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Abstract While 3D seismic has been the basis for ge-
ological model building for a long time, time-lapse
seismic has primarily been used in a qualitative man-
ner to assist in monitoring reservoir behavior. With
the growing acceptance of assisted history matching
methods has come an equally rising interest in incor-
porating 3D or time-lapse seismic data into the history
matching process in a more quantitative manner. The
common approach in recent studies has been to invert
the seismic data to elastic or to dynamic reservoir
properties, typically acoustic impedance or saturation
changes. Here we consider the use of both 3D and
time-lapse seismic amplitude data based on a forward
modeling approach that does not require any inver-
sion in the traditional sense. Advantages of such an
approach may be better estimation and treatment of
model and measurement errors, the combination of
two inversion steps into one by removing the explicit
inversion to state space variables, and more consistent
dependence on the validity of assumptions underlying
the inversion process. In this paper, we introduce this
approach with the use of an assisted history matching
method in mind. Two ensemble-based methods, the
ensemble Kalman filter and the ensemble randomized
maximum likelihood method, are used to investigate
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issues arising from the use of seismic amplitude data,
and possible solutions are presented. Experiments with
a 3D synthetic reservoir model show that additional
information on the distribution of reservoir fluids, and
on rock properties such as porosity and permeability,
can be extracted from the seismic data. The role for lo-
calization and iterative methods are discussed in detail.
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1 Introduction

Since the first repeat surveys in the 1980s there has
been a growing recognition of the value of (time-lapse)
seismic data for reservoir monitoring and modeling.
When compaction and repeatability issues can be ne-
glected, time-lapse seismic differences reflect changes
in fluid properties, and therefore highlight areas that
have either been swept or heated, or rather remain
unproduced, valuable information that may not be ob-
tained by other means. If the observed changes are
not reproduced by the reservoir model, this informa-
tion can be used to improve the model by history
matching. The large number of data involved in seismic
acquisition, however, poses many problems, especially
for traditional manual history matching, which is why
seismic data has been used primarily in a qualitative
way. Recent work on conditioning models to seismic
data with so-called ‘assisted’ history matching methods,
suggests that much can potentially be gained by taking
a more quantitative approach.
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Stephen et al. [34] and Stephen et al. [35] presented
studies of North Sea oil fields where time-lapse seismic
was used to constrain reservoir models by applying the
Pilot Point Method [7] in combination with the Neigh-
borhood Algorithm [29]. It was concluded that the
time-lapse seismic helped to quantify permeability and
fault transmissibility and thereby reduce uncertainty in
predicted liquid rates and water breakthrough time.
Jin et al. [23] applied the Pilot Point Method with an
optimization scheme based on Simulated Annealing to
estimate porosity in a synthetic 2D model. Dong and
Oliver [8] used the adjoint method to update porosity,
permeability, pressure and phase saturation in a semi-
synthetic case, and concluded that a history matched
model could be generated with improved prediction
skill, and that combination of production and time-
lapse seismic data helped to resolve the transitions
between different property zones.

A history matching method that is gaining growing
interest in the reservoir engineering community is the
ensemble Kalman filter (EnKF; [12]). An early study
which demonstrated the applicability of the method to
reservoir history matching based on production data
was conducted by Naevdal et al. [26], while Evensen
et al. [11] demonstrate an application to a North Sea
reservoir model. Two early applications of the EnKF
to seismic history matching were presented by Dong
et al. [9] and Skjervheim et al. [32]. The seismic at-
tributes that have been mostly used in realistic case
studies are acoustic (P-wave) impedance and Poisson
ratio, which can be obtained fairly easily by applying a
rock physics model to the simulator output, but which
require more elaborate inversion schemes to obtain
from observed seismic amplitudes. Trani [37] extended
the inversion scheme of Landrø [24] with travel-time
differences and suggested assimilating the resulting sat-
uration and pressure differences with the EnKF.

Only a few researchers have considered using the
seismic waveform data in a more direct manner.
Skjervheim and Ruud [33] applied a simple seismic
modeling approach to simulate waveform data for
a synthetic 2D reservoir model and used the wave-
form data together with production data in an EnKF-
based updating scheme. Dadashpour et al. [4] and
Dadashpour et al. [5] use synthetic time-lapse seismic
amplitudes and synthetic time-lapse zero-offset ampli-
tudes plus AVO gradient differences respectively with
a 2D model and minimize the difference with simulated
data by calculating the sensitivities to unknown grid pa-
rameters using finite differences and a Gauss-Newton
scheme. Haverl et al. [20] interpreted the GOC depth
from single-survey waveform data and assimilated this
depth with the EnKF. Most recently, Fahimuddin

et al. [13] compared the use of amplitude and im-
pedance data with the EnKF on a sector model based
on a North Sea reservoir.

Important consequences of using seismic waveform
data directly are that no traditional seismic inversion
is required, but that, on the other hand, the seismic
response to dynamic changes must be simulated for
all model realizations. An advantage of this forward
modeling approach is that it is easier to represent
uncertainty in the rock physics and seismic models
and that it connects more naturally to ensemble-based
history matching methods which implicitly represent
uncertainty by using a set of model scenarios.

We will adopt this approach in this paper and will
apply it to a 3D reservoir model. The forward mod-
eling approach is made feasible by the development
of a seismic simulator which incorporates models for
rock physics, source wavelet, and several seismic error
sources. We will explore the potential of this approach
when used in combination with production data for as-
sisted history matching and suggest solutions for practi-
cal problems resulting from the use of large amounts of
measurements.

Section 2 will start with the introduction of the
seismic modeling tool (Section 2.1), and the assisted
history matching methods applied here (Section 2.2).
In Section 3 several experiments with two synthetic
reservoirs will be presented and we will investigate and
discuss in detail several alternatives for application of
ensemble-based history matching schemes.

