
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2018

MSc THESIS
Optimising Motor Control in Actuator Alignment

Matthijs Geers

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2018-13

The automation of replanting seedlings into bigger trays (transplant-
ing) has been a major industrialisation step in the horticultural sec-
tor. Modern machines are abundant in large companies and are quite
effective, but they are very expensive both in purchase and mainte-
nance. With major clients taking these costs for granted, designers
have not stopped to consider ways to alleviate them. This work intro-
duces an affordable electronic system that makes transplanters wire-
less, allowing for hot-swappable actuators and thus greatly reducing
the cost of technicians and downtime as well as procurement. The
expensive servo motor drives are replaced by dedicated microcon-
trollers, allowing the actuators to make their own decisions based on
the constraints imposed by various standards of tray sizes and other
circumstances. A method is presented to derive the most favourable
trajectories, which are then enforced on the system through a closed-
loop feedback system. The resulting performance approaches that of
the system’s predecessor, but at a much more reasonable price. This
makes transplanters more affordable for small companies, allowing
a broader market to reap the harvest of technological development
and increasing worldwide horticultural yield as a result.

Optimising Motor Control in Actuator Alignment

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Matthijs Geers
born in Gouda, Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Optimising Motor Control in Actuator Alignment

by Matthijs Geers

Abstract

The automation of replanting seedlings into bigger trays (transplanting) has been a major indus-
trialisation step in the horticultural sector. Modern machines are abundant in large companies
and are quite effective, but they are very expensive both in purchase and maintenance. With
major clients taking these costs for granted, designers have not stopped to consider ways to alle-
viate them. This work introduces an affordable electronic system that makes transplanters wire-
less, allowing for hot-swappable actuators and thus greatly reducing the cost of technicians and
downtime as well as procurement. The expensive servo motor drives are replaced by dedicated
microcontrollers, allowing the actuators to make their own decisions based on the constraints
imposed by various standards of tray sizes and other circumstances. A method is presented to
derive the most favourable trajectories, which are then enforced on the system through a closed-
loop feedback system. The resulting performance approaches that of the system’s predecessor,
but at a much more reasonable price. This makes transplanters more affordable for small compa-
nies, allowing a broader market to reap the harvest of technological development and increasing
worldwide horticultural yield as a result.

Laboratory : Computer Engineering
Codenumber : CE-MS-2018-13

Committee Members :

Advisor: dr. ir. A.J. van Genderen, CE, TU Delft

Chairperson: dr. ir. Z. Al-Ars, CE, TU Delft

Member: dr. ir. J.A.M. de Groot, MP, TU Delft

Member: ing. J. Neuteboom, Inventeers, Leiden

i

ii

Contents

List of Figures vi

List of Tables vii

List of Acronyms ix

Acknowledgements xi

1 Introduction 1
1.1 Background . 1
1.2 The Transplanter . 2

1.2.1 Principle of operation . 3
1.2.2 Weak points . 3

1.3 Research questions . 4
1.4 Thesis outline . 4

2 Requirements 5
2.1 Motor requirements . 5
2.2 Sensor requirements . 7

2.2.1 Motor proximity sensors . 7
2.2.2 Lateral position sensors . 8

2.3 Communication requirements . 8
2.3.1 Calibration phase . 9
2.3.2 Operation phase . 9

2.4 Error detection . 9

3 Design 11
3.1 Motor . 11

3.1.1 Stepper motors . 12
3.1.2 Brushed DC motors . 14
3.1.3 Brushless DC motors . 14
3.1.4 Comparison . 15

3.2 Communication . 16
3.2.1 Calibration . 16
3.2.2 Full operational bus communication 18
3.2.3 Limited bus communication . 20
3.2.4 Wireless communication . 21

3.3 Trajectory generation . 21
3.3.1 Parabola shape . 22
3.3.2 Trapezoid shape . 23

iii

3.3.3 Splines . 24
3.4 Motion control . 26

3.4.1 PID control . 27
3.4.2 Setpoint selection . 28

4 System Implementation 29
4.1 Hardware . 29

4.1.1 Motor drive . 29
4.1.2 Gearing . 30
4.1.3 Motor type . 32
4.1.4 Microcontrollers . 33

4.2 Main controller . 34
4.2.1 PLC communication . 35
4.2.2 Motor controller communication 37
4.2.3 Communication scenario: calibration 38
4.2.4 Communication scenario: normal operation 39

4.3 Motor controller . 40
4.3.1 Motor control . 41
4.3.2 Trajectories . 44

5 Results 45
5.1 Communication . 45
5.2 Trajectories . 46

6 Conclusions & recommendations 49
6.1 Conclusions . 49
6.2 Contributions . 50
6.3 Recommendations for future work . 51

6.3.1 Calibration . 51
6.3.2 Motor control . 51

Bibliography 54

iv

List of Figures

1.1 Typical seedling trays . 2
1.2 Interior of the current Transplanter, with a close-up of a motor on the

right . 3

2.1 Different types of grippers used . 7

3.1 Servo drive hardware used in the old Transplanter 11
3.2 Cross-sections of a three-stack variable reluctance stepper motor,

adapted from [1] . 12
3.3 VR stepper motor phase input currents 13
3.4 Cross-sections of a hybrid stepper motor, adapted from [1] 13
3.5 BLDC commutation diagram . 15
3.6 Comparison of characteristics of Direct Current (DC) motors, Variable

Reluctance (VR) steppers and hybrid steppers 16
3.7 DRAKON diagram of the combined calibration method 19
3.8 Clockwise from left: examples of position, velocity and acceleration in a

5th order parabola trajectory . 23
3.9 Clockwise from left: examples of position, velocity and acceleration in

a trapezoid trajectory, with slopes coloured blue and cruise velocity
coloured orange . 24

3.10 Clockwise from left: examples of position, velocity and acceleration in a
third order spline trajectory through predetermined points (denoted by
dots) . 26

3.11 Block diagram of a system with closed-loop control 27
3.12 Block diagram of a Proportional, Integral, Derivative (PID) controller . 28

4.1 Equivalent circuit of an electric motor phase winding 29
4.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) full-

bridge connected to motor phase . 30
4.3 Mechanical schematic of the gear systems on the motor shaft 31
4.4 Top level diagram of the control hierarchy 34
4.5 Main controller embedded in the Transplanter 35
4.6 Sequence diagram of principal system operation 36
4.7 Finite State Machine (FSM) of the calibration process 39
4.8 Set of mounted grippers without casing 41
4.9 Step response of the model, showing its start-up characteristic, with

displacement in encoder pulses on the y-axis 42
4.10 Measured step response used to estimate the transfer function of the

system, with displacement in encoder pulses on the y-axis. The step
response of the resulting transfer function is plotted over the measured
data . 43

v

5.1 Overview of the new Transplanter, with cases mounted on gripper elec-
tronics and a close-up of magnet mounting on the right 45

5.2 Measurements of the planned trajectory (orange) and actual trajectory
(blue) in the top figure, and the expected velocity (orange) and actual
velocity (blue) in the bottom figure . 47

5.3 Measurements of the planned trajectory (orange) and actual trajectory
(blue) in the top figure, and the expected velocity (orange) and actual
velocity (blue) in the bottom figure . 48

vi

List of Tables

2.1 Motor requirements . 6
2.2 Mass of different loads involved in the system 6
2.3 Proximity sensor candidates . 8

3.1 Numerical comparison of different motors 16
3.2 Trajectory type candidates, with order in brackets where applicable . . . 26

4.1 Numerical comparison of different motors given that vmax = 2 m/s and
amax = 4 m/s2 must hold; an extension of Table 3.1 32

4.2 List of calibration conditions . 39
4.3 Message Queuing Interface usage example 40
4.4 Parabolic trajectory as measured after on-chip generation 44

vii

viii

List of Acronyms

PLC Programmable Logic Controller

PID Proportional, Integral, Derivative

EEPROM Electrically Erasable Programmable Read-Only Memory

RPM Rounds Per Minute

EMF Electromotive Force

VR Variable Reluctance

PWM Pulse Width Modulation

DC Direct Current

PCB Printed Circuit Board

BLDC Brushless Direct Current

I/O Input/Output

TCP/IP Transmission Control Protocol/Internet Protocol

OSI Open Systems Interconnection

FSM Finite State Machine

MOSFET Metal Oxide Semiconductor Field Effect Transistor

ix

x

Acknowledgements

First and foremost, I would like to thank the members of my thesis committee. Not
just for being part of this committee, but also for having been among the most inspiring
lecturers I have had the privilege of being taught by over the course of my studies. I
thank Arjan in particular for providing me with constant feedback acting as my project
supervisor.

Needless to say, I would also like to thank Jasper for offering me the chance of
participating in an exciting project at Inventeers. I am thankful for the friendly ambience
and flat hierarchy that were made possible by all my colleagues at Inventeers. I would
like to specifically thank Thomas for tirelessly cooperating with me on this project, Gijs
for being a coach during difficult times, Erik for sharing his boundless knowledge on
all things embedded programming, Leon for never ceasing to express his passion for
privacy and open source and Bram for always being a willing sparring partner and, more
generally, a goofball.

I would like to thank my friends, who remained by my side despite my continued
unavailability at some points during the project (especially Rick for proofreading my
mechanical equations). I also thank my brother Robbert, who has kept taking time out
of his incredibly busy schedule to show interest in me and my project. Last but not
least, I would like to thank my parents, without whose unrelenting support I certainly
would not have made it this far.

Matthijs Geers
Leiden, The Netherlands
July 8, 2018

xi

xii

Introduction 1
This thesis was written to describe a project carried out for Inventeers, an independent
R&D company settled in Leiden that operates business to business; its customers are
companies that lack the expertise to carry out certain investigations and product designs.
Inventeers is hereafter referred to as the company. The customer that gave the order for
this project is called Visser Horti Systems, a company that specialises in the design and
production of horticultural machinery. It is settled in ’s-Gravendeel and will, in turn, be
referred to as the customer from here on.

In this chapter, the project synopsis is described. Some background information is
given about the state-of-the-art and the sector in which it operates, followed by a detailed
description of where it is lacking and the projected improvements. Consequently, relevant
research questions are posed that originate from these improvements.

1.1 Background
Ever since the Industrial Revolution about 150 years ago, the agricultural sector has gone
through a rapid succession of technological developments. The invention of the steam
engine shifted the sector from manual labour to high-power automation, increasing pro-
duction by orders of magnitude. Manual tools like flails, hoes and shovels were replaced
by steam-driven counterparts and even horses in front of ploughs were exchanged for
primitive tractors. Further development was heralded by the rise of the combustion en-
gine and, more recently, the electric motor. Applications of electric motors were relatively
straightforward at first, driven through simple combinations of analogue electronics and
sensors.

The dawn of the Information Age can easily be considered the next scientific revolu-
tion in history. The digitisation of computers and information in general unlocked the
possibility to gather enormous amounts of data and unleash complicated mathematical
theories on them. The past few decades and the past few years in particular (considering
the decline of Moore’s Law) have been a stage for rapid developments in software and
digital sensors and actuators. These developments have pushed the boundaries to such
an extent that, in many fields of science, so much information is now being generated
that the real challenge is to figure out how to extract useful information from it to begin
with.

Greenhouses have long been equipped with sensors, and maintaining a constant cli-
mate is hardly a novelty, but due to the cramped nature of a greenhouse in addition to
the increased vulnerability of its plants, large-scale automation has proven difficult. Un-
til recently, as the abundance of information brought in by extensive sensor networks has
been of increasing benefit to the horticultural sector. Instead of regulating greenhouse-
wide climate conditions, the physical conditions of subsets of the greenhouse or even of

1

2 CHAPTER 1. INTRODUCTION

individual plants can now be used to pinpoint problems that might otherwise have gone
unnoticed. Furthermore, labour-intensive processes that could formerly only be done by
hand might now be outsourced to further automation.

This thesis focuses on one such process and its automation; transplanting or replant-
ing. Transplanting is the process of moving seedlings from their plug trays (Figure 1.1)
into larger trays or pots. This is an important process in the life-cycle of almost every
plant grown in a greenhouse. Since not every seed makes it through the seedling phase
successfully, it involves a great deal of selection, as the output trays or pots must always
be filled to capacity with live seedlings. In the past, this selection process in particular
absolutely required human intervention, but modern technology has made it possible to
automate the entire process.

Figure 1.1: Typical seedling trays

1.2 The Transplanter
The customer has long been one of the leading companies in horticultural automation.
One of their cornerstones is the Transplanter, or Pic-O-Mat. It consists of a fully auto-
mated system that, connected to a conveyor belt of seedling plugs, is able to accurately
pick up and replant all of the seedlings from these plugs to trays or pots. An impression
of its interior is shown in Figure 1.2. The input feed for one of the conveyor belts can
be seen in the lower half of the figure. Above this conveyor belt is a wide bar that has
a number of actuators attached to it, one of which is shown up close in the picture on
the right. As can be seen, this actuator consists of a motor attached to the bar through
a rack-and-pinion gear system, mounted with a gripper that can be activated to pick
up and deactivated to let go of a seedling, powered by pneumatics. Each actuator is
connected to a central hub through thick cable hoses that carry power and control to

1.2. THE TRANSPLANTER 3

the motors and air pressure to the grippers.

