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Abstract.
Recently, there has been an increase in literature about the Double Descent phenomenon for heavily
over-parameterized models. Double Descent refers to the shape of the test risk curve, which can show
a second descent in the over-parameterized regime, resulting in the remarkable combination of both
low training and low test risk. However, much is still unknown about this behaviour. In this thesis
we consider Double Descent and more specifically ’beneficial overfitting’, meaning that the lowest test
risk as a function of the number of parameters is achieved in the over-parameterized regime. We are
mainly interested in under what conditions beneficial overfitting occurs. We start by exploring the
test risk behaviour for simple linear regression models, with isotropic Gaussian, general Gaussian and
sub-Gaussian covariates. For random feature selection and isotropic covariance, beneficial overfitting
occurs for a large signal-to-noise ratio. For deterministic feature selection and isotropic covariance,
beneficial overfitting occurs if we select features corresponding to the lowest weights. Without feature
selection, beneficial overfitting occurs if the eigenvalues of the covariance matrix have a long, flat tail.
In the second part of this thesis we check whether the same or similar results can be applied to other
models as well. Specifically, we look at kernel regression, random Fourier features and a classification
model. It seems that the linear regression results agree with the random Fourier features model, linear
and quadratic kernel regression and classification model, but are not applicable for the Gaussian kernel
regression case. Hence, more factors need to be considered, besides the eigenvalue behaviour of the
covariance or kernel matrix and the way in which features are selected, to fully explain Double Descent
and beneficial overfitting.



Contents

1 Introduction 1
1.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Isotropic Gaussian covariates 4
2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Implications of Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 No feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Constant parameterization rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.3 Under- and over-parameterized limit . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.4 Noiseless case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.1 Influence of choice of true parameter vector . . . . . . . . . . . . . . . . . . . . 10
2.5.2 Influence of signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Infinite dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.1 Constructing our own distribution . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 When do we expect beneficial overfitting? . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 General Gaussian covariates 15
3.1 Under-parameterized regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Over-parameterized regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Sub-Gaussian covariates 19
4.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Implications of Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Special case: identity covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Examples of eigenvalue sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6.1 Identity covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6.2 Polynomial decay of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6.3 Exponential decay of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6.4 Influence of normalizing true parameter vector . . . . . . . . . . . . . . . . . . 27
4.6.5 Influence of label noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Infinite dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8 When do we expect beneficial overfitting? . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Kernel regression 29
5.1 Setting 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Special case: linear kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Numerical experiments for setting 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Linear kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Quadratic kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 Gaussian kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Comparison to previous results for setting 1 . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Setting 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



5.5 Numerical experiments for setting 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Comparison to previous results for setting 2 . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Fourier features 42
6.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Implications of Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4.1 Highly over-parameterized limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4.2 No feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.6 Comparison to previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Classification model 48
7.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.4 Comparison to previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Conclusion and Discussion 51

9 Appendix 58
9.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.4 R code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5



1 Introduction

Recently, heavily over-parameterized machine learning models, such as in Zhang et al. (2017) [1] and
Brock et al. (2021) [2], have shown unexpectedly high accuracy, which cannot be explained by existing
theoretical results. This has resulted in an increase in literature about over-parameterized models,
see e.g. [3], [4], [5], [6] and [7]. However, there is still much unknown about the performance of these
over-parameterized machine learning models.

Classically, the performance of machine learning algorithms is determined by a trade-off between the
bias and variance of the model estimate (see e.g. Hastie et al. (2008) [8]). In the under-parameterized
regime, where the number of parameters is smaller than the number of data points, we often observe
a U-shaped curve, see the left part of Figure 1.1. For a small number of parameters we have low
variance and high bias, resulting in high test risk. If we increase the number of parameters, then the
test risk will decrease and we will reach the lowest test risk. Further increasing the number of pa-
rameters will result in high variance and small bias, with an explosion in variance at the interpolation
threshold. Even further increasing the number of parameters means that we are overfitting the model:
the model is very good at fitting the training data, resulting in a low training risk, but will have worse
performance on the unseen test data, resulting in a high test risk.

However, some machine learning algorithms are actually able to achieve both low training risk and
low test risk. In these modern machine learning algorithms, the number of parameters is often very
large, much larger than the number of data points available. Hence, we would expect these models
to be overfitting, but surprisingly this is not always the case. There are a number of other historical
examples of literature in which this phenomenon also occurs, see e.g. the list described in Loog et al.
(2020) [9]. This phenomenon is described by the so-called Double Descent risk curve, which has been
named and extensively described in the paper of Belkin et al. (2019) [3]. The name Double Descent
refers to the fact that the test risk, as a function of the number of parameters, first decreases in the
under-parameterized regime according to the classical U-curve, but then also decreases a second time
in the over-parameterized regime, see Figure 1.1 below, which is Figure 1B from Belkin et al. (2019)
[3].

Figure 1.1: Figure 1B from Belkin et al. (2019) [3], showing the Double Descent risk curve. The
capacity of H refers to how large the class H of possible predictors is, which can be
measured by for example the number of parameters.
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The reason why this second descent in the over-parameterized regime is possible is explained by the
so-called ’inductive bias’ [3], which refers to the smoothness or the regularity of a function, which can
be measured by for example the norm of the parameter vector in linear regression problems. Here the
bias means that we have a preference for the smoothest or simplest solution. In this sense, we are
still looking for the simplest solution, not with the least amount of parameters, but with the smallest
parameter vector norm. Hence finding the solution with minimum norm in the over-parameterized
regime is related to finding the solution with lowest test risk in this regime.

In this thesis we will mainly focus on the occurrence of Double Descent in a simple setting, namely
the linear regression case with (sub)-Gaussian covariates, which is easier to analyze and more well-
understood. This setting has been discussed in a.o. [4], [5] and [6]. The case for Uniform covariates is
considered in [7], in the asymptotic regime as the input dimension diverges to infinity. Double Descent
is not limited to regression models. It has also been shown in classification models, see [10] and [11].

The goal of this thesis is to provide an introduction and overview of the Double Descent phenomenon
in a simple setting, and check whether similar results can be applied to other models. Hence, we
first consider the linear regression setting with increasingly more general choices for the vector of
covariates. We will not prove any new theoretical results, but we will consider some of the existing
theoretical proofs. Furthermore, we try to find connections between the theoretical results and ver-
ify them through Monte Carlo simulations performed in R. After establishing results for the simple
linear regression case, we check whether the same or similar results can be applied to other models.
Specifically, we consider kernel regression, random Fourier features and classification.

We will distinguish between Double Descent, benign overfitting and ’beneficial overfitting’. Dou-
ble Descent refers to the shape of the risk curve as a function of the number of parameters, as we have
described above. Benign overfitting refers to the over-parameterized solution having ’near-optimal
prediction accuracy’, according to the definition used in [5], with which they mean that the excess
test risk is close to zero, and converges to zero as the number of data points diverges to infinity.
In practical applications, using heavily over-parameterized models is only interesting if they provide
improved performance compared to under-parameterized models. Hence, the main question we are
interested in and try to answer in this thesis is:

Under what conditions does the optimal test risk lie in the over-parameterized regime?

Here ’optimal’ refers to the global minimum of the test risk curve as a function of the number of
parameters. This is different from benign overfitting, as we require better performance in the over-
parameterized regime relative to the under-parameterized regime, whereas benign overfitting is only
concerned with the absolute performance of the over-parameterized solution, regardless of the under-
parameterized regime. Hence, we will refer to this as ’beneficial overfitting’ and so we are mainly
interested in under what conditions beneficial overfitting occurs.

1.1 Setting

Throughout this thesis we will mostly consider (variations of) the linear regression model, which is
given by

y = xT θ + ε, (1.1)

with response variable y ∈ R, unknown parameter vector θ ∈ Rp, vector of covariates x ∈ Rp and noise
term ε ∈ R. We assume x is generated according to some probability distribution Px and ε ∼ N(0, σ2)
for some σ > 0. We generate n iid training data points, denoted by (xi, yi)

n
i=1, where xi ∼ Px and

yi = xTi θ + εi, with εi independent of xi and θ the unknown parameter. We can collect the data in a
design matrix X ∈ Rn×p with rows xTi ∈ Rp and response vector y ∈ Rn with entries yi. Then we find
the following matrix-vector form of equation (1.1),

y = Xθ + ε, (1.2)
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where ε ∈ Rn is the noise vector with entries εi. As an estimator for θ, in the case that p < n, we will
consider the usual least-squares estimator θ̂, which is defined as

θ̂ = argminθ∈Rp ||y −Xθ||2.

This minimization problem is well-known, and results in the normal equations XTXθ = XT y, which
has the solution

θ̂ = (XTX)†XT y = XT (XXT )†y = X†y,

where † denotes the pseudo-inverse. For simplicity, we assume that rank(X) = min{p, n}, so that
degenerate cases are excluded. Then the pseudo-inverse X† is given by

X† =

{
(XTX)−1XT if p ≤ n

XT (XXT )−1 if p > n
(1.3)

In the over-parameterized regime (p > n), least-squares minimization has no unique solution. It is
well-known that the pseudo-inverse solution θ̂ = X†y is the solution with minimum norm. This is
crucial for the Double Descent behaviour, as it creates a form of ’inductive bias’ [3], which allows for
the second descent to happen. The minimum norm solution solves the following minimization problem

θ̂ = argminθ∈Rp ||θ||2 s.t. Xθ = y.

Since Xθ = y, the minimum norm solution is also called the interpolating solution. In order to
determine the accuracy of the estimate θ̂, we look at the expected quadratic loss

R(θ̂) = Ex,y(y − xT θ̂)2,

where the expectation is taken with respect to x ∼ Px and y = xT θ + ε. This is also called the test
risk. Some papers, such as [5], instead look at the excess risk, which is defined as

Rexcess(θ̂) = Ex,y(y − xT θ̂)2 − Ex,y(y − xT θ)2,

where θ is the true parameter vector. The excess risk shows how good the performance is compared
to the optimal case.

1.2 Overview

In the subsequent chapters of this thesis, we consider the linear regression problem from equation (1.1).
In each chapter we consider a different distribution for the covariates vector, which are increasingly
more general. In Chapter 2 we consider the isotropic Gaussian case where x ∼ N(0, Id). Furthermore,
we look at the influence of random feature selection, some limit cases and the infinite dimensional
setting. In Chapter 3 we assume more general Gaussian covariates, that is x ∼ N(0,Σ) with Σ
a diagonal matrix with positive entries on the diagonal. In Chapter 4 we consider covariates with
a more general sub-Gaussian distribution. Once we have established an understanding of Double
Descent in these simpler settings, we leave the linear regression case and see whether we can apply the
same or similar results in other models. In Chapter 5 we start with kernel regression, where we discuss
the linear kernel, quadratic kernel and Gaussian kernel. We consider 2 settings: applying a kernel
estimator to finite dimensional linear regression and applying a finite dimensional kernel estimator
to an infinite dimensional kernel regression problem. Related to kernel regression, in Chapter 6 we
consider random Fourier features. That is, we assume that we can express the solution in terms
of Fourier basis functions of the form ϕ(x) = e−iωx. The previously mentioned chapters describe
Double Descent for regression problems. In Chapter 7 we briefly look at Double Descent in a simple
classification problem. We compare the results, answer the main question and give recommendations
for future research in Chapter 8. Finally, in Chapter 9 the Appendix is given, where we have included
proofs and the R code for our numerical experiments.

3



2 Isotropic Gaussian covariates

In this chapter we consider the linear regression problem from equation (1.1) with isotropic Gaussian
covariates. This is the setting which is described in Belkin et al. (2020) [4], including random feature
selection. They discuss both a ‘prescient’ choice and a random choice of features. They show that,
for the random choice, beneficial overfitting occurs if the signal-to-noise ratio is large. No beneficial
overfitting occurs for the ‘prescient’ choice. We will verify their results experimentally, consider some
limit cases and discuss the infinite dimensional setting.

2.1 Setting

First, we introduce some notation. For a subset P ⊂ {1, . . . , d} and vector v ∈ Rd, define

vP := (vj : j ∈ P )T ∈ R|P |

which is the sub-vector of v using only entries with index in P . Similarly, for a matrix X ∈ Rn×d,
define

XP := [x
(1)
P · · ·x(n)P ]T ∈ Rn×|P |

which is the n by |P | design matrix using only entries with index in P .

Belkin et al. (2020) [4] consider the linear regression problem (see equation (1.1)) with x ∼ N(0, Id).
The goal is to find the estimate θ̂ using only a subset P ⊂ {1, . . . , d} of the d features in the vector x,
such that |P | = p. Then θ̂ is defined as

θ̂P = X†
P y, θ̂P c = 0

with XP ∈ Rn×p the design matrix using the column indices in P . Notice that

Xθ̂ = (XPXP c)(θ̂P , θ̂P c)T = XP θ̂P +XP c θ̂P c = XP θ̂P .

From this we can see that the minimization problem to construct θ̂P is the same as for θ̂, but restricted
to using indices in P . Hence X†

P is equal to the expression given in (1.3) with X replaced by XP .

2.2 Main Result

The main result in [4] provides an exact expression for the test risk of the minimum norm solution θ̂,
restricting ourselves to a subset of p out of the d features.

Theorem 1 (Theorem 1 and Corollary 1 in [4]). Assume x ∼ N(0, Id), ε ∼ N(0, σ2) and y = xT θ+ ε
for some θ ∈ Rd. Choose p ∈ {0, . . . , d} and P ⊂ {1, . . . , d} such that |P | = p. Consider the min-norm

solution θ̂, for which θ̂P = X†
P y and θ̂P c = 0. Then the test risk of θ̂ is

Rdet(θ̂) =

{
(||θP c ||2 + σ2)(1 + p

n−p−1) if p ≤ n− 2

||θP ||2(1− n
p ) + (||θP c ||2 + σ2)(1 + n

p−n−1) if p ≥ n+ 2
(2.1)

and Rdet(θ̂) = ∞ otherwise. If we take P a uniformly random subset of {1, . . . , d} with |P | = p, then

Rrand(θ̂) =

{
((1− p

d)||θ
∗||2 + σ2)(1 + p

n−p−1) if p ≤ n− 2

||θ∗||2(1− n
d (2−

d−n−1
p−n−1)) + σ2(1 + n

p−n−1) if p ≥ n+ 2
(2.2)

and Rrand(θ̂) = ∞ otherwise.

Proof. See the proof in Appendix 9.1.
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2.3 Implications of Main Result

In this section we consider the implications of Theorem 1. We focus on Rrand, since we can more easily
analyze these expressions analytically. We investigate when Double Descent and beneficial overfitting
can occur.

In the under-parameterized regime (p ≤ n− 2), we have

Rrand(p) = ((1− p

d
)||θ∗||2 + σ2)(1 +

p

n− p− 1
).

Assuming that d > n− 1, above expression has a strictly positive derivative if

d

dp
Rrand(p) = −1

d
||θ∗||2 n− 1

n− p− 1
+ ((1− p

d
)||θ∗||2 + σ2)

n− 1

(n− p− 1)2
> 0.

−(n− p− 1)||θ∗||2 + d(1− p

d
)||θ∗||2 + dσ2 > 0.

−(n− 1)||θ∗||2 + p||θ∗||2 + d||θ∗||2 − p||θ∗||2 + dσ2 > 0.

(d− n+ 1)||θ∗||2 + dσ2 > 0.

This is always satisfied when we choose d large enough such that d > n− 1. For d < n− 1 overfitting
would not be possible, as p < n always. Hence we assume d > n− 1, so d

dpRrand(p) > 0 and Rrand(p)
is increasing in p from p = 0 to p = n− 2. So the minimum value, denoted by R∗

under, is achieved at
p = 0,

R∗
under = Rrand(0) = ||θ∗||2 + σ2.

In the over-parameterized regime (p ≥ n+ 2), we have

Rrand(p) = ||θ∗||2(1− n

d
(2− d− n− 1

p− n− 1
)) + σ2(1 +

n

p− n− 1
).

Then for the derivative wrt p we have

d

dp
Rrand(p) = −n

d
||θ∗||2 d− n− 1

(p− n− 1)2
− σ2 n

(p− n− 1)2
< 0.

This is negative when we choose d large enough such that d > n + 1. Since R′
rand(p) < 0, Rrand(p)

is decreasing in p from p = n + 2 to p = d. So the minimum value, denoted by R∗
over, is achieved at

p = d,

R∗
over = Rrand(p) = ||θ∗||2(1− n

d
) + σ2(1 +

n

d− n− 1
).

Assuming d > n+ 1, beneficial overfitting occurs if R∗
over < R∗

under, that is

(1− n

d
)||θ∗||2 + (1 +

n

d− n− 1
)σ2 < ||θ∗||2 + σ2.

Hence for beneficial overfitting we need the following condition to be satisfied

||θ∗||2

σ2
>

d

d− n− 1
(2.3)

So when the signal-to-noise ratio ||θ∗||2
σ2 is large enough, the global minimum of the prediction risk

is achieved in the over-parameterized regime and beneficial overfitting occurs. This agrees well with
machine learning practice in which we often assume a small amount of label noise, resulting in a large
signal-to-noise ratio. In the next section, we check whether condition (2.3) also holds in some special
cases. In the section after that, we show the Double Descent behaviour in numerical experiments.
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2.4 Special cases

In this section we will consider some special cases of Theorem 1. We look at the case when there
is no feature selection, the case of constant parameterization rate as d → ∞, the under- and over-
parameterized limit and the noiseless case (σ = 0).

2.4.1 No feature selection

In case of no feature selection, we have p = d. Then P = {1, . . . , d} and P c = ∅. So

||θ∗P ||2 = ||θ∗||2, ||θ∗P c ||2 = 0.

Now the result of Theorem 1 reduces to

R(θ̂) =

{
σ2(1 + p

n−p−1) if p ≤ n− 2

||θ∗||2(1− n
p ) + σ2(1 + n

p−n−1) if p ≥ n+ 2

and R(θ̂) = ∞ otherwise. Let us investigate in which regime the optimal test risk lies. In the
under-parameterized case we have

R(p) = σ2

(
1 +

p

n− p− 1

)
= σ2 n− 1

n− p− 1
.

Hence R′(p) = σ2 n−1
(n−p−1)2

> 0. We see that R(p) is increasing in p, so the minimum is at p = 0 and

R∗
under = R(0) = σ2, where R∗

under denotes the optimal test risk value in the under-parameterized
regime. In the over-parameterized case, we have

R(p) = ||θ∗||2(1− n

p
) + σ2(1 +

n

p− n− 1
) > 0 + σ2 = σ2.

Hence, without feature selection, the minimum test risk is achieved in the under-parameterized regime
and we do not expect beneficial overfitting.

2.4.2 Constant parameterization rate

Another interesting case is when we have a constant parameterization rate. This is a common as-
sumption in the literature (see e.g. [6] and [7]). Let the parameterization rate γ be defined as

γ = lim
d→∞

p(d)

n(d)
.

For finite p, n and deterministic choice of the set P , the test risk satisfies formula (2.1). We can express
this test risk in terms of γ as follows

lim
d→∞

(1 +
p

n− p− 1
) = lim

d→∞

n− 1

n− p− 1
= lim

d→∞

1− 1/n(d)

1− p(d)/n(d)− 1/n(d)
=

1

1− γ
.

lim
d→∞

(1− n(d)

p(d)
) = 1− 1

γ
.

lim
d→∞

(1 +
n

p− n− 1
) = lim

d→∞

p− 1

p− n− 1
= lim

d→∞

p(d)/n(d)− 1/n(d)

p(d)/n(d)− 1− 1/n(d)
=

γ

γ − 1
.

So we find

Rdet(θ̂) =

{
(||θP c ||2 + σ2) 1

1−γ if γ < 1

||θP ||2(1− 1
γ ) + (||θP c ||2 + σ2) γ

γ−1 if γ > 1
(2.4)

For the case where we take P to be a uniformly random subset of {1, . . . , d} of size p(d), define

ρ := lim
d→∞

p(d)

d

6



Then

lim
d→∞

E||θP ||2 = lim
d→∞

p(d)

d
||θ||2 = ρ||θ||2.

lim
d→∞

E||θP c ||2 = lim
d→∞

(
1− p(d)

d

)
||θ||2 = (1− ρ)||θ||2.

Taking expectation with respect to P of formula (2.4), we find

Rrand(θ̂) =

{
((1− ρ)||θ||2 + σ2) 1

1−γ if γ < 1

ρ||θ||2(1− 1
γ ) + ((1− ρ)||θ||2 + σ2) γ

γ−1 if γ > 1

We can rewrite this as

Rrand(θ̂) =

{
1−ρ
1−γ ||θ||

2 + 1
1−γσ

2 if γ < 1(
ργ−1

γ + (1− ρ) γ
γ−1

)
||θ||2 + γ

γ−1σ
2 if γ > 1

Notice that ρ = 1 corresponds to no feature selection. In that case

Rrand(θ̂) = E(y − xT θ̂)2 =

{
σ2 1

1−γ if γ < 1

||θ||2(1− 1
γ ) + σ2 γ

γ−1 if γ > 1

This is also one of the settings that is discussed in Hastie et al. (2020) [6], who state that

E||θ − θ̂||2 =

{
σ2 γ

1−γ if γ < 1

||θ||2(1− 1
γ ) + σ2 1

γ−1 if γ > 1

Using that E(y − xT θ̂)2 = E||θ − θ̂||2 + σ2, we see that this agrees with the formula for Rrand(θ̂). Let
us investigate whether beneficial overfitting is possible in this case of constant parameterization rate
and no feature selection. In the under-parameterized regime (γ < 1), we have

Rrand(γ) = σ2 1

1− γ
,

which has derivative
d

dγ
Rrand(γ)σ

2 1

(1− γ)2
> 0.

Hence, Rrand(θ̂) is increasing in γ with a minimum at γ = 0, so

R∗
under = Rrand(0) = σ2

In the over-parameterized regime (γ > 1), we have

Rrand(γ) = ||θ||2(1− 1

γ
) + σ2 γ

γ − 1
> σ2

(
1 +

1

γ − 1

)
> σ2 = R∗

under

Hence, for a constant parameterization rate as d → ∞, the minimal test risk always lies in the
under-parameterized regime.

2.4.3 Under- and over-parameterized limit

Let us now consider the under- and over-parameterized limit, both for Rdet and Rrand. In the under-
parameterized limit we have p → 0. This yields

lim
p→0

Rdet(θ̂) = lim
p→0

(||θ∗P c ||2 + σ2)(1 +
p

n− p− 1
) = ||θ∗||2 + σ2.

lim
p→0

Rrand(θ̂) = lim
p→0

((1− p

d
)||θ∗||2 + σ2)(1 +

p

n− p− 1
) = ||θ∗||2 + σ2.

7



In the over-parameterized limit, we have p → ∞, which yields

lim
p→∞

Rdet(θ̂) = lim
p→∞

||θ∗P ||2(1−
n

p
) + (||θ∗P c ||2 + σ2)(1 +

n

n− p− 1
) = ||θ∗||2 + σ2.

For Rrand(θ̂) we first let p → d and then take d → ∞. Then

lim
d→∞

lim
p→d

Rrand(θ̂) = lim
d→∞

lim
p→d

||θ∗||2(1− n

d
(2− d− n− 1

p− n− 1
)) + σ2(1 +

n

p− n− 1
)

= lim
d→∞

||θ∗||2(1− n

d
) + σ2(1 +

n

d− n− 1
) = ||θ∗||2 + σ2.

Notice that in the limit, there is no difference between a deterministic choice of P or a random choice
of P . This makes sense intuitively: when we select no features (p = 0) or all possible features (p = ∞),
then it does not matter which selection procedure we used. The limits also tell us that if we just keep
increasing the number of parameters indefinitely, we will not reach 0 test risk, but a constant value of
||θ∗||2 + σ2.

2.4.4 Noiseless case

In the noiseless case we have σ = 0. This may seem like an uninteresting scenario, but in machine
learning we often assume very small label noise for our data sets. Substituting σ = 0 in the formulas
of Theorem 1, we get

Rdet(θ̂) =

{
||θ∗P c ||2(1 + p

n−p−1) if p ≤ n− 2

||θP ||2(1− n
p ) + ||θ∗P c ||2(1 + n

p−n−1) if p ≥ n+ 2

Rrand(θ̂) =

{
||θ∗||2(1− p

d)(1 +
p

n−p−1) if p ≤ n− 2

||θ∗||2(1− n
d (2−

d−n−1
p−n−1)) if p ≥ n+ 2

In this case, condition (2.3) for beneficial overfitting for Rrand(θ̂) is always satisfied as the signal-to-
noise ratio is infinite.

2.5 Numerical experiments

In this section we will verify the results of Theorem 1 and investigate the influence of some of the
parameters. The R code for this and all other numerical experiments can be found in Appendix 9.4.
In this experiment, we perform M = 100 Monte Carlo iterations, use n = 40 training data points,
set dimension d = 100 and we vary the number of parameters p from 1 to 100. This is similar to the
setup in [4]. We use the following Monte Carlo scheme:

• Simulate training data X ∈ Rn×d with rows drawn from N(0, Id).

