronization countermeasure does not provide any added
value compared to our proposed countermeasure. On the one side, when our methods are effective,
the performance of the desynchronization is similar or worse, except for the attacking scenarios that use
the CNNbest model. On the other hand, when our methods are ineffective, desynchronization provides
insignificant protection. The attack is usually feasible within 2,000 traces or the final 𝑆𝑅 is close to
100%, or it fails too. At the same time, it seems that desynchronization leaked information that was
exploited by the powerful CNNRijsdijk and managed to improved its performance.

RDIs
For the simulation of the RDI countermeasure, we use algorithm 5. Regarding selecting its parameters,
we refer again to the work of Wu and Picek [83], as the usage of the 𝑆𝑁𝑅 is not conclusive for this case
as well. In their work, the authors use (𝑎, 𝑏, 𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) = (8, 5, 10) to create a protected dataset
using RDIs. As their results indicate that these parameters can provide strong protection against the
dataset, we will use them for our experiments too. The execution of the simulation algorithm with
these parameters produces a dataset with 5358 points per trace, which is more than 5 times greater
than the clean dataset, 𝑆𝑁𝑅 = 0.071, and euclidean distance 𝑙2 = 5023.14. As we would like to have
a fair comparison with our methods, we decide to generate two more datasets with smaller interrupts
using the parameters (𝑎, 𝑏, 𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) = {(3, 1, 10), (5, 2, 10)}. Our simulation using the first set
of parameters produces a dataset of input size 1764 tracepoints, 𝑆𝑁𝑅 = 0.069, and 𝑙2 = 2816.86,
while the second configuration creates a dataset of input size 3141 tracepoints, 𝑆𝑁𝑅 = 0.075, and
𝑙2 = 3867.59.

In table 5.5, we present the measured metrics for our attacking scenarios. In contrast, the progress
of the achieved guessing entropy and success rate is presented in figure 5.3. As we can see, this partic­
ular countermeasure can offer extremely high protection against most attacking scenarios, especially
when using parameters that tend to generate large delay interrupts.

Regarding the comparison with our methods, we see that the RDIs can perform significantly better.
In detail, we see that the only attacking scenario where our methods can compete with the RDIs is the
one where the MLPbest and ID models are used as the attacking and leakage models, respectively. In
this case, our 𝑘𝑃𝑃random(CNNbest, 70, 500) is performing similarly to the three simulated RDIs, while the
𝑘𝑃𝑃normal(CNNbest, 90, 500) and 𝑘𝑃𝑃random(CNNbest, 100, 400) are performing worse. When the leakage
model changes to HW, then the protection of our methods is significantly decreased, but the attacks
against the RDI­protected datasets still have a success rate of less than 30%.

Similar observations can be derived from figure 5.3c, where the attack is performed with the CNNbest
attacking model and the identity leakage model. For the attacks that combine the CNNbest model with

48 5. Performance compared to existing countermeasures

(a) Attack using MLPbest (ID leakage model) (b) Attack using MLPbest (HW leakage model)

(c) Attack using CNNbest (ID leakage model) (d) Attack using CNNbest (HW leakage model)

(e) Attack using CNNRijsdijk (ID leakage model) (f) Attack using CNNRijsdijk (HW leakage model)

(g) Attack using MLPWu (ID leakage model) (h) Attack using MLPWu (HW leakage model)

Figure 5.3: Comparison of our proposal with RDIs

5.3. Results 49

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage Att. model

RDI (𝑎 = 3, 𝑏 = 1, ID MLPbest >2000 112.79 0.00 86.88 0.02 71.09 0.03
𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 10) CNNbest >2000 97.36 0.03 65.71 0.02 58.26 0.00

CNNRijsdijk 285 1.34 0.89 1.00 1.00 1.00 1.00
MLPWu >2000 76.27 0.04 28.85 0.11 9.97 0.32

HW MLPbest >2000 76.14 0.03 36.69 0.09 22.96 0.16
CNNbest 1918 34.93 0.14 2.11 0.74 1.01 0.99
CNNRijsdijk 1319 19.46 0.27 1.27 0.94 1.00 1.00
MLPWu >2000 108.36 0.02 70.65 0.03 47.72 0.03

RDI (𝑎 = 5, 𝑏 = 2 ID MLPbest >2000 126.26 0.00 118.25 0.00 106.09 0.00
𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 10) CNNbest >2000 98.24 0.01 62.05 0.01 37.48 0.06

CNNRijsdijk 690 6.42 0.50 1.00 1.00 1.00 1.00
MLPWu >2000 125.64 0.00 128.81 0.00 121.52 0.01

HW MLPbest >2000 90.69 0.01 72.01 0.01 52.23 0.06
CNNbest >2000 57.89 0.02 14.90 0.31 3.52 0.58
CNNRijsdijk >2000 56.99 0.04 11.43 0.28 2.09 0.65
MLPWu >2000 104.79 0.00 79.77 0.03 58.48 0.02

RDI (𝑎 = 8, 𝑏 = 5, ID MLPbest >2000 110.11 0.00 98.54 0.02 78.89 0.00
𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 10) CNNbest >2000 96.71 0.01 78.47 0.01 54.89 0.03

CNNRijsdijk >2000 139.61 0.00 159.44 0.00 168.84 0.00
MLPWu >2000 91.88 0.01 68.01 0.06 44.24 0.05

HW MLPbest >2000 116.29 0.00 104.62 0.00 81.33 0.02
CNNbest >2000 75.69 0.01 40.34 0.05 23.76 0.13
CNNRijsdijk >2000 71.41 0.03 23.90 0.15 6.33 0.39
MLPWu >2000 108.43 0.01 81.32 0.01 60.90 0.02

Table 5.5: SCA metrics for attacks against datasets protected using RDIs

the Hamming weight leakage model, as noted already, the performance of our methods drops majorly.
At the same time, RDIs offer strong protection against the executed side­channel attacks. The top
performance is observed for the simulation with parameters (𝑎, 𝑏, 𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) = (8, 5, 10).

The power of the CNNRijsdijk model is once again illustrated in figure 5.4e. Using the ID leakage
model, this attacking model can guess the secret key correctly after processing 223 and 888 attacking
traces when attacking the two datasets with the smaller RDIs. However, the attack is completely failed
when it targets the simulated dataset with parameters (𝑎, 𝑏, 𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) = (8, 5, 10). We see
similar results when the leakage model is changed to HW.

Finally, we see that RDIs can provide better protection than our methods against the MLPWu model.
In particular, RDIs succeed in decreasing the 𝑆𝑅100 attacks of most of the attacks to almost 0%, even
in the case that the RDIs are small.

In conclusion, our methods cannot compete against RDI countermeasure since our methods failed
to provide similar protection. However, RDIs increase the execution time and, as a result, the device’s
power consumption. Based on the input size and the 𝑙2 metric, we estimate that the simulated dataset
with (𝑎, 𝑏, 𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) = (8, 5, 10) increased execution time by fives times introducing double
power consumption compared to our methods. Considering that, a defender could prefer to use our
methods when the power consumption of the encrypting device is a critical factor.

Clock­jitters
Similar to the approach we followed in the previous section, we choose the parameters for algorithm 6
based on [83]. In this work, the authors generate a dataset protected with the clock­jitter countermea­
sure by setting 𝑙𝑒𝑣𝑒𝑙 = 4, which generates a dataset with input size 1263 tracepoints and 𝑆𝑁𝑅 = 0.0069.
Again, to explore the effectiveness of the 𝑙𝑒𝑣𝑒𝑙 parameter to the performance of the countermeasure,
we generate two more datasets with 𝑙𝑒𝑣𝑒𝑙 = {1, 2}. The input length of these two datasets is 1092
and 1162, and the 𝑆𝑁𝑅 metrics are 0.0069 and 0.0068, respectively.

In table 5.6, we present the SCA metrics of the executed attacks on the simulated datasets. In
contrast, the progress of the achieved guessing entropy and success rate is presented in figure 5.4.
Based on these metrics, we could say that the performance of the clock jitters is almost identical to
the performance of the RDIs.

This similarity in the results indicated that clock jitters outperform our adversarial­based counter­
measures (figure 5.4) since they provide stronger secret key protection without introducing extra power

50 5. Performance compared to existing countermeasures

(a) Attack using MLPbest (ID leakage model) (b) Attack using MLPbest (HW leakage model)

(c) Attack using CNNbest (ID leakage model) (d) Attack using CNNbest (HW leakage model)

(e) Attack using CNNRijsdijk (ID leakage model) (f) Attack using CNNRijsdijk (HW leakage model)

(g) Attack using MLPWu (ID leakage model) (h) Attack using MLPWu (HW leakage model)

Figure 5.4: Comparison of our proposal with Clock­Jitters

5.3. Results 51

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage Att. model

Clock­jitters (𝑟𝑎𝑛𝑔𝑒 = 1) ID MLPbest >2000 114.15 0.01 104.59 0.00 86.91 0.01
CNNbest >2000 83.41 0.02 64.77 0.02 38.93 0.07
CNNRijsdijk 237 1.16 0.91 1.00 1.00 1.00 1.00
MLPWu >2000 82.54 0.00 50.13 0.06 24.72 0.13

HW MLPbest >2000 79.20 0.02 26.52 0.14 5.42 0.39
CNNbest >2000 24.63 0.19 1.52 0.85 1.01 0.99
CNNRijsdijk 1348 19.57 0.22 1.11 0.98 1.00 1.00
MLPWu >2000 68.79 0.02 24.95 0.17 8.26 0.45

Clock­jitters (𝑟𝑎𝑛𝑔𝑒 = 2) ID MLPbest >2000 108.60 0.00 85.48 0.01 60.95 0.03
CNNbest >2000 116.34 0.01 97.41 0.00 80.07 0.02
CNNRijsdijk 492 2.00 0.73 1.00 1.00 1.00 1.00
MLPWu >2000 95.44 0.00 64.30 0.04 32.43 0.10

HW MLPbest >2000 118.00 0.00 89.98 0.03 80.37 0.03
CNNbest >2000 73.30 0.01 28.54 0.10 15.15 0.32
CNNRijsdijk >2000 49.04 0.09 7.12 0.40 1.76 0.70
MLPWu >2000 118.66 0.00 92.41 0.01 70.47 0.03

Clock­jitters (𝑟𝑎𝑛𝑔𝑒 = 4) ID MLPbest >2000 125.06 0.00 131.38 0.01 127.95 0.01
CNNbest >2000 127.43 0.00 137.75 0.00 139.76 0.00
CNNRijsdijk 1531 14.44 0.31 1.08 0.97 1.00 1.00
MLPWu >2000 118.09 0.00 100.15 0.01 81.40 0.02

HW MLPbest >2000 126.68 0.00 126.52 0.00 114.08 0.00
CNNbest >2000 115.69 0.00 90.85 0.01 81.49 0.01
CNNRijsdijk >2000 96.20 0.00 69.25 0.04 53.95 0.04
MLPWu >2000 118.60 0.01 95.53 0.02 80.33 0.05

Table 5.6: SCA metrics for attacks against datasets protected using clock­jitters

consumption. A possible benefit of our proposed countermeasure is the fact that clock jitters require
specific hardware. In practice, the application of this hardware countermeasure requires certain fea­
tures from the device’s microprocessor, such as clock­scaling and phase­shifted clock signals, which
are usually available on FPGAs [31]. Hence, our countermeasure could be a viable alternative when
these features are not available.

5.3.3. Masking countermeasures
As explained in section 5.2.2, it is not possible to simulate the application of . The difficulty occurs
because this mask is applied to the secret key on the software level and requires modifying the en­
cryption source code. Thus, our only alternative is to use an existing dataset protected with a masking
countermeasure. Thus, for this simulation, we use the random key ASCAD. We can safely assume
that a first­order masked version of our clean dataset would be equally protected to ASCAD, as these
two datasets are extracted from the same power traces but focus on a different subkey. In particular,
ASCAD contains tracepoints correlated with the third subkey, while our clean dataset contains points
for the first unprotected subkey.

Recall that in section 4.2.1, we added artificial noise on our traces using the normal distribution
𝑁(0, 30). The motivation of that choice was to increase the difficulty of the attack and, consequently,
the resolution of our results since the attacks on the original dataset were successful after processing
only 2 traces. To justify the existence of this noise, we assumed that our measurements include noise
caused by external factors and not because of the application of the Gaussian noise countermeasure.
Hence, to perform a fair comparison between our adversarial­based countermeasure and the masking
countermeasure, we have to assume that this external noise was present during the acquisition of
the ASCAD dataset. Thus, we add normal noise of equal magnitude to the original ASCAD. In our
experiments, we will use both of these datasets.

Table 5.7 presents the used SCA metrics to track the performance of the attacks against the original
and modified ASCAD. Similar to previous sections, we also provide the progress of 𝐺𝐸 and 𝑆𝑅 during
these attacks in comparison to the attacks on the clean and our generated datasets.

Based on these results, we can see that adding the external noise on the ASCAD makes the attack
infeasible in all of the attacking scenarios. Regarding the attacks on the original ASCAD, we see that
the performance is similar to the attacks against our methods when the attack uses the MLPbest model.
However, original ASCAD seems to be better protected against our CNNbest and the state­of­the­art
models.

