<]
TUDelft

Delft University of Technology

SoK
ATT&CK techniques and trends in windows malware

Oosthoek, Kris; Doerr, Christian

DOI
10.1007/978-3-030-37228-6_20

Publication date
2019

Document Version
Final published version

Published in
Security and Privacy in Communication Networks - 15th EAI International Conference, SecureComm 2019,
Proceedings

Citation (APA)

Oosthoek, K., & Doerr, C. (2019). SoK: ATT&CK techniques and trends in windows malware. In S. Chen,
K.-K. R. Choo, X. Fu, W. Lou, & A. Mohaisen (Eds.), Security and Privacy in Communication Networks -
15th EAI International Conference, SecureComm 2019, Proceedings (Vol. 304, pp. 406-425). (Lecture
Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,
LNICST; Vol. 304 LNICST). Springer. https://doi.org/10.1007/978-3-030-37228-6_20

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-030-37228-6_20
https://doi.org/10.1007/978-3-030-37228-6_20

q

Check for
updates

SoK: ATT&CK Techniques and Trends
in Windows Malware

Kris Oosthoek®) and Christian Doerr

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
{k.oosthoek, c.doerr}@tudelft.nl
http://www.cyber-threat-intelligence.com

Abstract. In an ever-changing landscape of adversary tactics, tech-
niques and procedures (T'TPs), malware remains the tool of choice for
attackers to gain a foothold on target systems. The Mitre ATT&CK
framework is a taxonomy of adversary TTPs. It is meant to advance
cyber threat intelligence (CTI) by establishing a generic vocabulary to
describe post-compromise adversary behavior. This paper discusses the
results of automated analysis of a sample of 951 Windows malware fam-
ilies, which have been plotted on the ATT&CK framework. Based on
the framework’s tactics and techniques we provide an overview of estab-
lished techniques within Windows malware and techniques which have
seen increased adoption over recent years. Within our dataset we have
observed an increase in techniques applied for fileless execution of mal-
ware, discovery of security software and DLL side-loading for defense eva-
sion. We also show how a sophisticated technique, command and control
(C&C) over IPC named pipes, is getting adopted by less sophisticated
actor groups. Through these observations we have identified how mal-
ware authors are innovating techniques in order to bypass established
defenses.

Keywords: Malware analysis + ATT&CK framework - Classification -
Cyber threat intelligence - Advanced persistent threats

1 Introduction

Malware continues to spread increasingly and with serious consequences for orga-
nizations and private individuals. According to the 2018 Verizon Data Breach
Investigations Report, malware is the primary attack tactic in 30% of data
breaches [30]. Attackers keep innovating their TTPs to circumvent established
defenses that could impede their modus operandi. As attackers continue to
increase the sophistication of their techniques, the collection of CTI on attacker
innovation is fundamental to inform adequate mitigation.

Obtaining such insight from malware analysis has become increasingly chal-
lenging as a result of evasion techniques such as polymorphism and metamor-
phism now being widely applied [3] and even available ‘as a service’ to cyber-
criminals [25]. Crimeware toolkits like Zeus have provided cybercriminals with

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 304, pp. 406-425, 2019.
https://doi.org/10.1007/978-3-030-37228-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37228-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-37228-6_20

ATT&CK Techniques in Windows Malware 407

effective malware kits difficult to detect using conventional mitigations [4]. The
vast flood of new malware embedding improved TTPs has resulted in a ‘weapons
race’ [20] between developers of malware and anti-malware software. To obtain
objective and reliable CTI on advances in malware, the study of innovation
within individual malware families needs to be supplemented with an overview
of innovation within the malware ecosystem by and large.

To build a common understanding of the TTPs observed through such anal-
ysis, malware research benefits from the adoption of a common taxonomy that
facilitates the dissemination of CTI from malware analysis. To date the field of
malware research has not reached consensus on the adoption of such a reporting
standard.

For this paper, an automated analysis of samples from 951 unique families of
Windows malware was performed. To discuss the results of that analysis we have
mapped them onto the industry-standard ATT&CK framework by Mitre, fur-
ther referred to as the ATT&CK framework. The framework describes malware
techniques in their tactical context and allows for a common understanding of
post-compromise malware behavior. Because it considers techniques in the con-
text of the attack life cycle instead of viewing them as separate artifacts, use
of the framework informs more effective detection and mitigation of identified
techniques. This is the first study to apply an industry-accepted taxonomy to
the analysis of a large corpus of malware. In doing so it provides insight in the
adoption of innovative techniques for execution, discovery and C&C. We make
the following contributions:

— We have applied an industry-standard CTI framework to malware analysis
results in order to advance dissemination of CTI from malware analysis.

— We have studied behavior in a sample of Windows malware, through which
we are able to observe how malware authors are implementing techniques.

— We have identified trends in the implementation of fileless execution of mal-
ware, discovery of security software and DLL side-loading.

— We also show how a sophisticated technique, C&C via IPC named pipes, is
adopted by less sophisticated actor groups.

— We have evaluated the potential and limitations for using automated malware
analysis as a source for CTI.

The remainder of this paper is structured as follows: Sect.2 provides an
overview of related work on automated analysis and malware classification.
Section 3 outlines the ATT&CK framework. Section4 describes the methodol-
ogy of our analysis. Section5 presents the results using the common language
offered by ATT&CK. Section 6 presents a sophisticated technique of which we
have observed increasing adoption. Section7 describes the limitations of using
automated analysis for CTI. Section 8 summarizes of our findings.

2 Related Work

Two types of previous work are important to position our work. First, other
studies on automated malware analysis and second with regards to standardized
reporting of malware behavior.

408 K. Oosthoek and C. Doerr

Automated Analysis. Among the earliest to analyze a large corpus of Win-
dows malware were Willems et al., introducing CWSandbox and presenting its
results based on the analysis of 6,148 malware binaries [31]. Bayer et al. have pub-
lished about the now discontinued Anibus platform, which they used to analyze
malware samples gathered in the wild from 2007 until 2008 [3]. By classifying
the observed malicious behavior into common areas of host activity, they did
provide important insight into the behavior of malware on a host after infection.
Another significant contribution was made by Song et al., who have combined
static and dynamic methods in BitBlaze, which is now also discontinued [24].
Other researchers have focused on the automated analysis of specific categories
of malware such as ransomware [10], as well as evasive malware [11], encryp-
tion and packers [14] and anti-virtualization and anti-debugging in malware [5].
More recently, Grill et al. [7] conducted a study of bootkit technology based on
the analysis of 29 bootkit families observed from 2006 until 2014. However, the
malware landscape is subject to rapid evolution and most research studying a
larger corpus of Windows malware does not include the analysis of trends.