• (deterministic choice): take P = {1, . . . , p}
(random choice): sample P uniformly from {1, . . . , d} s.t. |P | = p.

• Sample label noise ε ∈ Rn with entries drawn from N(0, σ2).

• Generate true labels: y = Xθ∗ + ε.

• Calculate least-squares / min-norm solution θ̂

(p ≥ n) : θ̂P = XP (XPX
T
P )

−1y, (p < n) : θ̂P = (XT
PXP )

−1XT
P y

Furthermore, set θ̂P c = 0.
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• Calculate training and test risk

Rtrain =
1

n

n∑
i=1

(yi −X[i, 1 : d]θ̂)2, Rtest = σ2 + ||θ̂ − θ∗||2

We repeat above steps M = 100 times and take averages over the Rtrain and Rtest values. Similar to
the setting in [4], we take for the true parameter vector

θ∗j ∝ 1

j
, s.t. ||θ∗||2 = 1,

and label noise σ = 1/5. For Rdet, where we take P = {1, . . . , p}, using θ∗j ∝ 1
j corresponds to choosing

the p most important directions (i.e. directions with the largest weights). This would be the case for
example if we first perform a LASSO regression to select the features. In Figures 2.1 and 2.2 we plot
the average training and test risks over M = 100 Monte Carlo iterations, both for Rdet and Rrand.

Figure 2.1: Deterministic choice of P , with θ∗j ∝ 1
j . Shown are the averages over M = 100 Monte

Carlo iterations. Green line: training risk, blue line: theoretical test risk, black dots:
experimental test risk, red line: interpolation threshold.

Figure 2.2: Uniformly random choice of P , with θ∗j ∝ 1
j . Shown are the averages over M = 100 Monte

Carlo iterations. Green line: training risk, blue line: theoretical test risk, black dots:
experimental test risk, red line: interpolation threshold.
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From these graphs, we see that the experimental results agree very well with the theoretical results from
Theorem 1. Furthermore, there is a clear difference in test risk behaviour between the deterministic
choice of P and the uniformly random choice of P . Both show Double Descent behaviour, but only
for the random choice of P there is beneficial overfitting where the minimum test risk lies in the
over-parameterized regime.

2.5.1 Influence of choice of true parameter vector

Let us now investigate the influence of the choice of the true parameter vector. Previously, we used
θ∗j ∝ 1

j . In this subsection we will also consider the case where

θ∗j ∝ j s.t. ||θ∗|| = 1.

In Figures 2.3 and 2.4 we plot average test risks over M = 100 Monte Carlo iterations for both the
deterministic and random choice of P , using σ = 1/5. In this setting, for Rdet where P = {1, . . . , p},
using θ∗j ∝ j corresponds to choosing the least important directions (so the directions with the lowest
weights).

Figure 2.3: Deterministic choice of P , with θ∗j ∝ j. Shown are the averages over M = 100 Monte
Carlo iterations. Green line: training risk, blue line: theoretical test risk, black dots:
experimental test risk, red line: interpolation threshold.

Figure 2.4: Uniformly random choice of P , with θ∗j ∝ j. Shown are the averages over M = 100 Monte
Carlo iterations. Green line: training risk, blue line: theoretical test risk, black dots:
experimental test risk, red line: interpolation threshold.
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This time both choices of P show similar behaviour: beneficial overfitting occurs with the minimum
test risk lying in the over-parameterized regime. For Rrand, there is no difference in test risk behaviour
if we use θ∗j ∝ j instead of θ∗j ∝ 1

j . This is as expected, since we are choosing the features at random,
so the behaviour of the weights does not matter. For Rdet, there is a clear difference in test risk
behaviour. It seems that selecting features with the lowest weights (weak features) is beneficial for
obtaining beneficial overfitting.

2.5.2 Influence of signal-to-noise ratio

Previously, we used ||θ∗|| = 1 and σ = 1/5. This means that we have a signal-to-noise ratio of 25.
Recall from condition (2.3) that beneficial overfitting occurs if

||θ∗||2

σ2
>

d

d− n− 1
=

100

39

where d = 100 and n = 40. So for σ = 1/5, we would expect beneficial overfitting. In general, if we
fix ||θ∗||2 = 1, then σ should satisfy

σ <

√
d− n− 1

d
.

We will verify this through a Monte Carlo experiment. We try 3 different values for σ

σ1 =
1

2

√
d− n− 1

d
, σ2 =

√
d− n− 1

d
, σ3 = 2

√
d− n− 1

d
.

We expect beneficial overfitting for σ1 and no beneficial overfitting for σ3. For σ2 the minimum in
both regimes should be the same. Below in Figure 2.5 we plot the test risk averaged over M = 100
Monte Carlo iterations, with d = 100 and n = 40.

Figure 2.5: Test risk for different values of σ. Dots are the experimental values, lines are the theoretical
values.

In Figure 2.5 we see that indeed for σ1 we have beneficial Double Descent. For σ3 the optimal test risk
is in the under-parameterized regime. For σ2 the minimum of both regimes is the same. Furthermore,
experimental results agree very well with the theoretical test risk.
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2.6 Infinite dimensional case

Until now, we have considered the finite dimensional linear regression case from equation (1.1), in
which the results depend on the dimension d. The choice of d is somewhat arbitrary, as in practice
there could be many more features that we did not take into account. Therefore, a more realistic
scenario would be to consider the infinite dimensional case, where d = ∞. Notice that we cannot
directly take the limit d → ∞ of the results from Theorem 1. Indeed, if we consider the expression for
Rrand in Theorem 1, then we have that P(i ∈ P ) = p

d for the i-th feature. Now if we just let d → ∞,

then we would not select any features at all and we would have θ̂ = 0. So it is clear that we need a
different approach for this infinite dimensional setting and also a different choice of the distribution
for selecting the features. The linear regression problem in this infinite dimensional case is

y = ⟨x, θ⟩H + ε

with y, ε ∈ R and x, θ ∈ H. Here H is an infinite-dimensional Hilbert space with corresponding inner
product and norm induced by this inner product, defined as

⟨x, θ⟩H :=
∞∑
j=1

xiθi, ||x||H :=
√
⟨x, x⟩H =

√√√√ ∞∑
j=1

x2i .

For the infinite-dimensional regression problem to be well-defined, we need ⟨x, θ⟩H < ∞ with proba-
bility 1. Therefore, we impose the following conditions on x and θ,

P(||x||H < ∞) = 1 and ||θ||H < ∞.

Then by Cauchy-Schwarz ⟨x, θ⟩H ≤ ||x||H||θ||H < ∞. Notice that if E||x||2H = tr(Σ) < ∞, then the
condition for x is satisfied. We will tackle the infinite dimensional case in 2 different ways.

1. By constructing our own probability distribution on (subsets of) the natural numbers. As
discussed before, the Uniform distribution cannot be applied in the infinite dimensional case
and so we construct our own distribution for selecting the features. This will depend on some
very specific assumptions and will only serve as an illustrative example of Double Descent in
infinite dimensions.

2. By considering the more general kernel regression, which can deal with infinite (feature space)
dimensions. This setting will be discussed in Chapter 5, where we will look at both approximating
an infinite dimensional problem with a finite linear combination of basis functions and the other
way around, where we approximate a finite dimensional problem with an infinite dimensional
kernel.

2.6.1 Constructing our own distribution

In the infinite dimensional case, we cannot use the Uniform distribution for feature selection, as we
need to select at random p numbers from a set with an infinite number of elements, N. So we define
our own probability distribution on N. Note that we will be making some very specific assumptions
about the choice of this distribution and the choice of parameter vector θ∗, but we are only interested
in a first indication of what Double Descent in infinite dimensions could look like. Let P ⊂ N be of
cardinality p. Let us define a probability measure µP as follows

P 7→ µP ∈ P({0, 1}N)

where P({0, 1}N) denotes the space of probability measures on {0, 1}N. Here {0, 1}N is the set of all
subsets of N, meaning that it contains functions f : N → {0, 1} such that every subset S of N can be
constructed, as for example we can map every integer n ∈ N to either 0, meaning that it is excluded
from S, or 1, meaning that it is included in S. For j ∈ N, define

µP (j) = P(j ∈ P ).
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We want the expected cardinality of P to be equal to p, so µP should satisfy

p = E|P | = E
∑
j∈N

1{j ∈ P} =
∑
j∈N

E1{j ∈ P} =
∑
j∈N

P(j ∈ P ).

Furthermore, P(j ∈ P ) should be increasing in p and should be bounded by 1, hence we require

lim
p→∞

P(j ∈ P ) ≤ 1.

The condition P(j ∈ P ) ≥ 0 is already satisfied, since
∑

j∈N P(j ∈ P ) = 0 if and only if P(j ∈ P ) = 0
for all j ∈ N. Based on these described conditions, we will try the following choice of P(j ∈ P ) and
check whether beneficial overfitting occurs,

P(j ∈ P ) = c(p)(a−1/p)j

with c(p) and a > 1 to be determined. Then

p =

∞∑
j=1

P(j ∈ P ) = c(p)

∞∑
j=1

(a−1/p)j = c(p)

(
1

1− a−1/p
− 1

)
= c(p)

1

a1/p − 1
.

So c(p) = p(a1/p − 1) and
P(j ∈ P ) = p(a1/p − 1)(a−1/p)j .

Next, we check the limit

lim
p→∞

P(j ∈ P ) = lim
p→∞

p(a1/p − 1)(a−1/p)j = lim
p→∞

a(−j+1)/p − a−j/p

1/p
= lim

x→0

a(−j+1)x − a−jx

x
.

Applying L’Hopital gives

lim
p→∞

P(j ∈ P ) = lim
x→0

(
a(−j+1)x ln(a)(−j + 1)− a−jx ln(a)(−j)

)
= (−j + 1) ln(a) + j ln(a) = ln(a) ≤ 1,

if we choose a ∈ (1, e]. For simplicity, we take a = e. Hence, we randomly select feature xj with
probability

P(j ∈ P ) = p(e1/p − 1)(e−1/p)j .

Notice that this means that we select small natural numbers with higher probability than large natural
numbers. In order to find an expression for the test risk that we can analytically compute, we make
a convenient choice for the true parameter θ. We take θ exponentially decreasing, θj = e−αj , with
α > 0. Then

||θ||2 =
∞∑
j=1

θ2j =
∞∑
j=1

e−2αj =
∞∑
j=1

(e−2α)j =
1

e2α − 1
< ∞,

since it is a geometric series and e−2α ≤ 1. Furthermore

E||θP ||2 =
∞∑
j=1

θ2jP(j ∈ P ) = p(e1/p − 1)

∞∑
j=1

(e−2α)j(e−1/p)j

= p(e1/p − 1)

∞∑
j=1

(e−(2α+1/p))j = p(e1/p − 1)
1

e2α+1/p − 1
=

p(e1/p − 1)

e2α+1/p − 1
,

and

E||θP c ||2 = ||θ||2 − E||θP ||2 =
1

e2α − 1
− p(e1/p − 1)

e2α+1/p − 1
.
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We can apply formula (2.1) from Theorem 1, as this result does not depend on the dimension d.
Taking expectation of this result with respect to P , we then find

Rrand(θ̂) =


(

1
e2α−1

− p(e1/p−1)

e2α+1/p−1
+ σ2

)
(1 + p

n−p−1) if p ≤ n− 2

p(e1/p−1)

e2α+1/p−1
(1− n

p ) + ( 1
e2α−1

− p(e1/p−1)

e2α+1/p−1
+ σ2)(1 + n

p−n−1) if p ≥ n+ 2

and Rrand(θ̂) = ∞ otherwise. This is an explicit formula and we can plot this. We take σ = 0.1 and
α = 1. We then find the plot in Figure 2.6 below.

Figure 2.6: Theoretical test risk in the infinite dimensional case for µP (j) ∝ e−j , exponentially decay-
ing θ and σ = 0.1

In this case, we see Double Descent behaviour, but no beneficial overfitting: the minimum test risk
still lies in the under-parameterized regime. Note that this is a somewhat arbitrary way to tackle
the infinite dimensional case, as it depends on a very specific choice of distribution for selecting the
features and a specific choice of the true parameter vector θ. A more constructive way to approach
the infinite dimensional case is by looking at kernel regression, which we will consider in Chapter
5. However, our artificial example shows that it is possible to observe Double Descent also in the
infinite-dimensional setting.

2.7 When do we expect beneficial overfitting?

We conclude this chapter with a short overview of when beneficial overfitting is likely to occur. Note
that these conclusions are based on the isotropic Gaussian case and thus may not hold more generally.

We expect beneficial overfitting if:

• Eigenvalues of the covariance matrix are all equal to 1, features are selected at random and the
SNR is larger than d

d−n−1 .

• Eigenvalues of the covariance matrix are all equal to 1 and least important features (with the
lowest weights) are selected.

We do not expect beneficial overfitting if:

• Eigenvalues of the covariance matrix are all equal to 1 and no feature selection.

• Eigenvalues of the covariance matrix are all equal to 1, features are selected at random and SNR
is smaller than d

d−n−1 .

• Eigenvalues of the covariance matrix are all equal to 1 and most important features (with the
largest weights) are selected.
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3 General Gaussian covariates

In this chapter we look at the case where we violate the isotropic Gaussian assumption from the
previous chapter, meaning that x ∼ N(0,Σ) with Σ ̸= Id. We still assume Σ is a diagonal matrix, but
now with general positive entries on the diagonal,

Σ = diag(σ2
1, σ

2
2, . . . , σ

2
p).

This is one of the settings described in Hastie et al. (2020) [6]. However, their result is rather
complicated compared to the result from the previous chapter, as it involves integrals with respect
to the empirical distribution of the eigenvalues. Hence, we first try to re-use the result of Theorem
1 by transforming the parameter vector. When this transformation fails for the over-parameterized
case, we will try to re-use the proof of Theorem 1 from the previous chapter. When this also breaks
down, it seems that using the more complicated integrals in the result of Hastie et al. (2020) [6] for
this general case is inevitable. We treat the under- and over-parameterized regime separately, starting
with the under-parameterized regime.

3.1 Under-parameterized regime

In the under-parameterized regime, we would like to express the linear regression problem for x in
terms of z ∼ N(0, Id), since Theorem 1 only holds for isotropic Gaussian random variables. So we are
looking for a matrix A such that x = Az. Since z ∼ N(0, Id), we have

E(Az) = 0, Cov(Az) = AAT = Σ.

So for x ∼ N(0,Σ), we have to take A = Σ1/2. Now the original linear regression problem for
z ∼ N(0, Id) is

y = zTβ + ε,

with β the unknown parameter and ε ∼ N(0, σ2). The linear regression problem for x = Az ∼ N(0,Σ)
is then

y = xT θ + ε = (Az)T θ + ε = zT (Aθ) + ε.

So we have to choose the transformation β = Aθ = Σ1/2θ. To be in the same setting as in the previous
chapter, we select p features by specifying a set P ⊂ {1, . . . , d} with |P | = p. Consider the min-norm

solution β̂ for which β̂P = Z†
P y and β̂P c = 0, where Z is the design matrix with rows zTi , i ∈ {1, . . . , n}.

Applying Theorem 1 to the linear regression problem for z, we find

Rdet(β̂) = E(y − zT β̂)2 = (||βP c ||2 + σ2)

(
1 +

p

n− p− 1

)
,

Rrand(β̂) = ((1− p

d
)||β∗||2 + σ2)

(
1 +

p

n− p− 1

)
,

for p ≤ n− 2. We can relate this to the test risk for θ̂ as follows

E(y − zT β̂)2 = E(y − (Σ−1/2x)TΣ1/2θ̂)2 = E(y − xTΣ−1/2Σ1/2θ̂)2 = E(y − xT θ̂)2.

So in fact the test risk for β̂ is equal to the test risk for θ̂. Furthermore,

||βP c ||2 = ||Σ1/2
P c θP c ||2, ||βP ||2 = ||Σ1/2

P θP ||2.

Now we can state a generalized version of Theorem 1 for the case p ≤ n.
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Theorem 2 (Generalized version of Theorem 1 for p ≤ n). Let x ∼ N(0,Σ), ε ∼ N(0, σ2) and
y = xT θ + ε. Choose p ∈ {0, . . . , d} and P ⊂ {1, . . . , d} such that |P | = p. Consider the min-norm

solution θ̂P = X†
P y and θ̂P c = 0. Then, for p ≤ n− 2, the test risk of θ̂ is

Rdet(θ̂) = E(y − xT θ̂)2 = (||Σ1/2
P c θP c ||2 + σ2)

(
1 +

p

n− p− 1

)
,

and Rdet(θ̂) = ∞ for p = n− 1, n. If we take P a uniformly random subset of {1, . . . , d} with |P | = p,
then

Rrand(θ̂) = ((1− p

d
)||Σ1/2θ∗||2 + σ2)

(
1 +

p

n− p− 1

)
,

and Rrand(θ̂) = ∞ for p = n− 1, n.

3.2 Over-parameterized regime

In the over-parameterized regime, we cannot use the transformation β = Σ1/2θ, because of identifia-
bility issues. To see this, we first look at how the design matrix for x, denoted by X, and the design
matrix for z, denoted by Z, are related. We have

X =


xT1
xT2
...
xTn

 =


(Σ1/2z1)

T

(Σ1/2z2)
T

...

(Σ1/2zn)
T

 =


zT1 Σ

1/2

zT2 Σ
1/2

...

zTnΣ
1/2

 = ZΣ1/2.

Now, assuming β = Σ1/2θ, is it true that also β̂ = Σ1/2θ̂? Recall that β̂ = Z†y and θ̂ = X†y. Then

Σ1/2θ̂ = Σ1/2X†y = Σ1/2(ZΣ1/2)†y.

If it is true that (ZΣ1/2)† = (Σ1/2)†Z†, then we have

Σ1/2θ̂ = Σ1/2(Σ1/2)†Z†y = Σ1/2(Σ1/2)−1β̂ = β̂.

However, the property (AB)† = B†A† only holds if A has full column-rank and B has full row-
rank. In this case A = Z and B = Σ1/2. Clearly, Σ1/2 has full row-rank, since Σ is diagonal with
non-zero diagonal entries. On the other hand, the matrix Z ∈ Rn×p has full row rank, as by assump-
tion rank(Z) = min(n, p) = n, but not full column rank (since n < p). So in the over-parameterized
regime, we run into identifiability issues: after transformation we cannot transform back to find θ̂, since
transforming the parameter vector does not mean we can also transform the minimum-norm solutions.

Now that it is clear that simply transforming the problem does not work, we will try to use the
proof of Belkin et al. (2020) [4], also stated in Appendix 9.1. Recall that x ∼ N(0,Σ) with

Σ = diag(σ2
1, . . . , σ

2
d) ∈ Rd×d.

First, we rewrite the test risk,

E(y − xT θ̂)2 = E(xT (θ − θ̂) + ε)2 = E(xT (θ − θ̂)2) + 2E(xT (θ − θ̂)ε) + E(ε2)

= σ2 + E((θ − θ̂)TxxT (θ − θ̂)) = σ2 + (θ − θ̂)TΣ(θ − θ̂) = σ2 + ||θ − θ̂||2Σ.

This is similar to the isotropic Gaussian case, but now we take the norm ||.||Σ with respect to the
matrix Σ. We want to express this in terms of ||θP − θ̂P ||2ΣP

and ||θP c − θ̂P c ||2ΣPc
. Write

Σ =

(
ΣP Op×(d−p)

O(d−p)×p ΣP c

)
and θ =

(
θP
θP c

)
.

For notational convenience, let α = θ − θ̂. Then
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(θ − θ̂)TΣ(θ − θ̂) = αTΣα = (αT
P , α

T
P c)

(
ΣP Op×(d−p)

O(d−p)×p ΣP c

)(
αP

αP c

)

= (αT
PΣP + αT

P cO(d−p)×p, α
T
POp×(d−p) + αT

P cΣP c)

(
αP

αP c

)
= (αT

PΣP + αP cO(d−p)×p)αP + (αT
P cOp×(d−p) + αT

P cΣP c)αP c

= αT
PΣPαP + αT

P cΣP cαP c = ||αP ||2ΣP
+ ||αP c ||2ΣPc

= ||θP − θ̂P c ||2ΣP
+ ||θP c − θ̂P c ||2ΣPc .

Since θ̂P c = 0, we find
R(θ̂) = σ2 + E||θP − θ̂P ||2ΣP

+ ||θP c ||2ΣPc .

We consider the over-parameterized regime (p ≥ n). Then the pseudo-inverse of XP is given by

X†
P = XT

P (XPX
T
P )

−1. Let η := y −XP θP ∈ Rn. We have

θP − θ̂P = θP −XT
P (XPX

T
P )

−1y = θP −XT
P (XPX

T
P )

−1(XP θP + η)

= (I −XT
P (XPX

T
P )

−1XP )θP −XT
P (XPX

T
P )

−1η.

Notice that (I −XT
P (XPX

T
P )

−1XP )θP is in the null space of XP and −XT
P (XPX

T
P )

−1η is in the row
space of XP . Since Row(XP ) ⊥ Null(Xp), we have by the Pythagorean theorem,

||θP − θ̂P ||2 = ||(I −XT
P (XPX

T
P )

−1XP )θP ||2 + ||XT
P (XPX

T
P )

−1η||2.

However, this does not apply to ||.||Σ. In that case we get an additional term,

||θP − θ̂P ||2ΣP
= ||(I −XT

P (XPX
T
P )

−1XP )θP ||2ΣP
+ ||XT

P (XPX
T
P )

−1η||2ΣP

−2⟨ (I −XT
P (XPX

T
P )

−1XP )θP , XT
P (XPX

T
P )

−1η ⟩ΣP
.

Unfortunately, the arguments from the proof in Appendix 9.1 break down after this point. In the
proof we used the rotational symmetry of the multivariate standard normal distribution. However,
for the more general covariance matrix Σ, the rotational symmetry is lost, as the different directions
of the covariates x are weighted with the respective variance in that direction. Notice that the second
part of the proof, where we use the inverse Wishart distribution, can be re-used, since we can use a
more general scale matrix Σ.

Now that transforming the parameter vector and re-using the proof of Theorem 1 have not helped us,
we resort to the result from Hastie et al. (2020) [6]. They consider the more general case, where x ∼ Px

for some distribution Px, in particular we assume x ∼ N(0,Σ), with Σ any symmetric and positive
definite covariance matrix, in the asymptotic regime where p

n → γ as n, p → ∞. Their result is more
complicated than the analytical result from Theorem 1, as it depends on the empirical distribution
Ĥn(s) of the eigenvalues of Σ, and the reweighted version Ĝn(s), which are defined as

Ĥn(s) =
1

p

p∑
i=1

1{s ≥ λi}, Ĝn(s) =
1

||θ||2
p∑

i=1

(θT vi)
2
1{s ≥ λi}

with {λ1, . . . , λp} the eigenvalues of Σ ∈ Rp×p, sorted in decreasing order, and {v1, . . . , vp} the eigen-
vectors of Σ. We will state the result of [6] in the following theorem and consider the special case
Σ = I. We will not use this result any further, as it is difficult to derive from this result the particular
conditions that could lead to beneficial overfitting.
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Theorem 3 (Theorem 2 from [6]). Assume the covariates satisfy x = Σ1/2z, with z having independent

entries with mean 0, variance 1 and finite moments. Let γ = limd→∞
p(d)
n(d) . Assume that as d → ∞,

also p(d) → ∞ and n(d) → ∞. Assume there exists a constant M > 0 such that

λ1 = ||Σ|| ≤ M,

∫
1

s
dĤn(s) < M, |1− γ| ≥ 1

M
,

1

M
≤ γ ≤ M

Let c0(Ĥn, γ) be the solution to

1− 1

γ
=

∫
1

1 + c0γs
dĤn(s).

Assume Ĥn and Ĝn converge in distribution to H resp. G as n → ∞. Then for d → ∞, almost surely

R(θ̂) = B(θ̂) + V (θ̂) −→ B(H,G, γ) + V(H, γ),

with

B(Ĥn, Ĝn, γ) = ||θ||2
1 + γc0

∫
s2

(1+c0γs)2
dĤn(s)∫

s
(1+c0γs)2

dĤn(s)

∫ s

(1 + c0γs)2
dĜn(s),

V(Ĥn, γ) = σ2γc0

∫
s2

(1+c0γs)2
dĤn(s)∫

s
(1+c0γs)2

dĤn(s)
.

Proof. See the proof in [6].

Note: in [6] the factor c0 seems to be forgotten in the expression for V(Ĥn, γ). The expressions
for Theorem 3 are not very insightful, but we can greatly simplify the expressions if we consider the
case Σ = I. Then λi = 1 and vi = ei, so we have

Ĥn(s) =
1

p

p∑
i=1

1{λi ≤ s} = 1{1 ≤ s},

Ĝn(s) =
1

||θ||2
p∑

i=1

(θT vi)
2
1{λi ≤ s} =

1

||θ||2
p∑

i=1

θ2i 1{1 ≤ s} =
1{1 ≤ s}

∑p
i=1 θ

2
i

||θ||2
= 1{1 ≤ s}.