Figure 1.2: Interior of the current Transplanter, with a close-up of a motor on the right

1.2.1 Principle of operation

Important to notice from Figure 1.2 is that the bar along which the grippers can move
also has two degrees of freedom. It can move up and down, as the grippers cannot
actually do this themselves, but also back and forth. The latter allows the bar to switch
between two different conveyor belts; one for the input plugs and one for the output
trays or pots.

During a regular cycle of operation, the bar places itself above the input conveyor belt
while the motors converge into a very dense formation. Shortly after this process, the
bar is moved down, pressing the grippers into the plugs and simultaneously activating
them to pick up their plants. The bar is then moved up again, and moves to the output
conveyor belt while the motors realign into a sparser configuration, suitable for the
greater distance between the destinations of the different grippers. As soon as they get
there, the bar is once again pressed down, deactivating the grippers and depositing the
plants. This is a very rapid process at up to 38000 seedlings per hour, and it repeats
until all seedling plugs have been dealt with.

1.2.2 Weak points

As the main goal was to make the machine cheaper, its weak points were identified in
terms of potential cost improvement. This led to two main weak points; its motors and
its wired connections. The current machine is equipped with Yaskawa servo motors,
which are extremely expensive in purchase as well as maintenance, as the drives used are
mandatory and can only be programmed by their Japanese manufacturer. The wired
connections of pneumatics and electronic power and control, as were shown in Figure
1.2, are encased in thick hoses that are clumsy and relatively feeble. On top of being

4 CHAPTER 1. INTRODUCTION

prone to wear, the complicated connections make it very difficult for a user to replace an
actuator without requiring a technician (costly) and suffering downtime until the repairs
have been made (even more costly).

1.3 Research questions
Alleviating the weak points described poses some complicated design problems. Most
importantly, the automatic control of a servo system has to be replaced by a micro-
controller implementation, requiring generation of optimal trajectories and a way to
accurately adhere to them, while guaranteeing that no collisions can occur between
the motors involved. Furthermore, the wired connections to the actuators has to be
eliminated to allow for modularity and hot-swapping. A main research question was
composed in an attempt to solve these problems, along with a number of sub-questions
to emphasise specifically relevant or difficult issues. The questions are as follows:

Using electronic control, how can multiple entities with certain inertial characteristics
efficiently be moved along a linear rail at high speed without collisions?

Sub-questions:

• What should an entity’s trajectory look like, how is it influenced by the inertia of
its payload, and how might this be compensated?

• What might the characteristics be of a cost-effective and accurate electronic system
implementing this?

• In a physical implementation of the system, what might go wrong, and how can
this be accounted for?

1.4 Thesis outline
First off, Chapter 2 relates the research questions to their corresponding hardware and
software requirements. Then, Chapter 3 expands on the theoretical approaches to handle
these requirements. Chapter 4 goes on to flesh out the implementational details of these
approaches, and is followed by Chapter 5, which provides relevant results obtained over
the course of the project. Finally, Chapter 6 goes into detail on how these results may
be used to answer the research questions, drawing conclusions accordingly and giving
recommendations for future work to be done on the project.

Requirements 2
This chapter details the system requirements that result from the customer’s desire
for more modularity and lower cost. Various trade-offs and physical limitations are
introduced and discussed.

2.1 Motor requirements
To determine realistic motor requirements, a number of calculations were done using
simple physics formulas. A motor is defined with a rotor with radius rr attached at the
centre to a cogwheel with radius rc. This cogwheel runs along a rack-and-pinion system.
Any deviation in tooth pitch (density) between the rack and the pinion can be modelled
by multiplication of this radius. The torque τ on the axis is τ = Itot · α where Itot is the
total rotational inertia of the system, and α its rotational acceleration in rad/s2. Itot
is defined as Itot = Ir + Iload where Ir is the rotational inertia of the motor and Iload is
the rotational moment of inertia of the load moving along the rack-and-pinion system,
defined as Iload =

∫
Q r2dm with m the mass of the rotating system and Q its volume. The

rotor of the motor is the only part of the system that directly offers rotational inertia;
the rest of the system only moves along the rail as a tangential system. Modelling this
as a doughnut-shaped mass around the cogwheel with the centre of mass in the middle
of the axis transforms it into a rotational mass with a moment of inertia Iload = mr2

c.
Thus, τ is rewritten as τ = Irα + mr2

cα.
The rotational acceleration can be transformed to tangential acceleration a using

a = αr. This a is different for the cogwheel and the rotor as their radii differ. α,
on the other hand, is equal for both rotations, so it suffices to express α in terms of
the radius of the cogwheel as shown in Equation 2.1. Combining all of these equations
yields Equation 2.2 where amax = ac, as the constraint must match the highest possible
acceleration value.

ar = ac = αrc → α =
ac
rc

(2.1)

The velocity of the motor on the rail can be defined as v = ωrc with rc, once again,
the radius of the cogwheel mounted on the rail, and ω = 2πf the angular velocity in rad/s,
where f is the rotation frequency in rounds per second. Since the relevant performance
metric is Rounds Per Minute (RPM), its definition RPM = 60f was combined with the
previous equations to form Equation 2.3.

Defined specifically for stepper motors is the maximum resolution attainable from
the steps in a motor rotation, with k the micro-stepping factor (further discussed in
Section 3.1) and nsteps being the number of steps in a full rotation (Equation 2.4). This
corresponds to the displacement caused by a single micro-step. Next is the physically

5

6 CHAPTER 2. REQUIREMENTS

Torque τ ≥ Ir
amax

rc
+ mamaxrc

RPM ≥
30vmax

πrc
Accuracy ∼ 0.1mm
Width ≤ 3 cm
Nmotors up to 64

Table 2.1: Motor requirements

τ ≥ Ir
amax

rc
+ mamaxrc (2.2)

RPMmotor ≥
30vmax

πrc
(2.3)

Resolution =
2πrc

knsteps
(2.4)

dictated maximum motor width, originating from the minimum plug size (15 mm) the
machine must be able to support. In general, this maximum width is 30 mm, but in
stepper motors, this width corresponds to the NEMA-11 standard [2], which states that
the face of the motor must have a diameter of 1.1 inches, or 2.8 centimetres. Finally,
the maximum number of motors as requested by the customer is 64 and the accuracy
requested in [3] is ∼0.1 mm. This accuracy signifies the minimum distance distinguish-
able by the system, but it should not be taken very strictly, as the discrepancy caused
by the gripping of cogs is likely to cause an inaccuracy larger than this requirement. All
motor requirements are listed in Table 2.1.

Increasing rc yields a higher torque requirement from the motor, as in Equation 2.2,
the right hand part of the equation is typically much bigger. This seems illogical, as the
torque should remain the same no matter the size of a gearing step, but the constraint
is on the acceleration, which relates to force through Newton’s Second Law. Therefore,
even if the torque remains constant, applying it at a bigger distance decreases the force
proportionally. In other words, a larger cogwheel requires a larger torque from the motor
to exert the same force on the load. Since rc is in the denominator of Equation 2.3, this
implies a trade-off between torque and RPM. This is further discussed in Section 4.1.2.

Another important thing to note is the weight of the load applied to each motor, as
the inertial property of any amount of mass will resist movement actuated by the motors.
This resistance puts a constraint on the minimum required torque (as shown in Equation
2.2), thus influencing the system requirements. Some measurements of system parts are
listed in Table 2.2. The large and small pneumatic grippers in the table correspond with
the largest and smallest grippers in Figure 2.1, which shows the options users will have
in selecting a gripper.

Object Mass (g) Object Mass (g)
Large pneumatic gripper 590 PCB plus components 150
Small pneumatic gripper 250 Payload 50
Supporting frame 650 Total (maximum) ∼1440

Table 2.2: Mass of different loads involved in the system

Reasoning naively, the worst case scenario is an emergency deceleration from full

2.2. SENSOR REQUIREMENTS 7

Figure 2.1: Different types of grippers used

speed, so the maximum required torque and maximum required RPM must be attain-
able simultaneously. However, this does not take intermittent overloading performance
into account. Along with these considerations, input parameters remained that were to
be determined through various trade-offs during the design phase, including maximum
velocity, maximum acceleration, maximum load and gear ratio. This process is described
in Chapters 3 and 4.

2.2 Sensor requirements
To assist in initialisation and error detection, the system had to be equipped with certain
sensors. As for the motor resolution, the communication protocol between the customer
and the company requested a target resolution of 0.1 mm [3]. Therefore, the motors had
to be equipped with rotary encoders that are capable of approximately this resolution.
Using the feedback from these encoders, a closed-loop feedback controller can be forced
on the motors. Aside from the encoders, two types of proximity sensors were proposed;
one for proximity detection between the motors, and one to calibrate a motor’s absolute
lateral position.

2.2.1 Motor proximity sensors
Attaching proximity sensors in between the motors, individual motors would be able to
obtain some information about their neighbours. More specifically, they can trigger an
emergency response if a neighbour comes dangerously close, thus preventing damage to
the motors. Optical sensors work by using the principle of reflection to see how quickly
their signal is bounced back on an object. Since they are often flat-faced, they typically
fall off towards zero distance. [4] would be a suitable example because its face is dented,
allowing its signal to pass through even if the object to be detected is pressed directly
against it. The range requirement is dictated by the scenario where a motor at top speed

8 CHAPTER 2. REQUIREMENTS

has to stop because it detects a neighbour that is standing still. A range of approximately
1 cm was assumed to suffice.

It is unlikely for an optical sensor to be completely free of false positives due to the
circumstances of its environment (dust, leaves, soil). This disadvantage, however, is not
present in magnetic sensors, which are otherwise similar to optical proximity sensors
in operation. Unfortunately, using magnetic sensors could pose other problems, like
difficulties in properly lining up magnets and sensors.

An alternative to optical proximity sensors could be pressed switches. Moving two
motors sufficiently close to each other then presses their respective switches on facing
sides, which can be used as an immediate trigger to force the motors to a halt. This is
more robust than the optical and magnetic alternatives, guaranteeing significantly less
false positives if any at all, but at the cost of reaction speed; these sensors are entirely
digital, which means that once they are triggered it could already be too late to stop.

Table 2.3 comprehensively lists the up- and downsides of the different types of sensors,
showing that magnetic sensors are likely to be the best option.

Dynamics/Range False positives
Optical + +/-
Magnetic ++ +
Switch - - ++

Table 2.3: Proximity sensor candidates

2.2.2 Lateral position sensors
Fitting the rail with magnets and the motors with magnetic proximity sensors gives mo-
tors a reference frame of coordinates from which they can obtain their absolute positions;
every time a motor passes by a magnet on the rail, its sensor will trigger, allowing for
an instant, accurate recalibration from a hard-coded look-up table. These sensors must
not give any false positives, and must have a range large enough to detect magnets on
the rail which, considering their physical proximity, should not be a problem. Taking
price into consideration, [5] was expected to suffice for the magnetic sensors.

These magnetic sensors could be set up to detect a flip in polarity. This way, it would
suffice to equip each motor with a single sensor, using two magnets whose polarity is
aligned with the rail in opposing orientation. In this manner, the sensor could distinguish
the two magnets by observing which way the detected polarity flips as it passes by a
magnet. However, both magnets would have to fall within the range of every motor
on the rail for this to work. If supplied with knowledge of the whereabouts of both
magnets, the motors could then determine their dynamic response as well as their total
range within the rail.

2.3 Communication requirements
Though the system proposed consists of a master controller with many slave motors,
the master is in turn the slave of a Programmable Logic Controller (PLC) controller

2.4. ERROR DETECTION 9

operated by the customer. As explained in Section 1.2, the rail system is merely a part
of a larger system with numerous other sensors and actuators. For the purpose of this
design, the surrounding system was considered a black box that only supplies timing
information and target positions for the motors on the rail, plus possibly a selectivity
parameter to activate specific actuators attached to the motors. The rail system was
supplied with a Command Queuing Interface to accommodate this functionality [3]. This
interface allows the main controller to store any commands it receives from the PLC in
a dependency order specified by parameters within these commands. These commands
can then, at their specified times, be spread amongst the different motor controllers as
deemed necessary for proper execution.

2.3.1 Calibration phase
By performing a calibration sequence, the main controller can gather information on
the motors it is to control. The goal of this calibration phase was to create a list of all
motors and their positions on the rail, possibly using the sensors described in Section
2.2. Even with these sensors, there remains a communication challenge. If a central
controller is considered the master, and the motors on the rail are considered slaves,
the master initially knows nothing about its slaves, including how to distinguish them.
Methods of remedying this are described in Section 3.2.1.

2.3.2 Operation phase
After calibration is completed, the system is ready to go into the operation phase. This
phase is iterative, as explained in Section 1.2, with one iteration completing a full cycle
where the actuators are activated, moved to the other side, deactivated and brought
back into their starting positions again. At some point during each iteration, the PLC
communicates location data for the next iteration to the master controller. Combining
this location information and the previous locations of the motors, a trajectory to follow
must be computed for every individual motor, and each motor must apply some form
of motion control in order to sufficiently reject disturbances with respect to its target
trajectory. This is further discussed in Section 3.3.

