<]
TUDelft

Delft University of Technology

Comparison of A* and RRT in real-time 3D path planning of UAVs

Zammit, Christian; van Kampen, Erik-jan

DOI
10.2514/6.2020-0861

Publication date
2020

Document Version
Final published version

Published in
AlAA Scitech 2020 Forum

Citation (APA)

Zammit, C., & van Kampen, E. (2020). Comparison of A* and RRT in real-time 3D path planning of UAVs.
In AIAA Scitech 2020 Forum: 6-10 January 2020, Orlando, FL Article AIAA 2020-0861 (AIAA Scitech 2020
Forum; Vol. 1 PartF). American Institute of Aeronautics and Astronautics Inc. (AIAA).
https://doi.org/10.2514/6.2020-0861

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.2514/6.2020-0861
https://doi.org/10.2514/6.2020-0861

AIAA SciTech Forum

6-10 January 2020, Orlando, FL
AIAA Scitech 2020 Forum

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

Comparison of A* and RRT in real-time 3D path
planning of UAVs

C. Zammit*" and E. van Kampen?!
Delft University of Technology, Delft, 2629HS, The Netherlands

Unmanned Aerial Vehicles (UAVs) are being integrated into a wide range of military,
industrial and commercial applications. Such applications require faultless autonomous
systems to coordinate, guide, navigate and control different UAVs of different sizes, de-
signed for different purposes with different capabilities. In this regard, different path plan-
ning algorithms were developed to ensure that UAVs are supplied with collision—free path
paramount to which are the A* and the RRT algorithms, a graph—based and a sampling—
based algorithm respectively. Such algorithms shall ideally operate in real-time to furnish
the UAV navigation system with real-time, valid, obstacle—free paths in view of changes
in the environment or other external or user—defined restrictions. Owing this need, in this
paper a real-time platform to assess the performance of the A* and RRT algorithm with
an associated smoothing algorithm was developed and tested using 3, 3D obstacle environ-
ment with different complexities. The salient user—defined, system—defined and internal
constants were independently considered and their effect on performance assessed. Results
showed that the A* outperformed the RRT algorithm in both path length and computa-
tional time for all scenarios considered with difference increasing with scenario complexity.
But, both algorithms can be utilised if the associated parameters are attentively chosen
based on the scenario the UAV will operate as both algorithm reached a 100% success rate
for all scenario at specific parameter assignments.

I. Introduction

Unmanned Aerial Vehicle (UAVs) are potential candidates for a wide range of applications in both civil
and military setups. In these scenarios, different UAVs requires varying levels of autonomy, reliability and
efficiency based on the assigned task. To reach a goal or set of goals, UAVs are equipped with sensory,
processing and actuator systems with different accuracy, redundancy, preciseness, latency, reliability and
computational power.

Real-time, efficient and reliable paths are fundamental to ensure that the UAV autonomously reaches
the goal safely and in due time. Path planning is the process of automatically generating feasible and
optimal 2D%2 or 3D3* paths. Different UAVs have different levels of path planning autonomy varying
from solely human-controlled® and shared human-controlled® systems to fully autonomous goal-oriented
systems” designed for different applications. Some of these applications include: agricultural remote sensing,?
ground vehicle tracking,” traffic surveillance,'? package delivery,'’''2 medicinal delivery in remote areas'?
and ambulance drone.'* Moreover, UAVs can be utilised in situations where the mission is too difficult or
too dangerous for human pilots such as monitor critical structures in natural disasters, search and rescue
and monitor weather inside a storm.!®

The path planning algorithms utilise sensory, processing and actuator systems to generate paths in view of
different kinematic, dynamic'®'7 and environmental'® 19 time-varying constraints. Once a path is generated
through the path planning algorithm, a path following algorithm will generate the control parameters for
the UAV to follow the generated path. Although these control parameters can be generated offline, real-time

*Ph. D. Candidate, Control & Simulation, TU Delft Aerospace Engineering, Kluyverweg 1, Delft, The Netherlands.

tSenior Lecturer, Electrical Engineering, Gozo Campus, Malta College of Arts, Science and Technology (MCAST), Malta
and ATAA Member

f Assistant Professor, Control & Simulation, TU Delft Aerospace Engineering, Kluyverweg 1, Delft, The Netherlands, and
ATAA Member.

1 of 25

Copyright © 2020 by Technische Universiteit Delft. Published by the AN AR dRsEiASRErOeE P AYRa AR &ﬁtiﬁﬂﬁ'ﬁ&m@on.

10.2514/6.2020-0861
Check for
updates

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2020-0861&domain=pdf&date_stamp=2020-01-05

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

path planning allows the path following algorithm to amend control instructions in view of unpredictable
and/or uncertain model and environmental changes. Currently, general-purpose and dedicated UAV systems
incorporate advanced control algorithms that can allow UAVs to manoeuvre in cluttered environments
if the control algorithm is provided with accurate, timely and efficient real-time attitude and directional
information. This goal-driven, autonomous UAV can be realised via a real-time path planning algorithm
governed by the already available path following and control state-of-the-art systems.

Even in indoor applications, UAVs are expected to operate in a time-varying environment even if the start
and goal positions are identical or interchange continuously. A UAV may encounter moving unpredictable
obstacles, such as persons, door and window openings and other UAVs as well as internal unpredictable
events such as fuel limitations, loss of movement in 1 or more Degrees of Freedom (DoF) and loss of partial
or complete sensory information. In these real-life situations the control, path following and planning
algorithms must operate safely and efficiently irrespective of any shortcomings in the sensory and actuator
systems.?0 To cater for these situations besides a real-time control algorithm, a real-time path planner is a
must.

The aim of this paper is to assess the appropriateness for real-time 3D UAV path planning of graph—based
and sampling—based path planning approaches. An extensive literature review of the state-of-the-art path
planning algorithms presented in?! concluded that A* and RRT are the two most utilised graph-based and
sampling-based path planning methods, respectively. Further analysis in?!22 showed that these algorithms
and their variants are key candidates for 3D UAV path planning. Therefore, these two algorithms will be
assessed for performance mainly in terms of computational time, success rate and path length throughout
this paper in view of real-time application.

The paper will be organised as follows. Section II will present the state-of-the-art in real-time path
planning. Section ITI provides a brief resume of the considered path planning algorithms (A* and RRT) and
the smoothing algorithm defined in depth in our previous work.?!:22 Section IV will define the theoretical
aspect of the developed algorithm designed to assess the appropriateness of the considered path planning
algorithms in real-time applications. Section V will define the experimental scenario with the associated
arbitrary—defined parameters. The following section (Section VI), will present, analyse and assess the results
in view of 3D UAV path planning in real-time. The paper will conclude by Section VII which based on
the benefits and shortcomings will rate the appropriateness of the implemented algorithm for 3D UAV path
planning in real-time.

II. Real-time path planning literature review

A. Introduction

Real-time path planning is considered as a desirable feature,?® a requirement?* and paramount?® for real-

time autonomous manoeuvring of vehicles let alone UAVs in real, dynamic environments. Real-time path
planners are requested to generate paths in the presence of other cooperating or enemy UAVs, unexpected
UAV damage, altering model constraints and definitions, and in view of uncertainties in the environment in
which they operate.?23:24 Furthermore, the path planner must make optimal use of available resources such
as computational power and fuel.?6

A path planner is considered to be real-time if the time required to generate a path is smaller than the
time to traverse the path.® 2728 For Short et. al.? a realistic path planner must react in synchronisation
with information update from the sensory systems. Furthermore, such path planner must generate a path
even with restricted global information.?°

As computational time is the bottleneck of real-time path planning, Karaman and Frazzoli,?° remarked
that computational time per iterate shall be sub—bounded. In certain iterates, longer computational times
may be required due to fewer path solutions. if not tackled these will increase the overall computational time
making the path planning algorithm unsuitable for real-time path planning. Sub-bounds will attenuate this
situation even if a solution is not found in that iterate, but a minor movement on the previously generated
path may yield a path possibly in lesser time.

Real-time path planning of UAVs require high fidelity modelling of the environment. Simultaneous
Localisation and Mapping (SLAM) algorithms can be utilised to generate maps for realistic environments to
facilitate real-time path planning. Such algorithms can be utilised to mitigate in absence or partial absence
of GPS information, discontinuity of sensor information and noise.3!

This literature review will be segmented into three main path planning categories: Optimisation algo-

2 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

rithms, graph—based methods and sampling—based methods. Their application in 3D real-time path planning
will be analysed and assessed.

B. Optimisation Algorithms

In both real-time and offline applications there is no guarantee of convergence to the goal let alone in a
predetermined time either because no path exists, the environment is not enough known or the path planning
algorithm intrinsically cannot generate the path in the particular situation.?® In such situations, a trade-
off between computational time and optimality was considered by Frazzoli?® for a finite-state automation
method to compute trajectories for multiple UAVs in safety—critical, high performance vehicles with complex
dynamics.

Disturbances from external torques initiating through for example wind shears, sensor inaccuracies and
parameter uncertainties will increase further the path planning and following of complex systems such as
UAVs.2> Real-time applications of optimal control theory showed that feedback control will enhance per-
formance in such complex nonlinear systems.??33 Furthermore, through sensor fusion, the accuracy and
responsiveness of the sensing system will be improved.?> Gong et. al.?® and Bollino et. al.?> utilised a
pseudospectral method for optimal control and path planning of complex systems, respectively. Simulation
results of this method show that although pseudospectral methods are mainly utilised for path following
providing optimal control instructions, they can be utilised for autonomous path planning.?

A single optimisation method cannot simultaneously guarantee target tracking and obstacle avoidance,
especially in 3D UAV path planning environments. Yao et. al.?® proposed a combination of improved
Lyapunov Guidance Vector Field (LGVF), the Interfered Fluid Dynamical System (IFDS) and the strategy
of varying receding—horizon optimisation based on Model Predictive Control (MPC) to generate 3D paths
for a UAV in dynamic environments under constraints. This hybrid algorithm was proposed since although
MPC were successfully applied to generate suboptimal paths in real-time3%3° and to generate paths in 2D
scenarios, the computational efficiency and smoothness will deteriorate in 3D environments.?®

Furthermore, Roberge et. al.,3® compared Particle Swarm Optimisation and Genetic algorithms in real-
time for the automatic path planning of fixed—wing UAVs in complex 3D environments. Both algorithms
generated feasible and quasi—optimal trajectories in view of vehicle dynamics. Execution time was reduced
through single-data multiple-data on an 8 core processor. Although both algorithms generated a path with
10s (a preset path planning time), Genetic Algorithms produced better trajectories. Roberge et. al.3%
remarked that both algorithms can generate a path for cruising the fastest fixed wing UAV available at the
time of writing.

In dynamic real-world populated environments and considering the disturbances and eventualities men-
tioned above, 10s is too long to react and generate a new non-colliding path. Solving complex optimisation
problems arising from these scenarios will result in high computational load.3”

28

C. Graph—-based Methods

Real-time path planning of complex dynamic environments still remains a challenge even for 2D environment,
let alone 3D.%® Kuwata et. al.3® remarked that it is very difficult to model nonlinear dynamics especially
for demanding manoeuvres when using generic graph—based path planning methods. This is because generic
graph-based methods such as the original A* assume the environment to be static.?? Similarly, Singh et.
al.,3! remarked that although graph-based methods are effective in configured environments, it is unsuitable
for real-time path planning in large or complex environments. Local approaches of such graph—based methods
can stall in local minima.3!

Although as remarked by Kuwata et. al.,?® graph-based methods are not optimal for real-time path
planning, the differential A* % based on the A* algorithm (a graph-based method), was developed. More
efficient results in the majority of cases were achieved when compared to A*, proposing the algorithm as a
candidate for real-time dynamic, re-planning.*°

Fernandes et. al.,? extended the A* algorithm in cell decomposition, considering both position and
orientation in the computation of the path. This approach made it possible to reduce the computational
time while maintaining the same configuration space.3?

A parallel non—deterministic adaption of the Dijkstra algorithm, a pioneer graph-based method, was
applied to generate an energy efficient, global re—planner for real-time UAV rescue operations in dynamic

3 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

environments with a range of 200m? utilising a map discretization of 1m?2.4! Results show tens of multiple
times improvement over the sequential Dijkstra algorithm with an average path cost error of smaller 1.2%.4!