2 Methods

2.1 Seismic attribute generation

A variety of methods may be applied to generate
synthetic seismic data. The method most easily imple-
mented is the 1D approach based on a simple convo-
lutional model. In this model it is assumed that the
seismic trace may be modeled as the convolution of
the seismic source signature and the earth’s impulse
response,

y(t) = R(t) ∗ S(t) , (1)

where R(t) denotes the earth’s impulse response, S(t)
represents the source wavelet, y(t) represents the seis-
mic trace and ∗ the convolution operator. The earth’s
impulse response is based on the combined amplitude
effects of transmission losses, reflection strength and
(spherical) divergence. In our model we address P-
waves only and thus incorporate in our transmission
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and reflection effects only P-wave impedances. The
method furthermore assumes a stationary signal (that
is, the source wavelet is stationary in time) and does not
account for any (frequency dependent) attenuation. As
a consequence, the method can only be used to approx-
imate the seismic response in a relatively small time
window where attenuation effects can be neglected.
Since we are interested only in the seismic response
at reservoir depth—and the reservoir thickness is rel-
atively small compared to reservoir depth—the latter
assumption may possibly hold, in particular when we
deal with fluid filled reservoirs rather than gas filled
reservoirs.

Obviously, data simulated using this forward model
may diverge significantly from real seismic data. Some
of the effects not included in this simple 1D con-
volution model are (1) additional seismic phases
(S-waves, surface-waves) and the conversion between
these phases, (2) multiple reflections, (3) “spatial inter-
ference” due to limited bandwidth, and (4) acquisition
footprint. To account for some of these effects, noise
can be added to the synthetic data as follows,

y(t) = R(t) ∗ S(t) + N(t) , (2)

where N(t) is the noise term. In our model, the noise is
band-limited to the same frequency band as the seismic
data and may contain some spatial coherency. This is to
account for the processing normally applied to seismic
field data that will typically cancel all incoherent noise
as well as noise outside the bandwidth of the source
wavelet. We furthermore have the option to apply a
lateral smoother to R(t) to account for limited spatial
bandwidth. Acquisition footprint is currently not taken
into account in our seismic simulator, which for time-
lapse differences implies that ideal repeatability is as-

sumed and that none of the acquisition related noise
remains.

The earth’s impulse response R(t) is derived from
the static distribution of density and velocity with
depth for the overburden and underburden, and
from a rock-physics model that incorporates the pres-
sure and saturation states for the reservoir. These
pressure and saturation changes result, for a given
rock-matrix and porosity, in changes in velocity and
density. In our 1D model velocity changes at reservoir
depth affect both travel times and reflectivity, whereas
density changes merely affect reflectivity. The rock-
physics model is based on the equations introduced by
Gassmann [15] and Mindlin [25]. The Mindlin theory
calculates effective bulk and shear moduli assuming a
dry and dense random pack of identical spherical grains
subject to hydrostatic pressure at an initial porosity
of 0.36. The Hashin and Shtrikman [19] lower bound
estimates the effective moduli at the reservoir poros-
ity, with the assumption that the rock is everywhere
isotropic, linear, and elastic. The Gassmann equation
[15] predicts the seismic parameters for the saturated
rock with the assumption of long wavelengths and low
frequencies (corresponding to the seismic range), in a
medium where all pores are connected and fluids do not
interact with the matrix. An illustration of the resulting
changes in seismic attributes as a response to changes
in pressure and saturation is provided in Fig. 1.

Figure 2 depicts the sensitivity of the seismic am-
plitudes (the seismogram) to porosity and saturation
perturbations. For the models and type of data used
in this study, the amplitudes are rather insensitive to
pressure variations. The primary seismic response is as-
sociated with the reservoir boundaries with overburden
and underburden, resulting in the solid line in Fig. 2a,
which is based on an 11-layer reservoir column with
uniform porosity and water saturation of 0.2. Figure 2a

Fig. 1 Rock-physics model
for the synthetic seismic
model. Changes in elastic
properties as a function
of changes a saturation,
and b pressure
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Fig. 2 Seismic amplitude sensitivity to reservoir properties.
a Porosity profile and seismic response to porosity perturbation
in the top layer. b Porosity profile and seismic response to
porosity perturbation in the 4th layer. c Time-lapse saturation

profile and time-lapse seismic response to uncorrelated satura-
tion perturbation in layers 3 and 4. Black line: reference profile.
Grey lines: perturbed profiles

and b illustrate the instantaneous seismic response to
porosity perturbations in layers 1 and 4 respectively. As
expected the response to deeper perturbations occurs
later in the trace and occurs over a time span that is
associated with the period of the seismic wavelet. The
instantaneous response to saturation perturbations is at
least one order of magnitude smaller in amplitude and
is not shown. Figure 2c shows the time-lapse response
to saturation changes in layers 3 and 4, assuming a
uniform porosity of 0.2. Note that for this case the am-
plitude response is weaker than in panels a and b. When
the EnKF method is used to update model variables,
use is made of statistical relationships between these
model variables and simulated measurements. Figure 3
shows a scatter diagram relating the saturation and
seismic amplitude perturbations as shown in Fig. 2c
(gray dots). The large scatter resulting from the combi-
nation of uncorrelated saturation perturbations in two
subsequent layers can be expected to pose problems
when covariances need to be estimated between these
two quantities, even when the relationship between,
e.g., saturation and seismic amplitude is almost linear
(the black dots show a linear relationship between
saturation and amplitude when saturation in one single
layer only is perturbed).