Let ∆(si) be the increment at s = si. By definition of the integral, we then have∫
1

1 + c0γs
dĤn(s) =

∑
i

1

1 + c0γsi
∆(si) =

1

1 + c0γ
.

Now c0 solves

1− 1

γ
=

1

1 + c0γ
, c0 =

1

γ(γ − 1)
.

Furthermore ∫
s2

(1 + c0γs)2
dĤn(s) =

1

(1 + c0γ)2
,∫

s

(1 + c0γs)2
dĤn(s) =

∫
s

(1 + c0γs)2
dĜn(s) =

1

(1 + c0γ)2
.

The expression for the bias term B(θ̂) now becomes, as d → ∞

B(θ̂) → ||θ||2(1 + γc0)
1

(1 + c0γ)2
= ||θ||2 1

1 + γc0
= ||θ||2 1

1 + γ
γ(γ−1)

= ||θ||2(1− 1

γ
).

For the variance term V (θ̂) we find, as d → ∞

V (θ̂) → σ2γ
1

γ(γ − 1)
= σ2 1

γ − 1
.

These are the same expressions as mentioned in [6] and also what we found in Section 2.4.2.
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4 Sub-Gaussian covariates

In this chapter we again look at the linear regression problem in (1.1), but now with sub-Gaussian
covariates. This setting is discussed in Bartlett et al. (2020) [5]. They derive an upper bound on
the excess risk of the minimum norm solution and show that the occurrence of beneficial overfitting
depends on the structure of the covariance matrix of the data. It turns out that over-parameterization
only improves test performance when there are many low variance directions (i.e. many weak features),
more than the number of data points. In this chapter we look at their main result, consider some
special cases and verify the results experimentally.

4.1 Setting

Bartlett et al. (2020) [5] discuss the linear regression problem as in (1.1). They assume sub-Gaussian
covariates: x = Σ1/2z with z ∼ subG(σ2

x), which means that for all a ∈ Rp

E(ea
T z) ≤ exp

(
σ2
x||a||2

2

)
.

We consider the over-parameterized regime where p > n. We generate n training data points (xi, yi)
n
i=1,

where xi ∼ Px such that E(xxT ) = Σ and yi generated according to equation (1.1). Consider the
eigendecomposition of the covariance matrix of the data

Σ = E(xixTi ) =
p∑

i=1

λiviv
T
i ,

with λi the eigenvalues of Σ ∈ Rp×p in decreasing order (λ1 ≥ λ2 ≥ . . . ≥ λp) and vi the (orthonormal)
eigenvectors of Σ. We assume rank(Σ) > n. Notice that we want the rank to be strictly larger than
n, as we will need this in the proof in Appendix 9.3 when we remove one of the eigenvectors of Σ and
still want rank(Σ) to be at least equal to n.

Before we state the main result of [5], we first define the notion of effective rank, which will play an
important role in the main result and its proof. Assume rank(Σ) = p > n and let k ∈ {0, 1, . . . , p−1}.
We need the following two notions of effective rank

rk(Σ) :=
Σp
i=k+1λi

λk+1
, Rk(Σ) :=

(Σp
i=k+1λi)

2∑p
i=k+1 λ

2
i

.

We can view rk(Σ) as the effective rank of the covariance after the k heaviest directions are dropped.
The following lemma describes how the effective ranks are related to the usual rank of the matrix Σ.

Lemma 1 (Lemma 5 in [5]). If rank(Σ) = p, then

r0(Σ) = rank(Σ)s(Σ), R0(Σ) = rank(Σ)S(Σ)

with

s(Σ) =

1
p

∑p
i=1 λi

λ1
, S(Σ) =

(1p
∑p

i=1 λi)
2

1
p

∑p
i=1 λ

2
i

where s, S lie between 1
p (when λ2 ≈ 0) and 1 (when all λi are equal). Furthermore

1 ≤ rk(Σ) ≤ Rk(Σ) ≤ p.

Proof. See Appendix 9.2.
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4.2 Main Result

Using the previously defined notions of effective rank, we can state the main theorem, which is Theorem
4 from Bartlett et al. (2020) [5]. This theorem gives upper and lower bounds for the excess risk of the
minimum-norm interpolating estimator θ̂. We are mainly interested in the upper bound.

Theorem 4 (Upper bound from Theorem 4 in [5]). Assume covariates x = Σ1/2z, with z ∼ subG(σ2
x)

with mean 0 and unit variance. Assume rank(Σ) = p > n. There exist constants b, c > 1 such that for
any δ ∈ [e−n/c, 1] we have with probability at least 1− δ

Rexcess(θ̂) ≤ c||θ∗||2||Σ||max

{√
r0(Σ)

n
,
r0(Σ)

n
,

√
log(1/δ)

n

}
+ c log(1/δ)σ2

(
k∗

n
+

n

Rk∗(Σ)

)
if k∗ ≤ n, where k∗ is defined as

k∗ := min{k ≥ 0 : rk(Σ) ≥ bn}

and k∗ = ∞ if {k ≥ 0 : rk(Σ) ≥ bn} = ∅.

Proof. See Appendix 9.3.

Notice that for δ = e−n/c and n → ∞, the upper bound in the theorem holds with probability
limn→∞ 1− e−n/c = 1. The value k∗ in the theorem we can view as the number of largest eigenvalues
that we have to skip before the effective rank gets as large as (a constant times) n. We can also write
k∗ as

k∗ = min

{
k ≥ 0 :

p∑
i=k+1

λi ≥ bλk+1n

}
.

From this representation we see that k∗ is the minimum value of k for which, after removing the
k largest eigenvalues, the tail of the eigenvalues (

∑p
i=k+1 λi) fits more than n times in the largest

remaining eigenvalue (λk+1). So, if k
∗ is large, then we have to remove many large eigenvalues before

the tail of the eigenvalues is large enough compared to the remaining largest eigenvalue. If k∗ is small,
then we only have to remove a few large eigenvalues before the tail of the eigenvalues is large enough
compared to the remaining largest eigenvalue. Hence for k∗ to be small, we want a small value of
λk+1 and a large value for

∑p
i=k+1 λi. This is the case when we have a long tail of relatively small

eigenvalues. We will see that this is an important property if we want beneficial overfitting to occur.

4.3 Implications of Main Result

For beneficial overfitting, we want the test risk in the over-parameterized regime to be small, compared
to the under-parameterized regime, and so we hope that also the upper bound from Theorem 4 becomes
small. Set p = p(n) and suppose that p(n) → ∞ as n → ∞ (which is the case in the over-parameterized
regime as p > n). We want the expressions in front of ||θ∗|| and σ2 in Theorem 4 to become small as
n → ∞. We thus require

lim
n→∞

(
r0(Σ)

n
+

k∗

n
+

n

Rk∗(Σ)

)
= 0. (4.1)

The behaviour of this limit is fully determined by the behaviour of the eigenvalues of Σ. Hence, Bartlett
et al. (2020) [5] call a covariance matrix Σ satisfying condition (4.1) (asymptotically) benign. Note
that this condition is different from beneficial overfitting, but it in fact implies beneficial overfitting:
if the excess test risk in the over-parameterized regime is zero, then it is always lower than (or equal
to) the under-parameterized risk. Informally, to satisfy condition (4.1), we need:

• r0(Σ) has to be small compared to the sample size n. This is satisfied when the trace of Σ is
small compared to n, meaning that the total sum of the eigenvalues cannot be too large.
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• k∗ has to be small compared to n. We saw in the previous section that for k∗ to be small, we
need a long tail of relatively small eigenvalues of the covariance matrix Σ.

• Rk∗(Σ) has to be large compared to n. Since from Lemma 1 we know that rk(Σ) ≤ Rk(Σ), this
is satisfied when rk∗(Σ) is large compared to n. Since by definition rk∗(Σ) ≥ bn with b > 1, we
know that Rk∗(Σ) is large compared to n.

From step 1 of the proof in Appendix 9.3, we know that we can write the excess risk as

Rexcess(θ̂) = E(θ̂ − θ∗)TΣ(θ̂ − θ∗)

where Σ = V ΛV T =
∑p

i=1 λiviv
T
i . This expression of the excess risk shows how the error in direction

i (which is θ̂i − θ∗i ) impacts the prediction accuracy. This error is weighted with the eigenvalue λi.
So having many small eigenvalues, meaning that there are many low variance directions, has only a
small impact on prediction accuracy. However, having small eigenvalues, and in particular a long, flat
tail of eigenvalues, is crucial to satisfy condition (4.1) for beneficial overfitting. So it seems that the
larger eigenvalues are important for the prediction accuracy and the small eigenvalues are important
for beneficial overfitting.

Condition (4.1) agrees with the result of Section 2.4.1 for no feature selection. There we considered
the usual test risk R(θ̂), for which we showed that the optimal test risk in the under-parameterized
regime, denoted by R∗

under, is
R∗

under = R(p = 0) = σ2.

Hence, if the test risk is non-increasing for p > n, and using that p(n) → ∞ as n → ∞, we need for
beneficial overfitting that

lim
n→∞

R(θ̂) ≤ σ2.

We can relate this to the excess risk as follows

Rexcess(θ̂) = Ex,y(y − xT θ̂)2 − Ex,y(y − xT θ∗)2 = R(θ̂)− σ2.

So for beneficial overfitting the excess risk has to satisfy

lim
n→∞

Rexcess(θ̂) = lim
n→∞

[R(θ̂)− σ2] ≤ σ2 − σ2 = 0.

This is similar to condition (4.1), where we require the upper bound on the excess risk to converge to 0.
Note however that convergence of the excess risk does not necessarily mean that also the upper bound
has to converge. Vice versa, we do have that convergence of the upper bound implies convergence of
the excess risk. Hence, if condition (4.1) is satisfied, then we must also have beneficial overfitting.

4.4 Special case: identity covariance matrix

In this section we will consider the case where Σ is the identity matrix and check condition (4.1). If
Σ = Ip, we can find simple expressions for rk(Σ) and Rk(Σ). Since Ip has rank p, we have rank(Σ) = p.
Furthermore, all λi are equal to 1. Therefore

rk(Ip) =

∑p
i=k+1 λi

λk+1
= p− k, Rk(Ip) =

(
∑p

i=k+1 λi)
2∑p

i=k+1 λ
2
i

=
(p− k)2

p− k
= p− k.

We can now simplify the expressions in Theorem 4. The expression for k∗ becomes

k∗ = min{k ≥ 0 : p− k ≥ bn}.

Since p − k is decreasing in k, we have either k∗ = 0 or k∗ = ∞. Since we assume k∗ ≤ n, we take
k∗ = 0. Plugging in r0(Σ) = R0(Σ) = p and k∗ = 0 in the formula of Theorem 4, we find that with
probability at least 1− δ

Rexcess(θ̂) ≤ c||θ∗||2||Ip||max

{√
p

n
,
p

n
,

√
log(1/δ)

n

}
+ c log(1/δ)σ2n

p
.
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We can simplify this further, since ||Ip|| = λmax(Ip) = 1 and using that δ ≥ e−n/c and c > 1, we find√
log(1/δ)

n
<
√

1/c < 1.

Since p > n, we have
p

n
>

√
p

n
> 1.

So the expression for the upper bound reduces to

Rexcess(θ̂) ≤ c||θ∗||2 p
n
+ cσ2 log(1/δ)

n

p
,

with probability at least 1− δ. Let us now check condition (4.1). This condition reduces to

lim
n→∞

(
p

n
+

n

p

)
= 0.

Clearly, this condition is not satisfied and hence we do not expect beneficial overfitting in the identity
covariance case. This agrees with the result in Section 2.4.1, where we found that in case of no feature
selection, beneficial overfitting is not possible. In the next section we will consider more general
examples of eigenvalue sequences.

4.5 Examples of eigenvalue sequences

In this section we give 2 examples of eigenvalue sequences of Σ that correspond to a benign covariance
matrix, and check under which assumptions they satisfy condition (4.1).

We start with considering slowly decaying or polynomially decaying eigenvalues: λi = i−α for α > 0.
The case α = 0 has been discussed in the previous section. This setting is shown in Theorem 31 in [5].

Lemma 2 (Theorem 31 in [5]). If λi = i−α with α > 0, and dimension p = p(n), then Σ is benign if
and only if:
(1)

α ∈ (0, 1) and ω(n) = p(n) = o(n1/(1−α))

(2)

α = 1 and ω(e
√
n) = p(n) = o(en)

Proof. See Appendix I in [5]. The proof consists of checking for which values of α and p = p(n)
condition (4.1) is satisfied, while lower- and upper bounding the summations in the effective ranks by
integrals.

Here the notation f(n) = o(g(n)) means that

f(n)

g(n)
→ 0, as n → ∞,

and f(n) = ω(g(n)) means that
f(n)

g(n)
→ ∞, as n → ∞.

Lemma 2 shows that for slowly decaying eigenvalues, beneficial overfitting occurs if either (1) decay
is slower than 1

i and p(n) is approximately between n and n1/(1−α), or (2) decay is exactly 1
i and

p(n) is approximately between e
√
n and en. Notice that for α = 1 the Lemma imposes a condition on

the number of parameters p(n) which is computationally very expensive. For polynomial decay faster
than 1

i , no beneficial overfitting is possible.
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The second eigenvalue sequence we consider are rapidly decaying or exponentially decaying eigen-
values: λi = e−i +∆n, with ∆n a small perturbation term. This perturbation term does not change
the decaying behaviour of the eigenvalues, as it is independent of the eigenvalue index i. However, this
term is necessary for beneficial overfitting as it ensures that there is a long flat tail of small eigenvalues,
with a value of around ∆n. Without this term, the eigenvalues would decay to 0. This setting is also
shown in Theorem 31 in [5], see the lemma below.

Lemma 3 (Theorem 31 in [5]). If λi = e−i + ∆n, with ∆n a small perturbation and dimension
p = p(n), then Σ is benign if and only if:

p(n) = ω(n) and ω(ne−n) = ∆np(n) = o(n)

Proof. See Appendix I in [5]. The proof consists of checking for which values of ∆n and p = p(n)
condition (4.1) is satisfied.

Lemma 3 shows that for rapidly decaying eigenvalues, beneficial overfitting occurs if p ≫ n and
the perturbation ∆n is small compared to the sample size n, but not exponentially small.

In general, we see that beneficial overfitting can occur for both slowly and rapidly decaying eigen-
values, as long as the small eigenvalues decay slowly, as prescribed by condition (4.1), i.e. when the
sequence of eigenvalues has a long, flat tail. This is obvious for slowly decaying eigenvalues, and for
rapidly decaying eigenvalues this is ensured by the perturbation term ∆n. We thus require many low
variance (unimportant) directions for beneficial overfitting, which is the case when we are in the highly
over-parameterized regime.

4.6 Numerical experiments

In this section we discuss the experimental results in which we look at three different choices of the
covariance matrix. These choices are based on the types of eigenvalue behaviour that may or may
not result in beneficial overfitting, as discussed in the previous two sections, namely the identity
eigenvalues, polynomially decaying and exponentially decaying eigenvalues. For all choices, we take Σ
to be a diagonal matrix, such that the eigenvalues are equal to the diagonal entries of the matrix. We
look at:

1. Identity covariance: Σ = Ip, so λ1 = . . . = λp = 1.

2. Slowly / polynomially decaying eigenvalues: Σ diagonal with eigenvalues λi = i−α for α = 1
2 ,

α = 1 and α = 2, which is discussed in Lemma 2.

3. Rapidly / exponentially decaying eigenvalues: Σ diagonal with λi = e−i+∆n, which is discussed
in Lemma 3.

Furthermore, we will look at the influence of normalizing the true parameter vector and the influence
of the label noise σ.

We perform a Monte Carlo simulation, with M = 100 Monte Carlo iterations, dimension d = 100
and p ranging from 1 to 100. Furthermore, we use σ = 1 and true parameters θ∗j ∝ 1 such that
||θ∗|| = 1. We change the number of data points n depending on the situation. For the identity
covariance case, we take n = 40, the same as in Chapter 2. For the polynomial and exponential decay
of eigenvalues, we take n to be a small value, such that we can look at the situation where p is much
larger than n. Notice that having such small n is not a realistic scenario, but the graphs will only
be an illustrative example of the results of Lemma 2 and 3. We perform the following Monte Carlo
scheme:

• Sample new training data xi ∼ N(0,Σ) and construct design matrix X ∈ Rn×p with rows xTi .

• Sample new label noise ε ∼ N(0, σ2In).
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• Generate true labels y = Xθ∗ + ε.

• Calculate least-squares/min-norm solution

(p ≥ n) : θ̂ = XT (XXT )−1y, (p < n) : θ̂ = (XTX)−1XT y.

• Compute excess training risk

Rtraining =
1

n

n∑
i=1

(yi − xTi θ̂)
2 − 1

n

n∑
i=1

(yi − xTi θ
∗)2

• Compute excess test risk
Rtest = (θ̂ − θ∗)TΣ(θ̂ − θ∗)

We repeat above steps M = 100 times and take averages over the Rtraining and Rtest values.

4.6.1 Identity covariance matrix

The first setting we investigate is the case in which Σ = Ip. We take isotropic Gaussian covariates:
x ∼ N(0, Ip). In this special case all λi are equal to 1 and r0(Σ) = R0(Σ) = rank(Σ) = p. We plot
the excess training and test risk in Figure 4.1. We may not expect beneficial overfitting, as condition
(4.1) is not satisfied. Indeed, we see that the test risk in the over-parameterized regime does not fall
below the minimum test risk in the under-parameterized regime.

Figure 4.1: Excess training and test risk for the isotropic Gaussian case.

4.6.2 Polynomial decay of eigenvalues

The second case we will look at, is polynomial decay of the eigenvalues. This means that we choose
λi = i−α for some α > 0. We know that for α ∈ (0, 1], beneficial overfitting occurs (for a suitably
chosen p). Notice that the case α = 0 results in the identity covariance case, which was shown in the
previous subsection. We will investigate different values of α, namely: α = 1

2 , α = 1 and α = 2. We
expect to observe beneficial overfitting for α = 1

2 and α = 1, but not for α = 2. We take Σ to be a
diagonal matrix with λi on the diagonal and covariates x ∼ N(0,Σ).

Case α = 1
2

We start with the case α = 1
2 . Then Σ is a diagonal matrix with entries Σi,i =

1√
i
. According to

Lemma 2 we expect beneficial overfitting if p = p(n) satisfies

ω(n) = p(n) = o(n1/(1−α)) = o(n2).

We will plot the test risk averaged over M = 100 Monte Carlo iterations, against the number of
parameters. We take n = 4. The results can be seen in Figure 4.2. Comparing the value of the excess
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test risk at p = 0 and p = 100 ≫ 4, we observe beneficial overfitting: the value at p = 100 is lower
than the minimum value in the under-parameterized regime, as we would expect. Notice that p is
larger than the upper bound of n2 = 42 = 16, which does not contradict Lemma 4.2, as the bounds
for p(n) hold for large n.

Figure 4.2: Logarithm of the excess test risk (blue line) and interpolation threshold (red line) for
polynomial eigenvalue decay with α = 1

2 .

Case α = 1

We take Σ to be a diagonal matrix with diagonal entries Σi,i = i−1. According to Lemma 2 we expect
beneficial overfitting if p = p(n) satisfies

ω(e
√
n) = p(n) = o(en)

In this case, we take n = 4, as p = ω(e
√
n) implies a heavy cost on the computational time. The result

can be seen in Figure 4.3 below. Indeed, if we compare the value of the excess test risk for p = 0 and
p = 100 ≫ e

√
4, then the value at p = 100 is lower than the minimum value in the under-parameterized

case. In practice however, as n can be very large, the condition p(n) = ω(e
√
n) will impose a too heavy

toll on the computational time and is therefore not feasible.

Figure 4.3: Logarithm of excess test risk (blue line) and interpolation threshold (red line) for polyno-
mial eigenvalue decay with α = 1.
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Case α = 2

We take Σ to be a diagonal matrix with diagonal entries λi = i−2. According to Lemma 2 we do not
expect beneficial overfitting in case α = 2. Indeed, even if we take n = 4 such that p is much larger
than n, we still do not observe beneficial overfitting, as seen in Figure 4.4: the value of the test risk
at p = 100 is still larger than the value at p = 0.

Figure 4.4: Logarithm of excess test risk (blue line) and interpolation threshold (red line) for polyno-
mial eigenvalue decay with α = 2.

4.6.3 Exponential decay of eigenvalues

Next, we look at exponential decay of eigenvalues: λi = e−i +∆n, with ∆n a small perturbation. We
take Σ to be the diagonal matrix with entries Σi,i = e−i +∆n. We choose ∆n = 1

n3 . We know from
Lemma 3 that beneficial overfitting occurs if

p(n) = ω(n) and ω(ne−n) = ∆np(n) = o(n)

If we take n = 5, then for p = 100 indeed p ≫ 5 and ne−n = 5e−5 < ∆np(n) = 100/(53) = 0.8 < 5 = n,
so the choice of ∆n = 1

n3 is small enough. The training risk is shown in Figure 4.5. We observe that
the test risk at p = 100 is indeed lower than at p = 0, so we have beneficial overfitting.

Figure 4.5: Logarithm of the excess test risk (blue line) and interpolation threshold (red line) for
exponential decay with perturbation term ∆n = 1

n3 .
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4.6.4 Influence of normalizing true parameter vector

In this subsection we will investigate the influence of normalizing the true parameter vector θ∗. We
set Σ equal to the identity matrix and take θ∗ equal to

(normalized) θ∗j ∝ 1 s.t. ||θ∗||2 = 1, (not normalized) θj = 1.

For the second choice of θ∗ we have that the norm of θ∗ grows with the number of parameters. From
Theorem 4 we expect the training risk to diverge as the norm of θ∗ diverges. The results are found in
Figure 4.6. Indeed, if θ∗ is normalized, we see converging behaviour. Without normalizing, the norm
of θ∗ grows with p and so also the test risk of the min-norm solution grows with p, consistent with
Theorem 4. Hence, for beneficial overfitting, the norm of θ∗ is not allowed to grow with the number
of parameters p.

Figure 4.6: Excess training and test risk for the isotropic Gaussian case. (Left) with normalization
and (Right) without normalization.

4.6.5 Influence of label noise

Finally, we investigate the influence of the label noise on the test risk. We fix Σ to be the identity
matrix and θ∗j ∝ 1 normalized. We will try 4 different values of σ, namely σ = 0, σ = 0.1, σ = 1 and
σ = 10. The results are shown in Figure 4.7 below.

(a) (b)

(c) (d)

Figure 4.7: Isotropic Gaussian case, with (a) σ = 0, (b) σ = 0.1, (c) σ = 1 and (d) σ = 10.
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Notice that, regardless of the value of σ, in all 4 cases the test risk converges to ||θ∗||2 = 1. This is
consistent with the results found in Chapter 2, where we saw that for no feature selection, we have
R(p) → ||θ∗||2 + σ2 as p → ∞. Since Rexcess(p) = R(p) − σ2, we have that Rexcess(p) → ||θ∗||2.
In particular, notice how for σ = 0 the interpolation threshold completely disappears, which is to
be expected, since this peak is caused entirely by the fact that we are trying to exactly fit noisy
labels when p = n, which causes an explosion in the variance if σ ̸= 0. Furthermore, in the under-
parameterized limit we know from Chapter 2 that R(p) → σ2 as p → 0. Hence, Rexcess(p) → 0 as
p → 0, which we can see in the graphs. Finally, we can conclude from the graphs that, regardless of
the value of σ, no beneficial overfitting occurs in the isotropic Gaussian case, which is consistent with
the results in Section 4.4. This also justifies why we can fix σ = 1 in this chapter, without influencing
the beneficial overfitting behaviour.

4.7 Infinite dimensional case

In this chapter we have considered the finite dimensional version of the result in [5]. However, their
result also holds in the infinite dimensional case, provided that the eigenvalues of Σ are summable, that
is
∑∞

i=1 λi < ∞. In this case, also the sequences of eigenvalues that are possible for beneficial overfitting
change and we require more specific eigenvalue behaviour. The possible eigenvalues sequences that
can occur are given in the Lemma below.

Lemma 4 (Theorem 31 from [5]). If λi = i−α ln−β(i+ 1) then Σ is benign if and only if

α = 1 and β > 1.

If λi = i−(1+αn), then Σ is benign if and only if

ω(1/n) = αn = o(1)

Proof See the proof in Appendix I of [5].

From Lemma 4 it is clear that in the infinite dimensional case, there is much less flexibility in choosing
the eigenvalues of the covariance matrix if we want beneficial overfitting. Hence, we may expect to
see less cases of beneficial overfitting for infinite dimensional models. Notice also that in the infinite
dimensional setting of Section 2.6 we observed Double Descent behaviour, but indeed no beneficial
overfitting.