D. Sampling—based Methods

Sampling-based methods are applicable to general dynamical models, their incremental nature makes it
inherent for use in real-time applications whilst guaranteeing a solution and do not require enumeration of
constraints allowing trajectory—wise checking of complex constraints.*2 43

Advancements in sampling-based methods have proposed these algorithms for real-time path planning
in dynamic and unknown environments.?? Re-planning is essential in these situations as the environment is
only partially known at one point in time, revealing more detail in the direction of the goal in every vehicle
movement. This can also create situations, in which a previous non—colliding path may lead to a collision
with more details in the environment. Therefore, the planner must react in real-time to mitigate with these
situations whilst the UAV is moving. According to Kunz et. al.,** this reaction time shall not exceed 200ms
to mimic human reaction.

Since according to Kuwata et. al.*® the standard RRT is not able to generate safe and feasible paths in
the presence of uncertainty in real-time for 2D applications, the latter proposed a closed-loop prediction in
the framework of RRT, with a low—level Proportional-Integral speed controller and a pure pursuit steering
controller to manoeuvre the vehicle based on real-time path planning information. Real-time execution
requires reusing information from previous.*?46 QOtherwise only a sparse tree will be created when compared
to the reuse approach in which computational resources are used to add new improved branches to the
existing tree.*> A non-colliding path is retained as long as possible to firstly limit “no path” situations and
secondly to grant the necessary time for the path planning algorithm to generate efficient trajectories.?® This
Closed loop RRT technique shows that real-time path planning is the bottleneck even in 2D environments.

E. Conclusion

This review first highlighted that 3D path planning algorithms shall successfully and efficiently operate in
real-time with restricted computational power, lack of onboard resources, sensor low responsiveness and
inaccuracy and environmental uncertainties. Optimisation algorithms are prospective candidates for 3D
UAV path planning in real-time. Although results are promising, this approach requires knowledge of
UAV dynamics and non-linearities. Graph—based methods are intrinsically designed for static environments
although amendments to the basic algorithms can extend their application to real-time situations due to their
relative computational simplicity. Sampling-based methods and their adaptions are also worth considering
especially if re—usability of previous non—colliding paths or branches are retained. Furthermore, hybrid
approaches combining different algorithms with different strongholds can be utilised to mitigate inherent
shortcomings of one of the discussed three approaches.

ITI. The A*, RRT and Smoothing Algorithms

A. Introduction

Graph—based methods divide the working space into an occupancy grid with obstacles defined as inaccessible
grid points.#?4” Such methods do not offer a guarantee of solution.*® Oppositely, sampling-based methods
create a path by connecting unevenly selected points from the configuration space.?>42 The A* and RRT
are the two most utilised algorithms for the graph—based and sampling-based methods, respectively. To
optimise the path a smoothing algorithm was developed and applied to both algorithms. in our previous
work. 2122

B. The A* Algorithm

The standard A* algorithm constructs an optimal path based on an evaluation function f(n) that calculates
the actual cost of an optimal path constrained to pass through n, from a point z;,;+ to the goal node of n,
Tgoal € RM 49:50 p is any node and ;i is the starting node in the M-Dimensional available space such
that n, T € RM. This evaluation function f(n) is the summation of the actual cost from z;,;; to a node,

4 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

n (g(n)), and the actual cost from n to the goal point of n, (h(n)), where f, g, h: € RM — R:
f(n) = g(n) + h(n) (1)

C. The RRT Algorithm

The RRT algorithm grows trees of feasible trajectories by randomly planting a number of seeds. Seeds are
only considered if they lie on an obstacle free point. A point a predefined distance from the nearest seed is
selected if the direct path to the latter does not collide with an obstacle. Ultimately a tree that interconnects
the start and goal points will define a feasible path.?! 53 Paths generated by RRT are not optimal.5* 55

D. The Smoothing Algorithm

The smoothing algorithm randomly selects two path points and consequently defines two points on the lines
connecting these path points with their respective next path point. If an interconnection is possible without
collision with obstacles then intermediate points between these two path points are eliminated.

E. Conclusion

Reference is made to our previous work?! for a more in depth understanding of the working principle for the
A* RRT and smoothing algorithms. In addition, a detailed literature review of the current state-of-the-art
in graph—based and sampling—based methods is available.

IV. The Real-time algorithm

A. Introduction

Both path planning algorithms were successfully implemented in static offline applications. Furthermore, the
RRT without step-size constraints and the Multiple Rapidly-Exploring Random Tree (MRRT) algorithms
were also considered in our previous works.?!:22 The characteristics, strongholds and shortcomings of these
algorithms were identified, assessed and analysed through the use of different experimental scenarios in view
of 3D UAV path planning.?!: 22

As was concluded in Section II, real-time path planning is almost a must for a UAV to autonomously reach
a goal especially in the presence of static and dynamic obstacles.23 2% Therefore, a testing platform was set
up to assess and possibly improve the performance of the two most utilised graph—based and sampling—based
methods.

B. Theoretical Aspect

In real-life path planning, the UAV path generation system must generate and/or update the existing path
to goal ideally every instance say few milliseconds, irrespective of a changes in the UAV position and ob-
stacles. Such approach demands high update rate. Such rate is beyond the computational power available
onboard state-of-the-art UAVs. Therefore, the proposed real-time path planning algorithm only updates at
predetermined time intervals derived from the nominal speed of the UAV. It is assumed that the obstacle
positions and size remain constant. Although it is assumed that the UAV actuator system will move the
UAV a predetermined distance defined by the preset time step in a certain direction set by the generated
path, if variations exists due to internal (speed controller) or external factors (weather) the real-time path
planning system can make use of updated positional information when updating the path in the subsequent
iterate.

Figure 1 graphically illustrates the real-time path planning concept. The UAV sensory system have
a limited field-of-view (FOV) (green—dotted circle) into which prospective new intermediate goal point
positions can be selected. It is assumed that such area is known with certainty with respect to obstacles
(Olive green dots). In this illustration it is assumed that the UAV is equipped with a 360° FOV sensory
system but the principle can be applied to smaller FOV sensory systems as usually the goal position is within
180° of the current UAV heading.

5 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

Goal

Open node

node

o [Yot S\ @ o}
S erm \late
,l Goal \\
(] ’l node \‘ O ®
'l ¥ Obstacle
] Currerjt 1
[] = UA o o l o [J
\ positign| Unavailable]
o \ ¢ e /ie o

Passed
node

Figure 1. Real-time path planning with finite limited look—ahead distance

1. Parameter Definition and Initiation

Firstly the real-time initiates by defining the start (start) and goal (goal) positions and the considered
resolution (res). In RRT since the randomly generated point can reside anywhere with an environmental
space, the equivalent of resolution is the step size which denotes the distance that the current path point
can move in the direction of the generated path point. This will be denoted by dstep_rrr. For clarity res
will be considered in the definition of other parameters.

In real-time the UAV path planning system has a finite time to generate a feasible path to the final goal
as otherwise the UAV must either stop intermittently in mid-air (if a quadrotor is considered) or the path
planning algorithm becomes unfeasible. As cited in Section IT A, a real-time path planner must generate a
path segment in less than the time to traverse it.? 27?8 For a real-time path planner stopping in mid—air is
not an option. Therefore the maximum time between iterates need to be defined based on the following two
assumptions. The UAV moved at a constant nominal speed of vy 4y in (km/hr) in a cubic environmental
space of depy_space distance on a 3D axis. Based on this work space the time to generate a path between
iterates t;terate max 1S:

60 x 60 x d
titerate,maac(s) = (TGS — 1) ;n;;j(:/ce (2)

Another constant parameter closely related to titerate_mae iS the distance covered by the UAV in every
iterate (ds_step). This value is a function of the UAV speed and assumes that actuator systems are linear and
no external factors such weather are effecting the UAV. Based on the above rationale the distance covered in
titerate_maz Shall be < dg_step. This modular unit value was also arbitrary chosen although it can be varied
based on the fidelity and confidence of the UAV sensory and actuator systems and environmental model.

Besides the maximum time to generate a path segment between iterates t;ierate_maz, the maximum time
allocated to reach the goal point from the start position tpath_gen maz Was arbitrary set. This upper limit
is included as situations can arise in which the UAV will venture around obstacles without actually getting
closer to the goal. Moreover, UAV fuel autonomy is finite. This value shall denote double the time required
to traverse the diagonal distance between two extreme points of the environmental space.

Moreover, dint_goqr denotes the distance between the current UAV position and the prospective interme-
diate goal point. This arbitrary value is a function of the range of the sensory system which shall ensure

6 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

that in dini_goar all obstacles are know with certainty. In certain instances the resultant intermediate goal
position may reside on an obstacle. In such situations, a new intermediate goal point must be defined. As the
maximum look-ahead distance is defined by dint_goai, the new intermediate goal point must reside nearer to
the current UAV position. Therefore a distance reduction factor, dqetor < 1 (set at 0.9) was defined. Finally,
lim defines the 3D boundaries of the working environment which may vary due to the shifting introduced
by the A* ripple reduction algorithm.

After these constants are defined the A* ripple reduction algorithm is applied in case the A* algorithm is
under review. An in depth definition of this algorithm is available in our previous work.?? The new 3D limits
introduced by this algorithm are assigned to lim. The current UAV position s, is set to start. In the case
of the A* algorithm, the start location will vary by a maximum of half the distance between grid positions, in
all 3-dimensions, due to the shifting introduced by the A* ripple reduction algorithm. Furthermore, the path
possibility flag (flagpats), signals whether a path could be created in future iterates (=1) or not as either
a path has been created or no possibility of a path exist (=0). Furthermore, the total path computational
time time is set to Os.

The real-time algorithm tries to find a path in case the distance between the current UAV position
and the final goal point (dint_s—to—g) is larger than the distance between three consequent grid points, the
computational time since the start of the path generation process (time) has exceeded tpath_gen-maz, the
allotted time to generate an intermediate path between the current UAV position and the intermediate goal
point has been exceeded and a path is possible. In case these conditions are satisfied, the iterate time
time;ierate 18 re-set to 0 and re-started.

2. The Move Function

Unless the current UAV position S¢,, is not the start position start, the UAV shall be moved ds_s¢;, distance
in the direction of the previously constructed path pathsmooth_pre- The move function defined in Algorithm
2 considers all the situations in defining a feasible future s.,,. Besides the constants defined earlier, envpqrq
define the environmental parameters namely the size of the environmental space and the size and position
of obstacles in the environmental space. In A* as opposed to RRT, the size and position of obstacles may
slightly vary due to the discretisation of the environmental space. pathgmoeorn denotes all points of the
smoothed path generated in the previous iterate.

The move function initiates by checking that the distance to the intermediate goal point from the current
UAV position is larger than the distance the UAV is assumed to move between the generation of two paths.
In this case, the iterate count ¢ is initialised to 1. dyotq; denotes the distance from s, to a previous smoothed
path point in pathsmeotn_pre (i) such that, the distance between pathsmootn_pre(t) and pathsmooth pre(i + 1),
dint_(i)—to—(i+1), 18 smaller than d_ssep. Therefore,

ds,step < diotal + dint,(i)—to—(i—i-l) (3)

For initiation, dissq is set to 0 since it is assumed that ds_sgep < ding_(1)—to—(2)- ds_step_part denotes the
distance to be moved by the UAV (ds_step — diotar) from pathsmooth_pre(i) to define the Scur_new. Figure 2
graphically defines this parameter. As ds_step_part must be always smaller than ds_step, the former is assigned
to the latter. flagsmai, @ Boolean parameter denotes whether the distance between ds_siep is smaller than
Pathsmooth_pre(1) and pathsmooth_pre(2). In this case flagsman is assigned to 0 and vice—versa otherwise. It
is first assigned to O as the first condition is assumed, otherwise flagsmqn will be toggled in the following
While condition. The distance between the first and second smoothed path points (dj;;_(1)—to—(2)) and the
number of points in the previously generated smoothed path (npath_points) are calculated.

In case the distance between s¢,, and the next smoothed path point is smaller than ds_stp, the principle
illustrated in Figure 2 is applied. The algorithm traverses from s, along the smoothed path points one point
at a time, each time finding the distance between adjacent points d,;_(5)—to—(i+1)- Each time, ds_step_part 18
reduced by dins_(i—1)—to— (i), defined and added to dyotqr in the previous iterate. Since ds_step < dint_(1)—to—(2)s
flagsman = 1. The While function continues until when the travelled distance equals or exceeds ds_step OF
the whole smoothed path was traversed.