Overall, it seems that the first­order masking can provide a better level of protection than our

52 5. Performance compared to existing countermeasures

(a) Attack using MLPbest (ID leakage model) (b) Attack using MLPbest (HW leakage model)

(c) Attack using CNNbest (ID leakage model) (d) Attack using CNNbest (HW leakage model)

(e) Attack using CNNRijsdijk (ID leakage model) (f) Attack using CNNRijsdijk (HW leakage model)

(g) Attack using MLPWu (ID leakage model) (h) Attack using MLPWu (HW leakage model)

Figure 5.5: Comparison of our proposal with first­order masking

5.3. Results 53

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage Att. model

First­order masking ID MLPbest >2000 128.15 0.00 111.48 0.01 100.83 0.02
CNNbest >2000 93.72 0.02 60.25 0.03 44.84 0.05
CNNRijsdijk 530 1.57 0.86 1.00 1.00 1.00 1.00
MLPWu 252 1.11 0.94 1.00 1.00 1.00 1.00

HW MLPbest >2000 47.20 0.04 5.51 0.51 2.07 0.89
CNNbest >2000 77.13 0.02 17.99 0.14 6.25 0.38
CNNRijsdijk 1386 14.89 0.20 1.16 0.93 1.00 1.00
MLPWu 1326 19.77 0.17 1.10 0.92 1.00 1.00

First­order masking ID MLPbest >2000 136.56 0.00 134.45 0.01 127.65 0.02
+ Gaussian noise (𝑁(0, 30)) CNNbest >2000 116.20 0.00 132.68 0.01 128.69 0.00

CNNRijsdijk >2000 136.31 0.01 142.03 0.01 144.63 0.01
MLPWu >2000 122.27 0.00 121.58 0.00 125.36 0.01

HW MLPbest >2000 120.44 0.00 118.93 0.01 120.53 0.00
CNNbest >2000 127.24 0.02 128.01 0.01 116.80 0.01
CNNRijsdijk >2000 136.58 0.00 113.26 0.00 117.88 0.00
MLPWu >2000 114.27 0.01 100.12 0.00 93.86 0.01

Table 5.7: SCA metrics for attacks against datasets protected using first­order masking

adversarial­based countermeasure. However, a drawback of masking countermeasures is that they are
implemented at the software level and require altering the encryption algorithm’s source code properly.
On the other hand, our proposed countermeasure is designed to work as a separate noise generator.
Thus, we can conclude that in certain use cases that modifying the source code is not possible, our
proposal can be an effective alternative option for protection against SCA.

54 5. Performance compared to existing countermeasures

5.4. Conclusions
Based on the observations of the previous sections, we conclude that our adversarial­based counter­
measure needs to be improved so it can offer a clear added value in terms of protection compared to
other existing SCA countermeasures.

First of all, one could believe that our proposed countermeasure should work better than the Gaus­
sian noise countermeasure, as they both add noise on the y­axis of the input. Still, our method
generated adversarial instead of random noise. According to our results, this seems to be partially
true. In particular, this hypothesis holds only for the attacking scenario that our adversarial noise is
constructed, namely for the specific attacking and leakage models. On the other hand, Gaussian noise
seemed to provide more general protection.

Moreover, our proposed countermeasure failed to compete with the performance of the counter­
measure that adds randomness to the time domain. Especially, RDIs and clock jitters outperformed
our methods. We believe that the main reason for the superiority of this countermeasure compared to
ours is the randomness that it is introduced in the time domain. In particular, our methods aim to hide
the true amplitude of the power consumption that leaks information regarding the sensitive encryption
operations in a certain time sample. On the other hand, RDIs and clock jitters introduce local random­
ness on the time domain, which breaks the alignment of the traces and reduces the vertical correlation
with the true label. That triggers a new approach to designing an adversarial­based countermeasure
that uses adversarial techniques to introduce such misalignment more ”cleverly”. This direction is left
for future research.

Compared with masking defensive techniques, we conclude that our methods cannot provide any
added value. The result indicate that the protection offered by the first­order masking technique is
superior and the only possible benefits of our approach are not method­specific but lie on the general
comparison of masking and hiding countermeasures.

Finally, the enriched attacking scenarios of this chapter revealed another weakness of our defensive
techniques. On the one hand, our methods failed to protect state­of­the­art models. However, these
models presented an amazing performance against most of the examined countermeasures, except
for the RDIs and the clock jitters. On the other hand, the performance of our method was decreased
significantly when the HW leakage model was used for the attack.

Overall, we see that our adversarial­based countermeasure is weak. We believe that it weakness
is because it adds noise on the y­axis of the measurements. Our results show that existing time­
based and masking countermeasures are outperforming the noised­based countermeasures. However,
we believe that an adversarial­based approach on the SCA countermeasure design still has room for
improvement. Conventional countermeasure relies their security on pure randomness, and they are
more or less limited to certain parameters, such as the added noise level, the size of the delay interrupts,
etc. On the other side, our method introduces a new way of designing protected traces with unlimited
capabilities. Some of these capabilities are discussed in section 7.3.

6
Performance against non­profiled

side­channel attacks

This chapter aims to answer the third research question of this thesis, namely to investigate the ef­
fectiveness of the proposed adversarial­based countermeasures for non­profiled side­channel attacks.
First, we present our motivation for this research direction and why we believe that this question is
important. Then, we present the experimental process for such an investigation, and we present our
results. Last, we execute a comparison of existing countermeasures for non­profiled side­channel
attacks, similar to what we did in chapter 5.

6.1. Motivation
As explained in section 2.4, profiled side­channel attacks require the attacker to train the attacking
models on using power traces retrieved by a clone device, i.e., a device that has the same technical
specifications as the target device. That allows the attacker to remove any hardware­specific biases
introduced by the target device and build a strong profiler that guesses the device’s secret key after
processing a small amount of traces from the target device. However, it is not always possible for the
attacker to know the exact specifications of the target device or acquire such a clone device. In these
cases, a non­profiled attack is the only workaround for the attacker. These attacks exploit the leaked
side­channel information from the target device without prior training. Thus, they usually demand a
larger amount of attacking traces for a reliable result.

Considering that the non­profiled attacks are the attacker’s only choice in the described situations, it
is interesting to investigate how our adversarial­based countermeasure can perform against this family
of side­channel attacks. The ultimate goal of the present chapter is to compare our adversarial­based
countermeasure with other existing countermeasures regarding the provided protection against non­
profiled attacks. This comparison is important as it provides a good indication of our countermeasure’s
protection compared to their ”competitors”. At the same time, it reveals its possible added value
regarding the specific family of side­channel attacks.

As the threat model is changed, it is necessary to test the effectiveness of our adversarial­based
countermeasure against non­profile attacks before performing the comparison described above. Even
though our proposed defensive technique designs adversarial examples based on a trained deep neural
network and designed to protect against DNN­based SCAs, we expect that the protection should be
transferable against non­profiled SCAs. We believe that this transferability is a hard requirement for
a modern SCA countermeasure. A lack of this property would render our adversarial­based counter­
measure pointless as, despite the sufficient protection against the former type of attacks, the attacker
could perform an attack from the later type to breach the countermeasure’s protection.

The rest of this chapter aims to explore the above research directions. First, we measure the level of
protection that our implemented countermeasure can provide against non­profiled side­channel attacks.
Then, we evaluate this performance compared to other existing countermeasures, similar to what we
did in chapter 5.

55

56 6. Performance against non­profiled side­channel attacks

6.2. Protection against non­profiled SCA
The goal of this section is to explore the effectiveness of the designed adversarial­based counter­
measures against non­profiled attacks, and in particular, against CPA attacks (see section 2.4.2). In
particular, we are interested in finding how the different method’s variants and parameters presented
in section 4.3.1 can affect the degree of protection. In the next subsections, we explain in detail the
experimental process and present the results. Last, we derive our conclusions based on these results
about how the method’s parameters affect the performance of our different variants.

6.2.1. Experimental process
For our experiments, we use the datasets generated in section 4.3. Half of these datasets are generated
using the MLPbest model for the generation of the adversarial examples, while the CNNbest model
was used for the rest of them. Each half consists of a simulation with different combinations of the
added noise bounds and affected features. In detail, the lower bound is set to zero, while the upper
bound takes values from 100 to 500 with a step of 100. Regarding the modified features, we set the
corresponding parameter from 10 to 100 with a step of 10. Finally, to eliminate any bias introduced by
the stochastic behavior of our method, we generate 5 instances for each combination, and we present
the average for each of the used metrics. Each generated dataset consists of 50,000 profiling traces,
where the key is random, and 10,000 attacking traces, where the key is fixed.

The attacking process follows the usual threat model for non­profiled attacks. As the attacker
can manipulate the input of the target device, the input plaintext is considered known. Furthermore,
the attacker has physical access to the device and can measure the power consumption during the
encryption of his chosen plaintext. Thus, the attacker can capture the side­channel observations and
perform a CPA attack for the retrieval of the secret key, using the methodology described in section 2.4.2.
In our experiments, we use all the 10,000 attacking traces generated during the simulation of our
adversarial­based countermeasure. Last, the attacks of the present chapter use both the ID and HW
leakage models.

Regarding the metrics that we use for the evaluation, we use the same set of metrics as in chapters 4
and 5. In particular, we define the metric 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠, which describes the number of traces that the
attacker needs to acquire 𝐺𝐸 = 1 and 𝑆𝑅 = 100%. Moreover, we define the metrics 𝐺𝐸𝑥 and 𝑆𝑅𝑥
that represent the achieved guessing entropy and success rate when 𝑥% of the total attacking traces
is processed by the attacking model. In our experiments, we measure for 𝑥 = {10, 50, 100}. Since
the non­profiled attacks require more attacking traces than the profiled ones, we increase the total
attacking traces from 2,000 to 10,000.

6.2.2. Results
In the following sections, we present the results of the above experimental process divided into three
subsections, one for each variant of our adversarial­based countermeasure.

Normal 𝑘­Point Protection
Figure 6.1 presents the average 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metric for the CPA attacks against the datasets that are
generated by the normal 𝑘­Point Protection method while using the MLPbest model for the generation
of the adversarial examples.

In figure 6.1a, we see that our method can offer significant protection against attacks using the
ID leakage model. In particular, when the added noise is bounded in the range [0, 100), our method
needs to change at least 70 tracepoints to make the attack infeasible in four out of five executions.
In contrast, modification of 80 features makes the attack infeasible for all of the executions. When
the upper bound of the noise is changed to 200, the attack is rendered infeasible for almost all the
executions that change at least 20 features. Similarly, we notice that an upper bound of 300 can offer
significant protection. However, in this scenario, we notice the optimal performance is noticed when
the method alters 20­30 features. At the same time, the attack succeeds using just under 10,000 traces
in some scenarios where the amount of affected features is higher. Last, we notice that with an upper
bound of 400 or 500, we only need to modify 10 features to make the attack always infeasible. At the
same time, increasing the number of altered tracepoints decreases the performance of our method.

On the other hand, our method doesn’t offer equivalent protection when using the HW leakage
model. If we recall that our methods are using the ID model to protect the dataset, this drop in

6.2. Protection against non­profiled SCA 57

the performance is expected. figure 6.1b shows that the performance of the attack against datasets
generated with 𝑏𝑜𝑢𝑛𝑑𝑠 = [0, 500) is similar to the one against the clean dataset for small 𝑘. At the
same time, it is increased gradually when the method modifies more tracepoints. If the upper bound
is set to 200, we notice that the peak of the method’s performance is reached when it changes 40
features, where the attack is about 4 times harder than the attack on the clean dataset. For an upper
bound of 300, we notice that the method’s performance is more or less the same for all the different
values of 𝑘. Last, when the upper bound is set to 400 or 500, the performance of our method drops
as we increase the number of modified features.

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.1: Performance of normal 𝑘­Point Protection using the MLPbest model

Continuing, figure 6.2 shows the performance of the CPA attacks against datasets that are generated
by our 𝑘𝑃𝑃normal(CNNbest, ⋅, ⋅). We see that the usage of the CNNbest model for the generation of the
adversarial examples changes majorly the observations we did above.

Regarding the attacks that use the ID leakage model (see figure 6.2a), we notice that a small range
for the 𝑏𝑜𝑢𝑛𝑑𝑠 parameter does not offer a significant level of protection. In detail, almost all the
executions with 𝑏𝑜𝑢𝑛𝑑𝑠 = [0, 100) do not protect the secret subkey within 10,000 traces, while similar
results we observe when setting the upper bound to 200. When this range is changed to [0, 300),
the attack becomes infeasible within 10,000 traces for 𝑘 < 30, while more and more attacks become
feasible for a higher 𝑘. Last, we see that setting the upper bound to 400 or 500 makes the attack
almost always infeasible, even when we change only 10 features.

Similarly to what we observed earlier in this section, we see that the performance of our method
against attacks that use the Hamming weight leakage model drops, as presented in figure 6.2b. In
particular, for the smaller examined range of added noise, the attacker needs around 50% of our traces
to retrieve the secret subkey in most of the cases. In detail, for 𝑏𝑜𝑢𝑛𝑑𝑠 = [0, 100), the performance
of the attack remains the same when our method modifies a small number of tracepoints, while the
𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metric is only doubled when the method alters 100 features. If the 𝑏𝑜𝑢𝑛𝑑𝑠 parameter is set
to [0, 200), we notice that the optimal performance of our method is met in the scenario that we alter
50 to 70 features, where the attack needs around 5,000 traces to retrieve the secret subkey. When
the upper bound is set to 300, our method performs better when it modifies 20 to 40 traces where the
𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metric is close to 6,000.

When the upper bound of the added noise is bigger, we notice that the performance of our method
is improved significantly, as the 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metric exceeds the 8,000 traces, but all of the attacks are still
feasible. In detail, the method 𝑘𝑃𝑃normal(CNNbest, 70, 400) increases this metric to 8,000 traces, while
the 𝑘𝑃𝑃normal(CNNbest, 60, 500) succeeds the best protection among the examined scenarios, where the
attacker needs around 9,000 traces to guess the secret subkey correctly.