Taxonomies. The use of a common language, also referred to as classification or
taxonomy, is vital for malware analysis to inform CTT unambiguously. Researchers
from academia and industry have recognized this gap. One of the earliest steps
were taken by Kirilov et al. at Mitre [12], who recognized that communication of
malware analysis results is impeded by the absence of a standard for the char-
acterization of malware. They proposed the Malware Attribute Enumeration and
Characterization (MAEC), which encodes malware behavior and has gained some
industry adoption. Other researchers have pointed out the need for a higher-
level taxonomy that explains the behavior of malware within the broader context
of an attack [19]. Building on existing models from traditional areas of defense,
Lockheed Martin Corporation developed the Cyber Kill Chain [8]. The philoso-
phy behind this model is that effective mitigation of malicious activity is driven
by knowledge about an actor’s TTPs. The Cyber Kill Chain describes malicious
activity based on seven discrete phases, but it is argued that it is insufficient in
doing so. The model is criticized for emphasizing pre-intrusion activity [18] at the
expense of post-intrusion activity [13,18]. As pre-compromise activity takes place
outside the network perimeter it can not be observed, as description of such activ-
ity is mostly based on assumptions. As the model does not include common attack
tactics as privilege escalation and lateral movement, the Cyber Kill Chain is less
suited towards the full reporting of an attack’s life cycle. Researchers at Mitre rec-
ognized this gap and have published a behavioral model named ATT&CK [26],
which will be discussed in the next section.

Several authors have made significant contributions studying malware using
automated analysis tools. This needs to be supplemented with analysis reported
using an established taxonomy to further extend the common understanding of
malware behavior. This study is the first to use the industry-standard ATT&CK
framework to present the results of a large representative sample of malware.

ATT&CK Techniques in Windows Malware 409

3 The Mitre ATT&CK Framework

The ATT&CK framework was originally created by Mitre as it was recognized
that existing reference models were insufficient in categorizing post-compromise
activity into attacker TTPs [26]. ATT&CK distinguishes between tactics and
techniques. Tactics describe adversary goals, techniques are the technical means
through which goals are achieved. The authors position ATT&CK as an adver-
sary model which standardizes both the tactics and the technical capabilities
used after an initial foothold has been gained. The framework design also sepa-
rates pre-compromise and post-compromise activity. The PRE-ATT&CK model
focuses on attacker activity prior to delivery and exploitation and is indepen-
dent of any technology platform as it offers a categorization of an attacker’s
reconnaissance activity, most of which cannot or only partially be detected.
The Enterprise model covers on techniques implemented over the full attack life
cycle on Windows, Linux and macOS, platforms commonly implemented within
an enterprise context. Attack techniques targeting Android and iOS are con-
tained in a separate model. Over the last couple of years, the framework has
become the industry standard for describing malware techniques and attacker
campaigns. The model has been open-sourced by Mitre and is being implemented
in industry products. The Mitre ATT&CK website contains a knowledge base
complementing the framework with observations of actor-attributed adversary
TTPs from vendor reports.

The framework categorizes the attack life cycle according to different stages,
called tactics. Tactics describe the objectives of an adversary within the life cycle
of an attack. The tactics within the current framework version are as follows:

Initial Access: establishing an initial foothold on the target host.
Ezecution: how the malicious code is executed on the target host.
Persistence: all methods to maintain access to the compromised host.
Privilege FEscalation: elevating access to other host or network resources.
Defense Evasion: all techniques used to avoid detection or other defenses.
Credential Access: obtaining credentials to expand control of resources.
Discovery: obtaining contextual awareness of the target system and network.
Lateral Movement: techniques implemented to pivot across other systems.
Collection: how information that will be sent to the attacker is collected.
Ezxfiltration: transferring information acquired in the process to the attacker.
Command and Control: the attacker exerting control over the infected
host(s).

N S o B e

— =

Each tactic serves as a class of the techniques implemented to accomplish that
tactic. For example, to establish persistence (tactic), malware can add a run key
to the registry (technique). The framework’s techniques describe the steps taken
on a technical level. Refer to Fig. 1 for an overview of the categorization of tactics
and relevant techniques within the framework. Section 5 will further elaborate
on the results displayed in this figure.

Techniques can either be defined generally or specific and be platform-
agnostic or platform-specific, depending on how a technique is implemented.

410 K. Oosthoek and C. Doerr

Process Injection is an example of a general technique that applies to several
platforms in many variations, where Regsvr32 is a technique with a very spe-
cific use case only applicable to the Windows platform. Techniques might appear
within two or three tactic categories if applicable. An example of such technique
can be seen in Fig. 1. The Scheduled Task technique appears under the Execu-
tion, Persistence and Privilege Escalation tactic, as the same technique can be
employed within three tactical contexts. This paper will further reference the
Windows techniques from the Enterprise ATT&CK framework, as our research
focuses on observations of post-compromise activity in Windows malware.

4 Methodology

Dataset. The malware samples used for this research were gathered from Mal-
pedia, a collaborative research platform with an established corpus of malware
maintained by Fraunhofer FKIE [21]. The maintainers adhere to the require-
ments for correctly composed malware datasets, as described by Rossow et al.
[23]. This implies that, among other requirements, the maintainers attempt to
balance their dataset to avoid it being overshadowed by polymorphic families and
that malware samples are annotated with family names and further metadata.
Furthermore a carefully curated dataset should favor quality over quantity in
order to yield representative results [1,2]. Malpedia aims to provide researchers
with a regulated corpus representative of prevalent and timely malware families
and code evolution within the malware ecosystem [21]. As a result a curated
dataset like Malpedia provides stronger quality assurances than a corpus of mal-
ware gathered in the wild.

This research concentrates on Windows malware. Most malware is Windows
malware, as Windows is the predominant end-user platform for enterprise and
private use. At the time we collected our sample, the corpus of Windows malware
available from Malpedia contained 951 unique families first observed in 2007
until 2018. From each Windows malware family collected from Malpedia we
have selected the most recent sample based on data from VirusTotal to increase
the probability of observing C&C traffic during runtime. For malware families
consisting of multiple modules, such as stagers, we have selected the most recent
version of each module. The malware family names mentioned within this paper
are derived from Malpedia’s metadata.

Experimental Environment. For the analysis of the samples in the malware
corpus we have used Joe Sandbox Cloud, a public environment for malware
analysis [9], formerly known as JoeBox [6]. It combines automated dynamic
analysis with basic features for static and network analysis. Given that Malpedia
does not include malware that strictly requires a version of Windows later than
Windows 7 [21], we have deployed the samples in a sandbox running Windows 7
32-bit or 64-bit depending on detected target architecture, with a configuration
of commonly used applications. The reports generated by the sandbox reference
generic system calls that can be replicated using other analysis environments.

ATT&CK Techniques in Windows Malware 411

ATT&CK Mapping. In order to map malware activity reported by the sand-
box engine to techniques described within the ATT&CK framework we have built
a reference file. Through this the behavior signatures generated by the sandbox
during the analysis of the malware corpus were mapped to their corresponding
framework technique. The rationalization to plot a particular sandbox signature
to an ATT&CK technique is justified by the definition of that technique in the
ATT&CK knowledge base [29]. As an example, the sandbox detection signature
for the execution of the IsDebuggerPresent function was mapped to ATT&CK
technique 1063, Security Software Discovery, as checking for active debuggers
is implemented by malware authors as a form anti-debugging. As a sandbox
can detect different behaviors which all map to one ATT&CK technique, one
technique can be described by multiple behavior signatures. Within our results,
different variations of one ATT&CK technique within an individual malware
family only count once towards that technique. Not every activity logged by the
sandbox is necessarily malicious. If behavior described in a sandbox signature
did not accurately match a framework technique, it was not mapped. Of 861
unique behavior signatures outputted by the sandbox, 398 were mapped to an
ATT&CK technique.

