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Summary

Corrective osteotomies are the indicated treatment for complex forearm malunions. The use of 3D computer-assisted
preoperative planning offers significant advantages, such as improved comprehension of the multiplanar deformity
and high accuracy. However, the clinical application of computer-assisted preoperative planning methods is limited
due to the considerable time, effort, and expertise required. This emphasizes the necessity for a tool that can
generate clinically feasible osteotomy plans, complying with patient-specific anatomical reconstruction goals. To
address this challenge, this research developed an automatic planning tool for corrective osteotomies of radius
malunions, requiring minimal user interaction. By automatically registering the pathological and contralateral bone
models, the tool provides insight into the degree and nature of the deformity. An Evolutionary Algorithm is implemented
to optimize patient-specific osteotomy plans by minimizing bone protrusion near the osteotomy plane. The automatic
planning tool yields patient-specific osteotomy plans including the osteotomy plane location and orientation, as well
as the required reduction of the distal part after the osteotomy cut. These plans ensure accurate alignment of both
the proximal and distal radial joint surfaces. The developed tool was validated on 15 patient cases. The osteotomy
plans generated by the automatic tool were compared to those planned manually in the past. Objective validation,
based on residual alignment errors of the entire radius bone, often favored the manual planning approach. However,
the automatic tool consistently provided osteotomy plans with more accurate alignment of the distal joint surface.
Additionally, a blinded qualitative validation was conducted with a highly experienced orthopedic surgeon, who rated
all osteotomy plans on a scale of 1 to 10. The results indicated that the automatic tool is not yet capable of generating
osteotomy plans with feasibility scores equivalent to manual planning. However, the feasibility scores differed by
only one point on most patient cases. The main areas that require improvement to consistently produce clinically
feasible osteotomy plans include the incorporation of osteosynthesis plate fixation, consideration of the relationship
with the ulna, and the option for double-cut osteotomies. In conclusion, the developed tool is capable of generating
clinically feasible osteotomy plans, serving as a valuable starting point for patient-specific plans that can be further
refined manually.
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1
Introduction

The forearm consists of two bones: the radius and the ulna. The two bones are dependent and dynamic, as the
radius rotates around the ulna during pro- and supination [3]. Several structures between the radius and the ulna
provide the articulation between the two bones, making it a complex functional unit [4]. When the forearm is
fractured and does not heal properly, a malunion can occur. This results in a deformity of the bone or an abnormal
bone position. Post-traumatic malunions of the forearm can lead to impaired function due to pain, a limited range of
motion, instability, and loss of strength [5–7]. Moreover, aesthetic problems can arise from malunions. Malunions
can also increase the risk for osteoarthritis, especially when intra-articular structures are involved [4]. For malunions,
a corrective osteotomy is the indicated treatment to restore the bony anatomy [8]. Often, malunions of the forearm
are complex 3D deformations, requiring a challenging multidimensional reconstruction. The reconstruction of the
malunited forearm requires a thorough understanding of the normal as well as pathological anatomy, combined
with a comprehensive clinical assessment and acquisition of appropriate imaging [9]. However, the multiplanar
complexity of the deformation is not always recognized on conventional 2D radiographs. Even on CT imaging, it can
be hard to get an accurate overview of the 3D anatomy of the malunion. Another great challenge is determining the
osteotomy plan: the location of the osteotomy cut and the orientation of the cutting plane relative to the bone. These
factors make the preoperative planning of corrective osteotomies extremely challenging [10]. Even more demanding
is being able to physically reproduce the osteotomy as planned [11]. Nevertheless, a positive correlation between
higher accuracy of anatomical correction and better functional outcomes has been found [12, 13], emphasizing the
importance of a comprehensive understanding of the patient’s malunion anatomy.

3D computer-assisted planning has emerged as the state-of-the-art treatment in complex surgeries for bone deformities
[14]. Multiple studies have demonstrated that the use of 3D computer-assisted planning has improved the surgeon’s
understanding of complex malunions [15]. In computer-assisted planning, CT data is segmented and 3D surface
(STL) models are reconstructed using the Marching Cubes algorithm in a virtual environment [16]. These 3D models
are used to give the surgeon a more complete, detailed preoperative insight into the complex anatomy of the
malunion. In addition, the 3D model of the contralateral bone can be mirrored and used as a reference model
[11]. Consequently, computer-assisted planning allows for the planning of the bone correction. The position of the
osteosynthesis plate can also be planned. Computer-assisted planning also enables the design of patient-specific
surgery guides, facilitating the transfer of the virtual surgery planning to the real corrective surgery. Altogether, this
brings the ability to evaluate the anatomical reconstruction outcome before the physical surgery.

3D computer-assisted planning has been proven to reduce the operation time, blood loss volume, and radiation
exposure during the surgery [17]. Another major advantage is the reproducibility associated with computer-assisted
planning [17]. Despite the strong advantages that computer-assisted planning offers, costs, time, effort, and
expertise to generate a 3D-preoperative planning remain too high [18]. Even for simple osteotomies, preoperative
planning time can take up to several hours [19]. The result of this is that the clinical application is still limited. The
limitation in the ability to fully exploit the clinical benefits of 3D computer-assisted planning indicates the need for
an automatic planning method. This method should explore feasible osteotomy approaches and select an optimal
plan while reducing the workload for the planning.

Several approaches for automation and/or optimization of 3D computer-assisted preoperative planning of corrective
osteotomies have been described in the literature. Different methods are employed depending on the type of bone,
the type of deformity, and the goal of the osteotomy. For the forearm specifically, the contralateral bone is most
often used as a reconstruction target. If the affected bone is registered to the contralateral bone both proximally
and distally, the deformity of the bone becomes visible and can be quantified. To determine the optimal osteotomy
plane, different methods have been described, such as minimization of the bone cut surface, or minimization of the
bone protrusion. The optimal osteotomy plan is dependent on the anatomic reconstruction goals, which have to be
clearly specified. It can be concluded that the emergence of different 3D computer-assisted planning techniques
and especially the implementation of automatic optimization techniques can contribute to faster, more accurate
patient-specific bone deformity diagnosis and osteotomy planning for malunions of the forearm.

4
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1.1. Aim and objectives
Currently, at the Department of Orthopedics in the Erasmus MC, most cases of forearm malunions that require a
corrective osteotomy are planned using computer-assisted planning. These preoperative plannings are made in
3-Matic (Materialise), a design optimization software [20]. Making these plannings is time-consuming, as virtually
mimicking all steps of the surgery is done manually. The time investment is especially high because a process
of trial-and-error is required to find an optimal plan. It is also desirable to compare multiple scenarios and their
outcomes. Time reduction and increased computational power are therefore required, leading to the aim of this
research. This research aims to automate the workflow of finding a computer-assisted optimized planning for
corrective osteotomies of the forearm. The research question of this thesis is formulated as:

How can the computer-assisted patient-specific corrective osteotomy planning
for forearm malunions be automated and optimized?

The contents of this research can be divided into two main objectives.

1.1.1. Objective 1: Automation
The first objective is the automation of the workflow of computer-assisted planning for corrective osteotomies. The
purpose of this is to reduce the time that is spent manually performing steps that are routine for each patient.
3-Matic has a scripting module that uses Python API, which lets the user automate their processes to make it faster
and more robust.

1.1.2. Objective 2: Optimization
The second part of the research consists of the implementation of an optimization algorithm to calculate an optimal
patient-specific osteotomy plan. In this part, many feasible osteotomy plans have to be generated, explored,
and evaluated. The evaluation should happen according to the anatomical reconstruction goals for the malunion.
Throughout the optimization, new and improved solutions should be generated. Finally, an osteotomy plan will be
selected that satisfies the anatomical reconstruction goals of the corrective osteotomy.

1.2. Thesis Outline
This thesis consists of 6 chapters following this introduction. First, in Chapter 2 some relevant background information
regarding computer-assisted planning for corrective osteotomies of forearm malunions is given. The anatomy of the
forearm and the pathomechanisms of a forearm malunion are explained. Additionally, a general introduction into
computer-assisted surgery and basic terminology is given. Finally, the topic of optimization briefly addressed to
explain the basic concepts of optimization in general. In Chapter 3, the workflow of planning a corrective osteotomy
is explained into more detail. For each step, the methods used to automate the workflow are described. Chapter 4
discusses the anatomical reconstruction goals and the optimization algorithm that is implemented. The optimization
is applied to 15 patient cases of forearm malunions. In Chapter 5, the validation method is described. The resulting
osteotomy plans from the optimization and the validation results are presented in Chapter 6. Finally, in Chapter 7,
the presented work and the results are discussed. Moreover, the clinical relevance of this thesis is addressed. In
Chapter 8, the final conclusions of this thesis are given and future recommendations are proposed.



2
Background

In this chapter, some relevant background information on the topic of this research is given. The anatomy of the
forearm, malunions of the forearm, computer-assisted reconstructive surgery, and optimization are briefly discussed.

2.1. Anatomy of the forearm
The forearm plays an important role in facilitating the positioning of hand in space and thus helping to provide the
upper extremity with mobility [21]. It is a complex functional unit with two bones articulating with each other. To be
able to understand functional limitations caused by a malunion, it is important to consider all anatomical structures
of the forearm and their interactions. In Figure 2.1, the bony anatomy of the radius and ulna is visualized. In neutral
position, the ulna is on the medial side and the radius is located lateral. The radius shape naturally follows a complex
angle and curve, with most importantly the lateral curve called the radial bow. This radial bow plays an important
role during rotation of the forearm, where the radius rotates around the ulna [3]. The radius and ulna articulate with
each other at two joints [22]. The first one is the proximal radioulnar joint (PRUJ), where the head of the radius
and the radial notch of the ulna articulate. This joint is stabilized by the annular ligament and elbow joint capsule
[3]. Second, the head of the ulna and the ulnar notch of the radius articulate at the distal radioulnar joint (DRUJ).
The triangular fibrocartilage complex and the wrist joint capsule primarily stabilize the distal radioulnar joint [3].
Distally, the radius also articulates with the os lunatum and the os scaphoideum at the radiocarpal joint (RCJ) [23].
Proximally, the radius and the ulna articulate with the humerus. The interosseous membrane connects the radius
and the ulna and is composed of several ligaments that have an oblique direction [24]. These ligaments ensure
forearm stability, and transfer loads from the distal radius to the proximal ulna [24]. Furthermore, the interosseous
membrane maintains the interosseous space between the radius and ulna during forearm rotation. The m. biceps
brachii, the m. supinator, the m. pronator teres, and the m. pronator quadratus enable pro- and supination, see
Figure 2.1. The last three muscles insert into the proximal, middle, and distal thirds of the radius, respectively [9].

(a) Bony anatomy of radius and ulna [25] (b) Muscles enabling pro- and supination [26]

Figure 2.1: Anatomy of the forearm.

2.2. Malunion of the forearm
Malunions occur when fractures of the bone do not heal properly. The deforming forces exerted by the supinator,
pronator teres, and pronator quadratus muscles acting on the fracture fragments can lead to angulation, rotational
deformities, or combined deformities [9, 21]. As a result, the bone can be deformed or abnormally positioned. The
malunion can be expressed in different deformities of the bone, see Figure 2.2. Malunions of the forearm can lead to
limitations in the Range of Motion (RoM) through different mechanisms [27]. Angular deformities can cause tension
in the interosseous membrane and bone impingement, leading to restricted radial rotation about the ulna [9, 27].
Angular deformities appear in combinations of different directions: dorso-volar angulation, radio-ulnar angulation,
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Table 2.1: Type of angulations caused by malunions of the forearm

Angulation Deformity Measured in
Dorso-volar Extension-flexion Sagittal plane
Radio-ulnar Varus-valgus Coronal plane
Internal Pronation-supination Axial plane

and internal angulation. The angulation can be measured on X-ray imaging, but more accurately on CT-imaging.
In Table 2.1, an overview of these angular deformities is given and in which plane they can be measured. Axial
malunions can cause malalignment of the PRUJ and DRUJ [9, 27]. This can lead to stiffness and limited forearm
rotation. Another important aspect of malunions is the shape of the radius bone. A change in the radial bow due to
a malunion can also limit rotational movement [28].
Evidently, the degree of angulation, the location of deformity, and one or both forearm bone involvement all play an
important role in the limitation in forearm function and thus the clinical consequence of the malunion [9]. Because
of the complexity that malunions can exhibit, restoration of the length, axial alignment, rotational alignment, and
displacement is required to restore pronation and supination [3]. Moreover, soft tissue and joint-related factors
should also be taken into account when assessing the functional limitation causes by a malunion.

Figure 2.2: Parameters to describe the deformity of a radius.