4.8 When do we expect beneficial overfitting?

In this chapter we have looked at sub-Gaussian covariates with a general covariance matrix and no
feature selection. We have looked at both polynomially decreasing and exponentially decreasing eigen-
value sequences of the covariance matrix. Results are summarized in the following overview.

We expect beneficial overfitting if:

• For general eigenvalue sequences that satisfy

lim
n→∞

(
r0(Σ)

n
+

k∗

n
+

n

Rk∗(Σ)

)
= 0.

• In case the eigenvalues are of the form λi = i−α with α ∈ (0, 1) and ω(n) = p(n) = o(n1/(1−α)).

• In case the eigenvalues are of the form λi = i−α with α = 1 and ω(e
√
n) = p(n) = o(en).

• In case the eigenvalues are of the form λi = e−i +∆n, with ∆n a small perturbation term such
that ω(ne−n) = ∆np(n) = o(n) and p(n) = ω(n).
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5 Kernel regression

Previously, we have looked at the linear regression model from equation (1.1) with different choices of
the covariates vector. In this chapter we consider the more general kernel regression, which is closer
to the setting for practical applications. We look at two different settings:

• Setting 1: we consider the finite dimensional linear regression problem, but we use a kernel
estimator instead of the least-squares estimator. This setting is interesting, as now the implicit
feature space dimension corresponding to the kernel function is different from the input dimension
of the data, and it can even be infinite.

• Setting 2: we consider the infinite-dimensional Gaussian process regression, but we use an
estimator that only considers the first p basis functions. This is the more realistic setting, since
the true function can be very complex as it has an infinite dimensional basis of eigenfunctions,
whereas for the estimator we can only use a finite amount of basis functions.

In Setting 1 we will consider 3 choices for the kernel function: the linear kernel, the quadratic kernel
and the Gaussian kernel. For each of these kernels, we will experimentally look at the behaviour of
the test risk against the number of parameters. We also show that for the linear kernel we retrieve the
least-squares estimator. Furthermore, we look at the eigenvalue behaviour of the kernel matrix. In
Setting 2 we again perform experiments to show the test risk behaviour. Finally, we check whether
the results from previous chapters can be applied in this setting as well. Most of the theory about
kernels and Gaussian processes in this chapter is based on the book by Rasmussen et al. (2006) [12].

5.1 Setting 1

In the first setup, we consider the following underlying model

y = f(x) + ε,

with y the response, f : Rd → R the true (but unknown) function of the data x ∈ Rd and noise term
ε ∼ N(0, σ2). For linear regression, we have that f(x) = xT θ with θ ∈ Rd the unknown parameter
vector. First, we will derive an expression for the kernel estimator f̂(x), making use of Gaussian
processes. We define a Gaussian process as ’a stochastic process that has Gaussian distributed finite
dimensional marginal distributions’ [13] (p. 428). Suppose the true function f is a draw from a
centered Gaussian process,

f(x) ∼ GP (0, k(x, x)),

with covariance function or kernel k : Rd × Rd → R defined as

k(x, x′) = Ef(x)f(x′), x, x′ ∈ Rd.

Let X ∈ Rn×d be the training data matrix with rows xTi ∈ Rd and X∗ ∈ Rn∗×d be the test data
matrix with rows (x∗i )

T ∈ Rd, with n the number of training data points and n∗ the number of test
data points. Define the kernel matrix as

K(X,X∗) =

k(x1, x
∗
1) · · · k(x1, x

∗
n∗)

...
. . .

...
k(xn, x

∗
1) · · · k(xn, x

∗
n∗)

 ∈ Rn×n∗
.
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Furthermore, let

f =

f(x1)
...

f(xn)

 ∈ Rn, f∗ =

 f(x∗1)
...

f(x∗n∗)

 ∈ Rn∗
.

The definition of a Gaussian process given above now implies that for each finite collection of data
points {x1, . . . , xn} and {x∗1, . . . , x∗n∗}, we have that the vectors f and f∗ both have a multivariate
Gaussian distribution. Hence, we can express the joint distribution of y and f∗ as[

y
f∗

]
=

[
f + ε
f∗

]
∼ N

(
0,

[
Cov(f + ε, f + ε) Cov(f + ε, f∗)
Cov(f∗, f + ε) Cov(f∗, f∗)

])
,

[
y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2I K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
Using properties of the Gaussian distribution, we know that f∗|(y,X,X∗) again has a Gaussian dis-
tribution with mean and covariance

E(f∗|y,X,X∗) = K(X∗, X)[K(X,X) + σ2I]−1y,

Cov(f∗|y,X,X∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2I]−1K(X,X∗).

Taking the mean of this posterior distribution as the estimator for f , evaluated at a single data point
x∗ ∈ Rd, we find the following kernel estimator

f̂(x∗) =

n∑
j=1

αjk(xj , x
∗), with α = [K(X,X) + σ2I]−1y (5.1)

In this setting there is no clear choice for the number of parameters p. Hence, we will consider the
same setup for the feature selection as in Chapter 2, such that the result for the linear kernel will be
the same as the results from Chapter 2. So we take a matrix P , where either P = {1, . . . , p} (deter-
ministic choice) or P is sampled Uniformly from {1, . . . , d} such that |P | = p. Then in the estimate for
the coefficients α in (5.1) we only use p features, meaning that we use XP ∈ Rn×p instead of X ∈ Rn×d.

In the numerical experiments we will see that the location of the interpolation threshold depends
on the dimension of the implicit feature space that is implied by the kernel function. To understand
this, we have to know how the kernel and this implicit feature space are related. Through Mercer’s rep-
resentation theorem [12], we can express the kernel function k(x, x′) in terms of certain basis functions
as follows

k(x, x′) =
∞∑
j=1

λjϕj(x)ϕ
∗
j (x

′) =: ⟨ϕ(x), ϕ(x′)⟩H, (5.2)

where ϕj : Rd → R are the basis functions with corresponding eigenvalues λj ∈ R and ϕ(.) ∈ H the
vector containing these basis functions, also called the feature vector. From the representation (5.2)
we see that the choice of basis functions implies a kernel function and vice versa. A popular choice (see
e.g. [3]) for the basis functions ϕj are the Fourier basis functions, which are of the from ϕj(x) = e−iωjx,
with frequencies ωj ∈ R. The case of random Fourier features will be discussed in Chapter 6.

We consider three choices for the kernel function: linear, quadratic and Gaussian. For each choice, we
look at the feature vector, which can be seen as a mapping from the input x to the features ϕ(x), and
its dimension, which we will refer to as implicit feature space dimension. In case of the linear kernel,
defined as k(x, x′) = xTx′, we expect to retrieve the least-squares estimator (see Section 5.1.1). The
corresponding feature mapping is

ϕ : x 7→ ϕlin(x) = x, ϕ : Rd → Rd.
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Notice that now the input dimension (dimension of x) and implicit feature space dimension (dimension
of ϕ(x)) are the same. For the quadratic kernel, k(x, x′) = (1 + xTx′)2, it may be checked that the
corresponding feature mapping is given by

ϕ : x 7→ ϕquad(x), ϕ : Rd → Rd∗ ,

with the dimension d∗ of the implicit feature space equal to (see [12]) d∗ =
(
d+2
2

)
= 1

2(d + 2)(d + 1).
Finally, for the Gaussian kernel k(x, x′) = exp(− 1

2l2
||x− x′||2), with length scale l, the corresponding

feature mapping is
ϕ : x 7→ ϕgauss(x), ϕ : Rd → H,

with H an infinite-dimensional Hilbert space. In this case the dimension of the feature space is infinite.
This is also where the computational advantage of kernels lies. If we were to use the basis functions
directly and express the true function and its estimator in terms of these basis functions, then the
model y = f(x) + ε in matrix-vector form would become

y = Φθ + ε

with Φ ∈ Rn×d∗ the feature matrix containing the feature vector ϕ(xi) as rows, and θ the vector
containing the weights θj for each basis function ϕj(x), j ∈ {1, . . . , d∗}. Now d∗ may be very large
(for the quadratic kernel) or even infinite (for the Gaussian kernel) and so doing computations with
the feature matrix Φ directly can be computationally expensive or even impossible. However, if we
were to use the kernel estimator from equation (5.1), then we would have to do computations with
the kernel matrix K(X,X) ∈ Rn×n, which is much less expensive for large (d∗ ≫ n) implicit feature
space dimension.

5.1.1 Special case: linear kernel

If we choose the kernel function to be the linear kernel, then in fact we can retrieve the ordinary least-
squares estimator. Indeed, let k(x, x′) be the linear kernel, defined as k(x, x′) = xTx′, with x, x′ ∈ Rd.
Consider data vectors {x1, . . . , xn} in Rd and design matrix X ∈ Rn×d with rows xTi . Then the kernel
matrix K = K(X,X) has entries

Ki,j = k(xi, xj) = xTi xj = [XXT ]i,j .

Hence, K(X,X) = XXT . If we let ŷ ∈ Rn be the vector containing the estimates of f(x) evaluated
at the data vectors {x1, . . . , xn}, then we can write

ŷ = K(K + σ2I)−1y = XXT (XXT + σ2I)−1y

= X[XT (XXT + σ2I)−1y] = Xθ̂σ2 .

Here θ̂σ2 = XT (XXT +σ2I)−1y corresponds to the least-squares solution to a ridge regression problem
with regularization parameter λ = σ2. Taking σ = 0, we thus retrieve the least-squares estimator
θ̂ = θ̂0.

5.2 Numerical experiments for setting 1

In this first experimental setup we will look at the test risk for 3 choices of the kernel function: (1)
linear kernel, (2) quadratic kernel and (3) the Gaussian kernel. We assume the true model is a linear
regression model (so f(x) = xT θ) of dimension d and approximate f(x) using the kernel estimator
(5.1), with possibly infinite dimensional implicit feature space dimension. We will perform a Monte
Carlo experiment, where we choose M = 10 Monte Carlo iterations, n = 40 training data points, σ = 0
label noise and input dimension d = 100. Furthermore, we take n∗ = 100 test data points, which we
deem high enough for accurately computing the test risk, while still having low enough computational
time. In each iteration, we carry out the following steps:
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• Sample training and test data matrix, X ∈ Rn×d and X∗ ∈ Rn∗×d, with entries from N(0, 1)
distribution.

• Select features from the matrix X, similar to Chapter 2, with P = {1, . . . , p} (deterministic)
or P sampled uniformly from {1, . . . , d} s.t. |P | = p (random), resulting in XP ∈ Rn×p. The
matrix XP is only used in the estimation of the coefficients α in (5.1).

• Generate labels y ∈ Rn with entries f(xi) + ε, with xi the i-th row of X and ε ∼ N(0, σ2).

• Construct the vector of coefficients α = (K(XP , XP )+σ2In)
−1y, where K(XP , XP ) is the kernel

matrix with entries k((xP )i, (xP )j). Now the kernel estimator evaluated in x is given by

f̂(x) =

n∑
i=1

αik(xi, x).

• Calculate training and test error

Rtrain =
1

n

n∑
i=1

(f(xi)− f̂(xi))
2, Rtest =

1

n∗

n∗∑
i=1

(f(x∗i )− f̂(x∗i ))
2,

where xi are the rows of X and x∗i the rows of X∗.

As an estimate for the training (test) error we then take the average over the M training (test) error
values

R̂ =
1

M

M∑
j=1

Rj .

5.2.1 Linear kernel

We start with considering the linear kernel k(x, x′) = xTx′. Taking σ = 0, we expect to see the same
graphs as for the isotropic Gaussian case from Chapter 2. We consider the deterministic choice and the
random choice of feature selection. Results can be seen in Figures 5.1 and 5.2. Compared to Figures
2.1 and 2.2, we can see that they are very similar and show the same Double Descent behaviour,
as expected. Beneficial overfitting occurs only for the random feature selection, as in that case the
minimum test risk lies in the over-parameterized regime.

Figure 5.1: Linear kernel, with θj ∝ 1/j, σ = 0 and P = {1, . . . , p}. Lines in the plot: (blue line) test
risk, (green line) training risk, (red line) interpolation threshold.
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Figure 5.2: Linear kernel, with θj ∝ 1/j, σ = 0 and P sampled Uniformly from {1, . . . , d}. Lines in
the plot: (blue line) test risk, (green line) training risk, (red line) interpolation threshold.

5.2.2 Quadratic kernel

Next, we consider the quadratic kernel k(x, x′) = (1 + xTx′)2. As mentioned in the first part of this
chapter, the quadratic kernel has implicit feature space dimension equal to d∗ = 1

2(d+2)(d+1). This
implies that, while we linearly increase the input dimension, the dimension of the implicit feature
space will grow quadratically. We expect the interpolation threshold at d∗ = n. Hence, we should
be careful that we do not skip over the interpolation threshold, as there could be large jumps in d∗

values, which would make it difficult to distinguish the under- and over-parameterized regimes. To
make sure we exactly hit this interpolation threshold, one option is choosing n = 36, since d∗ = n
is then realized for input dimension d = 7. Plots of the test risk against the number of parameters
for the quadratic kernel can be found in Figures 5.3 and 5.4. Again, we observe the Double Descent
behaviour. For the random selection of features, we observe beneficial overfitting. We indeed see that
the interpolation threshold has changed position compared to the linear kernel, and the shape of the
test risk curve is very similar to the shape for the linear kernel case.

Figure 5.3: Quadratic kernel, with θj ∝ 1/j, σ = 0 and P = {1, . . . , p}. Lines in the plot: (blue line)
test risk, (green line) training risk, (red line) interpolation threshold.
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Figure 5.4: Quadratic kernel, with θj ∝ 1/j, σ = 0 and P sampled Uniformly from {1, . . . , d}. Lines
in the plot: (blue line) logarithm of the test risk, (red dotted line) test risk at p = 0.

5.2.3 Gaussian kernel

Finally, we consider the Gaussian kernel

k(x, x′) = exp

(
− 1

2l2
||x− x′||2

)
,

with l the length-scale [12], which influences how many neighbouring data points we take into account.
We will try two different values of the length-scale l: l = 1 and l = 10. We have seen in the first part
of this chapter (Section 5.1 ) that for the Gaussian kernel the corresponding implicit feature space
is infinite-dimensional, whereas the input space of the data is not. As the implicit feature space is
infinite-dimensional, we may not expect to see an interpolation threshold peak.

Length scale 1

First we consider the case where l = 1. Then

k(x, x′) = exp

(
−1

2
||x− x′||2

)
.

We look at both the deterministic feature selection and random feature selection. Logarithmic plots of
the test risk against p can be seen in Figures 5.5 and 5.6. We now do not observe any Double Descent
behaviour.

Figure 5.5: Gaussian kernel (l = 1), with θj ∝ 1/j, σ = 0 and P = {1, . . . , p}. Lines in the plot: (blue
line) test risk.
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Figure 5.6: Gaussian kernel (l = 1), with θj ∝ 1/j, σ = 0 and P sampled Uniformly from {1, . . . , d}.
Lines in the plot: (blue line) test risk.

Length scale 10

The final case we look at is a length scale of l = 10. Now k(x, x′) approaches the value 1, meaning
that we take every neighbouring data point into account for the weights k(x, xi). We then find the
results in Figures 5.7 and 5.8. Now we do retrieve the Double Descent behaviour and also beneficial
overfitting, as now the minimum test risk lies in the over-parameterized regime.

Figure 5.7: Gaussian kernel (l = 10), with θj ∝ 1/j, σ = 0 and P = {1, . . . , p}. Lines in the plot:
(blue line) test risk, (green line) training risk.
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Figure 5.8: Gaussian kernel (l = 10), with θj ∝ 1/j, σ = 0 and P sampled Uniformly from {1, . . . , d}.
Lines in the plot: (blue line) test risk, (green line) training risk.

5.3 Comparison to previous results for setting 1

The experimental results for the linear and quadratic kernel, where data was sampled from N(0, 1),
agree well with the theory from Chapter 2 for an isotropic covariance matrix: the test risk shows Double
Descent behaviour and beneficial overfitting only occurs for random feature selection (as SNR = ∞
and θj ∝ 1/j). However, in case of the Gaussian kernel, it is not immediately clear why the test risk
behaviour is as given in Figures 5.5 up to 5.8. Notice especially the clear difference in behaviour for
the case l = 1 and l = 10. In previous chapters we have seen that the test risk behaviour depends on
the sequence of eigenvalues of the covariance matrix of the data. Based on the results from Chapter
2 we would not expect the beneficial overfitting we now observe in Figure 5.7 for the deterministic
feature selection as θj ∝ 1/j. Hence, we now look instead at the behaviour of the eigenvalues of the
kernel matrix K(X,X), which is the covariance matrix for the Gaussian process f(x).

Length scale 10

This time we first consider length scale l = 10. We know that for large length scale l → ∞, we have

lim
l→∞

k(x, x′) = lim
l→∞

e−
1

2l2
(x−x′)2 = 1.

Hence K → 11T as l → ∞, with 1 ∈ Rn the vector containing all ones. The eigenvalues of 11T are
easy to derive. Since each row contains all ones, we have that rank(11T ) = 1. This implies that there
is only 1 non-zero eigenvalue. Since n = tr(11T ) =

∑n
i=1 λi for the eigenvalues λi of K(X,X), we must

have that λ1 = n and λ2 = . . . , λn = 0. This agrees with the behaviour of the eigenvalues shown in
Figure 5.9. We see that the eigenvalues first decrease nearly exponentially and then decreases slowly,
resulting in a long flat tail, so according to Chapter 4 we expect beneficial overfitting, which is indeed
what we observe in Figures 5.7 and 5.8. This may suggest that for kernel regression we should look
at the eigenvalues of the kernel matrix instead of the data covariance matrix.
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Figure 5.9: Logarithmic plot ot the eigenvalues of the kernel matrix K(X,X) for length scale l = 10.

Length scale 1

Next, we look at the case l = 1. For small length scale l → 0, we have

lim
l→0

k(x, x′) = lim
l→0

e−
1

2l2
(x−x′)2 = 1{x = x′},

where we define k(x, x) := 1. Hence K → In as l → 0. So for small length scale, we expect the
eigenvalues of K to be close to 1. Indeed, from the plot in Figure 5.10 we see that this is the case. If
the results of Chapter 2 could be applied to the kernel matrix, then we would expect to see beneficial
overfitting for the random feature selection, but (as θj ∝ 1/j) we do not expect beneficial overfitting
for the deterministic feature selection. However, the results from Figures 5.5 and 5.6 do not show any
Double Descent behaviour. This may suggest that only looking at the covariance matrix of the data
or the kernel matrix is not enough and we need different results in this case. We will discuss this
further in the Discussion part of Chapter 8.

Figure 5.10: Eigenvalues of the kernel matrix K(X,X) for length scale l = 1.
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5.4 Setting 2

In the second setup of this chapter we try to approximate an infinite-dimensional problem by only
using a selection of p basis functions. We assume the true function f(x) is a Gaussian process with
the Gaussian kernel function

k(x, x′) = exp

(
− 1

2l2
(x− x′)2

)
,

where the length scale l is a hyperparameter and x, x′ ∈ R. Then we know that f(x) can be expressed
in an infinite dimensional basis of eigenfunctions,

f(x) =

∞∑
k=1

θkϕk(x) = ⟨θ, ϕ(x)⟩H,

where x ∈ R and θ, ϕ(x) ∈ H having components θi resp. ϕi(x). Notice that x ∈ R, but we still have
an infinite dimensional true model, which is different from linear regression, where x and ϕ should
have the same dimension. We will now estimate this function by using only p basis functions. In that
case f̂(x) has the following form

f̂(x) =

p∑
k=1

θ̂kϕk(x)

with θ̂k the coefficients to be estimated and ϕk(x) a Gaussian basis function corresponding to the
Gaussian kernel. The Gaussian basis functions are of the form

ϕk(x) = exp

(
− 1

l2
(x− vk)

2

)
where we choose the center vk as vk ∼ Unif([0, L]), with L the length of the interval on which f(x) is
defined. For simplicity we take L = n+ n∗, with n training and n∗ test data points being the natural
numbers in the interval [0, L], so we only make observations at x = 1, 2, . . . , n + n∗. The Gaussian
basis functions are chosen such that

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H =

∞∑
k=1

ϕk(x)ϕk(x
′) ∝ exp

(
− 1

2l2
(x− x′)2

)
.

See the computation on p.84 in [12], which consists of replacing the sum by an integral over all possible
values vk. Notice that the length scale l from the basis function ϕk(x) is scaled by a factor

√
2 in

the kernel function. Next, we analyze the behaviour of the test risk of the estimate f̂(x) through
numerical experiments.

5.5 Numerical experiments for setting 2

In the numerical experiment, we first simulate the Gaussian process f(x) once, with seed(0) in R. We
take n = 50 training data points and n∗ = 100 test data points. We simulate f(x) as follows:

• Let X = (1, . . . , L), with L = n+ n∗, where n is the number of training data points and n∗ the
number of test data points.

• Construct the kernel matrix K(X,X) with entries Ki,j = k(xi, xj).

• Simulate f(x) from the multivariate Gaussian distribution:

f(x) ∼ N(0,K(X,X)).

Next, we start with the Monte Carlo simulation. We take σ = 1 as label noise, the number of
parameters p from 1 until 500 and M = 10 Monte Carlo iterations. In each iteration, we perform the
following actions:
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• Sample Xtrain ∈ Rn from X. The remaining data points are put in Xtest ∈ Rn∗
.

• Generate training labels
ytrain = ftrain + εtrain,

where ftrain is the vector with entries f evaluated at each training data point, and εtrain ∼
N(0, In). Similarly for the test labels ytest.

• Construct feature matrix Φtrain ∈ Rn×p with entries Φi,j = exp(−(Xtrain[i] − vj)
2/(l2)), where

vj ∼ Unif[0, L] and L = n+ n∗. Similarly for Φtest.

• Calculate vector of coefficients θ̂ ∈ Rp,

θ̂ = Φ†
trainytrain

• Calculate estimate ŷ, which is equal to f̂ evaluated at the training data points,

ŷtrain = Φtrainθ̂

Similarly for ŷtest.

• Finally, calculate training and test risk

Rtrain =
1

n
||ytrain − ŷtrain||2, Rtest =

1

n∗ ||ytest − ŷtest||2

As the data now ranges from 1 to L = n + n∗ = 150, we will try the values l = 10 and l = 100 for
the length scale of the Gaussian kernel. The results can be seen in Figures 5.11 and 5.12 below. We
observe a clear Double Descent behaviour in the test risk, with an interpolation threshold at n = 50.
There is no beneficial overfitting, but it seems that for a large number of parameters the test risk
asymptotes to the value at p = 0.

Figure 5.11: Gaussian kernel, l = 10, deterministic choice of features, σ = 1. Shown are: (blue line)
test risk, (green line) training risk and (dotted red line) minimum test risk.
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Figure 5.12: Gaussian kernel, l = 100, deterministic choice of features, σ = 1. Shown are: (blue line)
test risk, (green line) training risk and (dotted red line) minimum test risk.

5.6 Comparison to previous results for setting 2

Based on the results from setting 1, we again consider the eigenvalues of the kernel matrix K(X,X),
instead of the covariance matrix of the data, for both l = 10 and l = 100. For l = 10 the eigenvalue
decay is slower than exponential decay, see Figure 5.13, and for l = 100 the decay is approximately
exponential, see Figure 5.14. For l = 10 we do not observe a long flat tail and based on the results
from Chapter 4 may not expect beneficial overfitting. For l = 100 we do observe a long flat tail and
hence we may expect beneficial overfitting. These observations do not really explain the test risk
behaviour as shown in Figures 5.11 and 5.12, as strictly speaking, these figures do not show beneficial
overfitting. Similar to Section 5.3 it seems that only looking at the eigenvalues of the kernel matrix
is not enough to explain the Double Descent and beneficial overfitting behaviour, at least when we
consider the Gaussian kernel.

Figure 5.13: Logarithmic plot of the eigenvalues of the kernel matrix for the Gaussian kernel for length
scale l = 10.
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Figure 5.14: Logarithmic plot of the eigenvalues of the kernel matrix for the Gaussian kernel for length
scale l = 100.
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6 Fourier features

In the second setting of the previous chapter we have looked at the Gaussian kernel and Gaussian
basis functions, which are of the form ϕk(x) = e−γ(x−vk)

2
, with γ > 0 and vk the center of the basis

function. Instead of Gaussian basis functions, we now look at another popular choice: Fourier basis
functions, which are of the form ϕk(x) = e−iωkx, with ωk ∈ R the frequency. It is known that, as the
number of features diverges to infinity, the random Fourier features approach the Gaussian kernel, see
e.g. [14]. The setting of a noise-free random Fourier features mdoel is described in Belkin et al. (2020)
[4]. They derive an expression for the asymptotic test risk of θ̂, with n

d and p
d fixed as p, n, d → ∞.

We will check in this chapter whether beneficial overfitting occurs in this scenario and experimentally
verify the result of [4].