Based on the above observations, we select implementations that combine a good performance
against both leakage models. More specifically, we aim to pick implementations that render the ID­
based attacks infeasible within 10,000 features and achieve a high 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metric against HW­based
attacks. Moreover, we include the 𝑘𝑃𝑃normal(CNNbest, 90, 500), which was selected as the best imple­
mentation for the normal 𝑘­Point Protection in section 4.3. In table 6.1, we present the SCA metrics
of attacks on the datasets generated by these configurations.

58 6. Performance against non­profiled side­channel attacks

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.2: Performance of normal 𝑘­Point Protection using the CNNbest model

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage

𝑘𝑃𝑃normal(CNNbest, 70, 400) ID >10000 124.18 0.01 55.75 0.05 12.67 0.25
HW 8110 (5/5) 110.88 0.01 1.88 0.69 1.00 1.00

𝑘𝑃𝑃random(MLPbest, 50, 400) ID >10000 130.71 0.00 91.23 0.01 46.41 0.00
HW >10000 117.34 0.00 49.52 0.02 4.54 0.28

𝑘𝑃𝑃corr(MLPbest, 100, 300) ID >10000 125.57 0.01 100.98 0.01 63.60 0.00
HW >10000 123.60 0.00 25.35 0.08 2.05 0.52

Table 6.1: SCA metrics for attacks against datasets generated by our normal 𝑘­Point Protection. Values are the
average of attacks on 5 different instances per configuration. The parenthesis in column 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 represents the
number of successful attacks out of the 5 instances. The ”>10000” denotes that all five attacks were unsuccessful.

A noteworthy point is that the 𝑘𝑃𝑃normal(MLPbest, 90, 500), which was among the top implementa­
tions for DNN­based side­channel attack, presents the top performance among the selected implemen­
tations. As we discussed in section 6.1, this transferability between non­profiled and profiled attacks
is an important factor for the evaluation of our adversarial­based method.

However, taking into consideration the minimality of the added noise, there are configurations with
similar performance, such as the 𝑘𝑃𝑃normal(CNNbest, 70, 400) that has a smaller 𝑙2 distance metric, as
we see in tables B.1 and B.2. Thus, for the rest of this chapter, we consider that the best configuration
for the normal 𝑘­Point Protection method is the 𝑘𝑃𝑃normal(CNNbest, 70, 400).

Random 𝑘­Point Protection
Figure 6.3 presents the average 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metrics for the CPA attacks against the datasets that are
generated by the random 𝑘­Point Protection method with the usage of the MLPbest model for the
generation of the adversarial examples.

Regarding the CPA attacks that use that ID leakage model, we see in figure 6.3a that our method
presents remarkable results in the extreme majority of the experiments, except for the case that the
bounds of the added noise are set to [0, 100). In these cases, all the attacks on the protected datasets
managed to guess the secret l correctly using 4500 traces for 𝑘 = 10 to 7000 traces for 𝑘 = 100, when
the attack on the unprotected dataset needs a bit more than 4000 traces. However, for bigger ranges,
the performance of our methods improves. Starting with the upper bound is set to 200, we notice that
only one­fifth of the attacks are successful for 𝑘 > 60, while all the attacks fail within 10,000 traces for
𝑘 = 100. Continuing, for 𝑏𝑜𝑢𝑛𝑑𝑠 = [0, 300), only one of the attacks succeed with the metric 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠
being close to 10,000 for 𝑘 = 40. At the same time, modifying 50 or more features results in 0%
successful attacks. Last, we notice that our methods need to add noise only on 20 features when the
upper bound is set to 400 or 500 to protect completely the secret key against that attack that uses up
to 10,000 traces.

On top of the aforementioned observations, we notice that the usage of the MLPbest for the gener­
ation of the adversarial examples can offer significant protection against CPA attacks that use the HW

6.2. Protection against non­profiled SCA 59

leakage model when the range of the added noise is large enough. In particular, for an upper bound
of 400 or 500, our method needs to perturb 50 or 40 tracepoints to achieve a 0% feasibility of CPA
attacks within 10,000 traces. At the same time, an upper bound of 300 requires at least 70 traces
to get modified for the same outcome. Again, this approach doesn’t provide sufficient protection for
smaller ranges since the secret subkey is retrieved successfully in all the performed attacks.

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.3: Performance of random 𝑘­Point Protection using the MLPbest model

Moving to apply this method with the usage of the CNNbest for the generation of the adversarial
examples, the results presented in figure 6.4 are surprisingly different from what we would expect.

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.4: Performance of random 𝑘­Point Protection using the CNNbest model

On the one hand, we see that the vast majority of the ID­based CPA attacks result in successfully
retrieving the secret key in 10,000 traces. In detail, for an upper bound of 100, the performance of the
attack barely changes for 𝑘 = 0 compared to the attack on the clean dataset, while it becomes only
half times harder for 𝑘 = 100. When the upper bound is increased to 200, the results are similar; there
is not any observable protection when the method changes ten tracepoints, and it needs to change
90 tracepoints so that the 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metric approaches 9,000. In the case that the range of the added
noise is [0, 300), we observe that some of the attacks become infeasible for 𝑘 > 40 and only one­fifth
of attacks is feasible, while the feasible attack has 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≈ 10, 000, when 𝑘 = 100. The method’s
performance is improved for larger ranges, as it needs to modify 80 features to protect 4/5 of the
generated datasets when the upper bound is 400 and 50 features to render all the performed attack
infeasible when the upper bound is 500.

In table 6.2, we present the SCA metrics of the CPA attacks against the above noteworthy imple­
mentations in addition to the 𝑘𝑃𝑃random(CNNbest, 100, 400) and 𝑘𝑃𝑃random(CNNbest, 70, 500), which were
selected as the top configurations for the random 𝑘­Point Protection in section 4.3. Despite the fact
the some of the attacks against these two last implementations are feasible within 10,000 traces, we

60 6. Performance against non­profiled side­channel attacks

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage

𝑘𝑃𝑃random(MLPbest, 100, 200) ID >10000 121.57 0.01 49.59 0.04 4.92 0.08
HW 8292 (5/5) 109.30 0.01 3.04 0.54 1.00 1.00

𝑘𝑃𝑃random(MLPbest, 50, 300) ID >10000 124.41 0.00 69.44 0.01 32.04 0.00
HW 9535 (4/5) 107.27 0.00 11.26 0.25 1.30 0.87

𝑘𝑃𝑃random(MLPbest, 50, 400) ID >10000 130.71 0.00 91.23 0.01 46.41 0.00
HW >10000 117.34 0.00 49.52 0.02 4.54 0.28

𝑘𝑃𝑃random(MLPbest, 40, 500) ID >10000 123.92 0.00 94.66 0.01 53.91 0.17
HW >10000 121.64 0.00 57.66 0.03 13.47 0.19

𝑘𝑃𝑃random(CNNbest, 70, 300) ID 9237 (3/5) 114.31 0.01 14.34 0.22 1.31 0.79
HW 4812 (5/5) 88.65 0.01 1.01 0.99 1.00 1.00

𝑘𝑃𝑃random(CNNbest, 80, 400) ID 9800 (1/5) 115.78 0.01 40.09 0.09 5.54 0.66
HW 6474 (5/5) 111.59 0.02 1.28 0.84 1.00 1.00

𝑘𝑃𝑃random(CNNbest, 100, 400) ID 9590 (2/5) 123.37 0.00 46.49 0.07 4.19 0.48
HW 7748 (5/5) 117.19 0.00 2.57 0.64 1.00 1.00

𝑘𝑃𝑃random(CNNbest, 50, 500) ID >10000 120.91 0.01 39.09 0.09 3.66 0.33
HW 7092 (5/5) 109.88 0.01 1.63 0.72 1.00 1.00

𝑘𝑃𝑃random(CNNbest, 80, 500) ID 9990 (1/5) 127.32 0.00 65.34 0.06 13.92 0.28
HW 8455 (4/5) 119.83 0.00 9.61 0.28 1.04 0.97

Table 6.2: SCA metrics for attacks against datasets generated by our random 𝑘­Point Protection. Values are the
average of attacks on 5 different instances per configuration. The parenthesis in column 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 represents the
number of successful attacks out of the 5 instances. The ”>10000” denotes that all five attacks were unsuccessful.

notice that the average 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝐺𝐸100 are quite high, and the 𝑆𝑅100 sufficiently low –especially
for attacks that use the ID leakage model. However, the best performance for the random 𝑘­Point
Protection is achieved by the implementations 𝑘𝑃𝑃random(MLPbest, 50, 400) and 𝑘𝑃𝑃random(MLPbest, 40,
500). According to table B.3, the former achieves a lower 𝑙2 distance metric, and, thus, we select it as
the best implementation of the random variant.

Correlation 𝑘­Point Protection
Figure 6.5 presents the average 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metrics for the CPA attacks against the datasets that are
generated by the correlation 𝑘­Point Protection method with the usage of the MLPbest model for the
generation of the adversarial examples.

Regarding the attacks that use the ID leakage model, our method presents astonishing results. In
particular, our method needs to modify only 20 features to make all the attacks infeasible regardless of
the range of the added noise. The only exception is for the implementations 𝑘𝑃𝑃corr(MLPbest, 80, 100)
and 𝑘𝑃𝑃corr(MLPbest, 100, 100), where one attack in each scenario is successful, but with 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 very
close to 10,000.

On the other hand, this observation doesn’t hold for the Hamming weight model’s attacks. In
particular, the CPA attacks against datasets that generated with 𝑏𝑜𝑢𝑛𝑑𝑠 = [0, 100) are always feasible
and the highest protection is observer for 𝑘 = 90 where 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≈ 8500. If the upper bound is set to
200, all the attacks are feasible for 𝑘 < 90, while most of the attacks are infeasible for higher 𝑘. For
upper bound equal greater than 300, all the attacks are infeasible when 𝑘 ≥ 90, with a single exception
for the 𝑘𝑃𝑃corr(MLPbest, 100, 500) where one­fifth of the attacks is feasible within 10,000 traces.

The results regarding the correlation 𝑘­Point Protection when the CNNbest is used to generate adver­
sarial examples figure 6.6. We see that, when the CPA attacks use the ID leakage model, this approach
can sufficiently protect the secret subkey for larger ranges of added noise. In particular, for the upper
range equal to or greater than 300, all the attacks with 𝑘 ≥ 20 are infeasible, while the same holds
for the upper range equal to 200 and 𝑘 from 20 to 50. On the other hand, all configurations with
𝑏𝑜𝑢𝑛𝑑𝑠 = [0, 100) fail to provide sufficient protection.

However, the performance of this approach against CPA attacks that use the HW leakage model
is different. For 𝑏𝑜𝑢𝑛𝑑𝑠 = [0, 100), our method is barely decreasing the performance of the CPA
attack, while for upper range equal to 200 or 300 the offered protection is small (𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≈ 7, 000 for
𝑘 = 60 and 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≈ 8, 000 for 𝑘 ≥ 80). The best performance is achieved with the configurations

6.2. Protection against non­profiled SCA 61

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.5: Performance of correlation 𝑘­Point Protection using the MLPbest model

𝑘𝑃𝑃corr(CNNbest, 90, 400) and 𝑘𝑃𝑃corr(CNNbest, 100, 500). The former configuration protects completely
three out of five instances within 10,000 traces, while the latter makes protect all five instances.

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.6: Performance of correlation 𝑘­Point Protection using the CNNbest model

Based on the above observations, we select the implementations that perform better against both
leakage models. Table 6.3 presents the SCA metrics for the CPA attacks against the corresponding
generated datasets. This table shows that all the selected methods succeed in fully protecting the
secret subkey from CPA attacks that use the ID model, with the attack’s success rate being 0%. At
the same time, we see that the 𝑘𝑃𝑃corr(MLPbest, 100, 300) and 𝑘𝑃𝑃corr(MLPbest, 100, 400) provide more
protection than the rest of them against attacks with 𝑆𝑅100 = 0.52 and 𝑆𝑅100 = 0.43 respectively. The
Euclidean distance of these two implementations is 1730.25 and 2306.84, respectively, according to
table B.5. Thus, we conclude that the former implementation succeeds similar protection with lower
added noise.

6.2.3. Conclusions
Based on the observations of the section 6.2.2, we can derive some useful outcomes regarding the
performance of the three variants of our adversarial­based countermeasure.

First of all, we notice that the correlation 𝑘­Point Protection approach can significantly protect the
secret key against CPA attacks, unlike our conclusion regarding its performance against DNN­based
side­channel attacks. The explanation for the effectiveness of this particular method against the CPA
attacks is straightforward. Recall that this variant picks the 𝑘 traces points that are most correlated
with the secret subkey and adds adversarial noise. At the same time, CPA attacks exploit the same
correlation to retrieve the encryption key. Hence, our method directly cloaks this correlation, and the
performance of the CPA attack decreases naturally.