2.3. Computer-assisted reconstructive surgery
Computer-assisted surgery (CAS) is the concept of using computer technology for surgical planning, and for guiding
or performing surgical interventions. In CAS, 3D models of organs or bones are reconstructed from medical imaging
modalities. Different modalities can be used for this, with CT being the gold standard for high-accuracy geometric
models of the bone [29]. From the segmentation of the bone on CT images, a polygonal mesh is reconstructed
using algorithms like the Marching Cubes algorithm. A polygonal mesh defines a surface model and represents the
shape of an object. It is a collection of polygons, which are usually triangles, that are made up of vertices, edges,
and faces (see Figure 2.3) [1]. Vertices are the corners, edges are the lines between the faces, and the faces are
the flat surfaces. The polygonal characteristics of 3D surface models are important because they allow to perform
calculations on the bone models. For example, each triangle has a normal vector, representing the direction of the
surface at a certain point. Another example is that the coordinates of vertices can be accessed to calculate the
distances between or the sizes of bones.

Figure 2.3: Vertices, edges, and faces forming a surface model [1].
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For corrective osteotomies of forearm malunions specifically, a bilateral CT scan is acquired. The surgeon is then
able to get a 3D insight into the anatomy of the malunion. In particular, the deformed bone can be compared to
the healthy, contralateral side to give an idea of what the bone should look like. Based on the 3D models of the
bones, the surgery can be mimicked virtually before the physical surgery. A typical computer-assisted planning for
a corrective osteotomy of the forearm roughly consists of the following steps, that are visualized in Figure 2.4:

1. Acquisition of bilateral CT-scan

2. Segmentation of bones of interest and reconstruction of 3D surface models

3. Quantification of the deformity of the pathological bone

4. Determination of the position of the osteotomy plane: orientation and location

5. Bone reduction

6. Positioning of the plate and screws

7. Design of patient specific surgery guides

Figure 2.4: A typical computer-assisted corrective osteotomy planning workflow, illustrated for the tibia [2].

2.4. Automation
Automation is the use of technology to program a process to run on its own without or with minimization of human
intervention [30]. Simple, repetitive tasks are automated to save time and improve productivity [31]. Programming
languages can be used to create software programs, like mobile applications or the interface of manufacturing
machines [30]. Python is an example of a programming language and is one of the most widely used languages.

2.5. Optimization
Optimization is the act of making something as good as possible [32]. More specifically, mathematical optimization
is the collection of mathematical principles and methods used for solving quantitative problems in many disciplines,
including physics, biology, engineering, economics, and business [33]. Four fundamental elements to optimization
can be recognized in any optimization problem [33]. The first one is an objective function that is to be maximized
or minimized. The second element is a collection of variables of which the values can be manipulated in order
to optimize the objective. Thirdly, a set of constraints is always required, which are the restrictions on the values
that the variables can take. The constraints on the variables determine the search landscape, which is the space
of all feasible solutions [34]. Finally, an algorithm is needed that combines these three elements. Many different
optimization algorithms can be used for this. Optimization algorithms aim to find the input parameters or arguments
to a function that result in the minimum or maximum output of the function [35].
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As for the case of computer-assisted planning of corrective osteotomies, optimization can also be used. The four
fundamental elements of optimization can be applied to the aim of this thesis to understand the optimization problem.
Optimization of the corrective osteotomy planning is about finding an osteotomy plan that satisfies all anatomical
reconstruction goals. The objective function is in this case a combination of the anatomical reconstruction goals of
the corrective osteotomy. The variables are the parameters that determine what an osteotomy plan looks like. The
constraints are the values of the parameters that would result in an unfeasible osteotomy plan and thus guarantee
the output of an optimal plan.



3
Automation

In this chapter, the steps of the developed automatic computer-assisted planning workflow for corrective osteotomies
of the radius are described. The aim of this automatic workflow is to align the pathological bone to the mirrored
reference bone. This can give the surgeon an insight into the degree and nature of the deformity. For each step, it
is explained which methods and algorithms are used. The entire process is visualized in Figure 3.1.

Figure 3.1: The automated workflow of bone model registration. Result is the proximal and distal registered
bones, with two options to choose from. * = optional. Abbreviations: CS = coordinate system, OCS = object
coordinate system, WCS = World Coordinate System, ICP = Iterative Closest Point. Color legend: red =

pathological bone, green = reference bone, dark blue and light blue = pathological bone registered proximally
and distally to reference bone, using two different alignment percentages.

3.1. Data preparation
In this section, a few steps are described that are required to prepare the models for registration.

3.1.1. Mirroring and scaling
The input of the automatic workflow is the .stl files of the pathological bone and the contralateral bone. These .stl
files are retrieved from CT-scan data, where the patient is scanned in prone position with the arm above the head
[36]. The CT-scan coordinate system is positioned with the z-axis along the patient table. Therefore, when importing
the bone models in 3-Matic, they are oriented with the length of the diaphysis in the direction of the z-axis of the
coordinate system. First of all, the contralateral bone will be mirrored about the YZ-plane, using the trimatic function
<Mirror>. If the CT-scan is made in line with the standard CT-scan protocol, the pathological bone model and the
contralateral bone model will then be similarly oriented. The dimensions of the bone models are then measured, to
see whether the two bone models differ in length. Possibly, bone shortening or lengthening of the pathological bone
has occurred as an effect of the malunion. To compensate for this, scaling is sometimes required to ensure planning
towards a representative target. This can be based on the length difference between the ulnae of both sides. The
user can indicate whether scaling is desired and if so, the contralateral bone (reference) is scaled using the trimatic
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function <Scale> with a scaling factor:

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑙𝑒𝑛𝑔𝑡ℎ𝑝𝑎𝑡𝑏𝑜𝑛𝑒
𝑙𝑒𝑛𝑔𝑡ℎ𝑟𝑒𝑓𝑏𝑜𝑛𝑒

(3.1)

Figure 3.2: Landmarks for the radius (right). Left: volar view, right top: distal
view, right bottom: proximal view.

3.1.2. Definition of an anatomical coordinate system
When the models are imported into 3-Matic, they are positioned somewhere in space according to their position
relative to the CT-scanner coordinate system. It is desirable to place the models at the origin of the coordinate
system of the 3-Matic environment, which is the the World Coordinate System (WCS). The WCS is located at the
3D-coordinates (0,0,0) and can not be moved. The translations or rotations that are applied to the bone model
in 3-Matic are given relative to the WCS. If the bone models are positioned distant from this WCS, it is harder to
intuitively understand the rotations. Besides working with the bone models at the origin of the WCS, the definition
of an anatomical coordinate system is relevant. This facilitates the interpretation of the transformations around the
x, y, and z-axis as clinically relevant movements. The Standardization and Terminology Committee (STC) of the
International Society of Biomechanics propose a general reporting standard for joint kinematics based on the Joint
Coordinate System (JCS) [37]. According to this standard, a coordinate system for the radius can be established
based on relevant landmarks. In Figure 3.2, these landmarks are visualized. So, the user is asked to indicate the
following five landmarks:

1. Point of maximal concavity of the proximal radial head

2. Radial tuberosity

3. Radial styloid

4. The center of the ridge between the radiolunate fossa and the radioscaphoid fossa

5. Sigmoid notch

These landmarks must be indicated on both the pathological bone and the contralateral bone correspondingly. With
these landmarks, the anatomical axes can be determined. The origin of the radial coordinate system is placed
halfway between the center of depression of the proximal radial head (point 1) and the center of the ridge between
the radiolunate fossa and the radioscapoid fossa (point 4). The long bone axis is also defined between these two
points. A rotation of the radius around this axis signifies pronation and supination. The second axis is perpendicular
to the long bone axis, and lies in the plane between the radial styloid (point 3), the sigmoid notch (point 5), and
the origin. This is the medial-lateral plane. Finally, the third axis is in the plane perpendicular to the first two axes.
Movements in this plane are in the volar-dorsal direction. In Figure 3.1 (step 5), the anatomical coordinate system
for the radius is visualized.
After the anatomical coordinate system is defined, the bone models can be placed at the origin of the WCS. The
anatomical coordinate system will be aligned with the WCS. By doing so, a rotation around a certain WCS axis
corresponds to a clinically relevant movement. With the trimatic function <Change OCS to WCS>, the contralateral
radius is placed at the origin of the WCS and the anatomical coordinate system is aligned with the WCS. The same
translation is applied to the pathological bone, so that it is moved along with the reference bone to the WCS origin.
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3.2. Landmarks-based initial registration
After aligning the anatomical coordinate system with the WCS, the pathological bone can be registered to the
reference bone. A registration algorithm will be used for this that aims to find the transformation between a point
cloud and some reference surface [38]. Registration algorithms rely on a rough initial estimation of the registration
[39]. To do so, a landmark-based registration is performed prior to the registration. For this, the trimatic function
<N-points registration> is used, with the corresponding landmarks on the pathological and reference bone as
indicated in Section 3.1. The model is registered separately on the proximal and distal end. For the proximal
landmark-based registration, the center of depression of the proximal radial head and the radial tuberosity are used.
For the distal landmark-based registration, the radial styloid, the center of the ridge between the radiolunate fossa
and the radioscaphoid fossa, and the sigmoid notch are used.

3.3. Iterative Closest Point Registration
After the landmark-based registration, the registration can be applied. An Iterative Closest Point algorithm is used
for this. ICP tries to find the closest point pairs and iterates until the point matching error stabilizes [40]. The ICP
registration is also performed separately for the proximal and distal ends of the bone. The trimatic function <Global
Registration> is used to this end. This function works specifically on triangle nodes of the meshes. By minimizing the
node-to-node distance, the bone models will be registered on each other. The function has three parameters that
have to be set by the user: the subsample percentage, the distance, and the number of iterations. The subsample
percentage holds the subset of the nodes from the bone models that will be considered during each iteration.
The Average Distance Error is calculated between the subset of nodes of the two bone models and is iteratively
minimized. For setting this parameter, a trade-off must be made between computational time and power and detail.
A higher subsample percentage will lead to a more accurate registration, but will be more time-consuming due to the
computational power required. The distance parameter determines the search radius the algorithm uses to find the
closest corresponding node on the other bone model. If the distance threshold is set to a low value, the algorithm
might get stuck in a local minimum. This means that the algorithm will find a registration result close to the current
one because the algorithm does not search for nodes that are further away. The registration result will therefore
be sub optimal. If the distance parameter is set to a high value, the ICP will try to minimize the error in a wider
range. This leads the ICP to attempt registering the bone models also where they deviate, compromising its ability
to accurately register the proximal or distal part. However, once the algorithm gets close to an accurate registration
between the two bone models, the distance threshold must be lowered, to also find smaller improvements. The
number of iterations parameter again must be balanced between time and detail. A higher number of iterations will
lead to a more accurate registration result but will take up more time. In Table 3.1, an overview is given of the
values that are used for each parameter throughout multiple runs.

Table 3.1: Global registration settings for run 1, 2, and 3

Distance threshold Subsample % Number of iterations
Run 1 20 35 200
Run 2 Automatic 35 200
Run 3 Automatic 35 200

The registration of the bone models is not performed on the full length of the bone models, but only on proximal
and distal segments. This is to exclude the deformity from the registration and to ensure accurate registration of
the joints. To determine the segment of the bone that is used for alignment, the user is asked to indicate the center
of the malunion. Based on the location of the malunion along the long bone axis, the proximal and distal alignment
percentages are determined. In Figure 3.3, the boundaries for the distal and proximal alignment parts are visualized.
The alignment percentages are calculated as follows:

𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
⎧⎪
⎨⎪⎩

ℎ𝑒𝑖𝑔ℎ𝑡𝑚𝑎𝑙𝑢𝑛𝑖𝑜𝑛
𝑙𝑒𝑛𝑔𝑡ℎ𝑝𝑎𝑡𝑏𝑜𝑛𝑒

− 0.1 for proximal alignment

ℎ𝑒𝑖𝑔ℎ𝑡𝑚𝑎𝑙𝑢𝑛𝑖𝑜𝑛
𝑙𝑒𝑛𝑔𝑡ℎ𝑝𝑎𝑡𝑏𝑜𝑛𝑒

+ 0.1 for distal alignment
(3.2)

Since this registration percentage has an impact on the result of the alignment, an alternative alignment is calculated
as 10% smaller than the first alignment percentage. The smaller the alignment percentage, the more accurate the
alignment will be at the proximal or distal extremity of the bone models. This is because a smaller alignment
percentage will allow the ICP to focus on a smaller part of the bone models to register. However, this will also result
in the pathological bone model starting to deviate from the contralateral bone model earlier along the long bone
axis. Thus, the two alignment percentages allow the user to compare the registration result, and make a trade-off
between overall alignment and joint alignment. The choice of the best alignment percentage is left to the user. This
is because other factors like the clinical picture that the patient presents with, can play a role in deciding how precise
the joint surfaces need to be aligned.
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3.4. Registration result
The proximal and distal registered bone models give an insight into the degree of deformation, see Figure 3.4.
By visualizing the proximal aligned pathological bone model to the contralateral bone model, it can be clearly
distinguished where the pathological bone starts to deviate from the reference bone along the long bone axis. By
comparing the distal joint surface of the pathological and contralateral bone models, the nature of the deformity can
be interpreted. It can be distinguished whether the malunion is purely angular, or whether a rotational component
is also present. By simultaneously visualizing the proximal and distal registered bone in comparison to the reference
bone, the region of deformation can be identified. This is also an indication of the range along the bone axis where
the osteotomy cut can be placed.

