

Delft University of Technology

A Momentum-Guided Frank-Wolfe Algorithm

Li, Bingcong ; Coutino, Mario; Giannakis, Georgios B.; Leus, Geert

DOI
10.1109/TSP.2021.3087910
Publication date
2021
Document Version
Final published version
Published in
IEEE Transactions on Signal Processing

Citation (APA)
Li, B., Coutino, M., Giannakis, G. B., & Leus, G. (2021). A Momentum-Guided Frank-Wolfe Algorithm. IEEE
Transactions on Signal Processing, 69, 3597-3611. Article 9457128.
https://doi.org/10.1109/TSP.2021.3087910

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSP.2021.3087910
https://doi.org/10.1109/TSP.2021.3087910

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021 3597

A Momentum-Guided Frank-Wolfe Algorithm
Bingcong Li , Mario Coutiño , Student Member, IEEE, Georgios B. Giannakis , Fellow, IEEE,

and Geert Leus , Fellow, IEEE

Abstract—With the well-documented popularity of Frank Wolfe
(FW) algorithms in machine learning tasks, the present paper
establishes links between FW subproblems and the notion of mo-
mentum emerging in accelerated gradient methods (AGMs). On
the one hand, these links reveal why momentum is unlikely to
be effective for FW-type algorithms on general problems. On the
other hand, it is established that momentum accelerates FW on
a class of signal processing and machine learning applications.
Specifically, it is proved that a momentum variant of FW, here
termed accelerated Frank Wolfe (AFW), converges with a faster
rate O(1

k2) on such a family of problems, despite the same O(1
k
)

rate of FW on general cases. Distinct from existing fast convergent
FW variants, the faster rates here rely on parameter-free step sizes.
Numerical experiments on benchmarked machine learning tasks
corroborate the theoretical findings.

Index Terms—Frank Wolfe method, conditional gradient
method, momentum, accelerated method, smooth convex
optimization.

I. INTRODUCTION

W E CONSIDER efficient means of solving the following
optimization problem

min
x∈X

f(x) (1)

where f is a smooth convex function. The constraint setX ⊂ Rd

is assumed to be convex and compact, and d is the dimension
of the variable x. We denote by x∗ ∈ X a minimizer of (1).
Among problems across signal processing, machine learning,
and other areas, the constraint set X can be structured but diffi-
cult or expensive to project onto. Examples include the nuclear
norm ball constraint for matrix completion in recommender
systems [1] and the total-variation norm ball adopted in image

Manuscript received October 2, 2020; revised April 20, 2021; accepted May
31, 2021. Date of publication June 16, 2021; date of current version June
30, 2021. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Augusto Aubry. This work was supported by
the US National Science Foundation under Grant 19001134, and the European
ASPIRE project (project 14926 within the STW OTP programme), and in part
by the Netherlands Organization for Scientific Research (NWO). The work of
Mario Coutino was supported in part by CONACYT. (Corresponding author:
Georgios B. Giannakis.)

Bingcong Li and Georgios B. Giannakis are with the Department of Electrical
and Computer Engineering and the Digital Technology Center, University
of Minnesota, Minneapolis, MN 55455 USA (e-mail: lixx5599@umn.edu;
georgios@umn.edu).

Geert Leus is with the Circuits and Systems Group, Department of Mi-
croelectronics, EEMCS, Delft University of Technology, 2628 CD Delft, The
Netherlands (e-mail: g.j.t.leus@tudelft.nl).

Mario Coutiño is with the Circuits and Systems Group, Department of
Microelectronics, EEMCS, Delft University of Technology, 2628, CD Delft,
The Netherlands, and also with the Radar Technology, TNO, The Hague, The
Netherlands (e-mail: m.a.coutinominguez@tudelft.nl).

Digital Object Identifier 10.1109/TSP.2021.3087910

reconstruction tasks [2]. The computational inefficiency of the
projection, especially for a large d, impairs the applicability of
projected gradient descent (GD) [3] and projected Accelerated
Gradient Method (AGM) [4], [5].

An alternative to GD for solving (1) is the Frank Wolfe
(FW) method [6]–[8], also known as the conditional gradient
approach. FW circumvents the projection in GD by first mini-
mizing an affine function, which is the supporting hyperplane
of f(x) at xk, over X to obtain vk+1, and then updating
xk+1 as a convex combination of xk and vk+1. When dealing
with structural constraints such as nuclear norm balls and total
variation norm balls, an efficient implementation manner or even
a closed-form solution for computing vk+1 is available [7], [9],
resulting in reduced computational complexity compared with
projection steps. In addition, when initializing well, FW directly
promotes low rank (sparse) solutions when the constraint set
is a nuclear norm (�1 norm) ball [1]. Providing the easiness
in implementation and enabling structural solutions, FW is of
interest in various applications. Besides those mentioned earlier,
other examples encompass structural SVM [10], video colo-
cation [11], particle filtering [12], traffic assignment [13], and
optimal transport [14], electronic vehicle charging [15], [16],
and submodular optimization [17].

Although FW has well documented merits in several ap-
plications, it exhibits slower convergence when compared to
AGM. Specifically, FW satisfies f(xk)− f(x∗) = O(1k). This
convergence slowdown is confirmed by the lower bound, which
indicates that the number of FW subproblems to solve in order to
ensure f(xk)− f(x∗) ≤ ε, is no less than O(1ε) [7], [18]. Thus,
FW is a lower-bound-matching algorithm, in general. However,
improved FW type algorithms are possible in speedup rates for
certain subclasses of problems.

A. Related Works

There are three common approaches to select step sizes
for FW and its variants: i) line search [7]; ii) minimizing a
one-dimensional quadratic function over [0,1] for smooth step
sizes [9], [19]; and iii) parameter-free step sizes; that is, O(1k)
[7]. Most of the fast converging FW iterations rely on choices
i) or ii), which require either the smoothness parameter or the
function value of f . Step size i) is ‘clumsy’ when it is costly
to access function values, e.g., in the big data regime. Concerns
with choice ii) arise with how well the smoothness parameter is
estimated. In addition, it is challenging to select the smoothness
inducing norm, and each norm can result in a considerably
different smoothness parameter [20]. The need thus arises for
FW variants relying on parameter-free step sizes, especially

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1958-4168
https://orcid.org/0000-0003-2228-5388
https://orcid.org/0000-0002-0196-0260
https://orcid.org/0000-0001-8288-867X
mailto:lixx5599@umn.edu
mailto:georgios@umn.edu
mailto:g.j.t.leus@tudelft.nl
mailto:m.a.coutinominguez@tudelft.nl

3598 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

TABLE I
A COMPARISON OF FW VARIANTS WITH FASTER RATES

those enabling faster convergence. To this end, we first briefly
recap existing results on faster rates.

Line search. Jointly leveraging line search and ‘away steps,’
FW-type algorithms converge linearly for strongly convex prob-
lems when X is a polytope [8], [23]; see also [24], [25], and [21]
where the memory efficiency of away steps is also improved.

Smooth step sizes. If X is strongly convex, and the optimal
solution is at the boundary of X , it is known that FW converges
linearly [19]. For uniformly (and thus strongly) convex sets,
faster rates are attained when the optimal solution is at the
boundary of X [26]. When both f and X are strongly convex,
FW with the smooth step size converges at a rate of O(1

k2),
regardless of where the optimal solution resides [9]. A variant of
smooth step size along with modifications on FW jointly enable
faster rates on a strongly convex f and Gauge set X [27], at the
expense of requiring extra parameters besides the smoothness
constant.

Parameter-free step sizes. Without any parameter involved
here, there is no concern on the quality of parameter estimation,
which saves time and effort because there is no need for tuning
step sizes. Although implementation efficiency is ensured, the-
oretical guarantees are challenging to obtain. This is because
f(xk+1) ≤ f(xk) cannot be guaranteed without line search
or smooth step sizes. Faster rates for parameter-free FW are
rather limited in number. In a recent work [22], the behavior of
FW when k is large and X is a polytope is investigated under
the strong assumptions on f(x) being twice differentiable and
locally strongly convex around x∗. Hence, the analysis does
not hold for e.g., the Huber loss, which is widely used in robust
regression but is only once-differentiable. The faster rates, along
with the assumptions on f and X , are summarized in Table I for
comparison. To establish faster rates, our solution connects the
FW subproblem with Nesterov’s momentum, which is recapped
next.

Nesterov momentum. After the O(1
k2) convergence rate was

established in [3], [28], the efficiency of Nesterov momentum
is proven almost universal; see e.g., the accelerated proximal
gradient [5], [29], projected AGM [4], [5] for problems with con-
straints; accelerated mirror descent [4], [5], [30], and accelerated
variance reduction for problems with finite-sum structures [31],
[32]. Parallel to these works, AGM has been also investigated
from an ordinary differential equation (ODE) perspective [30],
[33]–[35]. However, the efficiency of Nesterov momentum on
FW type algorithms is shaded given the lower bound on the
number of subproblems [7], [18]. A means to bringing momen-
tum into FW is to adopt conditional gradient sliding (CGS) [36],

where the projection subproblem in the original AGM is sub-
stituted by gradient sliding which solves a sequence of FW
subproblems. The faster rateO(1

k2) is obtained with the price of:
i) the requirement of at most O(k) FW subproblems in the kth
iteration; and ii) an inefficient implementation (e.g., the AGM
subproblem has to be solved to certain accuracy, and it relies
on other parameters that are not necessary in FW, such as the
diameter of X).

Although parameter-free FW is undoubtedly attractive in sev-
eral applications, there are two main challenges in establishing
faster rates for such step sizes: i) even AGM and most of its
variants are not parameter-free since they involve a smoothness
parameter; and ii) parameter-free FW in general cannot ensure
per step descent, which is essential for faster rates. To overcome
these challenges, we first unveil the links between the notion of
momentum and the FW subproblem. Then, we leverage these
connections to provide provable constraint-dependent faster
rates.

B. Our Contributions

In succinct form, our contributions are as follows.
• We observe that the momentum update in AGM plays

a similar role as the subproblem in FW, intuitively and
analytically. Hence, the FW subproblem can be leveraged
to play the role of Nesterov’s momentum, thus enabling
faster rates on a useful family of problems.

• We prove that a momentum-guided FW, termed accelerated
Frank Wolfe (AFW), achieves a faster rate Õ(1

k2) on active
�p norm ball constraints without knowledge of the smooth-
ness parameter or the function value. We also establish that
AFW converges no slower than FW on general problems.

• We corroborate the numerical efficiency of AFW on two
benchmark tasks. We validate faster AFW rates on binary
classification problems with different constraint sets. We
further demonstrate that for matrix completion, AFW finds
low-rank solutions with small optimality error more rapidly
than FW.

Notation: Bold lowercase letters denote column vectors; ‖x‖
stands for the �2 norm of a vector x; and 〈x,y〉 denotes the
inner product between vectors x and y. All missing proofs can
be found in the Appendix.