5 ATT&CK Techniques in Windows Malware

This section discusses the results of the analysis of the malware corpus and
their mapping onto the ATT&CK framework. Figure 1 shows a heatmap of the
ATT&CK matrix, with color shading representing the number of observations of
each technique within our analysis. Table 1 shows an overview of the ATT&CK
techniques most common in our analysis. As one sample can perform multi-
ple executions of the same technique during runtime (e.g. inject into multiple
processes), this is counted as one instance of that technique towards our results.

The total of techniques observed in our analysis gravitates towards the inner
tactics of the framework, as observed from Fig. 1. The locus of activity in inter-
mediate stages is inherent to the nature of automated malware analysis, which
focuses on host and network artifacts from malware runtime. In Sect. 7, we will
focus on the limitations of automated analysis and implications for CTI.

Below we will discuss the observations from our analysis based on the cat-
egorization offered by the ATT&CK framework. Fach technique is discussed
within the context of its tactic. Techniques that apply to multiple tactics will be
discussed in the context of the tactic justified by our analysis results.

5.1 Execution

The Execution tactic comprises all techniques through which a malicious actor
can execute code on a target system. Below the most observed techniques for
this tactic from the framework are discussed.

Execution through API. We have observed 562 malware samples launching
processes by calling the CreateProcessA function Windows application program-
ming interface (APT). Furthermore we have observed many instances of dynamic

K. Oosthoek and C. Doerr

412

SU0IEAI25O OT

Bu1s522014 11105 T5X
uonnoaxg
pueWWO) Yo2upu|
150H
$1Uno2dY pile
Ao PUEA uo erowsy Jojeatpul
5001 wouy

Jadojprag patsnuL [eAoway Jojedpul

dwoysouy. Suppojg Joredipul

uoipaful suondo

opdaful ajelduwsd,
PAUIRNEIANDL | opnsoxg ap oBew)

T1a JodjoH uoSojuim

nsqns
Ju3A3 UoneUaWNSU|
JuaWIABEUEIN SMOPU

[2US GoM

BuISS2904d 115 T5X
JuawaSeue
30Uy SMOPUIM

UoRNIaX3 1SN

Jadojaraq parsniL

21emay0s Ated-pay1

uopnag

SuppelH SPs30 us o uopdaful suondo
J3pINOI ISNIL PUe diS (21807 WalshS A4 S oM uoRn29x3 3|13 a8ew|
uopnaexg uoneIIPON
AK12r03510 3240135 Warshs Uon2aful AloysiH- SUno%Y pie, JosiiadAy
10 20435 WRISAS fxo1d 1d1ios paudss suossiuiag o1 193{ul AI0SIH-QIS JUN02Y PileA 1nadAH
1030304d uopndaxg SS3UNEIM SUOISSIWLIDG
sokeT uopesyddy . S19pIA0Id BwL BupjooH
& Axoud Areurg pausy Ansi3ay 2o ’
N piepueis d Aseuig pausis 5180y 2005
A12r0251q SuORIBUO) uomaful sauopang
1 SOk § jseL payny SsemunL wayshs HoRe jse1 painpa
IOMION Walshs Kiowo mopu e FELPRIMPRS 14 wajshs T JseL pajnpayds
Uoisen3 asuajeq SuppefiH ssauyeam.
10} uopeyojdxa JOPINOI IS PUE dIS SUOISSIWLIR] WalSAS B[1d
JuowBeUEn uondo2siul 100 SIONUON 110 UOREIIPON INDUIOYS SDIAIDS BIOWY [EUIBN: ans8o
210Way SMOPUIM uopedRUAYINY J01064-0Mm] PRooy WU Hog BEJIPOIA INIHOYS S 210Way [euiaX3 Teanssay
saseys SSAUNEAM SUOISSIULIRG Suppefi
5/00] 55920y 2J0Wa) skapf ajent ans8o uondasaul yae wseSay/sons8a,
1oL v S0y UILUPY SMOPUIM A =iend o o J2pI0 Y21eas 114 " i thed Ansi3ay A28 J2pIO Y24eas TIa W/ &
uondAnus sakeiin 2imde 03piA a1emyjos Aied-payL AIAODSIQ WRISAS SJ0WRY TIA 49N PIomSSed wseSoy/sons80y 19pIA0Id poddng Andes Junondy ajeas)
s U210 paeys Jue Suigus om 55900y JuEpUNpD} U PIEIRED JoAESUBD Fupeli PPN s
J— JU2IU0D PaJeys uleL 1IUS UOMIIN v Juepunpay [P s 1ol0 jusuoduion SN
s[ouuey) B8eIS-NINIA JOSMOIE 31 Ul U 100G PAIEYS 8U1UOS{0d SN-LEN/ANIAT] mopeysaa SuptooH el painpays emuLI3 JUBUOWO) oA SSYST
eipai ajgenoway Aionodsia ssauyeam uoepossy
Axo1d doy-yn Sunseosaqo) Ol[oH 5330 sway [aued [013U0; nalesu $junoxy
RICEREDT ysnouyy uopesyidsy sdnou9 uojssiwRd Heeo1RqI H d P (04103 112d WRIsAS 314 14 3Inejaq a8ueyd sl oV
sjpuuey yoeqjle: JoysueI] PaInpaL: uoy us S9N 210U Arncasia Susugddog ssarosg _2IPeIH IPPON uoral s5000y Juepun| UG JOSMOIE 9oeRIU OSN [eDdelD diysuope[aY pasn
1ouUey) yeqiied JsuedL pAINPaLIS 159103 f1ew3 125 2oy a0 [es4diog esjaddoq 9 oq0 UsUOAWI0) AIOLSIA MOPUIAA EA3 v Juepunpoy 25|) 01Ul oS [ed1ydesD disuonefoy paisniL
wnipa uonejess3 uonnaxg
Sunuo4 ujewo Be1s eje 412105101 A91j0d paomsse, Supjool BJeMULL JUBLOAWO; SIOYUON 110, 11100 asjwo1dwo) ueyd Addn:
RUOIURWO L oro voneup PRSI €990 10 A0d p: d IHOOH 143 3 UUOW 10d pfoog U319 Joj onerolda D utey) Aiddng
WNPOLIOMIBN BIPOIN DIGEAOWIRY 1020301 Suppely peotainpo
! d 8
uoReSMA0RIEA " vonenia wo ereq TR uius iomiaN UORERUINY P2IOY SAANGUNV A SAIN AU TALHPRWOD S uondadiaul ujed sqor siig \Bnoiy vognoag | 22¥H2S B BUY
jpuuey)
anuq paseys ssany Jeroway uoRdBULO) jou0) dnyes
Suipoou3 exe 01302 pue puewwo; 1L B sse 12103510 2184 1OMID] Suugls apo afeypeq uopeIRUALN
pomase _ Mm>u0ﬂo_uﬂz pa D omnwoyeeq s HABIEUSHOMIEN o apau Jog uoneoldxa ueyS YOMIIN WS 5P Junoddy sasn ssedhg uonedyddy 2140 Ped voneanuatanY
J030101d 10301014 3ApEUIRYY wayshs
SeH oy sse, uuess 331135 H10 e Suiwwys uonesyddy a8ueydx3 exe
102010110403 1y s sagsueay e vonewoll sidys uoso BED uidoh adioH ys $T10 3uideh sway [aued [01UO;
pue puewwoD woysn) IS IRISURILEIRA e 115 ool Junoxy ses ssedhg sTIq uiddy 110 J2d2H ys1aN 110 uddy 1 [2Ued [03u0) e e
AX01d UONIRUUO; SOOUNS 210U Amnoza sqof 110 1120ddh 123ddh £ apduo: su asempue
d Uo23UL0) o uoneyolda Jeunioog Josmosg qof s1ig 710 adddy 110 ua0ddy TNLH P 2] PPy 2JempieH
epan 12PO
uopdalod uonedyddy
a|qeroway ysnoayL passaidwo) ezeq 123(qO Juauodwod 22104)ug nnleIsy Buippeq Aleuig saimead Ay JBMIA SSYST uone|ndiuejy Junoy
parewoiny Supe4-21and 1ojdx3
uopeuNwWo) paInquisia
uemyy05 uawIAoldaq
uoneniyx3 parewoyny aimded ojpny. voneondy As2r0251 JunoDdY uopeindiuey JUNODY 21ea1B) 100Y [[EISUl sidys uogo] dISWD as1woidwo) Aq-anq
|013U0) puy puewwWwo) uonenyxa uondayj0) JusWwano [e13e] Asanoasiq 55900V [el3UapaI) (z) uoisen3 2ouajaq | (1) uoiserzaduage@ | uonejeds3 aBajiALd (2) 2dus3sisiad (1) 2d2us3sisiad uonnaaxg 55300y [el