Figure 3.3: Parts used for alignment. Yellow point = center of malunion, yellow planes = boundaries used for
alignment of proximal and distal part. Blue = pathological bone proximally and distally registered, green =

reference bone.

Figure 3.4: Region of deformity becomes visible after alignment. Blue = pathological bone proximally and
distally registered, green = reference bone.



4
Optimization

After the bone models have been registered, the bone correction can be planned. The aim of the correction osteotomy
is to restore the function of the forearm. To do so, an osteotomy plan has to be determined that optimally satisfies
the anatomical reconstruction goals. To create such a plan, different plans have to be generated, compared, and
improved based on evaluation. To this end, an optimization algorithm is implemented. This allows to automatically
develop a set of solutions, evaluate the resulting bone correction, and improve towards an optimal osteotomy
plan. As stated in Section 2.5, optimization knows four fundamental elements. In the following sections, these
different aspects of the optimization process will be discussed. Section 4.1 will discuss the optimization algorithm
that is implemented and the general construction of it. In Section 4.2, the objective function that is used for the
optimization is explained, supported by the anatomical reconstruction goals. Based on the implemented algorithm,
the structure of the variables and constraints are discussed in Section 4.3 and Section 4.4 respectively. In the
sections thereafter, some additional operators specific to the implemented optimization algorithm are explained for
this research specifically. Finally, in Section 4.10, the general outline of the implemented algorithm is explained
providing pseudocode.

4.1. Optimization algorithm
For the optimization, an Evolutionary Algorithm (EA) is implemented. EAs are heuristic stochastic direct search
algorithms, meaning that they are based on trial-and-error and include random variables. It is a type of algorithms
that perform optimization with the ability to evolve [41]. EAs are inspired by biological evolution and natural selection.
The basic idea behind EAs is the generation of a population of candidate solutions and iteratively improving them
through a process of selection, reproduction, and mutation. Only the fittest solutions are selected and passed on to
the next generation, whereas the unfit solutions will be removed from the population throughout the generations.
Thus, EAs are trying to reach optimal states by successive improvements [42]. EAs are well-suited to optimize
problems with multiple objectives and non-linear constraints, which is the case for corrective osteotomies. Another
advantage is that they are able to handle problems with a large number of variables. Even in complex optimization
problems with a large number of variables, EAs can significantly speed up the process. This is due to the parallel
characteristic of EAs. Maybe most important is the feature of being able to find multiple local optima in a complex
search space, as opposed to for example downhill simplex optimizers. This is because EAs can manage the trade-off
between exploring the entire search space and fully exploiting the current solutions [43]. All before mentioned
characteristics are not only beneficial to the nature of the optimization problem proposed in this thesis, they also
allow further expansion of the optimization in the future.
Evolutionary Algorithms have three main characteristics [41]:

• Population-based: EAs maintain a set of solutions to optimize the problem in a parallel way.

• Fitness-oriented: Every individual has a fitness value, which is an evaluation of the performance. This is
essentially the objective function of the optimization problem.

• Variation-driven: Throughout the generations of the optimization, the individuals will undergo a number of
variation operations. This part of the EAs is fundamental to searching the solution space.

EAs consist of four overall steps: initialization, selection, genetic operators called crossover and mutation, and
termination. In Figure 4.1, standard iteration of an EA is visualized [44]. During initialization, an initial set of
solutions is generated. This is the so-called population [45]. One solution is called a chromosome or an individual
and entails a set of genes. The genes encode the values for the variables that have to be optimized. The initial
population is created randomly within the constraints that are set. Each chromosome in the population must be
evaluated according to the fitness function. The fittest chromosomes are selected based on this fitness function.
After the selection, the genetic operators are applied to the population. In this step, current chromosomes are used
to create the next generation in the algorithm [44]. Two main genetic operators are used: crossover and mutation.
During crossover, different solutions are combined to create a mixture of the parents’ qualities. During mutation,
new genetic material is introduced. Both operators are probabilistic, meaning that they occur depending on a certain
chance. One run through these steps, which is one circle in Figure 4.1, is called a generation. The algorithm will keep
running as long as the stop criterium has not been reached. This can be either a maximum number of generations,
or a threshold of performance [44].

14



4.2. Anatomic reconstruction goals and objective function 15

Figure 4.1: The structure of an Evolutionary Algorithm.

4.2. Anatomic reconstruction goals and objective function
Evolutionary algorithms progress based on fitness functions, which are the objective functions as described in
Section 2.5. Fitness functions are functions that have to be minimized or maximized in order to find an optimal
solution. They represent the quality of a candidate solution, in terms of a certain goal of the corrective osteotomy.
These fitness functions can all be combined into one function that assigns an objective score to each candidate
solution. The scores can each be given a certain weight factor according to their importance during the optimization.
In the case of EAs, this score determines the likelihood that a chromosome survives into the next generation [46].
The better the fitness score, the higher the chance a chromosome will be passed on to a next generation.

To formulate fitness functions, the anatomical reconstruction goals for the corrective osteotomy have to be clearly
defined. These goals can then be translated into mathematical expressions. The main motive for doing the corrective
osteotomy is restoration of the function of the forearm. For the scope of this thesis, it is assumed that a geometrical
restoration of the anatomy of the forearm will result in complete function. As described in Chapter 2, the function
of the forearm can be limited due to a malunion through different mechanisms. In this section, these disrupted
mechanisms are translated into anatomical reconstruction goals for the corrective osteotomy. The supporting fitness
functions are defined and justified.

4.2.1. Anatomic reconstruction goal 1: Distal radial joint surface alignment
As clarified in Section 2.2, malalignment of the joints can cause a rotational limitation in the forearm function. To
restore the function of the forearm, an important aspect is aligning the joint surfaces of the radius to the joint
surfaces of the mirrored contralateral radius. In Chapter 3, the radius bone models have been proximally registered.
This is the input for the optimization process. From this situation, it is assumed that the proximal radial joint surface
is well aligned. The first and most important anatomical reconstruction goal can therefore be stated as the alignment
of the distal radial joint surface. It is assumed that the alignment of the joint surfaces will result in a functional distal
radial joint surface, contributing to a normal forearm function. This goal can be objectified as the minimization of
the distance error between the pathological and the reference bone. As the focus is on the distal radial joint surface,
this alignment error is calculated between the distal 10% of the pathological radius and the contralateral radius.
The Root Mean Squared Error (RMSE) is a commonly used measure for the Euclidean distance in a multidimensional
space [47]. So, the fitness function for the distal radial joint surface alignment is given below:

𝑅𝑀𝑆𝐸𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = √
1
𝑛

𝑛

∑
𝑖=1
(𝑟𝑖 − 𝑝𝑖)2 (4.1)

In this function, r are the points of the reference bone and p are the points of the pathological bone. In trimatic, the
trimatic function <Part Comparison> is used to this end. The distal 10% of the pathological and contralateral radius
are used as the input for this function. From the retrieved part analysis, the RMSE can be acquired.

4.2.2. Anatomic reconstruction goal 2: Minimization of bone protrusion
Apart from the alignment of the joints, proper function of the forearm is also dependent on a normal shape of the
radius and ulna. As described in Section 2.1, the radius has a natural bow that is important for the pronation and
supination. If the shape of the radius deviates from this natural radial bow extensively, the function of the forearm



4.3. Optimization variables 16

might be lacking, despite of the well aligned joints. This can be caused by two things [48]. On the one hand, an
increase in the distance between the radius and ulna can lead to contracture of the central band. On the other
hand, a decrease in this distance can lead to bone impingement. Thus, the second anatomical reconstruction goal is
restoring the shape of the radius. This can be interpreted as minimizing the deviation of the pathological bone after
reduction as compared to the contralateral bone. A part of this is minimizing the bone protrusion. Bone protrusion
is the parts of the bone that deviate from the anatomical target and that entail a surface gap among the fragments
[14]. The bone protrusion must be minimized around the location of the osteotomy cut, as it impedes the fixation of
the osteosynthesis plate and may cause problems with soft tissue surrounding the bone. The location and orientation
of the osteotomy plane influence the degree of bone protrusion. The relationship between the osteotomy plane and
the degree of bone protrusion is advantageous for the optimization, as minimization of the bone protrusion will be
able to control the location and orientation of the osteotomy plane.
Essentially, the bone protrusion can be considered as the RMSE calculation between the reduced pathological bone
parts and the reference bone parts around the osteotomy plane. To achieve this, a window function is used. Window
functions are functions that analyze the range of data near a given point. The given point in this case is the osteotomy
plane with a certain location and orientation. In Figure 4.2, the calculation of the bone protrusion is illustrated. The
RMSE between the bone parts is calculated within a given range of the osteotomy plane. To this end, the trimatic
function <Part Comparison> is used to retrieve the RMSE between the bone fragments. Mathematically, the bone
protrusion can be described by [14]:

𝐵𝑃(𝐹, 𝑅) = 1
𝐹√∑𝑊(𝑝𝑙)2 − 𝛿(𝑊(𝑝𝑙, 𝑝𝑖),𝑊(𝑝𝑙, 𝑅))2 (4.2)

In this function, F is the point set of a bone fragment and R is the point set of the reference bone fragment. W is
the window function as a function of the osteotomy plane with a certain location and orientation. The thickness of
the window function can be adjusted by the user, but is set to a default of 8 points on the centerline curve. The
window thickness is measured in points on the centerline of the bone part. The bone protrusion is calculated for the
proximal and distal reduced part of the pathological bone as compared to the contralateral bone. The function for
the total bone protrusion is given by [14]:

𝐵𝑜𝑛𝑒 𝑃𝑟𝑜𝑡𝑟𝑢𝑠𝑖𝑜𝑛 𝑇𝑜𝑡𝑎𝑙 = 𝐵𝑃(𝑝𝑝𝑟𝑜𝑥 , 𝑅) + 𝐵𝑃(𝑝𝑑𝑖𝑠𝑡,𝑟𝑒𝑑𝑢𝑐𝑒𝑑 , 𝑅) (4.3)

It should be noted that the bone protrusion does not account for differences in the diameter of the two bone models.
This can introduce a large bias in the measure of bone protrusion in the case that the osteotomy plane is located
somewhere in the malunion. The diameter at the site of the malunion is presumably larger than at the same location
on the reference bone, due to the rebuilding capacities of the bone after a fracture. This would result in a large bone
protrusion at the site of the malunion, introducing a negative bias. To avoid this, the diameters of the pathological
and reference bone models are calculated. The total bone protrusion score Equation 4.3 is therefore corrected for
the ratio in bone diameters at the osteotomy plane location as following:

𝐵𝑜𝑛𝑒 𝑃𝑟𝑜𝑡𝑟𝑢𝑠𝑖𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (𝐵𝑃(𝑝𝑝𝑟𝑜𝑥 , 𝑅) + 𝐵𝑃(𝑝𝑑𝑖𝑠𝑡,𝑟𝑒𝑑𝑢𝑐𝑒𝑑 , 𝑅)) ∗
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑟𝑒𝑓𝑏𝑜𝑛𝑒
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑝𝑎𝑡𝑏𝑜𝑛𝑒

(4.4)

4.2.3. Objective function
As discussed in Subsection 4.2.1, the main anatomic reconstruction goal is the distal radial joint surface alignment.
To guarantee this, in this research it is chosen to align the distal 25% of the pathological bone after the osteotomy
cut to the distal 25% of the reference bone. The associated benefit of this is that the optimization problem becomes
simplified. This is because the variables that would be required for the rotation and translation of the distal part
relative to the proximal part after the osteotomy cut become redundant, as the emphasis is now placed on the distal
radial joint surface alignment. Thus, the objective function for the optimization can be confined to the minimization of
the bone protrusion near the osteotomy plane as described in Subsection 4.2.2. However, a trade-off between distal
radial joint surface alignment and restoration of the radial bow must be considered. This will be further explained in
Section 4.11.

4.3. Optimization variables
To initialize the optimization algorithm, an initial random population has to be generated. The population size
𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 can be set by the user, with a default to 26. This number is chosen to balance between computational
time and genetic variety, based on trial-and-error. This can be explained as follows: a large population size will
allow for more genetic variation, as more genes can be present. However, the larger the population size, the higher
the computational time. Each chromosome holds 4 genes that have to be optimized: the osteotomy plane location
(z-axis) and the osteotomy plane orientation (x-, y-, and z-axis). In Subsection 4.3.2 and Subsection 4.3.3, the
variables for the plane location and plane orientation will be discussed in more detail.
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Figure 4.2: Calculation of bone protrusion. Left: window function used. Right: black arrows illustrate areas
with bone protrusion. Green: reference bone, blue: pathological bone after reduction.