II. PRELIMINARY

This section briefly reviews FW starting with the assumptions
to clarify the class of problems we are focusing on.

LI et al.: MOMENTUM-GUIDED FRANK-WOLFE ALGORITHM 3599

Algorithm 1: FW [6].

1: Initialize: x0 ∈ X , δk = 2
k+2 , ∀k.

2: for k = 0, 1, . . . ,K − 1 do
3: vk+1 = arg minx∈X 〈∇f(xk),x〉
4: xk+1 = (1− δk)xk + δkvk+1

5: end for
6: Return: xK

Assumption 1: (Lipschitz Continuous Gradient.) The func-
tion f : Rd → R has L-Lipchitz continuous gradients; that is,
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rd.

Assumption 2: (Convex Objective Function.) The function
f : Rd → R is convex; that is, f(y)− f(x) ≥ 〈∇f(x),y −
x〉, ∀x,y ∈ Rd.

Assumption 3: (Constraint Set.) The constraint set X is
convex and compact with diameter D, that is, ‖x− y‖ ≤
D, ∀x,y ∈ X .

Assumptions 1–3 are standard for FW type algorithms, and
they are assumed to hold true throughout.

FW is summarized in Alg. 1. A subproblem with a linear loss
needs to be solved to obtain vk+1 per iteration. This subproblem
is also referred to as an FW step, and it admits a geometrical
explanation. In particular, vk+1 can be rewritten as

vk+1 = arg min
x∈X

f(xk) + 〈∇f(xk),x− xk〉. (2)

Noticing that the RHS of (2) is a supporting hyperplane of f(x)
as xk, it is thus clear that vk+1 is a minimizer of this supporting
hyperplane over X . Note also that the supporting hyperplane in
(2) is also a global lower bound of f(x) due to the convexity of
f , i.e., f(x) ≥ f(xk) + 〈∇f(xk),x− xk〉. Upon minimizing
this lower bound in (2) to obtain vk+1, xk+1 is updated as a
convex combination of vk+1 and xk to eliminate the projection.

Next, we briefly recap the step sizes for FW to gain insights
on why the parameter-free FW is challenging to analyze.

Smooth step size. At the kth iteration, the step size δk in Alg. 1
is obtained as

δk = arg min
δ∈[0,1]

δ〈∇f(xk),vk+1 − xk〉+ δ2 L

2
‖vk+1 − xk‖2.

Clearly, it is imperative to estimate L accurately because this
estimate markedly influences the performance. It has also been
argued that algorithms relying on a guess ofL are not robust [37].
Tuning to find the ‘best’L is employed in practice to optimize the
performance empirically. On the other hand, smooth step sizes
ensure descent per iteration, which is analytically attractive.
Indeed, Assumption 1 implies that

f(xk+1)− f(xk)

≤ 〈∇f(xk),xk+1 − xk〉+ L

2
‖xk+1 − xk‖2

(a)
= δk〈∇f(xk),vk+1 − xk〉+ δ2k L

2
‖vk+1 − xk‖2

(b)

≤ 0 (3)

where (a) uses xk+1 = (1− δk)xk + δkvk+1, and (b) holds
because δk minimizes the RHS of (3) over [0,1].

Algorithm 2: AGM [3].

1: Initialize: x0=v0, δk= 2
k+2 , μ0=L,

μk+1=(1− δk)μk.
2: for k = 0, 1, . . . ,K − 1 do
3: yk = δkvk + (1− δk)xk

4: xk+1 = yk − 1
L∇f(yk)

5: vk+1 = vk − δk
μk+1

∇f(yk)

6: end for
7: Return: xK

Line search. An alternative to tune for the best L is to employ
line search for determining the local smoothness parameter. In
particular, the step size is chosen as δk = arg minδ∈[0,1]f((1−
δ)xk + δvk+1). However, the price paid is the need to compute
f(x), which is inefficient when function evaluation is costly
(e.g., in big-data regimes). Note that f(xk+1) ≤ f(xk) is auto-
matically ensured by line search.

Parameter-free step size. This type of step sizes does not rely
on L or other parameters, and hence it is extremely easy to
implement. Two possible choices are δk = 2

k+2 or δk = 1
k+1 .

However, these step sizes do not guarantee descent per iteration,
which becomes the bottleneck for establishing faster rates on
specific constraint sets. Our insight to overcome this comes from
the observation that the FW step is similar to the momentum in
AGM for convex problems. Hence, the FW step itself can be
used as an approximate momentum.

III. CONNECTING MOMENTUM WITH FW

To bring intuition on how momentum can be helpful for FW
type algorithms, we first recap AGM for unconstrained convex
problems, i.e., X = Rd. Note that the reason for discussing
the unconstrained problem here is only for the simplicity of
exposition, and one can extend the arguments to constrained
cases straightforwardly. AGM [3], [4], [28] is summarized in
Alg. 2. We start this section by characterizing the behavior of
{xk}, {yk} and {vk} in the next theorem.

Theorem 1: Under Assumptions 1 and 2, with δk = 2
k+3 ,

μ0 = 2 L, and μk+1 = (1− δk)μk, AGM in Alg. 2 guarantees
that

f(xk)− f(x∗) = O
(
f(x0)− f(x∗) + L‖x0 − x∗‖2

k2

)
, ∀k.

‖∇f(yk)‖2 ≤ O
(
L
(
f(x0)− f(x∗) + L‖x0 − x∗‖2)

(k + 2)2

)
, ∀k.

In addition, it holds for any k that ‖vk − x∗‖2 ≤ 1
L (f(x0)−

f(x∗) + L‖x0 − x∗‖2).
Theorem 1 shows that ‖∇f(yk)‖2 = O(1

k2), which implies
that yk also converges to a minimizer as k → ∞. Through the
increasing step size δk

μk+1
= O(kL), the update of vk stays in the

ball centered at x∗ with radius depending on both x∗ and x0.
One observation of AGM is that by substituting Line 5 in

Alg. 2 with vk+1 = xk+1, the modified algorithm boils down to
GD. Hence, it is clear that the key behind AGM’s acceleration
is vk and the way it is updated. We contend that the vk+1 is

3600 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Fig. 1. Similarity between the RHS of (2) and (4).

obtained by minimizing an approximated lower bound of f(x)
formed as the summation of a supporting hyperplane at yk and
a regularizer. To see this, one can rewrite Line 5 of AGM as

vk+1=arg min
x∈Rd

f(yk) + 〈∇f(yk),x− yk〉︸ ︷︷ ︸
supporting hyperplane

+
μk+1

2δk
‖x− vk‖2︸ ︷︷ ︸

regularizer

(4)

where the linear part is the supporting hyperplane, and μk+1

δk
=

O(Lk). As k increases, the impact of the regularizer μk+1

2δk
‖x−

vk‖2 in (4) will become limited. Thus the RHS can be viewed
as an approximated lower bound of f(x). Regarding the rea-
sons to put a regularizer after the supporting hyperplane, it
first guarantees the minimizer exists since directly minimize
the supporting hyperplane over Rd yields no solution. In ad-
dition, vk+1 is ensured to be unique because the RHS of (4)
is strongly convex thanks to the regularizer. Since vk+1 min-
imizes an approximated lower bound of f(x), it can be used
to estimate f(x∗). We explain in Theorem 4 in Appendix B
that f(yk) + 〈∇f(yk),vk+1 − yk〉 approximates f(x∗). Con-
sequently, one can obtain an estimated suboptimality gap using
f(xk+1)− f(yk)− 〈∇f(yk),vk+1 − yk〉.

Momentum vk update as an FW step. It is observed that
vk+1 in both FW and AGM (cf. (2) and (4)) are obtained by
minimizing an (approximated) lower bound of f(x), where the
only difference lies on whether a regularizer with decreasing
weights is utilized. The similarity between the RHS of (2) and
(4) will be amplified when k is large; see Fig. 1 for a graphical
illustration on how (4) approaches to an affine function. In
other words, the momentum update in (4) becomes similar to
an FW step for a large k. In addition, there are also several other
connections.

Connection 1. The vk+1 update via (4) is equivalent to

vk+1 = arg min
v∈Vk

〈∇f(yk),v − yk〉 (5)

for Vk := {v|‖v − vk‖2 ≤ rk} with rk denoting the time-
varying radius of the norm ball. Clearly, rk depends on μk+1

2δk
,

and it is upper bounded by 2
L (f(x0)− f(x∗) + L‖x0 − x∗‖2)

according to Theorem 1. By rewriting (4) in its constrained
form (5), it can be readily recognized that for unconstrained
problems Nesterov momentum can be obtained via FW steps
with time-varying constraint sets.

Algorithm 3: AFW.

1: Initialize: x0 = v0 ∈ X , θ0 = 0, δk = 2
k+3 , ∀k.

2: for k = 0, 1, . . . ,K − 1 do
3: yk = (1− δk)xk + δkvk

4: θk+1 = (1− δk)θk + δk∇f(yk)
5: vk+1 = arg minx∈X 〈θk+1,x〉
6: xk+1 = (1− δk)xk + δkvk+1

7: end for
8: Return: xK

Connection 2. Recall that in AGM, vk+1 obtained via (4) is
used to construct an approximation of f(x∗), which is f(yk) +
〈∇f(yk),vk+1 − yk〉. When a compact X is present, directly
minimizing the supporting hyperplane f(yk) + 〈∇f(yk),x−
yk〉 over X also yields an estimate of f(x∗). Note that the latter
is exactly an FW step. In addition, the FW step in Alg. 1 also
results in a suboptimality gap (known as FW gap; see e.g., [7]),
which is in line with the role of vk in AGM. In a nutshell, both
FW step and momentum update in AGM result in an estimated
suboptimality gap.

Connection 3. Connections between momentum and FW go
beyond convexity. We discuss in Appendix C that AGM for
strongly convex problems updates its momentum using exactly
the same idea of FW, that is, both obtain a minimizer of a lower
bound of f(x), and then perform an update through a convex
combination.

These links and similarities between momentum and FW
naturally lead us to explore their connections, and see how
momentum influences FW.

IV. MOMENTUM-GUIDED FW

In this section we show that the momentum is beneficial for
FW by proving that it is effective at least on certain constraint
sets. Specifically, we will focus on the accelerated Frank Wolfe
(AFW) summarized in Alg. 3, and analyze its convergence
rate. Since we will see later that δk = 2

k+3 ∈ (0, 1), ∀k, for
which yk, vk and xk lie in X for all k, AFW is projection
free. Albeit rarely, it is safe to choose vk+1 = vk, and proceed
when θk+1 = 0. Note that the xk+1 update in AFW is slightly
different with that of AGM. This is because AGM guaran-
tees f(xk+1) ≤ f(yk), ∀k, taking advantage of the known L.
However, the same guarantee is difficult to be replicated in a
parameter-free algorithm.