62 6. Performance against non­profiled side­channel attacks

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage

𝑘𝑃𝑃corr(MLPbest, 90, 300) ID >10000 129.85 0.00 107.09 0.00 80.57 0.00
HW >10000 113.51 0.00 18.80 0.11 1.12 0.91

𝑘𝑃𝑃corr(MLPbest, 100, 300) ID >10000 125.57 0.01 100.98 0.01 63.60 0.00
HW >10000 123.60 0.00 25.35 0.08 2.05 0.52

𝑘𝑃𝑃corr(MLPbest, 90, 400) ID >10000 122.61 0.00 105.06 0.01 81.12 0.00
HW >10000 124.79 0.00 18.82 0.11 1.11 0.91

𝑘𝑃𝑃corr(MLPbest, 100, 400) ID >10000 127.99 0.00 112.44 0.00 87.20 0.00
HW >10000 120.49 0.01 33.63 0.05 2.18 0.43

𝑘𝑃𝑃corr(MLPbest, 90, 500) ID >10000 131.92 0.00 108.01 0.00 80.15 0.00
HW >10000 117.95 0.00 24.20 0.07 1.07 0.94

𝑘𝑃𝑃corr(CNNbest, 90, 400) ID >10000 125.49 0.00 86.72 0.01 58.92 0.00
HW 9665 (2/5) 112.99 0.01 15.18 0.14 1.10 0.91

𝑘𝑃𝑃corr(CNNbest, 100, 500) ID >10000 125.06 0.01 103.49 0.01 57.75 0.00
HW >10000 122.79 0.01 33.66 0.05 1.72 0.59

Table 6.3: SCA metrics for attacks against datasets generated by our correlation 𝑘­Point Protection. Values are the
average of attacks on 5 different instances per configuration. The parenthesis in column 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 represents the
number of successful attacks out of the 5 instances. The ”>10000” denotes that all five attacks were unsuccessful.

Moreover, we observe that the usage of the MLPbest model can build stronger adversarial exam­
ples and, consequently, provide stronger protection than CNNbest model when we apply the random or
the correlation variant of our adversarial­based countermeasure. This contradicts the conclusion from
section 4.3, where CNNbest could build stronger adversarial examples that trick both models. Consid­
ering the general superiority of the CNN models against the MLP models, this observation is almost
unexpected, and it is hard to explain the reasons behind this effect.

Furthermore, another important outcome is the transferability of the protection that our adversarial­
based countermeasure offers between non­profiled and profiled attacks. As we saw in the previous
subsection, the methods that were performed better against DNN­based SCA can still protect sufficiently
the secret key. As explained in section 6.1, we believe that this transferability is a hard requirement for
an SCA countermeasure as it ensures that the attacker cannot disable the offer protection by choosing
a non­profiled attack instead of a profiled attack.

Last, it is important to compare and conclude which of the three variants presented above performs
better. In table 6.4, we summarize the measured SCA metrics for attacks against these methods.
Based on this table, we see that the 𝑘𝑃𝑃random(MLPbest, 50, 400) provides better protection for the two
different leakage models. Regarding the 𝑙2 distance metric, using tables B.2, B.3 and B.5, we see that
this implementation has 𝑙2 = 1635.43, which is the lowest of among these three implementations that
we see for the configuration. Hence, we conclude that the random variant provides better protection
than the other two approaches. This outcome aligns with what we concluded for DNN­based side­
channel attacks.

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage

𝑘𝑃𝑃normal(CNNbest, 70, 400) ID >10000 124.18 0.01 55.75 0.05 12.67 0.25
HW 8110 (5/5) 110.88 0.01 1.88 0.69 1.00 1.00

𝑘𝑃𝑃random(MLPbest, 50, 400) ID >10000 130.71 0.00 91.23 0.01 46.41 0.00
HW >10000 117.34 0.00 49.52 0.02 4.54 0.28

𝑘𝑃𝑃corr(MLPbest, 100, 300) ID >10000 125.57 0.01 100.98 0.01 63.60 0.00
HW >10000 123.60 0.00 25.35 0.08 2.05 0.52

Table 6.4: SCA metrics for attacks against datasets generated by the best configurations for our adversarial­based
countermeasure. Values are the average of attacks on 5 different instances per configuration. The parenthesis in
column 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 represents the number of successful attacks out of the 5 instances. The ”>10000” denotes that

all five attacks were unsuccessful.

6.3. Comparison with existing countermeasures 63

6.3. Comparison with existing countermeasures
In this section, we explore how the effectiveness of our adversarial­based countermeasure compares
with the conventional countermeasures proposed by the research community for the protection against
CPA attacks. As explained in section 6.1, this comparison is very important, as it reveals the added value
of our adversarial­based countermeasure. In the rest of this section, we first present the experimental
process, the results of our experiments, and our derived conclusions.

6.3.1. Experimental Process
Our experimental process is similar to one conducted in chapter 5. More specifically, we will use
the generated datasets of this chapter that simulate the hiding and masking countermeasures under
investigation. Regarding the datasets generated by our methods, we will use the top­performing
datasets as presented in section 6.2, in addition to the datasets that we found that perform better
against the DNN­based CPA attacks.

For the attack, we execute a CPA attack script that follows the process described in section 2.4.2.
As profiled attacks require more traces than the profiled attacks, we use all the 10,000 attacking traces
generated by our adversarial­based methods.

Last, we use the same evaluation metrics as the previous section. More specifically, we use the
𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 metric that represents how many traces the attack needs to process to achieve 𝐺𝐸 = 1 and
𝑆𝑅 = 100%. Moreover, we use the 𝐺𝐸𝑥 and 𝑆𝑅𝑥 that describe the 𝐺𝐸 and 𝑆𝑅 when 𝑥% of the 10,000
traces is processed. In our experiments, we measure for 𝑥 = {10, 50, 100}.

6.3.2. Results
In this section, we present the results of our experiments related to each countermeasure under ex­
amination separately. Then, using the provided tables and figures, we point out our observations.

Gaussian Noise
In table 6.5, we present the performance of the CPA attacks against the protected dataset with the
Gaussian Noise countermeasure. In the case that we attack using the ID leakage model, we see that
the Gaussian noise countermeasure renders the attack infeasible, with 𝐺𝐸100 = 2.7 and 𝑆𝑅100 = 0.11
after processing 10,000 traces. However, using the HW leakage model for the attack, the attack can
retrieve the secret subkey after processing 6,040 traces.

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage

Gaussian noise (𝑁(0, 80)) ID >10000 121.30 0.00 34.06 0.05 2.70 0.11
HW 6040 94.63 0.00 1.28 0.84 1.00 1.00

Table 6.5: SCA metrics for CPA attacks against datasets protected using Gaussian noise

As shown in figure 6.7, the Gaussian noise countermeasure performs worse than all of our im­
plementations. In particular, we see that the gray line, which corresponds to the attack against this
particular countermeasure, converges to 𝐺𝐸 = 1 faster than any other line. Thus, we can safely
conclude that our implementations provide stronger protection against CPA attacks than the Gaussian
Noise countermeasure.

Desynchronization
In table 6.5, we present the performance of the CPA attacks against the protected dataset with the
desynchronization countermeasure. As we can see, even for the smaller value for the level of desyn­
chronization, the performance of the attack drops dramatically. This effect explains that CPA attacks
exploit the horizontal correlation of the dataset’s feature with the secret key. As the desynchronization
introduces global randomness horizontally, this correlation is majorly decreased, and the CPA attack
fails.

In figure 6.8, we see the progress of the 𝑃𝐺𝐸 and 𝑆𝑅 metrics of the CPA attacks against the
simulated datasets by this particular countermeasure alongside the corresponding attacks against our
methods. The aforementioned effects of desynchronization are clearly visible. Since our methods
modify only the amplitude of 𝑘 tracepoints, the correlation of the rest features remains untouched and

64 6. Performance against non­profiled side­channel attacks

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.7: Comparison of Gaussian noise countermeasure with our top implementations for CPA attacks

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage

Desync (𝑙𝑒𝑣𝑒𝑙 = 50) ID >10000 113.38 0.01 87.67 0.01 16.72 0.00
HW >10000 125.85 0.00 74.21 0.02 9.31 0.03

Desync (𝑙𝑒𝑣𝑒𝑙 = 100) ID >10000 132.98 0.00 110.17 0.00 61.09 0.00
HW >10000 103.38 0.01 43.76 0.07 3.13 0.19

Desync (𝑙𝑒𝑣𝑒𝑙 = 150) ID >10000 128.36 0.01 133.83 0.01 197.30 0.00
HW >10000 137.32 0.00 101.44 0.00 66.78 0.00

Table 6.6: SCA metrics for CPA attacks against datasets protected using desynchronization

exploitable by the CPA attack. Hence, we conclude that our adversarial­based countermeasure cannot
perform better than the desynchronization countermeasure against CPA attacks by design.

Since our methods present sufficient protection, we could claim that it is preferred to be used
instead of another countermeasure if they present another benefit, such as introducing smaller power
consumption. However, desynchronization does not require extra power consumption for its application,
as it only introduces minor delays in the execution of each encryption. Thus, we cannot find any benefit
of our adversarial­based method against the desynchronization countermeasure.

RDIs
RDIs follow a similar approach with the desynchronization countermeasure, as they introduce local
randomness to every feature on the time domain of the traces. Thus, we expect that the results will
be similar to what we observed in the previous section. Indeed, the performance of the CPA attacks
drops majorly with the application of this countermeasure, as displayed in table 6.7.

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage

RDI (𝑎 = 3, 𝑏 = 1, 𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 10) ID >10000 128.23 0.00 111.60 0.00 59.40 0.00
HW >10000 129.74 0.02 53.92 0.01 9.90 0.03

RDI (𝑎 = 5, 𝑏 = 2, 𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 10) ID >10000 117.30 0.00 142.02 0.00 207.91 0.00
HW >10000 133.05 0.01 90.91 0.02 37.53 0.00

RDI (𝑎 = 8, 𝑏 = 5, 𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 10) ID >10000 121.93 0.00 114.02 0.01 65.94 0.00
HW >10000 126.64 0.00 67.12 0.03 9.14 0.00

Table 6.7: SCA metrics for CPA attacks against datasets protected using RDIs

The superiority of this countermeasure compared to our proposal is clearly visible in figure 6.9. The
reason behind this behavior is the same as what we presented in the previous section, namely, a partial

6.3. Comparison with existing countermeasures 65

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.8: Comparison of desynchronization countermeasure with our top implementations for CPA attacks

decrease of the Pearson correlation between the features and the label of the dataset.
However, as we mentioned in section 5.3.2, this particular countermeasure increases significantly

the execution time and, consequently, the power consumption. In detail, the simulations with pa­
rameters (𝑎, 𝑏, 𝑟𝑑𝑖_𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒) = {(3, 1, 10), (5, 2, 10), (8, 5, 10)} increase the input size from 1, 000 to
1, 764, 3, 141, and 5, 358, respectively, and generate datasets with euclidean distance 𝑙2 of 2816.86,
3867.59, and 5023.14, respectively. Hence, we can fairly claim that our 𝑘𝑃𝑃random(MLPbest, 50, 400) with
𝑙2 = 1635.43 is more preferable, as it requires less power consumption and offer significant protection
against ID­based and HW­based CPA attacks.

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.9: Comparison of RDIs countermeasure with our top implementations for CPA attacks

Clock­jitters
Clock­jitters operate similarly to the RDIs. Thus, the massive performance of this particular countermea­
sure, as presented in table 6.8, and its superiority compared to our adversarial­based countermeasure,
as presented in figure 6.10, is expected. This behavior is explained in the same way as what we
described in the two previous sections.

Regarding the required power consumption, we see that the three simulations present slightly higher
𝑙2 metric than our top­performing implementation 𝑘𝑃𝑃random(MLPbest, 50, 400) (1829.79 1948.61, and

66 6. Performance against non­profiled side­channel attacks

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage

Clock­jitters (𝑟𝑎𝑛𝑔𝑒 = 1) ID >10000 116.19 0.00 82.32 0.02 47.01 0.00
HW >10000 121.84 0.02 77.97 0.02 21.64 0.00

Clock­jitters (𝑟𝑎𝑛𝑔𝑒 = 2) ID >10000 128.74 0.00 122.31 0.01 161.97 0.00
HW >10000 135.89 0.01 102.58 0.01 106.25 0.00

Clock­jitters (𝑟𝑎𝑛𝑔𝑒 = 4) ID >10000 127.00 0.00 103.13 0.00 102.05 0.00
HW >10000 129.54 0.01 80.57 0.01 21.50 0.00

Table 6.8: SCA metrics for CPA attacks against datasets protected using clock­jitters

𝑙2 = 2014.18 for 𝑟𝑎𝑛𝑔𝑒 = {1, 2, 4}, respectively). Thus, our method could be preferred if power
consumption is critical, as this method provides sufficient protection against CPA attacks.

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.10: Comparison of clock­jitters countermeasure with our top implementations for CPA attacks

First­order masking
In table 6.9, we present the performance of the CPA attacks against the protected dataset with the
first­order masking countermeasure. As we can see, the performance of this countermeasure is similar
to what we observed in the cases of desynchronization, RDIs, and clock jitters. Even though that these
techniques operate completely differently from the first­order masking, the outcome is the same. First­
order masking uses a piece of additional secret information, the mask, that breaks the direct correlation
of each tracepoint with the secret subkey. Thus, a CPA attack can only overcome this countermeasure
by increasing the attack’s order and guess both the mask and the secret key.

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝐺𝐸10 𝑆𝑅10 𝐺𝐸50 𝑆𝑅50 𝐺𝐸100 𝑆𝑅100
Method Leakage

First­order masking ID >10000 138.36 0.00 131.36 0.00 121.93 0.01
HW >10000 124.81 0.02 126.62 0.00 141.43 0.01

First­order masking + N(0,30) ID >10000 128.12 0.00 142.07 0.00 131.85 0.00
HW >10000 127.68 0.01 132.38 0.01 121.75 0.01

Table 6.9: SCA metrics for CPA attacks against datasets protected using first­order masking

Again, we conclude that our adversarial­based countermeasure fails to provide better protection
than the first­order masking because of its design. In figure 6.11, we see clearly this superiority, as the
gray and yellow lines barely change during the a. In contrast, while the lines that correspond to our
methods converge slowly to 𝑃𝐺𝐸 = 1, the attack’s success rate increases while the attacker processes

6.3. Comparison with existing countermeasures 67

more power traces. Since the first­order masking does not introduce extra power consumption and
does not increase the algorithm’s execution time, it is hard to find a solid advantage of using our
adversarial­based method instead of first­order masking.