2.2 Ensemble Kalman filter

The EnKF is a sequential Monte Carlo method that
combines fully nonlinear evolution of model and error
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Fig. 3 Saturation change in layer 4 vs seismic amplitude at
sample location 45. Black dots: saturation perturbations applied
in layer 4 only; grey dots: uncorrelated saturation perturbations
applied in layers 3 and 4
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dynamics with a linear updating scheme, based on a
low-rank ensemble approximation of the model error-
covariance matrix (e.g., [12]). While sequential filters
are traditionally used primarily for state estimation
problems, their applicability to parameter and com-
bined state-parameter estimation problems has now
been demonstrated in multiple fields. The implementa-
tion of the EnKF used here is based on the traditional
formulation introduced by Evensen [10] and Burgers
et al. [2]. For a measurement equation of the form

y = H(xt) + εεε , (3)

where y is the measurement vector of length m, xt is
the true state vector of length n, H is the measurement
operator, and εεε is a random measurement error vector,
the EnkF update equation takes the form

Aa = A + Px,y [Py,y + R]−1 [Y − H(A)] . (4)

In this equation A = (x1, . . . , xN) is a matrix with
N ensemble forecast (prior) state vectors as its
columns, Py,y = H(A)′H(A)′T/(N−1) is the ensemble-
based error-covariance matrix of simulated measure-
ments, Px,y = A′H(A)′T/(N−1) is the ensemble-based
cross-covariance matrix of simulated states and mea-
surements, R is the measurement error-covariance ma-
trix, and Y = (y + εεε1, . . . , y + εεεN) is the ensemble ma-
trix of perturbed measurement vectors. Primes indicate
anomalies with respect to the ensemble mean, and
subscript a and denotes the analysis (posterior).

There are two approximations made in the EnKF
which may have consequences in practical cases: (1)
the update is based on second order statistics only
(i.e., means and covariances), and (2) these covariances
are computed from a finite size ensemble. The first
approximation implies that third and higher order mo-
ments of the joint probability density function (PDF)
of the model variables (including state variables and
simulated observations) are neglected, which makes it
difficult to maintain non-Gaussian a priori statistics of
property distributions. There are currently no efficient
assimilation methods available for large geophysical
problems which address this approximation. Non-linear
filters, such as particle filters, as well as Markov Chain
Monte Carlo methods, remain too computationally
demanding, while methods that attempt to conserve
higher-order statistical moments in the joint PDF dur-
ing the model adjustment (e.g., [31]) are still in an early
stage of development. Some iterative approaches have
been proposed that attempt to address the issue of
non-Gaussian PDFs by looking for a, generally local,
maximum likelihood solution.

The second approximation, i.e., the use of a lim-
ited number of model realizations, while making the
problem computationally tractable, introduces errors
in the covariance estimates, most importantly spurious
correlations which suggest the presence of non-existing
relationships between variables, leading to incorrect
updates. Furthermore, it has been shown [39], that
such errors tend to lead to systematic underestimation
of model error variances, and ultimately to ensemble
collapse, which for ensemble filters normally results in
filter divergence, that is, a growing tendency for the
model trajectory to diverge from the measurements.
Experience has shown that similar problems are likely
to be encountered when large numbers of relatively
accurate data are assimilated, due to loss of rank in
the ensemble, i.e., a further reduction in the effective
ensemble size. Problems can furthermore be encoun-
tered when the initial ensemble spread, or dynamic
growth rates are small. Several solutions are available
to avoid ensemble collapse. Perhaps the most common
solution is localization, which addresses the presence
of spurious correlations directly. This will be discussed
in more detail in the next section. A second solution is
inflation (see, e.g., [1]), which simply means artificially
increasing the spread in the ensemble by multiplying
the ensemble anomalies, i.e., the difference between
each individual ensemble realization with the ensemble
mean, by a factor greater than 1. An alternative solu-
tion is the use of so-called square-root schemes which
obtain an analysis by factorization of the theoretical
analysis covariance matrix. A review of such methods
is provided by Tippett et al. [36]. A variation of these
solutions is the Deterministic EnKF [28] which is based
on an update equation which ensures over-estimation
of the analysis variance. A final solution which has
been found to produce improved ensemble spread is
the use of iterative methods. This approach will also be
discussed in more detail in Section 2.4.

2.3 Localization

Localization limits the impact of measurements to se-
lected parts of the model, thereby decoupling to some
extent different model regions during the update, and
in effect increasing the dimension of the solution space
to above the number of ensemble members. At the
same time, by limiting the impact of measurements
to model parts which are presumably most strongly
correlated with the measurements, the impact of spuri-
ous covariances between measured variables and state
variables (resulting by chance due to the finite ensem-
ble size) is reduced. Houtekamer and Mitchell [21]
and Hamill et al. [18] both proposed localization of
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the ensemble-based error-covariance matrix of model
states Px,x by taking the elementwise product with a
correlation function C with local support. Common
definitions for C are those suggested by Gaspari and
Cohn [16], or by Furrer and Bengtsson [14]. The latter
one contains a dependence on ensemble size, leading
to reduced localization ranges for smaller ensemble
sizes. Assuming that most types of measurements have
compact support much smaller than the localization
range, Houtekamer and Mitchell [21] then suggested
to apply the localization to the ensemble covariance
matrix of simulated measurements, and to the matrix
of ensemble covariances between state variables and
simulated measurements, rather than to the covariance
matrix of the simulated states. This removes the need
for explicit calculation of the model error-covariance
matrix, which is normally very large, and also allows
for the use of localization with non-linear measure-
ment operators. The resulting EnKF update equation
becomes

Aa = A + (Cx,y ◦ Px,y) [Cy,y ◦ Py,y + R]−1 [Y − H(A)]
(5)

In history matching applications (e.g. [3], and also this
study) the localization is sometimes applied to the
Kalman gain instead,

Aa = A + Cx,y ◦ (Px,y [Py,y + R]−1) [Y − H(A)] . (6)

Chen and Oliver [3] found that for production-type
data this practise may result in artifacts when the lo-
calization range is comparable to a single well pattern
(i.e., typical producer-injector distance). The matrix
Cx,y has dimensions n × m, where n is the model state
vector length, and m is the number of measurements.
Localization can be applied to selected data types only,
e.g., seismic data, in which case only the corresponding
ms columns are different from 1.