In case, flagsmaqy == 1 then the previous smoothed path point prior which the total distance from sgy;
was smaller than ds_step (labelled Scyr pare In Figure 2) need to be considered as the starting point to move
ds_step_part 10 find the scyr new along the smoothed path. The distance to move dpoy is assigned to ds_step part
in this case otherwise d,oy is assigned to ds_step-

7 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

Goal
® ode

Scur_new

d s_step_part

Start ds step = = dtota\ + ds step_part
node

Figure 2. Illustration of the move function

A situation can exist when the S.y, new resides within a distance of :I:(05 _ from the obstacle planes.

res—1

This buffer was included and not just checking whether the Scy;_new resides exa)ctly on the obstacle plane,
due to the environmental discretisation of the A* algorithm. Theoretically, a Scyr new should never reside
on an obstacle since a Scyr_new 1S @ point on the UAV path. But, if this buffer is not included situations
exist in which the UAV would be placed in a position less than half the distance from obstacle planes. This
will potentially yield a new starting position on an obstacle plane after the discretisation of the new UAV
position and the new intermediate goal points (goal;,t).

In case, the Sy new 18 within a distance of i% from the obstacle planes then a Scyr_new, a factor
distance (dfactor < 1) 0f dpmop from the obstacle plane is checked. This process is repeated each time reducing
the previous dmov by dfactor until an obstacle—free scur_new, :I:% distance from pathsmooth_pre is found.

If the UAV is nearer to the intermediate goal point goal;,: by less than ds_gtep, either no path has been
created since either sq,,. and/or goal;,; points are on an obstacle or no path is possible that can connect
Scur t0 goalin;. In these cases, the Scyr new 18 assigned to NaN since the algorithm need to stop for the
particular test case. In such case the algorithm was not successful in generating a feasible path. In case
the last point in the previously generated smoothed path is the goal node, then the Scyr new is assigned
to the goal node and then the iterate is stopped in the main algorithm as a path to goal has been found.
Otherwise, the Scyr_new is assigned to the last point in pathsmooth pre- The resultant scur new is fed into
the main real-time algorithm to generate the next smoothed path pathgmootn. After the Sy, new has been
defined the new distance between the latter and the goal;n; is re-calculated and set to dint s—to—g-

3. Main Real-time Algorithm

Provided that scyr_new is defined and does not reside on the goal node, the new intermediate goal point
goal;n; is defined as the final goal point (goal) if dint s—to—g is nearer by less than dins goas to the final
goal point otherwise a new intermediate goal point din¢_goa: distance from the current UAV position seqy, is
defined in the direction of the goal. In case, that this new intermediate goal point resides on an obstacle,
dint_goal is reduced by a factor dyacior, similar to the ey, new calculation. This process is repeated each time
reducing the previous distance (dint_goat X dfactor) BY dfactor until a new obstacle—free intermediate goal

8 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

point is found until the resultant ds—;o—int_goat > ds_step- If the latter condition is not considered then a new
goal;y; can reside nearer to Sy, by less than 1 step (ds_siep) possibly in the same position as the Scyr new-
This will effectively imply that the UAV will move by less than 1 step. In such cases no feasible path can be
constructed.

The intermediate goal point can be selected in any direction from the current UAV position only if it is
assumed that the sensory system has a 360° field—of—view. With this approach, the UAV will waste time
and resources in exploring areas in the vicinity of the start location, limiting progress towards the goal and
increasing the risk of collision or attack from obstacles and enemy, respectively. Therefore, new goal points
shall be selected in the direction of the goal point unless the new goal;,; resides on an obstacle.

Once the current UAV position and a valid intermediate goal point are defined, the A* or RRT algorithm
are applied to generate a feasible path between the current UAV position and the intermediate goal point. If
a path is not generated, then flagpqtn, = 0 to terminate the While loop of line 04. The time;terqte and time
are noted irrespective of whether a path has been created or not for analysis purposes. Then the previous
position of the UAV s, is set to the new generated position (Scur_new)-

Finally, if the While loop at line 04 is terminated with the UAV reaching the goal position, then the
algorithm was successful otherwise the UAV was not able to reach the goal either because a path was not
possible or the time allocated was not enough.

Algorithm 1: Real-time Algorithm

01: Define start, gOCLl, res, titerate,mawy ds,stepa tpath,gen,maza dint,goala dfactor and lim.
02: Apply the A* ripple reduction algorithm if A* is considered.?? Update lim.
03: scur = start; flagpan = 1; time =0

04: While d;nt s—to—g > ﬁ And time < tpath_genmaz ANd timesierate < titerate_maz
And flagpetr, == 1 Then

05: Re—set and start time;ierate

06: If scy! = start Then

0r: Scur_new = MOVE(€NVpara; As_step, PAtRsmooth_pre, 900l dint_s—to—g)-

08: If scurnew == NaN Then flagp.:n = 0 End

09: End

10: While (flagpain == 1) OR sy == goal

11: Update dint_s—to—g

12: If dint_s—to—g < dint_goar Then goal;,; = goal

13: Else goalint is dint_goal from Scur_new in the direction of goal.

14: iterate = 1; ds_to—int_goal = g0aling

15: While goal;y; is on obstacle And d_io—int_goal > ds_step

16: g0aling 18 dint_goar X dfactwite"“e from Scur_pew in the direction of goal.

17: iterate = iterate 4+ 1; Re—calculate ds_to—int_goal

18: End

19: Apply the A* or RRT algorithms to define pathgmootr Using as input arguments
the obstacle scenario, res, Seur_new, §0alint, Pathsmooth pre and lim (refer®!)

20: If pathsmooth == NULL Then flagper, = 0 End

21: Stop timejterate; time = time + time;terate; Scur = Scur_new-

22: End

23: End

24: If dipt s—to—g < ﬁ AND flagpain, == 1 Then UAV reached goal.

25: Else goal could not be reached End
26: End

9 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

Algorithm 2: Move Function

Scur = move(envpara7 ds,step»pathsmooth,pr& goal, dint,s—to—g)

01: If dint,s—to—g > ds,step

02: i = 1;diotal = 05 ds_step_part = As_step; flagsmany =0

03: Find dint,(i)ftof(i%»l) and Tpatn_points

04: While (diotar < ds_step) AND (i < Npath_points)

05: If i > 1 Then find d;,;_(j)—to—(i+1) End

06: ds,step,part = ds,step — diotal

0r: diotal = dint_(i)—to—(i+1) T diotal; P + +; flagsman = 1

08: End

09: If flagsman == 1 Then i — —; dyov = ds_step_part Else dpoy = ds_step End
10: Define Scur_news dmov from pathsmeoth_pre (i)

11: While S¢yr new is on obstacle (check envpgrq)

12: dmow = dmov X dfactor

13: Define scyr_new; @mov from pathsmooth_pre (%)

14: End

15: Else If pathgsmootn is empty Then sq, = NalN

16: Else If pathgmooth_pre(Mpath_points) == goal Then s, = goal
17: Else scu,r = pathsmooth,pre(npath,points) End

18: End

19: End

C. Conclusion

The previous subsection presented a platform for the real-time implementation of the A* and RRT algorithms
applicable to a 3D environment. This generic real-time algorithm was designed to assess the applicability
of both path planning algorithms with respect to time and sensory constraints. The UAV is required to be
furnished with obstacle free directions whilst it is moving in a previously unknown environment with the
aim of reaching a goal in the minimum time without being in a situation of waiting for new directions to
follow as the path planning algorithm may not have already provided such information. The success of either
or both algorithms will depend upon the considered environment and most importantly the UAV and its
onboard systems. In the next section the constants defined above will be correlated with the parameters of
real UAVs utilised for indoor applications. Moreover, the experimental scenarios considered will be defined.

V. Parameter Definition and Experimental Scenarios

A. Real-time algorithm parameter assignment

The following table (Table 1) defines the assigned values (Maximum, Minimum and Constant value) for
each parameter considered in the real-time path planning algorithm explained in Section IV. Some of the
parameters are inter-related and are defined based from UAV path planning literature. As in our previous
work?l:22 the resolution (for A*) (step size (for RRT) reciprocal of resolution) was set at 11 to 29 increased
in steps of 2.

Literature suggest that a 4s to 5s look—ahead is required for relatively low speed UAVs <50km /hr® and
more than 20s look-ahead for high speed UAVs >500km/hr.2® Sensor ranges are a function of the UAV
speeds. In low speed application the range will be in the region of 10m°%:°7 although large obstacle such
as bushes and poles can be identified within a 20m to 25m range.®® Oppositely, in high speed application
such range is extended to a few kilo-meters.?® The sensor frequency range is defined by researchers in UAV
obstacle avoidance algorithms between 10Hz-25Hz.61543:56 The associated environmental refresh rate is

10 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

much smaller than the path computational time of a few seconds and therefore it can be assumed that the
environment is refreshed between one step iterate and the next.

The environmental space in low speed applications is a cube in the range of 250-350m increasing
to 10-25km for high speed applications.?>2® Obstacle sizes are intuitively defined based on the speed and
environmental space. In fact obstacles are defined by Yu et. al.® in a range of 16m x 10 x 100m for medium-—
low speeds of 40km /hr in a 700m x 700m square. Similarly, Call'® defined a cube of 60m x 60m x 60m for
a speed of 58km/hr in a 500m x 500m x 500m cube environment. Oppositely, the obstacles in high speed
environment was set a few kilometre in all axis.?®

In our analysis of UAV path planning in indoor applications we will assume that the UAV will travel
between 5km/h and 50km/h if this variable is under analysis otherwise 15km/hr if fixed. Based on the
above literature, for low to medium speeds in a 500m x 500m x 500m environmental space, ds_siep, the
distance moved by the UAV in one iterate, was arbitrary set to the distance between three consequent graph
positions translating into a range of 35.71m to 300m for resolutions 29 to 11 respectively. The distance
considered shall always be greater than the distance between two graph points especially in A*, since after
the discretisation of the environment or when the new prospective UAV position resides on an obstacle and
the distance reduction factor is applied, the UAV future position may remain as current and the UAV would
be blocked in the same position yielding no path. If ds st was not under consideration the distance between
three consecutive graph positions was considered.

dint_goal translates to approximately 54m to 150m look-ahead distance if a resolution varying from 29
to 11 is considered and a look-ahead circle (as illustrated in Figure 1) of 3 times the distance moved by
the UAV in titerate maz (ds_step). Theoretically, this parameter must be greater or equal to ds_step_min but
some buffer must be considered as otherwise the UAV will be placed in a point at the edge of the unknown.
Ideally dini_goar > 50m to allow for this buffer. If this parameter is not under analysis it will be set to 100m
irrespective of the resolution considered.

The maximum time to generate a path segment (Ziteratemaz) i dependent upon the time for the UAV
to move ds_step. This time will vary between 4.29s (highest UAV speed, with lowest dg_step) and 36s (lowest

8,57

UAV speed, with highest ds_sep). If this parameter is not under analysis it is set to iﬂ The maximum

time to generate the whole path (tpath_genmaz) Was set in a range of 45s to 360s based upon factor of 10 x
factor of titerate_maz- The distance factor reduction applied in cases where the new intermediate goal point
reside on an obstacle was set in a range of 0.5 to 0.95 and 0.8 if this parameter was fixed.

B. Experimental Scenarios

The experimental space is defined as a generic cube of 1x1x1 with centre (0,0,0) and limits [-0.5 — 0.5,
-0.5 — 0.5, -0.5 — 0.5] as in our previous work.21:?2 The cube limits can vary by up to :I:% in case
of the application of the A* ripple reduction algorithm. The generic environmental space is normalised to
arbitrary units so that the test scenarios can be exported to any environmental space. These test scenarios
were originally developed by Clifton et. al.’® and made available online in.®® For all tests the start and goal
nodes are defined at [0,-0.5,0] and [0,0.5,0], respectively. In case the A* ripple reduction algorithm is applied,
the associated shifting is added to the start and goal points. Three different obstacle scenarios, illustrated
in Figure 3 are considered. Scenario 1 consists of two Y-Z obstacle planes with 0.2x0.2 square opening later
referred to as windows. Scenario 2 consists of three Y-Z with 0.2x0.2 windows and two X-Y planes without
windows while Scenario 3 is similar to Scenario 2 but with five Y-Z planes instead of three.

VI. Results

A. Introduction

The real-time path planning algorithm defined in Section IV was implemented using both the A* and RRT
algorithms in the experimental scenarios defined in Section V.B with the parameters defined in Section V.A.
Each section will analyse each parameter separately keeping all other parameters constant so that its effect
on path planning performance in terms of length and time will be assessed independently. All tests are
performed using an Intel Xeon ES-1650, 3.2GHz.

11 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

Figure 3. Obstacle scenarios: (a) First Scenario (b) Second Scenario and (c) Third Scenario modified from,?*

consisting of obstacle planes in the Y-Z with windows as openings and X-Y planes for scenarios 2 and 3 with
no openings.