The key to AFW is the vk+1 update, which plays the role
of momentum. To see this, if one unrolls θk+1 (cf. (22) in
Appendix) and plugs it into Line 5 of Alg. 3, vk+1 can be
equivalently rewritten as

vk+1 = arg min
x∈X

k∑
τ=0

wτ [f(yτ) + 〈∇f(yτ),x− yτ 〉] (6)

where wτ = δτ
∏k

j=τ+1(1− δj) and
∑k

τ=0 wτ ≈ 1 (the exact
value of the sum depends on the choice of δτ). Note that
f(yτ) + 〈∇f(yτ),x− yτ 〉 is a supporting hyperplane of f(x)
at yτ , hence the right-hand side (RHS) of (6) is a lower bound

LI et al.: MOMENTUM-GUIDED FRANK-WOLFE ALGORITHM 3601

for f(x) constructed through a weighted average of supporting
hyperplanes at {yτ}. In other words, vk+1 is a minimizer of a
lower bound of f(x), hence it is in line with the role of momen-
tum. However, the momentum in AFW differs from AGM in two
aspects. First, instead of relying on ∇f(yk), the update of vk+1

utilizes coefficient θk+1, which is (roughly) a weighted average
of past gradients {∇f(yτ)}kτ=1 with more weight placed on
recent ones. The second difference on the vk+1 update with
AGM is whether a regularizer is used. As a consequence of the
non-regularized lower bound (6), its minimizer is not guaranteed
to be unique. A simple example is to consider the ith entry
[θk+1]i = 0. The ith entry [vk+1]i can then be chosen arbitrarily
as long asvk+1 ∈ X . This subtle difference leads to a significant
gap between the performance of AFW and AGM, that is, AFW
cannot achieve acceleration on general problems, as will be
illustrated shortly. However, we confirm that momentum is still
helpful since it is effective on a class of problems.

A. AFW Convergence for General Problems

The analysis of AFW relies on a tool known as estimate
sequence (ES) introduced by [3]. ES is commonly adopted to
analyze projection based algorithms; see e.g., [31], [32], [38],
[39], but seldomly used for FW. Formally, ES is defined as
follows.

Definition 1: (ES.) A tuple ({Φk(x)}∞k=0, {λk}∞k=0) is called
an estimate sequence of function f(x) if limk→∞ λk = 0, and
for any x ∈ Rd we have

Φk(x) ≤ (1− λk)f(x) + λkΦ0(x).

ES is generally not unique and different constructions can
be used to design different algorithms. To highlight our analysis
technique, recall that quadratic surrogate functions {Φk(x)} are
used for the derivation of AGM [3] (or see (12) in Appendix).
Different from AGM, and taking advantage of the compact
constraint set, here we consider linear surrogate functions for
AFW

Φ0(x) ≡ f(x0) (7a)

Φk+1(x) = (1− δk)Φk(x)

+ δk
[
f(yk) +

〈∇f(yk),x− yk

〉]
, ∀ k ≥ 0. (7b)

Evidenced by the terms in the bracket of (7b), i.e., it is a
supporting hyperplane of f(x), Φk+1(x) is an approximated
lower bound of f(x) constructed by weighting the supporting
hyperplanes at {yτ}kτ=0. Next, we show that (7) together with
proper {λk} forms an ES for f . Through the ES based proof, it
is also revealed that the link between the momentum in AGM
and the FW step is also in the technical proof level.

Lemma 1: With λ0 = 1 and λk = λk−1(1− δk−1), the tuple
({Φk(x)}∞k=0, {λk}∞k=0) in (7) is an ES of f(x).

Using properties of the functions in (7) (cf. Lemma 4 in
Appendix E), the following lemma holds for AFW.

Lemma 2: With Φ∗
k := minx∈X Φk(x), AFW is guaranteed

to satisfy f(xk+1) ≤ Φ∗
k+1 + ξk+1, ∀ k, where ξk+1 = (1−

δk)ξk +
Lδ2k
2 ‖vk+1 − vk‖2 and ξ0 = 0.

Leveraging Lemma 2, the convergence rate of AFW for
general problems can be established.

Theorem 2: When Assumptions 1, 2 and 3 are satisfied, upon
choosing δk = 2

k+3 and θ0 = 0, AFW guarantees

f(xk)− f(x∗) ≤ 2 (f(x0)− f(x∗))
(k + 1)(k + 2)

+
2LD2

k + 2
, ∀ k.

Theorem 2 asserts that the convergence rate of AFW is
O(LD2

k), coinciding with that of FW [7]. Notwithstanding,
AFW is tight in terms of the number of FW steps required. To
see this, note that the convergence rate in Theorem 2 translates to
requiring O(LD2

ε) FW steps to guarantee f(xk)− f(x∗) ≤ ε.
This matches the lower bound [7], [40]. Similar to other FW
variants, acceleration for AFW cannot be claimed for general
problems. AFW however, is attractive numerically because it
can alleviate the zig-zag behavior1 of FW, as we will see in
Section V.

Why acceleration cannot be achieved in general? Recall
from Lemma 2, that critical to acceleration is ensuring a small
ξk, which in turn requires vk+1 and vk to stay sufficiently close.
This is difficult in general because the non-uniqueness ofvk pre-
vents one from ensuring a small upper bound of ‖vk − vk+1‖2
∀ vk, ∀ vk+1. The ineffectiveness of momentum in AFW in
turn signifies the importance of the added regularizer in AGM
momentum update (4).

B. AFW Acceleration for a Class of Problems

In this subsection, we provide constraint-dependent acceler-
ated rates of AFW when X is a ball induced by some norm.
Even for projection based algorithms, most accelerated rates are
obtained with L-dependent step sizes [41]. Thus, faster rates for
parameter-free algorithms are challenging to establish. An extra
assumption is needed in this subsection.

Assumption 4: The constraint is active; that is, ‖∇f(x∗)‖2 ≥
G > 0.

To analyze convergence of FW iterations, it is reasonable
to rely on the position of the optimal solution, which justifies
why this assumption is also adopted in [19], [26], [42], [43].
For a number of signal processing and machine learning tasks,
Assumption 4 is rather mild. Relying on Lagrangian duality,
it can be seen that problem (1) with a norm ball constraint is
equivalent to the regularized formulation minx f(x) + γg(x),
where γ ≥ 0 is the Lagrange multiplier, and g(x) denotes some
norm. In view of this, Assumption 4 simply requires γ > 0 in
the equivalent regularized formulation, that is, the norm ball
constraint plays the role of a regularizer. Given the prevalence
of regularized formulations, it is worth investigating their equiv-
alent constrained form (1) under Assumption 4. Next, we will
use the �2 norm ball constraints to illustrate the intuition behind
the acceleration.
�2 norm ball constraint. Consider X := {x|‖x‖2 ≤ D

2 }. In
this case, vk+1 admits a closed-form solution

vk+1 = arg min
x∈X

〈θk+1,x〉 = − D

2‖θk+1‖2 θk+1. (8)

The uniqueness of vk+1 is ensured by its closed-form solution,
wiping out the obstacle for a faster rate. In addition, through

1The change between f(xk+1) and f(xk) is large with high frequency, so
zig-zag emerges when plotting f(xk)− f(x∗) versus k.

3602 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

(8) it becomes possible to guarantee that vk+1 and vk are close
whenever θk is close to θk+1.

Theorem 3: If Assumptions 1, 2, 3 and 4 are satisfied, and
X is an �2 norm ball, choosing δk = 2

k+3 and θ0 = 0, AFW
guarantees acceleration with convergence rate

f(xk)− f(x∗) = O
(
min

{
LD2 T + C ln k

k2
,
LD2

k

})
where C and T are constants depending on L, D and G.

Theorem 3 demonstrates that momentum improves the con-
vergence of FW by providing a faster rate. Roughly speaking,
when the iteration number k ≥ T , the rate of AFW dominates
that of FW. We note that this matches our intuition, that is, the
momentum in AGM (4) only behaves like an affine function
when k is large (so that the weight on the regularizer is small).
In addition, the rate in Theorem 3 can be written compactly
as Õ(TLD2

k2), ∀k, hence it achieves acceleration with a worse
dependence on D compared to vanilla FW. Note that the choice
for δk andθ0 remains the same as those used in general problems,
leading to an identical implementation to non-accelerated cases.
Compared with CGS, AFW sacrifices the D dependence in
the convergence rate to trade for i) the nonnecessity of the
knowledge ofL andD, and ii) ensuring only one FW subproblem
per iteration (whereas at most O(k) subproblems are needed in
CGS).
�1 norm ball constraint. For the sparsity-promoting con-

straint X := {x|‖x‖1 ≤ R}, the FW steps can be solved in
closed form. Taking vk+1 as an example, we have

vk+1 = R · [0, . . . , 0,−sgn[θk+1]i, 0, . . . , 0]
�

with i = arg max
j

|[θk+1]j |. (9)

We show in the Appendix (Theorem 5) that when Assumption 4
holds and the set arg maxj

∣∣[∇f(x∗)]j
∣∣ has cardinality 1, a faster

rate O(T1LD2

k2) can be obtained. The additional assumption here
is known as strict complementarity, and has been adopted also
in, e.g., [44], [45] for analysis.
�p norm ball constraint. Consider an active �p norm ball

constraintX := {x|‖x‖p ≤ R}, where p ∈ (1,+∞) and p �= 2.
The i-th entry of vk+1 is found in closed form as

[vk+1]i = −[θk+1]i

∣∣[θk+1]i
∣∣q−2

‖θk+1‖q−1
q

·R

where 1/p+ 1/q = 1. We discuss in Appendix B that faster
rates are possible under mild conditions. Though not covering
all cases, it still showcases that the momentum is partially helpful
for parameter-free FW algorithms.

Beyond �p norm balls. In general, when a specific structure
of x∗ (e.g., sparsity) is promoted by X (so that x∗ is likely
to live on the boundary), and one can ensure the uniqueness
of vk through either a closed-form solution or a specific im-
plementation, acceleration can be effected. A direct extension
of the results in this subsection to matrix space is when the
constraint is a Schatten �p norm ball. This is because ‖X‖p :=
‖σ1(X), σ2(X), . . . , σr(X)‖p, whereσi(X) denotes the ith sin-
gular value of X. Our numerical results confirm the acceleration
in Section V-B.

TABLE II
A SUMMARY OF DATASETS USED IN NUMERICAL TESTS

Fig. 2. Performance of AFW when the optimal solution is at interior.

V. NUMERICAL TESTS

We validate our theoretical findings as well as the efficiency
of AFW on two benchmarked machine learning problems, bi-
nary classification and matrix completion in this section. All
numerical experiments are performed using Python 3.7 on a
desktop equipped with Intel i7-4790 CPU @3.60 GHz (32 GB
RAM). Additional numerical tests using other loss functions and
constraints can be found in Appendix L.