4.3.1. Quasi-random sequence generator
The generation of the initial population is random. This means that a number of chromosomes are randomly
sampled with values somewhere in the search landscape, which is bounded by the gene-specific constraints. It
has been shown that the initial population has an impact on the final result of the optimization [49]. When
using pseudo-random number generators, in theory all chromosomes could be agglomerated in one part of the
search landscape. This means that an entire part of the search landscape is not properly explored and thus has a
disadvantage. Usually, it is more important that the sample points are as evenly distributed as possible than that they
imitate random points [49]. Quasi-random sequences are designed to tackle this problem and have a good uniform
distribution. As they fill the hyper-space in an equidistributed fashion, the optimization hyper-space is explored more
effectively [50]. The Halton sequence is an example of such a quasi-random sequence generator and is applied
in this research for the generation of the initial population [51]. The result of this is that the initial population is
generated with gene values that cover the entire search landscape.

4.3.2. Osteotomy plane location
The first gene is the location of the osteotomy plane. In this research, the location is only optimized along the long
bone axis (z-axis). A difference in the x- and y- direction does not have an impact on the osteotomy cut, making it
redundant. To quantify the location along the long bone axis, a centerline curve is fitted through the bone model
using the trimatic function <Fit Centerline Curve>. Essentially, this centerline curve can be described as a set of
points that are each at the center of axial cross-sections of the bone. From the Halton sequence, each chromosome
has an osteotomy plane location appointed somewhere on this curve. The osteotomy plane is then created by using
the function <Create midplane>.

4.3.3. Osteotomy plane orientation
The orientation of the osteotomy plane can be divided into three genes: namely the orientation relative to the x-, y-,
and z-axis. The Halton sequence generates rotation angles for each direction. Using the trimatic function <Rotate
around axes>, the plane that is created in Subsection 4.3.2 is rotated around the x-, y-, and z-axis. This yields an
osteotomy plane with a certain orientation.

4.4. Constraints
Constraints are hard limits placed on the value of the genes [52]. In this research, they are used to prevent the
algorithm from finding gene values that will result in unfeasible osteotomy plan solutions.

4.4.1. Constraints on osteotomy plane location
The malunion is most abundant at the site of the initial fracture, making this an obvious location for the osteotomy
cut [53]. However, often the malunion covers a range of the bone and more than one exact site could be feasible.
Therefore, in this research, the search range for the osteotomy plane location is constrained to a range near the
center of the malunion. This is done to prevent the algorithm from looking for osteotomy sites near or through the
articular surfaces, while the deformity is most prominent at the malunion. Moreover, cuts through the articular surface
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should be avoided. An additional advantage is that it reduces computational time. The plane location boundaries
are defined as following:

𝑝𝑙𝑎𝑛𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = {𝑐𝑒𝑛𝑡𝑒𝑟𝑚𝑎𝑙𝑢𝑛𝑖𝑜𝑛 + 𝛼 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑐𝑢𝑟𝑣𝑒 , for 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑑𝑖𝑠𝑡
𝑐𝑒𝑛𝑡𝑒𝑟𝑚𝑎𝑙𝑢𝑛𝑖𝑜𝑛 − 𝛼 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 𝑐𝑢𝑟𝑣𝑒 , for 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑝𝑟𝑜𝑥

(4.5)

𝛼 can be set by the user, and has a default to 0.1.

4.4.2. Constraints on osteotomy plane orientation
The orientation of the osteotomy plane also has to be constrained. Extremely steep osteotomies are clinically not
feasible, as they would cleave the ends [53]. Moreover, it can result in a discontinuous bone contour. This is
undesirable for the soft tissues like muscles surrounding the bone and also for the fixation of the osteosynthesis
plate. Therefore, the rotation that is applied to the osteotomy plane for each axis, is constrained to a user-set value,
with a default to 45 degrees. Through trial-and-error it was observed that higher values can lead to osteotomy
planes that are almost parallel to the long bone axis.

4.5. Selection
In each generation, the fittest chromosomes must be selected from the population to pass them on to the next
generation. In this study, k-way tournament selection is employed, as can be seen in Figure 4.3. In this selection
method, k chromosomes are randomly drawn from the population, and a tournament is held between them. Only
the fittest chromosome is selected and is passed on to the next generation [54]. This process is performed multiple
times, equal to the size of the population. k determines the selection pressure, and therefore the convergence
rate [55]. A larger k will result in faster convergence, as the weak chromosomes will be easily removed from the
population. A smaller k on the other hand will keep the diversity in the population, and will thus lead to a slower
convergence rate. The selection pressure 𝑘𝑠𝑝 can be easily adjusted, but is set to a default of 5. This selection
method is chosen because it has several advantages, like low vulnerability to takeover by dominant individuals, and
less time complexity [56].

4.6. Crossover
One of the main recombination operators in genetic algorithms is crossover. After selection, the current population of
chromosomes is paired. During crossover, a pair of solutions is taken (now called parent solutions) and recombined to
create new offspring solutions. The offspring inherits some of the good qualities of the parents while also introducing
some new, potentially beneficial qualities. Crossover is based on the idea that the exchange of information between
two good chromosomes can create even better offspring [57]. In this research, uniform crossover is applied. This
type of crossover works generates offspring gene-per-gene. For each gene, it is randomly selected from which of
the two parents it inherits the gene values. The ratio is 50-50, which means that for each gene, the chances are
equal that the gene is selected from either parent. It should be noted that the osteotomy plane orientation actually
consists of three genes. However, during crossover they are considered as one unit. This is because the orientation
of the osteotomy plane is dependent on the orientation relative to the x-, y-, and z-axis. If the crossover would be
for the x-, y-, and z-axis separately, a whole new plane orientation would occur. However, this is not the purpose of
crossover.
A parameter that has to be tuned for crossover is the crossover rate (𝑟𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟). This rate determines the chance
that a pair of chromosomes undergoes crossover. Typical crossover rates are between 0.6 and 0.95 [58]. In general,
a higher crossover probability can lead to a faster convergence on a solution. On the other side, this can result in a
loss of diversity in the population [59]. For this research, a default of 0.8 was set for the crossover rate.

4.7. Mutation
The final step in the optimization process is mutation. This technique is used to maintain diversity in the population
throughout the generations and to avoid getting stuck in local minima [59]. During mutation, the values of all genes
of the parent chromosome are cloned to an offspring chromosome. For each gene, it is then randomly decided
whether mutation occurs. A parameter called the mutation rate (𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛) or the mutation probability determines
the likelihood that a chromosome will undergo mutation. Mutation rates are often described between 0.001 and
0.01. Also common is to set the mutation rate to:

𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠 (4.6)

However, only 4 genes are used in this research, which would result in a mutation rate of 0.25. A high mutation
rate can cause the loss of good solutions, while a too small mutation rate can lead to the loss of genetic variation.
Therefore, a balance has to be found that lets the algorithm explore the search space while also keeping the good
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solutions. Therefore, the mutation rate in this research is set to a default of 0.15. Different types of mutation can
be employed, depending on the problem and the type of genes. The mutation algorithm that is used in this study
is the Random Resetting Mutation [60]. In this type of mutation, the selected gene value is replaced by a random
value within the allowed gene-specific range.

Figure 4.3: Selection, crossover and mutation in EA. Pz = plane position along z-axis, Nx, Ny, Nz = plane
orientation relative to x-,y-, and z-axis.

4.8. Randomness
Throughout the algorithm, the goal is to minimize the objective function to get closer to an optimal solution. The
chromosomes in the initial population and in the populations during the first few generations are presumably quite
random and their scores might be sub-optimal. Therefore, new random solutions could improve the score of the
solutions by searching other parts of the search landscape. After multiple generations, the solutions in the population
are getting closer to an optimum. Then, when mutation occurs, it is desirable to pick values from a range closer
to the current solution instead of letting the algorithm pick a value that is very far away from the current value.
Therefore, the randomness of mutation is adjusted throughout the generations. While the score is still larger than
a predefined value, the mutation value can be chosen from the entire gene-specific range of values. This is to allow
searching the entire landscape. When the score drops below a second predefined value, the range is adjusted.
Mutation can now only occur within a range around the current solution. The mutation value is then drawn from a
normal distribution. This distribution is centered around the current gene value (mean of the distribution), and has
a standard deviation that can be set by the user. Finally, when the score becomes smaller than the third predefined
value, the standard deviation of the normal distribution is set even smaller around the current solution.

4.9. Elitism
Mutation and crossover occur randomly and change the gene values of the chromosomes. Like in evolution, genetic
drift can occur. Genetic drift is the change in frequency of an existing gene variant in the population due to random
chance. Due to the stochastic nature of the selection tournament, the population can converge to single solutions
[61]. Gene variants can disappear completely, while other gene variants can become fixed. Genetic drift is unguided,
meaning that the fittest chromosomes are equally subject to the effects of genetic drift as the weakest [62]. Moreover,
the balance between exploration and exploitation is often lost in runs of EAs [63]. To alleviate the before mentioned
problems of EAs, elitism schemes can be applied. In elitism, the fittest chromosomes are automatically passed on
to the next generation, unaltered. This is achieved by ranking the chromosomes based on their total fitness score.
Only the n fittest individuals are selected and are guaranteed a place in the next generation, without undergoing
crossover and mutation. The user can set the 𝑛𝑒𝑙𝑖𝑡𝑒𝑠 and it is set to a default of 5 in this research.

4.10. Outline of the optimization
Prior to the optimization, an initial random population 𝑛𝑝𝑜𝑝 = 24 is generated. The proximal aligned pathological
bone will be cut with a plane with the location and orientation as retrieved from the chromosomes in this population.
The distal parts after the cut will be registered to the reference bone based on the distal 25%. This is done using
the trimatic function <Global Registration>. The distance threshold for the first run of the registration is determined
by the current distance between the distal parts of the pathological bone and the reference bone, see Figure 4.4.
This distance is calculated between the radial styloid of both bones, and is rounded up to the nearest 10 mm. The
registration is run until the residual error is smaller than 0.005 between three subsequent runs. All settings for the
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runs of the registration can be found in Table 4.1.

Figure 4.4: Distance measurement between radial styloid
landmarks. Red: pathological bone, green: reference bone.

When the optimization is initiated, the scores of the population are determined by calculating the bone protrusion,
see Subsection 4.2.2. Then, a tournament selection is held to select chromosomes. The selected chromosomes are
then paired to become ”parents”. Each pair creates two offspring chromosomes by cloning the parent chromosomes.
These offspring chromosomes might undergo recombination operators, depending on the 𝑟𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 and 𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛.
This is determined by drawing a random number between 0 and 1. If this number is smaller than 𝑟𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟, the two
offspring chromosomes will undergo crossover. Another random number is drawn to determine whether mutation
occurs, following the same principle. Resulting from this is the new generation of chromosomes. This new generation
of chromosomes has different combinations of osteotomy plane locations and orientations. With these new osteotomy
planes, the proximal aligned pathological bone can be cut and registered to the reference bone again. Hereafter,
the process starts from the beginning again, following all subsequent steps explained in this section. However, from
the second generation on, elitism will also be applied. Because of this, fewer chromosomes are selected in the
tournament, namely 𝑛𝑝𝑜𝑝 − 𝑛𝑒𝑙𝑖𝑡𝑒𝑠. The 𝑛𝑒𝑙𝑖𝑡𝑒𝑠 fittest chromosomes are kept separately, and passed on to the next
generation without undergoing crossover or mutation. All other steps will be performed as described above. This
process continues until the maximum number of generations 𝑛𝑖𝑡𝑒𝑟 has been reached. In algorithm Algorithm 1, the
pseudocode of the optimization algorithm is given.

Table 4.1: Global registration settings for run 1...i. RS = radial styloid

Distance threshold Subsample % Number of iterations
Run i = 1 𝛿(𝑅𝑆𝑝𝑎𝑡𝑏𝑜𝑛𝑒 , 𝑅𝑆𝑟𝑒𝑓𝑏𝑜𝑛𝑒) 35 20
Run i = 2 10 35 20
While i < 8 and
𝑒𝑟𝑟𝑜𝑟𝑖 − 𝑒𝑟𝑟𝑜𝑟𝑖−2 > 0.005 Automatic 35 20

4.11. Final alignment
The optimization results in an optimal osteotomy plane location and orientation. Throughout the optimization,
the most distal 25% of the bone is used for the Global Registration. The optimization is driven towards minimal
bone protrusion near the osteotomy plane and guarantees alignment of the distal radial joint surface. However, as
discussed in Subsection 4.2.2, the shape of the entire radius is important for the function of the forearm. To account
for this, it is interesting to experiment with different distal alignment percentages. A smaller alignment percentage
means that there is more focus on the distal radial joint surface and will therefore result in a more precise alignment
of the distal radial joint surface. However, the overall alignment of the radius shape might deviate more. On the
other hand, a larger alignment percentage will focus on the entire distal part of the radius after the osteotomy cut
for alignment, resulting in an overall better shape of the radius and thus restoration of the radial bow. This might
decrease the accuracy of alignment of the distal radial joint surface slightly. From this, it can be concluded that a
trade-off has to be found between the distal radial joint surface alignment and the overall radius shape restoration.
This trade-off can be found by varying the distal alignment percentage. Thus, after the optimization has been run,
two scenarios are added to the osteotomy plan. One with an alignment of only the most distal 15%, and one
with an alignment using the entire distal part after the osteotomy cut (named 100% hereafter). As this trade-off
often depends on personal patient factors and patient-specific anatomic reconstruction goals for the osteotomy,
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the surgeon can choose between the three scenarios (15, 25 or 100%). The user can assess which alignment
percentage will yield the best result for the patient specifically. One important comment has to made regarding
this. If the malunion is located very distal, comparing the three scenarios will probably result in only very small
differences. Accordingly, comparing the three scenarios is not very useful.