While the function C typically depends only on dis-
tance, alternative approaches are available for model
simulators which support streamlines. Streamline-
based localization for production data was discussed by
Devegowda et al. [6]. This approach limits updates to
model grid regions which are connected to a particular
well by streamlines. The relative merits of distance-
based vs streamline-based localization for the incor-
poration of seismic data were studied by Trani et al.
[37]. Synthetic 3D examples for a single five-spot well
pattern showed that both types of localization help to
better assimilate time-lapse seismic data, and to im-
prove the quality of the permeability estimation, the

history match and the production forecast compared to
the case where no localization is applied.

2.4 Iteration

Several iterative methods have been proposed in the
literature with the aim of addressing non-linear effects
associated with the estimation of non-Gaussian proper-
ties. Early work on the iterated Kalman Filter was re-
viewed by Jazwinski [22]. Recent ensemble extensions
to this idea for reservoir applications were pursued
by, e.g., Wen and Chen [41] and Reynolds et al. [27].
The method used here was proposed by Gu and Oliver
[17] and coined the Ensemble Randomized Maximum
Likelihood Filter (EnRML). It combines the ensemble
approach, allowing for the representation of model
uncertainty, with a Gauss-Newton type scheme to min-
imize model-data differences. As it is an iterative filter,
only static parameters are updated while consistent
dynamic state variables are obtained by simulation of
the resulting updated models. Gu and Oliver [17] found
that, when observations were used which are strongly
non-linearly related to state parameters, dynamic state
updates were much improved, while also the ensem-
ble mean and variance were more consistent with
the theoretical expected values. The EnRML update
step including localization of the Kalman gain can be
written as

Al+1 = β A + (1 − β) Al

+ β Cx,y ◦ (P∗
x,y [P∗

y,y + R]−1)

× [Y − H(Al) + Gl(Al − A)] , (7)

where β is an adjustable step length. Gl is the linear
sensitivity of the measurement to the model parameters
at iteration l with dimensions m × n, calculated at each
iteration from the ensemble as

Gl = H(Al)
′ (A′

l)
+ , (8)

where primes again indicate anomalies with respect to
the ensemble mean, and + indicates the generalized in-
verse, computed here by singular value decomposition.
It has been observed that this is the computationally
most demanding step in the procedure when seismic
data is used, since both the number of observations, as
well as the number of state vector elements will be very
large. The asterisks in Eq. 7 indicate that the covari-
ances are computed using the linearized measurement
operator, e.g.,

P∗
y,y = (Gl A′) (Gl A′)T/(N − 1) . (9)

Note that for parameter or initial value estimation
problems computation of H(Al) involves running the
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simulator from the initial time to the update time, as
well as evaluating the measurement operator on the
dynamic state. We currently use three stopping criteria,
two of which are based on an evaluation of the data
mismatch,

Jd
l =

N∑

j=1

(Y j − D j,l)
TR−1(Y j − D j,l)) (10)

where Jd
l is the data mismatch part of the objective

function at iteration l, and Y j = y + εεε j is the perturbed
observation vector for ensemble member j. The itera-
tion process is stopped if at least one of three conditions
is met: (1) Sl−1 − Sl < α Sl−1, where α is some small
number, (2) Sl < m, or (3) l > lmax.

2.5 Time-difference data

Special attention has to be paid to correct treatment
of time-difference data such as time-lapse seismic data.
Using a Bayesian formulation, it was demonstrated by
Skjervheim et al. [32] that, since the simulated time-
lapse data at time t j depend both on the state at time t j

, as well as on the state at the initial time t0, differences
should be calculated with respect to the smoothed esti-
mate for the state at the initial time t0. The smoother
solution can be obtained by adding the initial state to
the state vector x, and updating it at every time ti,
0 < i < j at which measurements are assimilated. There
are two possible options here: we can compute the
smoother solution for the initial ensemble state and
simulate the corresponding seismic measurements, or
we can simply compute the smoother solution for the
simulated seismic measurements at the initial time. In
order to save computational effort, we apply the second
option here, but we do not claim that this option is
necessarily the best. In particular when iteration with
the EnRML is used it is not obvious what the optimal
method is. Note that when the EnRML is used, the

dynamic states are generally not updated, so that if
the initial saturation and pressure are assumed to be
known, the only uncertain parameter pertaining to the
seismic response at the initial time is porosity. This will
typically already be included in the list of parameters
to be updated. However, if the initial saturation dis-
tribution is unknown, it should also be updated. Note
furthermore that, even though permeability will not
affect the seismic response directly, it will generally be
related to porosity by a porosity-permeability relation
and should therefore also be updated for consistency.
Skjervheim et al. [32] recommended that the ensemble
should additionally be conditioned to the initial 3D
seismic data. We will present an experiment that inves-
tigates this issue.

3 Experiments

3.1 2D five-spot model

We start our experiments with a simple case that illus-
trates the potential for model improvement by use of
non-production type data. We consider a square, 2 m
thick and 700 m in width, flat oil reservoir with a water
injection well in the middle and four producing wells
in the corners. The reservoir is modeled by a single
layer of 21 × 21 grid cells. The only uncertain property
of the reservoir is its grid cell permeability (porosity
is 0.2 everywhere). In order to account for the uncer-
tainty in the knowledge of the reservoir, an ensemble
of 200 possible realizations is generated based on the
true geostatistics which are assumed known. The true
permeability values lie between 25 and 600 mD, with a
mean log10 value of 2.23. As an example, Fig. 4 shows
four randomly picked permeability realizations from
the ensemble, and Fig. 6a shows the true permeability.
Bottom-hole-pressures (BHP), and water and oil rates
are available for all wells every 50 model days. Grid
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saturation values, used here as a proxy for seismic data,
are available at days 150 and 450 for each grid cell.
Whenever measurements are available they are used
to update the model ensemble using the Ensemble
Kalman Filter. No localization is used. The updated
ensemble is then simulated forward in time up to the
next measurement time and the process is repeated.
After the final update at day 500 all models are run
forward up to day 1,500, providing a prediction of
future production given prescribed well constraints (an
injection rate of 1,090 barrels per day (BPD) and a BHP
of 250 Bar for the producers). Since this is a synthetic
case, measurements can be generated by simulation of
the known true model, and the performance of the
models can be verified by comparison with the true
production profiles. In order to add realism to this
case, the assimilated measurements are perturbed with
random noise: 2.5 Bar for BHP, 10% relative error for
rates with a minimum of 2 BPD, and 0.05 saturation
units for the seismic data.