A. Binary Classification

Logistic regression for binary classification is adopted to test
AFW. The objective function is

f(x) =
1

n

n∑
i=1

ln (1 + exp(−bi〈ai,x〉)) (10)

where (ai, bi) is the (feature, label) pair of datum i and n is the
total number of data samples. Datasets from LIBSVM.2 are used
in the numerical tests presented. Details regarding the datasets
are summarized in Table II, where d is the dimension of x, n is
the number of data, and ‘nonzeros’ refers to the percentage of
nonzero entries in {ai}ni=1 to reflect the sparsity of the dataset.
The constraint sets considered include �1 and �2 norm balls. As
benchmarks, the chosen algorithms are: projected GD with the
standard step size 1

L ; parameter-free FW with step size 2
k+2 [7];

and projected AGM with parameters according to [4]. The step
size of AFW is δk = 2

k+3 according to Theorems 2 and 3. Note
that both GD and AGM are not parameter-free.

We first let X be an �2 norm ball with a large enough radius
so that ‖∇f(x∗)‖ ≈ 10−4. This case maps to our result in
Theorem 2, where the convergence rate of AFW is O(1k). The
performance of AFW is shown in Fig. 2. On dataset a9a, AFW
slightly outperforms GD and FW, but is slower than AGM.

2[Online]. Available: https://www.csie.ntu.edu.tw/\;cjlin/libsvmtools/
datasets/binary.html

https://www.csie.ntu.edu.tw/LY1	extbackslash ;cjlin/libsvmtools/datasets/binary.html

LI et al.: MOMENTUM-GUIDED FRANK-WOLFE ALGORITHM 3603

Fig. 3. Performance of AFW on �2 norm balls (first row) and �1 norm balls (second row).

Evidently, AFW is much more stable than FW, as one can see
from the shaded areas that illustrate the zig-zag range.

Next, we consider active �2 norm ball constraints, where the
diameter of X is chosen to maximize the generalization error
on the validation dataset. In this case, our result in Theorem
3 applies and AFW achieves an Õ(1

k2) convergence rate. The
performance of AFW is listed in the first row of Fig. 3. In all
tested datasets, AFW significantly improves over FW, while
on datasets other than covtype, AFW also outperforms AGM,
especially on mushroom.

When the constraint set is an �1 norm ball, the performance of
AFW is depicted in the second row of Fig. 3. It can be seen that on
datasets such as covtype and mnist, AFW exhibits performance
similar to AGM, which is significantly faster than FW. While on
dataset mushroom, AFW converges even faster than AGM. Note
that comparing AFW with AGM is not fair since each FW step
requires d operations at most, while projection onto an �1 norm
ball in [46] takes cd operations for some c > 1. This means that
for the same running time, AFW will run more iterations than
AGM. We stick to this unfair comparison to highlight how the
optimality error of AFW and AGM evolves with k.

B. Matrix Completion

We then consider matrix completion problems that are ubiq-
uitous in recommender systems. Consider a matrix A ∈ Rm×n

with partially observed entries, that is, entries Aij for (i, j) ∈ K
are known, where K ⊂ {1, . . . ,m} × {1, . . . , n}. Note that the
observed entries can also be contaminated by noise. The task is to
predict the unobserved entries of A. Although this problem can
be approached in several ways, within the scope of recommender
systems, a commonly adopted empirical observation is that A
is low rank [47]–[49]. Hence the problem to be solved is

min
X

1

2

∑
(i,j)∈K

(Xij −Aij)
2 s.t. ‖X‖∗ ≤ R (11)

Fig. 4. Performance of AFW for matrix completion problems.

where ‖X‖∗ denotes the nuclear norm of X, and it is leveraged
to promote a low rank solution. Problem (11) is difficult to be
solved via GD or AGM because projection onto a nuclear norm
ball is expensive. On the contrary, FW and its variants are more
suitable for (11) given that FW step can be solved easily and the
update promotes low-rank solution directly [1].

We test AFW and FW on a widely used dataset, Movie-
Lens100 K3, where 1682 movies are rated by 943 users with
6.30% percent ratings observed. And the initialization and data
processing are the same as those used in [1]. The numerical
performance can be found in Fig. 4. In subfigures (a) and (b), we
plot the optimality error and rank versus k choosing R = 3. The
choice ofR is based on the number of different movie categories.
It is observed that AFW exhibits improvement in terms of both
optimality error and rank of the solution. In particular, AFW
roughly achieves 1.4x performance improvement compared with
FW in terms of optimality error, and finds solutions with much
lower rank.

3[Online]. Available: https://grouplens.org/datasets/movielens/100\;k/

https://grouplens.org/datasets/movielens/100LY1	extbackslash ;k/

3604 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

VI. CONCLUSION

We built links between the momentum in AGM and the FW
step by observing that they are both minimizing an (approxi-
mated) lower bound of the objective function. Exploring this
link, we show how momentum benefits parameter-free FW. In
particular, a momentum variant of FW, which we term AFW, was
proved to achieve a faster rate on active �p norm ball constraints
while maintaining the same convergence rate as FW on general
problems. AFW thus strictly outperforms FW providing the
possibility for acceleration. Numerical experiments validate our
theoretical findings, and suggest AFW is promising for binary
classification and matrix completion.

APPENDIX

A. Proof of Theorem 1

The convergence on xk is given in [41], and hence we do not
repeat here. Next we show the behavior of yk and vk.

We use the same surrogate functions with those in [41], i.e.,

Φ0(x) = Φ∗
0 +

μ0

2
‖x− x0‖2 (12a)

Φk+1(x) = (1− δk)Φk(x)

+ δk
[
f(yk) +

〈∇f(yk),x− yk

〉]
, ∀ k ≥ 0.

(12b)

In [41], it is shown that with λ0 = 1 and λk = λk−1(1− δk−1),
the tuple ({Φk(x)}∞k=0, {λk}∞k=0) is an ES of f(x). In addition,
it is also shown that Φk+1(x) can be rewritten as Φk(x) =
Φ∗

k + μk

2 ‖x− vk‖2, where μk+1 = (1− δk)μk, and f(xk) ≤
Φ∗

k = minx Φk(x). We will use these conclusions directly. Re-
arranging the terms in Φk(x) = Φ∗

k + μk

2 ‖x− vk‖2, we arrive
at

1

2
‖x− vk‖2 =

1

μk
(Φk(x)− Φ∗

k)

=
1

μk
(Φk(x)− f(x) + f(x)− Φ∗

k)

(a)

≤ λk

μk
[Φ0(x)− f(x)] +

1

μk
[f(x)− f(xk)]

=
1

2 L
[Φ0(x)− f(x)] +

1

μk
[f(x)− f(xk)]

where (a) is because Φk(x)− f(x) ≤ λk(Φ0(x)− f(x)) by
Definition 1, and f(xk) ≤ Φ∗

k shown in [3]. Choosing x as x∗,
we arrive at

1

2
‖x∗ − vk‖2

≤ 1

2 L
[Φ0(x

∗)− f(x∗)]− 1

μk
[f(xk)− f(x∗)]

≤ 1

2 L
[Φ0(x

∗)− f(x∗)] , ∀k.
This further implies

‖x∗ − vk‖2 ≤ 1

L
[Φ0(x

∗)− f(x∗)] , ∀k. (13)

Hence the behavior of vk in Theorem 1 is proved.

To prove the convergence of yk, the following inequality is
true as a result of (13)

‖vk+1 − vk‖ ≤ ‖vk+1 − x∗‖+ ‖x∗ − vk‖

≤ 2

√
1

L
[Φ0(x∗)− f(x∗)].

Next, we link ∇f(yk) and vk+1 − vk through the update
vk+1 = vk − δk

μk+1
∇f(yk) to get

‖vk+1 − vk‖2 =
(k + 2)2

4 L2
‖∇f(yk)‖2

≤ 4

L
[Φ0(x

∗)− f(x∗)] , ∀k.
Rearranging the terms we can obtain the convergence of
‖∇f(yk)‖2, that is,

‖∇f(yk)‖2 ≤ 16 L

(k + 2)2
[Φ0(x

∗)− f(x∗)] .

Plugging Φ0(x
∗) = f(x0) + L‖x0 − x∗‖2 in completes the

proof.

B. f(yk) + 〈∇f(yk),vk+1−yk〉 Approximates f(x∗)

We show next that a weighted version of f(yk) +
〈∇f(yk),vk+1−yk〉 is no larger then f(x∗) +O(1

k2) to elab-
orate that f(yk) + 〈∇f(yk),vk+1−yk〉 is (almost) an under-
estimate of f(x∗).

Theorem 4: If Assumptions 1 and 2 hold, and we choose
μk+1

δk
= 2 L

k+2 ; and per iteration k, we let w(τ)
k = 2(τ+2)

k(k+3) for τ =

0, 1, . . . , k − 1, then i)
∑k−1

τ=0 w
(τ)
k = 1; and, ii)

k−1∑
τ=0

w
(τ)
k [f(yτ) + 〈∇f(yτ),vτ+1 − yτ 〉]− f(x∗)

≤ 2 L‖x0 − x∗‖2
k(k + 3)

.

Proof: It is easy to verify that
∑k−1

τ=0 w
(τ)
k = 1. Next we have

f(yk) + 〈∇f(yk),vk+1 − yk〉
= f(yk) + 〈∇f(yk),vk+1 − x∗〉+ 〈∇f(yk),x

∗ − yk〉
(a)

≤ f(x∗) + 〈∇f(yk),vk+1 − x∗〉
= f(x∗) +

μk+1

δk
〈vk − vk+1,vk+1 − x∗〉

(b)
= f(x∗) +

μk+1

2δk

[‖x∗ − vk‖2

−‖x∗ − vk+1‖2 − ‖vk+1 − vk‖2
]

(c)
= f(x∗) +

L

k + 2

[‖x∗ − vk‖2

−‖x∗ − vk+1‖2 − ‖vk+1 − vk‖2
]

(14)

where (a) follows from the convexity of f , that is,
〈∇f(yk),x

∗ − yk〉 ≤ f(x∗)− f(yk); (b) uses 2〈a,b〉 = ‖a+
b‖2 − ‖a‖2 − ‖b‖2; and (c) is by plugging the value of μk+1

δk
in. Now, if we define dk := f(yk) + 〈∇f(yk),vk+1 − yk〉 −

LI et al.: MOMENTUM-GUIDED FRANK-WOLFE ALGORITHM 3605

f(x∗), rearranging (14), we get

(k + 2)dk

≤ L
[‖x∗ − vk‖2 − ‖x∗ − vk+1‖2

]− L‖vk+1 − vk‖2

≤ L
[‖x∗ − vk‖2 − ‖x∗ − vk+1‖2

]
Summing over k (and recalling v0 = x0), we arrive at

k−1∑
τ=0

(τ + 2)dτ ≤ L
[‖x∗ − v0‖2 − ‖x∗ − vk‖2

]
≤ L‖x∗ − x0‖2.