trix for Windows heatmap based on observations for

1se ma

ATT&CK enterpr

each technique.

Fig.1

ATT&CK Techniques in Windows Malware 413

linking to the Windows API in order to call functions required for the malware
to fully execute. Although we have observed a decrease in the implementation
of this technique, accounting for 5.88% of total techniques observed in 2009 to
3.09% in 2018, this remains an efficient execution technique as host-based miti-
gation of specific API calls leads to undesirable side-effects.

Rundll32. We have seen 175 samples of malware being capable of executing
a dynamic-link library (DLL) via rundll32.exe. This technique is deployed by
malware for execution as well as defense evasion. Furthermore it can be used sev-
eral times to launch additional modules. Using this technique provides an attack
vector difficult to monitor for as it is also used by benign Windows functions.

Command-Line Interface. Within our dataset, 161 samples interact with the
host system via the command-line interface, cmd.exe for the execution of mod-
ules. Several trojan families identified by Malpedia as EvilBunny, Oceansalt,
Remcos, Sword and WebC2 invoke cmd.exe to setup a backdoor by creat-
ing a TCP reverse shell. Starting 2017, we have observed an increase in the
use of obfuscated command line arguments with cmd.ezxe, apparently to evade
signature-based detection measures.

Service Execution. Another prominent execution vector found is to register
or execute as a service. Found in 115 samples, the observed implementation of
this technique seems to have decreased, accounting for 8.33% of total techniques
observed in 2012 to 1.07% in 2018. A handful of malware families in our dataset
(Carbanak, Koadic, OlympicDestroyer, NetC) has been observed being capable
of executing remote processes via PsEzec.exe. As Service Execution directly
executes the service, it is different from the New Service technique, which is
used as a persistence tactic and described in the Persistence section.

Within our dataset we have observed the recent emergence of malware that
only exists in memory, known as fileless malware. Not a novel finding in itself,
we found that the emergence of fileless malware in our dataset overlaps with the
first coverage of the topic in scientific literature [16]. Below we will shortly focus
on malware employing PowerShell and WMI for fileless execution.

PowerShell. Within our dataset, 7 families used the PowerShell command-line
for execution. All samples were first observed by VirusTotal in either 2017 or
2018, from families identified by Malpedia as Emotet, Rozena, DNSMessenger,
Ramnit, DownPaper, SnatchLoader and Empire Downloader. Emotet, Ramnit
and SnatchLoader executed PowerShell and called CreateObject to create a shell
object to download and subsequently execute second-stage malware. Rozena was
observed to attempt to create a reverse shell using several encrypted shell scripts
called upon through PowerShell.

Windows Management Instrumentation. We found 82 samples accessing
WMI, for example extracting information about the operating system or installed
anti-virus software. As a subset we observed 7 families using the WMI command-
line (WMIC) in the execution of malicious code. We have identified these samples
belonging to families identified on Malpedia as Moker, EternalPetya, Spora,

414 K. Oosthoek and C. Doerr

Table 1. Number of observations per ATT&CK technique in our dataset.

ATT&CK technique Count | ATT&CK technique Count
Query Registry 950 Windows Management Instrumentation | 82
Security Software Discovery 748 Scripting 71
Process Discovery 684 Uncommonly Used Port 67
System Information Discovery 669 Credential Dumping 56
File and Directory Discovery 658 Modify Existing Service 53
Obfuscated Files or Information 604 Modify Registry 50
Process Injection 597 Screen Capture 48
Data Encrypted 576 ‘Web Service 47
Execution through API 562 Hooking 41
Software Packing 558 Peripheral Device Discovery 35
System Time Discovery 506 Exploitation for Privilege Escalation 33
Remote File Copy 423 Replication Through Removable Media | 30
Deobfuscate/Decode Files or Information | 378 Scheduled Task 29
Standard Application Layer Protocol 338 Bootkit 26
Registry Run Keys / Start Folder 287 Remote System Discovery 21
New Service 273 Email Collection 20
Application Window Discovery 216 System Service Discovery 19
System Owner/User Discovery 210 Hidden Files and Directories 16
Access Token Manipulation 197 System Network Connections Discovery | 15
Rundll32 175 Data from Local System 14
Masquerading 165 Credentials in Files 12
Command-Line Interface 161 Account Discovery 12
File Deletion 135 Network Share Discovery 12
Commonly Used Port 129 Browser Extensions 10
Service Execution 115 Multi-hop Proxy 10
DLL Side-Loading 106 File System Permissions Weakness 8
Standard Cryptographic Protocol 104 Rootkit 8
Disabling Security Tools 98 Indicator Removal on Host 8
System Network Configuration Discovery 97 Data Staged 8
Clipboard Data 94 Remote Desktop Protocol 8
Input Capture 94 NTFS File Attributes 7

LatentBot, ISFB, Dropshot, EvilBunny, Ghost RAT, Betabot. All of the samples
which created processes via WMIC were first observed in 2017, except for Moker
in 2015. Out of these families, 5 are attributed to a sophisticated actor group
(EternalPetya, ISFB, Dropshot, EvilBunny, Ghost RAT).

From the deployment of techniques for Execution, we can observe a few
trends. Execution through API and Service Execution seem to have decreased
and the use of obfuscated command lines increased. We have also identified
increasing proliferation of WMI and PowerShell for fileless execution, in order
to circumvent common preventive controls such as application whitelisting
tools and leaving no on-disc forensic evidence. With the observed increase of
obfuscated cmd.exe command-lines and fileless execution vectors, this indicates
attackers are innovating their execution techniques to establish a foothold on
target hosts. This also shows how the ATT&CK framework is useful to identify
trends in technique adoption within a tactic deployed by attackers.

ATT&CK Techniques in Windows Malware 415

5.2 Persistence

In order to endure presence on the target system, malware authors employ vari-
ous techniques. Below we review the most observed techniques for this ATT&CK
tactic, including two techniques which have increased over recent years.