Figure 5 shows time series of the water cut (WCT)
of the four producers for three different cases. The first
case (a) is an ensemble run without any conditioning
to data. The ensemble spread results from the uncer-
tainty in the permeability, leading to strongly varying

production profiles, with the water breakthrough time
varying up to a few hundred days between realizations.
The second case (b) is an EnKF run with conditioning
to well data only. The history match has reduced the un-
certainty, leading to more reliable predictions, although
significant ensemble spread remains for wells P1 and
P4. The third case (c) is an EnKF run with conditioning
to both production data and proxy seismic data. As
expected, the incorporation of saturation information
has further improved both the history match and the
prediction. Note especially that the history match has
improved the timing of the water-breakthrough, even
when it occurs long after the final update. Figure 6b
to d show the ensemble-mean permeability fields cor-
responding to the three cases. The final ensemble-
mean estimate of permeability after the history match
is far closer to the true field than the initial estimate,
with more detail being recovered whenever more in-
formation from measurements is incorporated. It can
be concluded from these simple experiments that, when
used in an appropriate manner, information from seis-
mic data can be expected to contribute in a quantita-
tive manner to the improvement of reservoir models.
In the following section we will discuss this quantita-
tive approach in more detail, and add complexity by
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Fig. 5 Profiles of the water cut (WCT) of producing wells P1
to P4. a unconditioned ensemble run, b EnKF run based on
production data only, c EnKF run based on production data

and proxy seismic. Grey solid lines: profiles for individual model
realizations; dashed black line: ensemble mean; solid black line:
true profile
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Fig. 6 Log10 permeability for the 2D reservoir; from left to right: a the truth, b the initial ensemble mean, c ensemble mean conditioned
to production data, and d ensemble mean conditioned to production and seismic data

considering the general 3D case in combination with
the seismic amplitude data discussed in Section 2.1.

3.2 3D five-spot model

In order to investigate the use of the seismic data
discussed in Section 2.1, a 3D model will be used in
this section which resembles the 2D case discussed
above in terms of well configuration and constraints.
The model consists of 11, 2 m thick, layers of Nx =
15 × Ny = 25 square grid cells of 33 m width each.
An ensemble of 50 model realizations and a truth
realization were generated by random drawing from
the same permeability-porosity distribution. Example
permeability realizations are depicted in Fig. 7a and
b, and a corresponding porosity realization in Fig. 7c.
The top two layers have identical properties. There
are two zones, consisting of layers 3 and 4, and of
layers 7 to 11 respectively, with relatively high porosity
and permeability. The well configuration for this model
is again a five-spot, with a slightly deviated central
injector well and vertical producers positioned in the
corners. All wells are perforated in layers 2 to 8, and the
injector is perforated in layers 2 to 9. All realizations
are simulated for 1500 days under a prescribed constant
rate constraint of 5435 BPD for the injector and a
constant BHP constraint of 250 Bar for the producers.
The model is identical to that used by Trani et al. [37]
who investigated the impact of localization for a case
in which saturation and pressure changes, as obtained
from an inversion of time-lapse seismic AVO data,
were assimilated with the EnKF. Pressure and rate
data are available every 50 days up to day 500 and
seismic data every 150 days up to day 450, including
a base survey before the start of production. Seismic
traces are obtained at regular intervals of 3 and 5 grid

cells in x and y direction respectively, and the traces
are subsequently sub-sampled in time, retaining every
5th sample, resulting in a total of 25 × 17 = 425 seis-
mic measurements from each survey. Examples of the
simulated seismograms corresponding to a single grid
column of the model are depicted in Fig. 8. Figure 8a
shows the porosity for the grid column as well as the
seismic amplitude and saturation for that column after
simulating the ensemble for 700 days. Superimposed
on the ensemble results are the values from the true
reservoir. Several observations can be made. As also
shown in Fig. 7, permeability and porosity vary rather
strongly between layers as well as across the ensemble.
This is reflected in the simulated saturation as well as
the seismic response for this grid column, which shows
large spread in the amplitude data. The time-lapse seis-
mic response to the reservoir properties will be rather
complicated due to the influence the property field has
on the dynamic variables saturation and pressure. Since
for multi-phase flow the dynamic response is not linear
in each of these properties, the influence of the porosity
profile, for example, may possibly not be eliminated
from the time-lapse response. In the following section
we will further investigate the relationship between the
simulated seismic amplitudes and reservoir properties
and dynamic variables. As a prelude to the history
matching experiments, Fig. 8b shows an example of a
porosity update for a single grid column. For this exam-
ple, the porosity was assumed to be the only uncertain
variable, with no prior knowledge on the vertical distri-
bution. The prior ensemble layer porosities are drawn
from a Gaussian distribution with a mean value of 0.15
and standard deviation of 0.6. Measurements of seismic
amplitude, containing noise with a standard deviation
of 0.02 were sub-samples from the seismic trace (black
dots in the left panel). A single update with the EnKF
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Fig. 7 3D five-spot model used for history matching with synthetic seismic trace data. a, b Two random log10 permeability realizations
in layers 2 to 11. c Porosity corresponding to the realization shown in b

results in the dark grey lines and dots. The general
character of the column with high and low porosity
zones can be seen to be reconstructed to some extent,
supporting our expectation that the seismic amplitudes
may be able to improve the vertical resolution of the
reservoir property distribution. This will also be further
investigated in the next section.