By the definition of w(τ)
k , which is w(τ)

k = 2(τ+2)
k(k+3) , we obtain

k−1∑
τ=0

w
(τ)
k dτ ≤ 2 L‖x∗ − x0‖2

k(k + 3)
(15)

which completes the proof. �

C. AGM Links With FW in Strongly Convex Case

We showcase the connection between the momentum update
of AGM in strongly convex case and FW. We first formally define
strong convexity, which is used in this subsection only.

Assumption 5: (Strong convexity.) The function f : Rd → R
isμ-strongly convex; that is, f(y)− f(x) ≥ 〈∇f(x),y − x〉+
μ
2 ‖y − x‖2, ∀x,y ∈ Rd.

Under Assumptions 1 and 5, the condition number of f is
κ := L

μ . To cope with strongly convex problems, Lines 4 – 6 in
AGM (Alg. 2) should be modified to [3]

yk =
1

1 + δ
xk +

δ

1 + δ
vk (16a)

xk+1 = yk − 1

L
∇f(yk) (16b)

vk+1 = (1− δ)vk + δyk − δ

μ
∇f(yk). (16c)

where δ = 1√
κ

. Here vk+1 in (16c) denotes the momentum and
thus plays the critical role for acceleration. To see how vk+1 is
linked with FW, we will rewrite vk+1 as

zk+1 = arg min
x

f(yk) + 〈∇f(yk),x− yk〉+ μ

2
‖x− yk‖2

= yk − 1

μ
yk (17a)

vk+1 = (1− δ)vk + δzk+1 (17b)

Notice that zk+1 is the minimizer of a lower bound of f(x) (due
to strongly convexity). Therefore, the vk+1 update is similar
to FW in the sense that it first minimizes a lower bound of
f(x), then update through convex combination (cf Alg. 1). This
demonstrates that the momentum update in AGM shares the
same idea of FW update.

A few basic lemmas for all the proofs in Section IV are
provided below.

D. Proof of Lemma 1

Proof: We show this by induction. Because λ0 = 1, it holds
thatΦ0(x) = (1− λ0)f(x) + λ0Φ0(x) = Φ0(x). Suppose that

Φk(x) ≤ (1− λk)f(x) + λkΦ0(x) is true for some k. We have

Φk+1(x) = (1− δk)Φk(x) + δk
[
f(yk) +

〈∇f(yk),x− yk

〉]
(a)

≤ (1− δk)Φk(x) + δkf(x)

≤ (1− δk) [(1− λk)f(x) + λkΦ0(x)] + δkf(x)

= (1− λk+1)f(x) + λk+1Φ0(x)

where (a) is because the convexity off ; and the last equation is by
definition of λk+1. Together with the fact that limk→∞ λk = 0,
the tuple ({Φk(x)}∞k=0, {λk}∞k=0) satisfies the definition of an
estimate sequence. �

E. A Few Useful Lemmas

Lemma 3: For {Φk(x)} in (7), if f(xk) ≤ minx∈X Φk(x) +
ξk, it is true that

f(xk)− f(x∗) ≤ λk (f(x0)− f(x∗)) + ξk, ∀ k.
Proof: If f(xk) ≤ minx∈X Φk(x) + ξk holds, then we have

f(xk) ≤ min
x∈X

Φk(x) + ξk ≤ Φk(x
∗) + ξk

≤ (1− λk)f(x
∗) + λkΦ0(x

∗) + ξk

where the last inequality is because Definition 1. Subtracting
f(x∗) on both sides, we arrive at

f(xk)− f(x∗) ≤ λk (Φ0(x
∗)− f(x∗)) + ξk

= λk (f(x0)− f(x∗)) + ξk

which completes the proof. �
Lemma 4: Let v0 = x0, θ0 = 0, Φ∗

0 = f(x0), then Φk+1(x)
in (7) can be rewritten as

Φk+1(x) = Φ∗
k+1 + 〈x− vk+1,θk+1〉 (18)

with

θk+1 = δk∇f(yk) + (1− δk)θk (19a)

vk+1 := arg min
x∈X

Φk+1(x) = arg minx∈X 〈x,θk+1〉 (19b)

Φ∗
k+1 := min

x∈X
Φk+1(x) = Φk+1(vk+1)

= (1− δk)Φ
∗
k + δkf(yk) + (1− δk)〈θk,vk+1 − vk〉

+ δk〈∇f(yk),vk+1 − yk〉. (19c)

Proof: We prove this lemma by induction. First Φ0(x) =
Φ∗

0 + 〈x− v0,θ0〉 ≡ f(x0). From (7) it is obvious thatΦk(x) is
linear inx, and hence suppose thatΦk(x) = Φ∗

k + 〈x− vk,θk〉
holds for some k. Then we will show that Φk+1(x) = Φ∗

k+1 +
〈x− vk+1,θk+1〉 is true. Consider that

Φk+1(x)

= (1− δk)Φk(x) + δk
[
f(yk) +

〈∇f(yk),x− yk

〉]
= (1− δk)Φ

∗
k + (1− δk)〈x− vk,θk〉+ δkf(yk)

+ δk
〈∇f(yk),x− yk

〉
= (1− δk)Φ

∗
k + δkf(yk) +

〈
x, (1− δk)θk + δk∇f(yk)

〉
− (1− δk)〈vk,θk〉 − δk

〈∇f(yk),yk

〉
. (20)

3606 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Clearly, since Φk+1(x) is linear in x, the slope is θk+1 :=
(1− δk)θk + δk∇f(yk). In addition, because vk+1 is defined
as the minimizer of Φk+1(x) over X , from (20) we have
vk+1 = arg minx∈X 〈x,θk+1〉. Then, since Φ∗

k+1 is defined as
Φ∗

k+1 := minx∈X Φk+1(x), by plugging vk+1 into Φk+1(x) in
(20), we have

Φ∗
k+1 = Φk+1(vk+1) = (1− δk)〈vk+1 − vk,θk〉
+ (1− δk)Φ

∗
k + δkf(yk) + δk

〈∇f(yk),vk+1 − yk

〉
.

The proof is thus completed. �

F. Proof of Lemma 2

Proof: We prove this lemma by induction. First by definition
f(x0) = Φ∗

0 + ξ0. Suppose now we have f(xk) ≤ Φ∗
k + ξk for

some k. Next, we will show that f(xk+1) ≤ Φ∗
k+1 + ξk+1.

Using (19c), we have

Φ∗
k+1 + (1− δk)ξk

= (1− δk)Φ
∗
k + δkf(yk) + (1− δk)〈θk,vk+1 − vk〉
+ δk〈∇f(yk),vk+1 − yk〉+ (1− δk)ξk

(a)

≥ (1− δk)f(xk) + δkf(yk) + (1− δk)〈θk,vk+1 − vk〉
+ δk〈∇f(yk),vk+1 − yk〉

(b)

≥ (1− δk)f(xk) + δkf(yk) + δk〈∇f(yk),vk+1 − yk〉
= f(yk) + (1− δk) [f(xk)− f(yk)]

+ δk〈∇f(yk),vk+1 − yk〉
(c)

≥ f(yk) + (1− δk)
〈∇f(yk),xk − yk

〉
+ δk〈∇f(yk),vk+1 − yk〉

(d)

≥ f(xk+1)− L

2
‖xk+1 − yk‖2 + 〈∇f(yk),yk − xk+1〉

+ (1− δk)
〈∇f(yk),xk − yk

〉
+ δk〈∇f(yk),vk+1 − yk〉

(e)
= f(xk+1)− L

2
‖xk+1 − yk‖2

where (a) is because Φ∗
k ≥ f(xk)− ξk; (b) is by the fact

vk = arg minx∈X 〈θk,x〉 so that 〈θk,vk+1 − vk〉 ≥ 0; (c) is
because of the convexity of f ; (d) is by Assumption 1,
that is f(xk+1)− f(yk) ≤ 〈∇f(yk),xk+1 − yk〉+ L

2 ‖xk+1

− yk‖2; (e) follows from the choice of xk+1 = (1− δk)xk +
δkvk+1. Finally by using yk = (1− δk)xk + δkvk, and plug-
ging the definition of ξk+1, the proof is completed. �

G. Proof of Theorem 2

Proof: Since Lemma 2 holds, one can directly apply Lemma 3
to have

f(xk)− f(x∗) ≤ λk (f(x0)− f(x∗)) + ξk

=
2 (f(x0)− f(x∗))
(k + 1)(k + 2)

+ ξk (21)

where ξk is defined in Lemma 2. Clearly, ξk ≥ 0, ∀k, and we
can find an upper bound for it in the following manner.

ξk = (1− δk−1)ξk−1 +
Lδ2k−1

2
‖vk − vk−1‖2

≤ (1− δk−1)ξk−1 +
LD2δ2k−1

2

=
LD2

2

k−1∑
τ=0

δ2τ

[k−1∏
j=τ+1

(1− δj)

]

=
LD2

2

k−1∑
τ=0

4

(τ + 3)2
(τ + 2)(τ + 3)

(k + 1)(k + 2)
≤ 2LD2

k + 2
.

Plugging ξk into (21) completes the proof. �

H. Proof of Theorem 3

The basic idea is to show that under Assumptions 1, 2, 3 and
4, ‖vk − vk+1‖2 is small enough when k is large. To this end,
we will make use of the following lemmas.

Lemma 5: [3, Theorem 2.1.5] If Assumptions 1 and 2 hold,
then it is true that
1

2 L
‖∇f(x)−∇f(y)‖2 ≤ f(y)− f(x)− 〈∇f(x),y − x〉.

Next we show that the value of ∇f(x∗) is unique.
Lemma 6: If both x∗

1 and x∗
2 minimize f(x) over X , then we

have ∇f(x∗
1) = ∇f(x∗

2).
Proof: From Lemma 5, we have

1

2 L
‖∇f(x∗

2)−∇f(x∗
1)‖22

≤ f(x∗
2)− f(x∗

1)− 〈∇f(x∗
1),x

∗
2 − x∗

1〉
(a)

≤ f(x∗
2)− f(x∗

1) = 0

where (a) is by the optimality condition, that is, 〈∇f(x∗
1),x−

x∗
1〉 ≥ 0, ∀x ∈ X . Hence we can only have∇f(x∗

2) = ∇f(x∗
1).

This means that the value of ∇f(x∗) is unique regardless of the
uniqueness of x∗. �

Lemma 7: Choose δk = 2
k+3 and let M := maxx∈X f(x)−

f(x∗), then we have

‖∇f(yk)−∇f(x∗)‖ ≤ C1√
k + 3

.

where C1 =
√
6LM + 4 L2D2.