(a) CPA attack using the ID leakage model (b) CPA attack using the HW leakage model

Figure 6.11: Comparison of first­order masking countermeasure with our top implementations for CPA attacks

6.3.3. Conclusions
Based on the aforementioned observations, we notice that our adversarial­based countermeasure can
perform better than the Gaussian countermeasure. We believe that this is a noteworthy point, con­
sidering that these two defensive techniques operate in a similar way –they both introduce noise on
the y­axis of the input. At the same time, we see that our adversarial­based countermeasure fails to
provide a clear added value compared to the existing countermeasures.

we confirm the conclusions presented in section 5.4 The only exception is the comparison with the
Gaussian noise countermeasure, where our methods provide clearly stronger protection.

The main conclusion of this section that the misalignment of the tracepoints is crucial for the suc­
cess of the CPA attacks. This misalignment breaks the correlation of the tracepoints with the secret key
and, in most cases, results in an attack with 𝑆𝑅 = 0%. Hence, the idea of an adversarial­based coun­
termeasure that introduces adversarial misalignment of the tracepoints comes again to the surface.

7
Conclusion

The goal of this chapter is to summarize the findings and contributions of this particular research
project. Furthermore, we present the limitations of our conducted research. Last, we propose how
these findings could behave as a foundation for future researches.

7.1. Answering our Research Questions
To summarize our conducted research, we present below the outline of answers for our research
questions, as presented in section 3.3.

RQ1: Can an adversarial­based countermeasure be designed so that DNN­based side­
channel attacks become impractical regarding the observations needed for the secret key
retrieval?

In our research, we show that the construction of an adversarial­based countermeasure is possible.
Based the one­pixel attack method [76]. We build such a countermeasure that generates adversarial
noise and decreases sufficiently the performance of a DNN­based attack. During our research, we
investigated what are the properties of this adversarial noise, in terms of how many tracepoints have
to be modified and what should be the level of the added noise. Furthermore, our results indicate that
an important factor is the type of the DNN model that is used for the generation for the adversarial
examples. Using a CNN model for this generation, our methods appear to build stronger adversarial
examples. Moreover, we tested three different approaches for the selection of the modified tracepoints;
using an optimization algorithm, using random selection, using correlation analysis to pick features that
leak more information. Our experiments showed that the random approach builds stronger adversarial
examples, while the correlation approach fails completely to provide any protection. Last, we presented
that our method produces transferable protection among different attacking models.

RQ2: What is the added value of using our proposed countermeasure compared to existing
SCA countermeasures?

Unfortunately, despite the confirmed effectiveness of our adversarial­based countermeasure, we
concluded that there is not a clear added value of using it instead of other existing SCA countermeasures,
at least in its current state. Our experiments showed that our proposed countermeasure can perform
similarly, or even better in some cases, to existing noise­based countermeasures, such as Gaussian
noise. However, it performs worse than first order masking and time­based countermeasures, such as
desynchronization, RDIs, and clock jitters. Thus, any possible added value does not lie on howmuch the
performance of the DNN­based SCA is decreased but on other benefits, such as the introduced power
consumption or the capability of the defender to apply a certain countermeasure. For example, one
might prefer using our proposed countermeasure instead of RDIs in cases that keeping the device’s
power consumption low is critical, or instead of clock jitters when the device cannot support clock
scaling.

69

70 7. Conclusion

RQ3: Can this adversarial­based countermeasure provide security against non­profiling
side­channel attacks too?

In our research, we showed that the designed adversarial­based countermeasure is effective against
CPA attacks, which is the most common non­profiled attack against the AES encryption scheme. In
particular, we tested how the number of perturbed tracepoints, the bounds of the added noise, and
the type of the trained model used for the adversarial noise generation can effect the performance of
the countermeasure. Furthermore, we showed that the configurations that provide strong protection
against DNN­based SCA perform well for CPA attacks as well. This is an important requirement for a
countermeasure, since a countermeasure that protects only against a specific type of attack allows the
attack to choose a different type to overcome its protection. When comparing with the performance of
existing countermeasures on CPA attacks, our conclusions are similar to the previous research question;
our approach can work better than Gaussian noise worse than time­based and masking countermea­
sures.

As a tailpiece of our research, we could say that the results partially satisfy our initial motivation.
On the one hand, we succeed in building a countermeasure that uses adversarial noise to decrease
significantly the performance of DNN­based side­channel attacks, when other researches concluded
that this approach is not viable [29]. On the other hand, our method fails to outperform most of the
existing defensive techniques against SCAs. However, we believe that this is still room for improvement
for our method to increase its performance. Some ideas to that direction are presented in section 7.3.

7.2. Scientific Contributions
The main scientific contributions of this research are the following:

• We built an adversarial­based countermeasure that is applied on both phases of the attack and
decreases the performance of the DNN­based side­channel attacks. Previous attempts were
applied only on the attacking phase [63] or were unsuccessful [29]. This approach opens new
roads apart from the conventional defending techniques that rely on pure randomness to provide
protection.

• To the best of our knowledge, it is the first time that the used state­of­the­art models are tested
against this large range of SCA countermeasures.

7.3. Future Work
This novel approach of designing countermeasures for side­channel attacks opens a new undiscovered
road for research. As the adversarial noise is calculated at the software level, the capabilities of
improving its calculation are limitless. Some interesting ideas for future research are the following:

• The results of chapters 5 and 6 indicate that the horizontal alignment is crucial for the perfor­
mance of the attack. Thus, hiding countermeasures, such as desynchronization, RDIs, and clock
jitters, that break this alignment succeed in decreasing the performance of the attack dramati­
cally. Thus, a possible improvement on our adversarial­based countermeasure would be to use
adversarial techniques to introduce randomness on the time domain of the observations instead
of modifying the amplitude of the power consumption. For example, it could produce adversarial
delay interrupts that create a local randomness on the x­axis.

• The optimization problem that we define for the generation of the adversarial examples is to
minimize the confidence of the true key. However, defining a different objective function could
possibly improve the robustness of the generated adversarial examples. For example, the adver­
sarial method could try to balance the predictions and decrease their variance. As a result, the
confidence of the true key would be equal to every other key candidate.

• In our research, we do not explore how different values of the differential evolution parameters
can affect the robustness of the generated adversarial examples. Tweaking this parameters could
improve the performance of our adversarial­based countermeasure.

7.3. Future Work 71

• In our adversarial­based method, we use untargeted adversarial attacks, which means that the
goal of the adversarial technique is to minimize the prediction of the true class. A possible
improvement is to use a targeted approach in the designing of the adversarial examples. As in
a dataset, the classes are not equally represented, the DNN classifier is trained well to recognize
patterns that belong to the highly represented class. Using a targeted approach to adversarial
noise crafting, the method could look for less represented classes in the dataset and aim to
craft adversarial noise that maximizes their prediction. In that way, the method can reverse the
distribution of the classes in the dataset. Thus, the attack will build a profiler that recognizes well
patterns on fake labels and is less trained on highly represented classes in the original dataset.

• For the generation of the adversarial noise, we use only one leakage model, particularly the
identity model. That results in a good performance of our method against attacks that use this
leakage model, but a poor performance on attacks that use the Hamming weight leakage model.
Our method could use both leakage models for the generation of the adversarial noise, trying to
find a possible perturbation that minimizes the prediction of both true labels simultaneously.

• Our research is purely conducted under the assumption that this adversarial noise can be crafted
by an ideal noise generator placed inside the microprocessor chip. This idea generator is assumed
that can create noise of any kind by increasing the energy consumption of a specific point to a
certain amount. Of course, these capabilities are not realistic, and the final result will differ in
practice. It would be exciting to research how an adversarial noise generator could work in a
real­world scenario and how far would be the actual results compared to our theoretical approach.

• Another interesting research direction would be to investigate how the application of multiple
countermeasures at the same time could improve the overall protection. Our experiments showed
that our countermeasure performed better under a specific attacking scenario than another one
but worse under a different attacking scenario. Thus, a simultaneous application of these two
countermeasures could increase the protection level, as when one fails, the other succeed.

Bibliography

[1] T. Ahmed, B. Oreshkin, and M. Coates. Machine learning approaches to network anomaly detec­
tion. In Proceedings of the 2nd USENIX workshop on Tackling computer systems problems with
machine learning techniques, SYSML’07, pages 1–6, USA, Apr. 2007. USENIX Association.

[2] ANSSI. ASCAD, June 2021. URL https://github.com/ANSSI­FR/ASCAD. original­date:
2018­01­19T10:04:55Z.

[3] S. Bhasin, N. Bruneau, J.­L. Danger, S. Guilley, and Z. Najm. Analysis and Improvements of the
DPA Contest v4 Implementation. In R. S. Chakraborty, V. Matyas, and P. Schaumont, editors,
Security, Privacy, and Applied Cryptography Engineering, Lecture Notes in Computer Science,
pages 201–218, Cham, 2014. Springer International Publishing. ISBN 978­3­319­12060­7. doi:
10.1007/978­3­319­12060­7_14.

[4] A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique Cryptanalysis of the Full AES.
In Advances in Cryptology – ASIACRYPT 2011, volume 7073, pages 344–371. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978­3­642­25384­3 978­3­642­25385­0.
doi: 10.1007/978­3­642­25385­0_19. URL http://link.springer.com/10.1007/
978­3­642­25385­0_19. Series Title: Lecture Notes in Computer Science.

[5] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model. In M. Joye and
J.­J. Quisquater, editors, Cryptographic Hardware and Embedded Systems ­ CHES 2004, Lecture
Notes in Computer Science, pages 16–29, Berlin, Heidelberg, 2004. Springer. ISBN 978­3­540­
28632­5. doi: 10.1007/978­3­540­28632­5_2.

[6] E. Cagli, C. Dumas, and E. Prouff. Convolutional Neural Networks with Data Augmenta­
tion Against Jitter­Based Countermeasures. In W. Fischer and N. Homma, editors, Crypto­
graphic Hardware and Embedded Systems – CHES 2017, Lecture Notes in Computer Science,
pages 45–68, Cham, 2017. Springer International Publishing. ISBN 978­3­319­66787­4. doi:
10.1007/978­3­319­66787­4_3.

[7] D. Canright and L. Batina. A Very Compact “Perfectly Masked” S­Box for AES. In S. M. Bellovin,
R. Gennaro, A. Keromytis, and M. Yung, editors, Applied Cryptography and Network Security,
Lecture Notes in Computer Science, pages 446–459, Berlin, Heidelberg, 2008. Springer. ISBN
978­3­540­68914­0. doi: 10.1007/978­3­540­68914­0_27.

[8] N. Carlini and D. Wagner. Towards Evaluating the Robustness of Neural Networks.
arXiv:1608.04644 [cs], Mar. 2017. URL http://arxiv.org/abs/1608.04644. arXiv:
1608.04644.

[9] N. Carlini and D. Wagner. Audio Adversarial Examples: Targeted Attacks on Speech­to­Text. In
2018 IEEE Security and Privacy Workshops (SPW), pages 1–7, May 2018. doi: 10.1109/SPW.
2018.00009.

[10] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In Cryptographic Hardware and Embedded
Systems ­ CHES 2002, Lecture Notes in Computer Science, pages 13–28, Berlin, Heidelberg, 2003.
Springer. ISBN 978­3­540­36400­9. doi: 10.1007/3­540­36400­5_3.

[11] CommonLounge. The Advanced Encryption Standard (AES) Algorithm, 2019. URL https://www.
commonlounge.com/discussion/e32fdd267aaa4240a4464723bc74d0a5.

[12] J.­S. Coron and I. Kizhvatov. An Efficient Method for Random Delay Generation in Embedded Soft­
ware. In C. Clavier and K. Gaj, editors, Cryptographic Hardware and Embedded Systems ­ CHES
2009, Lecture Notes in Computer Science, pages 156–170, Berlin, Heidelberg, 2009. Springer.
ISBN 978­3­642­04138­9. doi: 10.1007/978­3­642­04138­9_12.

73

https://github.com/ANSSI-FR/ASCAD
http://link.springer.com/10.1007/978-3-642-25385-0_19
http://link.springer.com/10.1007/978-3-642-25385-0_19
http://arxiv.org/abs/1608.04644
https://www.commonlounge.com/discussion/e32fdd267aaa4240a4464723bc74d0a5
https://www.commonlounge.com/discussion/e32fdd267aaa4240a4464723bc74d0a5

74 Bibliography

[13] N. T. Courtois and L. Goubin. An Algebraic Masking Method to Protect AES Against Power Attacks.
In D. H. Won and S. Kim, editors, Information Security and Cryptology ­ ICISC 2005, Lecture
Notes in Computer Science, pages 199–209, Berlin, Heidelberg, 2006. Springer. ISBN 978­3­540­
33355­5. doi: 10.1007/11734727_18.

[14] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O. Adetunmbi, and O. E. Ajibuwa.
Machine learning for email spam filtering: review, approaches and open research problems. He­
liyon, 5(6):e01802, June 2019. ISSN 2405­8440. doi: 10.1016/j.heliyon.2019.e01802. URL
https://www.sciencedirect.com/science/article/pii/S2405844018353404.

[15] J. Daemen and V. Rijmen. The Block Cipher Rijndael. In J.­J. Quisquater and B. Schneier, editors,
Smart Card Research and Applications, Lecture Notes in Computer Science, pages 277–284, Berlin,
Heidelberg, 2000. Springer. ISBN 978­3­540­44534­0. doi: 10.1007/10721064_26.