12 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

Table 1. Real-time algorithm parameter definition

’ Parameter Minimum Maximum Nominal Value ‘ Units ‘
Resolution (res) 11 29 21 []
Step size RRT 1 _ 1 _ 1
(dstep.rrer) rr— 0.0357 e —1 =01 571 = 0.05 -]
UAV Speed (vpav) 5 50 15 km /hr
Distance to travel per it- 9 YUAY.mag X1000 Xt iserare.maz — 9
2 —=35.71 6060
erate (ds_step) Femmar—1 X 000 =35 7 300 rea—1 X 900 m

Distance between cur-
rent UAV position and
prospective new in- | ds_stepmin = 35.71 150 100 m
termediate goal point

(dint,goal)

Maximum time to gen- | d, .i.p minx60x60

ds_step_maz X60X60 __ ds_step X60X60
erate path segment 4.u2U§w,ma,m %1000 m =36 m S
(titerate,maz)
Maximum time to gener- | 10 X | 10 X titerate_maz(maz) = 10 x t; S
ate path (tpath,gen,max) Literate_maz (mm) =45 360 ot
Dist duction fact

istance reduction factor |, . 0.95 0.8 [-]
(dfactor)

B. Speed (UUAV)

Speed is one of the variable parameters that is considered for analysis. Speed is varied between 5km/hr
and 50km/hr as defined in Table 1 in steps of 5km/hr. For each considered speed for both A* and RRT
algorithms the test is performed 100 times and the mean with a 95% confidence interval is illustrated in
Figure 4. Since both algorithms were not able to generate the path in all considered scenarios either because
the time to generate a path between iterates or the total time exceeded the allocated, a bar graph showing
the distribution of successful and unsuccessful paths for each scenario considered is illustrated in Figure 4
(c) and (f) for A* and RRT respectively. The unsuccessful runs were not considered in the path length and
time vs. speed plots for both path planning algorithms.

The mean path length and standard deviation for A* remains almost constant for all considered speed
situations. Similarly for RRT, the mean path length remains constant for all considered speeds although
the success rate reduces with increase in speed for all scenarios. The standard deviation remains constant
except for the high—end speeds of Scenario 3. This is attributed to the fact that as scenario complexity and
speed increase the algorithm is less successful (refer to Figure 4 (f)) and therefore the mean and standard
deviation are measured on a smaller sample made up of the best performance runs. In fact in this case,
the amount of successful runs decreases reducing the sample size to less than 10 with no successful runs at
45km /hr and only 1 successful run for 40km/hr and 50km/hr.

As in our previous work?!>22 the path length depends mainly on Scenario complexity for both the A* and
RRT algorithms as a longer path is required to traverse through obstacle plane windows residing in alternating
sides of obstacle planes. Furthermore, the mean path length for A* is smaller than RRT confirming theory
that the A* algorithm is more optimal than RRT.%? The difference in path length between the A* and RRT
algorithms increases further as the scenario complexity increases. A* generated paths are more optimal
and the path length reduction by the smoothing algorithm is less than that for RRT. In complex scenarios
the improvement introduced by the smoothing algorithm is limited since the elimination of an intermediate
node is more likely to generate a colliding paths and therefore the oscillatory RRT—generated paths will be
reduced by a lesser margin with respect to A* for the same situation.

The time to generate a path for A* is independent of the speed for all scenarios. This result confirms
theory since the algorithm will utilise the same amount of time to generate a path as it considers approx-

13 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

Path Length [m]

Distribution (%)

1500

1000

o
=]
S

60

40

Computational Time [s]

50

% Scenario 1
Path Length vs. Speed for A* - Path Length vs. Speed for RRT| O Scenario 2
T T T T T T T T X Scenario 1 —. 1500 T T T T T T T T /A Scenario 3
O Scenario 2 £ A
/A Scenario 3 = & & & A a —i& A
()]
. 4 c . 4
a5 &2 & & & 1000 e © e o e o e e @ o
e e e ® =} =) e ® e e =
© * * * * * * £ * %
L% % * % L S S & ool ® o ® ¥ ¥ T * ¥ O T |
0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55
Speed [km/hr] Speed [km/hr]
(a) (d)
Computational Time vs. Speed for A* v Computational Time vs. Speed for RRT
T T T T T T T T T) T T T T T T T T * s
[£ 60l —ﬁE cenar}\ﬂ
% Scenario 1 = A é O Scenario 2
O Scenario 2 = % /A Scenario 3
r /A Scenario 3 g 40 - —ig A A 7
2
S 20 ® B = B
3 LI £ g ¢ %
g 0 L L L L L L L L L L d
0 5 10 15 20 25 30 35 40 45 50 55 [SI0] 5 10 15 20 25 30 35 40 45 50 55
Speed [km/hr] Speed [km/hr]
(b) (e)
Success and Failure Rates vs. Speed for A* Success and Failure Rates vs. Speed for RRT
e - = — 100
2
<
i)
- ol ol -coll- ol -ao — ol EREUIEN - - —as ¥ Eoall= ol
o)
009 009 cocollooolloocolooo 099 = 009 oo/l ool 18 olcilS olg
EEE 58 Secllssclcscllsss 55§ = EEE EE B S cic S 5|8
ccc 194 cccllcccllcccllc oo ccc % S ccicllc cig s CiclliE c/S
388 238 SSIWEE WL WSS 338 a 388 333328 S2ISME 28
(21%1%] [%1%1%) (1%1%) (Dl1%1%] [B1%1%] [%1%1%] (21%1%) 0 [%21%1%] (21%1%] [%1%1%] |0)) G0 O L0 D)
0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55

Speed [km/hr]
(c)

I Path Generated
[Intermediate Time Exceeded
[Maximum Time Exceeded

Speed [km/hr]
()

I Path Generated
[Intermediate Time Exceeded
[Maximum Time Exceeded

Figure 4. Performance parameters vs. speed: (a) Path Length for A*, (b) Computational Time for A*, (c)
Success and Failure rates for A*, (d) Path Length for RRT, (¢) Computational Time for RRT and (f) Success
and Failure rates for RRT for 100 iterates for each considered situation (speed and scenario) with 95% confi-
dence interval. (res =21, dstep,RRT = 50777'7 dsfstEIJ = 50m, dint,goal = 100m7 dfactor = 0.8 and tite?"ate,maxytpath,gen,maz
are a function of the UAV speed).

14 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

imately the same intermediate start and goal nodes irrespective of the time required by the UAV to travel
to the next position provided that this time is longer than the time to generate the intermediate path. As
complexity increased the mean time increased to approximately 7 times and 4 times for Scenarios 2 and
3, respectively with respect to Scenario 1 while the standard deviation increases proportionally. For the
considered scenarios as the complexity increases the time increases as it takes longer to find a non-colliding
path and an intermediate start and goal nodes.

For RRT the computational time reduces with increase in UAV speed for all scenarios. This time
reduction is attributed to the analysis described earlier that the best performing runs for the same situation
were considered as other runs did not generate a path in the allocated time. In fact the drop in computational
time is in line with the drop in successful runs (refer to Figure 4 (f)). The drop rate in successful runs for
Scenario 2 with increase in speed is lower than for the other scenarios. This behaviour is mirrored in the
computational time.

Scenario 2 is the most successful scenario for RRT although it is more complex than Scenario 1. From
our previous results,2*22 the difference in the whole path generation time between Scenario 1 and 2 using
the RRT algorithm is close to zero for all considered step sizes. Furthermore, in simple scenarios with
oscillatory—generated paths such as in RRT the smoothing iterates required until the stopping condition is
reached is larger than that of the same path in an obstacle-rich environment since it is more likely in the
latter for a smoothed path segment to collide with an obstacle. The increase in computational time due to
smoothing increases the time to generate an intermediate path, exceeding the maximum intermediate time
allocation. Since for Scenario 2, the possibility of smoothing is lower than Scenario 1 while the difference
in time to generate a path between intermediate nodes is similar in both cases then this explains the result
that Scenario 2 is more successful than Scenario 1. Although more iterates are required for a longer Scenario
2 path than Scenario 1, the bottleneck in RRT is the maximum intermediate time not the total time. For
Scenario 3 the situation is different. From our previous work,?!:22? a longer computational time (more than 5
times) was required to generate a complete path due to the condensed obstacle space and very limited path
options. This had a major effect at high speeds as a longer path must be generated in the same time with
increase in speed.

The computational time for A* when compared to RRT is shorter by multiple times for all scenarios.
From our previous results it can be concluded for the considered resolution/step size that the computational
time for Scenarios 1 and 2 is similar increasing by a 3 times factor in Scenario 3 for RRT with respect
to A*.21:22 During path construction the A* considers points between the current UAV position and the
intermediate goal point. On the other hand, the RRT algorithm can produce seeds anywhere in the available
space although the tree branch length is limited by dsiep_grrr. This implies that the considered area in A*
is much less than RRT. Therefore multiple times more time is required for RRT with respect to the A*. In
fact the difference in computational time for Scenarios 1 and 2 increases by a factor of about 5 times for
RRT with respect to A* as the whole environmental space is 5 times the look-ahead distance. Similarly, for
Scenario 3 the difference is even larger since this 5 times factor is multiplied by the 3 times factor described
earlier. Furthermore, the RRT algorithm is less optimal than the A* and therefore more smoothing iterates
are required until less than 1% reduction results over the past 20 smoothing iterates.

In all considered situations the A* algorithm was able to generate a path in the allocated maximum
intermediate and total time in a range between 96% to 100% with an average of 99%. The maximum time
to generate the path was exceeded was the stopping condition triggered in the unsuccessful cases. Not the
same can be deduced for RRT. As the considered speed increased the success rate dropped. For Scenario
2 the success rate dropped to a minimum of 57% at 50km/hr although the algorithm was able to generate
a path in at least 94% of the cases from low speeds up to 30km/hr. The stopping condition triggered for
all unsuccessful situations was always that the maximum allocated intermediate time was exceeded. This is
mainly attributed to the lower optimality of the RRT algorithm with respect to the A* algorithm and the fact
described earlier that the RRT algorithm considers all environmental space when generating an intermediate
path. For Scenario 1 the success rate drop started even at low speeds of 10km/hr increasing with increase
in speed up to 11% at the highest considered speed. A sharper drop was experienced in Scenario 3 where a
47% success rate was noted at a speed of 15km/hr dropping further to 5% at 30km/hr reaching 0 successful
run at 45km/hr. This result show that A* can be applied for all speeds considered at a resolution of 21
and maximum and intermediate time allocation while RRT can only be successfully applied for low speeds
not exceeding 10km/hr for Scenarios 1 and 2 and less than 5km/hr for Scenario 3 for a step size of 25m
for the same time constraints as A* unless the intermediate step size is increased. This situation does not

15 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

eliminate the RRT algorithm from consideration as the amount of smoothing can be reduced reducing the
intermediate time to generate a path ultimately increasing the success rate.

C. Distance to travel per iterate (ds_sp)

The distance to travel per iterate is a function of the UAV speed as the distance the UAV travels in a
pre—defined time dictates the maximum allowable time to generate a path. This parameter was otherwise
set to double the distance between grid positions (A*) or double the step size (RRT). To assess the effect
of this parameter on performance, it was varied between this minimum value and the look ahead distance
(dint_goat). Therefore, the distance to travel per iterate was varied from 50m to 100m in steps of 5m. The
longer the distance to travel per iterate the more intermediate time is allocated for the path planning and
smoothing algorithms. As for speed, for each considered distance for both A* and RRT algorithms the test
is performed 100 times and the mean with a 95% confidence interval is illustrated in Figure 5. A similar bar
graph representing the successful and unsuccessful runs is also illustrated in 5 (¢) and (f) for A* and RRT,
respectively.