2.4 Error detection
There are a number of potential problems the system might encounter. Be it due to hu-
man factors, material wear, communication errors or something else entirely, the system
must be able to deal with any problems accordingly. Shown below is a non-exhaustive
list of potential problems and solutions, differentiated by cause. They are structured as
follows: Problem → Effect → Solution.

Human factors
• Two motors swapped during power off or system pause → Mismatch between Id

and order on rail found during calibration → Full recalibration

• Wrong input parameters set through PLC → Wrong motor alignment inputs →
System refuses the inputs and reports to the PLC that they are invalid

10 CHAPTER 2. REQUIREMENTS

Material wear

• No start/end magnet detected on the rail → Unable to finish calibration → Stall
and send debug data to PLC

• Motor not moving despite being fed pulses → Impending collision with neighbour
→ Pull down bus for emergency stop, write debug data to Electrically Erasable
Programmable Read-Only Memory (EEPROM) to be read by controller after re-
boot

• True positive from leading optical sensor → Neighbour detected unexpectedly
→ Slow down motor depending on proximity; report to controller above certain
threshold

• True positive from lagging optical sensor → Neighbour detected unexpectedly →
Neighbour’s optical sensor and something else broken; stall and send debug for
emergency stop

• One or more faulty motors on rail swapped out for new one(s) → Id/physical
address mismatch → Full recalibration

• Significant change in system transfer due to wear → Mismatch between expected
output and actual output → Try to compensate by changing control parameters,
else stall system and debug

Communication

• Wrong operation signal length sent by PLC → Mismatch with detected number of
motors on rail → Reject command and return debug data

• Motor microcontroller OR sensor not responding in calibration phase → System
can’t finish first step of calibration → Human verification step through communi-
cation status LEDs that light up on receiving a broadcast

• Excessive packet loss → Delay on communication → Increase interval to start after
receiving target locations

Other

• Unidentified object stuck in front of optical sensor → False positive when check-
ing for neighbour, system behaviour affected → Detect when a sensor is stuck in
positive output, stall system and send debug data to PLC

• Motor not following trajectory properly → Wrong encoder output → Stall and
debug (this is hard to differentiate from the case where the encoder output is
correct but the trajectory is wrong)

• Motor overheating → Pause required immediately → Stall briefly, send warning
to PLC? If persists, full stall and debug (keep track by summing dissipated power
over time, reduced by expected cooling)

Design 3
In this chapter, the overall design process is described. Section 3.1 focuses on the motor’s
design parameters whereas Section 3.2 describes the facets of communication within the
system. Section 3.3 discusses the generation of various trajectories, and finally, Section
3.4 expands on the enforcement of those trajectories through motion control.

3.1 Motor
For the purpose of the described design, any motor’s relevant performance metrics can
be defined as speed, power and accuracy. If the price or one of the performance metrics
must be positively impacted, the others are typically negatively impacted. For example,
an increase in speed would require a motor that is more expensive, has more power,
and/or has less accuracy. Since the goal was to decrease the price, concessions could be
made on one or more of the other factors to potentially achieve better results. Sections
3.1.1 through 3.1.3 describe the different types of motors considered and their merits
and drawbacks, while Section 4.1.2 goes into more detail regarding the decisions made
in gearing.

Figure 3.1: Servo drive hardware used in the old Transplanter

The type of motor used was a very important thing to consider. The original ma-
chine used servo motors. These can be any type of motor, but the thing that makes a
motor a servo is its packaging. Servos are complete products, fully packaged along with
controllers, drive systems and rotational sensors. They are easily managed by engineers
building simple systems, as they only require digital speed and direction signals to work.
A convenient way to make things cheaper would be to control the motors with custom
microcontrollers instead. Since the system proposed is made from scratch, complete
with custom-built Printed Circuit Board (PCB)s, any necessary controllers and drive

11

12 CHAPTER 3. DESIGN

circuits can be incorporated into the design with minimal overhead costs. This leaves
only the motors and rotational sensors to be decided on, resulting in a significant price
drop compared to the top-end servo motors in the original machine. Figure 3.1 shows
the amount of hardware required in order to drive the old motors.

3.1.1 Stepper motors

Accuracy being a prime factor, it made sense to use stepper motors. These do not come
pre-equipped with rotary sensors or control logic. By default, they are open-loop con-
trolled, meaning they cannot compensate for any abnormalities that might occur during
operation. This leaves it up to the designer to decide how to implement the feedback
control, depending on what the application requires. As opposed to standard Direct
Current (DC) motors, stepper motors are always brushless, operating through toothed
rotors and stators. They generally come in two varieties - the Variable Reluctance (VR)
stepper and the hybrid stepper, which are discussed separately.

Figure 3.2: Cross-sections of a three-stack variable reluctance stepper motor, adapted
from [1]

A diagram of a VR stepper is shown in Figure 3.2. Both its rotor and its stators
are made of electrical steel, but only the stators are equipped with windings. As seen
in the bottom diagram, the rotor can only ever be aligned with one phase at a time.
The windings on each stator are wound the other way around on opposite sides to create
positive and negative poles on either side of the rotor. The motor operates by the
principle of magnetic reluctance; when current is supplied across a phase winding, the
rotor is urged to align with it to achieve a state of minimum reluctance. Phases A, B
and C can be powered on in turn to force the rotor to make steps in a specified direction
(shown in Figure 3.3), which allows for a step length of 360/Np degrees where N is the
number of stacks/phases and p is the number of rotor teeth. In the motor displayed in
Figure 3.2, this corresponds to a step length of 15◦.

An example of a hybrid stepper motor is shown in Figure 3.4. Its rotor is mounted

3.1. MOTOR 13

A
B
C

Figure 3.3: VR stepper motor phase input currents

Figure 3.4: Cross-sections of a hybrid stepper motor, adapted from [1]

with a permanent magnet and the windings are on its stator teeth. It operates similarly
in turning on phases one at a time to align the rotor in small consecutive steps, but
a major difference is the fact that a hybrid stepper motor displays detent torque; even
with all windings powered off, the permanent magnet in the rotor will resist movement
between step positions. Depending on the application, this can be an advantage or a
disadvantage. Like in a VR stepper, opposing stator poles are paired, but in this case
they have the same polarity. The ”stacks” of a hybrid stepper do not correspond to its
phases as they would in a VR stepper; comparing their figures shows that the windings
in a hybrid stepper are connected from X to Y. The phases are, therefore, specific sets
of poles. In the example of Figure 3.4, numbers 1, 3, 5 and 7 are phase A while 2, 4, 6
and 8 are phase B. Note that there is an angular offset of half a tooth pitch between X
and Y, which corresponds to the opposing polarity of the two ends of the rotor magnet.
In the bottom diagram, phase A is energised. Energising phase B here would lead to a

14 CHAPTER 3. DESIGN

tiny clockwise step. The synchronisation between these phases is similar to that in a VR
stepper, as was shown in Figure 3.3, except in this case there are only two phases that
are activated alternatingly. It takes 4 of these consecutive phase activations to make the
rotor advance its angle by a single tooth pitch. Therefore, the step length can be defined
as 360/4p degrees, with p the number of rotor teeth. In this example, this yields a step
length of 5◦.

3.1.2 Brushed DC motors
A brushed DC motor is the classical example of an electric motor. It has permanent mag-
nets on its stator and windings on its rotor. These windings can be fed by a simple DC
current, the direction of which is continuously alternated by the brushes they are con-
nected through. Turning the motor causes the brushes to move, reversing the polarity of
the rotor windings at exactly the right time. This reversal of polarity or, more generally,
advancement in magnetic alignment to maximise torque output, is called commutation.
The brushes are essentially sliding contacts, so even though brushed DC motors are by
far the simplest motors to control, there are some downsides to using them.

3.1.3 Brushless DC motors
Brushless Direct Current (BLDC) motors, in contrast to brushed DC motors, have no
physical commutator; they are also known as ”Electronically Commutated Motors”. Not
using brushes is significantly more energy-efficient, alleviates sparks, wear and electrical
noise and reduces the risks of overheating. BLDC motors are typically equipped with
rotary hall sensors which trigger at specific angles and feed their pulses back directly to a
control unit. This allows for commutation with barely any digital control logic, operated
purely through analogue feedback. Figure 3.5 shows a schematic representation of a
three-phase BLDC motor’s commutation. Its phases are indicated by coils LA, LB and
LC, and, being three-phase, it typically has six commutation steps per rotation. These
steps are denoted by the letters of the phases and the Os exactly in between, on the edge
of the circle.

As most BLDC motors are commutated with hall sensors, they do not typically use
rotary encoders. Doing this, however, it is possible to make them even more efficient.
Removing the hall sensors nullifies the capability of automatic commutation without
software interference, but offers greater flexibility and programmability. Since the sys-
tem already has a microcontroller to drive the motor and deal with inputs from the
customer, it is a small step to extend its functionality to handle the commutation as
well. Using a rotary encoder, a motor rotation can be divided into a number of pulses,
counted by the microcontroller. Figure 3.5 shows the positional sectors of the rotor,
represented by roman numerals. Depending on which sector the rotor is in, the system
constantly compares the angular value of the two neighbouring commutation points with
the current encoder value. Then, when this comparison triggers, both the current sec-
tor and its corresponding neighbour points are updated accordingly. Immediately after
every such trigger, there is an optimal coil charge configuration that, if applied contin-
uously, automatically brings the rotor to the next commutation step, thus keeping the
movement of the rotor in sync with the electrical movement of the magnetic field.

3.1. MOTOR 15

LA

A

LB

B
LC

C

OO

O

I

II

IIIIV

V

VI

Figure 3.5: BLDC commutation diagram

In construction, a BLDC is actually quite similar to a stepper motor, but the key
difference is that it does not divide its rotor into a large amount of discrete steps; it
does not have teeth on its rotor nor stator. This trades precision for torque and speed;
a BLDC will reach much higher speeds without the risk of losing synchronisation with
its steps. However, using a rotary encoder instead of hall sensors, more commutation
points could be introduced to Figure 3.5 to obtain a similar effect by powering the coils
with a sinusoidal current instead of a block wave.

3.1.4 Comparison

Having described the advantages and disadvantages of the two main types of stepper
motors and their respective differences when compared to brushed and brushless DC
motors, a rough comparison was summarised in a Kiviat diagram, shown in Figure 3.6.
Of interest is the trade-off in a stepper motor versus a BLDC motor; the former performs
well at low RPM and, due to its discrete steps, excels in open-loop accuracy. A BLDC,
on the other hand, is not limited by step control logic and its performance instead peaks
at high RPM.

To quantify the differences between the different types of motors, a list was compiled
with potential candidates of comparable size. For reference, the Yaskawa SGMJV-01A
[6] servo that was used in the original machine was included. The BM-28L [7] stepper
was chosen because of the company’s experience with the manufacturer. Also included
is the similar sized Trinamic QSH2818 [8] stepper. Finally, the Maxon DCX26L [9] and
Vishan EC2864 [10] motors were included and all are shown together in Table 3.1, with
their corresponding performance numbers.

16 CHAPTER 3. DESIGN

Price

Max speedTorque
(low RPM)

Torque
(high
RPM)

Accuracy Output
power

Brushed DC
Brushless DC
VR stepper
Hybrid stepper

Figure 3.6: Comparison of characteristics of DC motors, VR steppers and hybrid
steppers

Manufacturer Yaskawa Fastech Trinamic Maxon Vishan
Model SGMJV-01A [6] BM-28L [7] QSH2818 [8] DCX26L [9] EC2864 [10]
Price (euros) 800 150 48 200 30
Type BLDC/Servo Stepper Stepper DC BLDC
Width (mm) 40 28 28 26 28
Maximum speed (RPM) 6000 2000 2000 13000 18000
Mechanical output (W) 113 11 5 46 56

Table 3.1: Numerical comparison of different motors

3.2 Communication
The coordination of communication was a central part of the design. It involves both
calibrating and dynamically recalibrating the system as well as managing location com-
munication between the customer’s PLC and the individual motors and correcting and/or
reporting errors along the way.

3.2.1 Calibration
Calibration is a crucial part of the system as, immediately after start-up, the controller
knows nothing about the slaves it will have to work with. Calibrating the system consists
of compiling a list of slaves attached to the motor bus, mapping all of their locations
on the rail and reporting/correcting any problem that arises in the process. The pro-
cess of identification and localisation can be divided into two, as described below, or
simultaneously, as discussed in Section 3.2.1.3.

3.2. COMMUNICATION 17

3.2.1.1 Slave identification

There are a number of methods to identify slaves on a bus connection. They can be
summarised as follows:

• Brute-force search the address space

• Perform an optimisation of a brute-force search that makes use of a priori knowledge

• Use collision detection/management

The simplest way is to brute-force the entire physical address space of the slaves. Using
the Big O-notation as defined for use in computer science in [11], this has a time complex-
ity of Θ(2n), where n is the number of address bits. Since the n of the microcontrollers
used is 128 bits [12], this would take many years to complete. A potential optimisation of
the brute-force approach is to use a binary tree search. The address space is recursively
split in two to see whether any slave’s address falls within either half’s bounds, and if
not, that part is discarded. This leads to a time complexity bounded between Ω(2n) and
O(2n+1); the time required depends greatly on the number of slaves present, decreasing
drastically for a low number.