6.1 Setting

Belkin et al. [4] consider a noise-free Fourier series model. They assume the following noise-free
regression model

y = Φθ

with y ∈ Cd the response vector, θ ∈ Cd the true parameter vector and Φ ∈ Cd×d the d × d Discrete
Fourier Transform matrix with entries

Φi,j =
1√
d
ω(i−1)(j−1)

where ω := exp(−2πi/d) ∈ C. If we write out the matrix-vector multiplication y = Φθ, we get
y1
y2
y3
...
yd

 =
1√
d


1 1 1 · · · 1
1 ω ω2 · · · ωd−1

1 ω2 ω4 · · · ω2(d−1)

...
...

...
. . .

...

1 ωd−1 ω2(d−1) · · · ω(d−1)(d−1)




θ1
θ2
θ3
...
θd


We can rewrite this as a system of equations

y1 =
1√
d
(θ1 + θ2 + . . .+ θd)

y2 =
1√
d
(θ1 + θ2ω + θ3ω

2 + . . .+ θdω
d−1)

y3 =
1√
d
(θ1 + θ2ω

2 + θ3ω
4 + . . .+ θdω

2(d−1))
...

yd = 1√
d
(θ1 + θ2ω

d−1 + θ3ω
2(d−1) + . . .+ θdω

(d−1)(d−1))

Hence, we have that

yj =
1√
d

d∑
k=1

θkω
(k−1)(j−1) =

d∑
k=1

θk√
d
e−2πi(k−1)(j−1)/d =

d∑
k=1

θk√
d
ϕk(xj)

for j = 1, . . . , d. Here the basis functions ϕk(xj) are the Fourier basis functions

ϕk(xj) = e−2πi(k−1)xj
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evaluated at points xj = (j − 1)/d. So we can indeed view this as a random features model such as in
Chapter 5 for the Gaussian basis functions. We consider the asymptotic regime as d → ∞, such that

lim
d→∞

p(d)

d
= ρ, lim

d→∞

n(d)

d
= η.

The design matrix Φ is constructed as follows. Let N,P be independent random subsets of {1, . . . , d}.
Consider the random Bernoulli variables Bi ∼ Ber(η) and Ci ∼ Ber(ρ), for i = 1, . . . , d. Then i ∈ N
if Bi = 1 and i ∈ P if Ci = 1. This results in a |N | × |P | design matrix ΦN,P and a |N |-dimensional
response vector yN . Similar as in Chapter 2 with the isotropic Gaussian model, ΦN,P denotes the
sub-matrix of Φ with rows from N and columns from P . Note that the expected cardinality of |P |
and |N | is equal to p resp. n. We briefly show the computation for |P | (it is similar for |N |). We have

E|P | = E
d∑

i=1

1{Ci = 1} =

d∑
i=1

P(Ci = 1) = dρ = p.

We estimate θ by using only a subset P out of the d features. Then the min-norm solution θ̂ is

θ̂P := Φ†
N,P yN , θ̂P c := 0.

One of the properties of the discrete Fourier transform matrix (as mentioned in [4]) is that rank(ΦN,P ) =

min{|N |, |P |} and so the pseudo-inverse Φ†
N,P is given by

Φ†
N,P =

{
ΦT
N,P (ΦN,PΦ

T
N,P )

−1 if |P | > |N |
(ΦT

N,PΦN,P )
−1ΦT

N,P if |P | ≤ |N |

We assume that θ is random (which is in contrast to the settings of most other papers) with covariance
E(θθT ) = 1

dId. This random choice of θ is independent of N and P . We consider the setting where
ρ > η, which is the over-parameterized setting where p > n. Notice that, if we define D = {1, . . . , d},
then

ΦN,Dθ̂ = (ΦN,PΦN,P c)(θ̂P , θ̂P c)T = ΦN,P θ̂P +ΦN,P c θ̂P c = ΦN,P θ̂P

and (
yN
yNc

)
= Φθ̂ =

(
ΦN,D

ΦNc,D

)
θ̂ =

(
ΦN,Dθ̂

ΦNc,Dθ̂

)
=

(
ΦN,P θ̂P
ΦNc,P θ̂P

)
Hence, we indeed have that θ̂P = Φ†

N,P yN .

6.2 Main Result

The main result for the Fourier features model in [4] is as follows. Note that, since we assume a
noise-free model, the risk of θ̂ is equal to the test risk.

Theorem 5 (Theorem 3 in [4]). Consider the setting described above. Assume the true parameter

vector θ is random with covariance E(θθT ) = 1
dId. Suppose η = limd→∞

n(d)
d and ρ = limd→∞

p(d)
d .

Assume ρ ≥ η. Then the risk of θ̂ satisfies

Rover(θ̂) = E||θ − θ̂||2 −→ 1− η

(
2− ρ(1− η)

ρ− η

)
as d → ∞.

Proof. See the proof in [4].
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6.3 Implications of Main Result

Theorem 5 provides an expression for the asymptotic test risk in the over-parameterized regime. This
expression alone is not enough to determine whether beneficial overfitting will occur, as it only holds in
the over-parameterized regime. However, we can easily find an expression for the under-parameterized
regime in which p = 0. We do this as follows. In case p = 0, we have θ̂P = 0. Since we define θ̂P c = 0,
we thus have θ̂ = 0. So E||θ− θ̂||2 = E||θ||2 = 1. Hence, the optimal under-parameterized risk, denoted
by Runder(θ̂), is Runder(θ̂) = 1. Now for beneficial overfitting we need Rover(θ̂) < Runder(θ̂), that is

1− η

(
2− ρ(1− η)

ρ− η

)
< 1.

So for beneficial overfitting, ρ should satisfy the following condition

ρ >
2η

1 + η
. (6.1)

We will check this condition in some special cases and verify it experimentally in the next two sections.

6.4 Special cases

In this section we will look at some special cases of Theorem 5. We will consider the highly over-
parameterized regime ρ → ∞, and the case of no feature selection ρ = 1.

6.4.1 Highly over-parameterized limit

In the highly over-parameterized limit we have ρ → ∞. Then the expression in Theorem 5 becomes

Rover(θ̂) = lim
ρ→∞

1− η

(
2− ρ(1− η)

ρ− η

)
= 1− η(2− (1− η)) = 1− η − 2η2.

This is always less than Runder(θ̂) = 1 (since η > 0). This agrees with condition (6.1), since for ρ → ∞
this condition is always satisfied. Hence, for the Fourier features model, if we keep increasing the
number of parameters indefinitely, we will reach the point of beneficial overfitting.

6.4.2 No feature selection

In case there is no feature selection, we have p = d and hence ρ = 1. Then the expression in Theorem
5 becomes

Rover(θ̂) = lim
ρ→1

1− η

(
2− ρ(1− η)

1− η

)
= 1− η

This is again always less than Runder(θ̂) = 1. If ρ = 1, criterion (6.1) is satisfied if 1 > 2η
1+η . Hence we

should have η < 1. This seems to imply a condition on η. However, since ρ = 1 and ρ ≥ η, we must
have that η ≤ 1, so condition (6.1) is always satisfied.

6.5 Numerical experiments

In this section we will verify the result of Theorem 5 experimentally. In the numerical experiments,
we will check two different scenarios, which consider different choices for N and P .

• Choosing N and P based on independent Bernoulli random variables with mean η resp. ρ. This
is the setting described in [4] and in which Theorem 5 holds.

• Choosing N and P to be uniform subsets of D of cardinality n resp. p. This is the setting
similar to the one discussed in Chapter 2 for random feature selection.
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We consider the same setting as in the paper of Belkin et al. [4]. We take d = 1024, n = 256 and p
ranging from 1 to d. We sample θ∗ uniformly from the unit sphere in Rd by sampling θ∗ ∼ N(0, 1dId)
and dividing by ||θ∗||2 to normalize θ∗. Let Φ ∈ Rd×d be the discrete Fourier transform matrix.
We have response vector y = Φθ∗. We perform only M = 10 Monte Carlo iterations, to keep the
computational time small. In each iteration:

• Sample (Bi)
d
i=1 and (Ci)

d
i=1 from Ber(η) resp. Ber(ρ).

• For i, j ∈ D = {1, . . . , d}, let i ∈ N and j ∈ P if Bi = 1 resp. Cj = 1. To avoid breakdowns, if
either P or N is empty, set it equal to {1}.

• Let ΦN,P = Φ[N,P ] and calculate the min-norm solution

|P | ≥ |N |, θ̂P = ΦT
N,P (ΦN,PΦ

T
N,P )

−1yN

|P | < |N |, θ̂P = (ΦN,PΦN,P )
−1ΦT

N,P yN

and θ̂P c = 0.

• Calculate MSE of θ̂
R = ||θ∗ − θ̂||2.

The result of this simulation is a sequence (Ri)
M
i=1 of MSE values. Our estimate of the MSE is then

the average over the M = 100 Monte Carlo runs

R̂ =
1

M

M∑
i=1

Ri

For our choice of n and d, we have: η = n/d = 256/1024 = 0.25, so criterion (6.1) prescribes

ρ >
2η

1 + η
=

0.5

1.25
= 0.4.

Hence, we take p ranging from 1 to d such that we expect beneficial overfitting, as p > 0.4d. We will
check this both for the case where we use independent Bernoulli variables and where we use Uniform
subsets. Furthermore, the value of the asymptotic test risk as given in Theorem 5 at p = d (so ρ = 1)
is

1− η

(
2− ρ(1− η)

ρ− η

)
= 1− η = 1− 0.25 = 0.75.

So we expect the test risk in the over-parameterized regime to converge to a value of 0.75.

Independent Bernoulli variables

The first case we consider is when N and P are constructed using independent Bernoulli random
variables with mean η resp. ρ. In Figure 6.1 are the results of the Monte Carlo simulation. On the
y-axis we use a logarithmic scale. The spikes we observe in Figure 6.1 are either due to the fact that
we only average over M = 10 MSE value for each p or because the cardinality of N and P is random.
This means that at the interpolation threshold, when p = n, we do not necessarily have |P | = |N |.
Similarly, around the interpolation threshold, we can accidentally have that |P | = |N |, causing a spike
in the test risk. As expected, we can see beneficial overfitting: the minimum test risk is achieved in
the over-parameterized regime. Also notice that the test risk indeed converges to a value of 0.75 as
predicted by Theorem 5.
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Figure 6.1: MSE ||θ̂ − θ∗||2 averaged over 10 runs, features are selected using independent Bernoulli
variables and θ∗ drawn uniformly from the unit sphere in Rd. Blue line: test risk, red line:
theoretical asymptotic test risk value of 0.75.

Uniform samples

Next, we consider the setting where N and P are Uniformly random subsets of {1, . . . , d} of cardinality
n resp. p. A logarithmic plot of the average test risk is shown in Figure 6.2. We observe a much
smoother curve than before, which is to be expected as the cardinality of N and P are now fixed.
Therefore, the peak in test risk will now only occur exactly at the interpolation threshold. If we would
keep increasing the number of Monte Carlo iterations M in the previous setting, then we expect
to approach the curve of Figure 6.2. Indeed, after performing the Monte Carlo scheme, we observe
{|P1|, . . . |PM |}, which are the realizations for the cardinality of the set P (which is random), for a
fixed value p. Then

1

M

M∑
j=1

|Pj | −→ E|P | = p

as M → ∞. Hence the average cardinality for P should become closer to its expected value p
as M → ∞ and Figure 6.1 should approach Figure 6.2. Finally, observe that again the test risk
converges to a value of 0.75.

Figure 6.2: MSE ||θ̂ − θ∗||2 averaged over 10 runs, features are selected using Uniform samples and
θ∗ drawn uniformly from the unit sphere in Rd. Blue line: test risk, red line: theoretical
asymptotic test risk value of 0.75.
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6.6 Comparison to previous results

In this section we briefly check whether the results for random Fourier features are consistent with
previously discussed results. In [15] it is shown that the eigenvalues of the discrete Fourier transform
matrix Φ are {−1,+1,−i,+i}. If we consider the kernel matrix K = ΦΦ∗, with ∗ denoting the complex
conjugate, then the eigenvalues of K are all equal to 1. This is similar to the identity covariance matrix
in Chapter 2. There we saw that for identity covariance and random feature selection, beneficial

overfitting occurs if the SNR ||θ∗||2
σ2 is large enough. In this chapter we assumed σ = 0, and hence SNR

= ∞ and we would expect beneficial overfitting, which is indeed what we observe in Figure 6.2.
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7 Classification model

Until now, we have only considered regression problems. However, Double Descent is not limited to
regression. For instance, the example of Double Descent in machine learning models from Zhang et al.
(2017) [1], the paper that was referenced in the Introduction, was in fact about classification problems.
In this chapter we will look at one of the earliest examples of Double Descent in classification, described
in Opper et al. (1990) [10]. They consider a simple classification model, with 3 different choices for
the weight vector θ̂ and prove results for the learning and generalization ability. We will relate their
result to the learning and test risk and try to verify it experimentally.

7.1 Setting

Opper et al. (1990) [10] consider the following classification model

y = f(x) = sign(xT θ), (7.1)

with y the response variable, feature vector x = (x1, . . . , xp)
T ∈ {+1,−1}p and parameter vector

θ ∈ Rp. Notice that we assume noise-less labels y. We generate training data (xi, yi)
n
i=1, where we

randomly choose the vectors xi ∈ {+1,−1}p, s.t. P({+1}) = P({−1}) = 1
2 , and where the yi are

generated according to equation (7.1). We assume a constant parameterization rate α := n
p .

Opper et al. consider 3 ways to estimate θ, one of which is by using the pseudo-inverse. For α < 1
(so p > n), the expression they give for θ̂ is

θ̂j =
1

p

∑
i,k

yi(C
−1)i,k(xk)j , with Ci,k =

1

p

∑
j

(xi)j(xk)j .

Here C is the correlation matrix and we denote by (xi)j the j-th component of vector xi. This

expression for θ̂ is in fact the same as using the pseudo-inverse for p > n, as given in equation (1.3).
Indeed, we have

(XXT )i,k = ⟨X[i, :], XT [:, k]⟩ =
p∑

j=1

X[i, j]XT [j, k] =

p∑
j=1

(xi)j(xk)j = pCi,k.

Here X is the design matrix with rows xTi , and we denote by X[i, :] the i-th row of X. Hence
C = 1

pXXT . Then for θ̂ we find

θ̂j =
1

p

∑
i,k

yi(C
−1)i,k(xk)j =

1

p

∑
i,k

(xk)jp(XXT )−1
i,k yi

=
∑
i

∑
k

XT
j,k(XXT )−1

k,iyi =
∑
i

(XT (XXT )−1)j,iyi.

Hence θ̂ = XT (XXT )−1y, conform equation (1.3). For α > 1 (so p < n), the least-squares solution
θ̂ = XT (XXT )−1y is used, which follows from minimizing ||y −Xθ||2. After training the model with
data (xi, yi)

n
i=1, we obtain the estimate

ŷ = f̂(x) = sign(xT θ̂)
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7.2 Main Result

Opper et al. [10] consider the learning ability L(α) and generalization ability G(α), which they define
as

• L(α): probability that f(xi) = f̂(xi) for data vector xi,

• G(α): probability that f(xnew) = f̂(xnew) for unseen data vector xnew.

We can relate these to the training and test risk as follows. Since we are working with a classification
model, we use the 0-1 loss function

L(θ̂) = 1{sign(xT θ) ̸= sign(xT θ̂)} = 1{y ̸= ŷ}.

For data (xi, yi)
n
i=1, the training risk is

Rtrain(θ̂) =
1

n

n∑
j=1

1{yj ̸= ŷj}.

If we now consider the empirical probability distribution of the data, denoted by Fn, then

1− L(α) = P(f(x1) ̸= f̂(x1)) = Ex1∼Fn(1{f(x1) ̸= f̂(x1)})

=
1

n

n∑
j=1

1{f(xj) ̸= f̂(xj)} =
1

n

n∑
j=1

1{yj ̸= ŷj}.

Hence Rtrain(θ̂) = 1− L(α). Similarly, for the test risk we have

Rtest(θ̂) = E(1{y ̸= ŷ}) = P(y ̸= ŷ) = 1−G(α).

Hence Rtest(θ̂) = 1−G(α). We can now state the main result of Opper et al. [10] in terms of the test
risk.

Theorem 6 (Main result in [10]). For the classification problem in (7.1), with ||θ|| = 1, and the choice
of θ̂ where we use the pseudo-inverse, the test risk of θ̂, as a function of α = n

p , is given by

Rtest(α) =

 1
π cos−1

√
2α(1−α)
π−2α if α < 1

1
π cos−1

√
2(α−1)
π+2α−4 if α > 1

Proof. See the proof in [10].

7.3 Numerical experiments

We will try to verify the formula in Theorem 6 through experiments in R. We fix the number of
parameters p = 100 and vary the number of data points n from 1 to 400. This means that α = n

p will
be between 0 and 4. The true parameter vector θ ∈ Rp is a unit vector with components θj ∝ 1. We
perform M = 100 Monte Carlo iterations according to the following scheme:

• Construct training and test data matrices, X ∈ Rn×p and Xtest ∈ Rn×p with entries sampled
uniformly from {+1,−1}.

• Calculate true labels
y = sign(Xθ∗), ytest = sign(Xtestθ

∗).

• Calculate min-norm solution

p > n : θ̂ = XT (XXT )−1y, p ≤ n : θ̂ = (XTX)−1XT y.
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• Calculate predictions
ŷ = sign(Xθ̂), ŷtest = sign(Xtestθ̂).

• Calculate training and test risk

Rtrain =
1

n

n∑
i=1

1{ŷ ̸= y}, Rtest =
1

n

n∑
i=1

1{ŷtest ̸= ytest}.

We repeat above scheme M = 100 times and calculate the mean of the Rtrain and Rtest values. The
results are shown in Figure 7.1 below.

Figure 7.1: (left graph) Training risk plotted against α. (right graph) Experimental test risk (dots)
and theoretical test risk (red line) plotted against α.

From the right graph in Figure 7.1 we can see that the agreement with the theoretical test risk
is excellent. Furthermore, we observe the Double Descent behaviour for the test risk. In the under-
parameterized regime (α > 1), the test risk has a minimum at α = ∞ and increases to the interpolation
threshold (α = 1), after which the test risk decreases again in the over-parameterized regime (α < 1).
The minimum test risk lies in the under-parameterized regime, so there is no beneficial overfitting.

7.4 Comparison to previous results

Previously, we have seen that beneficial overfitting depends on the covariance matrix of the data. Is
this consistent with the classification setting from this chapter? We have selected data vectors x with
components xj , j ∈ {1, . . . , p} such that

P(xj = 1) = P(xj = −1) =
1

2
.

This implies for the mean and covariance of the data that

E(xj) = 1 · 1
2
+ (−1) · 1

2
= 0

Var(xj) = E(x2j ) = 12 · 1
2
+ (−1)2 · 1

2
= 1

Hence, the covariance matrix of the data is the identity matrix. In case of an identity covariance
matrix, and no feature selection, we have seen that no beneficial overfitting was possible in the isotropic
Gaussian case, see Chapter 2. This is consistent with Figure 7.1, in which the minimum test risk lies
in the under-parameterized (α > 1) regime.
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8 Conclusion and Discussion

Conclusion

In this chapter we combine the previously discussed results and try to answer the main question: under
what conditions does the optimal test risk lie in the over-parameterized regime? We have looked at
several variations of the linear regression problem and considered kernel regression, random Fourier
features and a classification model. Based on these models, we can draw the following conclusions.

First of all, we have seen that the Double Descent behaviour shows up in every model we considered
in this thesis, regardless of the specific model (linear regression, kernel regression, random Fourier
features, classification) or the way in which we select the features (deterministic or random). For
beneficial overfitting however, the way in which we select the features is important as well. We dis-
tinguish between 3 options for feature selection: no feature selection, deterministic feature selection
and random feature selection.

Without feature selection, beneficial overfitting is determined solely by the eigenval-
ues of the data covariance or kernel matrix. In Chapters 2, 4 and 7, we have seen instances
where we do not select features and use the full vector of covariates. If the covariance matrix is
equal to the identity matrix, or if the kernel matrix has all eigenvalues equal to 1, then no beneficial
overfitting is possible. For both slowly and rapidly decaying eigenvalues of the covariance matrix,
beneficial overfitting is possible, provided that we have a long tail of relatively small eigenvalues of
the covariance matrix and a suitable number of parameters. Having a long tail of relatively small
eigenvalues corresponds to having many low variance directions, which is the case when we are in a
realistic over-parameterized regime where not all features have equal variance.

With deterministic feature selection and isotropic covariance, beneficial overfitting de-
pends on the importance of features. In Chapters 2 and 5 we saw results for a deterministic
feature selection with isotropic covariance matrix. This corresponds to a setting in which we select
features using e.g. LASSO regression, before performing linear regression. In this setting, selecting
the most important features (features with the highest weights as determined by the choice of param-
eter vector) does not lead to beneficial overfitting, whereas selecting features with the lowest weights
does result in beneficial overfitting behaviour. This is consistent with selecting many low variance
directions for beneficial overfitting if we would not perform feature selection.

With random feature selection and identity covariance, beneficial overfitting depends
on the signal-to-noise ratio. In Chapters 2, 5 and 6 we looked at the random feature selection with
all eigenvalues equal to 1 for the covariance matrix or kernel matrix. Beneficial overfitting occurs if the
signal-to-noise ratio (SNR) is large enough. In machine learning, we often assume small label noise σ,
so that the signal-to-noise ratio is large. Indeed, in the case of linear/quadratic kernel regression and
random Fourier features, we assumed σ = 0 (so SNR = ∞) and we observed beneficial overfitting.

Linear regression results do not apply to Gaussian kernel regression. We have seen that
the results in Chapter 5 for the linear and quadratic kernel, Chapter 6 and Chapter 7 seem to agree
with the linear regression results for beneficial overfitting that were discussed in Chapters 2, 3 and 4:
beneficial overfitting can be predicted by looking at the eigenvalues of the covariance matrix or kernel
matrix, together with the way in which features are selected. However, in the case of Gaussian kernel
regression from Chapter 5, this does not seem to be the case. Hence, to be able to predict whether
beneficial overfitting will occur, more factors need to be considered.
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Discussion

Next, we make some remarks about the results in this thesis and provide some directions for future
research. First, it is important to note that the focus of this thesis is on Double Descent in the linear
regression case with (sub-)Gaussian covariates. Hence, although these results seem to agree with the
linear/quadratic kernel regression, random Fourier features and classification model from Chapters 5,
6 and 7, they do not hold in general, as we saw for the Gaussian kernel in Chapter 5. However, the
results have made clear that the eigenvalues of the data covariance or kernel matrix and the way of
selecting features are important to predict beneficial overfitting. Also, we believe it is still useful to
compare simpler results to more general models, as it can sometimes be difficult to derive conditions
for beneficial overfitting from more general and complicated results, which was the case when we
considered the result in Chapter 3.

Furthermore, most of the Monte Carlo experiments we performed only contained a relatively small
number of parameters and/or training data points, whereas in practice the number of parameters
and data points may be much larger. However, the models we considered are relatively simple and
hence the experiments and graphs are only meant as an illustrative example of Double Descent. More
research is needed for Double Descent in deep neural networks, where the number of parameters is
much larger and the model is more complex.

Moreover, we have not been able to fully explain the results for the Gaussian kernel from Chap-
ter 5, based on the linear regression results. There are several interesting directions that may be able
to explain this behaviour. Recall from the Introduction that Double Descent is related to a form of
’inductive bias’ [3], where the bias is towards smoother solutions. This may explain the striking differ-
ence in test risk behaviour between Figures 5.5 and 5.6 for l = 1, and Figures 5.7 and 5.8 for l = 10,
since for larger length scale l the Gaussian kernel estimator yields smoother solutions. Furthermore, it
may be helpful to consider the eigenvalues of the matrix K(XP , XP ) instead of K(X,X) in setting 1
of Chapter 5. In that case, we could compute characteristics of the eigenvalue sequence for each value
of p, such as the smallest/largest eigenvalue of the kernel matrix K or the condition number of K, and
look at a scatter plot of the test risk behaviour and this characteristic. Another direction is to look
at the eigenvalues of a different matrix, such as in Liu et al. (2021) [16], in which it is shown that the
shape of the Double Descent risk curve in case of kernel ridge regression depends on the eigenvalue
behaviour of the matrix X̃ = βXXT /d+α11T , with α, β constants depending on the choice of kernel
function. Similar as what we found in this thesis, the eigenvalue behaviour of the covariance matrix
and kernel matrix are important for beneficial overfitting. Another result from Liang et al. (2020)
[17] considers the kernel ridgeless regression, where they find that the behaviour of the test risk for
the minimum norm solution depends on the high dimensionality of the input data, the smoothness
of the kernel function and the eigenvalue decay of the empirical covariance and kernel matrix, which
confirms that we indeed have to consider more factors to fully explain the Double Descent behaviour.