Proof: By convexity

f(yk)− f(x∗)

≤ (1− δk) [f(xk)− f(x∗)] + δk [f(vk)− f(x∗)]

(a)

≤ k + 1

k + 3

[
2 (f(x0)− f(x∗))
(k + 1)(k + 2)

+
2LD2

k + 2

]
+

2 M

k + 3

≤ 2 M

(k + 2)(k + 3)
+

2LD2

k + 3
+

2 M

k + 3

≤ 3 M + 2LD2

k + 3

LI et al.: MOMENTUM-GUIDED FRANK-WOLFE ALGORITHM 3607

where (a) is by Theorem 2. Next using Lemma 5, we have
1

2 L
‖∇f(yk)−∇f(x∗)‖2

≤ f(yk)− f(x∗)− 〈∇f(x∗),yk − x∗〉
(b)

≤ f(yk)− f(x∗) ≤ 3 M + 2LD2

k + 3

where (b) is by the optimality condition, that is, 〈∇f(x∗),x−
x∗〉 ≥ 0, ∀x ∈ X . This further implies

‖∇f(yk)−∇f(x∗)‖ ≤
√

2L(3 M + 2LD2)

k + 3
.

The proof is thus completed. �
Lemma 8: Choose δk = 2

k+3 , it is guaranteed to have

‖θk+1 −∇f(x∗)‖ ≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 2)(k + 3)
.

In addition, there exists a constant C2 ≤ 4
3C1 +

2
3(

√
3+1)

√
G

such that

‖θk+1 −∇f(x∗)‖ ≤ C2√
k + 3− 1

.

Proof: First we have

θk+1 = (1− δk)θk + δk∇f(yk)

=

k∑
τ=0

δτ∇f(yτ)

[k∏
j=τ+1

(1− δj)

]

=

k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)
∇f(yτ). (22)

Noticing that 2
∑k

τ=0(τ + 2) = (k + 1)(k + 4) = (k +
2)(k + 3)− 2, we have

‖θk+1 −∇f(x∗)‖

=
∥∥∥ k∑

τ=0

2(τ + 2)

(k + 2)(k + 3)
[∇f(yτ)−∇f(x∗)]

− 2

(k + 2)(k + 3)
∇f(x∗)

∥∥∥
≤

k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)

∥∥∇f(yτ)−∇f(x∗)
∥∥

+
2

(k + 2)(k + 3)

∥∥∇f(x∗)
∥∥

(a)

≤
k∑

τ=0

2(τ + 2)

(k + 2)(k + 3)

C1√
τ + 3

+
2
√
G

(k + 2)(k + 3)

≤ 2C1

(k + 2)(k + 3)

k∑
τ=0

√
τ + 2 +

2
√
G

(k + 2)(k + 3)

≤ 4C1

3(k + 2)(k + 3)
(k + 3)3/2 +

2
√
G

(k + 2)(k + 3)

=
4C1

3(
√
k + 3 + 1)(

√
k + 3− 1)

√
k + 3 +

2
√
G

(k + 2)(k + 3)

≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 2)(k + 3)

where (a) follows from Lemma 7 and Assumption 4.
Then to find C2, we have

‖θk+1 −∇f(x∗)‖

≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 2)(k + 3)

=
4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 3)(
√
k + 3 + 1)(

√
k + 3− 1)

(b)

≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

3(
√
3 + 1)(

√
k + 3− 1)

where in (b) we use k + 3 ≥ 3 and
√
k + 3 + 1 ≥ √

3 + 1. The
proof is thus completed. �

Lemma 9: There exists a constant T ≤ (2C2√
G

+ 1)2 − 3, such

that ‖θk+1‖ ≥
√
G
2 , ∀k ≥ T . In addition, it is guaranteed to

have for any k ≥ T + 1

‖vk+1 − vk‖ ≤ C3√
k + 2− 1

where C3 ≤ 4R
G [4

√
GC2 +

2C2
2√

T+4−1
].

Proof: Consider a specific k̃ with ‖θk̃+1‖ <
√
G
2 satisfied. In

this case we have

‖θk̃+1 −∇f(x∗)‖ ≥ ‖∇f(x∗)‖ − ‖θk̃+1‖

>
√
G−

√
G

2
=

√
G

2
.

From Lemma 8, we have√
G

2
< ‖θk̃+1 −∇f(x∗)‖ ≤ C2√

k̃ + 3− 1
.

From this inequality we can observe that ‖θk̃+1‖ can be less

than
√
G
2 only when k̃ < T = (2C2√

G
+ 1)2 − 3. Hence, the first

part of this lemma is proved.
For the upper bound of ‖vk+1 − vk‖, we only consider the

case whereθk+1 �= 0 since otherwisevk+1 = vk and the lemma
holds automatically. For any k ≥ T + 1, from (8), one can
rewrite

‖vk+1 − vk‖

= R
∥∥∥ θk+1

‖θk+1‖ − θk

‖θk‖
∥∥∥

=
R

‖θk+1‖‖θk‖
∥∥∥‖θk‖θk+1 − ‖θk+1‖θk

∥∥∥
(a)

≤ 4R

G

∥∥∥‖θk‖θk+1 − ‖θk+1‖θk

∥∥∥ (23)

where (a) is by θk ≥
√
G
2 for k ≥ T + 1. Next we rewrite

θk := ∇f(x∗) + γk. From Lemma 8 we have ‖γk‖ = ‖θk −
∇f(x∗)‖ ≤ C2√

k+2−1
. Using this relation, the RHS of (23) be-

comes∥∥∥‖θk‖θk+1 − ‖θk+1‖θk

∥∥∥

3608 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

=
∥∥∥∥∥∇f(x∗) + γk

∥∥ (∇f(x∗) + γk+1

)
− ∥∥∇f(x∗) + γk+1

∥∥ (∇f(x∗) + γk)
∥∥∥

≤ ‖∇f(x∗)‖
∥∥∥∥∥∇f(x∗) + γk

∥∥− ∥∥∇f(x∗) + γk+1

∥∥∥∥∥
+
∥∥∥γk+1

∥∥∇f(x∗) + γk

∥∥− γk

∥∥∇f(x∗) + γk+1

∥∥∥∥∥
≤

√
G
(‖γk‖+ ‖γk+1‖

)
+ ‖γk+1‖

(√
G+ ‖γk‖

)
+ ‖γk‖

(√
G+ ‖γk+1‖

)
≤ 4

√
GC2√

k + 2− 1
+

2C2
2

(
√
k + 2− 1)(

√
k + 3− 1)

≤ 4
√
GC2√

k + 2− 1
+

2C2
2

(
√
k + 2− 1)(

√
T + 4− 1)

.

Plugging back to (23), the proof can be completed. �

I. Proof of Theorem 3

Proof: We first consider the constraint set being an �2 norm
ball. From Lemma 2, we can write

ξk+1 = (1− δk)ξk +
Lδ2k
2

‖vk+1 − vk‖2

=
L

2

k∑
τ=0

δ2τ‖vτ+1 − vτ‖2
[k∏
j=τ+1

(1− δτ)

]

(a)
=

L

2

T∑
τ=0

δ2τ‖vτ+1 − vτ‖2
[k∏
j=τ+1

(1− δτ)

]

+

k∑
τ=T+1

δ2τ‖vτ+1 − vτ‖2
[k∏
j=τ+1

(1− δτ)

]

(b)

≤ L

2

T∑
τ=0

δ2τD
2

[k∏
j=τ+1

(1− δτ)

]

+

k∑
τ=T+1

δ2τ
C2

3

(
√
τ + 2− 1)2

[k∏
j=τ+1

(1− δτ)

]

=
L

2

T∑
τ=0

4D2

(τ + 3)2
(τ + 2)(τ + 3)

(k + 2)(k + 3)

+

k∑
τ=T+1

4

(τ + 3)2
C2

3

(
√
τ + 2− 1)2

(τ + 2)(τ + 3)

(k + 2)(k + 3)

≤ 2LD2(T + 1)

(k + 2)(k + 3)
+

4C2
3

(k + 2)(k + 3)

k∑
τ=T+1

1

(
√
τ + 2− 1)2

= O
(
LD2(T + 1) + C2

3 ln k

(k + 2)(k + 3)

)

where in (a) T is defined in Lemma 9; (b) is by Lemma 9 and
Assumption 4; and in the last equation constants are hide in the
big O notation.

Finally, applying Lemma 3, we have

f(xk)− f(x∗) ≤ 2 [f(x0)− f(x∗)]
(k + 1)(k + 2)

+ ξk. (24)

Plugging ξk in the proof is completed.
When the constraint set is an �1 norm ball, the basic proof

idea is similar as the �2 norm ball case, i.e., after T iterations
vk and vk+1 are near to each other. The only difference is that a
regularization condition should be satisfied to ensure the unique-
ness of vk (only for proof, not necessary for implementation).
There are multiple kinds of regularization schemes, for example,
[∇f(x∗)]i − [∇f(x∗)]j = c > 0, where i, j are the largest and
second largest entry of ∇f(x∗), respectively. In this case, we
only need to modify theT in Lemma 9 as a c dependent constant,
and all the other proofs follow. �

J. �1 Norm Ball

In this subsection we focus on the convergence of AFW
for �1 norm ball constraint under the assumption that
arg maxj

∣∣[∇f(x∗)]j
∣∣ has cardinality 1 (which naturally implies

that the constraint is active). Note that in this case Lemma
6 still holds hence the value of ∇f(x∗) is unique regard-
less the uniqueness of x∗. This assumption directly leads to
arg maxj

∣∣[∇f(x∗)]j
∣∣− |[∇f(x∗)]i| ≥ λ, ∀i.

When X = {x|‖x‖1 ≤ R}, the FW steps for AFW
can be solved in closed-form. We have vk+1 =
[0, . . . , 0,−sgn[θk+1]iR, 0, . . . , 0]�, i.e., only the i-th entry
being nonzero with i = arg maxj |[θk+1]j |.

Lemma 10: There exist a constant T (which is irreverent with
k), whenever k ≥ T , it is guaranteed to have

‖vk+1 − vk+2‖ = 0

Proof: In the proof, we denote i = arg maxj |[∇f(x∗)]j | for
convenience. It can be seen that Lemma 8 still holds.

We show that there exist T = (3C2

λ
+ 1)2 − 3, such that for

all k ≥ T , we have arg maxj |[θk+1]j | = i, which further im-
plies only the i-th entry of vk+1 is non-zero. Since Lemma 8
holds, one can see whenever k ≥ T , it is guaranteed to have

‖θk+1 −∇f(x∗)‖ ≤ λ
3 . Therefore, one must have

∣∣|[θk+1]j | −
|[∇f(x∗)]j |

∣∣ ≤ λ
3 , ∀j. Then it is easy to see that |[θk+1]i| −

|[θk+1]j | ≥ λ
3 , ∀j. Hence, we have arg maxj |[θk+1]j | = i.

Then one can use the closed form solution of FW step to see
that when k ≥ T , we have vk+1 − vk+2 = 0. The proof is thus
completed. �

Lemma 11: Let ξ0 = 0 and T defined the same as in Lemma
10. Denote Φ∗

k := Φk(vk) as the minimum value of Φk(x) over
X , then we have

f(xk) ≤ Φk(vk) = Φ∗
k + ξk, ∀k ≥ 0

where for k < T + 1, ξk+1 = (1− δk)ξk + LD2

2 δ2k, and
ξk+1 = (1− δk)ξk for k ≥ T + 1.