Algorithm 1 Optimization of osteotomy plan
Input: Initial population, proximal aligned bone cut with planes with values from chromosomes
Output: Optimal osteotomy plane location and orientation

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0
while 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑛𝑖𝑡𝑒𝑟 do
calculate bone protrusion
keep 𝑛𝑒𝑙𝑖𝑡𝑒𝑠 best chromosomes apart
perform tournament selection until (𝑛𝑝𝑜𝑝 − 𝑛𝑒𝑙𝑖𝑡𝑒𝑠) chromosomes selected
pair chromosomes
for pair in population do
𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← cloned pair
draw random number R in (0,1)
apply crossover if R < 𝑟𝑐𝑟𝑜𝑠𝑠
for chromosome in offspring do
apply mutation if R < 𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

end for
end for
𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 + 𝑒𝑙𝑖𝑡𝑒𝑠
cut pathbone𝑎𝑙𝑖𝑔𝑛𝑒𝑑,𝑝𝑟𝑜𝑥 with planes from offspring
Global Registration of pathbone𝑑𝑖𝑠𝑡 to refbone
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1

end while



5
Validation

The validation of the implemented optimization consists of two parts. 15 patient cases with preoperative and planned
data are available, which have all been planned by Materialise. These cases will serve as a standard for comparison,
because all plannings have been accepted and performed. The first part of the validation consists of a comparison of
residual alignment errors between the planned osteotomy and the osteotomy plan resulting from the optimization.
Although these scores are objective, a better score does not necessarily imply a better osteotomy plan. This is
because these scores are dependent on the characteristics of the malunion and do not include soft tissue anatomy
and plate positioning feasibility. Therefore, for the second part of the validation, the results of the optimization were
presented to dr. J.W. Colaris, orthopedic surgeon at the Erasmus MC. Finally, the repeatability of the optimization
was analyzed as described in Section 5.3.

5.1. Residual alignment errors
Themost objective method to validate the optimization is to compare the residual alignment error of the planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐
for each patient case with that of the planning𝑚𝑎𝑛𝑢𝑎𝑙. To this end, the residual error between the pathological bone
after the osteotomy cut and the reference bone can be calculated for the planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 and the planning𝑚𝑎𝑛𝑢𝑎𝑙
for each patient case. To determine the residual alignment error, the RMSE was acquired. In line with the
anatomic reconstruction goals, the residual alignment error was calculated for the entire bone and for the distal
10% specifically. This is done to be able to analyze the entire shape of the radius but also the distal joint surface
specifically.

5.2. Qualitative scores
The residual alignment errors as calculated in Section 5.1 serve as a means of objective comparison. For the second
part of the validation, dr. J. W. Colaris (orthopedic surgeon, highly experienced in performing this type of corrective
osoteotomies) was asked to score the osteotomy plans of both the planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 and the planning𝑚𝑎𝑛𝑢𝑎𝑙. The
purpose of this was to compare feasibility scores based on experience and knowledge regarding the approach,
the plate positioning, soft tissue involvement and the bone overlap. This score is more relevant from a clinical
point-of-view because it is more comprehensive. To this end, dr. Colaris was blinded to the planning method. This
was achieved by assigning random case numbers to each osteotomy planning. Dr. Colaris was asked to score each
planning between 6 and 10. If the score was to be below 6, the planning was scored as unfeasible. Moreover, an
explanation for the score was noted because it is relevant to know in which aspect the planning is lacking for future
improvements.

5.3. Repeatability
Not only the quality of the results of the optimization are interesting, the repeatability of the algorithm in generating
osteotomy plans is important. Repeatability measures the consistency of a measure from one time to another [64].
Applied to this research, repeatability is the consistency of the generated osteotomy plans if the optimization is run
multiple times for the same patient case. Although this is hard to determine due to the stochastic nature of the
EA, this measure is important for determining the applicability of the optimization. It would be acceptable if the
algorithm results in different plans when it is run multiple times for the same patient case. However, the quality of
these plans should be similar and not dependent on the run. If the results of the optimization are not consistent in
their quality, the use of the optimization is still not clinically feasible. To investigate the repeatability of the algorithm,
the algorithm was run an additional time for the one patient case. Due to limited time, it was not possible to run the
algorithm multiple times for each patient.
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6
Results

In this section, the outcomes of the optimization are presented and compared with the osteotomies for each patient
case as planned by Materialise. To get an idea of the degree of deformity, the transformation matrix between the
proximal aligned bone and the reference bone was obtained. This matrix holds the rotation around and translation
along the axes. In Appendix A, the Euler angles retrieved from the transformation matrix are displayed for each
patient case in Table A.1.

The optimization process could be run without errors for all patient cases except for case 13. This case had an
osteosynthesis plate during the CT scan. The screws to fixate the plate left holes in the bone model, which affects
the mesh characteristics and disturbed the algorithm’s proper determination of the centerline curve. Because of
this, patient case 13 was excluded from further evaluation. For the remaining patient cases, the optimization ran
smoothly. The runtime of the algorithm with the settings 𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 24 and 𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 16 varied between 74
minutes and 81 minutes.

The decrease in the bone protrusion score (BP score) throughout the optimization is illustrated in the plots in
Appendix B. It should be noted that the BP score is the sum of the proximal and distal BP near the osteotomy
plane. Final BP scores after optimization ranged between 1.547 mm (Pt 12) and 6.823 mm (Pt 4). In Figure 6.1,
these patient cases with minimal and maximal BP scores are visualized. This score indicates the average residual
alignment error in the range around the osteotomy plane. A larger BP score implies that the proximal and distal
bone pathological bone parts are less accurately aligned and protrude more from the reference bone.

(a) Patient case 12, minimal bone protrusion.
Left: proximal part, right: distal part.

(b) Patient case 4, maximal bone protrusion.
Left: proximal part, right: distal part.

Figure 6.1: Example of patient cases with minimal and maximal BP scores after optimization. Green: reference
bone, blue: pathological bone after reduction.

From the plots in Appendix B it can be observed that the total decrease in BP score varies across cases, ranging from
0.12 mm in case 12 to 2.83 mm in case 3. Moreover, the number of times the BP score decreases differs among
cases, varying from 4 to 10 times throughout the optimization.

For each patient case, the planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 consisted of three plans based on the three distal alignment percentages
15, 25, and 100. This yielded a total of 42 osteotomy plans. In some of the plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐, the proximal and
distal part of the bone after the osteotomy cut did not have contact at all. In these cases, the distal part of the bone
protruded to an extent that the contour of the bone was completely interrupted. An example of this is visualized in
Figure 6.2. These cases (16 out of 42) were excluded before validation, because they are unfeasible. In Table A.2,
these cases are shown. The lack of bone contact was observed for alignment percentages of 15 and 25, but never
for an alignment percentage of 100 (meaning the entire distal part after the osteotomy cut). After this exclusion,
a total of 26 osteotomy plans remained as potentially feasible. For each patient case, at least one osteotomy plan
remained feasible for scoring. The osteotomy plannings from planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 are presented in Appendix A.
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Figure 6.2: Completely interrupted bone contour. Transparent
green: reference bone, blue: pathological bone.

6.1. Residual alignment errors
In Table 6.3, all residual alignment errors are shown for the entire bone and for the distal joint surface specifically.
It should be noted that the error can be negative and positive. The error becomes negative when the pathological
bone is partly ”within” the reference bone. Errors are negative when they are ”outside” of the reference bone model.
The RMSE is calculated as the root of the squared point-wise distances between the bone models. It is therefore
not influenced by negative values. The maximum and minimum errors are also given for the osteotomy plannings.
These maximum values indicate the maximum error between the pathological corrected bone and the reference
bone in mm’s. In Table 6.1, the mean of the error calculations for the different planning methods are given. For
the plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐, the mean is given for the different distal alignment percentages separately. The mean is
calculated twice for the plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐: once without the plannings that were scored as unfeasible in Section 6.2
and once including all plannings.

6.1.1. Residual alignment error
From Table 6.1, it can be seen that the mean RMSE for the plannings𝑚𝑎𝑛𝑢𝑎𝑙 and the plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 with a distal
alignment of 100% are very similar, with a difference of 0.002 mm. The mean RMSE for the plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 with
distal alignments of 25 and 15% are somewhat larger than that of 100% distal alignment, but not substantially.
Moreover, if the unfeasible plannings are not considered when calculating the mean, the plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 even
have a lower RMSE than the plannings𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑒. However, this calculation should be interpreted carefully, as it
introduces a strong form of bias. From Table 6.3 it can be seen that for patient cases 2, 4, 5, 6, 10, and 12,
the RMSE of the entire bone is smaller for the best scenario of planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 than the planning𝑚𝑎𝑛𝑢𝑎𝑙. For the
remaining cases, the planning𝑚𝑎𝑛𝑢𝑎𝑙 has a lower residual average alignment error for the entire bone. The maximum
difference in RMSE between the planning𝑚𝑎𝑛𝑢𝑎𝑙 and the best scenario of planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 is 0.33 mm for patient
case 6. The maximum error is lower for the best scenario of planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 for patient cases 2, 3, 4, 5, 10, and
15. For the other patient cases, the planning𝑚𝑎𝑛𝑢𝑎𝑙 has a lower maximum error.

6.1.2. Distal residual alignment error
From Table 6.1, it can be seen that the mean RMSE for the distal 10% of the radius is always lower for the
plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 than for the plannings𝑚𝑎𝑛𝑢𝑎𝑙, even including the cases that were scored as unfeasible. The mean
maximum error for the distal 10% is also lower for the plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐. This is in accordance with Table 6.3,
where it can be seen that for most patient cases the RMSE for the distal joint surface is smaller for the best scenario
of planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 than the planning𝑚𝑎𝑛𝑢𝑎𝑙. It can be noted for the plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 that the smaller the distal
alignment percentage, the smaller the residual RMSE. This is because the smaller the distal alignment percentage,
the more focus is on aligning the distal radial joint surface. The RMSE for the distal joint surface was always below
0.8 mm, for all plannings. This implies that the alignment of the distal joint surface is very accurate.

Table 6.1: Mean of error calculations

Mean RMSE Mean max error Mean RMSE distal 10% Mean max error
Materialise 1,172 4,956 0,526 1,952
Optimization 100% 1,174 5,580 0,516 1,951
Optimization 100% feasible only 1,073 3,855 0,406 1,445
Optimization 25% 1,227 5,375 0,439 1,676
Optimization 25% feasible only 1,078 4,727 0,361 1,415
Optimization 15% 1,199 4,201 0,451 1,504
Optimization 15% feasible only 1,199 4,201 0,451 1,504
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6.2. Qualitative scores
In Table 6.4, the qualitative scores are displayed. The mean score for the plannings𝑚𝑎𝑛𝑢𝑎𝑙 was 7.43, whereas
the score for the plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 was 6,86 when combining all feasible plannings for the different alignment
percentages. When looking at the different alignment percentages separately, the mean scores for the feasible
plans were 7, 6.71, and 6.75 for the distal alignment of 100, 25, and 15% respectively. For case 3, 8, and 11, the
planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 was not able to generate a feasible planning, mainly due to insufficient bone contact. Patient case
10 with an alignment % of 25 was also scored as unfeasible because of the poor bone overlap and the lack of radial
bow. The remaining 22 osteotomy plans were all scored as feasible (a score of ≥6). Patient cases 1, 4, 6, and
12 scored equal for the planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 and planning𝑚𝑎𝑛𝑢𝑎𝑙. For the other patient cases, the planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐
consistently had a lower score compared to the planning𝑚𝑎𝑛𝑢𝑎𝑙. The only exception is patient case 5, where the
planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 with an alignment of 100% scored 2 points higher than the planning𝑚𝑎𝑛𝑢𝑎𝑙 (8 vs. 6). The
maximum difference between the planning𝑚𝑎𝑛𝑢𝑎𝑙 and the best scenario of planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 was always 1 point.
For the planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐, the maximum score was an 8/10, compared to a 9/10 for the planning𝑚𝑎𝑛𝑢𝑎𝑙. An example
of a good and an unfeasible osteotomy plan are visualized in Figure 6.3. The most common reasons for low scores
(6/10) were discontinuation of the bone contour, little bone overlap, complex plate position, and a sub optimal radial
bow. However, it can be noted that none of the cases lacked in alignment of the distal and proximal joint surfaces,
which is in accordance with the results discussed in Section 6.1.
When looking at the plannings𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 and the plannings𝑚𝑎𝑛𝑢𝑎𝑙, the location of the osteotomy plane is very similar
for all patient cases, except for patient case 14. It is remarkable that the plane from the planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 is
positioned much more distal as compared to the plane in the planning𝑚𝑎𝑛𝑢𝑎𝑙.