A third approach is to perform collision detection during the identification phase.
Collision detection works by looping through the following steps:

• Broadcast from master: all slaves who have not been identified, reply with your
address

• All eligible slaves wait for different random intervals while the channel is quiet

• If no slaves are eligible, break loop

• Slaves transmit their address as a reply to the master

• Since the channel is now busy, other slaves remain quiet and wait for the next
broadcast

Naturally, chance allows for two slaves to use the same time interval. This is where a
collision occurs. Unfortunately, RS485 does not have innate collision detection, but it is
half-duplex [13]. This means that, while a slave is transmitting, it can see its own message
on the bus, allowing it to check whether this matches the intended message. If this is
not the case, it knows that a different slave is sending simultaneously, and the collision
is detected. All conflicting slaves will again wait for a random interval to resubmit their
reply, and the same mechanism is applied until a single slave has managed to get its
message through and thus managed to obtain an address. Then, the loop repeats until
all motors have been assigned.

However, having two controllers transmit two different values on a single bus causes
a short between them, which might pose a threat to the communication chips involved.
To protect them, collision detection might also be done by having motors pull the bus
down within a certain Gaussian time range, and then waiting until this time slot is over
to start transmitting. Within the time slot, other motors will find the bus already pulled

18 CHAPTER 3. DESIGN

down, signalling that the current time slot is not theirs. Then, when it is over, the one
that pulled it down initially would be free to reply to the master in order to obtain an
address. It will then stop participating in the process, which repeats until all motors
have been assigned.

3.2.1.2 Position detection

As mentioned in Section 2.2, two types of sensors were introduced; optical and magnetic
proximity sensors. Using the information from these sensors, certain conclusions can
be drawn. Since at this point all motors have been assigned an Id, the controller can
communicate with them specifically instead of broadcasting. Communicating with all
motors one by one, all of them can then be moved to one side, as a result of which
only a single motor will not have a neighbour towards the other side. After reassigning
that motor’s address to the first in order, it is moved to the other side. This process is
repeated until all motors have traversed the full track, learning the length of this track
in the process. At the end of this process there will be a mutual understanding between
the main and motor controllers regarding Id numbers and ranges.

3.2.1.3 Combined method

Using the information from the proximity sensors, a different method was devised, which
allows the master controller to compile a list of motors and positions at the same time.
As an added advantage, each motor discovers all of its possible positions in the process
and each is numbered in order, allowing for convenient debugging information. This
method is summed up in a DRAKON [14] diagram in Figure 3.7.

3.2.1.4 Dynamic recalibration

After calibration is completed, all motors can save their Id to Electrically Erasable
Programmable Read-Only Memory (EEPROM) while the controller saves every motor’s
physical address with corresponding Ids to flash or EEPROM. This allows for a quicker
calibration run the next time the system is powered up; the motors can then be identified,
commanded and tested individually, and a full recalibration would only be required if a
problem comes up.

During operation, many factors can play a role in creating small offsets on the motor
positions. Most of these will be cancelled out by using closed-loop control. However, as
the closed-loop control is completely dependent on the rotational encoder signal, some
deviation might persist if it is not perfectly accurate. Fortunately, the magnets used to
determine motor positions during regular calibration will remain usable during runtime,
allowing the motors to correct their positions anytime they happen to pass by a magnet.

3.2.2 Full operational bus communication
An initial idea was to control the whole system by communicating over the bus, with
the master requesting every slave’s location as often as communication restraints allow,
and deciding purely on basis of those locations when stopping is necessary. This would

3.2. COMMUNICATION 19

Combined algorithm

Broadcast move
right

A single motor
detects no left
neighbour?

Yes

No

Initialise, i = 2 Loop Finish

Loop Finish

End

Assign Id = 1 to
thematched
motor

A single motor
detects no left
neighbour AND

hasno Id?

No

Yes

Loop

Broadcast move
left to all motors
with Id

A single motor
detects no

right
neighbour?

Yes

No

Assign Id = i
to matched
motor, i++

Figure 3.7: DRAKON diagram of the combined calibration method

have been highly advantageous, as it would even have allowed the main controller to
know the whereabouts and situations of all active motors, making it possible to adjust
their trajectories based on positions of other motors. To find the maximum displacement
resolution of the motors by communicating in this manner, a number of variables were
defined:

• B, the maximum bitrate on the bus

• M, the size of a single packet in bits, where M = Ndata + Nenvelope;

– Ndata, the number of bits required for the data part of communication

20 CHAPTER 3. DESIGN

– Nenvelope, the number of bits required for the rest of the packet; overhead

• Nc, the number of packets sent in a full iteration (some function of the number of
motors on the rail and a packet loss factor)

• vmax, the maximum speed of a motor at any given time

• amax, the maximum acceleration of a motor at any given time

The time required to make an emergency stop after the master detects an error was
expressed as ∆twc = ∆tcomm + ∆tdec with ∆tcomm the maximum time to communicate
once with all motors and ∆tdec the time required to decelerate a motor to a halt from
full speed, according to Equations 3.1 and 3.2. Subsequently, the average speed during
this time was expressed by Equation 3.3 and ∆swc = ∆twc · vavg was defined as the worst
case (maximum) distance travelled by a motor during the time between the diagnosis of
an error and a full stop, yielding Equation 3.4 by combining Equations 3.1 through 3.3.

∆tcomm =
(Ndata + Nenvelope) · Nc

B (3.1)

∆tdec =
vmax
amax

(3.2)

vavg =
vmax · ∆tcomm +

vmax
2

· ∆tdec

∆tcomm + ∆tdec
(3.3)

∆swc = vmax ·
(Ndata + Nenvelope) · Nc

B +
v2

max
2 · amax

(3.4)

Using preliminary values (B = 115200 Hz, vmax and amax values from Section 4.1.3,
Ndata and Nenvelope minimised), an approximate resolution of 15mm was found. This
was, however, assuming no brakes are present on the motors, which might impact ∆tdec.
Worth noting is that, if the decision to make an emergency stop can be initiated by a
single motor pulling down the bus, this would effectively eliminate ∆tcomm.

3.2.3 Limited bus communication
The approach in the previous section was based on the assumption that a reasonable
amount of communication is possible on a bus riddled with sliding contacts. This might,
however, prove difficult, as during operation, these contacts would likely break and
re-establish contact with the bus regularly, causing highly unpredictable noise on the
channel. While the impact of this problem remained uncertain until testing was done,
the bulk of the necessary communication was preemptively moved to the phases where
the motors are standing still. Since this is a time-critical process (the motors must be
moving as often as possible), it is beneficial to minimise the time spent communicating.

Equation 3.1 holds to describe the time required to communicate some data to every
motor on the bus. Enforcing a resolution of 0.1 mm on a system with Lrail = 1.5m requires

3.3. TRAJECTORY GENERATION 21

a data signal Ndata of 14 bits. As the system works with bytes, this was extended to 16
bits. With 32 motors and a packet loss factor of 20%, ∆tcomm ≈ 55ms. After receiving
their location data, the motors go into operation mode, as described in Section 1.2. While
waiting for its start signal and while crossing its required trajectory directly afterwards,
each motor can compute the next iteration’s trajectory using the new location data
obtained from the master controller.

Using this method, every motor can compute its required location in real time and
compare it against its actual location, making corrections where necessary. Combining
this with an emergency stop initiated by pulling down the bus, each motor is capable of
individually doing a significant part of the error checking mentioned in Section 2.4.

Alternatively, the master controller can compute all the required trajectories and
transmit the resulting coefficients to the motors. The advantage of this is that it would
allow the trajectories to take other motor’s locations into account. However, this is much
slower for two reasons. Firstly, all trajectory computation would take place on the master
controller instead of being computed in parallel amongst the motors. And secondly, there
would be significantly more data to transmit to the motors - a minimum of four floating
point numbers. While these could all theoretically fit into the same packet, it would still
at the very least increase the aforementioned value for ∆tcomm by 50%.

3.2.4 Wireless communication
While the system is marketed as wireless, it is, in a sense, not strictly wireless, as the
system’s communication signals still move along a physically connected conductor; the
communication bus. Instead, it might be possible to only transmit power over the track
rails and leave communication to an actual wireless system. This might prove useful if
one system has to control multiple rails that are not physically interconnected. However,
the presence of all manner of electronics is likely to be detrimental to any forms of wireless
communication, through their emission of electromagnetic interference. This is especially
true for the large electric motors required to move the rail. These circumstances make
wireless communication a questionable contender, but significant progress is being made
in cancellation of electromagnetic interference in wireless systems. Furthermore, if it
does turn out to yield an acceptable packet loss rate (which is to be determined through
measurement), it would be easy to implement, as it can essentially be considered to
operate in the same way as the proposed bus communication system. Like a metal bus
with interconnect, the air through which it operates can also be considered as a single
channel. However, progress in this direction is made difficult by the fact that a competitor
owns a patent specifically on wireless communication in transplanting machines [15].

3.3 Trajectory generation
To drive the motors on the rail, simple target positions could be fed through feedback
controllers to allow them to smoothly approach these targets. Such controllers could
examine the difference between the target position and the motor’s actual position and
correct the motor input accordingly. However, since many other motors are present
on the rail, not knowing in advance how they will move from their initial positions

22 CHAPTER 3. DESIGN

to their target positions might cause motors to move too close to each other, leading
to unnecessary stalling. Furthermore, since the models proposed were to be used in a
real world situation, it made sense to guarantee the continuity of physical parameters.
Controllers would inevitably be part of the system, but instead of steering them using
a step function, it would likely prove beneficial to exert more control over the motor
trajectory by customising the controller input, allowing every motor to follow a similarly
shaped trajectory and thus keeping distance between them relatively linear. This section
describes several different methods of finding trajectories that comply with physical
continuities, as discussed in [16]. Note that all trajectories are described in a single
dimension; only the horizontal movement, along the rail, is controlled by the motors, as
knowing about vertical movement is beyond their scope.

3.3.1 Parabola shape
Parabolas are second-order polynomials, with a round shape moving away symmetrically
from their extreme. In this section, we consider higher-order polynomials based on the
general, symmetric shape of a parabola. A significant advantage of polynomials is that
their derivatives are very easy to compute. Defined is a polynomial of the order N to
describe the trajectory of a motor: q(t) = a0 + a1t + ... + aNtN. Its velocity is then the
derivative q̇(t) = a1 + 2a2t + ... + NaNtN−1, and its acceleration the double derivative
q̈(t) = 2a2 + 6a3t + ... + N · (N − 1)aNtN−2. Using order N, N + 1 boundary conditions
are required to find valid equations to describe the trajectory. At order 3, the initial
and final positions and velocities (q0, qf, q̇0, q̇f) can be supplied to find valid equations,
as shown in Equation 3.5. Equation 3.6 shows the matrix form of this set of equations.
This can be extended to also include boundary conditions on the acceleration (q̈0, q̈f),
which is still allowed to be non-zero at the beginning and the end of the trajectory
in Equation 3.6. This requires a fifth order system, as demonstrated in Equation 3.7.
An example of a fifth order trajectory and its derivatives is shown in Figure 3.8 with
q0 = 1, q̇0 = 0, q̈0 = 0, qf = 4, q̇f = 0, q̈f = 0, t0 = 0, tf = 5.

q(t0) = a0 + a1t0 + a2t2
0 + a3t3

0
q̇(t0) = a1 + 2a2t0 + 3a3t2

0
q(tf) = a0 + a1tf + a2t2

f + a3t3
f

q̇(tf) = a1 + 2a2tf + 3a3t2
f

(3.5)


q0
q̇0
qf
q̇f

 =


1 t0 t2

0 t3
0

0 1 2t0 3t2
0

1 tf t2
f t3

f
0 1 2tf 3t2

f




a0
a1
a2
a3

 (3.6)



q0
q̇0
q̈0
qf
q̇f
q̈f


=



1 t0 t2
0 t3

0 t4
0 t5

0
0 1 2t0 3t2

0 4t3
0 5t4

0
0 0 2 6t0 12t2

0 20t3
0

1 tf t2
f t3

f t4
f t5

f
0 1 2tf 3t2

f 4t3
f 5t4

f
0 0 2 6tf 12t2

f 20t3
f





a0
a1
a2
a3
a4
a5


(3.7)

3.3. TRAJECTORY GENERATION 23

t

q(t)

0 1 2 3 4 5
0

1

2

3

4

5

t

q̇(t)

0 1 2 3 4 5
0

1

2

t

q̈(t)

0 1 2 3 4 5
−1

0

1

Figure 3.8: Clockwise from left: examples of position, velocity and acceleration in a 5th
order parabola trajectory