Proof: The proof for k < T + 1 is similar as that in Lemma 2,
hence it is omitted here. For k ≥ T + 1, using similar argument

LI et al.: MOMENTUM-GUIDED FRANK-WOLFE ALGORITHM 3609

as in Lemma 2, we have

Φ∗
k+1 ≥ f(xk+1) +

Lδ2k
2

‖vk+1 − vk‖2 − (1− δk)ξk

= f(xk+1)− (1− δk)ξk

where the last equation is because of Lemma 10. �
Theorem 5: Consider X is an �1 norm ball. If

arg maxj

∣∣[∇f(x∗)]j
∣∣ has cardinality 1, and Assumptions 1

- 3 are satisfied, AFW guarantees that

f(xk)− f(x∗) = O
(

1

k2

)
.

Proof: Let T be defined the same as in Lemma 10. For
convenience denote ξk+1 = (1− δk)ξk + ζk. Whenk < T + 1,
we have ζk = LD2

2 δ2k; when k ≥ T + 1, we have ζk = 0. Then
we can write

ξk+1 = (1− δk)ξk + θk

=

k∑
τ=0

θτ

k∏
j=τ+1

(1− δj) =

k∑
τ=0

θτ
(τ + 2)(τ + 3)

(k + 2)(k + 3)

=

T∑
τ=0

LD2

2
δ2τ

(τ + 2)(τ + 3)

(k + 2)(k + 3)
=

2LD2(T + 1)

(k + 2)(k + 3)
.

Finally, applying Lemma 3, we have

f(xk)− f(x∗) ≤ 2 [f(x0)− f(x∗)]
(k + 1)(k + 2)

+ ξk.

Plugging ξk in completes the proof. �

K. �p Norm Ball

In this subsection we focus on AFW with an active �p norm
ball constraint X := {x|‖x‖p ≤ R}, where p ∈ (1,+∞) and
p �= 2. We show that if the magnitude of every entry in ∇f(x∗)
is bounded away from 0, i.e., |[∇f(x∗)]i| = λ > 0, ∀i, then
AFW converges at O(1

k2).
In such cases, the FW step in AFW can be solved in closed-

form, that is, the i-th entry of vk+1 can be obtained via

[vk+1]i = −sgn ([θk+1]i)

∣∣[θk+1]i
∣∣q−1

‖θk+1‖q−1
q

·R

= −[θk+1]i

∣∣[θk+1]i
∣∣q−2

‖θk+1‖q−1
q

·R (25)

where 1/p+ 1/q = 1. For simplicity we will emphasis on the k
dependence only and use O notation in this subsection. We will
also use θik to replace [θk]i for notational simplicity. In other
words, θik denotes the i-th entry of θk.

First according to Lemma 8, and use the equivalence of
norms, we have ‖θk −∇f(x∗)‖q = O(1√

k
). Hence, there must

exist T1, such that ‖θk‖q ≤ 2 G, ∀k ≥ T1. Next using similar
arguments as the first part of Lemma 9, there must exist T2, such
that ‖θk‖q ≥ G/2, ∀k ≥ T2. In addition, using again similar
arguments as the first part of Lemma 9, we can find that there

exist T3, such that |θik| > λ
2 , ∀k ≥ T3.

Let T := max{T1, T2, T3}. Next we will show that ‖vk+1 −
vk‖2 = O(1k), ∀k ≥ T . To start, using (25), one can have

vik+1 − vik

=
R

‖θk+1‖q−1
q ‖θk‖q−1

q

[
− θik+1|θik+1|q−2‖θk‖q−1

q

+ θik|θik|q−2‖θk+1‖q−1
q

]

=
R

‖θk+1‖q−1
q ‖θk‖q−1

q

[
θik+1|θik+1|q−2

(
‖θk+1‖q−1

q

− ‖θk‖q−1
q

)
+ ‖θk+1‖q−1

q

(
θik|θik|q−2 − θik+1|θik+1|q−2

)]
.

Next using G/2 ≤ ‖θk+1‖q ≤ 2 G, ∀k ≥ T , and |θik+1| ≤
‖θk+1‖q , we have

|vik+1 − vik| = O
(∣∣∣‖θk+1‖q−1

q − ‖θk‖q−1
q

∣∣∣
+
∣∣∣θik|θik|q−2 − θik+1|θik+1|q−2

∣∣∣
)
. (26)

We first bound the first term in RHS of (26). Let h(x) =
(x)q−1. Then by mean value theorem we have h(y) = h(x) +
∇h(x)(y − x) +∇2h(z)‖x− y‖2, where z = (1− α)x+ αy
for some α ∈ [0, 1]. Taking x = ‖θk‖q and y = ‖θk+1‖q , and
using the fact G/2 ≤ ‖θk‖q ≤ 2 G for k ≥ T , we have

‖θk+1‖q−1
q

= ‖θk‖q−1
q +O(

∣∣‖θk‖q − ‖θk+1‖q
∣∣+ ∣∣‖θk‖q − ‖θk+1‖q

∣∣2)
= ‖θk‖q−1

q +O
(

1√
k

)
(27)

Hence, one can find that the first term on the RHS of (26) is
bounded by O(1√

k
).

Next we focus on the second term of (26) by considering
whether θik and θik+1 have different signs.

Case 1: θik and θik+1 have the same sign. Then we have∣∣∣θik|θik|q−2 − θik+1|θik+1|q−2
∣∣∣

=
∣∣∣|θik|q−1 − |θik+1|q−1

∣∣∣ ≤ O
(

1√
k

)
(28)

where the last inequality uses the same mean-value-theorem

argument as (27) and the fact |θik| ≥ λ
2 .

Case 2: θik and θik+1 have different signs. We assume θik+1 ≥
0 w.l.o.g. In this case, by the update manner of θk+1, we have
|θik+1| ≤ |δk[∇f(yk)]i| = O(δk) = O(1k). This is impossible

given the fact |θik+1| > λ
2 when k ≥ T .

Therefore, we have the second term in (26) bounded by
O(1√

k
). Hence, it is easy to see that

‖vk+1 − vk‖2 = O
(
1

k

)
.

Applying the same argument in the proof of Theorem 3,
we have that when k ≥ T , ξk+1 = Õ(1

k2). This further implies
f(xk)− f(x∗) = Õ(1

k2) as well.

3610 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Fig. 5. Performance of AFW on n-support norm balls.

Fig. 6. Performance of AFW on log-sum-exp losses.

L. Additional Numerical Tests

AFW is tested on other loss functions and constraints to
demonstrate its efficiency.
n-support norm ball constraint. We first consider logistic

regression over a n-support norm ball [50]. This is challeng-
ing due to the constraint X = conv{x|‖x‖0 ≤ n, ‖x‖2 ≤ R},
where conv{·} denotes the convex hull. GD and AGM are
expensive for such a constraint set since efficient projection is
unclear, while the FW subproblem can be solved easily [51]. For
this reason, we only compare FW with AFW, and the numerical
results depicted in Fig. 5 demonstrate that AFW outperforms
FW.

Log-sum-exp loss. We also test AFW using the log-sum-exp
loss function, that is,

f(x) = ln

(
n∑

i=1

exp (〈ai,x〉)
)
. (29)

We set n = 1000 and d = 500, and draw ai from a standardized
normal distribution. The �2 norm ball and n-support norm balls
are used as constraints. The results in Fig. 6 corroborate that
AFW outperforms FW.

REFERENCES

[1] R. M. Freund, P. Grigas, and R. Mazumder, “An extended Frank–Wolfe
method with “in-face” directions, and its application to low-rank matrix
completion,” SIAM J. Optim., vol. 27, no. 1, pp. 319–346, 2017.

[2] Z. Harchaoui, A. Juditsky, and A. Nemirovski, “Conditional gradient
algorithms for norm-regularized smooth convex optimization,” Math. Pro-
gram., vol. 152, no. 1-2, pp. 75–112, 2015.

[3] Y. Nesterov, Introductory Lectures on Convex Optimization: A
Basic Course. Springer Science & Business Media, 2004, vol. 87,
https://www.springer.com/gp/book/9781402075537?utm_campaign=
3_pier05_buy_print&utm_content=en_08082017&utm_medium=
referral&utm_source=google_books.

[4] Z. Allen-Zhu and L. Orecchia, “Linear coupling: An ultimate unification of
gradient and mirror descent,” in Proc. Innovations Theoretical Computer
Science Conf., Dagstuhl, Germany, vol. 67, 2017, pp 3:1–3:22.

[5] Y. Nesterov, “Universal gradient methods for convex optimization prob-
lems,” Math. Program., vol. 152, no. 1-2, pp. 381–404, 2015.

[6] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Nav.
Res. Logistics Quart., vol. 3, no. 1-2, pp. 95–110, 1956.

[7] M. Jaggi, “Revisiting Frank–Wolfe: Projection-free sparse convex opti-
mization.” in Proc. Int. Conf. Mach. Learn., 2013, pp. 427–435.

[8] S. Lacoste-Julien and M. Jaggi, “On the global linear convergence of
Frank–Wolfe optimization variants,” in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 496–504.

[9] D. Garber and E. Hazan, “Faster rates for the Frank–Wolfe method
over strongly-convex sets,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 541–549.

[10] S. Lacoste-Julien, M. Jaggi, M. W. Schmidt, and P. Pletscher, “Block-
coordinate Frank–Wolfe optimization for structural SVMs,” in Proc. Int.
Conf. Mach. Learn., 2013, pp. 53–61.

[11] A. Joulin, K. Tang, and L. Fei-Fei, “Efficient image and video co-
localization with Frank–Wolfe algorithm,” in Proc. Eur. Conf. Comput.
Vis., 2014, pp. 253–268.

[12] S. Lacoste-Julien, F. Lindsten, and F. Bach, “Sequential Kernel herding:
Frank–Wolfe optimization for particle filtering,” in Proc. Artif. Intell.
Statist., 2015, pp. 544–552.

[13] M. Fukushima, “A modified Frank–Wolfe algorithm for solving the traffic
assignment problem,” Transp. Res. Part B: Methodological, vol. 18, no. 2,
pp. 169–177, 1984.

[14] G. Luise, S. Salzo, M. Pontil, and C. Ciliberto, “Sinkhorn barycenters
with free support via Frank–Wolfe algorithm,” in Proc. Adv. Neural Info.
Process. Syst., 2019, pp. 9318–9329.

[15] L. Zhang, V. Kekatos, and G. B. Giannakis, “Scalable electric ve-
hicle charging protocols,” IEEE Trans. Power Syst., vol. 32, no. 2,
pp. 1451–1462, Mar. 2017.

[16] L. Zhang, G. Wang, D. Romero, and G. B. Giannakis, “Randomized block
Frank–Wolfe for convergent large-scale learning,” IEEE Trans. Signal
Process., vol. 65, no. 24, pp. 6448–6461, Dec. 2017.