[16] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classification. In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’04, pages 99–108, New York, NY, USA, Aug. 2004. Association for Com­
puting Machinery. ISBN 978­1­58113­888­7. doi: 10.1145/1014052.1014066. URL http:
//doi.org/10.1145/1014052.1014066.

[17] D. Das, S. Maity, S. B. Nasir, S. Ghosh, A. Raychowdhury, and S. Sen. ASNI: Attenuated Signature
Noise Injection for Low­Overhead Power Side­Channel Attack Immunity. IEEE Transactions on
Circuits and Systems I: Regular Papers, 65(10):3300–3311, Oct. 2018. ISSN 1558­0806. doi:
10.1109/TCSI.2018.2819499. Conference Name: IEEE Transactions on Circuits and Systems
I: Regular Papers.

[18] L. Deng and X. Li. Machine Learning Paradigms for Speech Recognition: An Overview. IEEE
Transactions on Audio, Speech, and Language Processing, 21(5):1060–1089, May 2013. ISSN
1558­7924. doi: 10.1109/TASL.2013.2244083. Conference Name: IEEE Transactions on
Audio, Speech, and Language Processing.

[19] J. F. Dooley. History of Cryptography and Cryptanalysis: Codes, Ciphers, and Their Algo­
rithms. History of Computing. Springer International Publishing, 2018. ISBN 978­3­319­
90442­9. doi: 10.1007/978­3­319­90443­6. URL http://www.springer.com/gp/book/
9783319904429.

[20] P. N. Druzhkov and V. D. Kustikova. A survey of deep learning methods and software tools for
image classification and object detection. Pattern Recognition and Image Analysis, 26(1):9–15,
Jan. 2016. ISSN 1555­6212. doi: 10.1134/S1054661816010065. URL https://doi.org/
10.1134/S1054661816010065.

[21] W. Du, Z. Wang, and D. Chen. Optimizing of Convolutional Neural Network Ac­
celerator. IntechOpen, Mar. 2018. ISBN 978­1­78923­305­6. doi: 10.5772/
intechopen.75796. URL https://www.intechopen.com/books/green­electronics/
optimizing­of­convolutional­neural­network­accelerator. Publication Title:
Green Electronics.

[22] F. Durvaux and M. Durvaux. SCA­Pitaya: A Practical and Affordable Side­Channel Attack Setup for
Power Leakage–Based Evaluations. Digital Threats: Research and Practice, 1(1):3:1–3:16, Mar.
2020. ISSN 2692­1626. doi: 10.1145/3371393. URL http://doi.org/10.1145/3371393.

[23] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham, E. Roback, and
J. F. D. Jr. Advanced Encryption Standard (AES). Nov. 2001. URL https://www.nist.
gov/publications/advanced­encryption­standard­aes. Last Modified: 2021­03­
01T01:03­05:00.

[24] G. Emadi, A. M. Rahmani, and H. Shahhoseini. Task Scheduling Algorithm Using Covariance Matrix
Adaptation Evolution Strategy (CMA­ES) in Cloud Computing. Journal of Advances in Computer
Engineering and Technology, 3(3):135–144, Aug. 2017. ISSN 2423­4192. URL https://jacet.
srbiau.ac.ir/article_10641.html. Publisher: Science and Research Branch,Islamic Azad
University.

https://www.sciencedirect.com/science/article/pii/S2405844018353404
http://doi.org/10.1145/1014052.1014066
http://doi.org/10.1145/1014052.1014066
http://www.springer.com/gp/book/9783319904429
http://www.springer.com/gp/book/9783319904429
https://doi.org/10.1134/S1054661816010065
https://doi.org/10.1134/S1054661816010065
https://www.intechopen.com/books/green-electronics/optimizing-of-convolutional-neural-network-accelerator
https://www.intechopen.com/books/green-electronics/optimizing-of-convolutional-neural-network-accelerator
http://doi.org/10.1145/3371393
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://jacet.srbiau.ac.ir/article_10641.html
https://jacet.srbiau.ac.ir/article_10641.html

Bibliography 75

[25] H. Fujiyoshi, T. Hirakawa, and T. Yamashita. Deep learning­based image recognition for au­
tonomous driving. IATSS Research, 43(4):244–252, Dec. 2019. ISSN 0386­1112. doi: 10.1016/
j.iatssr.2019.11.008. URL https://www.sciencedirect.com/science/article/pii/
S0386111219301566.

[26] R. Gilmore, N. Hanley, and M. O’Neill. Neural network based attack on a masked implementation
of AES. In 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pages 106–111, May 2015. doi: 10.1109/HST.2015.7140247.

[27] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[28] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adversarial Examples.
arXiv:1412.6572 [cs, stat], Mar. 2015. URL http://arxiv.org/abs/1412.6572. arXiv:
1412.6572.

[29] R. Gu, P. Wang, M. Zheng, H. Hu, and N. Yu. Adversarial Attack Based Countermeasures against
Deep Learning Side­Channel Attacks. arXiv:2009.10568 [cs], Sept. 2020. URL http://arxiv.
org/abs/2009.10568. arXiv: 2009.10568.

[30] T. S. Guzella and W. M. Caminhas. A review of machine learning approaches to Spam fil­
tering. Expert Systems with Applications, 36(7):10206–10222, Sept. 2009. ISSN 0957­4174.
doi: 10.1016/j.eswa.2009.02.037. URL https://www.sciencedirect.com/science/
article/pii/S095741740900181X.

[31] T. Güneysu and A. Moradi. Generic Side­Channel Countermeasures for Reconfigurable Devices.
In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, B. Preneel, and T. Takagi, editors, Cryptographic Hardware and Embedded Sys­
tems – CHES 2011, volume 6917, pages 33–48. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. ISBN 978­3­642­23950­2 978­3­642­23951­9. doi: 10.1007/978­3­642­23951­9_3.
URL http://link.springer.com/10.1007/978­3­642­23951­9_3. Series Title: Lec­
ture Notes in Computer Science.

[32] S. S. Haykin. Neural Networks and Learning Machines. Prentice Hall, 2009. ISBN 978­0­13­
147139­9. Google­Books­ID: K7P36lKzI_QC.

[33] B. Hettwer, S. Gehrer, and T. Güneysu. Applications of machine learning techniques in side­
channel attacks: a survey. Journal of Cryptographic Engineering, 10(2):135–162, June 2020.
ISSN 2190­8516. doi: 10.1007/s13389­019­00212­8. URL https://doi.org/10.1007/
s13389­019­00212­8.

[34] A. Heuser and M. Zohner. Intelligent Machine Homicide. In W. Schindler and S. A. Huss, ed­
itors, Constructive Side­Channel Analysis and Secure Design, Lecture Notes in Computer Sci­
ence, pages 249–264, Berlin, Heidelberg, 2012. Springer. ISBN 978­3­642­29912­4. doi:
10.1007/978­3­642­29912­4_18.

[35] A. Hiassat, A. Diabat, and I. Rahwan. A genetic algorithm approach for location­inventory­routing
problem with perishable products. Journal of Manufacturing Systems, 42:93–103, Jan. 2017. ISSN
0278­6125. doi: 10.1016/j.jmsy.2016.10.004. URL https://www.sciencedirect.com/
science/article/pii/S0278612516300693.

[36] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J. Vandewalle. Machine learning
in side­channel analysis: a first study. Journal of Cryptographic Engineering, 1(4):293–302, Dec.
2011. ISSN 2190­8508, 2190­8516. doi: 10.1007/s13389­011­0023­x. URL http://link.
springer.com/10.1007/s13389­011­0023­x.

[37] M. S. Inci, T. Eisenbarth, and B. Sunar. DeepCloak: Adversarial Crafting As a Defensive Measure
to Cloak Processes. arXiv:1808.01352 [cs], Apr. 2020. URL http://arxiv.org/abs/1808.
01352. arXiv: 1808.01352.

https://www.sciencedirect.com/science/article/pii/S0386111219301566
https://www.sciencedirect.com/science/article/pii/S0386111219301566
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2009.10568
http://arxiv.org/abs/2009.10568
https://www.sciencedirect.com/science/article/pii/S095741740900181X
https://www.sciencedirect.com/science/article/pii/S095741740900181X
http://link.springer.com/10.1007/978-3-642-23951-9_3
https://doi.org/10.1007/s13389-019-00212-8
https://doi.org/10.1007/s13389-019-00212-8
https://www.sciencedirect.com/science/article/pii/S0278612516300693
https://www.sciencedirect.com/science/article/pii/S0278612516300693
http://link.springer.com/10.1007/s13389-011-0023-x
http://link.springer.com/10.1007/s13389-011-0023-x
http://arxiv.org/abs/1808.01352
http://arxiv.org/abs/1808.01352

76 Bibliography

[38] A. Jancic and M. Warren. PKI ­ advantages and obstacles. Proceedings of the 2nd Aus­
tralian Information Security Management Conference: securing the future, pages 1–9, Jan. 2004.
URL https://dro.deakin.edu.au/view/DU:30005427. Conference Name: Australian In­
formation Security Management. Conference (2nd : 2004 : Perth, Western Australia) ISBN:
9780729805728 Publisher: Edith Cowan University.

[39] X. Jia, X. Wei, X. Cao, and H. Foroosh. ComDefend: An Efficient Image Compression Model
to Defend Adversarial Examples. pages 6084–6092, 2019. URL https://openaccess.
thecvf.com/content_CVPR_2019/html/Jia_ComDefend_An_Efficient_Image_
Compression_Model_to_Defend_Adversarial_Examples_CVPR_2019_paper.html.

[40] H. Kim, S. Hong, and J. Lim. A Fast and Provably Secure Higher­Order Masking of AES S­Box. In
B. Preneel and T. Takagi, editors, Cryptographic Hardware and Embedded Systems – CHES 2011,
Lecture Notes in Computer Science, pages 95–107, Berlin, Heidelberg, 2011. Springer. ISBN
978­3­642­23951­9. doi: 10.1007/978­3­642­23951­9_7.

[41] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic. Make Some Noise. Unleashing the
Power of Convolutional Neural Networks for Profiled Side­channel Analysis. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 148–179, May 2019. ISSN 2569­
2925. doi: 10.13154/tches.v2019.i3.148­179. URL https://tches.iacr.org/index.
php/TCHES/article/view/8292.

[42] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in Cryptology — CRYPTO’
99, Lecture Notes in Computer Science, pages 388–397, Berlin, Heidelberg, 1999. Springer. ISBN
978­3­540­48405­9. doi: 10.1007/3­540­48405­1_25.

[43] P. C. Kocher. Timing Attacks on Implementations of Diffie­Hellman, RSA, DSS, and Other Systems.
In Advances in Cryptology — CRYPTO ’96, Lecture Notes in Computer Science, pages 104–113,
Berlin, Heidelberg, 1996. Springer. ISBN 978­3­540­68697­2. doi: 10.1007/3­540­68697­5_9.

[44] J. Kos, I. Fischer, and D. Song. Adversarial Examples for Generative Models. In 2018 IEEE Security
and Privacy Workshops (SPW), pages 36–42, May 2018. doi: 10.1109/SPW.2018.00014.

[45] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis. Machine learn­
ing applications in cancer prognosis and prediction. Computational and Structural Biotechnol­
ogy Journal, 13:8–17, Jan. 2015. ISSN 2001­0370. doi: 10.1016/j.csbj.2014.11.005. URL
https://www.sciencedirect.com/science/article/pii/S2001037014000464.

[46] V. Kuleshov, S. Thakoor, T. Lau, and S. Ermon. Adversarial Examples for Natural Language Clas­
sification Problems. Feb. 2018. URL https://openreview.net/forum?id=r1QZ3zbAZ.

[47] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical world.
arXiv:1607.02533 [cs, stat], Feb. 2017. URL http://arxiv.org/abs/1607.02533. arXiv:
1607.02533.

[48] Y. A. LeCun, L. Bottou, G. B. Orr, and K.­R. Müller. Efficient BackProp. In G. Montavon, G. B.
Orr, and K.­R. Müller, editors, Neural Networks: Tricks of the Trade: Second Edition, Lec­
ture Notes in Computer Science, pages 9–48. Springer, Berlin, Heidelberg, 2012. ISBN 978­3­
642­35289­8. doi: 10.1007/978­3­642­35289­8_3. URL https://doi.org/10.1007/
978­3­642­35289­8_3.

[49] L. Lerman, G. Bontempi, and O. Markowitch. Power analysis attack: an approach based on
machine learning. International Journal of Applied Cryptography, 3(2):97, 2014. ISSN 1753­
0563, 1753­0571. doi: 10.1504/IJACT.2014.062722. URL http://www.inderscience.
com/link.php?id=62722.

[50] L. Lerman, S. F. Medeiros, G. Bontempi, and O. Markowitch. A Machine Learning Approach Against
a Masked AES. In A. Francillon and P. Rohatgi, editors, Smart Card Research and Advanced Ap­
plications, Lecture Notes in Computer Science, pages 61–75, Cham, 2014. Springer International
Publishing. ISBN 978­3­319­08302­5. doi: 10.1007/978­3­319­08302­5_5.

https://dro.deakin.edu.au/view/DU:30005427
https://openaccess.thecvf.com/content_CVPR_2019/html/Jia_ComDefend_An_Efficient_Image_Compression_Model_to_Defend_Adversarial_Examples_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Jia_ComDefend_An_Efficient_Image_Compression_Model_to_Defend_Adversarial_Examples_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Jia_ComDefend_An_Efficient_Image_Compression_Model_to_Defend_Adversarial_Examples_CVPR_2019_paper.html
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://www.sciencedirect.com/science/article/pii/S2001037014000464
https://openreview.net/forum?id=r1QZ3zbAZ
http://arxiv.org/abs/1607.02533
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
http://www.inderscience.com/link.php?id=62722
http://www.inderscience.com/link.php?id=62722

Bibliography 77

[51] L. Lerman, R. Poussier, O. Markowitch, and F.­X. Standaert. Template attacks versus ma­
chine learning revisited and the curse of dimensionality in side­channel analysis: extended ver­
sion. Journal of Cryptographic Engineering, 8(4):301–313, Apr. 2017. ISSN 2190­8508, 2190­
8516. doi: 10.1007/s13389­017­0162­9. URL http://link.springer.com/10.1007/
s13389­017­0162­9.