3.2.1 Ensemble-based cross-covariances

As discussed in Section 2.2, ensemble methods for
model updating rely on empirical statistical relation-
ships in the form of covariances between simulated
measurements and state vector elements (either static
parameters or dynamic variables). In this section we
will investigate the character of these covariances for
the seismic data discussed in Section 2.1.

In order to examine the extent to which the ampli-
tude samples in the seismic trace are able to discrimi-
nate reservoir characteristics in the vertical, as well as
laterally, Fig. 9 shows the normalized cross-covariances
between seismic amplitude and state vector compo-
nents (porosity and saturation are shown) after running
the ensemble realizations with the reservoir simulator
for 700 days. Each figure shows a composite of 9 × 9
sub-panels corresponding to layers (layer numbers are
indicated at the top). The colors represent the magni-
tude of the covariance between model variables defined
in grid cells for that layer and the seismic amplitude
for a certain sample in the trace. The sample number
is indicated to the left of the panel (the full trace is
120 samples long). The (x, y) location of the seismic
trace is indicated by the dot. The covariances were
normalized by the ensemble variance of the seismic
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Fig. 8 a Seismic amplitude, porosity and water saturation for
a single grid column (x = 8, y = 12) of the 3D reservoir model
after 700 days of production for all model realizations. Solid black
line: truth model. Grey lines: ensemble realizations. b Synthetic
example of porosity update based on seismic data. Black solid

line and dots: truth and measurements, light grey lines: ensemble
realizations and simulated data, dark grey lines and dots: updated
realizations and simulated data, dashed line: updated ensemble
mean. See text for further explanation

amplitude and can therefore also be interpreted as the
Kalman gain given zero measurement error, or as the
magnitude of the corresponding variable update for a
unit innovation. The top two panels, Fig. 9a and b, show
the ensemble cross-covariances between porosity and
seismic amplitude for two different seismic traces, the
first being located close to the injector well, and the
second relatively close to the bottom-left producer well.

The spatial extent of the observed patterns may seem
unrealistic from the point of view of the information
contained in a single seismic trace. However, the co-
variance patterns are influenced by the spatial scales
imposed on the porosity realizations as well. Since the
EnKF is based on statistical relationships resulting from
an ensemble of realizations, model-wide updates could
in principle result from a single observation, such as a
single sample from a seismic trace. The spatial extent of
the updates may be limited by the use of localization.
It is not immediately obvious what the appropriate
localization range should be, however, as fairly strong
covariances are observed to extend throughout at least
a single five-spot well pattern.

Several additional observations can be made. Co-
variances tend to be strong for the top layer and tend

to become weaker for deeper layers. This is related to
the impedance contrast which is strongest between the
overburden and top reservoir, and relatively weaker
between individual reservoir layers. A similar effect
can be observed for the bottom layer, for which the
impedance contrast with the underburden is again rela-
tively strong, and for contrasts between high- and low-
porosity zones. A second effect that can be observed
is that spatial features in the deeper layers become
progressively clearer in covariances with samples which
are located later in the trace. This is due to the delay
in travel time, i.e., the seismic signal arrives later at
interfaces between the deeper layers (compare Fig. 2a
and b). A factor contributing to the magnitude of the
covariances is the ensemble spread in the reservoir
properties for individual layers. The fact that this is
relatively large for the bottom layers as well as for layer
7 (see Fig. 8) also contributes to the larger values for
these layers.

The bottom two panels consider cross-covariances
between porosity or saturation and time-lapse seismic
amplitudes. A still significant covariance is observed
with porosity, even though porosity itself does not
change over time. It is our interpretation that these
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Fig. 9 Ensemble
cross-covariance between
static and dynamic variables
and seismic amplitude
response after 700 days of
production. The amplitude
samples vary over the rows
from 20 to 100, while the
layers vary with the columns
from 2 to 10. a Cov(φ, y) in
porosity units for a seismic
trace located at
(x = 7, y = 13), b Cov(φ, y)
in porosity units for a seismic
trace located at
(x = 5, y = 5), c Cov(φ, �y)
in porosity units for a seismic
trace located at
(x = 7, y = 13), d Cov(S, �y)
in saturation units for a
seismic trace located at
(x = 7, y = 13)

covariances result indirectly through the change in sat-
uration, for which the covariance plot is shown in panel
(d). The relevance of this is that one may expect that

time-lapse seismic can most likely be used to update
time-constant properties. The covariance patterns for
saturation are clearly associated with the spreading
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of the water front away from the injector. The sign
and position of the resulting saturation update would
be different for the different layers, again indicat-
ing the potential to improve vertical distributions of
model properties and dynamic variables. This assumes
of course that the seismic frequency is high enough
relative to the thickness of the reservoir.

Based on these figures, we expect that significant
information on the vertical distribution of both static
properties, such as porosity, and dynamic properties,
such as saturation, can be extracted from the seismic
by use of an ensemble of model realizations.

3.2.2 History matching experiments

In this section several history matching experiments
with the 3D reservoir model will be described. For
comparison between the different experiments we will
consider the water-cut (WCT) profile for the four pro-
ducers resulting from running the reservoir simulator
for 1,500 days with the updated property fields. As
a reference, the results from a simulation of the un-
conditioned ensemble is shown in Fig. 10a. In each of
the panels the root-means-square error (RMSE) in the
WCT is given, computed over all ensemble members
from the difference with the measurements. We note

that this is by far not the only possible measure to
judge the success of the history match. Alternatives are,
for example, to compute the RMSE between simulated
and measured data over the history match period, or
to consider only the ensemble mean. Similarly, rather
than plotting the ensemble-mean WCT, as we do here,
one could instead consider the model realization with
the smallest RMSE.