[17] A. Mokhtari, H. Hassani, and A. Karbasi, “Stochastic conditional gradient
methods: From convex minimization to submodular maximization,” J.
Mach. Learn. Res., vol. 21, no. 105, pp. 1–49, 2018.

[18] G. Lan, “The complexity of large-scale convex programming under a linear
optimization oracle,” 2013, arXiv:1309.5550.

[19] E. S. Levitin and B. T. Polyak, “Constrained minimization methods,” USSR
Comput. Math. Math. Phys., vol. 6, no. 5, pp. 1–50, 1966.

[20] B. Li, M. Coutiño, and G. B. Giannakis, “Revisit of estimate sequence for
accelerated gradient methods,” in Proc. ICASSP IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2020, pp. 3602–3606.

[21] D. Garber and O. Meshi, “Linear-memory and decomposition-
invariant linearly convergent conditional gradient algorithm for struc-
tured polytopes,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 1001–1009.

[22] F. Bach, “On the effectiveness of Richardson extrapolation in machine
learning,” 2020, arXiv:2002.02835.

[23] J. Guélat and P. Marcotte, “Some comments on Wolfe’s ‘away step’,” Math.
Program., vol. 35, no. 1, pp. 110–119, 1986.

[24] F. Pedregosa, A. Askari, G. Negiar, and M. Jaggi, “Step-size adaptivity
in projection-free optimization,” in Proc. Int. Conf. Artif. Intell. Statist.,
2020, pp. 1–10.

[25] G. Braun, S. Pokutta, D. Tu, and S. Wright, “Blended conditional gradients:
The unconditioning of conditional gradients,” in Proc. Int. Conf. Mach.
Learn., 2019, pp. 97:735–97:743.

[26] T. Kerdreux, A. d’Aspremont, and S. Pokutta, “Projection-free optimiza-
tion on uniformly convex sets,” in Proc. Int. Conf. Artif. Intell. Statist.,
2021, pp. 19–27.

[27] J. Abernethy, K. A. Lai, K. Y. Levy, and J.-K. Wang, “Faster rates for
convex-concave games,” in Proc. Conf. Learn. Theory, 2018, pp. 1595–
1625.

[28] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate 1/k2,” Sov. Math. Dokl, Dokl. Akad. Nauk SSSR 269,
vol. 27, pp. 543–547, 1983.

[29] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[30] W. Krichene, A. Bayen, and P. L. Bartlett, “Accelerated mirror descent
in continuous and discrete time,” in Proc. Adv. Neural Inf. Process. Syst.,
2015, pp. 2845–2853.

[31] A. Nitanda, “Stochastic proximal gradient descent with acceleration tech-
niques,” in Proc. Adv. Neural Inf. Process. Syst., Montreal, Canada, 2014,
pp. 1574–1582.

https://www.springer.com/gp/book/9781402075537?utm_campaign=3_pier05_buy_print&utm_content=en_08082017&utm_medium=referral&utm_source=google_books

LI et al.: MOMENTUM-GUIDED FRANK-WOLFE ALGORITHM 3611

[32] H. Lin, J. Mairal, and Z. Harchaoui, “A universal catalyst for first-order
optimization,” in Proc. Adv. Neural Inf. Process. Syst., Montreal, Canada,
2015, pp. 3384–3392.

[33] W. Su, S. Boyd, and E. Candes, “A differential equation for modeling
nesterov accelerated gradient method: Theory and insights,” in Proc. Adv.
Neural Inf. Process. Syst., 2014, pp. 2510–2518.

[34] J. Zhang, A. Mokhtari, S. Sra, and A. Jadbabaie, “Direct Runge-Kutta
discretization achieves acceleration,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 3900–3909.

[35] B. Shi, S. S. Du, W. J. Su, and M. I. Jordan, “Acceleration via symplectic
discretization of high-resolution differential equations,” Proc. Adv. Neural
Inf. Process. Syst., 2019.

[36] G. Lan and Y. Zhou, “Conditional gradient sliding for convex optimiza-
tion,” SIAM J. Optim., vol. 26, no. 2, pp. 1379–1409, 2016.

[37] Y. Malitsky and K. Mishchenko, “Adaptive gradient descent without
descent,” in Proc. Int. Conf. Mach. Learn., 2020.

[38] A. Kulunchakov and J. Mairal, “Estimate sequences for variance-reduced
stochastic composite optimization,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 3541–3550.

[39] B. Li, L. Wang, and G. B. Giannakis, “Almost tune-free variance reduc-
tion,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 5969–5978.

[40] K. L. Clarkson, “Coresets, sparse greedy approximation, and the Frank–
Wolfe algorithm,” ACM Trans. Algorithms, vol. 6, no. 4, pp. 1–30, 2010.

[41] A. Nemirovski, “Prox-method with rate of convergence o (1/t) for vari-
ational inequalities with Lipschitz continuous monotone operators and
smooth convex-concave saddle point problems,” SIAM J. Optim., vol. 15,
no. 1, pp. 229–251, 2004.

[42] J. C. Dunn, “Rates of convergence for conditional gradient algorithms near
singular and nonsingular extremals,” SIAM J. Control Optim., vol. 17, no. 2,
pp. 187–211, 1979.

[43] B. Li, L. Wang, G. B. Giannakis, and Z. Zhao, “Enhancing parameter-free
Frank Wolfe with an extra subproblem,” in Proc. 35th AAAI Conf. Artif.
Intell., Feb. 2021.

[44] L. Ding, Y. Fei, Q. Xu, and C. Yang, “Spectral Frank–Wolfe algorithm:
Strict complementarity and linear convergence,” in Proc. Int. Conf. Mach.
Learn., 2020, pp. 2535–2544.

[45] D. Garber, “Revisiting Frank–Wolfe for polytopes: Strict complementary
and sparsity,” 2020, arXiv:2006.00558.

[46] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient projec-
tions onto the l 1-ball for learning in high dimensions,” in Proc. Int. Conf.
Mach. Learn., 2008, pp. 272–279.

[47] J. Bennett et al. “The Netflix Prize,” in Proc. KDD Cup workshop,
vol. 2007. New York, NY, USA., 2007, pp. 35–35.

[48] R. M. Bell and Y. Koren, “Lessons from the Netflix Prize challenge,”
SiGKDD Explorations, vol. 9, no. 2, pp. 75–79, 2007.

[49] M. Fazel, “Matrix rank minimization with applications,” Ph.D. thesis,
Stanford Univ., 2002.

[50] A. Argyriou, R. Foygel, and N. Srebro, “Sparse prediction with the k-
support norm,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1457–
1465.

[51] B. Liu, X.-T. Yuan, S. Zhang, Q. Liu, and D. N. Metaxas, “Efficient k-
support-norm regularized minimization via fully corrective Frank–Wolfe
method,” in Proc. Int. Joint Conf. Artif. Intell., 2016, pp. 1760–1766.

Bingcong Li received the B.Eng. degree (with highest
honors) in communication science and engineering
from Fudan University, Shanghai, China, in 2017,
and the M.Sc. degree in electrical and computer en-
gineering (ECE) from the University of Minnesota
(UMN), Minneapolis, MN, USA, in 2019, where he
is currently working toward the Ph.D. degree. His
research interests include optimization and machine
learning, with applications to cyber physical systems.
He was the recipient of the National Scholarship
twice from China in 2014 and 2015, and UMN ECE
Department Fellowship in 2017.

Mario Coutiño (Student Member, IEEE) received
the M.Sc. and the Ph.D. degree (cum laude) in elec-
trical engineering from the Delft University of Tech-
nology, Delft, The Netherlands, in July 2016 and
April 2021, respectively. Since October 2020, he
has been a Signal Processing Researcher with Radar
Technology Department, TNO, The Netherlands. He
has held positions with Thales Netherlands, during
2015, and Bang & Olufsen, during 2015–2016. His
research interests include array signal processing, sig-
nal processing on networks, submodular and convex

optimization, and numerical linear algebra. He was the recipient of the Best
Student Paper Award for his publication at the CAMSAP 2017 conference
in Curacao and was a Visiting Researcher with RIKEN AIP and the Digital
Technological Center, University of Minnesota, in 2018 and 2019, respectively.

Georgios B. Giannakis (Fellow, IEEE) received the
Diploma in electrical engineering from the National
Technical University of Athens, Athens, Greece, in
1981, the M.Sc. degree in electrical engineering, the
M.Sc. degree in mathematics, and the Ph.D. degree
in electrical engineering from the University of the
Southern California, Los Angeles, CA, USA, in 1983,
1986, and 1986, respectively. He was a faculty mem-
ber with the University of Virginia, Charlottesville,
VA, USA, from 1987 to 1998, and since 1999, he has
been a Professor with the University of Minnesota,

Minneapolis, MN, USA, where he held an ADC Endowed Chair of telecommu-
nications, was the Director of the Digital Technology Center from 2008 to 2021,
and since 2016, he is has been a University of Minnesota McKnight Presidential
Chair in ECE.

He has authored or coauthored more than 480 journal papers, 780 conference
papers, 25 book chapters, two edited books, and two research monographs in his
research field, which include statistical learning, signal processing, communi-
cations, and networking. His current research include data science, and network
science with applications to the Internet of Things, and power networks with
renewables. He is the co-inventor of 34 issued patents. He was the co-recipient
of the ten Best Journal Paper Awards from the IEEE Signal Processing (SP)
and Communications Societies, including the G. Marconi Prize Paper Award
in Wireless Communications. He was also recipient of the IEEE-SPS Norbert
Wiener Society Award (2019), the EURASIP’s A. Papoulis Society Award
(2020), Technical Achievement Awards from the IEEE-SPS (2000) and from
EURASIP (2005), the IEEE ComSoc Education Award (2019), and the IEEE
Fourier Technical Field Award (2015). He is a Foreign Member of the Academia
Europaea, and a Fellow of the National Academy of Inventors, the European
Academy of Sciences, and EURASIP. He has served the IEEE in a number of
posts, including a Distinguished Lecturer for the IEEE-SPS.

Geert Leus (Fellow, IEEE) received the M.Sc. and
Ph.D. degrees in electrical engineering from KU Leu-
ven, Leuven, Belgium, in June 1996 and May 2000,
respectively. He is currently a Full Professor with the
Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology,
Delft, The Netherlands. He is a Fellow of EURASIP.
He was a Member-at-Large of the Board of Governors
of the IEEE Signal Processing Society, the Chair of
the IEEE Signal Processing for Communications and
Networking Technical Committee, and the Editor-in-

Chief of the EURASIP Journal on Advances in Signal Processing. He is currently
the Chair of the EURASIP Technical Area Committee on Signal Processing for
Multisensor Systems and the Editor-in-Chief of the EURASIP Signal Processing.
He was the recipient of the 2021 EURASIP Individual Technical Achievement
Award, the 2005 IEEE Signal Processing Society Best Paper Award, and the
2002 IEEE Signal Processing Society Young Author Best Paper Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