% Scenario 1 % Scenario 1
.) O Scenario 2 .) O Scenario 2
. Path Length vs. Distance moved per iterate for A* A Scenario 3 . Path Length vs. Distance moved per iterate for RRT A Scenario 3
£ 1400 T T T T T T £ 1400 T T T T T
s E X & A &K &K &K & &K A A A
£ 1200 F 8 £ 1200 F 8
L # 1 L]
£ 1000 s & & & & & & & £, 1000 ©® @ © @ © © © e e & e
S 80F ®& © © © ®© © © e e e e A S 800 1
) -
S 600 ok k% * * * * 7 £ 600 L T T . S S ST T T R
& 400 L L L L L L & 400 L L L L L L
50 60 70 80 90 100 50 60 70 80 90 100
Distance moved per iterate [m] Distance moved per iterate [m] -
d % Scenario 1
—) .) (a) ; —) .) (d)) O Scenario 2
0, Computational Time vs. Distance moved per iterate for A* K2 Computational Time vs. Distance moved per iterate for RRT| 2 scenario 3
® 50 T T T T T T @ 50 T T T T T T
E 40 % Scenario 1| E 40 F é :} é % { 4§ % } 4
T 30k O Scenario 2| | = 4 % {‘
_5 sl /\ Scenario 3] .5 30 i
g 5 0|]
=l - >
200 ¢ e g 8 2 % 2 @ e s | &8 5 B § 5 ¥ 8 E § B ¥
8 50 60 70 80 90 100 3 50 60 70 80 90 100
Distance moved per iterate [m] Distance moved per iterate [m]
(b) (e)
Success and Failure Rates vs. Distance moved per iterate for A* Success and Failure Rates vs. Distance moved per iterate for RRT
100 = = = = 100
2 2
c c
i) i)
S 50 § 5 50 B
2 2
ki hz}
a a
0 0
50 60 70 80 90 100 50 60 70 80 90 100
Distance moved per iterate [m] | Il Path Generated Distance moved per iterate [m] | I Path Generated
(c) [Intermediate Time Exceeded () [intermediate Time Exceeded
[Maximum Time Exceeded [Maximum Time Exceeded

Figure 5. Performance parameters vs. Distance to travel per iterate (ds_stcp): (a) Path Length for A*, (b)
Computational Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e) Computational
Time for RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered situation (speed and
scenario) with 95% confidence interval. (res = 21,dgiep_rrT = 50m,vyav = 15km/hr, dint_goar = 100m,dfqcror = 0.8
and titerate-maz> tpath_gen_maz are a function of the distance to travel per iterate).

As for the speed analysis, the mean and standard deviation in path length for both the A* and RRT
algorithms is independent of distance to travel per iterate (ds_step) but depends primarily on scenario com-
plexity. The range of ds_stcp considered is equivalent to the distance of three consecutive grid positions or
2 Xdgtep_rr7- This relatively small variation and the relatively small windows through which the planner
must pass shall theoretically have minimal effect on the path length especially in obstacle-rich environment,
as confirmed by the results of Figure 5 (a) and (d). Furthermore, as A* is more optimal, the mean path
length for A* is shorter than RRT with the difference increasing with scenario complexity as deduced in the
previous sub—section.

For both algorithms the computational time is independent of ds s, although as ds ssep approach its
minimum value (double the distance between grid points for A* and equivalent for RRT), the computational
time decreases. This minor improvement results as the path planning task will be divided into a larger

16 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

simpler sub—tasks. This result is more evident for Scenario 3 of the RRT algorithm since the success rate at
low ds_step drops and therefore, as described earlier, the best performance results are considered in the mean
and standard deviation calculations. As deduced from literature and in line with the conclusions drawn in
the speed analysis the RRT algorithm required multiple times (4x to 10x) more time to compute a path with
respect to A* algorithm for the same conditions.

The A* algorithm was able to generate a path in all situations for Scenario 1 and in at least 97% and
98% for Scenarios 2 and 3, respectively. The maximum computational time is the stopping condition for
unsuccessful runs. Not the same can be concluded for RRT as the success rate dropped especially for Scenario
3 due to insufficient intermediate time as ds_step approached its minimum value. A minor drop results for
Scenario 1 while the RRT algorithm was 100% successful for Scenario 2. The result shows that the RRT
is more computationally intensive since as ds_siep approach its minimum value and hence the allowable
computational time is lowest (path planning algorithm needs to generate a path in the time required to
traverse double the step size dgsiep_rrr), the success rate drops.

The bottleneck in the considered path planners is the computational time, especially for the RRT algo-
rithm. The analysis carried out in this sub-section shows that the distance traversed by the UAV in each
iterate will not effect the validity and optimality of the generated path and is independent of the compu-
tational time required to generate the path. From a practical point of view, reducing the dependency of
the UAV from the planner by increasing ds_step, will allow more time for the planner to generate a path
improving the success rate without deteriorating the path length. Therefore the longer ds_scp the better.
But the latter parameter is limited by the look-ahead distance which is governed by the sensory systems and
provided that all obstacles residing between the current and future UAV positions do not cross the path line
in the time the UAV is traversing.

D. Distance between current UAV position and prospective intermediate goal point (Clmt,goaz)

The look-ahead distance defined as the distance between the current UAV position and a prospective inter-
mediate goal point is another parameter that effects the performance of the path planning algorithms. This
distance is mainly dependent upon the precision and accuracy of sensory systems available on-board a UAV
and thus can vary between different UAV models. This parameter was varied between the distance travelled
by the UAV per iterate to 150m which for the considered resolution/step size is 3 times the distance moved
by the UAV in every step. In the former case the planner will define a path that will be totally traversed
by the UAV in the next iterate while in the latter only a third of the path will be traversed. In practice the
minimum value considered can result in situations where the intermediate goal node will reside exactly in
the vicinity of an obstacle resulting in a collision into a no solution in the next iterate as no look—ahead will
be considered.

Therefore, the look—ahead distance (djn;_goqr) Was varied from 50m to 150m in steps of 10m. As for the
other two parameters, for each considered distance for both A* and RRT algorithms the test is performed
100 times and the mean with a 95% confidence interval is illustrated in Figure 6. A similar bar graph as in
the previous results representing the successful and unsuccessful runs is also illustrated in Figure 6 (¢) and
(f) for the A* and RRT algorithms, respectively.

The results in Figure 6 show that the path length for A* is mainly dependent upon the scenario difficulty.
Another interesting point is that as the look-ahead distance increases the path length reduces for simple
scenarios and slightly increases for complex scenarios. For Scenario 1, an 8% difference between the lowest
and highest look—ahead distance with respect to the mean results. This difference is attributed to the fact
that the longer the look—ahead distance the lower the variation from the shortest line connecting the start and
goal points when considering also that in this scenario only an upper turn is required to pass through plane
windows. On the other hand, for Scenario 2 and 3, the lower path length results at the lowest look—ahead
distance and as the look-ahead distance increases to 3 X ds_step. For obstacle-rich scenarios like Scenarios 2
and 3, a maxima results at 1.5 X ds_ssep. This results since in complex scenarios the intermediate goal point
positions are very limited especially in Scenario 3 and such a look—ahead distance can offset the intermediate
goal point which in the next iterate can change drastically. If this look—ahead distance is reduced to ds_step,
then the next UAV position will be the current intermediate goal point leading to very low overshoot in
complex scenarios. For Scenario 3 this drop in path length is more evident than that of Scenario 2 due to
the drop in success rate for Scenario 3 at low look—ahead distances. For Scenario 2, a drop in success rate is
exhibited at the path length maxima, which otherwise would lead a close to null maxima just as for RRT.
Furthermore, as the look-ahead increases from 1.5x — 3 X ds_step, the overshoot is limited as for the lower

17 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

consider look—ahead distance case due to the reason described for Scenario 1. The reduction margin is lower

than that of Scenario 1 due to the limited free space.

% Scenario 1
. . O Scenario 2
. Path Length vs. Look-ahead Distance for A*[% gcenario 1 . Path Length vs. Look-ahead Distance for RRT | A scenario 3
'E 1400 — T T T T T T T T O Scenario2 E 1400 i E & & & I & % R
I 1200 /\ Scenario 3 I 1200 B
< L pid & Py & 4 < - 4
£ 1000 4 § X i & & & 51000 3] @ @ ® <] =) =]]
S 80Fe@ ® © 8 e) e e e © ® 1 &S 800 1
- - * * *
£ 600F F Kk kK ok Xk R K ¥ £ 600F L I B R T
& 40— & 400
50 60 70 80 90 100 110 120 130 140 150 50 60 70 80 90 100 110 120 130 140 150
Look-ahead Distance [m] Look-ahead Distance [m]
— . - (@) " —_ . " (d) . % Scenario 1
», Computational Time vs. Look-ahead Distance for A*) Computational Time vs. Look-ahead Distance for RRT| 5 gconario 2
g 50 [T T T T T T T T ;K T : T] E 80 T T T T T T T T T A Sconario 3
= O Seonario? oo 5 1
g 30 A Scenario 3| | g w0t A A A 7y a iy iy YN a S i
=20 % A b =
2 jof % % 4 2 s 3 = i Syl 2 = g s % = E B 8 ¥
[o% % o ﬁ il @ ® © o o
g o L% : * * ¥ * % X% £ * X g 0 L L L L L L L L L L L
o 50 60 70 80 90 100 110 120 130 140 150 o 50 60 70 80 90 100 110 120 130 140 150
Look-ahead Distance [m] Look-ahead Distance [m]
(b) (e)

Success and Failure Rates vs. Look-ahead Distance for RRT

Success and Failure Rates vs. Look-ahead Distance for A*

00 | .I I = -.|
s coflse oo o

Distribution (%)
. N
Distribution (%)

50 60 70 80 90 100 10 30 140 150 50 60 70 80 90 100 10 20 130 140 150
Look-ahead Distance [m] | HEBEE Path Generated Look-ahead Distance [m] | I Path Generated
(© B Intermediate Time Exceeded H [Intermediate Time Exceeded
[Maximum Time Exceeded [Maximum Time Exceeded

Figure 6. Performance parameters vs. Look—ahead distance (d;n:_goqat): (a) Path Length for A*, (b) Compu-
tational Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (¢) Computational Time
for RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered situation (speed and
scenario) with 95% confidence interval. (res = 21,dgtep_rrT = 50m,vyav = 15km/hr,ds_step = 50m, titerate_maz =
125, tpath_gen-mae = 120s and dfqcror = 0.8).

As deduced in the above analysis A* produced shorter paths with respect to RRT for all scenarios
considered and the difference in length increases with an increase in scenario complexity. As for A* in
Scenario 1, the path length decreases by 16% with respect to the mean with increase in look—ahead distance.
This result to double the drop for the same scenario in A*. In RRT intermediate goal points can reside
on any obstacle free—point on the connecting line from the current UAV position to the final goal point.
This advantage over the A* which is limited by grid positions, is more advantageous as the look—ahead
distance increases as the intermediate goal point will reside nearer to the goal central horizontal area at the
end of which is the final goal point, limiting overshoot especially for simple scenarios. For Scenario 2, just
as Scenario 1 a lower drop of 6% was recorded due to a more obstacle-rich environment with decreasing
path length with increase in look-ahead distance with the same maxima occurring at 1.5 X d,_gcp for the
same reasons described for A*. Similarly for Scenario 3, the same maxima is exhibited but the drop at low
look—ahead distance is lower with respect to A*, confirming that the drop in success rate for A* in Scenario
3 is responsible for a reduction factor in path length at low look—ahead distances.

The computational time for both A* and RRT algorithms mainly depends upon the scenario complexity
although for RRT Scenarios 1 and 2 yield almost the same result as more smoothing iterates are required in
Scenario 1 with respect to Scenario 2, as the latter limits smoothing due to the obstacle-rich environment.
The computational time difference between A* and RRT is the same as described earlier with A* superseding
RRT in all scenarios. The variation in computational time with respect to look—ahead distance can be
approximated by a parabola for all scenarios in both path planning algorithms. For A* a local minima
in computational time is exhibited between 80m and 90m for all scenarios, whilst for RRT the lowest
computational time is exhibited at 90m, 90m and 110m for Scenarios 1 to 3, respectively.

The success rate for A* is 100% for 90m in all scenarios. For Scenario 1, the success rate remains 100%
for look—ahead distance larger than 70m dropping by 2% for the lowest considered resolution. For Scenario
2, a 10% unsuccessful rate results at a look—ahead distance of 70m with all other situations exhibiting an

18 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

unsuccessful rate of 5% or less. This occurs at the maxima of path length for this particular scenario. For
Scenario 3, an unsuccessful rate of less than 8% is exhibited is for look—ahead distances greater than 80m.
For lower look—ahead distances the success rate drops to 40%. The maximum time was exceeded in all
unsuccessful runs. For RRT in the first Scenario the success rate varies between 74% at 100m (dint_goat)
t0 92% (dint_goar)- For Scenario 2, the success rate varies from 97% to 100%. For Scenario 3, the success
rate varies from 78% at 150m (dint_goar) t0 61% at 120m (dint_goar). The maximum allowable intermediate
time was exceeded in all unsuccessful runs. In conclusion, between 90m and 100m both the A* and RRT
algorithms exhibited the best results.

From the path length, computational time and success rate results it can be concluded that the optimal
look-ahead distance for both algorithms for the considered scenarios, resolution/step size and speed shall be
1.8x — 2x the distance moved per iterate. In other words, the planner shall ideally define an obstacle—free
position two steps from the current position with knowledge of the environment within this distance.