3.3.2 Trapezoid shape

A trapezoid is defined as a symmetric shape that consists of an upslope and its corre-
sponding downslope, connected at the top by a straight line (see upper right graph of
Figure 3.9 for reference). Choosing a trajectory this way allows for some assumptions
that make the computation relatively lightweight, at the cost of less continuity. Calcu-
lating the equation for the upslope, a polynomial is defined much like in the previous
section, but with order 2; q(t) = a0 + a1t + a2t2. Likewise, the downslope is defined as
q(t) = c0 + c1t + c2t2, and finally, the straight section is defined as q(t) = b0 + b1t; a first
order polynomial. Since these equations are lower order, they can be conveniently ex-
pressed by their boundary conditions q0, q̇c (cruise velocity), ts (slope time), tf, as shown
in Equation 3.8 [16]. Taking the first and second derivatives of Equation 3.8 shows how
the equations are defined by their boundary conditions, demonstrated in Equations 3.9
and 3.10. This also illustrates the conditions that ts and q̇c must be chosen so that tf ≥ 2ts

and amax ≥
q̇c
ts

, correlating to the motor torque through Equation 2.2. Additionally, one
of the boundary conditions must be chosen to match qf = q0 + q̇c(tf −ts). An example of a
trapezoid trajectory is shown in Figure 3.9 with q0 = 1, qf = 4, tf = 5, q̇c = 0.8, ts = 1.25.

q(t) =



q0 +
q̇c
2ts

t2 0 ≤ t < ts

q0 + q̇c(t −
ts
2

) ts ≤ t < tf − ts

qf −
q̇c · (tf − t)2

2ts
tf − ts ≤ t ≤ tf

(3.8)

24 CHAPTER 3. DESIGN

q̇(t) =



q̇c
ts

t 0 ≤ t < ts

q̇c ts ≤ t < tf − ts
q̇ctf
ts

−
q̇ct
ts

tf − ts ≤ t ≤ tf

(3.9)

q̈(t) =



q̇c
ts

0 ≤ t < ts

0 ts ≤ t < tf − ts
− q̇c
ts

tf − ts ≤ t ≤ tf

(3.10)

t

q(t)

0 1 2 3 4 5
0

1

2

3

4

5

t

q̇(t)

0 1 2 3 4 5
0

1

2

t

q̈(t)

0 1 2 3 4 5
−1

0

1

Figure 3.9: Clockwise from left: examples of position, velocity and acceleration in a
trapezoid trajectory, with slopes coloured blue and cruise velocity coloured orange

3.3.3 Splines

It might be necessary for the trajectory to pass specific points along the route. This could
be achieved by simply adding 2n (where n is the number of points to pass) to the order
of a parabolic trajectory to force additional boundary conditions on it. However, as the
order increases, computation increases exponentially, which quickly becomes a problem
as more points are introduced. When compared to simply increasing the order of the
trajectory polynomial, splines offer an alternative without losing much of the precision of
the trajectory. Like the trapezoid shape, they are made by concatenating multiple lower-
order polynomials. For example, a combination of systems like that in Equation 3.5 can
be used to create n third order systems, guaranteeing continuous position, velocity and
acceleration as well as allowing for boundary conditions for the initial and final velocities

3.3. TRAJECTORY GENERATION 25

and positions (see Equation 3.11).

{
q(t) = {qk(t), t ∈ [tk, tk+1], k = 1, ..., n − 1}
qk(τ) = ak0 + ak1τ + ak2τ2 + ak3τ3, τ ∈ [0, Tk], (τ = t − tk, Tk = tk+1 − tk) (3.11)

As in Equation 3.6, initial and final conditions can be forced on the system. Using the
conditions qk(0) = qk−1(Tk), q̇k(0) = q̇k−1(Tk), qk(Tk) = qk+1(0) and q̇k(Tk) = q̇k+1(0),
Equation 3.12 was obtained to describe the constants akN.

ak0 = qk
ak1 = q̇k

ak2 =
1

Tk
[
3(qk+1 − qk)

Tk
− 2q̇k − q̇k+1]

ak3 =
1

T2
k
[
2(qk − qk+1)

Tk
+ q̇k + q̇k+1]

(3.12)

Since the intermediate velocities v2, ..., vk−1 were not yet known, the continuity condi-
tion of the acceleration in intermediate points was used: q̈k(Tk) = q̈k+1(0) = 2ak2+6ak3 =
2ak+1,2. Filling Equation 3.12 back into this equation yields Equation 3.13. Writing these
out for every value of k, a matrix is found, as shown in Equation 3.14. In this matrix,
c is the right hand side of Equation 3.13, which consists only of known terms. This
leaves a set of k − 2 equations with k − 2 unknowns (the initial and final velocity are
known), which, like a k-order polynomial, has a computational complexity of O(k3).
However, since the resulting matrix is tridiagonal, inverting it can be done in O(k) using
the Thomas Algorithm [17]. Multiplying both sides of Equation 3.14 by this inverted
matrix yields a set of solutions for q̇1, ..., q̇n. Filling these back into 3.12 returns valid
polynomials for every part of the spline. An example of a spline trajectory is shown in
Figure 3.10 with boundary conditions q̇0 = 0, q̇f = 0, the coordinates of intermediate
points denoted by dots in the graph and continuity of velocity and acceleration in these
points. If the computation is fast enough, this approach is also suitable for mid-flight
trajectory changes. This must, however, fall within certain boundaries, as no individual
motor knows anything about the whereabouts of any of its peers.

Table 3.2 shows the advantages and disadvantages of implementing the different types
of trajectories, and Chapter 4 specifies the implementation of the third order parabola
trajectory, as it was expected to give sufficient continuity at the lowest computational
cost.

q̇kTk+1 + q̇k+12(Tk+1 +Tk)+ q̇k+2Tk =
3

TkTk+1
[T2

k(qk+2 −qk+1)+T2
k+1(qk+1 −qk)] (3.13)


T2 2(T1 + T2) T1 0 0 0 0
0 T3 2(T2 + T3) T2 0 0 0
...

...
...

0 0 0 Tn−2 2(Tn−3 + Tn−2) Tn−3 0
0 0 0 0 Tn−1 2(Tn−2 + Tn−1) Tn−2




q̇1
q̇2
...

q̇n−1
q̇n

 =


c1
c2
...

cn−3
cn−2


(3.14)

26 CHAPTER 3. DESIGN

t

q(t)

0 1 2 3 4 5
0

1

2

3

4

5
t

q̇(t)

0 1 2 3 4 5
−1

0

1

2

t

q̈(t)

0 1 2 3 4 5

−2

−1

0

1

2

3

Figure 3.10: Clockwise from left: examples of position, velocity and acceleration in a
third order spline trajectory through predetermined points (denoted by dots)

Continuity Computational weight Flexibility
Parabola (3) + + +/-
Parabola (5) ++ - +
Trapezoid +/- ++ +/-
Spline (3) ++ - - ++

Table 3.2: Trajectory type candidates, with order in brackets where applicable

3.4 Motion control

Every motor must follow its target trajectory, as defined in Section 3.3, as accurately as
possible. The most basic form of operation is through open-loop control. This assumes
that, when driven, the motor position will not deviate from its input signal. Stepper
motors thrive on this, as they can make a specific number of steps very accurately.
However, this assumes ideal circumstances, and there will always be a certain discrepancy
between the actual trajectory and the target trajectory, which must be compensated
through some form of feedback. A servo consists of a motor with built-in feedback, as
its drive corrects it by comparing a rotary sensor value with its control input. Non-servo
motors, however, do not have a native control system, so the control must be manually
implemented by the designer either through hardware or software. The discrepancy ϵ(t)

3.4. MOTION CONTROL 27

between the actual trajectory q̂(t) and the target trajectory q(t) is defined as ϵ(t) =
q̂(t) − q(t). To use closed-loop control means to use this ϵ as a feedback parameter to
correct the deviation that the system is producing. A closed-loop controller achieves this
by trying to minimise the value of ϵ as time goes by. This is shown in Figure 3.11, where
the system shown can be modelled with a certain transfer function; a function that,
given a certain input, produces a certain output as a result. The goal of any controller
as shown in the figure is to alter this system’s input signal in such a way that its transfer
function more agreeably (i.e. faster or more accurately) produces the required output.

Controller System

Disturbances

uq ϵ q̂
−

Figure 3.11: Block diagram of a system with closed-loop control

3.4.1 PID control

The simplest way to minimise the error is by using a Proportional, Integral, Derivative
(PID) controller. As the name implies, a PID controller influences the control output by
multiplying the error between the target and actual trajectories and their integral and
derivative by three different filter parameters, and adding the results together. This is
illustrated in Figure 3.12. Tuning these parameters, Kp, Ki and Kd, greatly influences the
way the system responds to certain inputs. The resulting output u is given in Equation
3.15.

u(t) = Kpϵ(t) + Ki

∫
ϵ(t)dt + Kd

dϵ(t)
dt (3.15)

Applying a step function, an instant change in target, to a system’s input is the
most convenient way to influence it. Giving this step function the amplitude of the
target position effectively commands it to move to that position. Depending on the
parameters of the PID controller (given that the controller is stable), this command
is then automatically executed with a certain strictness. Its rise time (time to reach
the position) and overshoot (factor by which it moves beyond its target) also greatly
depend on the values of the controller parameters. Implementing PID implicitly defines
a trajectory, effectively nullifying the need for predefined trajectories. However, given the
unpredictable disturbances in the system, tuning the parameters is a difficult process that
will yield different results for different motors. Both the track friction and the dynamic
behaviour of the different motors are never perfectly identical.

28 CHAPTER 3. DESIGN

∫
ϵ(t)dt Ki

Kp

Kd
dϵ(t)

dt

ϵ +
+

u

Figure 3.12: Block diagram of a PID controller

3.4.2 Setpoint selection
Every type of motion controller needs a setpoint; a target value for the system’s output
to attain. This can be static, in which case the system is let loose by making it target its
goal immediately. This way, a PID’s parameters implicitly define a trajectory to follow
by forcing the system towards that goal. This behaviour is unpredictable, however, as
the response greatly depends on system parameters that cannot be accurately predicted.
Alternatively, a dynamic setpoint can be used that takes the actual setpoint as its input.
With this approach, the trajectories defined in Section 3.3 can be used to generate paths
with a specific arc and duration befitting the distance to be travelled. This way, only
the difference between the current location and the dynamic target location is needed to
know how fast the motor must be moving. This better fits the needs of the customer, as
it allows all motors to take exactly the same amount of time to get to their destination
and makes it impossible for different trajectories to cross.

System Implementation 4
This chapter introduces the different microcontrollers used and how their software was
written to comply with all of the design considerations. Section 4.1 details the implemen-
tational facets of the hardware used, Section 4.2 describes the function and implemen-
tation of the main controller, and Section 4.3 expands on the specifics of motor control
and its software implications.

4.1 Hardware
Over the course of the project, many different hardware considerations had to be made.
This section gives an in-depth analysis of motor types, how to drive them and how to
decide what gear size and type to use.

4.1.1 Motor drive
Regardless of the type of motor chosen, all can effectively be modelled as a bundle of
windings with inductive and resistive properties, in addition to acting as a generator when
a change in current is applied. This is demonstrated in Figure 4.1, with characteristic
Equation 4.1. In this equation, uphase is the applied voltage, ia the induced voltage,
Ra the resistance of the windings, La the inductance and ea the back-Electromotive
Force (EMF). From an electrical point of view, a brushed Direct Current (DC) motor is
as simple as that; the brushes automatically guarantee commutation and thus reversal
of the direction of current. For other types of motors, on the other hand, it is more
complicated. The a in subscript implies that this circuit potentially represents a phase.
For any motor with multiple phases, their sets of windings must be energised in order,
as was described in Section 3.1.1.

uphase

ia Ra La

ea

Figure 4.1: Equivalent circuit of an electric motor phase winding

dia
dt =

1
La

(uphase − iaRa − ea) (4.1)

29

30 CHAPTER 4. SYSTEM IMPLEMENTATION

To energise motor windings, H-bridges are typically used. In addition to making it
easy to reverse the polarity of a winding, these bridges also help to relieve the circuitry of
back-EMF when the supplied current is significantly reduced, e.g. when powering down.
A typical setup with Metal Oxide Semiconductor Field Effect Transistor (MOSFET)s
is shown in Figure 4.2. In the figure, a motor is displayed in the centre, as would be
the case when operating a brushed DC motor. In any other case, this would be a single
winding and a number of bridges equal to the number of phases would be required to
use the motor. In this example, transistors A and D can be enabled to allow a current
to flow through the motor from left to right, while enabling transistors B and C allows
a current to flow from right to left, reversing the polarity and thus the turning direction
of the motor. The diodes serve to provide a low impedance path for back-EMF induced
by the motor when the input voltage is suddenly removed. This protects the MOSFET
gates from being forced to conduct a large current, which might otherwise blow them
up. Such implementations are easily incorporated into a Printed Circuit Board (PCB)
design by using specialised off-the-shelf chips that contain the MOSFET gates as well as
the capacitors that protect them.