Following the suggestion by Skjervheim et al. [32]
we first investigated the impact of incorporating the
initial 3D seismic base survey data. Eight iterations
with the EnRML were performed to obtain a match
between simulated and measured seismic amplitudes
consistent with the specified error statistics. A mea-
surement error standard deviation of 0.02 was used
for the 3D seismic amplitudes. This is a small fraction
of the initial ensemble spread in the predicted seismic
amplitudes (see Fig. 8) and is therefore representative
of the case in which seismic data has the potential to
reduce model uncertainty significantly. When the reser-
voir and seismic models were subsequently simulated,
the seismic response shown in Fig. 11a was obtained
after 700 days. This figure can be compared to Fig. 8a.
The ensemble mean seismic response has clearly moved
closer to the true response. The ensemble spread has
also been reduced considerably. Some inconsistency

Fig. 10 a Profiles of
water-cut obtained by
running the initial (prior)
ensemble forward over the
combined history match
(0–500 days) and forecast
(500–1,500 days) periods. In
this and the following figures,
the true values are indicated
by the solid black line, the
ensemble mean by the dashed
black line, and individual
ensemble member profiles by
the solid grey lines. The
RMSE value is based on the
differences between all
individual ensemble members
and the truth over the
complete period, and
therefore incorporates both
the effects of bias in the mean
and ensemble spread. b Same
as a but for an ensemble
whose mean was additionally
conditioned to the initial 3D
seismic
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Fig. 11 Impact of conditioning to initial 3D seismic and inflation.
a Seismic amplitude, porosity, and water saturation for a single
grid column (x = 8, y = 12) of the 3D reservoir model after
700 days of production for all model realizations after condi-

tioning of the model porosity to the initial 3D seismic data with
the EnRML. b Same as a but with updating of the ensemble
mean only. Solid black line: truth model. Grey lines: ensemble
realizations

between the ensemble and the truth has appeared how-
ever, which is most clearly visible in the porosity profile.
In order to resolve this mismatch, the iteration process
was repeated but in this case only the ensemble mean
was updated, after which the initial ensemble spread
was restored around the updated mean. The results
are shown in Fig. 11b, which again shows the seismic
response after 700 days of production, and in Fig. 10b,
which shows the water-cut history for a 1,500 day sim-
ulation. This ensemble will be further used in some of
the history matching experiments described below.

Figure 12 shows the results from two experiments
in which only well data (BHP, oil and water rates)
were used to history match the ensemble. In both
cases the sequential EnKF was used every 50 days
to assimilate production data after which the updated
ensemble was further simulated to the next update
time. No localization was applied. This choice is con-
sistent with the results of Chen and Oliver [3] who
found that localization patterns for rate and pressure
data should extend beyond a single well pattern such
as the five-spot used here. Note that only one well
shows water breakthrough during the history match
period, and that therefore one can expect to obtain only

limited model improvement from the well data alone.
Figure 12a shows the WCT profile obtained during the
first EnKF run itself, while Fig. 12b shows the WCT
profile when the final updated ensemble is rerun from
the initial time. This experiment was started from the
unconditioned ensemble. In Fig. 12c, on the other hand,
the WCT profile from a history match using the same
data is shown when the ensemble conditioned to the
initial 3D seismic is used. In both cases the resulting
profiles are closer to the truth than for the initial
(prior) ensemble, but significant deviations from the
true profile, as well as large uncertainties, as indicated
by the large ensemble spread, remain.

Figure 13a to d show the results from a series of
experiments in which, additionally to well data, seis-
mic time-lapse amplitude data were assimilated at days
150, 300, and 450. An error standard deviation of 0.01
was assumed for the seismic amplitude measurements.
Figure 13a results from an EnKF run using the same
settings as were used to obtain the results in Fig. 12c. As
can be observed right away, large deviations have ap-
peared between the ensemble and true WCT profiles,
accompanied by a strongly reduced ensemble spread.
This is the typical signature of filter divergence. For the
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Fig. 12 Profiles of water-cut
resulting from history
matching with the EnKF to
well data (BHP, oil rate, and
water rate). a Profiles
obtained during the EnKF
run. b Profiles resulting from
simulating the updated
models over the history
match period. c Same as b but
for an ensemble whose mean
was additionally conditioned
to the initial 3D seismic
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next run, the results of which are shown in Fig. 12b,
lateral distance-based localization was applied to each
seismic data trace using the localization function sug-
gested by Furrer and Bengtsson [14]. The localization
distance was somewhat arbitrarily chosen such that
the function C has a value of 0.5 at the locations of
neighboring traces. While the use of localization has
significantly helped to restore ensemble spread, large
deviations and inconsistencies between the ensemble
mean profile and the truth remain. In an attempt to
reduce the negative impact of large model-data mis-
matches, we increased the measurement error vari-
ances, contained in the matrix R for mean innova-
tions exceeding three times the measurement error
standard deviation. This leads to the profiles shown

in Fig. 12c. The bias between modeled and measured
WCT is seen to be somewhat reduced, and ensemble
spread has been further increased for at least one of
the wells. For the final figure, Fig. 12d, we applied a
simple adaptive ensemble inflation procedure, similar
to the one used to incorporate the 3D seismic from the
base survey. Only when ensemble spread, as defined
by the maximum eigenvalue of the model property
covariance matrix, reduced by more than 40% during
an update step (which occurred only when seismic data
were included), ensemble spread was restored to its
value before the update by multiplying the ensemble
property anomalies. We did not extensively test for the
minimum required value. Although not required for
the stability of the simulations, the simulations were
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Fig. 13 a Profiles of
water-cut resulting from
history matching to
production data (oil rate,
water rate, and flowing
bottom-hole-pressure) and
time-lapse seismic amplitude
data. Time-lapse differences
were computed with respect
to the base survey. b Same as
a but with localization as
described in the text. c Same
as b but with selective
increase of the measurement
error variances in R. d Same
as c but with ensemble
inflation as described in the
text, taking time-differences
with respect to the most
recent repeat survey, and
restarting from initial time
after each seismic update. In
all cases, the initial ensemble
mean was conditioned to the
initial 3D seismic
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restarted from the initial time after each seismic update,
which ensures internally consistent balances between
the parameter field and dynamic variables, but comes

at the cost of doubling the run time for the seismic up-
date steps. Finally, for this run, time-lapse differences
were computed with respect to the most recent survey,
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Fig. 14 a True porosity for layers 2 to 11. b Initial ensemble-
mean porosity. c Ensemble-mean porosity resulting from an
EnKF history match based on pressure and oil and water rates. d
Ensemble-mean porosity conditioned to the base survey seismic.