(a) Patient case 15 (b) Patient case 8

Figure 6.3: Patient case 15, alignment 100% with a qualitative score of 8/10. Patient case 8, alignment 100%,
scored as unfeasible. Blue = pathological bone, green = reference bone.

6.3. Concordance between validation scores
In Table 6.2, a comparison is made between the validation scores for each patient case. It can be seen that the
residual average alignment error and the qualitative score do not always indicate the same planning method to be
best. For example, for patient case 2 and 10 the RMSE for the entire bone is lower for the planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 while
the qualitative score favors the planning𝑚𝑎𝑛𝑢𝑎𝑙. Also important to note is the correlation between the RMSE score for
the entire bone and the qualitative score. In Figure 6.4, the qualitative scores are plotted against the RMSE scores.
From this plot, it can be seen that a low correlation is found.

6.4. Repeatability
The optimization was run twice for patient case 3. This patient case was chosen because it was scored as unfeasible,
so it is interesting to see whether a new run might improve the results. In Figure 6.5, it can be seen that the
generated osteotomy plans are quite different for the two runs. From run 2, an open wedge osteotomy resulted,
whereas run 1 did not yield an open wegde. In both cases, the bone overlap is very poor. Figure 6.6 shows the
decrease in BP score throughout the optimization for the two runs. It is clear that the course of the BP score is
different for both runs and the final BP score is 0.3 mm lower for the first run. Also, for the second run the BP score
decreased 14 times instead of 6 times in run 1.
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Table 6.2: Comparison of best score between planning𝑚𝑎𝑛𝑢𝑎𝑙 and the best scenario of
planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 per patient case

Residual average alignment error Qualitative score
Pt1 planning𝑚𝑎𝑛𝑢𝑎𝑙 Equal
Pt2 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 planning𝑚𝑎𝑛𝑢𝑎𝑙
Pt3 Equal planning𝑚𝑎𝑛𝑢𝑎𝑙
Pt4 Equal Equal
Pt5 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐
Pt6 planning𝑚𝑎𝑛𝑢𝑎𝑙 Equal
Pt7 planning𝑚𝑎𝑛𝑢𝑎𝑙 planning𝑚𝑎𝑛𝑢𝑎𝑙
Pt8 planning𝑚𝑎𝑛𝑢𝑎𝑙 planning𝑚𝑎𝑛𝑢𝑎𝑙
Pt9 planning𝑚𝑎𝑛𝑢𝑎𝑙 planning𝑚𝑎𝑛𝑢𝑎𝑙
Pt10 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 planning𝑚𝑎𝑛𝑢𝑎𝑙
Pt11 planning𝑚𝑎𝑛𝑢𝑎𝑙 planning𝑚𝑎𝑛𝑢𝑎𝑙
Pt12 Equal Equal
Pt14 Equal planning𝑚𝑎𝑛𝑢𝑎𝑙
Pt15 planning𝑚𝑎𝑛𝑢𝑎𝑙 planning𝑚𝑎𝑛𝑢𝑎𝑙

Figure 6.4: Correlation between the qualitative scores and the RMSE scores for all osteotomy
plannings. Qualitative score 0 means unfeasible.

(a) Run 1 (b) Run 2

Figure 6.5: Patient case 3, osteotomy plan for two different runs. Blue = pathological bone,
green = reference bone.
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(a) Run 1

(b) Run 2

Figure 6.6: Patient case 3, decrease in BP score for two different runs.
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Table 6.3: Residual average alignment errors (RMSE) for each patient case with min and max values

Patient case Alignment % RMSE min max RMSE𝑑𝑖𝑠𝑡𝑎𝑙 10% min max
Pt 01 Materialise 0,7963 -1,5433 3,2375 0,4632 -1,0891 1,6413
Pt 01 optimization 100 0,8179 -2,4346 4,1759 0,4265 -1,3876 1,5711
Pt 02 Materialise 1,924 -3,3184 6,3252 0,5903 -1,2946 1,8798
Pt 02 optimization 100 1,7912 -3,561 5,8962 0,5459 -1,095 1,7642
Pt 02 optimization 25 1,7098 -3,8509 5,8763 0,4855 -0,9174 1,2456
Pt 03 Materialise 1,3853 -3,1146 5,307 0,7595 -3,1146 2,1109
Pt 03 optimization 100 1,3911 -4,7314 5,0645 0,7189 -3,1802 1,9758
Pt 04 Materialise 1,3156 -3,1175 5,9567 0,7793 -2,4866 1,5473
Pt 04 optimization 100 1,2945 -4,1649 5,9452 0,7922 -2,303 1,9348
Pt 05 Materialise 0,8762 -1,3815 3,2846 0,3894 -1,1362 1,7569
Pt 05 optimization 100 0,7944 -1,4629 3,2621 0,4177 -1,4629 1,3914
Pt 05 optimization 25 1,1781 -3,6013 4,751 0,3126 -1,0335 1,37
Pt 06 Materialise 1,598 -2,8381 6,8688 0,3661 -1,2256 1,0383
Pt 06 optimization 100 1,2683 -2,3616 6,9654 0,4052 -1,5683 1,1431
Pt 07 Materialise 0,9042 -2,179 4,9753 0,3862 -1,1017 1,3547
Pt 07 optimization 100 0,9642 -4,2527 5,4755 0,3377 -1,0305 1,1021
Pt 07 optimization 25 1,3616 -5,2705 7,8549 0,3085 -1,0347 0,9433
Pt 07 optimization 15 1,5345 -5,0185 8,232 0,2843 -1,2052 0,9069
Pt 08 Materialise 1,7748 -2,3005 5,2773 0,3576 -1,7664 0,9965
Pt 08 optimization 100 2,0336 -5,1208 9,3719 0,3634 -1,7385 0,9147
Pt 09 Materialise 1,2106 -1,8484 5,2514 0,418 -1,3023 0,9016
Pt 09 optimization 100 1,2347 -1,6539 5,5712 0,4477 -1,6323 1,1453
Pt 09 optimization 25 1,4709 -4,366 6,392 0,2591 -0,8034 0,6965
Pt 10 Materialise 0,9613 -2,9838 6,3232 0,7272 -1,5854 2,7098
Pt 10 optimization 100 0,9492 -4,2872 6,0596 0,6752 -1,9691 2,1955
Pt 10 optimization 25 1,1924 -5,1783 5,1273 0,6197 -1,4133 2,0885
Pt 11 Materialise 0,9974 -3,6874 4,8193 0,5563 -2,19 0,9832
Pt 11 optimization 100 1,1669 -4,4754 7,9035 0,5553 -2,2634 0,9394
Pt 12 Materialise 0,672 -2,8122 2,2583 0,4217 -1,5723 1,666
Pt 12 optimization 100 0,6653 -2,6393 2,5029 0,4257 -1,8212 1,8948
Pt 12 optimization 25 0,7587 -2,5914 2,5029 0,4193 -1,8027 1,8768
Pt 12 optimization 15 0,6979 -2,5914 2,5029 0,4281 -1,7516 1,8569
Pt 14 Materialise 0,9754 -2,5106 3,7683 0,5646 -1,5586 1,7041
Pt 14 optimization 100 1,0235 -3,1579 4,8259 0,5462 -1,6587 2,2065
Pt 14 optimization 25 0,9892 -3,1579 4,8259 0,5577 -1,7361 2,3015
Pt 14 optimization 15 0,9873 -3,1579 4,8259 0,5435 -1,6855 2,2225
Pt 15 Materialise 1,0193 -3,3071 5,1647 0,5789 -2,1491 2,5276
Pt 15 optimization 100 1,0457 -2,4299 4,9696 0,5603 -2,0228 2,4279
Pt 15 optimization 25 1,1527 -2,2163 5,5282 0,5464 -1,8761 2,6864
Pt 15 optimization 15 1,5743 -4,6745 6,3377 0,5498 -1,5372 3,1413
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Table 6.4: Scores for each patient case by dr. J. W. Colaris

Patient Planning Alignment % Score Explanation
1 planning𝑚𝑎𝑛𝑢𝑎𝑙 8 Overall good

1 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 8
Good bone overlap
Some protrusion
Increased radial bow

2 planning𝑚𝑎𝑛𝑢𝑎𝑙 7
Increased radial bow
Sufficient overlap
Feasible approach

2 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 6

Increased radial bow
Discontinuous bone contour, can be cut off
Sufficient overlap
Feasible approach

2 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 25 6

Increased radial bow
Discontinuous bone contour
Reasonable bone overlap
Just about feasible

3 planning𝑚𝑎𝑛𝑢𝑎𝑙 8 Overall good

3 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 Unfeasible
Insufficient bone overlap
Overcorrection

4 planning𝑚𝑎𝑛𝑢𝑎𝑙 6
Discontinuous bone contour, can be cut off
Suboptimal position for plate fixation
Just about feasible

4 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 6

Increased radial bow
Discontinuous bone contour, can be cut off
Sufficient bone overlap
Just about feasible

5 planning𝑚𝑎𝑛𝑢𝑎𝑙 6
Osteotomy is very good
Very complex plate position , too proximal
Requires Thompson approach vs. Henry approach

5 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 8

Sufficient bone overlap
Suboptimal plate position
Good radial bow
Little discontinuation of bone contour

5 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 25 6 Just about feasible

6 planning𝑚𝑎𝑛𝑢𝑎𝑙 6
Discontinuous bone contour, can be cut off
Complex plate position
Technically feasible

6 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 6
Increased radial bow
Sufficient bone overlap
Discontinuous bone contour, can be cut off

7 planning𝑚𝑎𝑛𝑢𝑎𝑙 8 Overall good

7 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 7

Proximal and distal alignment good
Sufficient bone overlap
Approach is feasible
Slightly decreased radial bow

7 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 25 6 Just about feasible

7 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 15 6
Little bone contact
Discontinuous bone contour
Just about feasible

8 planning𝑚𝑎𝑛𝑢𝑎𝑙 7
Sufficient bone overlap
Discontinuous bone contour
Feasible

8 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 Unfeasible
Not sufficient bone overlap
Open wedge with too little bone contact

9 planning𝑚𝑎𝑛𝑢𝑎𝑙 8 Overall good

9 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 7
Sufficient bone overlap
Good radial bow

9 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 25 7
Discontinuous bone contour, can be cut off
Good radial bow
Sufficient bone overlap

10 planning𝑚𝑎𝑛𝑢𝑎𝑙 8 Overall good

10 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 7
Just about sufficient bone overlap
Good radial bow

10 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 25 Unfeasible
Lack of radial bow
Bone overlap is poor

11 planning𝑚𝑎𝑛𝑢𝑎𝑙 7
Discontinuous bone contour, can be cut off
Obliqueness is feasible

11 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 Unfeasible
Too much discontinuation of bone contour
Insufficient bone overlap

12 planning𝑚𝑎𝑛𝑢𝑎𝑙 7

Increased radial bow
Sufficient bone overlap

Feasible

12 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 7
Bone overlap is sufficient
Approach is feasible
Plate position is feasible

12 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 25 7
Moderate radial bow
Sufficient bone overlap

12 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 15 7
Sufficient bone overlap
Good radial bow
Complex for plate fixation, but feasible

14 planning𝑚𝑎𝑛𝑢𝑎𝑙 9 Very good
14 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 7 Lacking in radial bow
14 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 25 7 Lacking in radial bow

14 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 15 8
Radial bow is restored
Sufficient bone overlap

15 planning𝑚𝑎𝑛𝑢𝑎𝑙 9 Very good
15 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 100 8 Overall good

15 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 25 8
Overall good
Little discontinuation of bone contour

15 planning𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 15 6
Decreased radial bow
Sufficient bone overlap
Discontinuous bone contour
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Discussion

The multidimensional complexity of correcting forearm malunions has led to an increased use of computer-assisted
3D preoperative planning. Despite the strong advantages that are associated with it like improved understanding
of the deformity and high accuracy, the clinical application remains limited due to the required time, effort and
expertise. This research aimed to answer the question

How can the computer-assisted patient-specific corrective osteotomy planning
for forearm malunions be automated and optimized?

To this end, an automatic tool was developed to enhance the use of computer-assisted preoperative planning for
malunions of the radius. The tool automatically registers the bone models to give the user an insightful analysis of
the degree and nature of deformity. In the second part of this research, an Evolutionary Algorithm was implemented
to optimize the osteotomy plane location and orientation. The automatically generated patient-specific osteotomy
plannings minimize the bone protrusion near the osteotomy plane and guarantee accurate proximal and distal radial
joint surface alignment. Per patient case, three final osteotomy plans are provided to the user, that balance between
distal radial joint surface alignment and restoration of the radius shape. The user can choose the osteotomy plan
that best satisfies the patient-specific osteotomy goals. Based on the validation performed on 15 patient cases, it
can be concluded that the automatic tool is capable of yielding clinically feasible plannings. The residual average
alignment errors of the entire radius shape do not deviate substantially from those of plans that have been accepted
in the past. Moreover, the distal radial joint surface alignment for the osteotomy plans generated by the automatic
tool is very accurate.