[52] J. Liu, W. Zhang, Y. Zhang, D. Hou, Y. Liu, H. Zha, and N. Yu. Detection Based Defense Against
Adversarial Examples From the Steganalysis Point of View. pages 4825–4834, 2019. URL
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Detection_
Based_Defense_Against_Adversarial_Examples_From_the_Steganalysis_
Point_CVPR_2019_paper.html.

[53] M. M. Lopez and J. Kalita. Deep Learning applied to NLP. arXiv:1703.03091 [cs], Mar. 2017. URL
http://arxiv.org/abs/1703.03091. arXiv: 1703.03091.

[54] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.­Y. Wang. Traffic Flow Prediction With Big Data: A Deep
Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 16(2):865–873,
Apr. 2015. ISSN 1558­0016. doi: 10.1109/TITS.2014.2345663. Conference Name: IEEE
Transactions on Intelligent Transportation Systems.

[55] H. Maghrebi, T. Portigliatti, and E. Prouff. Breaking Cryptographic Implementations Using
Deep Learning Techniques. In C. Carlet, M. A. Hasan, and V. Saraswat, editors, Security, Pri­
vacy, and Applied Cryptography Engineering, Lecture Notes in Computer Science, pages 3–
26, Cham, 2016. Springer International Publishing. ISBN 978­3­319­49445­6. doi: 10.1007/
978­3­319­49445­6_1.

[56] S. Mirjalili. Ant Colony Optimisation. In S. Mirjalili, editor, Evolutionary Algorithms and Neu­
ral Networks: Theory and Applications, Studies in Computational Intelligence, pages 33–42.
Springer International Publishing, Cham, 2019. ISBN 978­3­319­93025­1. doi: 10.1007/
978­3­319­93025­1_3. URL https://doi.org/10.1007/978­3­319­93025­1_3.

[57] T. M. Mitchell. Machine Learning. McGraw­Hill, Inc., USA, 1 edition, 1997. ISBN 978­0­07­042807­
2.

[58] J. Padmanabhan and M. J. J. Premkumar. Machine Learning in Automatic Speech Recognition:
A Survey. IETE Technical Review, 32(4):240–251, July 2015. ISSN 0256­4602. doi: 10.1080/
02564602.2015.1010611. URL https://doi.org/10.1080/02564602.2015.1010611.
Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/02564602.2015.1010611.

[59] S. Picek, A. Heuser, and S. Guilley. Template attack versus Bayes classifier. Journal of Cryptographic
Engineering, 7(4):343–351, Nov. 2017. ISSN 2190­8516. doi: 10.1007/s13389­017­0172­7.
URL https://doi.org/10.1007/s13389­017­0172­7.

[60] S. Picek, A. Heuser, A. Jovic, S. A. Ludwig, S. Guilley, D. Jakobovic, and N. Mentens. Side­channel
analysis and machine learning: A practical perspective. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 4095–4102, May 2017. doi: 10.1109/IJCNN.2017.7966373.
ISSN: 2161­4407.

[61] S. Picek, I. P. Samiotis, J. Kim, A. Heuser, S. Bhasin, and A. Legay. On the Performance of Convolu­
tional Neural Networks for Side­Channel Analysis. In A. Chattopadhyay, C. Rebeiro, and Y. Yarom,
editors, Security, Privacy, and Applied Cryptography Engineering, Lecture Notes in Computer Sci­
ence, pages 157–176, Cham, 2018. Springer International Publishing. ISBN 978­3­030­05072­6.
doi: 10.1007/978­3­030­05072­6_10.

[62] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni. The Curse of Class Imbalance
and Conflicting Metrics with Machine Learning for Side­channel Evaluations. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 209–237, 2019. ISSN 2569­2925.
doi: 10.13154/tches.v2019.i1.209­237. URL https://tches.iacr.org/index.php/
TCHES/article/view/7339.

http://link.springer.com/10.1007/s13389-017-0162-9
http://link.springer.com/10.1007/s13389-017-0162-9
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Detection_Based_Defense_Against_Adversarial_Examples_From_the_Steganalysis_Point_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Detection_Based_Defense_Against_Adversarial_Examples_From_the_Steganalysis_Point_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Detection_Based_Defense_Against_Adversarial_Examples_From_the_Steganalysis_Point_CVPR_2019_paper.html
http://arxiv.org/abs/1703.03091
https://doi.org/10.1007/978-3-319-93025-1_3
https://doi.org/10.1080/02564602.2015.1010611
https://doi.org/10.1007/s13389-017-0172-7
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339

78 Bibliography

[63] S. Picek, D. Jap, and S. Bhasin. Poster: When Adversary Becomes the Guardian – Towards Side­
channel Security With Adversarial Attacks. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, pages 2673–2675, New York, NY, USA, Nov.
2019. Association for Computing Machinery. ISBN 978­1­4503­6747­9. doi: 10.1145/3319535.
3363284. URL https://doi.org/10.1145/3319535.3363284.

[64] E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumas. Study of Deep Learning Techniques
for Side­Channel Analysis and Introduction to ASCAD Database. Technical Report 053, Cryptology
ePrint Archive, 2018. URL http://eprint.iacr.org/2018/053.

[65] A. Pumsirirat and L. Yan. Credit Card Fraud Detection using Deep Learning based on Auto­
Encoder and Restricted Boltzmann Machine. International Journal of Advanced Computer Sci­
ence and Applications (IJACSA), 9(1), 2018. ISSN 2156­5570. doi: 10.14569/IJACSA.2018.
090103. URL https://thesai.org/Publications/ViewPaper?Volume=9&Issue=
1&Code=IJACSA&SerialNo=3. Number: 1 Publisher: The Science and Information (SAI) Or­
ganization Limited.

[66] H. Richter and S. Yang. Dynamic Optimization Using Analytic and Evolutionary Approaches: A
Comparative Review. In I. Zelinka, V. Snášel, and A. Abraham, editors, Handbook of Optimization:
From Classical to Modern Approach, Intelligent Systems Reference Library, pages 1–28. Springer,
Berlin, Heidelberg, 2013. ISBN 978­3­642­30504­7. doi: 10.1007/978­3­642­30504­7_1.
URL https://doi.org/10.1007/978­3­642­30504­7_1.

[67] J. Rijsdijk, L. Wu, G. Perin, and S. Picek. Reinforcement Learning for Hyperparameter Tuning in
Deep Learning­based Side­channel Analysis. Technical Report 071, 2021. URL https://eprint.
iacr.org/2021/071.

[68] M. Rivain and E. Prouff. Provably Secure Higher­Order Masking of AES. In S. Mangard and F.­X.
Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010, Lecture Notes in
Computer Science, pages 413–427, Berlin, Heidelberg, 2010. Springer. ISBN 978­3­642­15031­9.
doi: 10.1007/978­3­642­15031­9_28.

[69] K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval, editor, Topics in
Cryptology – CT­RSA 2006, Lecture Notes in Computer Science, pages 208–225, Berlin, Heidel­
berg, 2006. Springer. ISBN 978­3­540­32648­9. doi: 10.1007/11605805_14.

[70] B. Shi, X. Bai, and C. Yao. An End­to­End Trainable Neural Network for Image­Based Se­
quence Recognition and Its Application to Scene Text Recognition. IEEE Transactions on Pat­
tern Analysis and Machine Intelligence, 39(11):2298–2304, Nov. 2017. ISSN 1939­3539. doi:
10.1109/TPAMI.2016.2646371. Conference Name: IEEE Transactions on Pattern Analysis
and Machine Intelligence.

[71] N. P. Smart. Cryprography Made Simple. Information Security and Cryptography. Springer Interna­
tional Publishing, Cham, 2016. ISBN 978­3­319­21936­3. doi: 10.1007/978­3­319­21936­3_
7. URL https://doi.org/10.1007/978­3­319­21936­3_7.

[72] F. Standaert, E. Peeters, and J. Quisquater. On the masking countermeasure and higher­order
power analysis attacks. In International Conference on Information Technology: Coding and
Computing (ITCC’05) ­ Volume II, volume 1, pages 562–567 Vol. 1, Apr. 2005. doi: 10.1109/
ITCC.2005.213.

[73] F.­X. Standaert. Introduction to Side­Channel Attacks. In I. M. Verbauwhede, editor, Secure
Integrated Circuits and Systems, Integrated Circuits and Systems, pages 27–42. Springer US,
Boston, MA, 2010. ISBN 978­0­387­71829­3. doi: 10.1007/978­0­387­71829­3_2. URL
https://doi.org/10.1007/978­0­387­71829­3_2.

[74] F.­X. Standaert, T. G. Malkin, and M. Yung. A Unified Framework for the Analysis of Side­Channel
Key Recovery Attacks. In A. Joux, editor, Advances in Cryptology ­ EUROCRYPT 2009, Lecture
Notes in Computer Science, pages 443–461, Berlin, Heidelberg, 2009. Springer. ISBN 978­3­642­
01001­9. doi: 10.1007/978­3­642­01001­9_26.

https://doi.org/10.1145/3319535.3363284
http://eprint.iacr.org/2018/053
https://thesai.org/Publications/ViewPaper?Volume=9&Issue=1&Code=IJACSA&SerialNo=3
https://thesai.org/Publications/ViewPaper?Volume=9&Issue=1&Code=IJACSA&SerialNo=3
https://doi.org/10.1007/978-3-642-30504-7_1
https://eprint.iacr.org/2021/071
https://eprint.iacr.org/2021/071
https://doi.org/10.1007/978-3-319-21936-3_7
https://doi.org/10.1007/978-0-387-71829-3_2

Bibliography 79

[75] R. Storn and K. Price. Differential Evolution – A Simple and Efficient Heuristic for global Op­
timization over Continuous Spaces. Journal of Global Optimization, 11(4):341–359, Dec. 1997.
ISSN 1573­2916. doi: 10.1023/A:1008202821328. URL https://doi.org/10.1023/A:
1008202821328.

[76] J. Su, D. V. Vargas, and K. Sakurai. One Pixel Attack for Fooling Deep Neural Networks. IEEE
Transactions on Evolutionary Computation, 23(5):828–841, Oct. 2019. ISSN 1089­778X, 1089­
778X, 1941­0026. doi: 10.1109/TEVC.2019.2890858. URL https://ieeexplore.ieee.
org/document/8601309/.

[77] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. arXiv:1312.6199 [cs], Feb. 2014. URL http://arxiv.org/abs/
1312.6199. arXiv: 1312.6199.

[78] B. Tao and H. Wu. Improving the Biclique Cryptanalysis of AES. In Information Security and
Privacy, Lecture Notes in Computer Science, pages 39–56, Cham, 2015. Springer International
Publishing. ISBN 978­3­319­19962­7. doi: 10.1007/978­3­319­19962­7_3. URL https:
//link.springer.com/chapter/10.1007%2F978­3­319­19962­7_3.

[79] L. A. Tawalbeh, H. Houssain, and T. F. Al­Somani. Review of Side Channel Attacks and Counter­
measures on ECC, RSA, and AES Cryptosystems. 5:11, 2016.

[80] H. Wang, N. Wang, and D.­Y. Yeung. Collaborative Deep Learning for Recommender Systems.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1235–1244. Association for Computing Machinery, New York, NY, USA, Aug.
2015. ISBN 978­1­4503­3664­2. URL http://doi.org/10.1145/2783258.2783273.

[81] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End­to­end text recognition with convolutional neural
networks. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012),
pages 3304–3308, Nov. 2012. ISSN: 1051­4651.

[82] Y. Wang and W. Xu. Leveraging deep learning with LDA­based text analytics to detect automobile
insurance fraud. Decision Support Systems, 105:87–95, Jan. 2018. ISSN 0167­9236. doi: 10.
1016/j.dss.2017.11.001. URL https://www.sciencedirect.com/science/article/
pii/S0167923617302130.

[83] L. Wu and S. Picek. Remove Some Noise: On Pre­processing of Side­channel Measurements with
Autoencoders. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
389–415, Aug. 2020. ISSN 2569­2925. doi: 10.13154/tches.v2020.i4.389­415. URL https:
//tches.iacr.org/index.php/TCHES/article/view/8688.

[84] L. Wu, G. Perin, and S. Picek. I Choose You: Automated Hyperparameter Tuning for Deep Learning­
based Side­channel Analysis. Technical Report 1293, 2020. URL https://eprint.iacr.org/
2020/1293.

[85] T. Wu, S. Liu, J. Zhang, and Y. Xiang. Twitter spam detection based on deep learning. In Pro­
ceedings of the Australasian Computer Science Week Multiconference, ACSW ’17, pages 1–8, New
York, NY, USA, Jan. 2017. Association for Computing Machinery. ISBN 978­1­4503­4768­6. doi:
10.1145/3014812.3014815. URL http://doi.org/10.1145/3014812.3014815.

[86] H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li. Revisiting Spatial­Temporal Similarity: A Deep Learn­
ing Framework for Traffic Prediction. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01):5668–5675, July 2019. ISSN 2374­3468. doi: 10.1609/aaai.v33i01.33015668. URL
https://ojs.aaai.org/index.php/AAAI/article/view/4511. Number: 01.