Finally, in this thesis we have only considered one way of optimization, namely the least squares
method for the under-parameterized regime and the minimum norm solution using the pseudo-inverse
for the over-parameterized regime. However, as seen in e.g. [10], choosing a different optimization
method can result in losing the Double Descent behaviour. Further literature about the effect of
optimization on Double Descent can be found in [18], in which the test risk is decomposed in an
optimization and a generalization term. Another way of selecting one of the infinitely many solutions
in the over-parameterized regime is by using ensembles, which is used for example in random forests.
In this setting, it seems that Double Descent behaviour is still possible, see e.g. [3].
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Future directions

One important open question when it comes to Double Descent and beneficial overfitting is if and how
the results for the simple (linear) case generalize to deep neural networks. A well-known connection
is between the optimization algorithms for deep neural networks and linear regression. In deep neural
networks, often the SGD algorithm is used for optimization. In e.g. [6] it is shown that its solution
converges to the minimum norm least-squares solution if we initialize the SGD algorithm at θ = 0.
Another connection is that neural networks can also be described using kernel regression with the
so-called neural tangent kernel, see e.g. Jacot et al. (2018) [19]. It turns out that very wide neural
networks, trained with SGD with an appropriate initialization, can be well approximated by linear
functions in a suitable kernel space, which corresponds to the neural tangent kernel. However this
approximation depends on some strong assumptions, such as that the learnt coefficients θj cannot
change too much from their initialization during training.

Another interesting question is whether beneficial overfitting is worth the extra computational cost
that comes with it, as we are dealing with models that have a large amount of parameters, espe-
cially when the test risk only decreases slightly compared to the under-parameterized regime. In
this thesis we have dealt with relatively simple models and so computational costs were not much of
a concern, but already for the Fourier features model from Chapter 6 the computation of the test
risk for p ranging from 1 to 1000 took a considerable amount of time, whereas the test risk only
improved from a value of 1 to 0.75. Besides, we have not seen major improvements in test risk in
the over-parameterized regime in this thesis, so for simple models beneficial overfitting may not be
as interesting (but they can still be useful in understanding Double Descent for more complex models).

Furthermore, it turns out that, under certain conditions, optimization algorithms such as Stochas-
tic Gradient Descent (SGD) have an exponential convergence rate in the over-parameterized regime.
In Bassily et al. (2018) [20] and Liu et al. (2020) [21] it is shown that, if the loss function L satisfies
the so-called PL* condition, then L has a global minimum and SGD converges exponentially to this
minimum. Moreover, [21] show that over-parameterized systems, in particular sufficiently wide neural
networks, satisfy the PL* condition around their initialization point, guaranteeing the exponential
convergence of SGD.

Instead of looking at the performance of the test risk against the number of parameters, as we have
done in this thesis, we can also look at the performance against the number of training data points.
An extensive description and history of these so-called learning curves can be found in Viering et al.
(2021) [22]. Two recent examples of Double Descent in learning curves are given in Nakkiran (2019)
[23] and Nakkiran et al. (2019) [24]. In these papers it is shown that Double Descent can also occur
if we look at the test risk against the number of training data points. Hence, this Double Descent can
result in regimes (for n < ∞) where training with a larger number of samples hurts the performance.
This is rather counter-intuitive and would imply that in some cases lowering the number of training
samples can improve the model performance. Another option is to plot the test risk against the so-
called effective degrees of freedom (see e.g. [8]), which is defined as df = tr(H), where H is such that
ŷ = Hy. In case of kernel regression, we have H = K(K + σ2I)−1 and hence for σ = 0 the effective
d.o.f. is equal to df = tr(H) = tr(In) = n. This may be interesting to consider when the implicit
feature space dimension of the kernel function is infinite dimensional (such as for the Gaussian kernel
in Chapter 5).

Yet another direction lies in the use of Gaussian processes, which can be seen as the infinite-width limit
of neural networks. In Harzli et al. (2021) [25] the Neural Network Gaussian Process is considered,
which is the infinite-width limit of a particular neural network. They present an asymptotic expression
for the test risk in the case that n

p and n
d remain fixed as p, n, d → ∞, similar to the setting of [6] and

[7]. Furthermore, they present conditions under which the Double Descent behaviour occurs. This
seems like a particularly interesting direction, as we can draw connections between Gaussian processes
and neural networks. This is also the direction that is argued for in Belkin et al. (2018) [26].
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Final thoughts

All in all, we think there is still not a full understanding of the Double Descent phenomenon for deep
neural networks. However, the large amount of literature that is emerging in recent years is a positive
sign that we are getting closer. Double Descent in linear regression is now very well understood and
also the understanding for kernel regression is increasing, although the analytical formulas for the
test risk can quickly become rather complex. In this thesis we have seen that not all results can be
applied or are easy to adapt to more complex models, as was the case when we looked at Gaussian
kernel regression in Chapter 5. In order to fully understand Double Descent in deep neural networks,
more research is needed on the connection between simpler models and deep networks, especially when
more non-linearity is involved. An interesting recent work is from Frei et al. (2022) [27], in which
classification in a two-layer neural network is considered where the model and learning dynamics are
both non-linear.
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9 Appendix

9.1 Proof of Theorem 1

We follow the proof as given in Belkin et al. (2020) [4], with some details added. We start with proving
formula (2.1). We will distinguish between the under-parameterized (p ≤ n) and over-parameterized
(p > n) case.

Under-parameterized case (p ≤ n)

In Breiman et al. (1983) [28] the situation for p ≤ n is discussed. They state the following Lemma.

Lemma 5 (Theorem 1.1 in [28]). Define

σ2 = Var(ε), σ2
p = Var(

∞∑
i=p+1

θixi | x1, . . . , xp), Un,p := E(E((y − ŷn+1)
2 | (yi, xj)i≤n,j≤n))

with ŷn+1 the estimate for y after training with a training set of size n. If p ≤ n− 2, then

Un,p = (σ2 + σ2
p)

(
1 +

p

n− p− 1

)
.

For n ≥ p ≥ n− 1 we have Un,p = ∞.

We can apply Lemma 5 with some simplifications. Since x ∼ N(0, Ip), the components of x are IID
N(0, 1), so xi ∼ N(0, 1). In this case, we have

σ2
p = Var(

∞∑
i=p+1

θixi|x1, . . . , xp) = Var(
∑
i∈P c

θixi) =
∑
i∈P c

θ2iVar(xi) =
∑
i∈P c

θ2i = ||θP c ||2.

Furthermore

Un,p = E(E((y − ŷn+1)
2|(yi, xj)i≤n,j≤n)) = E(y − ŷ)2 = E(y − xT θ̂)2 =: R(θ̂).

Hence we find

R(θ̂) =

{
(||θP c ||2 + σ2)(1 + p

n−p−1) if p ≤ n− 2

∞ if n− 1 ≤ p ≤ n

Over-parameterized case (p > n)

Using that x ∼ N(0, Id), we can rewrite the prediction risk of θ̂ as follows

E(y − xT θ̂)2 = E(xT (θ − θ̂) + ε)2 = E(xT (θ − θ̂))2 + 2E(xT (θ − θ̂)ε) + E(ε2)

= E((θ − θ̂)TxxT (θ − θ̂)) + 0 + σ2 = (θ − θ̂)T Id(θ − θ̂) + σ2 = ||θ − θ̂||2 + σ2

= σ2 + ||θP c − θ̂P c ||2 + ||θP − θ̂P ||2.

Furthermore, since θ̂P c = 0, we obtain

E(y − xT θ̂)2 = σ2 + ||θP c ||2 + E(||θP − θ̂P ||2).
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For p > n we know that the pseudo-inverse X†
P is given by X†

P = XT
P (XPX

T
P )

−1. Set η := y −XP θP .
Then

θP − θ̂P = θP −XT
P (XPX

T
P )

−1y = θP −XT
P (XPX

T
P )

−1(XP θP + η)

= (I −XT
P (XPX

T
P )

−1XP )θP −XT
P (XPX

T
P )

−1η.

Here the term (I −XT
P (XPX

T
P )

−1XP )θP is an element of the null space of XP , N(XP ). Indeed, using
that v ∈ N(XP ) if and only if XP v = 0, we find

XP (I −XT
P (XPX

T
P )

−1XP )θP = XP θP −XPX
T
P (XPX

T
P )

−1XP θP = XP θP −XP θP = 0.

Furthermore, −XT
P (XPX

T
P )

−1η is a vector in the row space ofXP , R(XP ). Indeed, we know v ∈ R(XP )
if and only if there exists a vector w s.t.

XT
Pw = v = −XT

P (XPX
T
P )

−1η,

so we should take w = −(XPX
T
P )

−1η. Since R(XP ) ⊥ N(XP ), we have by the Pythagorean theorem

||θP − θ̂P ||2 = ||(I −XT
P (XPX

T
P )

−1XP )θP ||2 + ||XT
P (XPX

T
P )

−1η||2.

First term: ||(I − XT
P (XPX

T
P )

−1XP )θP ||2. Set ΠP = XT
P (XPX

T
P )

−1XP . Notice that ΠP :=
XT

P (XPX
T
P )

−1XP is the orthogonal projection matrix for the row space of XP . Indeed,

ΠPΠP = XT
P (XPX

T
P )

†XPX
T
P (XPX

T
P )

†XP = XT
P (XPX

T
P )

†XP = ΠP ,

and
ΠT

P = (XT
P (XPX

T
P )

†XP )
T = XT

P (XPX
T
P )

†XP = ΠP .

So ΠP is an orthogonal projection matrix. Hence ΠP θP ⊥ θP , and by the Pythagorean theorem

||(I −ΠP )θP ||2 = ||θP ||2 + ||ΠP θP ||2.

One of the properties of the multivariate standard normal distribution is the rotational symmetry, as
its pdf only depends on the distance to the origin. Since ΠP is a projection matrix, we can write

ΠP =
n∑

i=1

viv
T
i ,

with vi the eigenvectors of ΠP . Here we assume that rank(ΠP ) = n, which is indeed the case as
rank(XP ) = n. Choose the eigenvectors such that vi = ei ∈ Rp (i-th unit vector). Because of the
rotational symmetry, we can rotate the eigenvectors without changing the expected value. So setting
vi = Rei, we get

ΠP =

n∑
i=1

(Rei)(Rei)
T = R

n∑
i=1

eie
T
i R

T .

Then

E||ΠP θP ||2 = E⟨θ,ΠP θP ⟩ = EθTP

[
R(

n∑
i=1

eie
T
i )R

T

]
θP = E

n∑
i=1

(RT θP )
T eie

T
i (R

T θP )

= E
n∑

i=1

⟨ei, RθP ⟩2 = E
n∑

i=1

(RθP )
2
i = E

n

p

p∑
i=1

(RθP )
2
i

where the last equality follows from symmetry, since we can choose any combination of n out of the
p unit vectors. Now, since rotating a vector does not change its norm, we have

E
n

p

p∑
i=1

(RθP )
2
i =

n

p
||RθP ||2 =

n

p
||θP ||2.
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Hence, it follows that

E||ΠP θP ||2 = ||θP ||2
n

p
.

Therefore
E||(I −XT

P (XPX
T
P )

−1XP )θP ||2 = ||θP ||2(1−
n

p
).

Second term: ||XT
P (XPX

T
P )

−1η||2. We use the trace trick: aT b = tr(aT b). Then

||XT
P (XPX

T
P )

−1η||2 = (XT
P (XPX

T
P )

−1η)T (XT
P (XPX

T
P )

−1η)

= tr(XT
P (XPX

T
P )

−1η)TXT
P (XPX

T
P )

−1η)

= tr(ηT (XPX
T
P )

−1XPX
T
P (XPX

T
P )

−1η)

= tr(ηT (XPX
T
P )

−1η) = tr((XPX
T
P )

−1ηηT ).

Next, notice that η has i-th component yi − xTP θP . We can write

xT θ = xTP θP + xTP cθP c ,

yi − xTP θP = y − xT θ + xTP cθP c ,

ηi = εi + (XP cθP c)i.

Hence ηi is independent of x
T
P θP , so for the expectation we find

E||XT
P (XPX

T
P )

−1η||2 = tr(E(XPX
T
P )

−1E(ηηT ))

Furthermore, we know that ηi is Gaussian with mean and covariance

E(ηi) = E(εi) + E(xTP cθP c) = 0 + 0 = 0,

Var(ηi) = Var(εi) + Var(xTP cθP c) = σ2 + ||θP c ||2.

Hence η is Gaussian with mean 0 and covariance matrix (||θP c ||2 + σ2)In. So

E(ηηT ) = (||θP c ||2 + σ2)In.

Next, we know that P := (XPX
T
P )

−1 has an inverse-Wishart distribution with scale matrix In and p
degrees of freedom. Hence

E(P ) =
1

p− n− 1
In

for p ≥ n+ 2 and E(P ) = ∞ for p = n, n+ 1. So

trE(XPX
T
P )

−1 = tr
1

p− n− 1
In =

n

p− n− 1

for p ≥ n+ 2. So we can conclude

E||XT
P (XPX

T
P )

−1η||2 =

{
(||θP c ||2 + σ2) n

p−n−1 if p ≥ n+ 2

∞ if p = n, n+ 1

Combining with the first term and the case p ≤ n, we retrieve formula (2.1).
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Proof of formula (2.2)

Since P is a uniformly random subset of {1, . . . , d} with |P | = p, we have for all i ∈ {1, . . . , d}

P(i ∈ P ) =
p

d
.

Furthermore, we can write
(θ∗P )j = θ∗j1{j ∈ P}.

Hence, we have

E(||θ∗P ||2) =
∑
j

E((θ∗P )2j ) =
∑
j

E((θ∗j )21{j ∈ P}) =
∑
j

(θ∗j )
2E(1{j ∈ P})

=
∑
j

(θ∗j )
2P(j ∈ P ) =

p

d

∑
j

(θ∗j )
2 =

p

d
||θ∗||2.

Similarly, we have

E(||θ∗P c ||2) =
(
1− p

d

)
||θ∗||2.

Now taking expectation with respect to P of formula (2.1), we find

Rrand(θ̂) = E((y − xT θ̂)2) = EPEX,ε((y − xT θ̂)2).

For p ≤ n− 2, this results in

(EP (||θ∗P c ||2) + σ2)(1 +
p

n− p− 1
) = ((1− p

d
)||θ∗||2 + σ2)(1 +

p

n− p− 1
).

For p ≥ n+ 2, we find

EP ||θ∗P ||2(1−
n

p
)+(EP ||θ∗P c ||2+σ2)(1+

n

p− n− 1
) =

p

d
||θ∗||2(1−n

p
)+((1− p

d
)||θ∗||2+σ2)(1+

n

p− n− 1
)

= ||θ∗||2(p
d
(1− n

p
) + (1− p

d
)(1 +

n

p− n− 1
)) + σ2(1 +

n

p− n− 1
)

= ||θ∗||2(−n

d
+ 1 +

n

p− n− 1
− pn

d(p− n− 1)
) + σ2(1 +

n

p− n− 1
),

where we can write

−n

d
+ 1 +

n

p− n− 1
− pn

d(p− n− 1)
= −n(p− n− 1)

d(p− n− 1)
+ 1 +

nd

d(p− n− 1)
− pn

d(p− n− 1)

= 1 +
−np+ n2 + n+ nd− np

d(p− n− 1)
=

dp− dn− d− np+ n2 + n+ nd− np

d(p− n− 1)

=
dp− d− 2np+ n2 + n

d(p− n− 1)
.

On the other hand, in formula (2.2) we have

1− n

d
(2− d− n− 1

p− n− 1
) = 1− 2

n

d
+

n(d− n− 1)

d(p− n− 1)
=

d(p− n− 1)− 2n(p− n− 1) + n(d− n− 1)

d(p− n− 1)

=
dp− dn− d− 2np+ 2n2 + 2n+ nd− n2 − n

d(p− n− 1)
=

dp− d− 2np+ n2 + n

d(p− n− 1)
.

So we retrieve exactly the expressions from formula (2.2).
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9.2 Proof of Lemma 1

The proof of Lemma 1 can also be found in Appendix H of [5]. If rank(Σ) = p, then we immediately
have

rank(Σ)s(Σ) = p

1
p

∑p
i=1 λi

λ1
=

∑p
i=1 λi

λ1
= r0(Σ),

rank(Σ)S(Σ) = p
(1p
∑p

i=1 λi)
2

1
p

∑p
i=1 λ

2
i

=
(
∑p

i=1 λi)
2∑p

i=1 λ
2
i

= R0(Σ).

Furthermore, using that λ1 ≥ λ2 ≥ . . . , λp, we have for s(Σ)

s(Σ) =

1
p

∑p
i=1 λi

λ1
=

1

p

p∑
i=1

λi

λ1
≤ 1

p

p∑
i=1

1 = 1,

s(Σ) =

1
p

∑p
i=1 λi

λ1
≥

1
pλ1

λ1
=

1

p
.

Similar arguments can be used to show that 1
p ≤ S(Σ) ≤ 1. What remains is to show that 1 ≤ rk(Σ) ≤

Rk(Σ) ≤ p. The inequality rk(Σ) ≥ 1 follows immediately from the definition of rk(Σ)

rk(Σ) =

∑p
i=k+1 λi

λk+1
=

p∑
i=k+1

λi

λk+1
= 1 +

p∑
i=k+2

λi

λk+1
≥ 1.

Furthermore, we have

r2k(Σ) =

(∑p
i=k+1 λi

λk+1

)2

=
(
∑p

i=k+1 λi)
2

λ2
k+1

=

∑p
i=k+1 λ

2
i

λ2
k+1

(
∑p

i=k+1 λi)
2∑p

i=k+1 λ
2
i

= rk(Σ
2)Rk(Σ),

and

rk(Σ
2) =

∑p
i=k+1 λ

2
i

λ2
k+1

≤
λk+1

∑p
i=k+1 λk+1

λ2
k+1

= rk(Σ).

Combining these 2 results, we obtain

r2k(Σ) = rk(Σ
2)Rk(Σ) ≤ rk(Σ)Rk(Σ)

From this it follows that rk(Σ) ≤ Rk(Σ). Finally, we have that

Rk(Σ) =
(
∑p

i=k+1 λi)
2∑p

i=k+1 λ
2
i

≤
(q − k)

∑p
i=k+1 λ

2
i∑p

i=k+1 λ
2
i

= p− k ≤ p,

which concludes the proof.
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9.3 Proof of Theorem 4

We will follow the proof as given in [5], with some steps added in between for clarity. The main steps
in the proof are as follows:

1. Upper bound Rexcess(θ̂) in terms of θ∗, a matrix B and the trace of a matrix C. With probability
at least 1− e−t, t ≥ 0, we have

Rexcess(θ̂) ≤ 2(θ∗)TBθ∗ + 12tσ2tr(C)

with B and C defined as

B = (I −XT (XXT )−1X)Σ(I −XT (XXT )−1X),

C = (XXT )−1XΣXT (XXT )−1.

2. Express trace(C) in terms of independent subgaussian vectors

tr(C) =
∑
i

λ2
i z

T
i A

2
−izi

(1 + λizTi A
−1
−i zi)

2

with zi := Xvi/
√
λi independent σ2

x (sub-)Gaussian vectors with unit variance and A−i :=∑
j ̸=i λjzjz

T
j , where λj is the j-th eigenvalue of Σ.

3. Find upper and lower bounds on the eigenvalues of A−i. There exists a universal constant c s.t.
with prob. at least 1− 2e−n/c

1

c

∑
i=k+1

λi − cλk+1n ≤ µn(Ak) ≤ µ1(Ak) ≤ c
∑

i=k+1

λi + cλk+1n.

4. Upper bound trace(C). There exist b, c ≥ 1 s.t. if 0 ≤ k ≤ n/c, rk(Σ) ≥ bn and l ≤ k, then with
prob. at least 1− 7e−n/c

tr(C) ≤ c

(
l

n
+ n

∑
i>l λ

2
i

(
∑

i>k λi)2

)
.

5. Make a convenient choice for the split l. Namely, take l = k∗.

6. Upper bound the B term: there exists a C > 0 s.t. for all t ≥ 1, with probability at least 1− e−t

(θ∗)TBθ∗ ≤ C||θ∗||2||Σ||max{
√
r0(Σ)/n, r0(Σ)/n,

√
t/n, t/n}.

7. Combining the previous steps to find the statement of Theorem 4.
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Step 1: Upper bound excess risk in terms of B and C

Recall that the excess risk, evaluated in the min-norm solution θ̂, is defined as

Rexcess(θ̂) = Ex,y(y − xT θ̂)2 − Ex,y(y − xT θ∗)2.

Plugging in y = xT θ∗ + ε

Rexcess(θ̂) = Ex,y(y − xT θ̂)2 − Ex,y(y − xT θ∗)2 = E(xT θ∗ − ε− xT θ̂)2 − E(ε2)

= E(xT (θ̂ − θ∗))2 − 2E(xT (θ̂ − θ∗)ε) + E(ε2)− E(ε2) = E(xT (θ̂ − θ∗))2.

Notice that, conditional on θ̂, we have the representation

Rexcess(θ̂) = E(xT (θ̂ − θ∗))2 = E(xT (θ̂ − θ∗)xT (θ̂ − θ∗))

= E((θ̂ − θ∗)TxxT (θ̂ − θ∗)) = (θ̂ − θ∗)TΣ(θ̂ − θ∗).

We will use this representation in Section 4.3 to see how the eigenvalues of Σ influence the prediction
accuracy.

Next, we plug in the estimator θ̂ = XT (XXT )−1y = XT (XXT )−1(Xθ∗ + ε),

Rexcess(θ̂) = E(xT (θ̂ − θ∗))2 = E(xT (XT (XXT )−1(Xθ∗ + ε)− θ∗))2

= E(xT (XT (XXT )−1X)θ∗ + xT (XT (XXT )−1ε)− xT θ∗)2

= E(xT (I −XT (XXT )−1X)θ∗ − xTXT (XXT )−1ε)2

≤ 2E(xT (I −XT (XXT )−1X)θ∗)2 + 2E(xTXT (XXT )−1ε)2,

where for the last inequality we use (a − b)2 ≤ 2(a2 + b2). Next, using that Var(xT b) = Var(bTx) =
bTVar(x)b with b constant, E(x) = E(ε) = 0 and the fact that I − XT (XXT )−1X is symmetric, we
find

Rexcess(θ̂) ≤ 2Var(xT (I −XT (XXT )−1X)θ∗) + 2(E(xT (I −XT (XXT )−1X)θ∗))2

+2Var(xTXT (XXT )−1ε) + 2(E(xTXT (XXT )−1ε))2

= 2(θ∗)T (I −XT (XXT )−1X)TVar(x)(I −XT (XXT )−1X)θ∗

+2εT (XT (XXT )−1)TVar(x)XT (XXT )−1ε

= 2(θ∗)T (I −XT (XXT )−1X)Σ(I −XT (XXT )−1X)θ∗

+2εT (XT (XXT )−1)TΣXT (XXT )−1ε

= 2(θ∗)TBθ∗ + 2εTCε,

with
B := (I −XT (XXT )−1X)Σ(I −XT (XXT )−1X),

C := (XXT )−1XΣXT (XXT )−1.

It remains to upper bound εTCε in terms of the trace of C. For this, Bartlett et al. (2020) [5] use
Lemma 35 from Page and Grunewalder (2017) [29], which is stated in the following Lemma.

Lemma 6 (Lemma 35 from [29]). Let εi be independent random variables s.t. for all λ ∈ R

E(eλεi) ≤ eσ
2λ2/2

(so εi is sub-Gaussian). Let M ⊂ Rn×n be a positive semi-definite matrix and let t ≥ 0. Then with
probability at least 1− e−t we have

εTMε ≤ σ2tr(M) + 2σ2||M ||t+ 2σ2
√

||M ||2t2 + tr(M2)t
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Proof. See the proof of Lemma 35 in [29].

We will use Lemma 6 with M = C. Notice that C is indeed positive semi-definite and εi is a
(sub-)Gaussian random variable. So by the lemma we have, with probability at least 1− e−t

εTCε ≤ σ2tr(C) + 2σ2||C||t+ 2σ2
√
||C||2t2 + tr(C2)t.

Next, using that tr(C2) ≤ tr(C)2 since C is positive semi-definite (to see this, write tr(C) =
∑

i λi(C)
and use λi ≥ 0), we have

||C||F =
√
tr(CTC) =

√
tr(C2) ≤

√
(tr(C))2 = tr(C).

Hence, we find, with probability at least 1− e−t

εTCε ≤ σ2tr(C) + 2σ2tr(C)t+ 2σ2
√

tr(C)2t2 + tr(C)2t

= (2t+ 1)σ2tr(C) + 2σ2(
√
t2 + t)tr(C) ≤ (4t+ 2)σ2tr(C),

using that
√
t2 + t ≤

√
t2 + t+ 1/4 = t+ 1

2 for t ≥ 0. Thus, with probability at least 1− e−t we have

Rexcess(θ̂) ≤ 2(θ∗)TBθ∗ + (8t+ 4)σ2tr(C).