E. Maximum Intermediate time (t;terate_mazx)

The maximum intermediate time is the maximum time allocated for a path to be generated from the current
UAV position to an intermediate goal point. As defined in Table 1, it is mainly dependent upon speed, the
distance moved between iterates ds _siep and the computational power onboard the UAV. From the results in
Sections B to D, it can be concluded that this parameter is the bottleneck, especially for RRT in complex
scenarios. Therefore, to further assess the effect of this parameter in performance it was varied between
3m and 12m in steps of 1m. These values were defined in line with the minimum and maximum values
defined in Table 1 assuming a constant speed of 15km /hr and the distance moved per iterate of double the
distance between grid position or step size for A* and RRT, respectively, that is 12m. Figure 7 illustrate
the mean test results for 100 runs with a 95% confidence interval. A similarly framework as in the previous
subsections was utilised to represent path length, computational time and success rate for both the A* and
RRT algorithms.

Results of Figure 7 (a) and (d) confirm the results described earlier that the path length is mainly
dependent upon the scenario complexity and that the A* algorithm outperformed the RRT algorithm with
the difference increasing with scenario complexity. Similarly for Figure 7 (b) and (e), the same conclusions
as above can be drawn, with the A* outperforming the RRT in all scenarios considered with the difference
increasing for Scenario 3.

The main scope of this analysis is to define the lowest intermediate time that shall ensure that the UAV has
time to generate an intermediate path in real time for all considered scenarios. The maximum intermediate
time was defined based on real UAV parameters for a nominal speed and using an off-the—shelf processor.
This parameter is directly proportional to the distance moved per iterate and inversely proportional to the
UAV speed. Therefore when increasing the maximum allowable intermediate time either the UAV speed is
decreased or the distance moved per iterate is decreased or both. The effect of each of these parameters on
path planning performance was already described in their respective sub—sections. Usually the UAV speed is
defined by application and therefore its range is restricted. The lower limit of the distance moved per iterate
is limited for the resolution/step size and if resolution increases so that the former parameter decreases, the
computational time will increase due to larger resolution for A*. The limitation for RRT, a sampling—based
algorithm is not that direct although the shorter the step size the more computational demand is required
to generate a path for the same distance.

For the A*, for the considered resolution/step size, speed, distance travelled per iterate and look—ahead
distance, the planner was never limited by the allocated intermediate time. The low unsuccessful runs (< 3%)
results since the maximum time to generate the path was exceeded and not the intermediate time was not
enough. Therefore, the defined maximum intermediate time limit can be further reduced from 12s for all
scenarios possibly allowing the UAV to increase its speed and/or increase in resolution.

Not the same can be concluded for RRT that was able to generate the path in less than 35% for the
maximum considered intermediate time allocation in Scenario 3. For Scenario 1, at least 11s are required to
achieve a success rate greater than 90% while for Scenario 2, at least 4s are required to achieve a 90% success
rate. For the considered speed of 15km/hr and ds_siep = 50m the maximum intermediate computational
time is 12s. This shows that for Scenario 3, the intermediate time must be increased by multiple factors,
to achieve a success rate of 100%. For Scenario 1, this limit must be increased to a higher value by either
decreasing the speed of decreasing the RRT step size with the latter leading to counter effects of increasing
computational time. For Scenario 2, the limit under analysis can remain the same for the considered speed,

19 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

distance moved per iterate and RRT step size.

Path Length vs. Maximum Intermediate Time Allocated for A* Path Length vs. Maximum Intermediate Time Allocated for RRT
1 1
T 500 T T T T T T T T % Sconario 1 T 500 T T T X T T T T T R
; O Scenario 2 ; A ;‘ ; N i x & O Scenario 2
B /A Scenario 3 =3 /A Scenario 3
E 1000 & i & i i i & P & R E 1000 o © ® ® ® ® @ ® & ® 7
= =3 e = = e e e ® e ® =
& IS E A T S S T T
NN . S S T T N AN N S N . SN B
2 3 4 5 6 7 8 9 10 1 12 13 2 5 6 7 8 9 10 11 12 13
Maximum Intermediate Time Allocated [s] Maximum Intermediate Time Allocated [s]
(a) (d)
. Computational Time vs. Maximum Intermediate Time Allocated for A* Computational Time vs. Maximum Intermediate Time Allocated for RRT
80 80
e T T T T T T T T T T e T T T T T T T T T T T ——
= 60 f % Scenario 1 (= O Scenario 2
— O Scenario 2 —= —IE /A Scenario 3
[[A
'5 40 F /A Scenario 3 .5 a0 4{ é % % 7 & T
= =
S20r S20r g = 5 ® g 5 5 & 2
o 2 3 4 5 6 7 8 9 10 11 12 13 o 2 3 4 5 6 7 8 9 10 11 12 13
Maximum Intermediate Time Allocated [s] Maximum Intermediate Time Allocated [s]
(b) (e)
Sl.:ggess and Failure Rates vs. Maximum Intermediate Time Allocated for A* Su?cgss and Failure Rates vs. Maximum Intermediate Time Allocated for RRT
c c
i) o
5 50 | 5 50 4
3 RENEE EEERERENER AR H & | | e | e
@ g g Sgcgsg g g @ g g g g g
a 3 SSWS WS 2 MBS 3 3 a 3 8 3 3 e B
0 121 121 121%] [21%]1%] 2] 121 121 0 121 121%] 1) %] 121 121 (21%1%]
2 3 4 5 6 7 8 9 10 1 12 18 2 3 4 5 6 7 8 9 10 11 12 13
Maximum Intermediate Time Allocated [s] Maximum Intermediate Time Allocated [s]
(c) | NEEEE Path Generated (f) | I Path Generated
[Intermediate Time Exceeded [Intermediate Time Exceeded
[1Maximum Time Exceeded [Maximum Time Exceeded

Figure 7. Performance parameters vs. Maximum Intermediate Time Allocated (titerate_maz): (2) Path Length
for A*, (b) Computational Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e)
Computational Time for RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered
situation (speed and scenario) with 95% confidence interval. (res = 21,dstep_rrT = 50m, vy ay = 15km/hr, ds_step =
50m, dint_goat = 100m,dfoctor = 0.8 and tpgih_gen_mas is a function (x10) of the maximum intermediate time
allocated).

F. Maximum time to generate a path (tyein_gen_maz)

This parameter is a function of the length of the path from start to goal. In the previous test analysis,
this parameter was arbitrary defined at 10x the maximum intermediate time irrespective of the scenario
difficulty. Such value will discriminate against longer paths. In fact, for this considered nominal value for
all considered runs, only a small percentage of runs for Scenario 3 were stopped due to this maximum time
exceeded limitation. Although this parameter can be defined as a function of the number of intermediate
path generations, it could result that the path planning algorithm may waste time venturing around prior
arriving to the goal. Moreover, the allocated time to reach a goal may be defined by the application.
Therefore to define the best value for each Scenario this parameter was varied between 2x and 20x the
maximum intermediate time (titerate_maz) i steps of 2. This implies that the masximum total time to
generate a path was varied between 24 and 240 seconds. As in all other situations, Figure 8 illustrate the
mean test results in terms of path length, computational time and success rate for 100 runs with a 95%
confidence interval for both A* and RRT algorithms.

As concluded in all the previous analysis, results of Figure 8 (a) and (d) confirm that the path length is
mainly dependent upon the scenario difficulty with the A* algorithm outperforming the RRT algorithm in
all scenarios with the percentage difference in path length increasing with scenario difficulty. Similarly, as
can be deduced from Figure 8 (b) and (e) the computational time is lower for A* with respect to RRT, for
the respective scenarios, with the major difference of multiple times present for Scenario 3.

As previously, the main scope of this analysis is to define an adequate maximum time for the UAV to
reach the goal point in view of a real time implementation. This parameter is dependent on a number of
unrelated or inter-related and bounded or unbounded parameters namely scenario complexity, UAV speed,
allocated, computational power, allocated intermediate time and the distance moved per iterate, assuming
that the sensory system update rate is much higher than the allocated intermediate time. Therefore this

20 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

parameter must be chosen in view of these relationships and other external constraints such as a user defined
maximum mission length.

For the A* algorithm, Scenario 1 was successful in all considered instances of maximum time allocation.
This implies that for simple scenarios the A* algorithm can generate multiple path segment in 1 X t;serate_maz,
reaching the goal in less than 1 second. For Scenario 2, 5% of runs were unsuccessful since the total time
was exceeded prior finding a solution. From Figure 8 (b), the upper bound in computational time never
exceeded 8s and therefore it can be concluded that the A* will not be able to reach the goal irrespective of
the allocated total time which in the lowest case was 2x the highest computational time recorded. Similarly
the same conclusions can be drawn for Scenario 3 although the unsuccessful rate is only 2% maximum.
Although these values are low, A* could not guarantee a 100% solution for complex scenarios. This confirms
theory that claims that A* does not offer a guarantee of solution.*®

For the RRT algorithm, the success rate improved as the maximum time to generate the path increases
from 24s to 240s. For Scenarios 1, 2 and 3 the success rate improved from 84% to 95%, from 83% to 100%
and from 0% to 72%, respectively. These results confirm that the RRT algorithm is computational intensive
especially in complex scenarios. Furthermore, if the allocated time is greater or equal 36s, the maximum
intermediate time limitation is triggered and not the parameter under review. Besides Scenario 2, although
for Scenario 1 and 3 an improvement is present 5% and 28% of the runs, respectively remain unsuccessful
and does not decrease further unless the intermediate time is increased further.

Path Length vs. Maximum Total Time Allocated for A* Path Length vs. Total Maximum Time Allocated for RRT

1500 1500
= % Scenario 1 € * Scenario 1
= O Scenario 2 = & & & & & & - - L O Scenario 2
S /A Scenario 3 =3 /A Scenario 3
L g L]
§ 1000 F & & & 2 b & ® S E 1000 4 ® @ ® ® & @ ® ® ®
= ® e e 5 e e ® e ® e =
5 5 ¥k R ow K % K K oW ¥
(S I . S N . SN U SN S . oo ¢ .)))
50 100 150 200 250 50 100 150 200 250
Maximum Total Time Allocated [s] Maximum Total Time Allocated [s]
(a) (d)
o Computational Time vs. Maximum Total Time Allocated for A* @ Computational Time vs. Total Maximum Time Allocated for RRT
o 60 T T T T T © 60 T T T T -
£ - £ * Scenario 1
= % Scenario 1 [& % A A A X O Scenario 2
= 40 O Scenario 2 = 40r ZN ZN N /A Scenario 3
5 /A Scenario 3 5
T 20 Sofg ® ¥ ® ¥ % ¥ & & ® -
3 - 3
E o ¢ % 5 E o
o 50 100 150 200 250 o 50 100 150 200 250

Maximum Total Time Allocated [s]
(b)
uccess and Failure Rates vs. Maximum Total Time Allocated for A*

00 - -
‘.—m
T &
=[S
s a3
S G
(151

Distribution (%)
B N

18 42 66 90 114 138 162 186 210 234
Maximum Total Time Allocated [s]

(c) | I Path Generated
[Intermediate Time Exceeded
[Maximum Time Exceeded

Success and Failure Rates vs. Maximum Total Time Allocated for RRT
100

50

Distribution (%)

©

Maximum Total Time Allocated [s]
(e)

42 66 90 114 138 162 186 210 234
Maximum Total Time Allocated [s]

(f) | IEEE Path Generated
[Intermediate Time Exceeded

[Maximum Time Exceeded

Figure 8. Performance parameters vs. Maximum Total Time Allocated (tpath_gen_-masz): () Path Length for
A*, (b) Computational Time for A*, (c) Success and Failure rates for A*, (d) Path Length for RRT, (e)
Computational Time for RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered
situation (speed and scenario) with 95% confidence interval. (res = 21,dstep_rrT = 50m, vy av = 15km/hr, ds_step =
Somvdint,goal = 100m, dfactor = 0.8 and titerate_maz = 128).

In conclusion although the maximum allowable time to reach the goal was increased, neglecting real-time
constraints, a solution cannot be guaranteed for all scenarios for both algorithms, although a minimum of
95% success rate was recorded for A* for all situations considered and the maximum time exceeded condition
was never triggered beyond 4 X tpqth_gen_maz for all scenarios in RRT. Furthermore it can be concluded that
for both A* and RRT at 6x and above, the maximum allowable time to reach the goal has minimal to low
effect on performance for the considered parameters listed in the caption of Figure 8 which were defined
after respective analysis.