M

A

B

C

D

VSS

VDD

Figure 4.2: MOSFET full-bridge connected to motor phase

4.1.2 Gearing

Introducing gears into a system typically dissipates roughly 10-15% of the energy
throughput for every gearing stage. Despite these losses, gearing can be helpful or
even necessary for a number of reasons:

• Matching the torque and/or speed requirements of the application at the output
shaft

• Moving the motor requirements into a domain that can (efficiently) be handled by
a certain motor

4.1. HARDWARE 31

• Transforming mechanical energy from one domain into another (rotational versus
translational)

Figure 4.3 shows a mechanical representation of the gears present in the system.
The leftmost gear combination is called a planetary gear train, due to the layout in
which the teal-coloured gears (planets) ”orbit” around the central gear like in a solar
system. This configuration can efficiently reduce the angular speed without influencing
shaft alignment. The axes of the teal gears are connected to the rear plate through
ball bearings, allowing the axes to rotate within the plate even as they push it around.
The red-coloured outer gear is fixed, with the other gears moving around inside of it.
Increasing the ratio N1 of the outer gear radii with respect to that of the central one
increases the reduction factor.

Figure 4.3: Mechanical schematic of the gear systems on the motor shaft

The rightmost gear combination is called a rack and pinion system, which allows
rotational movement to be transformed into translational movement. The radius of the
gear in this system as well as both tooth pitches (distance between two teeth on a toothed
surface) determine the ratio N2 of movement transformation.

In both gear systems, the gear ratio also influences the force produced on the other
end. A reduction of rotational speed in the first phase leads to an equal increase in
torque. In the second phase, an increase in gear ratio is signified by a larger gear, which

32 CHAPTER 4. SYSTEM IMPLEMENTATION

leads to an increased translational velocity. In this case, the torque remains the same,
but the output force is proportionally smaller because of the greater distance from the
shaft.

In the system designed, these effects were combined in a trade-off because choosing
N1 allowed the motor to perform at an efficient output power setpoint while choosing
N2 dictated the resulting translational speed regardless of the intermediate conditions.
Leaving out the first gear stage would have been preferable to save the energy it dis-
sipates, but working at an inefficient power setpoint, the motor would have performed
poorly, unable to meet either the torque or the speed requirements.

4.1.3 Motor type

Building on Table 3.1, additional calculations were done with the motors to determine
their performance with regard to the system. The old transplanter motors had a maxi-
mum velocity of ∼ 2.2 m/s and a maximum acceleration of ∼ 8 m/s2. The requirements
on these were obtained by reducing the required values to 2 m/s and 4 m/s2, which is
a reasonable decrease given that, stepping down from a bigger motor, the output power
must be halved at the very least. These values were used in Equations 2.2 and 2.3 to solve
for m and obtain numerical results for its maximum value with the different potential
motors. Rough optimisations were taken for the gear ratios, rounded to whole numbers,
and the maximum load includes the weight of the motor itself. Electrical input power
was calculated from the maximum continuous input voltage and current, and mechanical
output power from the theoretical output torque and angular speed, with gearhead losses
estimated at 10% per stage, assuming all ratios can be achieved through a single stage.
Friction is excluded, but so is intermittent overloading, of which all motors are capable
to some extent. The results are shown in Table 4.1.

Manufacturer Yaskawa Fastech Trinamic Maxon Vishan
Model SGMJV-01A [6] BM-28L [7] QSH2818 [8] DCX26L [9] EC2864 [10]
Price (euros) 800 150 48 200 30
Type BLDC/Servo Stepper Stepper DC BLDC
Width (mm) 40 28 28 26 28
Input speed (RPM) 5305 1768 1768 8840 14144
Input torque (Nm) 0.180 0.060 0.028 0.050 0.042
Electrical input (W) 168 23 16 66 81
Optimal gear ratio 3 1 1 5 8
Output speed (RPM) 1768 1768 1768 1768 1768
Output torque (Nm) 0.486 0.060 0.028 0.250 0.302
Mechanical output (W) 113 11 5 46 56
Maximum load (kg) 11.1 1.34 0.58 5.09 6.95

Table 4.1: Numerical comparison of different motors given that vmax = 2 m/s and amax
= 4 m/s2 must hold; an extension of Table 3.1

When working with stepper motors, micro-stepping can be used to influence the

4.1. HARDWARE 33

trade-off of accuracy and stability versus torque production and power consumption.
In micro-stepping, multiple stator phases in a motor are excited at a specific level,
achieving a balance of fields that puts the rotor teeth in an intermediate step between
two sets of stator teeth that it simultaneously attempts to align with. Energising multiple
phases at the same time undeniably increases power consumption as well, but the torque
production is unlikely to rise with the same magnitude. The amount of micro-stepping is
denoted by a micro-stepping factor that multiplies the amount of steps in a full rotation,
denoted by k in Equation 2.4. Without micro-stepping, the resolution of a typical stepper
motor is 0.16 mm. Since [3] requests a resolution of 0.1 mm, half-stepping should suffice
as far as accuracy goes. How further micro-stepping might affect both stability and
torque production, however, is better tested through simulation and/or prototyping.

Although meeting the constraint on accuracy is very easy using a stepper motor, DC
motors are more capable of meeting practically every other requirement posed in Table
2.1. If the system would be controlled through an open loop, steppers would definitely
be the sensible choice. Using closed-loop feedback control, however, this lack of accuracy
can likely be mitigated. The accuracy of this control requires some testing, but if it
turns out to be sufficiently accurate for the application, there will be no need to even
consider stepper motors, as accuracy is their one strong point. If it is not, however,
stepper motors will be required to match the strict accuracy requirement.

As was shown in Table 2.2, the system must be able to support roughly 1.4 kg, which
means that the stepper motors examined are unlikely to be able to provide sufficient
mechanical power to reach the required acceleration and velocity. The company was
hesitant about trusting Chinese data sheets and did not want to risk waiting for very
long shipping times. Therefore, since brushed DC motors are cheaper and easier to
control than their brushless counterparts, it was decided to use the Maxon DC motor in
the machine.

4.1.4 Microcontrollers

As discussed in Chapter 1, the system designed is part of and effectively managed by
a larger system. In the eyes of this larger system, the system described is considered a
black box, which receives certain inputs and produces certain outputs as a result. For
this design, the top-level system can in turn be considered a black box. Where one box
ends and the other starts is an arbitrary line, which was drawn on the edge between
both systems’ main controllers. For the purposes of this design, it suffices to consider
the top-level system as a single Programmable Logic Controller (PLC), which transmits
target outputs to the lower system through an ethernet connection. This lower system,
in turn, consists of a main controller that communicates with controllers hierarchically
beneath it. The main controller is an Atmel ATSAM4SD32B [12], which, through an
RS485 bus, is connected to many individual motor controllers. These motor controllers
are equipped with relatively small Atmel ATxmega128A1U [18] chips, in addition to
the sensors and actuators described in Chapter 2. These chips were selected for being
low-cost commercial off-the-shelf products, allowing a little more leniency for the main
controller since there is only one in a machine, as opposed to one for every motor.

A minimal architectural representation of this subdivision is shown in Figure 4.4. In

34 CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.4: Top level diagram of the control hierarchy

this diagram, the arrows represent master-slave relationships, with the arrows pointing
towards the slaves. In a master-slave communication system, slaves are not capable of
initiating communication and spend most of their time waiting for commands from their
respective masters. This leads to a hierarchy conducting a command chain from top
to bottom, propagating through the RS485 bus from the main module to the motors.
Discussions with the customer were imperative in making sure all three levels of the
hierarchy were able to perform the tasks required to ensure proper operation of the
global system. These tasks were listed as commands in [3], and are elaborated on in
Section 4.2.

The main controller was programmed in C++, while the motor controllers were
programmed in C. For both controllers, the company provided a framework of files to
facilitate the connection of standard PCB peripherals like networking interfaces and other
Input/Output (I/O) ports. Two separate networking interfaces were set up; one to allow
the main controller to receive commands from the PLC, and one to allow communication
between controllers across the bus channel (see Figure 4.4 for reference). Figure 4.5 shows
how the main controller is embedded into the customer’s machine; the blue ethernet cable
is the connection from the PLC to the main controller, while the pink cables are the two
RS485 communication channels connected to the bus.

4.2 Main controller

Since the main controller is essentially a central hub connecting different parts of the
system, it is responsible for many different facets of communication. As was shown in
Figure 4.4, this controller acts as a master to the motor controllers and as a slave to the
PLC. This section covers the communication aspect of the system, while Section 4.3 goes
into more detail on generating trajectories and operating motor drive chips to adhere

4.2. MAIN CONTROLLER 35

Figure 4.5: Main controller embedded in the Transplanter

to them. Setting aside various commands to debug, update and manually control the
system, the most important commands for normal operation are the ones listed below
and chronologically shown in Figure 4.6. These follow the principal operation of the
system.

• Start calibration: propagates from top level to motor level to indicate that a cal-
ibration sequence (according to Figure 3.7) must be initiated by the system. The
resulting motor positions and ranges are then communicated back upwards

• Set next positions: sets target positions for the motors, to be executed by all motors
simultaneously once all have acknowledged their readiness

• Go: sent to all motors in order, after each one has received and acknowledged
its new target position. A reply is sent by each motor once it has reached its
destination

4.2.1 PLC communication
General purpose network communication typically uses Transmission Control Proto-
col/Internet Protocol (TCP/IP) which, in the context of the Open Systems Interconnec-
tion (OSI) model [19], sits at layers three and four - network and transport. This defines
an extensive envelope in which to package any data to be sent, complying with rules
regarding error correction, 32-bit addressing, time-to-live information and many other
things. This yields a minimum total overhead of 160 bits per packet. By request from

36 CHAPTER 4. SYSTEM IMPLEMENTATION

PLC Main controller Motor controller

Calibrate

Start Calibration

Start Calibration

ACK Received

Results

ACK Executed

Prepare

Set Next Positions

Set Next Positions

Estimated Time Required

ACK Executed

Move

Go

ACK Executed

ACK Executed

Figure 4.6: Sequence diagram of principal system operation

the customer, communication between the PLC and the main module was done through
TCP/IP for the sake of simplicity as well as portability.

To facilitate communication and proper, in-time execution of commands, a message
queuing interface was developed. Instead of risking loss of synchronisation by using a
first in, first out implementation, control of the ordering of commands was left to the
PLC. Within the data envelope as defined by the TCP/IP protocol, messages in this
system have the following data fields:

• Command number: which one of the possible commands this message signifies

• UID: unique ID that identifies this specific message

• Parent UID: ID of parent message, which must wait for its children messages to be

4.2. MAIN CONTROLLER 37

executed before it is reported as done (ignored if UID = parent UID)

• Ref UID: ID of reference message, which must be executed before this command
is allowed to start (ignored if UID = ref UID)

• Triggerpoint: boolean (1 or 2) that indicates whether a message is to be executed
either after its reference message has started (1) or after it has been executed (2)

• Delay: time delay before the message can start, in milliseconds

• Parameters: numbers relating to details of the corresponding command. For ex-
ample, an execution time paired with target locations for every motor, in the case
of a set next positions command

The implications of these data fields are most easily understood by referring to the
example in Section 4.2.4.

4.2.2 Motor controller communication
Simple microcontrollers like the ones described in this work can be considered bare metal;
they execute instructions directly on logic hardware without utilising higher level man-
agement structures like in operating systems. Using RS485 in this system in the context
of the OSI model, only the physical layer is defined. Needless to say, this has major
advantages when it comes to throughput, latency and other overhead. The correspond-
ing disadvantages are negligible - the need to write device drivers is offset by the fact
that the company provided driver libraries for most common components, and complex
concurrency is not required for the application. Ease of debugging might have saved
some time in the long run, but that was a small price to pay.

A significant advantage of bare metal programming is customisability. Communi-
cation through RS485 is quite time-critical and would thus benefit from any possible
latency optimisation. Instead of using the aforementioned TCP/IP packets, a custom,
smaller packet format was defined that implements the minimum required functionality.
It is built up as follows:

• Start of Frame - 0xAAhex (1 byte)

• Packet length (1 byte)

• Source and target addresses (2 bytes)

• Unique ID and command number (2 bytes)

• Data (247 bytes max, dictated by 1 byte packet length)

• Checksum and End of Frame - 0xEFhex (2 bytes)

This yields a total overhead of 64 bits; 96 bits less than in TCP/IP. Most of the
benefit comes from the reduced target and destination address space, which must be 32
bits each in TCP/IP. In this case, however, given the limited number of motors in the
machine, a single byte sufficed to cover the full address space. Address 255 being the

38 CHAPTER 4. SYSTEM IMPLEMENTATION

broadcast address, address 254 was defined as the address of the main module. During
calibration, each of the motors is numbered in turn, up from 0, allowing for a maximum
of 254 motors.

4.2.3 Communication scenario: calibration

Calibration is initiated by having the PLC send a Start calibration command, using com-
nmand number 18 in the packet structure defined in Section 4.2.1. The corresponding
parameters are a definition of the direction to move in to impel positive motion, depend-
ing on orientation of the motor as well as the bar, and a distance from which the ratio
between distance and encoder steps can be calculated.