7.1. Strengths and limitations
The developed automatic tool offers several key advantages, primarily the required minimal user interaction. As a
result, the time investment needed is significantly reduced. Within a short time, numerous osteotomy plans can be
computed and evaluated, surpassing the time investment required for human trial-and-error.This computational
capacity has a significant advantage over the time investment for human trial-and-error. Despite the minimal
user interaction, the tool still involves the user during critical decision points by presenting different scenarios for
comparison. This approach leverages the user’s experience and consideration of patient-specific factors, enabling
their contribution to the final osteotomy plan. Furthermore, it allows for a comparison of various osteotomy plans
based on insights into different trade-offs.

An additional noteworthy feature of the developed automatic planning tool is its flexibility regarding the type of
osteotomy. It allows both closing and open wedges, as well as single-cut rotational osteotomies. The type of
osteotomy is determined by the minimal bone protrusion near the osteotomy plane while securing accurate distal
radial joint surface alignment. This ensures osteotomy plans that are in line with the anatomic reconstruction goals.

Another significant benefit of the developed automatic tool is its ability to guarantee accurate distal radial joint
alignment. Joint alignment is crucial for restoring forearm function. In the study conducted by Carrillo et al. that
also focused on optimizing preoperative planning for corrective forearm osteotomies, a mean RMSE of 0.94 mm was
found for the distal landmarks [14]. Comparatively, in this research, the mean RMSE for the alignment of the distal
10% of the radius was 0.516 mm with a distal alignment of 100%. This suggests that the automatic planning tool
developed in this research achieves more precise results for distal radial joint surface alignment.

This research establishes a foundation for a framework to automatically optimize corrective osteotomy planning
for radius malunions. It can be further developed and improved upon, allowing for adjustments or additions such as
the implementation of clinical constraints or expanding the objective function.

Ultimately, the feasibility of an osteotomy plan appears to depend on various factors that were considered in this
research. In the following subsections, the limitations of this research are discussed, that can provide insights into
the reasons for the lack of feasibility of some of the osteotomy plans. Shortcomings of the optimization algorithm

30



7.1. Strengths and limitations 31

itself and clinical feasibility aspects are reviewed, and potential solutions to address the limitations are suggested.

7.1.1. Initial population
When analyzing the optimization process, it is noteworthy that the improvement in the bone protrusion score is
only marginal across generations. One possible explanation for this is that within the initial population, due to the
size and genetic diversity, a solution is already relatively optimal. The initial population consists of 26 different
solutions, which are generated and compared to each other. If one of these solutions is already close to optimal,
further improvement in subsequent generations will be limited. On the other hand, the initial population may also
negatively impact the optimization result, as it critically affects the convergence and performance of the algorithm
[65]. To address this issue, the Halton sequence was utilized to generate the initial population, as described in
Subsection 4.3.1. Nonetheless, the problem remains that the initial population’s combinations of plane locations and
orientations may affect the recombination possibilities for the following generations. Therefore, it can be concluded
that the initial population plays a critical role in determining the optimization result, and that a larger population size
might contribute to better results.

7.1.2. Similarity of bones
Another aspect that must be considered when using optimization to plan osteotomy for malunited forearm fractures is
the similarity between the pathological bone and the contralateral bone. If the two bones differ in shape even before
the malunion, the optimization result will be adversely affected by this, resulting in a poorer outcome. Similarly, if
the patient currently has an osteosynthesis plate fixated, the 3D model may be distorted, leading to problems during
the optimization process. Additionally, if the contralateral bone is also fractured or malunited, it cannot be used as a
planning target. In these cases, the contralateral bone can not be used as a planning target. An alternative approach
could involve using statistical shape models (SSMs). SSMs are geometric models that represent an average shape of
many three-dimensional objects, as well as their variation in shape [66]. Studies suggest that SSMs can be used to
accurately predict the patient-specific anatomy, and could thus serve as a useful planning target in cases of bilateral
fractures [67].

7.1.3. Control parameters
One of the most complicated aspects of the implemented EA in this research is the settings for the control parameters.
These are the parameters that control certain processes in the optimization. Many of these parameters are present
like 𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑛𝑒𝑙𝑖𝑡𝑒𝑠, 𝑟𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟, 𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 and 𝑘𝑠𝑝. All processes in the optimization algorithm and thus the overall
performance are dependent on the values of these parameters. Also, the type of selection, crossover, and mutation
influence the optimization. In addition, some parameters affect the performance more than others [68]. Moreover,
these control parameters interact in a complex way [69]. To give an example, changes in different parameters can
lead to similar effects. If the selection pressure 𝑘𝑠𝑝 is set higher, i.e. the chance of a chromosome to be selected
becomes smaller, convergence will occur sooner in the process. This can lead to getting stuck in local minima.
Lowering the 𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 can also lead to getting stuck in local minima. The settings for the control parameter values
are dependent on the optimization problem specifically and the characteristics of the population. Moreover, most of
the control parameters have to be balanced carefully. Often, concessions have to be made that either result in early
convergence or in maintaining diversity in the population. Computational time and population diversity also stress
the trade-off that has to be made when determining the values for the control parameters. It is hard to determine
the optimal values for these parameters. A thorough understanding of all control parameters and their effects and
interactions is required. Tuning the values is possible through trial-and-error. This would require extensive analysis
of the effects of changing each parameter. One method to alleviate a part of this problem, is by estimating the
entropy of the parameters. Entropy could be used as an indicator for the relevance of the different parameters [68].
From this, certain parameters can be given more time/capacity in tuning than others.
It can be concluded from this that one of the main limitations in this study is the likeliness that the values of the control
parameters are sub optimal. As long as these parameters are not tuned accurately, the result of the optimization
will not be optimal.

7.1.4. Population size and number of iterations
Two control parameters that are likely to be insufficient in this research are the population size 𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 and the
number of iterations 𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. The population size and the number of iterations in this study are set rather small to
reduce computational time. One run with 𝑛𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 24 and 𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 16 already can take up to 80 minutes.
An experiment with 24 iterations doubled the runtime, from which it can be concluded that expanding the number
of iterations exponentially increases the runtime. It is known that a larger population size can maintain the diversity
in the population. Diversity promotes exploration of the solution space because it delays convergence. [70]. This
results in accuracy of getting an optimal solution [71]. Secondly, diversity also helps to locate multiple optima in the
case that more than one optimal solution is present [70]. This applies for corrective osteotomies especially, because
not just one solution is feasible. A larger number of iterations gives the algorithm more opportunities to improve and
thus reach a better solution. This probably does not apply until infinity: at one point the optimum will be reached
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and no other solution will result in improvement. However, it should be noted that increasing these parameters
excessively can result in unfeasible runtimes, which would contradict the purpose of the research. Therefore, a
balance must be found between computational efficiency and the accuracy of the solution.

7.1.5. Objective function
Another important limitations in this research is the defined objective function. Fitness landscapes in optimization are
defined by the objective function, meaning that an inadequate objective function can result in a search problem that
lacks feedback suggesting where to look for a solution [72]. In this research, the objective function is defined by the
calculation of the bone protrusion near the osteotomy plane. This objective function is limited in several ways. First
of all, the bone protrusion is calculated as a function of the osteotomy plane. This osteotomy plane is dependent on
4 variables, namely the plane location along the z-axis, and the plane orientation in the x-, y-, and z-direction. The
bone protrusion scores determine the likelihood that a chromosome passes on to the next generation. However,
the problem here is that a solution with a sub optimal plane location can be compensated for with a good plane
orientation, or the other way around. Because of this, solutions with sub optimal values for certain variables might
be assumed as good, due to their fitness score. These variable values are then passed on to the next generations,
resulting in suboptimal solutions. The algorithm might even get stuck in local minima because of this.

Another limitation is that the bone protrusion is only calculated near the osteotomy plane. If the residual deformity,
like a decreased radial bow, is located further away from the osteotomy plane, the bone protrusion score might be
good while the radius shape is still not properly restored. An alternative would be calculating the bone protrusion
for the entire length of the bone. This is also not ideal, as the the RMSE is an average of all point-wise errors. This
means that if the error is small along a large part of the bone but the bone protrudes extremely near the osteotomy
plane, the RMSE might be relatively low. Moreover, from the low correlation between the RMSE score for the entire
bone and the feasibility score, it appears that using the RMSE for the entire bone is not perfectly suitable either.
An example can be seen for patient case 11. The RMSE for the entire bone is 1.167 mm, which is not extremely
high. However, the planning has been scored as unfeasible, due to extensive discontinuation of the bone contour
and insufficient bone overlap. The bone protrusion score does capture this, because it focuses on the area near the
osteotomy plane. This comparison indicates the balance that has to be found when drawing up the objective function.

A final limitation of the defined objective function, it that it is a rather simplified version of the actual corrective
osteotomy goal. In this optimization algorithm, a proper distal radius joint surface alignment is guaranteed, and
the algorithm will search for a solution with minimal bone protrusion. To this end, it is assumed that restoration
of the anatomy will result in proper forearm function. However, the goals of the osteotomy are not just limited to
the alignment of the joints and the restoration of the shape. From the qualitative scores reported in Section 6.2,
it appears that contact between the two bone parts after the osteotomy cut is an important objective that is often
lacking in the results of this optimization. This is complicated to implement, as it would easily constrain the type of
osteotomy. For instance, if excessive bone shortening has occurred as a result of the malunion, these gaps might be
necessary to reach proper bone alignment. Adding a hard constraint to the distance between the two bones would
reduce the generalizability of the optimization. For one case, some space between the two parts would be clinically
feasible or even preferable, whereas for other cases this should be avoided. Implementing constraints like these
should be patient-specific and thus set by the user.
From the qualitative scores it can also be seen that the algorithm often results in discontinuation of the bone contour.
This can cause problems with the soft tissues surrounding the radius. Generally speaking, this can be fixed by sawing
the protruding part off. However, if it becomes too extensive, the osteotomy plan might be unfeasible. Implementing
certain constraints for this could contribute to a more clinically realistic objective function.
Another addition to the objective function would be also considering the osteosynthesis plate fixation. For fixing the
plate and screws, the surface has to be somewhat smooth between the proximal and distal bone part. One way
to implement this is by requiring continuity of the surfaces. Another method would be to require continuity of the
centerline curve of the proximal and distal part near the osteotomy plane. However, the latter would not necessarily
mean that the bone surfaces are continuous, as the pathological bone can be thicker than the reference bone. Also,
the position of the plate must considered. If the plate has to be fixated on the volar side too close to the proximal
joint, it might give problems with flexing the elbow.

7.1.6. Repeatability
An important shortcoming of EAs is that they can not guarantee convergence to the global optimum. However, for
this research specifically, multiple optima will be present. Different combinations of osteotomy plane locations and
orientations could yield very similar scores and might be clinically equally feasible. It is hard to draw conclusions about
the repeatability, because it was not properly analyzed in this research. To test the repeatability, one patient case was
run twice, which resulted in a slightly different bone protrusion score and a different osteotomy plan. This insinuates
that the optimization algorithm is not yet highly repeatable. However, clinical relevance should also be considered.
One tenth of a mm difference in scores does not necessarily mean superiority from a clinical perspective. Cases like
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this will need a user to judge based on patient-specific factors. The advantage of this is that the repeatability does
not have to be perfect. If the optimization does not result in the exact same osteotomy plan each time it is run, it
could still perform well. However, if significant differences in solutions occur, this can be a problem. Repeatability
is important in the sense that each time the optimization is run, an optimal result should be found. The stochastic
nature of EAs already contributes to this; through mutation the algorithm is able to avoid getting stuck in local
minima [65]. The concept of ”going multi optimal” could also be interesting. In that case, multiple optimal results
are obtained, so that the user can be provided with a variety of different options [72]. This concept could be realized
by making use of niching methods. These methods aim at obtaining parallel convergence towards different optimal
solutions, by maintaining the diversity within a population [72]. An example of such a niching technique is fitness
sharing. In this technique, chromosomes that have similar members within the population are penalized via their
fitness [72]. Preference is given to solutions in sparsely populated regions of the search landscape if the solutions
are of similar fitness to those in densely populated regions. The aim of this is to keep diversity in the population.

7.1.7. Generalizability
Determining the generalizability of the optimization algorithm is complex. The generalizability of an algorithm is the
ability to be insensitive to changing certain parameters [73]. For this research, it can be interpreted as the ability
to yield stable results (osteotomy plans) if new data is given that might deviate from the data the algorithm was
developed on. The optimization algorithm works on all patient cases, except for one. From this, it can be concluded
that the generalizability is not yet optimal. Patients with forearm malunions are likely to have osteotsynthesis plates
and thus screws in their radius, so this should not influence the optimization. However, preprocessing steps like
wrapping the holes could be relevant. Nonetheless, further improving the generalizability is a relevant implementation
that must be made to enhance the clinical usefulness of the automatic tool.