Assuming that t ≥ 1, we find, with probability at least 1− e−t

Rexcess(θ̂) ≤ 2(θ∗)TBθ∗ + 12tσ2tr(C). (9.1)

Step 2: Express trace in terms of independent (sub-)Gaussian vectors

We have assumed that we can write x = V Λ1/2z (with V,Λ s.t. Σ = V ΛV T ), with z having independent
σ2
x (sub-)Gaussian components. Hence zi := Xvi/

√
λi has components xT vi/

√
λi that are independent

σ2
x (sub-)Gaussian. Writing Xvi =

√
λizi, we then have

vTi X
T =

√
λiz

T
i , XXT = XV V TXT =

∑
i

λiziz
T
i ,

and for XΣXT

XΣXT = XV ΛV TXT =
∑
i

λ2
i ziz

T
i .

Then for the trace of C we have, using that tr(ABC) = tr(BCA),

tr(C) = tr((XXT )−1XΣXT (XXT )−1) = tr(XΣXT (XXT )−2) = tr(
∑
i

λ2
i ziz

T
i (
∑
j

λjzjz
T
j )

−2)

=
∑
i

λ2
i tr(ziz

T
i (
∑
j

λjzjz
T
j )

−2) =
∑
i

λ2
i z

T
i (
∑
j

λjzjz
T
j )

−2zi,

where for the last equality we use tr(ziz
T
i M) = tr(zTi Mzi). If we define A−i :=

∑
j ̸=i λjzjz

T
j , then∑

j

λjzjz
T
j = λiziz

T
i +A−i.

Next, we will use Lemma 20 from Bartlett et al. (2020) [5].

Lemma 7 (Lemma 20 in [5]). For k < n, A ∈ Rn×n invertible, Z ∈ Rn×k s.t. ZZT + A invertible,
we have

ZT (ZZT +A)−2Z = (I + ZTA−1Z)−1ZTA−2Z(I + ZTA−1Z)−1.
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Proof. The proof consists of using the Sherman-Morrison-Woodbury formula and some basic matrix
manipulations. See the proof of Lemma 20 in [5].

We apply Lemma 7 with k = 1, Z =
√
λizi and A = A−i. Note that A−i is invertible: since we

have assumed that rank(Σ) > n, there are at least n + 1 eigenvectors vj with λj > 0, so the matrix
A−i =

∑
j ̸=i λjzjz

T
j still has rank n and hence A−i is invertible. Furthermore, since ziz

T
i has non-

negative eigenvalues, the matrix ziz
T
i + A−i has strictly positive eigenvalues and hence is invertible.

So we can apply Lemma 7

tr(C) =
∑
i

λ2
i z

T
i (λiziz

T
i +A−i)

−2zi =
∑
i

λ2
i z

T
i A

2
−izi

(1 + λizTi A
−1
−i zi)

2
, (9.2)

with zi := Xvi/
√
λi independent σ

2
x (sub-)Gaussian vectors with mean 0 and unit variance.

Step 3: Lower and upper bound eigenvalues

First, define

A =
∑
i

λiziz
T
i , A−i =

∑
j ̸=i

λjzjz
T
j , Ak =

∑
i>k

λiziz
T
i ,

with the zi ∈ Rn independent σ2
x (sub-)Gaussian with unit variance.

Recall that zi = Xvi/
√
λi is a random vector with independent σ2

x (sub-)Gaussian and unit vari-
ance components. Then for a constant vector v ∈ Rn, we have that vT zi is ||v||2σ2

x (sub-)Gaussian,
which easily follows using the independence of the components of zi.

Next, we will apply Lemma 1.12 from the lecture notes by Rigollet [30].

Lemma 8 (Lemma 1.12 in [30]). If X is σ2 sub-Gaussian, then Z := X2 − E(X2) is 16σ2 sub-
Exponential, that is

E(esZ) ≤ e(16σ
2)2s2/2 = e128σ

4s2

for all |s| ≤ 1
λ .

Proof. See the proof of Lemma 1.12 in [30].

Notice that E((vT zi)2) = Var(vT zi) =
∑

j v
2
jVar((zi)j) = ||v||22. So Lemma 8 implies that the random

variable (vT zi)
2 − ||v||22 is sub-Exponential with constant 16σ2

x||v||22. For a unit vector v, this means
that: (vT zi)

2 − 1 is 16σ2
x sub-Exponential. Furthermore

vTAv =
∑
i

λiv
T ziz

T
i v =

∑
i

λi(v
T zi)

2.

Then
|vTAv −

∑
i

λi| = |
∑
i

λi(v
T zi)

2 −
∑
i

λi| = |
∑
i

λi((v
T zi)

2 − 1)| = |
∑
i

λiXi|,

with Xi := (vT zi)
2 − 1, sub-Exponential(16σ2

x). Next, we apply Theorem 2.8.2 from [31].

Theorem 7 (Theorem 2.8.2 in [31]). Let X1, . . . , Xn be independent, mean-0, sub-exponential(K)
random variables and let a = (a1, . . . , an) ∈ Rn. Then

P

(
|

n∑
i=1

aiXi| ≥ t

)
≤ 2 exp

(
−cmin(

t2

K2||a||22
,

t

K||a||∞
)

)
where c > 0 is a universal constant and K = maxi ||Xi||Ψ1.
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Proof. See the proof in [31].

Notice that, in case a = (λ1, . . . , λn), we have that ||a||22 =
∑

i λ
2
i and ||a||∞ = λ1. So by Theo-

rem 7 for Xi := (vT zi)
2 − 1 sub-Exponential(K) we have

P

(
|

n∑
i=1

λiXi| ≥ t

)
≤ 2 exp

(
−cmin(

t2

K2
∑

i λ
2
i

,
t

Kλ1
)

)
.

We can rewrite this as

P

(
|
∑
i

λiXi| ≤ t

)
≥ 1− 2 exp(−x),

where we choose x such that

x = cmin

(
t2

K2
∑

i λ
2
i

,
t

Kλ2
1

)
.

If this minimum is equal to t2

K2
∑

i λ
2
i
, then

t =
√
cK

√
x
∑
i

λ2
i .

If this minimum is equal to t
Kλ2

1
, then

t = cKxλ1.

Hence, if we take

t = (
√
c+ c)Kmax

√x
∑
i

λ2
i , xλ1

 = c1Kmax(
√
x||λ||2, x||λ||∞),

then there exists a constant C > 0 s.t. with probability at least 1− 2e−t

|
∑
i

λiXi| ≤ CKmax(
√
t||λ||2, t||λ||∞). (9.3)

Hence, with probability at least 1− 2e−t

|vTAv −
∑
i

λi| ≤ cσ2
xmax

√
t

√∑
i

λ2
i , tλ1

 , (9.4)

where we have chosen Xi = (vT zi)
2 − 1, which is sub-Exponential (16σ2

x). Next, we use an ε-net
argument. Consider the following lemma.

Lemma 9 (Lemma 25 in [5]). Suppose A ∈ Rn×n is symmetric and Nε is an ε-net on the unit sphere
Sn−1, with ε < 1/2, then

||A|| ≤ (1− ε)−2 max
x∈Nε

|xTAx|.

Proof. See the proof in [5].

We restrict ourselves to an ε-net on the unit sphere Sn−1 s.t. |N | ≤ 9n. We can achieve this by
choosing ε = 1

4 . This follows from Corollary 4.2.13 from Vershynin (2018) [31].

Corollary 1 (Corollary 4.2.13 in [31]). The covering numbers of the unit Euclidean ball Bn
2 satisfy

for any ε > 0
(1/ε)n ≤ N(Bn

2 , ε) ≤ (2/ε+ 1)n.

Here N(Bn
2 , ε) is the smallest possible cardinality of an ε-net of Bn

2 . The same upper bound holds for
the unit Euclidean sphere Sn−1.
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Proof. See the proof in [31].

If we choose ε = 1/4, then by Corollary 1, we can cover the unit sphere Sn−1 using an ε-net with
cardinality at most 9n. Next, we use this ε-net combined with a union bound argument to find an
upper bound on ||A− In

∑
i λi||.

Let vj ∈ Nε and define the event Aj as

Aj :=

vTj Avj ≥ cmax

λ1t,

√
t
∑
i

λ2
i

 .

Notice that P(Aj) ≤ 2e−t by equation (9.4). We have the following union bound

P

 ⋃
j:vj∈N

Aj

 ≤
∑

j:vj∈N
P(Aj) ≤ 9nmax

j
P(Aj) ≤ 2en log(9)e−t = 2e−(t−n log(9)) = 2e−t̃,

where t̃ = t− n log(9) (so t = t̃+ n log(9) ). Hence, for all v ∈ Nε, with probability at least 1− 2e−t,
we have

|vTAv −
∑
i

λi| ≤ cσ2
xmax

λ1(t+ n log(9)),

√
(t+ n log(9))

∑
i

λ2
i

 ≤ cσ2
xmax

λ1n,

√
n
∑
i

λ2
i

 ,

where we assume that t ≤ n/c0 for some c0 ≥ 1 such that t+ n log(9) ≤ (1/c0 + log(9))n = c̃n. Using
the ε-net, we then have, with probability at least 1− 2e−t

||A− In
∑
i

λi|| ≤ (1− ε)−2 max
v∈Nε

|vTAv −
∑
i

λi(v
T v)| ≤ cmax

v∈Nε

|vTAv −
∑
i

λi|

≤ cσ2
xmax

√
n

√∑
i

λ2
i , nλ1

 (by equation (9.4))

≤ cσ2
x

√nλ1

∑
i

λi

+ cσ2
xnλ1.

Recall the AM-GM inequality

(x1 · x2 · · ·xn)1/n ≤ 1/n(x1 + x2 + . . .+ xn).

Applying this with n = 2 and x1 = n, x2 =
∑

i λi, we get

||A− In
∑
i

λi|| ≤ cσ2
x(λ1n+

∑
i

λi) + cσ2
xnλ1 ≤ cσ2

xλ1n+ cσ2
x

∑
i

λ1.

So, choosing C = cσ2
x, with probability 1− 2e−t we have

||A− In
∑
i

λi|| ≤ C(λ1n+
∑
i

λi).

So for the j-th eigenvalue of A, µj(A), we have

|µj(A)−
∑
i

λi| ≤ C(λ1n+
∑
i

λi).

Using the definition of the absolute value, this implies

−C(λ1n+
∑
i

λi) ≤ µj(A)−
∑
i

λi ≤ C(λ1n+
∑
i

λi),
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−Cλ1n− C
∑
i

λi +
∑
i

λi ≤ µj(A) ≤ Cλ1n+ C
∑
i

λi +
∑
i

λi,

(1− C)
∑
i

λi − Cλ1 ≤ µn(A) ≤ µ1(A) ≤ (1 + C)
∑
i

λi + Cλ1n

Now take c2 as
c2 = max{1/(1− C), 1 + C}.

Then 1 + C ≤ c2, C < c2, −C > −c2 and 1 − C ≥ 1/c2. Hence, there exists a constant c2 s.t. with
probability at least 1− 2e−t (for t < n/c2)

1

c

∑
i

λi − cλ1n ≤ µn(A) ≤ µ1(A) ≤ c

(∑
i

λi + λ1n

)
.

We can repeat the arguments above but now for the matrix Ak =
∑

i=k+1 λiziz
T
i by removing the first

k eigenvalues. We can state this result in the following lemma.

Lemma 10 (Lemma 9 in [5] ). If µ1(Ak) ≥ . . . ≥ µn(Ak) are the eigenvalues of Ak, then there exists
a constant c > 1 such that with probability at least 1− 2e−n/c we have

1

c

∑
i=k+1

λi − cλk+1n ≤ µn(Ak) ≤ µ1(Ak) ≤ c
∑

i=k+1

λi + cλk+1n.

Using this result, we can prove the following lemma.

Lemma 11 (Lemma 10 in [5] ). There exist constants b, c ≥ 1 s.t. with prob. at least 1− 2e−n/c we
have:
(1) for all i ≥ 1

µk+1(A−i) ≤ µk+1(A) ≤ µ1(Ak) ≤ c
∑

j=k+1

λj + cλk+1n,

(2) for all 1 ≤ i ≤ k

µn(A) ≥ µn(A−i) ≥ µn(Ak) ≥
1

c

∑
j=k+1

λj − cλk+1n,

(3) if rk(Σ) ≥ bn, then

1

c
λk+1rk(Σ) ≤ µn(Ak) ≤ µ1(Ak) ≤ cλk+1rk(Σ).

Proof. We will prove statements (1), (2) and (3) separately.

Proof of (1).
By Lemma 10 we immediately have

µ1(Ak) ≤ c
∑

j=k+1

λj + cλk+1n

So it remains to show that µk+1(A−i) ≤ µk+1(A) ≤ µ1(Ak). The matrix A− Ak has rank at most k,
so for all v in the null space of A−Ak

vTAv = vT (Ak + (A−Ak))v = vTAkv + vT (A−Ak)v = vTAkv ≤ µ1(Ak)||v||2.

Since the eigenvector vk+1 corresponding to eigenvalue µk+1(A) is in the null space of A−Ak, we have
that

µk+1(A)||vk+1||2 = vTk+1µk+1(A)vk+1 = vTk+1Avk+1 ≤ µ1(Ak)||vk+1||2.

Hence µk+1(A) ≤ µ1(Ak). Furthermore, we have

µk+1(A) = µk+1(A−i + λiziz
T
i ) = µk+1(A−i) + µk+1(λiziz

T
i ) ≥ µk+1(A−i).
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Proof of (2).
Similar argument as above, write

µn(A) = µn(A−i + λiziz
T
i ) = µn(A−i) + µn(λiziz

T
i ) ≥ µn(A−i)

and for i ≤ k

µn(A−i) = µn(Ak) + (A−i −Ak)) = µn(Ak) + µn(A−i −Ak) ≥ µn(Ak)

using that A−i −Ak is positive (semi-) definite.

Proof of (3)
By Lemma 10 we have

1

c

∑
i=k+1

λi − cλk+1n ≤ µn(Ak) ≤ µ1(Ak) ≤ c
∑

i=k+1

λi + cλk+1n

Recall that

rk(Σ) =

∑
i=k+1 λi

λk+1
, or

∑
i=k+1

λi = λk+1rk(Σ).

Hence
1

c
λk+1rk(Σ)− cλk+1n ≤ µn(Ak) ≤ µ1(Ak) ≤ cλk+1rk(Σ) + cλk+1n,

λk+1(
1

c
rk(Σ)− cn) ≤ µn(Ak) ≤ µ1(Ak) ≤ λk+1(crk(Σ) + cn).

For the upper bound we have, using that rk(Σ) ≥ bn (so n ≤ rk(Σ)/b),

λk+1(crk(Σ) + cn) ≤ λk+1(crk(Σ) + crk(Σ)/b) = λk+1rk(Σ)c(1 + 1/b).

For the lower bound we find

λk+1(rk(Σ)/c− cn) ≥ λk+1(rk(Σ)/c− crk(Σ)/b) = λk+1rk(Σ)(1/c− c/b).

We want 1/c−c/b to be larger than 0, so we should take b > c2. Choose c1 = max{(1+1/b)c, 1/(1/c−
c/b)}. Then

1/c1λk+1rk(Σ) ≤ µn(Ak) ≤ µ1(Ak) ≤ c1λk+1rk(Σ).

Step 4: Upper bound on the trace of C

Using the results of Lemma 11, we will show that there exist constants b, c ≥ 1 s.t. if 0 ≤ k ≤ n/c,
rk(Σ) ≥ bn and l ≤ k, then with probability at least 1− 7e−n/c, we have

tr(C) ≤ c

(
l

n
+ n

∑
i=l+1 λ

2
i

(
∑

i=k+1 λi)2

)
.

Recall from equation (9.2) that

tr(C) =

p∑
i=1

λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2
.

We can split this sum into 2 terms as

tr(C) =
l∑

i=1

λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2
+
∑
i>l

λ2
i z

T
i A

−2zi, (9.5)

where l ≤ k and k s.t. rk(Σ) ≥ bn. Fix b to be the same value as in Lemma 11.
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First term. Consider the sum up to l in equation (9.5). By Lemma 11, if rk(Σ) ≥ bn, then
with probability at least 1− 2e−n/c1 , for al i ≤ k

µn(A−i) ≥ µn(Ak) ≥ 1/c1λk+1rk(Σ).

This implies that

zTi A
−2
−i zi ≤ zTi µ1(A

−2
−i )zi =

zTi zi
µn(A−i)2

≤ c21||zi||2

λ2
k+1rk(Σ)

2

Also, by Lemma 11, with probability at least 1− 2e−n/c1 , for all i

µk+1(A−i) ≤ µ1(Ak) ≤ c1λk+1rk(Σ).

This implies

zTi A
−1
−i zi ≥ (ΠSizi)

TA−1
−iΠSizi ≥ (ΠSizi)

Tµn−k(A
−1
−i )ΠSizi =

(ΠSizi)
TΠSizi

µk+1(A−i)
≥ ||ΠSizi||2

c1λk+1rk(Σ)
,

where Si is the span of the n− k eigenvectors of A−i corresponding to its n− k smallest eigenvalues,
so that ΠSiz = 0 for all eigenvectors z corresponding to one of {µ1(A−i), . . . , µk(A−i}. Putting these
results together, we have, for i ≤ l, with probability at least 1− 2e−t (t ≤ n/c1)

λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2
≤

zTi A
−2
−i zi

(zTi A
−1
−i zi)

2
≤ c41

||zi||2

||ΠSizi||4
.

We will now use the following Corollary.

Corollary 2 (Corollary 13 in [5]). For z centered r.v. with independent σ2-subgaussian coordinates
with unit variances, S is a random subspace of Rn of co-dimension k and S independent of z. Then
there exists a universal constant a s.t., with prob. at least 1− 3e−t

||z||2 ≤ n+ aσ2(t+
√
nt), ||PSz||2 ≥ n− aσ2(k + t+

√
nt),

where PS is the orthogonal projection on S.

Proof. See the proof in [5].

Applying Corollary 2, we find, making use of union bounds, with probability at least 1− 3e−t

||zi||2 ≤ n+ aσ2
(
t+ log(k) +

√
n(t+ log(k))

)
≤ n+ aσ2(n/C + n/C +

√
nt+

√
n log(k))

≤ n+ aσ2(n/C + n/C +
√
n2/C +

√
n2/C)

≤ (1 + 2aσ2(1/C + 1/
√
C))n = c2n,

assuming that t < n/C and also k < n/C, and with probability at least 1− 3e−t

||ΠSizi||2 ≥ n− aσ2(k + t+ log(k) +
√
n(t+ log(k)))

≥ n− aσ2(n/C + n/C + n/C +
√
n2/C +

√
n2/C)

≥ n− aσ2(3n/C + 2n/
√
C)

≥ (1− aσ2(3/C + 2/
√
C))n = c3n,

assuming k < n/C and where we take C > 1 large enough such that aσ2 + 3/C + 2/
√
C ≤ 1. This

means that we should take C such that

C ≥
(

5

1− aσ2

)2

.
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So we now have, with probability at least 1− 2e−t the event E1 happens, where

E1 =

{
λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2
≤ c41

||zi||2

||ΠSizi||4

}
,

and with probability at least 1− 3e−t the event E2 happens, where

E2 =
{
||zi||2 ≤ c2n, ||ΠSizi||2 ≥ c3n

}
.

Then, using basic probability calculations

P(Ec
1) ≤ 2e−t, P(Ec

2) ≤ 3e−t,

P(Ec
1 ∪ Ec

2) ≤ P(Ec
1) + P(Ec

2) = 5e−t,

P(E1 ∩ E2) = P((Ec
1 ∪ Ec

2)
c) = 1− P(Ec

1 ∪ Ec
2) = 1− 5e−t.

Therefore, with probability at least 1− 5e−t, we have

λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2
≤ c41

c2n

(c3n)2
=

c41c2
c3

1

n
=: c4

1

n
,

where t < min(n/c1, n/C) = n/C for C large enough as defined before. Hence, with probability at
least 1− 5e−n/C we have

l∑
i=1

λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2
≤ c41

c2n

(c3n)2
≤ c4

l

n
.

Second term. Next, we look at the second term
∑

i>l λ
2
i z

T
i A

−2zi from equation (9.5). Similar as with

the first term, by Lemma 11, we have with probability at least 1 − 2e−n/c1 that µn(A) ≥ µn(A−i) ≥
µn(Ak) ≥ λk+1rk(Σ)/c1, provided that rk(Σ) ≥ bn. Therefore, using similar arguments as before, with
probability at least 1− 2e−t (t < n/c1)

zTi A
−2zi ≤

c21||zi||2

(λk+1rk(Σ))2
, and so

∑
i>l

λ2
i z

T
i A

−2zi ≤
c21
∑

i>l λ
2
i ||zi||2

(λk+1rk(Σ))2

Since zi has independent sub-Gaussian components, we know that
∑

i>l λ
2
i ||zi||2 is a sum of σ2 sub-

exponential random variables with weights λ2
i . Then by equation (9.3), with prob. at least 1− 2e−t

∑
i>l

λ2
i ||zi||2 ≤ n

∑
i>l

λ2
i + aσ2max

λ2
l+1t,

√
tn
∑
i>l

λ4
i


≤ n

∑
i>l

λ2
i + aσ2max(t

∑
i>l

λ2
i ,
√
tn
∑
i>l

λ2
i )

≤ (n+ aσ2(t+
√
tn))

∑
i>l

λ2
i

≤ (n+ aσ2(n/C + n/
√
C))

∑
i>l

λ2
i

≤ (1 + aσ2(1/C + 1/
√
C))n

∑
i>l

λ2
i = c5n

∑
i>l

λ2
i ,

using that t < n/C. So we find, with probability at least 1− 2e−t

∑
i>l

λ2
i z

T
i A

−2zi ≤ c21c5n

∑
i>l λ

2
i

(λk+1rk(Σ))2
= c6n

∑
i>l λ

2
i

(λk+1rk(Σ))2
.
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So combining the results for the first and second term of (9.5), we finally have, with probability at
least 1− (2e−t + 5e−t) = 1− 7e−t

tr(C) =
l∑

i=1

λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2
+
∑
i>l

λ2
i z

T
i A

−2zi ≤ c4
l

n
+c6n

∑
i>l λ

2
i

(λk+1rk(Σ))2
= c7

(
l

n
+ n

∑
i>l λ

2
i

(λk+1rk(Σ))2

)
,

where c7 = c4 + c6. Taking c = max(c7, C), we conclude that there exist b, c ≥ 1 s.t. if 0 ≤ k ≤ n/c,
rk(Σ) ≥ bn and l ≤ k, then with prob. at least 1− 7e−n/c

tr(C) ≤ c

(
l

n
+ n

∑
i>l λ

2
i

(
∑

i>k λi)2

)
. (9.6)

Step 5: Convenient choice of split l

The choice of the split l in 9.6 is arbitrary (as long as l ≤ k). Hence, to obtain the sharpest bound,
we take the minimum over all l ≤ k

tr(C) ≤ cmin
l≤k

(
l

n
+ n

∑
i>l λ

2
i

(λk+1rk(Σ))2

)
,

for k ≤ n/c s.t. rk(Σ) ≥ bn. We will prove the following Lemma.

Lemma 12 (Lemma 17 in [5] ). For any b ≥ 1 and k∗ = min{k : rk(Σ) ≥ bn}. If k∗ < ∞, we have

min
l≤k∗

(
l

bn
+

bn
∑

i>l λ
2
i

(λk∗+1rk∗(Σ))2

)
=

k∗

bn
+

bn
∑

i>k∗ λ
2
i

(λk∗+1rk∗(Σ))2
=

k∗

bn
+

bn

Rk∗(Σ)
.

Proof.
We can write (using l ≤ k∗)

l

bn
+

bn
∑

i>l λ
2
i

(λk∗+1rk∗(Σ))2
=

l∑
i=1

1

bn
+
∑
i>l

bnλ2
i

(λk∗+1rk∗(Σ))2

≥
k∗∑
i=1

min(1/bn,
bnλ2

i

(λk∗+1rk∗(Σ))2
) +

∑
i>k∗

bnλ2
i

(λk∗+1rk∗(Σ))2

=

l∗∑
i=1

1

bn
+
∑
i>l∗

bnλ2
i

(λk∗+1rk∗(Σ))2
,

where l∗ is defined as

l∗ := max
i≤k∗

(
i :

1

bn
≤ bnλ2

i

(λk∗+1rk∗(Σ))2

)
.

The inequality inside the maximum holds if

λi ≥
λk∗+1rk∗(Σ)

bn
, or rk∗(Σ) ≤

bnλi

λk∗+1
.

By definition, rk∗−1(Σ) < bn. Hence

rk∗(Σ) =

∑
i>k∗ λi

λk∗+1
=

∑
i>k∗−1 λi − λk∗

λk∗+1
=

∑
i>k∗−1 λi − λk∗

λk∗+1
=

λk∗

λk∗+1
(rk∗−1(Σ)− 1)

<
λk∗

λk∗+1
(bn− 1) ≤ bnλk∗

λk∗+1
.