In Section 3.2.1.3, the calibration method used was defined. This required commu-
nication in response to broadcast messages. In a traditional master-slave system, this
would not be possible. However, in a custom implementation of packet handling, redun-
dancy checks and retransmissions, nothing is set in stone. A method was devised where
a broadcast is replied to with an acknowledge, and the number of individual replies can
be counted. Multiple replies at once would garble up the communication bus, producing
noise that does not refactor to valid acknowledges. This then continues until circum-
stances are such that, by posing certain conditions, exactly one reply is produced, ending
the corresponding phase of the calibration process. The process works as follows and is
also illustrated by means of a Finite State Machine (FSM) in Figure 4.7, where Move
Positive is the initial state:

Phase 1: Move to positive end: broadcast to move towards the positive end,
then periodically check how many replies there are to the inquiry whether motors have
a neighbour in the negative direction. When this number is exactly one, repeat a few
times to eliminate false positives. After consecutive successes, conclude that all motors
are lined up on the positive end, with only the most negatively positioned motor replying
(condition 1 in Figure 4.7).

Phase 2: Assign address: broadcast an address to set. Recipients check whether
they already have an address (in which case the command is ignored) and whether they
have recently been communicating with the main module through the previous command.
If this is the case, the motor concludes that the address is meant for it and adopts it as
its new address, while the main controller waits for verification that the new address has
been set successfully.

Phase 3: Move to negative end: broadcast to move towards the negative end.
Recipients check whether they have an address, in which case they execute the move
command. Unassigned motors are requested to reply, but only if they have no neigh-
bour in the negative direction, which immediately becomes the case once its neighbour
is assigned an address and starts moving. Once again, only the most negatively posi-
tioned unassigned motor will be replying, and if exactly one reply is reliably received,
the corresponding motor is assigned an address (condition 2 in Figure 4.7). The main
controller then bounces between phases 2 and 3 until phase 3 yields exactly zero replies
(condition 3 in Figure 4.7), signifying that all motors will have been assigned by then.

Calibration concludes by the main module sending each motor information about
track length and magnet locations. In turn, each motor is sent information about either

4.2. MAIN CONTROLLER 39

Move
Positive

Find
First

Timer
overflow

Condition
1 not met

Condition
2 not met

Condition
3 met

Move
NegativeCondition

1 met

Timer
running

Done Assign
Address

Timer
overflow

Condition
2 met

Check
Negative

Timer running;
condition 3 not met

Figure 4.7: FSM of the calibration process

Condition 1 After positive move, all motors lined up on positive side;
exactly one motor with just one neighbour

Condition 2 After negative move, all unassigned motors lined up on positive
side, exactly one of which has just one neighbour

Condition 3 All motors assigned and lined up on negative side

Table 4.2: List of calibration conditions

the location of the track magnets or the total length of the bar. This information is
combined with the total number of steps in each motor’s full range to transform this range
into the units supplied by the PLC, returning this information as a reply. Subsequently,
checks are performed on the feasibility of this data, invalidating the calibration if a
problem occurs. This invalidation also occurs if, after calibration, any motors are left
unassigned on the bar. Information about the nature of any problems that might occur
is communicated to the PLC.

4.2.4 Communication scenario: normal operation

Once the system has been calibrated, it is ready to receive commands from the PLC.
A typical use case scenario with three grippers is shown in Table 4.3. The different
commands have the following effects:

40 CHAPTER 4. SYSTEM IMPLEMENTATION

• UID 1: open all grippers after 100 milliseconds

• UID 2: take two seconds to move motors to dense locations at 110, 120 and 130
arbitrary units (defined by user), 100 milliseconds after the previous command has
been executed. During this process, the bar carrying the motors is moved down
towards the seedlings

• UID 3: selectively close grippers; the outermost grippers close while the middle
one remains inactive, 100 milliseconds after the move of UID 2 has completed

• UID 4: take two seconds to move motors to sparser locations at 20, 50 and 80
arbitrary units, 1000 milliseconds after the grippers have closed. Extra wait time
is implemented to allow the bar carrying the motors to move up before lateral
movement is resumed

• UID 5: halfway into the move of UID 4, open the rightmost gripper to discard
its seedling. This could happen if a bad seedling is detected through an external
sensor connected to the PLC

• UID 6: open remaining gripper 500 milliseconds after the move of UID 4 has
finished

Command UID Parent UID Ref UID Triggerpoint Delay Parameters
21 1 1 1 2 100 0:0:0
19 2 2 1 2 100 2000:110:120:130
21 3 3 2 2 100 1:0:1
19 4 4 3 2 1000 2000:20:50:80
21 5 5 4 1 1000 0:0:1
21 6 6 4 2 500 0:0:0

Table 4.3: Message Queuing Interface usage example

4.3 Motor controller
The motor was equipped with an encoder, which is a sensor mounted to the axis that
keeps track of how far it has rotated. This produces a discrete and accurate amount of
pulses; 500 in the case of the encoder used. These pulses were set up to generate hardware
events on the motor controllers, allowing them to bypass synchronous counting which
might either garble up the system with interrupts or allow for pulses to be missed if other
interrupts interfere. A framework like in Figure 3.11 was programmed, transforming
these encoder pulses into an actual position q̂, comparing this to a requested position
q, and feeding the difference ϵ between these two into a control block, which in turn
computed an input voltage value u to supply to the motor. Figure 4.8 shows how the
motor controllers are embedded into the machine, mounted on top of the motors together
with all the associated electronics.

4.3. MOTOR CONTROLLER 41

Figure 4.8: Set of mounted grippers without casing

4.3.1 Motor control
To control the motors through Proportional, Integral, Derivative (PID) filtering, proper
values for the filter parameters Kp, Ki and Kd had to be found to be filled in for Equation
3.15. Three ways to obtain these values were identified:

• Heuristically iterating values to come to a satisfactory result

• Creating a theoretical model of the system to obtain a system transfer function
that can be tuned through algorithms

• Driving the system with a step input to obtain step response data, which can, in
turn, also be used to obtain a transfer function tuneable through algorithms

In the initial implementation, the heuristic iteration method was applied. One exam-
ple of such an approach is the Ziegler-Nichols Ultimate Gain method as described in [20],
which is a method of bumping up the gain until the system barely oscillates, at which
point the characteristics of these oscillations can be used to estimate PID filter values
that would produce a stable system. However, since this method was unable to pro-
duce satisfactory filter values, the decision was made to use transfer function estimation
instead.

The first of these estimations is the theoretical model. Starting from Figure 4.1 to
model a motor winding, this was built on and combined with the physical model for a
rotational mass as proposed in [21]. These equations can then be combined to form a
third order transfer function for a DC motor with voltage input v and position output q,

42 CHAPTER 4. SYSTEM IMPLEMENTATION

as shown in Equation 4.2. Note that this model assumes a constant magnetic field and
equality of the torque constant and back-emf constant (denoted by K). In this model, b
is a frictional constant. The step response output of this system was obtained through
simulation and is shown in Figure 4.9. Using the PID Tuner tool supplied by MATLAB
[22], a PID filter was parametrised to yield an arbitrarily low overshoot and a settling
time in the order of magnitude of tens of milliseconds. Valid filter values for this are
shown in Equation 4.3.

Q(s)
V(s) =

K
s((Js + b)(Ls + R) + K2)

(4.2)


Kp = 0.1952
Ki = 1.0017
Kd = 0.0095

(4.3)

Figure 4.9: Step response of the model, showing its start-up characteristic, with
displacement in encoder pulses on the y-axis

There are some downsides to using a theoretical transfer function. Assumptions like
the magnetic field being constant cause deviations from real world values, however small
they may be. More importantly, estimating values to be filled for the model mostly
consists of weighted guesswork, leading to an unreliable response. The second method
of obtaining a transfer function should be more reliable. To achieve this, a constant
input power of roughly 70% was supplied to the input of the system, measuring the
generated trajectory as well as the output it supplied in the process. Using the response
this yielded, a transfer function was estimated using the PID Tuner tool. The result of

4.3. MOTOR CONTROLLER 43

using 300 iterations of the Interior-Point algorithm [22] is shown in Equation 4.4, with
Kg = 74.122, Tp1 = 0.0398 and Tp2 = 0.021093, and Figure 4.10 showing the 99% fit to
estimation data. Surprisingly, a two-pole (and thus second order) gave a good fit for a
system estimated to be third order by models. The PID filter parameters were calculated
to yield an overshoot and settling time similar to the parametrisation for the theoretical
model, and are shown in Equation 4.5.

Q(s)
V(s) =

Kg
(1 + Tp1s)(1 + Tp2s) (4.4)


Kp = 0.9837
Ki = 17.7557
Kd = 0.0136

(4.5)

Figure 4.10: Measured step response used to estimate the transfer function of the
system, with displacement in encoder pulses on the y-axis. The step response of the

resulting transfer function is plotted over the measured data

A striking similarity is seen between Figures 4.9 and 4.10. This suggests that, de-
spite the difference in order between the resulting transfer functions, they are indeed
quite similar. Since a relatively small value was used for L, this might cause the third
pole of the system to be relatively low in magnitude. Regardless, there are two major

44 CHAPTER 4. SYSTEM IMPLEMENTATION

differences between the figures. Firstly, the measured model reaches a higher amplitude,
and secondly, the measured system is quicker to respond to the step input. This could
be due to the fact that the model takes both friction and load mass into account, while
the measurement data was obtained in an unladen configuration.

4.3.2 Trajectories
Generating realistic trajectories posed a trade-off in computational complexity versus the
amount of constraints that could be enforced on it. Third order parabola trajectories
were a reasonable choice, as they generate a subtle acceleration and deceleration curve
(or low jerk) while guaranteeing continuity in the position, velocity and acceleration
domains. Equation 3.5 was rewritten with t0 = 0, q̇0 = 0, q̇f = 0 and expressed in terms
of tf = execution time, q0 = current position, qf = target position to be solvable for the
polynomial constants. This yielded Equation 4.6. Unfortunately, the division terms in
a2 and a3 as well as the t multiplication terms in Equation 3.5 make it problematic to
use integers in the implementation, forcing the use of floating point numbers. However,
profiling the computation of a third order polynomial proved that this only took about
7 µs every iteration, which is likely to be acceptable, especially considering that the
frequency of this computation does not necessarily have to be very high.

Figure 4.4 shows an example of a trajectory generated by the on-chip software, which
was extracted after generation by sending the resulting time data all the way back up
through the communication hierarchy. This method was also used to generate the output
trajectories and location data shown in Chapter 5.

Table 4.4: Parabolic trajectory as measured after
on-chip generation



a0 = q0
a1 = 0

a2 =
3(qf − q0)

t2
f

a3 =
− 2(qf − q0)

t3
f

(4.6)

Results 5
This chapter describes the results generated over the course of the project, quantitative
or otherwise. Section 5.1 discusses the problems encountered with communication during
testing, and Section 5.2 attempts to quantify the system’s performance with respect to
following trajectories.

Figure 5.1: Overview of the new Transplanter, with cases mounted on gripper
electronics and a close-up of magnet mounting on the right

5.1 Communication

As it turned out, communication proved difficult with the intended approach. The
algorithm discussed in Section 3.2.1.3 worked perfectly well with a limited number of
motors on the track. The motors would properly receive messages broadcast by the
main controller, and replied to them as expected. However, as the number of motors
increased, so did the number of replies to broadcasts. Eventually, this garbled up the
communication bus (as seen in Figure 5.1) to such an extent that some motors were
no longer able to receive the calibration commands, effectively excluding them from the
process altogether. Naturally, this completely obstructed the calibration and the system
was caught in an infinite loop of communication errors.

To remedy this, the (unique) addresses of all motors were hard-coded in the motor
controller software. Subsequently, all broadcasts were changed to targeted communica-
tion, using these unique addresses. During the calibration process, the motors were then

45

46 CHAPTER 5. RESULTS

merely sorted instead of assigning ordered addresses. Using this approach, the algorithm
written could be resumed as usual once the sorted list of motors was compiled.

Another challenge encountered was magnet alignment. To allow for motor proximity
detection, magnetic sensors were placed on both sides of every motor. Needless to say,
the motors were mounted with magnets on opposing sides to allow them to be seen by
their neighbours. Accurately positioning the sensors proved even more difficult than
positioning the magnets. This was due to the fact that they were connected to the
Printed Circuit Board (PCB) through long, pliable pins. As seen in the right picture in
Figure 5.1, some of the magnets were placed outside the plastic casing. This was done to
allow motors equipped with large grippers to be able to detect their neighbours despite
the increased minimum distance between them.

5.2 Trajectories
Taking target locations and expected durations as inputs, parabolic target trajectories
were generated and supplied to the system. The difference between a motor’s actual
location and expected location was then used to determine the input power supplied
to the motor. A typical scenario is shown in Figure 5.2. In this case, the motor is
given 1.5 seconds to move to a specified location. Over the course of the trajectory, the
difference between the planned trajectory (in orange) and the actual trajectory (in blue)
is relatively small. This indicates that the parameters have been matched properly.
Figure 5.3 shows a different example. Here, the motor reaches its upper velocity cap
despite falling behind on the trajectory. As a result, the motor finishes long after the
expected duration of 1 second, paired with a significant overshoot. This indicates a
mismatch between the motor characteristics and the input parameters; the motor was
unable to move at the requested velocity.