Registry Run Keys/Start Folder. Adding an autostart key to either the
Windows registry or startup folder is an established persistence technique
amongst malware authors, observed in 287 samples from the dataset. Dropping
portable executable (PE) files to the startup folder directly is another variation
of this technique, seen in 28 samples.

New Service. We have observed 273 samples being capable of creating a new
service to be executed at Windows startup. Using the CreateServiceA function
and adding malicious DLLs are popular methods observed in various types of
malware over time, both from sophisticated as lower-level malware authors.

Modify Existing Service. We have observed 53 families implementing persis-
tence by adjusting services, either by modifying registry keys using reg.exe in
HKEY_LOCAL_MACHINE\SYSTEM\ ControlSet001\ services\ or using sc.eze
to modify the status Windows services, such as Windows Update.

Hooking. We found 41 samples capable of hooking various software functions.
Particular examples being banking and POS malware families hooking browser-
specific functions. The deployment of hooking techniques is relatively stable over
the timeframe analyzed. We have observed hooking deployed in more sophisti-
cated families such as Snifula, Babar, EquationGroup, Nymaim, DanaBot and
QakBot. Having observed this technique in sophisticated families and being diffi-
cult to mitigate because it abuses fundamental features of the operating system,
this is an important attack vector to monitor for.

Scheduled Task. We have observed the implementation of task scheduling to
have increased from 2015, using at.exe and schtasks.exe to trigger execution on
every reboot or even every minute. It is mostly recent ransomware from 2017
and 2018 employing this technique, such as CryptoWire, Jaff, Rapid Ransom
and Sage.

Image File Exection Options Injection. Four malware families from 2017
and 2018 have been observed to perform Image File Execution Options Injection
in order to launch a new process by attaching a debugger to a current process.

The implementation of the most observed persistence techniques is relatively
stable. The usage of Registry Run Keys / Start Folder is a known common tech-
nique, but the increase in task scheduling and recent observations of Image File
Execution Options Injection indicates that attackers are seeking new techniques
to bypass common preventive controls in maintaining access to an infected host.

5.3 Privilege Escalation

The techniques described within this tactic are implemented to establish a higher
level of permissions to further increase control over the infected host or network.
Below we cover three techniques most seen within this tactic.

416 K. Oosthoek and C. Doerr

Process Injection. Of the methods to launch malicious code, process injec-
tion is the most popular execution technique in our results, found in 597 of 951
families. The ATT&CK framework recognizes several subtypes of process injec-
tion for Windows, all of which are observed within our dataset. Of the defined
sub-techniques, we have observed 86 instances of DLL injection and 153 sam-
ples being capable of portable executable injection. Furthermore we have found
thread execution hijacking in 101 samples and thread local storage (TLS) call-
back injection in 51 samples. We have found asynchronous procedure call (APC)
injection in a total of 37 samples. Relative to other methods, PE injection is the
most implemented process injection technique in our dataset.

Access Token Manipulation. Being used in 197 samples from our dataset,
this method to manipulate the ownership of active Windows processes is also a
popular technique to escalate privileges. The most common implementation of
this technique found in our dataset is through subsequent calls to the OpenPro-
cessToken, LookupPrivilege ValueA, AdjustTokenPrivileges functions.

Exploitation for Privilege Escalation. We have observed 33 samples
attempting to access the ShellEzecute function, for which a privilege escalation
vulnerability was published in 2014 [17].

Some techniques described in previous tactics can be employed to concur-
rently escalate privileges. A Scheduled Task for execution can also elevate privi-
leges to SYSTEM. Creating a New Service within a persistence tactic can launch
a service with administrator privileges to execute under escalated SYSTEM priv-
ileges. Although not much evolution between the different approaches to process
injection was observed, it remains the primary vector for elevating privileges. By
distinguishing multiple approaches to this technique, the ATT&CK framework
facilitates a more informed discussion on the mitigation of such attacks.

5.4 Defense Evasion

Malware authors deploy several techniques in a tactic to avoid or subvert detec-
tion or mitigation technologies. We have observed four commonly deployed tech-
niques, with DLL side-loading being on the rise.

Obfuscated Files or Information. This ATT&CK technique serves as a
holder of all methods to draw malicious artifacts difficult to detect by obfus-
cating its contents in transit or at rest. Our dynamic analysis has found 593
malware samples with obfuscated instructions. We have also observed 37 mal-
ware samples with .NET source code containing either long sections of Base64
encoded code, as well the .NET code calling decryption functions CreateDecryp-
tor. Furthermore we have found 40 samples of malware with inlined NOP slides,
which suggests the presence of obfuscated (shell) code.

Software Packing. Packing has become a standard measure to make malicious
files more difficult to detect or analyze. Based on zlib compression ratios, our
sandbox detected a total 558 malware samples employing some form of packing.
With regards to specific packers, UPX is a commonly used packer observed in
54 samples. We have observed 15 samples using RAR archiving for packing.

ATT&CK Techniques in Windows Malware 417

Table 2. Relative implementation of DLL side-loading from 2011 to 2018.

year 2011 |2012 |2013 |2014 |2015 |2016 |2017 |2018
% of total | 0.36% | 0.29% | 0.22% | 0.18% | 0.51% | 0.63% | 0.69% | 0.82%

Deobfuscate/Decode Files or Information. We have observed 359 samples
of malware using string decryption functions to recover obfuscated code sections.
Like packing, this technique is deployed to hide malicious code in order to make
it more difficult to detect. Encoding only the malicious sections of a malicious file
and decoding them before execution might evade heuristic detection of malware.

Masquerading. All methods to manipulate or abuse names and locations of
legitimate files to evade defenses are grouped under this technique. We have
observed 165 instances of masquerading within our dataset, such as creating
a presence in the Program Files, Windows and driver directories. Furthermore
we found 101 files creating files within the system32 directory. 31 samples were
observed creating executable files named similar to existing Windows files, 19
other samples did employ names of commonly used third-party applications.

DLL Side-Loading. We have observed 106 unique instances of DLL side-
loading, with 90 first observed from 2016 to 2018. Increasing from 0.36% of
total techniques detected in 2011 to 0.83% in 2018 as seen in Table 2, we expect
this technique to keep increasing.

Packing and obfuscating sections of malicious code are standard measures
for malware authors with the above techniques being commonly observed. The
recent rise of DLL side-loading suggests that attackers are innovating their tech-
niques in order to ensure evasion of established mitigations.

5.5 Credential Access

This tactic describes techniques to obtain some form of privileged credentials
to be used in later stages of an attack. Below, Input Capture and Credential
Dumping will be discussed, which are the most prevalent techniques observed.

Input Capture. We have found 94 samples capable of capturing user input.
54 samples did implement a global keyboard hook with the SetWindow-
sHookEz function to intercept keystrokes. 31 samples were observed implement-
ing functionality to retrieve information about pressed keystrokes using functions
such as GetAsyncKeyState, GetKeyState and Map VirtualKeyA. 8 samples cre-
ated a DirectInput object using the DirectDrawCreateEzr function to capture
keystrokes.