21 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

G. Distance reduction factor (dyqctor)

The distance reduction factor is a parameter utilised to re—evaluate the distance from the current UAV
position to the next UAV position and from the current UAV position to an intermediate goal position as
both may reside on an obstacle. When the next UAV position is defined this position is not on an obstacle
as this point is selected on the path from the current UAV position to an intermediate goal point. But
when the ripple reduction algorithm is applied, the current UAV position may reside on an obstacle. When
the intermediate goal node is defined based on a look—ahead distance from the current UAV position, such
point can reside on an obstacle. The excessive reduction of both distances can lead to longer computational
time to generate a path as shorter path segments are generated and/or situations in which the UAV and
the goal point will remain in the same position. On the other hand, too low reductions will also increase
computational time as each reduction needs to be checked each time. Therefore, to best define this value this
parameter was varied between 0.5 to 0.95 in steps of 0.05 and applied the tests on the same test platform as
in the previous sub—sections. Figure 9 illustrate the mean path length, computational time and success rate
test results for both A* and RRT algorithms.

Path Length vs. Distance Factor for A* Path Length vs. Distance Factor for RRT
— 1500 T T T T - — 1500 T T T T T
S % Scenario 1 3 % Scenario 1
= O Scenario 2 = 4 & A & & & & & & &l O Scenario2
S /A Scenario 3 =3 /A Scenario 3
€ 1000 F & & i Fi3 i] S 1000 1
o < ® ® ® ® e ® ® ® @ ©
< ® ® ® = e e e e @ - =
5 5 T R T
RO N S S S S N . B B N ! ! ! ! |
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
Distance Factor [No Units] Distance Factor [No Units]
(a) (d)
) Computational Time vs. Distance Factor for A* v Computational Time vs. Distance Factor for RRT
© 60 T T T T © 60 ; % T T T S ——
€ S % N A A
= % Scenario 1 = ; % 4 “IE‘ ﬁf— { § O Scenario 2
< 40 O Scenario 2| = 40r /A Scenario 3
c /A Scenario 3 c
g 5 id
goor . s T °] s2r g % ¥ E ¥ x g 3 1
g i
Q A A X 7 & Q
E o % w X & E o ‘ ‘ ‘ ‘ ‘ |
o 0.5 0.6 0.7 0.8 0.9 1 o 05 0.6 0.7 0.8 0.9 1
Distance Factor [No Units] Distance Factor [No Units]
(b) (e)
Success and Failure Rates vs. Distance Factor for A* Success and Failure Rates vs. Distance Factor for RRT
100 - == 100
2 &
c c
i) i)
5 50 M 1 S s0f]
2 e 2
o 0 fofiefes o 0
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
Distance Factor [No Units] Distance Factor [No Units]
(c) | I Path Generated () [NI Path Generated
[Intermediate Time Exceeded [Intermediate Time Exceeded
[Maximum Time Exceeded [Maximum Time Exceeded

Figure 9. Performance parameters vs. Distance Factor (dfuctor): (a) Path Length for A*, (b) Computational
Time for A*, (c¢) Success and Failure rates for A*, (d) Path Length for RRT, (e) Computational Time for
RRT and (f) Success and Failure rates for RRT for 100 iterates for each considered situation (speed and
scenario) with 95% confidence interval. (res = 21, dstep_rrT = 50m, vy av = 15km/hr,ds_step = 50m, dint_goar = 100m,
titerate-maz = 125 and tpath_gen-maz = 1205)'

Results in Figure 9 (a) and (d) show that the path length is mainly dependent upon the scenario com-
plexity and independent of the distance factor parameter for both algorithms. This implies that irrespective
of the reduction in length of path segments, in the case where the new intermediate goal point or current
UAV position reside on an obstacle, the path length shall not increase.

As the distance factor approaches unity the computational time shall increase as the algorithm is required
to consider more points in the line connecting the current and future UAV position and/or the current and
future intermediate goal points. For all scenarios in A*, an exponential increase in mean computational
time with multiple increases in confidence interval is exhibited at different values of distance factor, namely
0.85, 0.65 and 0.6 for Scenarios 1 to 3, respectively, with Scenario 2 exhibiting the largest (> X3) increase.
This results impose the need to best define this parameter based on the different parameters considered and
the scenario in which the algorithm is required to operate. Furthermore, Figure 9 (c) shows that at certain
instances of distance factor namely, 0.55, 0.8 and 0.95 the A* algorithm is 100% successful. Therefore, this

22 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

show that A* can offer a high success rate of 98% or better for the parameters considered if the distance
factor is attentively selected.

For the RRT algorithm, the computational time is unaffected with the distance factor as can be deduced
from Figure 9 (e). As the RRT algorithm is a sampling based algorithm the environment is not quantised
and therefore the possibility of the new UAV position residing on an obstacle after the movement function
is computed is not applicable if a fixed obstacle environment is assumed. Not the same can be concluded
for the A* algorithm. Only the possibility that the new intermediate goal position will reside on an obstacle
remain. As obstacles are planes with 2 dimensions a slight deviation on the line connecting the current UAV
position to the final goal position will eliminate this conflict. Therefore in the case of RRT only one step will
be required irrespective of the distance deduction (through the dfqcor parameter) will be enough to produce
an obstacle—free intermediate goal point. Therefore, ideally a 0.95 factor shall be considered not to deviate
too much from the predefined din¢_goa: distance.

H. Conclusion

This section analysed the results of the developed path planning algorithm defined in Section IV in terms of
UAV speed, distance to travel per iterate, distance between current UAV position and prospective interme-
diate goal point, maximum intermediate time, maximum total time and distance factor for both algorithms
in all 3 defined scenarios. Results show the strongholds and shortcomings of both algorithms as each of
the above mentioned parameters is varied keeping other parameters constant. Furthermore, through this
analysis guidelines for the definition of empirical values for the analysed parameters were set out. These
empirical values can be overwritten in view of user—defined and external demands such as UAV speed.

VII. Conclusion and Future Work

The aim of this paper was to develop a platform to assess the validity of the two most utilised path
planning algorithm (A* and RRT) in view of 3D UAV path planning in real-time. Literature highlight
the importance of real-time path planning for autonomous 2D systems.?>2® UAV have to manoeuvre in
complex, dynamic environments and therefore the need for real-time path planning is a must. Both path
planning algorithms with a common smoothing algorithm were tested in 3 different scenario with varying
complexity. Real-time path planning is governed by a set of user—defined parameters such as speed and time
to reach the goal node, system—defined parameters such as look—ahead distance and computational power
and internal constants such as resolution/step size and the distance reduction factor. The effect of the salient
parameters on performance was assessed and analysed.

Results showed that the A* algorithm outperformed the RRT algorithm in both path length and compu-
tational time for all scenarios considered, with the difference increasing with scenario complexity. Also the
A* was successful by more than 90% in all tests for all scenarios considered provided the look—ahead distance
is at least double the distance moved per iterate. Oppositely, the RRT algorithm resulted in a lower success
rate owing primarily to the longer computational required to produce paths from the current UAV position
to an intermediate goal point. The analysis presented in Section VI outline the best empirical values for
each considered parameter if such parameter is not restricted by user demands or hardware limitations. In
a nutshell, this analysis showed that both algorithm can be applied in real-time with different a success rate
even up to 90% for all scenarios considered. It is up to the designer of the real-time 3D UAV path planning
system to decide the best configuration for the requested task/s based on the analysis of Section VI.

This work can be utilised in the future to configure a real UAV for autonomous 3D UAV movement in
indoor obstacle-rich environment emulating the considered scenarios. The implementation can be extended
to outdoor environments where other factors such as wind and rain may influence the dynamics and sensory
systems onboard the UAV. Furthermore, the performance of the real-time A* and RRT algorithm with
moving obstacles is an area that will further assess the robustness of the developed real-time algorithm. The
future trajectory, size and speed of such moving obstacles may be known, known with a certain degree of
uncertainty or totally unknown to the path planning algorithm.

References
1Kim, M.-H., Baik, H. and Lee, S., “Response Threshold Model Based UAV Search Planning and Task Allocation,” Journal
of Intelligent € Robotic Systems, Vol. 75, No. 3—4, 2014, pp. 625-640.
23 of 25

American Institute of Aeronautics and Astronautics

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

2Dai, R. and Cochran, J., “Path Planning and State Estimation for Unmanned Aerial Vehicles in Hostile Environments”,
Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010, pp. 595-601.

3Chakrabarty, A. and Langelaan, J. W., “Energy maps for long-range path planning for small-and micro—uavs”, AIAA
Guidance, Navigation and Control Conference, Chicago, IL, 10-13 Aug., 2009, pp. 1-13.

4 Amin, J. N., Boskovic, J. D. and Mehra, R. K, “A Fast and Efficient Approach to Path Planning for Unmanned Vehicles”,
AIAA Guidance, Navigation and Control Conference, Keystone, CO, 21-24 Aug., 2006, pp. 1-9.

5Gurdan, D., Stumpf, J., Achtelik, M., Doth, K-M, Hirzinger, G., Rus, D. “Energy-efficient autonomous four-rotor flying
robot controlled at 1 kHz,” IEEE International Conference on Robotics and Automation, Roma, Italia, 10-14 April, 2007, pp.
361-366.

SFranchi, A., Secchi, C., Ryll, M., Bulthoff, H. and Giordano, P (2012). Shared Control: Balancing Autonomy
and Human Assistance with a Group of Quadrotor UAVs. IEEE Robotics & Automation Magazine [online] Available at:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6290692 [Accessed 26 Aug. 2018].

"Dittrich, J. S., Adolf, F.-M., Langer, A. and Thielecke, F. “Mission Planning for Small UAV Systems in Uncertain
Environments,”, 2% European Micro Aerial Vehicle Conference, Braunschweig, Germany, 25-26 July, 2006.

8Barrientos, A., Colorado, J., Martinez, A., Rossi, C., Sanz, D. and Valente, “Aerial Remote Sensing in Agriculture: A
Practical Approach to Area Coverage and Path Planning for Fleets of Mini Aerial Robots”, Journal of Field Robotics, Vol. 28,
pp. 667-689, 2011.

9Lee, J., Huang, R., Vaughn, A., Xiao, X., Hedrick, J. K., Zennaro, M. and Sengupta, R. ‘Strategies of path-planning for
a UAV to track a ground vehicle”, AINS Conference, 2003, pp. 1-7.

10Puri, A. ‘A Survey of Unmanned Aerial Vehicles (UAV) for Traffic Surveillance”, Department of Computer Science and
Engineering, University of South Florida, 2005.

HMayerowitz, S. “Amazon.com sees delivery drones as future (Update)”, Phys.org, The Associated Press, [Online
Database], https://phys.org/news/2013-12-amazon-unveils-futuristic-mini-drone-delivery.html, [retrieved 09 September, 2018].

12Wright, T. “In Rural Virginia, a Drone Makes the First Legal U.S. Package Delivery”, Air & Space Smithsonian, [Online
Database], https://www.airspacemag.com/daily-planet/rural-virginia- drone-makes-first-legal-us- package-delivery- 180956053/
7no-ist, [retrieved 09 September, 2018].

13Nakashima, R. “Drone company demos how blood air-drops will work in Rwanda”, AP News, [Online Database], https://
apnews.com/e5336fa71af347db99%e11cd69ab16054 /drone-company-demos-how-blood-air-drops-will-work-rwanda, [retrieved 09
September, 2018].

14Nakashima, TU Delft. “TU Delft ambulance drone drastically increases the chances of
surviving cardiac arrest”, TU Delft, [Online Database], https://www.tudelft.nl/2014/tu-delft/
ambulance-drone-tu-delft-vergroot-overlevingskans- bij- hartstilstand-drastisch/, [retrieved 09 September, 2018].

15Call, B. (2006). Obstacle avoidance for unmanned air vehicles. Master Dissertation. Brigham Young University.

16Boskovic, J. D., Knoebel, N., Moshtagh, N. and Larson, G.L., “Collaborative Mission Planning & Autonomous Control
Technology (CoMPACT) System Employing Swarms of UAVs”, ATAA Guidance, Navigation and Control Conference, Chicago,
1L, 10-13 Aug., 2009, pp. 1-24.

17Ryan, A. and Hedrick, J. K., “A mode-switching path planner for UAV-assisted search and rescue”, Proceedings of the
44th IEEE Conference on Decision and Control, Seville, Spain, 12-15 Aug. 2005, pp. 1471-1476.

18Park, S., Choi, H.-L., Roy, N., and How, J., “Learning Covariance Dynamics for Path Planning of UAV Sensors in a
Large-Scale Dynamic Environment”, AIAA Guidance, Navigation and Control Conference, Chicago, IL, 10-13 Aug., 2009, pp.
1-18.