7.1.8. Clinical considerations
Besides limitations in the optimization algorithm itself, some clinical considerations must be taken into account for this
research. The main limitation of the implemented optimization is that it does not consider the relationship between
the radius and the ulna. When planning a corrective osteotomy of the forearm, the relation to the neighboring
bone should always be considered. If radial shortening has occurred, the radial inclination might be compromised.
In that case, the malunited radius should be planned towards the contralateral radius. However, if the ulna of
the pathological forearm is also shorter and the length difference between the malunited radius and the ulna is
negligible, the contralateral radius should be scaled. Otherwise, the malunited radius would be planned towards
the longer contralateral radius. This would eventually result in a radius that is too long for the ulna. This will give
problems in the DRUJ, as the radius and ulna can not articulate properly.

The implemented optimization also lacks the involvement of soft tissue. Studies have demonstrated that the function
may still be limited despite anatomic fracture reduction due to soft tissue contracture [9]. For example, central band
contracture can affect the function of the forearm [48].

Also important to consider is the type of osteotomy. In the automatic tool developed in this research, the type
of osteotomy is not restricted. In some of the patient cases, a closing wedge osteotomy resulted as the optimal
plan. To realize this, a second cut is required to remove the wedge. This is not yet implemented in the automatic tool,
but should be for completeness. Moreover, the implemented optimization is restricted to a single-cut osteotomy.
In some complex malunion cases, a double cut is required to fully restore the anatomy. Despite the fact that a
single-cut osteotomy is preferred over a double-cut, a double-cut osteotomy should also be included in the algorithm
for completeness. However, this will require many extra variables and will result in much higher computational time
and a more complex objective function.

An essential note regarding the location of the osteotomy plane should be made. In the automatic tool, the user is
asked to indicate the center of the malunion. Based on this, the boundaries for the osteotomy plane are determined
as 10% proximal and distal of the center of the malunion. As discussed before, the osteotomy cut is often made
near the center of the malunion because this is the location of maximal deformity. However, the osteotomy plan
that is generated by the automatic tool is thus dependent on the location that the user appoints as the center of
the malunion. For patient case 14, it can be seen that the location of the osteotomy plane differs between the two
plannings methods. This can likely be attributed to a mistake in the indication of the center of the malunion.

Finally, when interpreting the results of this research, it should be taken into account that the number of patient
cases that were used for validation is rather small. To properly test the accuracy, more patient cases should be
considered. This would also contribute to the generalizability of the automatic tool. Before eventually using the
automatic tool, a clinical study must be conducted to prove clinical relevance.
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7.2. Clinical Relevance
This project’s clinical relevance lies primarily in the significant reduction of time required for osteotomy planning. The
automatic optimization algorithm developed in this research minimizes user interaction, saving a considerable amount
of time that would otherwise be spent performing iterative trial-and-error tasks. This aspect can enhance the clinical
application of preoperative computer-assisted osteotomy planning, which is currently limited. However, the clinical
relevance will only become significant once the optimization is based on an objective function that is comprehensive
from both a technical and clinical point-of-view. The optimization is currently bounded by the shortcomings that
have been discussed in the previous section. If these limitations can be overcome, accurate anatomical restoration
can be guaranteed. A next step could be the integration with the kinematic models delivered by Derek van Loon
[48]. This would allow the evaluation of the outcomes of an osteotomy plan in a kinematic model. This can highly
contribute to the clinical relevance of this research, resulting in osteotomy plans that can be evaluated preoperatively
on both anatomical and functional feasibility aspects. Moreover, the automatic workflow can be further expanded to
the design of surgical guides. Surgical guides can enhance the clinical application by the accurate translation of the
preoperative plan to the surgery.
Although the developed automatic optimization workflow may currently lack accuracy and generalizability, it provides
an excellent starting point for future research. The algorithm can provide an initial estimation of an osteotomy plan,
which can be further improved manually. Additional features can be added to enhance the algorithm’s performance,
building on the framework presented in this research. Overall, this research provides a foundation for improving the
efficiency and efficacy of osteotomy planning, benefiting both clinicians and patients.
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Conclusions and Future

Recommendations

In this research, a tool for the automation and optimization of patient-specific corrective osteotomy planning for
radius malunions was developed. The automatic tool determines the nature and degree of deformity automatically
through the registration of the pathological and reference bone. Based on this, the optimal osteotomy plan can be
generated. To this end, an Evolutionary Algorithm was implemented that generates, explores, and evaluates various
osteotomy plans. The algorithm progresses based by minimizing the bone protrusion while ensuring alignment of
the proximal and distal radial joint surfaces. The optimization yields a patient-specific osteotomy plan, including the
plane location, orientation, and the required reduction of the distal part after the osteotomy cut. Three osteotomy
plans are provided to the user, who can select the one that best satisfies the patient-specific osteotomy goals.

The validation of the automatic tool was conducted using fifteen patient cases of forearm malunions that were
previously planned. The runtime was about 75 minutes per patient case. Fourteen out of fifteen cases resulted in
error-free osteotomy plans. The residual alignment errors were calculated to objectively compare the outcomes of
the different plannings methods. Differences were small, but usually in favour of the manually planned osteotomies.
The automatic tool consistently generated osteotomy plans with residual average distal radial joint surface alignment
errors below 0.8 mm. To incorporate clinical experience and knowledge regarding the feasibility of the osteotomy
plans, qualitative scores were assigned by Dr. Colaris, who was blinded to the type of planning. Among the fourteen
patient cases, three were deemed unfeasible. For the remaining eleven cases, the best scenario of the optimized
osteotomy plans scored similar or 1 point lower than the manual plannings. The most common aspects that the
optimized osteotomy plans lacked were poor bone overlap and a discontinuous bone contour.

From the validation results, it can be concluded that the developed automatic tool is capable of generating clinically
feasible osteotomy plans, although it is not yet accurate and generalizable enough for clinical use. The framework
requires expanding the objective function and tuning the control parameters to improve the results. Additionally,
further enhancements are needed in terms of clinical feasibility, such as considering the plate position, bone contact,
and continuous bone contour.

In summary, the framework developed in this research provides a good foundation for the automated optimization
of computer-assisted planning of corrective osteotomies for malunions, while respecting the individual’s anatomy.
While the automatic tool developed in this research might not yet be ready for clinical practice, it can provide initial
osteotomy plans that can be further adjusted according to the user’s experience and knowledge. The proposed
workflow has the potential to significantly enhance the efficiency of corrective osteotomy planning, paving the way
for more effective treatment of forearm malunions.
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A
Osteotomy plans

Table A.1: Degree of deformity of each patient case

rotation𝑥 (°) rotation𝑦 (°) rotation𝑧 (°) translation𝑥 (mm) translation𝑦 (mm) translation𝑧 (mm)
Pt1 -14.40 4.76 7.27 2.60 6.40 -2.66
Pt2 -15.03 1.55 16.73 -1.67 1.56 -1.42
Pt3 9.54 1.31 -14.64 1.92 -3.68 1.82
Pt4 22.24 6.40 14.90 9.95 -12.26 -7.08
Pt5 17.80 1.67 -13.30 -1.74 -13.81 -4.03
Pt6 26.93 9.13 27.77 6.49 -5.87 -6.66
Pt7 3.96 -10.96 -0.54 -1.32 -1.76 0.17
Pt8 7.31 13.43 -46.64 1.74 -11.39 -2.34
Pt9 14.62 0.19 -1.98 -1.01 -3.33 -1.08
Pt10 22.11 19.20 -8.33 10.68 -17.04 -13.25
Pt11 -19.49 11.40 12.07 7.41 15.84 -7.63
Pt12 4.57 -2.32 -40.69 -3.77 -7.27 -1.00
Pt13 -3.54 9.16 14.05 6.76 0.19 -0.92
Pt14 -7.63 -4.32 0.68 3.13 0.73 -1.65
Pt15 -7.68 -5.72 1.62 4.82 -5.45 -0.86

Table A.2: Patient cases excluded before validation due to no bone contact

Patient case Alignment %
1 15, 25
2 15
3 15, 25
4 15, 25
5 15
6 15, 25
8 15, 25
9 15
10 15
11 15, 25
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ii

(a) (b) (c) (d) (e)

Figure A.1: Patient case 1, alignment 100%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.

(a) (b) (c) (d) (e)

Figure A.2: Patient case 2, alignment 100%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.



iii

(a) (b) (c) (d) (e)

Figure A.2: Patient case 2, alignment 25%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.

(f) (g) (h) (i) (j)

Figure A.3: Patient case 3, alignment 100%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.



iv

(a) (b) (c) (d) (e)

Figure A.4: Patient case 4, alignment 100%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.

(a) (b) (c) (d) (e)

Figure A.5: Patient case 5, alignment 100%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.
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(a) (b) (c) (d) (e)

Figure A.5: Patient case 5, alignment 25%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.

(f) (g) (h) (i) (j)

Figure A.6: Patient case 6, alignment 100%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.
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(a) (b) (c) (d) (e)

Figure A.7: Patient case 7, alignment 100%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.

(a) (b) (c) (d) (e)

Figure A.7: Patient case 7, alignment 25%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.
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(f) (g) (h) (i) (j)

Figure A.7: Patient case 7, alignment 15%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.

(k) (l) (m) (n) (o)

Figure A.8: Patient case 8, alignment 100%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.
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(a) (b) (c) (d) (e)

Figure A.9: Patient case 9, alignment 100%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.

(a) (b) (c) (d) (e)

Figure A.9: Patient case 9, alignment 25%. Red = pathological bone proximally aligned, yellow = planning by
Materialise, blue = pathological bone, green = reference bone.



ix

(f) (g) (h) (i) (j)

Figure A.10: Patient case 10, alignment 100%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.

(a) (b) (c) (d) (e)

Figure A.10: Patient case 10, alignment 25%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.
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(f) (g) (h) (i) (j)

Figure A.11: Patient case 11, alignment 100%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.

(a) (b) (c) (d) (e)

Figure A.12: Patient case 12, alignment 100%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.



xi

(a) (b) (c) (d) (e)

Figure A.12: Patient case 12, alignment 25%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.

(f) (g) (h) (i) (j)

Figure A.12: Patient case 12, alignment 15%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.
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(k) (l) (m) (n) (o)

Figure A.13: Patient case 14, alignment 100%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.

(a) (b) (c) (d) (e)

Figure A.13: Patient case 14, alignment 25%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.
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(f) (g) (h) (i) (j)

Figure A.13: Patient case 14, alignment 15%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.

(k) (l) (m) (n) (o)

Figure A.14: Patient case 15, alignment 100%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.



xiv

(a) (b) (c) (d) (e)

Figure A.14: Patient case 15, alignment 25%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.

(f) (g) (h) (i) (j)

Figure A.14: Patient case 15, alignment 15%. Red = pathological bone proximally aligned, yellow = planning
by Materialise, blue = pathological bone, green = reference bone.



B
BP score throughout optimization

(a) Patient 1. Final BP score = 2.887, ΔBP = 1.20

(b) Patient 2. Final BP score = 2.552, ΔBP = 0.67

Figure B.1: Decrease in Bone Protrusion score throughout optimization.
y-axis = BP score, x-axis = incidence of decrease in BP
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xvi

(a) Patient 3. Final BP score = 4.357, ΔBP = 2.833

(b) Patient 4. Final BP score = 6.823, ΔBP = 1.668

(c) Patient 5. Final BP score = 2.098, ΔBP = 0.171

Figure B.1: Decrease in Bone Protrusion score throughout optimization.
y-axis = BP score, x-axis = incidence of decrease in BP



xvii

(d) Patient 6. Final BP score = 3.380, ΔBP = 0.186

(e) Patient 7. Final BP score = 3.121, ΔBP = 1.202

(f) Patient 8. Final BP score = 4.028, ΔBP = 0.725

Figure B.1: Decrease in Bone Protrusion score throughout optimization.
y-axis = BP score, x-axis = incidence of decrease in BP



xviii

(g) Patient 9. Final BP score = 2.668, ΔBP = 0.543

(h) Patient 10. Final BP score = 3.223, ΔBP = 0.507

(i) Patient 11. Final BP score = 3.600, ΔBP = 0.333

Figure B.1: Decrease in Bone Protrusion score throughout optimization.
y-axis = BP score, x-axis = incidence of decrease in BP



xix

(j) Patient 12. Final BP score = 1.547, ΔBP = 0.149

(k) Patient 14. Final BP score = 2.519, ΔBP = 0.333

(l) Patient 15. Final BP score = 2.504, ΔBP = 0.317

Figure B.1: Decrease in Bone Protrusion score throughout optimization.
y-axis = BP score, x-axis = incidence of decrease in BP