Credential Dumping. This technique describes all means to obtain login and
password information from the operating system and software, which may later
be used for lateral movement on the network. We have found 56 samples imple-
menting techniques as harvesting browser history and passwords (44 samples)

418 K. Oosthoek and C. Doerr

and 9 samples querying for file locations and registry keys of common third-
party FTP tools. Another 9 samples queried the Login Data registry key used
by Chrome and IntelliForms2, used by Internet Explorer to store passwords.

We have also observed 12 samples querying the file system and 6 samples
searching the Windows registry for stored credentials. Hooking, already dis-
cussed within the context of Persistence, is also a technique for Credential Access.
Though we have less results for this tactic, from our dataset it can be observed
that keylogging is the main method to capture user input to obtain credentials,
followed by dumping credentials from installed software.

5.6 Discovery

The Discovery tactic provides the basis for success of later attack stages. It
is essentially a second iteration of reconnaissance, consisting of techniques an
attacker deploys to gather information about an infected system and its place-
ment in the network. Many of the most observed techniques within our analysis
are part of the Discovery tactic. As most Discovery techniques deploy native
operating system functions, this activity is well-detected by dynamic analysis
environments, but also difficult to detect against.

Query Registry. Querying the Windows registry to discover information about
the host system is the most common technique within our dataset, seen in
950 samples. Most of the samples within our dataset have a capability to
read software restriction policies from the Windows registry by enumerat-
ing HKEY_LOCAL_MACHINE\Software\ Policies\ Microsoft\ Windows\ Safer\
Codeldentifiers. The DWORD value of AuthenticodeEnabled indicates whether
the execution of binaries is restricted by the OS. 345 samples have the ability
to query the machine globally unique identifier (GUID) from the registry, most
presumably as a unique identifier of the infected system.

Security Software Discovery. We have found 748 samples capable of detecting
the presence of security features such as anti-virus software, local firewall rules
and virtualization software. We also observed a significant increase in the imple-
mentation of security software discovery from 2010 to 2018, of which Table 3
provides an overview. Anti-debugging is the most detected specific implementa-
tion of this technique in 519 samples, by querying the SystemKernelDebugger-
Information function to detect a ring 0 debugger being attached to the current
process. 385 samples were observed detecting a debugger by checking the time
difference between two Windows API calls, GetProcessHeap and CloseHandle.
349 performed an API call to IsDebuggerPresent. Checking the presence of a
debugger by setting GetLastError in the registry to a random value and check-
ing whether it has changed after calling OutputDebugString is observed in 92
samples. 70 samples have been observed executing a Read-Time-Stamp-Counter
(RDTSC) instruction to determine the speed with which instructions are exe-
cuted by the processor, of which the presence of a debugger might be inferred.
This specific method, first observed in 2012, has gained traction with 52 out of
70 samples first observed in 2016 or later.

ATT&CK Techniques in Windows Malware 419

Table 3. Relative implementation of security software discovery from 2010 to 2018.

year 2010 2011 |2012 |2013 |2014 2015 2016 2017 2018
% of total | 6.13% | 8.73% | 8.47% | 9.38% | 11.55% | 12.46% | 12.32% | 11.80% | 11.68%

The detection of virtual machines or sandbox environments is another pop-
ular form of anti-analysis that has gained adoption over the last couple of
years. We have observed 187 samples being able to detect various virtualization
products by detecting registry keys specific to guest sharing functionality, such
as HKEY_LOCAL_MACHINE\SYSTEM\ ControlSet001\ Services\ VM Tools. 44
samples were observed calling the PhysicalDrive0 function to check for strings
that might indicate the drive being virtualized.

Process Discovery. Within the ATT&CK framework Process Discovery
describes all techniques to gather information about active processes on the host
system. Within our dataset 599 samples implement this technique during run-
time through calls to Windows functions such as Create Toolhelp32Snapshot, Pro-
cess32First, Process32Next. 7 samples first observed from 2016 use tasklist.ezxe
to discover running processes on both local and remote systems.

System Information Discovery. This technique, supporting further execution
of the malware by querying operating system and hardware artifacts, is imple-
mented by 669 of the samples in our dataset. The most common implementation
is querying the Windows version using the GetVersion function, observed in 399
samples. Retrieving locale information such as the language of the user interface
by querying the GetLocalelnfoA or GetLocalelnfoEx functions of the Windows
APT is used in 399 samples. 152 samples get this information in a similar way,
using VirtualQuery and VirtualAlloc to gather information about the memory
contents. 179 samples have been observed to check CPU instructions, which
might have anti-analysis purposes. Depending on the call, the instruction can
return the CPU’s manufacturer ID string, but also the hypervisor brand. Certain
return values might indicate whether the malware is running on a physical or vir-
tual machine. 24 samples retrieved processor information from the Windows reg-
istry key HKEY_LOCAL_MACHINE\HARDWARFE\DESCRIPTION\ System\

CentralProcessor.

System Network Configuration Discovery. 97 of the samples in our dataset
used variations of this technique. Of these samples, 60 called the GetAdaptersinfo
function to retrieve information about the network adapter. Other samples have
been observed using ipconfig, netstat or netsh to lookup Windows network con-
figuration. Within this technique category, we have seen 24 samples querying
standard online IP and geolocation services to determine the online IP address
of the infected system.

Based on our analysis we see that Discovery is standard practice for malware.
For Security Software Discovery, we have observed an increase. Within that
technique, we see that the use of an RDTSC instruction to detect debuggers

420 K. Oosthoek and C. Doerr

has proliferated since 2016. Most discovery techniques used in malware blend
in with the flow of benign applications as they rely on native operating system
functions. This makes Discovery also a tactic difficult to mitigate, which makes
a case for application whitelisting to prevent the execution of malicious software
early in the life cycle.

5.7 Lateral Movement

Lateral Movement describes all techniques implemented to pivot over the net-
work to other systems of interest. The techniques of this tactic are difficult to
observe with dynamic analysis as many techniques depend upon manual attacker
intervention to pivot over the network, which is why this tactic touches less host
artifacts anyway. Also not every malware family might deploy lateral movement
techniques. Therefore the observations of techniques from this tactic are limited.
We will shortly discuss the techniques found for this tactic.

Remote File Copy. This technique describes malicious download and upload
activity within the network, as well to adversary-controlled infrastructure. We
have detected 423 instances of Remote File Copy, which mainly consists of 336
samples attempting to download additional files as detected by our analysis
environment. 101 samples communicated using plain HT'TP GET requests, most
of them storing result in the Temporary Internet Files directory. 18 malware
families, among which Bagle, Bundestrojaner, Ransomlock, Redalpha and Yty,
established HTTPS connections.

Replication Through Removable Media. We have found 30 samples trying
to infect USB storage devices by creating autorun.inf files with an Open or
ShellEzecute entry.

Remote Desktop Protocol. 8 samples were observed trying to start the
Remote Desktop service, which can be an effective stealth technique for lateral
movement, as it blends in with the normal network protocol flow.

Our observations for this tactic are limited, as lateral movement is generally
a non-automatic process, involving manual operations as the attacker pivots over
the network. However we found a significant number of 336 samples attempting
to download additional files, which makes a case for host monitoring of unusual
processes establishing a network connection.

5.8 Collection

The Collection tactic describes techniques deployed to gather sensitive infor-
mation. We found that the most observed techniques for this tactic all rely on
native Windows functions to acquire sensitive user information. This tactic is
difficult to prevent or detect, as the attacker did already bypass several defenses
and gained considerable foothold.