[87] L. Yin. A Summary of Neural Network Layers, July 2018. URL https://medium.com/
machine­learning­for­li/different­convolutional­layers­43dc146f4d0e.

[88] X. Yuan, P. He, Q. Zhu, and X. Li. Adversarial Examples: Attacks and Defenses for Deep Learning.
IEEE Transactions on Neural Networks and Learning Systems, 30(9):2805–2824, Sept. 2019. ISSN
2162­2388. doi: 10.1109/TNNLS.2018.2886017. Conference Name: IEEE Transactions on
Neural Networks and Learning Systems.

https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://ieeexplore.ieee.org/document/8601309/
https://ieeexplore.ieee.org/document/8601309/
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://link.springer.com/chapter/10.1007%2F978-3-319-19962-7_3
https://link.springer.com/chapter/10.1007%2F978-3-319-19962-7_3
http://doi.org/10.1145/2783258.2783273
https://www.sciencedirect.com/science/article/pii/S0167923617302130
https://www.sciencedirect.com/science/article/pii/S0167923617302130
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/1293
http://doi.org/10.1145/3014812.3014815
https://ojs.aaai.org/index.php/AAAI/article/view/4511
https://medium.com/machine-learning-for-li/different-convolutional-layers-43dc146f4d0e
https://medium.com/machine-learning-for-li/different-convolutional-layers-43dc146f4d0e

A
Fine­tuning

In this appendix, we present in detail the results of the hyperparameter tuning process, as described
in section 4.2.2. In each plot, we present the achieve guessing entropy and success rate, alongside to
the required number of traces for a successful attack (GE=1 and SR=100%). A missing bar indicates
that the attack was not successful with 2,000 traces.

A.1. MLP architecture

A.1.1. Architecture hyperparameters

Number of fully connected layers

Figure A.1: Performance of MLP model for different number of fully connected layers

81

82 A. Fine­tuning

Units per layer

Figure A.2: Performance of MLP model for different number of nodes per layer

Activation function

Figure A.3: Performance of MLP model for different activation functions

A.1.2. Training hyperparamaters
Epochs

Figure A.4: Performance of MLP model for different number of training epochs

A.2. CNN architecture 83

Batch Size

Figure A.5: Performance of MLP model for different batch size during training

Optimizer

Figure A.6: Performance of MLP model for different optimizer functions

Learning rate

Figure A.7: Performance of MLP model for different learning rates

A.2. CNN architecture
A.2.1. Architecture hyperparameters

84 A. Fine­tuning

Number of convolution blocks

Figure A.8: Performance of CNN model for different number of convolution blocks

Output size of the first convolution layer

Figure A.9: Performance of CNN model for different number of filters

Length of the 1D convolution window

Figure A.10: Performance of CNN model for different sizes of convolution window

A.2. CNN architecture 85

Type of pooling layer

Figure A.11: Performance of CNN model for pooling layer types

Number of fully connected layers

Figure A.12: Performance of CNN model for different number of FC layers

Units per FC layer

Figure A.13: Performance of CNN model for different number of units per FC layer

86 A. Fine­tuning

Activation function

Figure A.14: Performance of CNN model for different activation functions

A.2.2. Training hyperparamaters
Epochs

Figure A.15: Performance of CNN model for different number of training epochs

Batch Size

Figure A.16: Performance of CNN model for different batch size during training

A.2. CNN architecture 87

Optimizer

Figure A.17: Performance of CNN model for different optimizer functions

Learning rate

Figure A.18: Performance of CNN model for different learning rates

B
L2 norms of generated datasets

bounds=[0, 100) bounds=[0, 200) bounds=[0, 300) bounds=[0, 400) bounds=[0, 500)

10 features 199.50 394.42 588.37 780.93 973.36
20 features 271.19 539.17 805.97 1071.71 1335.10
30 features 328.08 653.51 977.69 1300.23 1620.11
40 features 377.57 752.58 1125.90 1496.96 1866.45
50 features 421.73 840.95 1258.33 1672.72 2085.65
60 features 462.07 921.70 1378.82 1833.65 2287.08
70 features 499.46 996.57 1490.76 1982.89 2474.29
80 features 535.25 1067.88 1596.89 2125.15 2652.13
90 features 569.25 1135.50 1698.52 2260.08 2821.03
100 features 601.65 1199.96 1795.34 2389.12 2982.13

Table B.1: Average 𝑙2 distance metric of datasets generated by 𝑘­Point Protection using the MLPbest model

bounds=[0, 100) bounds=[0, 200) bounds=[0, 300) bounds=[0, 400) bounds=[0, 500)

10 features 185.05 369.93 554.58 738.56 921.35
20 features 261.03 522.76 784.43 1044.17 1303.27
30 features 320.31 641.79 962.20 1281.54 1599.36
40 features 371.03 743.64 1114.31 1483.63 1852.70
50 features 416.24 834.05 1249.79 1663.66 2077.51
60 features 457.64 916.79 1373.24 1828.62 2283.49
70 features 496.11 993.03 1487.55 1981.12 2475.25
80 features 532.32 1064.90 1594.87 2124.67 2654.86
90 features 566.83 1133.32 1696.99 2261.34 2826.57
100 features 599.68 1198.34 1794.80 2392.51 2989.60

Table B.2: Average 𝑙2 distance metric of datasets generated by 𝑘­Point Protection using the CNNbest model

89

90 B. L2 norms of generated datasets

bounds=[0, 100) bounds=[0, 200) bounds=[0, 300) bounds=[0, 400) bounds=[0, 500)

10 features 188.03 373.05 557.13 740.19 922.31
20 features 260.80 519.68 777.26 1032.99 1287.60
30 features 317.15 632.74 947.06 1259.31 1569.31
40 features 365.10 728.93 1090.60 1449.92 1806.84
50 features 407.40 813.35 1216.76 1618.02 2016.53
60 features 445.64 889.66 1331.36 1770.09 2206.73
70 features 480.92 960.09 1436.48 1910.25 2382.38
80 features 513.84 1025.74 1534.40 2040.16 2545.42
90 features 544.67 1087.43 1626.51 2163.12 2699.63
100 features 573.82 1145.48 1713.51 2278.89 2844.70

Table B.3: Average 𝑙2 distance metric of datasets generated by random 𝑘­Point Protection using the MLPbest model

bounds=[0, 100) bounds=[0, 200) bounds=[0, 300) bounds=[0, 400) bounds=[0, 500)

10 features 179.32 359.64 542.07 726.38 911.79
20 features 254.83 511.59 771.94 1032.86 1294.25
30 features 312.76 629.17 948.57 1267.36 1584.94
40 features 361.81 728.47 1097.32 1463.73 1828.47
50 features 405.21 816.14 1227.34 1635.43 2042.48
60 features 444.51 895.37 1344.58 1790.41 2236.35
70 features 480.67 967.85 1451.68 1932.63 2413.72
80 features 514.51 1034.93 1551.14 2065.91 2580.40
90 features 546.41 1097.72 1644.13 2190.00 2736.71
100 features 576.34 1156.90 1732.32 2307.70 2884.09

Table B.4: Average 𝑙2 distance metric of datasets generated by random 𝑘­Point Protection using the CNNbest model

bounds=[0, 100) bounds=[0, 200) bounds=[0, 300) bounds=[0, 400) bounds=[0, 500)

10 features 196.85 384.52 557.92 720.31 878.53
20 features 268.27 514.95 757.60 1000.00 1240.53
30 features 322.69 625.17 920.18 1225.51 1542.13
40 features 368.04 715.96 1061.69 1423.84 1788.53
50 features 409.33 799.46 1189.95 1599.21 2003.85
60 features 446.65 876.50 1315.39 1755.37 2178.17
70 features 481.08 947.82 1420.57 1891.67 2363.00
80 features 512.70 1013.03 1522.35 2028.65 2520.70
90 features 543.24 1078.26 1619.08 2147.07 2670.63
100 features 571.64 1137.42 1704.60 2264.12 2815.33

Table B.5: Average 𝑙2 distance metric of datasets generated by correlation 𝑘­Point Protection using the MLPbest
model

bounds=[0, 100) bounds=[0, 200) bounds=[0, 300) bounds=[0, 400) bounds=[0, 500)

10 features 185.22 367.75 546.34 724.55 902.23
20 features 261.29 515.11 770.09 1024.67 1287.26
30 features 316.88 629.94 943.28 1263.52 1576.18
40 features 365.29 727.59 1095.04 1456.80 1821.34
50 features 408.22 813.05 1223.25 1629.56 2037.21
60 features 446.94 893.89 1339.23 1785.65 2231.98
70 features 482.59 966.28 1447.50 1929.05 2411.67
80 features 515.62 1032.77 1547.50 2062.41 2579.04
90 features 546.90 1094.69 1641.36 2188.39 2735.73
100 features 576.42 1154.13 1730.25 2306.84 2884.24

Table B.6: Average 𝑙2 distance metric of datasets generated by correlation 𝑘­Point Protection using the CNNbest
model

C
Attacking models

In this appendix, we present the architecture of the models used in our expirements. The names of
the layers and hyperparameters follow the Tensorflow2 framework’s notations.

C.1. MLPbest
Layer Hyperparameters

Input layer
Input nodes=1000

Hidden layers
Dense nodes=100, activation=’tanh’
Dense nodes=100, activation=’tanh’
Dense nodes=100, activation=’tanh’
Dense nodes=100, activation=’tanh’
Dense nodes=100, activation=’tanh’

Output layer
Dense nodes=256(ID)/9(HW), activation=’softmax’

Table C.1

C.2. CNNbest

Layer Hyperparameters
Input layer

Input nodes=1000
Hidden layers

Conv1D filters=64, kernel_size=9, activation=’relu’, padding=’same’
AveragePooling1D pool_size=2, strides=2
Conv1D filters=128, kernel_size=9, activation=’relu’, padding=’same’
AveragePooling1D pool_size=2, strides=2
Conv1D filters=256, kernel_size=9, activation=’relu’, padding=’same’
AveragePooling1D pool_size=2, strides=2
Flatten N/A
Dense nodes=512, activation=’relu’
Dense nodes=512, activation=’relu’
Dense nodes=512, activation=’relu’

Output layer
Dense nodes=256(ID)/9(HW), activation=’softmax’

91

92 C. Attacking models

Table C.2

C.3. CNNRijsdijk
C.3.1. ID model

Layer Hyperparameters
Input layer

Input nodes=1000
Hidden layers

Conv1D filters=128, kernel_size=3, activation=’selu’, padding=’same’
AveragePooling1D pool_size=75, strides=75
Flatten N/A
Dense nodes=30, activation=’selu’
Dense nodes=2, activation=’selu’

Output layer
Dense nodes=256, activation=’softmax’

Table C.3

C.3.2. HW model

Layer Hyperparameters
Input layer

Input nodes=1000
Hidden layers

Conv1D filters=8, kernel_size=3, activation=’selu’, padding=’same’
AveragePooling1D pool_size=25, strides=25
Flatten N/A
Dense nodes=30, activation=’selu’activatio
Dense nodes=30, activation=’selu’activatio
Dense nodes=2, activation=’selu’activatio

Output layer
Dense nodes=9, activation=’softmax’

Table C.4

C.4. MLPWu
C.4.1. ID model

Layer Hyperparameters
Input layer

Input nodes=1000
Hidden layers

Dense nodes=256, activation=’elu’
Dense nodes=256, activation=’elu’
Dense nodes=296, activation=’elu’
Dense nodes=840, activation=’elu’
Dense nodes=280, activation=’elu’
Dense nodes=568, activation=’elu’
Dense nodes=672, activation=’elu’

Output layer
Dense nodes=256, activation=’softmax’

Table C.5

C.4. MLPWu 93

C.4.2. HW model

Layer Hyperparameters
Input layer

Input nodes=1000
Hidden layers

Dense nodes=328, activation=’elu’
Dense nodes=328, activation=’elu’

Output layer
Dense nodes=9, activation=’softmax’

Table C.6

	Introduction
	Motivation
	Research Questions
	Outline

	Background
	Cryptography
	Advanced Encryption Standard

	Evolutionary Computation
	Differential Evolution

	Machine Learning
	Deep Learning
	Adversarial Examples

	Side-channel attacks
	Leakage Models
	Non-profiled Attacks
	Profiled Attacks
	Performance Metrics
	Countermeasures

	ASCAD

	Related Work
	Side-channel attacks based on deep learning
	Adversarial-based countermeasures
	Research Questions

	Countermeasure Implementation
	Notation
	Setup
	Feature selection and dataset extraction
	Selection of Attacking Models

	Design of adversarial-based countermeasures
	Methods
	Experimental Process
	Results
	Conclusions

	Performance compared to existing countermeasures
	Motivation
	Simulation of protected datasets
	Hiding countermeasures
	Masking techniques

	Results
	Experimental process
	Hiding countermeasures
	Masking countermeasures

	Conclusions

	Performance against non-profiled side-channel attacks
	Motivation
	Protection against non-profiled SCA
	Experimental process
	Results
	Conclusions

	Comparison with existing countermeasures
	Experimental Process
	Results
	Conclusions

	Conclusion
	Answering our Research Questions
	Scientific Contributions
	Future Work

	Bibliography
	Fine-tuning
	MLP architecture
	Architecture hyperparameters
	Training hyperparamaters

	CNN architecture
	Architecture hyperparameters
	Training hyperparamaters

	L2 norms of generated datasets
	Attacking models
	MLP-best
	CNN-best
	Rijsdijk-best
	ID model
	HW model

	Wu-best
	ID model
	HW model