The figures shown were obtained by driving the motors proportionally with respect
to their generated ideal trajectories, as other implementations were quick to produce
significantly more overshoot than predicted by the models. Using only a proportional
factor showed promising results, given that specific edge cases were covered (which was
not the case in Figure 5.3). These edge cases can be summarised as follows:

• The maximum target velocity of the trajectory supplied must be attainable by the
motor (i.e. the distance must be sufficiently short and the time granted sufficiently
long)

• If a motor’s normal operation is interrupted because it runs into an obstruction, it
must recalculate its trajectory to obtain a new start-up curve once the obstruction
is gone

The measured velocity in Figures 5.2 and 5.3 was obtained by differentiating the
displacement data and filtering it with a minimum order low pass filter. Despite these
measures, it still looks quite noisy. However, since this noise is also present in the gener-
ated expected velocity, it is safe to conclude that it is introduced during measurement,
through quantisation and from lack of synchronisation between updating values and
sampling them; the former runs on a soft timer while the later runs on an interrupt.

5.2. TRAJECTORIES 47

Figure 5.2: Measurements of the planned trajectory (orange) and actual trajectory
(blue) in the top figure, and the expected velocity (orange) and actual velocity (blue)

in the bottom figure

48 CHAPTER 5. RESULTS

Figure 5.3: Measurements of the planned trajectory (orange) and actual trajectory
(blue) in the top figure, and the expected velocity (orange) and actual velocity (blue)

in the bottom figure

Conclusions &
recommendations 6
In this chapter, the original research questions as listed in Chapter 1 are looked back
upon to see how they can be answered using the information gathered in the rest of
this thesis. A list of contributions by the author is compiled and, finally, a number of
recommendations for future work are done.

6.1 Conclusions
The research questions are tackled one by one, beginning with the sub-questions:

What should an entity’s trajectory look like, how is it influenced by the inertia of its
payload, and how might this be compensated?

• A parabolic (polynomial) trajectory of third order provides sufficient leniency with
regards to motor jerk, but is lacking in positional efficiency due to its brief moment
at maximum speed

• A trapezoidal trajectory makes efficient use of the motor’s maximum speed at the
cost of higher jerk. A combination of both types appears to be the best option
(further discussed in Section 6.3).

• Considering the total mass of the system, the inertia of a payload held by a gripper
has no considerable effect on the behaviour of the system

What might the characteristics be of a cost-effective and accurate electronic system
implementing this?

• By replacing the servo drives of the previous system with a self-made embedded
system on a custom Printed Circuit Board (PCB), the cost of the existing system
was significantly reduced

• The wires of the existing system were replaced by transferring all power and com-
munication to bus rails, which makes repairs simple, allowing users to circumvent
the cost of technicians and downtime

• Controlling the motors through an electronic closed-loop feedback system, the ac-
curacy achieved was only limited by the resolution of the rotary encoder

49

50 CHAPTER 6. CONCLUSIONS & RECOMMENDATIONS

In a physical implementation of the system, what might go wrong, and how can this be
accounted for?

• At the start of the project, a list of potential problems was compiled and this list
was added to whenever new things came up (Section 2.4)

• Fail-safes have been built in to detect problems during calibration, like motors
being left unassigned after calibration was seemingly successful and overheating,
overcurrent and stall detection that can stop the motor if further operation might
otherwise cause damage

• Proximity sensors were integrated into the system, triggering interrupts whenever
a neighbour comes too close

Using electronic control, how can multiple entities with certain inertial characteristics
efficiently be moved along a linear rail at high speed without collisions?

In conclusion, returning to the main research question, this work presented a list of
technical requirements based on a business case of making the system cheaper and more
efficient (Chapter 2) followed by a design chapter, where these requirements were taken
into consideration and translated into the parametrisation of a system that is able to meet
these requirements (Chapter 3). The implementation of this design, with the relevant
trade-off decisions made, was described in Chapter 4, and finally, performance data
measured from the system was presented in Chapter 5. The resulting design consists of a
hardware and software architecture, which is capable of executing commands supplied by
the user, and a functional prototype was built and presented at the Greentech exhibition
in Amsterdam on the 12th of June, where the machine ran for three days before the eyes
of thousands of visitors.

6.2 Contributions
The project described in this thesis was a collaborative effort, with multiple people from
different disciplines involved contributing their own ideas and implementations. Listed
below are some of the key contributions of the author of this work:

• Modelling and parametrisation of system requirements in hardware as well as soft-
ware

• Design and implementation of:

– the calibration algorithm
– ideal trajectory generation
– motor control

The Message Queuing Interface described in Section 4.2.1 is a vital part of the system
and, though the author of this work was involved in some of its developments and
actively used its architecture to implement new functions for it, its main design and
implementation was not their responsibility.

6.3. RECOMMENDATIONS FOR FUTURE WORK 51

6.3 Recommendations for future work
Although a functional prototype was observed live at the Greentech exhibition in Ams-
terdam, a significant amount of work remains to be done to prepare the machine design
for commercial success. This section provides recommendations for improving the exist-
ing implementation.

6.3.1 Calibration
As noted in Chapter 5, the broadcast method described in this work proved incapable
of handling the required amount of motors on a single bus. A temporary solution was
to hard-code the address of every motor controller, counting up from 1. Needless to
say, this is not scalable at all and violates the modularity cornerstone of the product.
Therefore, it is very important that collision detection is implemented as described in
Section 3.2.1. Furthermore, if a Proportional, Integral, Derivative (PID) approach is
opted for, an extra calibration phase should be added where the motors are sequentially
fed a step input and their resulting displacement is measured. This data could then be
used to estimate tuning parameters like in Figure 4.10. However, since this estimation
was done on a modern, multithreaded computer system in MATLAB, more research is
required to determine whether the microcontrollers used are capable of handling these
heuristic algorithms in a reasonable amount of time.

Another crucial challenge during calibration was the placement of magnets for prox-
imity sensors. Since the sensors were analogue, tuning their sensitivity was quite trou-
blesome. Perhaps a differential algorithm, looking at the rate of change of this analogue
value, would perform better, but it would still require correct alignment to a certain
extent. Since mass production is unlikely to fix this problem completely, more research
should be done to look into alternative proximity sensor implementations, perhaps even
beyond the options offered in Table 2.3.

Finally, an extra calibration phase should be introduced during which an encoder
pulse measurement determines the velocity resulting from a certain input power, as this
value will be influenced by material wear as well as irregularities in friction caused by
bolt tightness and track structure. Considering how all motors must be able to move
along the rail simultaneously, the system will then have to use the weakest link (i.e. the
motor producing the least velocity as a result from its input electrical power) to base
the maximum velocity on. Since the power supplied to each motor was proportional to
its positional difference, this calibration value could then be used as an offset to make
sure that the resulting velocity is the same for each motor. In case the value found
is significantly lower for a single motor, the main controller should report this to the
Programmable Logic Controller (PLC) to prompt the user to replace that motor or
perform maintenance on it.

6.3.2 Motor control
As was shown in Figure 5.3, the implemented motor controller was unreliable if edge cases
were not caught. Catching these should be guaranteed somewhere in the communication
hierarchy, invalidating supplied trajectories that are impossible to follow. A disadvantage

52 CHAPTER 6. CONCLUSIONS & RECOMMENDATIONS

of this is that the limited maximum velocity of a parabolic trajectory severely limits the
capabilities of the motors. Though trapezoid trajectories have a harsh start-up curve
with relatively high jerk, their intermediate state of cruise velocity could make them
a lot faster than parabolic trajectories. To combine the advantages of both, it would
likely be better to start each movement with a parabolic acceleration curve, which then
transitions into a trapezoid’s cruise velocity once the start of the trajectory has been
managed with minimum jerk. Near the end, where the downward slope of the trapezoid
velocity would be, the deceleration curve of the parabolic trajectory could then be used
again.

It is still unclear whether the poor performance of integral and derivative action in
the PID controller was caused by having overlooked some characteristic of the system
during design or implementation. While full PID control is not necessary to accurately
control the system, more research should be done to find the underlying cause of this
discrepancy.

Bibliography

[1] P. Acarnley, Stepping Motors - A Guide to Theory and Practice, 4th ed. The
Institution of Electrical Engineers, London, 2002.

[2] NEMA ICS 16, Industrial Control and Systems - Motion/Position Control Motors,
Controls, and Feedback Devices, National Electrical Manufacturers Association, 1300
N. 17th Street, Rosslyn, Virginia 22209, 2001.

[3] Communicatie protocol Transplanter, Inventeers, Le Pooleweg 7, 2314 XT Leiden,
The Netherlands, dec. 2017.

[4] CN70 - Reflective Optical Sensor with Transistor Output, Vishay Intertechnology,
Inc., 63 Lancaster Avenue Malvern, PA 19355-2143, jul. 2012.

[5] DRV5032 Ultra-Low-Power Digital-Switch Hall Effect Sensor, Texas Instruments,
Post Office Box 655303, Dallas, Texas 75265, nov. 2017.

[6] AC Servo Drives, Σ − V Series Product Catalog, Yaskawa America, Inc., 2121
Norman Drive South, Waukegan, IL 60085, may 2017.

[7] Ezi-Step Micro Stepping System, Fastech Co., Ltd., 811E Plano Parkway, Suite
110A, Plano, TX 75074, nov. 2015.

[8] QMOT Motor QSH2818 Manual, Trinamic Motion Control GmbH & Co. KG, Stern-
straße 67D - 20357 Hamburg, Germany, nov. 2007.

[9] DCX 26 L Graphite Brushes, maxon motor ag, Brünigstrasse 220, 6072 Sachseln,
Switzerland, may 2017.

[10] EC Series Slotless Brushless DC Motor EC2864, Vishan Motor, 5th Floor, building
C, Qiaotong Yuanling Industry Park, Shiyan Town, Bao’an, Shenzhen China, 2017.

[11] Thomas H. Cormen, Charles E. Leiserson, Clifford Stein, Ronald L. Rivest, Intro-
duction to Algorithms, 1st ed. Mit Press Ltd, july 2009.

[12] AT91SAM ARM-based Flash MCU, SAM4S Series - Preliminary Summary, Atmel
Corporation, 2325 Orchard Parkway, San Jose, CA 95131, jul. 2012.

[13] R. Smith. Quick reference for rs485, rs422, rs232 and rs423. [Online]. Available:
http://www.rs485.com/rs485spec.html

[14] S. Mitkin, DRAKON, the Human Revolution in Understanding Programs, oct 2011.

[15] Carlo Raoul Maria Ghioni, “A transplanting machine,” European Patent EP
1 652 418B1, 10 28, 2009. [Online]. Available: https://patents.google.com/patent/
EP1652418B1/nl

[16] C. Melchiorri, Trajectory Planning for Automatic Machines and Robots, 1st ed.
Springer-Verlag Berlin Heidelberg, 2008.

53

http://www.rs485.com/rs485spec.html
https://patents.google.com/patent/EP1652418B1/nl
https://patents.google.com/patent/EP1652418B1/nl

54 BIBLIOGRAPHY

[17] W. Ames, Numerical Methods for Partial Differential Equations, 2nd ed. Academic
Press, New York, 1977.

[18] Atmel XMEGA AU Manual, Atmel Corporation, 2325 Orchard Parkway, San Jose,
CA 95131, apr. 2013.

[19] Information Technology - Open Systems Interconnection - Basic Reference Model:
The Basic Model, ISO/IEC, nov. 1994.

[20] Gene F. Franklin, J. David Powell, Abbas Emami-Naeini, Feedback Control of Dy-
namic Systems, 6th ed. Pearson PLC, 2010.

[21] University of Michigan. Control tutorials for matlab and simulink - motor position:
System modeling. [Online]. Available: http://ctms.engin.umich.edu/CTMS/index.
php?example=MotorPosition§ion=SystemModeling

[22] The MathWorks, Inc. Designing pid controllers with pid
tuner. [Online]. Available: https://nl.mathworks.com/help/control/getstart/
designing-pid-controllers-with-the-pid-tuner-gui.html

http://ctms.engin.umich.edu/CTMS/index.php?example=MotorPosition§ion=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorPosition§ion=SystemModeling
https://nl.mathworks.com/help/control/getstart/designing-pid-controllers-with-the-pid-tuner-gui.html
https://nl.mathworks.com/help/control/getstart/designing-pid-controllers-with-the-pid-tuner-gui.html

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Background
	The Transplanter
	Principle of operation
	Weak points

	Research questions
	Thesis outline

	Requirements
	Motor requirements
	Sensor requirements
	Motor proximity sensors
	Lateral position sensors

	Communication requirements
	Calibration phase
	Operation phase

	Error detection

	Design
	Motor
	Stepper motors
	Brushed DC motors
	Brushless DC motors
	Comparison

	Communication
	Calibration
	Full operational bus communication
	Limited bus communication
	Wireless communication

	Trajectory generation
	Parabola shape
	Trapezoid shape
	Splines

	Motion control
	PID control
	Setpoint selection

	System Implementation
	Hardware
	Motor drive
	Gearing
	Motor type
	Microcontrollers

	Main controller
	PLC communication
	Motor controller communication
	Communication scenario: calibration
	Communication scenario: normal operation

	Motor controller
	Motor control
	Trajectories

	Results
	Communication
	Trajectories

	Conclusions & recommendations
	Conclusions
	Contributions
	Recommendations for future work
	Calibration
	Motor control

	Bibliography