e Ensemble-mean porosity resulting from a combined history
match to production and seismic data, starting from an ensem-
ble conditioned to the base survey seismic, corresponding to
Fig. 13(d)
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rather than the base survey. This turned out to result
in a WCT profile with a slightly smaller RMSE value.
The result of all the considered measures is that an
improved forecast profile has resulted, when compared
to the straightforward incorporation of seismic data,
which leads to filter divergence. Further experiments
were conducted in which additional iterations were at-
tempted on the seismic update with the EnRML. These
experiments involved rerunning all ensemble members
from the initial time to the seismic update time and re-
computing an ensemble-based downhill gradient direc-
tion with the EnRML scheme (i.e. towards a reduced
cost function value). We applied this procedure both
with 3D and with 4D seismic but could not further im-
prove the match to the seismic data significantly beyond
the first iteration. The estimated property fields for the
experiments described above are shown in Fig. 14. The
results are consistent with those of the WCT time series.
While the broad distinction between reservoir zones
of different porosity classes is already captured by the
initial ensemble, as one would normally be able to do
based on well log data and cores, details away from
the wells are largely absent. Some of the main features
of the true porosity are reproduced when production
data is assimilated, but the amplitudes remain rather
low compared with the true values. Much more detail,
with more or less the correct amplitudes, is recovered
by conditioning the ensemble to the base survey 3D
seismic (Fig. 14d). From Fig. 14e we conclude that while
we managed to produce a history match consistent with
both production and seismic data, the property field did
not improve much further by incorporating the time-
lapse seismic amplitudes.

4 Summary and conclusions

We have considered the ensemble-based history match-
ing matching problem for combined production and
seismic data, in which we have explored a forward
modeling approach which does not require any seismic
inversion in the traditional sense. Instead, seismic am-
plitudes are simulated using a 1D convolution model,
which can subsequently be directly compared with the
(processed) measured seismic data. An anticipated ad-
vantage is that the character of measurement errors is
perhaps better understood in the amplitude domain,
but this has not yet been tested with real data. The
3D model which was considered had a relatively simple
configuration, but complex property distribution. An
ensemble of relatively modest size (50 members) was
used to set a somewhat realistic challenge. A sequential
EnKF was observed to work quite well for history

matching production data only. A study of ensemble-
based covariances between model properties and the
seismic amplitude response to dynamic changes in the
reservoir suggested scope for improvement of the ver-
tical property distribution. An iterative method was
used successfully to condition the ensemble to the base
survey seismic amplitude data, resulting in an improved
property field and history match. Consistent with re-
sults reported elsewhere, however, the incorporation of
relatively large numbers of high-accuracy seismic data
during the history match period, was observed to lead
to unsatisfactory results when no additional measures
are taken. The use of a localization scheme helped to
restore ensemble spread to some extent, but did not re-
solve the problem entirely. An additional improvement
could be obtained by increasing the measurement error
standard deviation whenever the data-model mismatch
is too large. A simple adaptive inflation procedure fur-
ther assisted in maintaining sufficient ensemble spread.
Restarting the ensemble from the initial time after each
update was found not to be necessary for maintaining
spread or for stability of the runs with this model. Sev-
eral alternative approaches were tested but did not lead
to satisfactory results for this experimental case. While
iterative conditioning to the initial 3D seismic proved
successful, subsequent iteration on time-lapse seismic
data was not as successful as anticipated. We conclude
that while there are sufficient measures available to
enable the incorporation of large numbers of data with
the EnKF, the challenge remains to extract a maximum
amount of information from the data. Further research
into this issue should include the question whether it is
always better to compute time-differences with respect
to the most recent survey or to the base survey. We
finally note here that while we updated saturation, in
our simulator saturation is not a primary variable, and
therefore a re-initialization step was required after each
update.

The results suggest possible further lines of research.
The observed problems with time-lapse seismic could
possibly be resolved by applying a “global,” instead of a
“local” iteration. Using the concept of “asynchronous”
data-assimilation [30] one could run the ensemble from
the initial time all the way to the end of the history
match period and perform a model update based on
all simulated and measured data simultaneously, rather
than sequentially. This would be similar to the ap-
proach taken in 4DVar, where data mismatches are
collected over the entire model simulation period. Such
an approach may require the use of inflation of the en-
semble or of measurement errors, if the EnKF update
scheme is used. An alternative is to use the EnRML,
but this scheme, in particular the computation of the
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generalized inverse, Eq. 8, is found to be computa-
tionally costly when large numbers of data are used,
since all dimensions involved are large. The numerical
cost can possibly be reduced by switching from local-
ization of the Kalman gain based on all measurements
simultaneously, to assimilating uncorrelated batches of
observations sequentially. Wang et al. [40] claimed that
the EnRML scheme is not guaranteed to produce a
downhill gradient direction due to all approximations
involved, and that results may be rather sensitive to
the choice of the step-size β. Further experimentation
is needed to investigate this issue. There may be more
to gain by further exploring more advanced adaptive
inflation methods, as well as localization methods based
on streamline simulation, both of which have not been
considered in this study. Finally, Fahimuddin et al. [13]
have compared the use of amplitude and impedance
data and found the latter to produce somewhat better
results. More research is needed, however, in order to
fully understand the observed differences as well as
potential benefits of specific types of seismic attributes.
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