Clipboard Data. In our analysis 94 malware samples attempted to obtain data
from Windows clipboard. In 48 instances, samples performed subsequent calls

ATT&CK Techniques in Windows Malware 421

to OpenClipboard and GetClipboardData. 21 samples started a window in the
clipboard class CLIPBRDWNDCLASS to obtain copy-paste operations.

Screen Capture. 48 samples tried to capture GUI contents, primarily with calls
to functions such as GetDesktop Window, GetWindowRect to retrieve window
dimensions and BitBlt and GetDIBits to store the capture in a buffer.

Email Collection. 20 samples actively collected of email messages by querying
file locations and registry keys associated with mail clients such as Windows
Mail client and Outlook.

As with lateral movement, we recognize that actual collection is difficult to
capture using dynamic analysis, which results in fewer observations within this
tactic. We however suspect that the use of scripting, of which we have found 71
instances, to automatically search and copy data depending on certain criteria
is also deployed for Collection purposes.

5.9 Exfiltration

The exfiltration tactic describes all techniques implemented to exfiltrate data
from the target to the attacker. Reporting of exfiltration depends on observation
of actual exfiltration attempts, which are difficult to capture with dynamic anal-
ysis. Furthermore not all attackers apply this tactic, as some (e.g. ransomware
authors) are not interested in exfiltrating data. We have found 576 being capable
of encrypting local data, which is described with the Data Encrypted technique.
We expect this number to be distorted by 27 samples of ransomware in our
dataset, which encrypts data but not for exfiltration purposes. Furthermore we
have found 6 samples capable of uploading files via FTP as these samples called
to the FtpPutFile function, identified as Exfiltration Over Alternative Protocol.

5.10 Command and Control

Within this tactic, the attacker is accessing the target network from a remote
location. In our analysis, 67 samples were observed to establish TCP or UDP
traffic on non-standard ports. This technique, described as Uncommonly Used
Port within ATT&CK, is known to be deployed to circumvent improper fire-
wall and proxy configurations. We have also found 47 samples being capable of
communicating with popular social media such as Facebook, Tumbler and paste
sites such as Pastebin, which are frequently used for C&C. Within the ATT&CK
framework this use case is classified under the Web Service technique. For the
C&C technique Multi-hop Proxy, we have detected 11 samples initiating a Tor
connection. Section 6 elaborates on the deployment of named pipes for C&C.

6 Adoption of Sophisticated Techniques

Within our analysis we have observed named pipes being implemented for
C&C. Previously exclusively implemented in malware attributed to sophisti-
cated actors, this technique is observed to have been adopted by less sophisti-
cated malware authors. The attribution of malware to actor groups is part of

422 K. Oosthoek and C. Doerr

Table 4. New samples deploying IPC named pipes per year.

year 2010 1 2011 | 2012 | 2013|2014 | 2015 | 2016 | 2017 | 2018
observations | 0 0 1 4 4 4 7 16 18

the malware metadata in Malpedia, the repository from which we have gath-
ered our samples. For its attribution of malware families to actors, Malpedia
relies on reporting from security vendors and independent security researchers.
For instance, the samples of Pupy available within Malpedia are attributed to
Iranian actors based on reports from 6 individual sources [15].

Named pipes are a method for inter-process communication (IPC), both with
local and remote processes. Dynamic malware analysis is suited for discovering
this technique, as a process is expected to call the CreateNamedPipe function of
the kernel32.dll kernel module to create a named pipe. The named pipe server
allows both local and remote processes to connect to the pipe and exchange
information with the malware. As it can set up communication via SMB and
RPC, is potentially also a technique that can be deployed to evade detection
of command and control (C&C) traffic. By setting up one compromised host as
internal C&C server to handle outbound traffic and having other compromised
hosts connect on a peer-to-peer basis via named pipes, the footprint of network
traffic is reduced considerably, which also reduces the odds of detection. The
earliest sample of malware known to implement named pipes for communication
with remote hosts is a variant of Conficker first observed in 2009 [22]. It also
reported to be deployed for C&C by the Duqu family [27].

The ATT&CK technique definition of Process Injection states that, apart
from the Windows implementations of the techniques described, ‘more sophisti-
cated samples’ of malware may use named pipes or other IPC mechanisms as a
communication channel [28]. As named pipes may also be connected to remote
processes over SMB and RPC, it can also be deployed as a technique for C&C.

The detection of this technique within our dataset is in line with the Mitre
statement that named pipes are specific to the more advanced malware families.
As shown in Table 4, we have observed an increase in the use of named pipes
within more recently observed samples. What attracts attention specifically is
that out of the 47 samples where our analysis environment has observed this tech-
nique being deployed, 38 samples were first observed in 2017 and 2018. Except
for samples from two families (Dorkbot, Snifula), based on Malpedia metadata,
all samples prior to 2015 are attributed to sophisticated actor groups. From 2016,
the technique is observed in malware attributed to sophisticated actor groups
(TurnedUp, Pupy, Mosquito, EternalPetya, PandaBanker, OlympicDestroyer),
but also in common crimeware such as Zeus, Karius, Trickbot, AlinaPOS, Qak-
Bot and ransomware (Gandcrab, PyLocky). This indicates that techniques pre-
viously attributed exclusively to advanced actor groups are getting adopted by
other malware authors.

ATT&CK Techniques in Windows Malware 423

7 Limitations of CTI from Automated Analysis

In the discussion of our results it became clear that detection of malicious arti-
facts naturally gravitates towards the intermediate tactics of the attack life cycle.
In that sense our analysis exposes issues inherent to malware research with auto-
mated analysis. Most of these are known in the malware research field, but as
ATT&CK is primarily a CTI model, we will use this chapter to evaluate the
biases automated analysis might introduce to the CTI field.

Automated malware analysis suites offer a compelling solution to gain a
quick and timely overview of individual or bulk malware threats. Automated
analysis observes runtime behavior of malware. Attackers however might employ
stealth and deception techniques, such as anti-analysis and evasion. This could
result in malware not or only partially being detected, as it does not trigger
or branches to deception code. It must also be considered that any analysis
environment might not be able to fully detect all behavior exhibited by malware.
Results invariably depend on the capabilities of the resource used for analysis.
Still these are all known limitations to the concept of automated analysis of
malware, as it only reports behavior observed during a time-constrained runtime
[31]. But as automated malware analysis focuses on host and network artifacts of
malware, it is thus biased towards the reporting of those artifacts. These biases
become apparent when using a CTI-oriented model such as ATT&CK. As the
requirements for CTI tilt toward the latter stages of the framework and proper
CTI must never be biased, we might even argue that automated analysis is an
unsuited source when taken by itself.

Initial Access tactics, such as the delivery of a malicious email attachment,
are not accounted for during automated analysis. This also expresses in the
ATT&CK plotting of our results in Fig. 1. Techniques for Lateral Movement,
Exfiltration and C&C activity are difficult to record with a sandbox as the actual
execution of these tactics depends on certain preconditions, potential manual
attacker involvement and the availability of C&C infrastructure. The ATT&CK
framework accounts for deployment of evasive routines in malware within the
Defense Evasion tactic, which describes techniques used to evade detection or
avoid other defenses. Logically sandboxes only detect evasion to a limited extent.