19Crispin, C. and Sobester, A., “An Intelligent , Heuristic Path Planner for Multiple Agent Unmanned Air Systems”, AIAA
Information Technology at Aerospace, Kissemmee, FL, 5-9 Jan., 2015, pp. 1-13.

20Bollino, K. P. and Ryan Lewis, L., “Collision-free Multi-UAV Optimal Path Planning and Cooperative Control for Tactical
Applications”, AIAA Guidance, Navigation and Control Conference, Honolulu, HI, 21-24 Aug., 2008, pp. 1-18.

21Zammit, C. and van Kampen, E. J., “Comparison between A* and RRT Algorithms for UAV Path Planning”, AIAA
Guidance, Navigation and Control Conference, AIAA SciTech Forum, Kissimmee, FL, 8-12 Jan., 2018.

227Zammit, C. and van Kampen, E. J., “Advancements for A* and RRT in 3D path planning of UAVs”, AIAA Guidance,
Navigation and Control Conference, AIAA SciTech Forum, San Diego, CA, 7-11 Jan., 2019.

238yjit, P. B., and Ghose, D., “Search by UAVs with Flight Time Constraints using Game Theoretical Models,” AIAA
Guidance, Navigation and Control Conference, San Francisco, CA, 15—-19 Aug. 2005, pp. 1-11.

24Bethke, B., Bertuccelli, L. How, J. P., “Experimental Demonstration of MDP-Based Planning with Model Uncertainty,”
AIAA Guidance, Navigation and Control Conference, Honolulu, HI, 18-21 Aug. 2008, pp. 1-22.

25Bollino, K., Lewis, L. R., Sekhavat, P. and Ross, I. M., “Pseudospectral Optimal Control: A Clear Road for Autonomous
Intelligent Path Planning,” AIAA Infotech Aerospace Conference and Exhibit, Rohnert Park, CA, 7-10 May 2007, pp. 1-14.

26Frazzoli, E., “Maneuver-Based Motion Planning and Coordination for Multiple UAVs,” Proceedings of the AIAA/IEEE
Digital Avionics Systems Conference, Portsmouth, VA, 20-23 May 2002, pp. 1-11.

27Benenson, R. Petti, S., Fraichard, T. and Parent, M., “Integrating Perception and Planning for Autonomous Navigation
of Urban Vehicles,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9-15 Oct. 2006,
pp. 98-104.

28Yao, P., Wang, H. and Su, Z., “Real-time path planning of unmanned aerial vehicle for target tracking and obstacle
avoidance in complex dynamic environment,” Aerospace Science and Technology, Vol. 47, pp. 269-279, 2015.

29Ghort, A., Pan, Z., Larkin, Z. and van Duin, S. “Recent Progress on Sampling Based Dynamic Motion Planning Al-
gorithms”, IEEFE International Conference on Advanced Intelligent Mechatronics (AIM), Alberta, Canada, Jul. 2016, pp.
1305-1311.

30Karaman, S. and Frazzoli, E., “Sampling-based algorithms for optimal motion planning”, The International Journal of
Robotics Research, Vol. 30, No. 7, pp. 846—894, 2011.

24 of 25

American Institute of Aeronautics and Astronautics

https://phys.org/news/2013-12-amazon-unveils-futuristic-mini-drone-delivery.html
https://www.airspacemag.com/daily-planet/rural-virginia-drone-makes-first-legal-us-package-delivery-180956053/?no-ist
https://www.airspacemag.com/daily-planet/rural-virginia-drone-makes-first-legal-us-package-delivery-180956053/?no-ist
https://apnews.com/e5336fa71af347db99e11cd69ab16054/drone-company-demos-how-blood-air-drops-will-work-rwanda
https://apnews.com/e5336fa71af347db99e11cd69ab16054/drone-company-demos-how-blood-air-drops-will-work-rwanda
https://www.tudelft.nl/2014/tu-delft/ambulance-drone-tu-delft-vergroot-overlevingskans-bij-hartstilstand-drastisch/
https://www.tudelft.nl/2014/tu-delft/ambulance-drone-tu-delft-vergroot-overlevingskans-bij-hartstilstand-drastisch/

Downloaded by TU DELFT on January 8, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-0861

31Gingh, Y. and Sharma, S., “Optimal path planning of unmanned surface vehicles,” Indian Journal of Geo-Marine Sciences,
Vol. 47, No. 7, pp. 1325-1334, 2018.

32Ross, I. M., “A Unified Computational Framework for Real-Time Optimal Control,” Proceedings of the 42nd IEEE
Conference on Decision and Control, Maui, Hawaii, Dec. 2003, pp. 2210-2215.

33Gong, Q., Kang, W. and Ross, .M., “A Pseudospectral Method for the Optimal Control of Constrained Feedback
Linearizable Systems,” IEEE Transactions on Automatic Control, Vol. 51, No. 7, pp. 1115-1129, 2006.

34Gao, X., Ren, J. and Chen, D., “Developing an effective algorithm for dynamic UAV path planning with incomplete
threat information,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol.
226, No. 4, pp. 413421, 2012.

35Peng, X. and Xu, D., “Intelligent online path planning for UAVs in adversarial environments,” International Journal of
Advanced Robotic Systems, Vol. 9, pp. 1-12, 2012.

36Roberge, V., Tarbouchi, M. and Labonte, G., “Comparison of parallel genetic algorithm and particle swarm optimization
for real-time UAV path planning,” IEEE Transactions On Industrial Informatics, Vol. 9, No. 1, pp. 132-141, 2013.

37Lavalle, S. M., “Motion Planning : The Essentials”, IEEE Robotics & Automation Magazine, Vol. 18, No. 1, pp. 79-89,
2011.

38Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., and How, J. P., “Motion Planning in Complex Environments
using Closed-loop Prediction”, AIAA Guidance, Navigation and Control Conference and Ezhibit, Honolulu, HI, 18-21 Aug.
2008, pp. 1-22.

39Fernandes, E. Costa, P., Lima, J. and Veiga, G. “Towards an orientation enhanced astar algorithm for robotic navigation”,
IEEE International Conference in Industrial Technology (ICIT), Amman, Jordan, 12-15 May, pp. 3320-3325, 2015.

40Trovato, K. and Dorst, L. “Differential A*”, IEEE Transaction on Knowledge and Data Engineering, Vol. 14, No. 6, pp.
1218-1229, 2002.

41Palossi, D., Furci, M., Naldi, R., Marongiu, A., Marconi, L., Benini, L. “An energy-efficient parallel algorithm for real-
time near-optimal UAV path planning”, Proceedings of the ACM International Conference on Computing Frontiers, Como,
Italy, 16—18 May, pp. 392-397, 2016.

42Ghandi, S. and Masehian, E., “Review and taxonomies of assembly and disassembly path planning problems and ap-
proaches”, CAD Computer Aided Design, Vol. 67—68, No. October, pp. 5886, 2015.

43Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., and How, J. P., “Real-Time Motion Planning With Applications
to Autonomous Urban Driving”, IEEE Transactions on Control Systems Technology, Vol. 17, No. 5, pp. 1105-1118, 2009.

4Kungz, T. Reiser, U., Stilman, M. and Verl, A. “Real-time path planning for a robot arm in changing environments,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 8-14 Oct. 2010, pp. 5906-5911.

45Stentz, A., “Optimal and Efficient Path Planning for Partially Known Environments”, Proceedings of the 1994 IEEE
International Conference on Robotics and Automation, San Diego, CA, 813 May, 1994, pp. 3310-3317.

46Petti, S. and Fraichard, T., “Safe Motion Planning in Dynamic Environments”, Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Edmonton, Alta., Canada, 2-6 Aug., 2005, pp. 2210-2215.

47Gonzalez, D., Pérez, J., Milanés, V., and Nashashibi, F., “A Review of Motion Planning Techniques for Automated
Vehicles”, IEEE Transactions on Intelligent Transportation Systems, Vol. 17, No. 4, pp. 1135-1145, 2016.

48Sathyaraj, M. B., Jain, L. C., Finn, A. and Drake, S., “A Multiple UAVs path planning algorithms: a comparative study”,
Fuzzy Optimization and Decision Making, Vol. 7, No. 3, 2008, pp. 257—-267.

49Hart, P. E., Nilsson, N. J. and Raphael, B., “A Formal Basis for the Heuristic Determination of Minimum Cost Paths”,
IEEE Transactions on Systems Science and Cybernetics, Vol. 4, No. 3, pp. 100-107, 1968.

50Tseng, F. H., Liang, T. T. and Lee, C. H. Chou, L. D. and Chao, H., “A Star Search Algorithm for Civil UAV Path
Planning with 3G Communication”, 10th International Conference on Intelligent Information Hiding and Multimedia Signal
Processing (ITH-MSP), Kitakyushu, Japan, 27-29 Aug. 2014, pp. 942-945.

51Lavalle S. M. and Kuffner J. J., “Randomized kinodynamic planning”, International Journal of Robotics Research, Vol.
20, No. 3, pp. 378-400, 2001.

52LaValle S. M. “Probabilistic roadmaps for path planning in high-dimensional configuration spaces”, IEEE Transactions
on Robotics and Automation, Vol. 12, No. 14, pp. 566—580, 1996.

53LaValle, S. M. and Kuffner, J. J. “Randomized kinodynamic planning”, Proceedings of the IEEE International Conference
on Robotics and Automation, Detroit, MI, 10-15 May 1999, pp. 473-479.

54Devaurs, D., Siméon, T. and Cortés, J. “Optimal Path Planning in Complex Cost Spaces With Sampling-Based Algo-
rithms”, IEEE Transactions on Automation Science and Engineering, Institute of Electrical and Electronics Engineers, 2015.

55Geraerts, R. and Overmars, M. “Creating high—quality paths for motion planning”, International Journal of Robotics
Research, Vol. 26, No. 8, pp. 845-863, 2007.

56Hrabar, S., “3D Path Planning and Stereo-based Obstacle Avoidance for Rotorcraft UAVs”, IEEE/RSJ International
Conference on Intelligent Robots and Systems, Nice, France, 22—26 Sep. 2008, pp. 807-814.

57Ferguson, D. and Stentz, A. “Using interpolation to improve path planning: The field D* algorithm”, Journal of Field
Robotics, Vol. 23, No. 2, pp. 79-101, 2006.

58yu, H., Beard, R. W. and Byrne, J. “Vision-based Navigation Frame Mapping and Path Planning for Micro Air Vehicles”,
AIAA Guidance, Navigation, and Control Conference, Chicago, Illinios, 11-13 Aug. 2009, pp. 1-10.

59Clifton, M., Paul, G., Kwok, N., Liu, D. and Wang, D. “Evaluating Performance of Multiple RRTs”, IEEE conference
on Mechatronic and Embedded Systems and Application, Bejing, China, 12—-15 Oct. 2009, pp. 564—569.

60paul, G. “Multiple Rapidly-exploring Random Tree (RRT)”, MATHWORKS, [Online Database], https:
//www.mathworks.com/matlabcentral /fileexchange/21443-multiple-rapidly-exploring-random- tree--rrt- ?requested Domain=
www.mathworks.com, [retreived 30 October, 2016].

25 of 25

American Institute of Aeronautics and Astronautics

https://www.mathworks.com/matlabcentral/fileexchange/21443-multiple-rapidly-exploring-random-tree--rrt-?requestedDomain=www.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange/21443-multiple-rapidly-exploring-random-tree--rrt-?requestedDomain=www.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange/21443-multiple-rapidly-exploring-random-tree--rrt-?requestedDomain=www.mathworks.com

	Introduction
	Real–time path planning literature review
	Introduction
	Optimisation Algorithms
	Graph–based Methods
	Sampling–based Methods
	Conclusion

	The A*, RRT and Smoothing Algorithms
	Introduction
	The A* Algorithm
	The RRT Algorithm
	The Smoothing Algorithm
	Conclusion

	The Real-time algorithm
	Introduction
	Theoretical Aspect
	Parameter Definition and Initiation
	The Move Function
	Main Real–time Algorithm

	Conclusion

	Parameter Definition and Experimental Scenarios
	Real–time algorithm parameter assignment
	Experimental Scenarios

	Results
	Introduction
	Speed (vUAV)
	Distance to travel per iterate (ds_step)
	Distance between current UAV position and prospective intermediate goal point (dint_goal)
	Maximum Intermediate time (titerate_max)
	Maximum time to generate a path (tpath_gen_max)
	Distance reduction factor (dfactor)
	Conclusion

	Conclusion and Future Work