Therefore, λ∗ = k∗. Now since for all l

l∑
i=1

1

bn
+
∑
i>l

bnλ2
i

(λk∗+1rk∗(Σ))2
≥

l∗∑
i=1

1

bn
+
∑
i>l∗

bnλ2
i

(λk∗+1rk∗(Σ))2
,

we have that l = l∗ = k∗ is the minimizer of the left hand side. Hence

min
l≤k∗

(
l

bn
+

bn
∑

i>l λ
2
i

(λk∗+1rk∗(Σ))2

)
=

k∗

bn
+

bn
∑

i>k∗ λ
2
i

(λk∗+1rk∗(Σ))2
=

k∗

bn
+

bn

Rk∗(Σ)
.
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Step 6: Upper bound on the B term

It remains to find an upper bound for the term (θ∗)TBθ∗. Recall

B = (I −XT (XXT )−1X)Σ(I −XT (XXT )−1X).

First notice that

(I −XT (XXT )−1X)(XTX) = XTX −XT (XXT )−1(XXT )X = XTX −XTX = 0.

So we can write

(θ∗)TBθ∗ = (θ∗)T (I −XT (XXT )−1X)Σ(I −XT (XXT )−1X)θ∗

= (θ∗)T (I −XT (XXT )−1X)(Σ− Σ̂)(I −XT (XXT )−1X)θ∗,

with Σ̂ = 1
n

∑n
i=1 xix

T
i = 1

nX
TX. Taking norms, we find

(θ∗)TBθ∗ ≤ ||θ∗||2||I −XT (XXT )−1X||2||Σ− Σ̂||.

This will allow us to use results on the sample covariance matrix.

Next, take v ∈ R(A) with A = I −XT (XXT )−1X. Then there exists a vector w such that

v = Aw = w −XT (XXT )−1Xw.

Then
Av = A2w = (I −XT (XXT )−1X)(I −XT (XXT )−1X)w

= w − 2XT (XXT )−1Xw +XT (XXT )−1Xw

= (I −XT (XXT )−1X)w = Aw = v.

So for v ∈ R(A) we have Av = v. Furthermore, for v ∈ N(A), we have Av = 0. Since Rp = N(A) ⊥
R(A), we have for all v ∈ Rp

||Av|| ≤ ||v||.
Therefore

||I −XT (XXT )−1X|| = ||A|| = max
v:||v||=1

||Av|| ≤ max
v:||v||=1

||v|| = 1.

A second option to show that ||A|| ≤ 1 is by showing that A is a projection matrix. Indeed, as we
have seen above A2 = A and it is also easy to see that AT = A. Hence, A is an orthogonal projection
matrix and ||A|| ≤ 1. So we now have

(θ∗)TBθ∗ ≤ ||θ∗||2||Σ− Σ̂||.

To upper bound ||Σ− Σ̂||, we use Theorem 9 from Koltchinskii et al. (2014) [32]:

Theorem 8 (Theorem 9 in [32]). Let x, x1, . . . , xn be centered subgaussian random variables with
covariance Σ. Then there exists a constant C > 0 s.t. for all t ≥ 1, with probability at least 1− e−t

||Σ− Σ̂|| ≤ C||Σ||max
{√

r(Σ)/n, r(Σ)/n,
√
t/n, t/n

}
,

where

r(Σ) =
(E||x||)2

||Σ||
, Σ̂ =

1

n

n∑
j=1

xjx
T
j =

1

n
XTX.

Proof. See the proof in [32].

Notice first that

r(Σ) =
(E||x||)2

||Σ||
≤ E(||x||2)

||Σ||
=

tr(Σ)

||Σ||
=

∑p
i=1 λi

λ1
= r0(Σ).

So according to Theorem 8 we have that there exists a constant C s.t. for all t ≥ 1, with probability
at least 1− e−t

||Σ− Σ̂|| ≤ C||Σ||max{
√
r0(Σ)/n, r0(Σ)/n,

√
t/n, t/n}.

Therefore there exists a constant C s.t. for all t ≥ 1 (so
√
t/n ≥ t/n), with probability at least 1−e−t

(θ∗)TBθ∗ ≤ C||θ∗||2||Σ||max{
√

r0(Σ)/n, r0(Σ)/n,
√
t/n}.
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Step 7: Combining the results

From equation (9.6) we know that there exist b, c ≥ 1 s.t. if 0 ≤ k ≤ n/c, rk(Σ) ≥ bn and l ≤ k, then
with prob. at least 1− 7e−n/c we have

tr(C) ≤ c

(
l

n
+ n

∑
i>l λ

2
i

(
∑

i>l λi)2

)
.

From Step 5 we know that the minimum over all l ≤ k is attained at l = k. Now setting k∗ to be the
minimum value of k for which rk(Σ) ≥ bn, the sharpest upper bound is found for choosing l = k∗, so
that with probability at least 1− 7e−n/c we have

tr(C) ≤ cmin
l≤k∗

(
l

n
+

n
∑

i>l λ
2
i

(λk∗+1rk∗(Σ))2
= c(

k∗

n
+

n

Rk∗(Σ)

)
.

Furthermore, by Step 6 we have, with probability at least 1− e−t (t ≥ 1)

(θ∗)TBθ∗ ≤ c2||θ∗||2||Σ||max{
√

r0(Σ)/n, r0(Σ)/n,
√
t/n}.

By Step 1 we have, with prob. at least 1− e−t (t ≥ 1)

Rexcess(θ̂) ≤ 2(θ∗)TBθ∗ + 12tσ2tr(C).

Combining these results, we find that, with probability at least 1− 7e−t, for 1 ≤ t ≤ n/c, that

Rexcess(θ̂) ≤ 2c2||θ∗||2||Σ||max{
√

r0(Σ)/n, r0(Σ)/n,
√
t/n}+ 12tσ2c

(
k∗

n
+

n

Rk∗(Σ)

)
.

Now choose c0 = max{12c, 2c2}. Then with prob. at least 1− e−t, for 1 ≤ t ≤ n/c0, we have

Rexcess(θ̂) ≤ c0||θ∗||2||Σ||max{
√

r0(Σ)/n, r0(Σ)/n,
√
t/n}+ c0tσ

2

(
k∗

n
+

n

Rk∗(Σ)

)
.

Or by setting t = log(1/δ), we have the following. There exist b, c ≥ 1 such that, with probability at
least 1− δ (where e−n/c ≤ δ ≤ e−1), we have

Rexcess(θ̂) ≤ c||θ∗||2||Σ||max

{√
r0(Σ)

n
,
r0(Σ)

n
,

√
log(1/δ)

n

}
+ cσ2 log(1/δ)

(
k∗

n
+

n

Rk∗(Σ)

)
,

with k∗ := min{k ≥ 0 : rk(Σ) ≥ bn}. This is exactly the statement in Theorem 4.
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9.4 R code

Code for Chapter 2

## Libraries

library(MASS)

library(RColorBrewer)

library(purrr)

## Functions

risk <- function(X,X_p,eps, sigma,Sigma,theta_star,P){

n = dim(X)[1]

p = dim(X_p)[2]

## generate the true labels

y = X %*% theta_star + eps

## calculate least-squares / min-norm solution

theta_hat = numeric(d)

if (p>= n){

theta_hat[P] = t(X_p) %*% solve( (X_p %*% t(X_p) ) ) %*% y

}

else{

theta_hat[P] = solve( t(X_p)%*%X_p) %*% t(X_p) %*% y

}

theta_hat[-P] = 0

## compute the training/test risk

R = 0

for (i in 1:n){

R = R + 1/n*(y[i]-X[i,]%*% theta_hat )^2

}

R_test = sigma^2 + t(theta_hat - theta_star) %*% Sigma %*% (theta_hat - theta_star)

theta_norm = norm(theta_hat, type = '2') # L_2 norm of parameter vector

return(c(R,R_test,theta_norm) )

}

## theoretical risk

theo_det <- function(theta_star, sigma, p,n, Sigma){

P = 1:p

if (p<= n-2){

R = (norm( Sigma[-P,-P]^(1/2) %*% theta_star[-P] , type='2')^2

+ sigma^2)*(1+p/(n-p-1) )

}

if(n-1 <= p & p <= n+1){

R = 1000 # infinity

}

if(p>= n+2 & p < d){

R = norm(theta_star[P] ,type ='2')^2*(1-n/p) +

( norm(theta_star[-P],type ='2')^2 + sigma^2)*(1+n/(p-n-1) )

}

if(p == d){

R = norm(theta_star[P], type = '2')^2*(1-n/p) + sigma^2*(1+n/(p-n-1) )

}

return(R)

}

theo_rand <- function(theta_star, sigma, p, n,d, Sigma){

if (p <= n-2){

R = ((1-p/d)*norm(Sigma^(1/2)%*%theta_star,'2')^2 + sigma^2)*(1+p/(n-p-1) )

}

if(n-1 <= p & p<= n+1){

R = 1000 # infinity

}

if(p>=n+2){

R = norm(theta_star,'2')^2*(1-n/d*(2-(d-n-1)/(p-n-1) )) + sigma^2*(1+n/(p-n-1) )
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}

return(R)

}

## Setting up parameters

n = 40 # number of training data points

d = 100 # dimension

M = 100 # number of Monte Carlo iterations

sigma = 1/5 # sd of the label noise

Sigma = diag(1, nrow = d, ncol = d)

theta_star = 1/(1:d)

theta_star = theta_star / norm(theta_star, '2')

rnd = 1 # random choice (rnd=1) or deterministic choice (rnd=0)

## Monte Carlo simulation

R = matrix(0,d,M)

R_mean = numeric(d)

R_test = matrix(0,d,M)

R_test_mean = numeric(d)

theta = matrix(0,d,M)

theta_mean = numeric(d)

for (p in 1:d){

for(i in 1:M){

## sample new training data

X = matrix(mvrnorm(n, numeric(d), Sigma), n,d) # training data matrix

X = matrix(X,n,d) # convert to proper matrix

if (rnd==1){

P = sample(1:d,p)

}

if (rnd==0){

P = 1:p

}

X_p = matrix(X[1:n,P],n,p)

## sample new label noise

eps = rnorm(n, mean = 0, sd = sigma) # noise in training labels

result = risk(X,X_p,eps,sigma,Sigma,theta_star,P)

R[p,i] = result[1]

R_test[p,i] = result[2]

theta[p,i] = result[3]

}

R_mean[p] = mean(R[p,])

R_test_mean[p] = mean(R_test[p,])

theta_mean[p] = mean(theta[p,])

## show progression for p

if (p%%10 == 0){

cat('Loading ', p/d*100, '%', '\n')

}

}

## plot results

cols = brewer.pal(9,'Set1')

plot(1:d, R_test_mean, xlab = 'Number of parameters', ylab = 'Risk', ylim = c(0,10), col = cols[2] )

abline(v=n, col = cols[1], lwd = 2)

lines(1:d, R_mean, col = cols[3], lwd = 2 )

Code for Chapter 4

## Libraries

library(MASS)

library(RColorBrewer)

## Functions

excess_risk <- function(X,eps, Sigma,theta_star){
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n = dim(X)[1]

p = dim(X)[2]

## generate the true labels

y = X %*% theta_star + eps

## calculate least-squares / min-norm solution

if (p>= n){

theta_hat = t(X) %*% solve( (X %*% t(X) ) ) %*% y

}

else{

theta_hat = solve( (t(X) %*% X)) %*% t(X) %*% y

}

## compute the excess training/test risk

R = 0

for (i in 1:n){

R = R + 1/n*(y[i]-X[i,]%*% theta_hat )^2 - 1/n*(y[i] - X[i,] %*% theta_star)^2

}

R_test = t(theta_hat - theta_star) %*% Sigma %*% (theta_hat - theta_star)

theta_norm = norm(theta_hat, type = '2') # L_2 norm of parameter vector

return(c(R,R_test,theta_norm) )

}

## Monte Carlo simulation

MC_sim <- function(n,d,M,sigma,Sigma){

R = matrix(0,d,M)

R_mean = numeric(d)

R_test = matrix(0,d,M)

R_test_mean = numeric(d)

theta = matrix(0,d,M)

theta_mean = numeric(d)

for (p in 1:d){

theta_star = matrix(1,p,1)

theta_star = theta_star / norm(theta_star, '2')

for(i in 1:M){

## sample new training data

X = matrix(mvrnorm(n, numeric(p), Sigma[1:p,1:p]),n,p)

## sample new label noise

eps = rnorm(n, mean = 0, sd = sigma) # noise in training labels

result = excess_risk(X,eps,Sigma[1:p,1:p],theta_star)

R[p,i] = result[1]

R_test[p,i] = result[2]

theta[p,i] = result[3]

}

R_mean[p] = mean(R[p,])

R_test_mean[p] = mean(R_test[p,])

theta_mean[p] = mean(theta[p,])

## show progression for p

if (p%%10 == 0){

cat('Loading ', p/d*100, '%', '\n')

}

}

S = matrix(0,3,p)

S[1,] = R_mean

S[2,] = R_test_mean

S[3,] = theta_mean
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return(S)

}

## Variables

n = 5 # number of training data points

d = 100 # maximum number of parameters

M = 100 # number of Monte Carlo iterations

sigma = 1 # sd of the label noise

Delta = 1/n^3

Sigma = diag(exp(-(1:d))+Delta, nrow = d, ncol = d)

# alpha = 2

# Sigma = diag((1:d)^(-alpha), nrow = d, ncol = d)

# Sigma = diag(1, nrow = d, ncol = d)

S = MC_sim(n,d,M,sigma,Sigma)

R_mean = S[1,]

R_test_mean = S[2,]

## plot results

cols = brewer.pal(9,'Set1')

plot(1:d, R_test_mean, type = 'l', col = cols[2], lwd = 2,

xlab = 'Number of parameters', ylab = 'Excess test risk', log = 'y', ylim = c(0.1, 50),

main = 'Logarithm of test risk against p')

abline(v=n, col=cols[1], lwd = 2)

#lines(1:d, R_mean, type = 'l', col = cols[3], lwd = 2)

#abline(h = R_test_mean[1], col = cols[1], lty = 2, lwd = 2)

#legend('topright',

# inset = 0.05,

# legend = c('Training risk', 'Test risk', 'Test risk at p=0'),

# col = c(cols[3],cols[2], cols[1]), lwd = 2,

# cex = 0.8 )

Code for Chapter 5, setting 1

library(MASS)

library(RColorBrewer)

library(purrr)

library(pracma)

## functions

f_true = function(x){

d = length(x)

theta = 1/(1:d)

theta = theta/norm(theta, '2')

# sine function

y_sin = sin(t(theta)%*%as.matrix(x))

# linear regression

y_lin = t(theta)%*%as.matrix(x)

return(y_lin)

}

kernel <- function(s,t,l){

s = as.matrix(s)

t = as.matrix(t)

# Gaussian kernel

K_gauss = exp(-1/(2*l^2)*norm(s-t,'2')^2 )

# Linear kernel

K_linear = t(s)%*%t

# Polynomial kernel

q = 2

K_pol = (1+t(s)%*%t)^q

return(K_pol)
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}

# calculate kernel matrix

K_mat <- function(A,B,l){

A = as.matrix(A)

B = as.matrix(B)

nrow = dim(A)[1]

ncol = dim(B)[1]

Sigma = matrix(NA,nrow, ncol)

for (i in 1:nrow){

for (j in 1:ncol){

Sigma[i,j] = kernel(A[i,],B[j,],l)

}

}

return(Sigma)

}

## perform Monte Carlo simulation

MC_sim <- function(M,d,n,n_test,sigma,l,rnd){

R_train = matrix(NA,M,d)

R_test = matrix(NA,M,d)

R_train_mean = matrix(NA,d,1)

R_test_mean = matrix(NA,d,1)

for (p in 1:d){

for (m in 1:M){

Sigma = diag(1, d,d)

xtrain = matrix(mvrnorm(n,numeric(d),Sigma),n,d)

xtest = matrix(mvrnorm(n_test,numeric(d),Sigma), n_test,d)

if (rnd==0){

P = 1:p

}

if (rnd == 1){

P = sample(1:d,p)

}

x_p = matrix(xtrain[1:n,P],n,p)

ytrain = numeric(n)

for(i in 1:n){

ytrain[i] = f_true(xtrain[i,])+sigma*rnorm(1,0,1)

}

K = K_mat(x_p, x_p,l)

A = K+sigma^2*diag(1,n,n)

alpha = pinv(A)%*%ytrain

## calculate f_hat

f_hat = function(xtrain, x){

n = dim(xtrain)[1]

fhat = 0

for (i in 1:n){

fhat = fhat + alpha[i]*kernel(xtrain[i,],x,l)

}

return(fhat)

}

R_train[m,p] = 0

for (i in 1:n){

R_train[m,p] = R_train[m,p]+1/n*(f_true(xtrain[i,] )- f_hat(x_p, xtrain[i,P] ) )^2

}

R_test[m,p] = 0

for (j in 1:n_test){

R_test[m,p] = R_test[m,p]+1/n_test*(f_true(xtest[j,] )-f_hat(x_p, xtest[j,P] ) )^2

}
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}

R_train_mean[p] = mean(R_train[,p] )

R_test_mean[p] = mean(R_test[,p] )

if (p%%(d/100)==0){

cat('Loading...', p/d*100, '%', '\n')

}

}

S = matrix(NA,2,p)

S[1,] = R_train_mean

S[2,] = R_test_mean

return(S)

}

## set parameters

n = 45

n_test = 100

sigma = 0

l = 1

rnd = 1

## perform MC simulation

M = 10

d = 100

S = MC_sim(M,d,n,n_test,sigma,l,rnd)

R_train_mean = S[1,]

R_test_mean = S[2,]

## plot training / test risk

cols = brewer.pal(9,'Set1')

plot(1:d, R_test_mean, lwd = 2, col = cols[2], type = 'l',

xlab = 'p', ylab = 'Test risk')

#lines(1:d, R_train_mean, lwd = 2, col = cols[3] )

abline(h = R_test_mean[1], lwd = 2, col = cols[1], lty = 2 )

Code for Chapter 5, setting 2

library(MASS)

library(RColorBrewer)

library(purrr)

library(pracma)

## functions

f_true = function(x,l){

n = length(x)

Sigma = matrix(NA,n,n)

for (i in 1:n){

for (j in 1:n){

Sigma[i,j] = exp(-(x[i] - x[j] )^2 / (4*l^2 ) ) # Gaussian kernel

#Sigma[i,j] = x[i]*x[j]

}

}

set.seed(0)

y = mvrnorm(1, numeric(n), Sigma)

return(y)

}

Phi_mat = function(X,l,p){

n = length(X)

Phi = matrix(NA,n,p)

for (j in 1:n){

for (k in 1:p){

c = runif(1,min=1,max=3*n)
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Phi[j,k] = exp( - (X[j] - c)^2 / (2*l^2) ) # Gaussian basis functions

#Phi[j,k] = X[j]*X[k]

}

}

return(Phi)

}

## parameters

sigma = 0

n = 50

n_test = 2*n

p_max = 500

l = 100

M = 10

## Monte Carlo simulation

R_train = matrix(NA,M,p_max)

R_test = matrix(NA,M,p_max)

R_train_mean = numeric(p_max)

R_test_mean = numeric(p_max)

for (p in 1:p_max){

for (m in 1:M){

X_tot = seq(1,n+n_test,length.out = n+n_test)

train_ind = sort(sample(1:(n+n_test), n) )

test_ind = sort( setdiff(1:(n+n_test), train_ind) )

X = X_tot[train_ind]

Xtest = X_tot[test_ind]

ftrue = f_true(X_tot, l)

y = ftrue[train_ind] + sigma*rnorm(n,0,1)

ytest = ftrue[test_ind] + sigma*rnorm(n_test,0,1)

Phi_train = Phi_mat(X,l,p)

Phi_test = Phi_mat(Xtest, l, p)

theta_hat = pinv(Phi_train)%*%y

yhat = Phi_train%*%theta_hat

yhat_test = Phi_test%*%theta_hat

R_train[m,p] = 1/n*norm(y - yhat, '2')^2

R_test[m,p] = 1/n_test*norm(ytest - yhat_test, '2')^2

}

R_train_mean[p] = mean(R_train[,p])

R_test_mean[p] = mean(R_test[,p] )

# show progress

cat('Loading...', p/p_max*100, '%', '\n')

}

## plots

cols = brewer.pal(9,'Set1')

plot(1:p_max, R_test_mean, type = 'l', main = paste('Risk curves for l =', l, 'and sigma =', sigma),

xlab = 'Number of parameters', ylab = 'Risk', col = cols[2], lwd=2,

log = 'y')

#lines(1:p_max, R_train_mean, col = cols[3],lwd=2)

abline(h = min(R_test_mean), col = cols[1], lwd = 2, lty = 2)
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Code for Chapter 6

## Libraries

library(MASS)

library(RColorBrewer)

library(purrr)

## Set parameters

n = 256

d = 1024

M = 10

step = 1

## Construct discrete Fourier transform

F_d = matrix(0,d,d)

omega = exp(-2i*pi/d)

for (i in 1:d){

for (j in 1:d){

F_d[i,j] = 1/sqrt(d)*omega^( (i-1)*(j-1) )

}

}

# sample true value of theta

Sigma = diag(1, nrow = d, ncol = d)

theta = mvrnorm(1, numeric(d), 1/d*Sigma)

theta = theta/ norm(theta,'2')

# response vector

y = F_d %*% theta

## simulations

MSE = matrix(0,d,M)

MSE_mean = numeric(d)

D = 1:d

for (p in 1:d){

for (m in 1:M){

if (p%%step==0){

# N = D[ rbernoulli(d,n/d) ]

# P = D[ rbernoulli(d,p/d) ]

N = sample(1:d,n)

P = sample(1:d,p)

if(is_empty(P)){

P = 1

}

if(is_empty(N)){

N = 1

}

F_np = matrix(F_d[N,P], length(N), length(P) )

if (length(P) >= length(N) ){

F_dagger = Conj(t(F_np))%*%solve(F_np%*%Conj(t(F_np)) )

} else {

F_dagger = solve(Conj(t(F_np))%*%F_np)%*%Conj(t(F_np))

}

theta_hat = numeric(d)

theta_hat[P] = F_dagger%*%y[N]

y_hat = F_d%*%theta_hat

MSE[p,m] = norm(theta-theta_hat,'2')^2

}

}

MSE_mean[p] = mean(MSE[p,])

# show progress
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if (p%%100==0){

cat('Loading...', p/d*100,'%', '\n')

}

}

## make plots

cols = brewer.pal(9,'Set1')

plot(seq(step,d,step), MSE_mean[which(MSE_mean!=0)], type = 'l', lwd = 2, col = cols[2], log = 'y', ylim = c(0.5, 40))

abline(h = 0.75, lty = 2, lwd = 2, col = cols[1])

Code for Chapter 7

library(MASS)

library(RColorBrewer)

R_opper <- function(alpha){

if(alpha<=1){

R = 1/pi*acos( sqrt( 2*alpha*(1-alpha) / (pi-2*alpha) ) )

}

else{

R = 1/pi*acos(sqrt(2*(alpha-1)/(pi+2*alpha-4)))

}

return(R)

}

## Monte Carlo simulation

p = 100

d = 400 # max number of parameters

M = 100

MSE_train = matrix(0,d, M)

MSE_train_mean = numeric(d)

MSE_test = matrix(0,d,M)

MSE_test_mean = numeric(d)

theta_star = 1/sqrt(p)*matrix(1,p,1)

for (n in 1:d){

for(m in 1:M){

data = sample(c(-1,1), n*p, replace = TRUE)

X = matrix(data, n, p)

y_true = sign(X%*%theta_star)

n_test = n

data_test = sample(c(-1,1), n_test*p, replace = TRUE)

X_test = matrix(data_test,n_test,p)

y_test = sign(X_test%*%theta_star)

if (p> n){

theta_hat = t(X) %*% solve( (X %*% t(X) ) ) %*% y_true

}

if(p<=n){

theta_hat = solve( (t(X)%*%X) ) %*% t(X) %*% y_true

}

y_pred = sign(X%*%theta_hat)

y_pred_test = sign(X_test%*%theta_hat)

MSE_train[n,m] = sum(y_true!=y_pred)/n

MSE_test[n,m] = sum(y_test!=y_pred_test)/n_test

}

MSE_train_mean[n] = mean(MSE_train[n,])
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MSE_test_mean[n] = mean(MSE_test[n,])

if (n%%10 == 0){

cat('Loading ', n/d*100, '%', '\n')

}

}

## plot training risk

alpha = (1:d)/p

plot(alpha, MSE_train_mean, type = 'l', lwd = 2,

main = 'Training risk vs alpha', xlab = 'alpha',

ylab = 'Training risk')

## plot test risk and theoretical bound from Opper

cols = brewer.pal(9,'Set1')

plot(alpha, MSE_test_mean, main = 'Test risk vs gamma',

xlab = 'gamma', ylab = 'Test risk')

R_opp = numeric(d)

for(i in 1:d){

R_opp[i] = R_opper(alpha[i])

}

lines(alpha, R_opp, type = 'l', lwd = 2, col = 'red')

abline(v=1, lty = 2)
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