As a consequence, customers of CTI reports based on automated analysis
of malware should be aware of the limitations inherent to the mechanism. An
accurate CTI product must take into account the full threat context and con-
sider alternative hypotheses. When used as a source of CTI, automated analysis
reports should be treated with a different confidence level than results of manual
research. Nonetheless it is evident that CTI benefits from a standardized lan-
guage like ATT&CK, as it fosters effective dissemination and decision-making.

8 Conclusion

Our work is the first to use the ATT&CK framework to present the results of the
analysis of techniques observed during execution of a large sample of malware.
Having identified established and emerging techniques from the framework, this

424 K. Oosthoek and C. Doerr

research is the first that provides an overview of a representative sample of
malware using the ATT&CK framework. Through this, we have demonstrated
the benefits of using an common taxonomy for the reporting of TTPs. We have
shown this improves the actionability and unambiguous communication of CTI
from sandbox analysis results.

We have observed differences in the degree of innovation between the dif-
ferent tactics of the ATT&CK framework. For the execution of malicious code,
most malware relies on the Windows API. We have identified an increase in
the implementation of fileless execution vectors using WMI and PowerShell.
Together with the use of obfuscated command lines, this shows how malware
authors are innovating their execution tactic to bypass traditional defenses. We
observed innovation in obtaining persistence through the use of task scheduling,
complementing established persistence techniques like autostart items and cre-
ating a new service. Process injection remains the primary technique for priv-
ilege escalation. DLL side-loading seems to be on the rise in order to evade
established defenses, complementing more established evasive techniques such
as obfuscation and packing. For malware accessing user credentials, capturing
user input through keylogging is the most common technique within our dataset.
We found that discovery of security software has become standard practice for
most malware authors. We have shown different implementations observed for
this technique, as well that using RDTSC instructions to detect debuggers has
proliferated since 2016. The most common technique for lateral movement we
have observed malware is Remote File Copy.

We have shown how C&C via IPC named pipes, previously attributed
to sophisticated malware authors, is getting adopted by other actor groups.
Through this we identified that malware authors are innovating techniques in
order to bypass traditional defense mechanisms.

Acknowledgments. The authors would like to thank the maintainers of Malpedia
for providing access to their malware repository and Joe Security for provisioning the
sandbox infrastructure. The authors would like to thank VirusTotal for providing access
to their API. The ATT&CK mapping built for this research has been shared with Joe
Security to develop ATT&CK mapping within their product.

References

1. Barabosch, T., Bergmann, N., Dombeck, A.: Quincy: detecting host-based code
injection attacks in memory dumps. In: LNCS (2017)

2. Barabosch, T., Eschweiler, S., Gerhards-Padilla, E.: Bee master: detecting host-
based code injection attacks. In: LNCS (2014)

3. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A view on current
malware behaviors. USENIX Large-scale exploits and emergent threats (2009)

4. Binsalleeh, H., et al.: On the analysis of the Zeus botnet crimeware toolkit. In:
2010 Eighth International Conference on Privacy, Security and Trust (2010)

5. Chen, X., Andersen, J., Morley Mao, Z., Bailey, M., Nazario, J.: Towards an under-
standing of anti-virtualization and anti-debugging behavior in modern malware. In:
International Conference on Dependable Systems and Networks (2008)

11.

12.

13.

14.

15.
16.

17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

ATT&CK Techniques in Windows Malware 425

Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44, 1-49 (2012)
Grill, B., Bacs, A., Platzer, C., Bos, H.: “Nice boots!”-A large-scale analysis of
bootkits and new ways to stop them. In: LNCS (2015)

Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion kill chains. In:
International Conference on Information Warfare & Security (2011)

Joe Security LLC: Joe Sandbox Cloud Community Edition

. Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L.: Cutting the gordian knot: a

look under the hood of ransomware attacks. In: LNCS (2015)

Kirat, D., Vigna, G., Kruegel, C.: BareCloud: bare-metal analysis-based evasive
malware detection. In: 23rd USENIX Security Symposium (2014)

Kirillov, I.A., Beck, D.A., Chase, M.P., Martin, R.A.: The Concepts of the Malware
Attribute Enumeration and Characterization (MAEC) Effort (2009)

Laliberte, M.: A Twist On The Cyber Kill Chain: Defending Against A JavaScript
Malware Attack (2016)

Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed mal-
ware (2007)

Malpedia: win.pupy. malpedia.caad.fkie.fraunhofer.de/details/win.pupy
Mansfield-Devine, S.: Fileless attacks: compromising targets without malware.
Netw. Secur. 2017, 7-11 (2017)

Microsoft: Microsoft Security Bulletin MS14-027 (2014)

Nachreiner, C.: Kill Chain 3.0: Update the cyber kill chain for better defense (2015)
Obrst, L., Chase, P., Markeloff, R.: Developing an ontology of the cyber security
domain. In: Semantic Technologies for Intelligence, Defense, and Security (2012)
O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: the hidden malware. IEEE
Secur. Privacy 9, 41-47 (2011)

Plohmann, D., Clauss, M., Enders, S., Padilla, E.: Malpedia: a collaborative effort
to inventorize the malware landscape. J. Cybercrime & Dig. Investigations, 3 (2018)
Porras, P., Saidi, H., Yegneswaran, V.: An analysis of conficker’s logic and ren-
dezvous points. Technical Report, Computer Science Laboratory, SRI International
(2009)

Rossow, C., et al.: Prudent practices for designing malware experiments: status
quo and outlook. In: IEEE Symposium on Security and Privacy (2012)

Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: LNCS (2008)

Sood, A.K., Enbody, R.J.: Crimeware-as-a-service-a survey of commoditized crime-
ware in the underground market. Int. J. Crit. Infrastruct. Prot. 6, 28-38 (2013)
Strom, B.E., Applebaum, A., Miller, D.P., Nickels, K.C., Pennington, A.G.,
Thomas, C.B.: MITRE ATT&CK: Design and Philosophy. The Mitre Corpora-
tion, McLean, VA, Technical report (2018)

Symantec Security Response: W32.Duqu: the precursor to the next Stuxnet.
Symantec Security Response (2011)

The Mitre Corporation: ATT&CK JSON Library (2018)

The Mitre Corporation: Enterprise Matrix - Windows (2018). https://attack.mitre.
org/matrices/enterprise/windows/

Verizon: 2018 Data Breach Investigations Report. Technical report, New York, NY
(2018)

Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using CWSandbox (2007)

http://malpedia.caad.fkie.fraunhofer.de/details/win.pupy
https://attack.mitre.org/matrices/enterprise/windows/
https://attack.mitre.org/matrices/enterprise/windows/

	SoK: ATT&CK Techniques and Trends in Windows Malware
	1 Introduction
	2 Related Work
	3 The Mitre ATT&CK Framework
	4 Methodology
	5 ATT&CK Techniques in Windows Malware
	5.1 Execution
	5.2 Persistence
	5.3 Privilege Escalation
	5.4 Defense Evasion
	5.5 Credential Access
	5.6 Discovery
	5.7 Lateral Movement
	5.8 Collection
	5.9 Exfiltration
	5.10 Command and Control

	6 Adoption of Sophisticated Techniques
	7 Limitations of CTI from Automated Analysis
	8 Conclusion
	References

