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Summary

Multigrid Method for the Coupled
Free Fluid Flow and Porous Media System

Peiyao Luo

Coupling of free fluid and flow in a porous medium is an attractive re-
search area due to its many applications in different fields. For example,
this coupling can be found in waste water treatment systems, when fluid
flow passes through a filter. Another example in which this coupling is
present is in the interaction between blood flow and the vessels during
nutrients transport. Coupling is typically governed by the interaction be-
tween two different systems. This is challenging, since each system may
be based on a specific physical model and appropriate internal interface
conditions are needed to connect them.

In our case, the free fluid is governed by the incompressible Stokes
equations, while the flow in the porous medium is described by either
the Darcy flow equation or the poroelasticity equations, depending on the
assumptions regarding the porous medium. When the porous medium is
assumed to be rigid, the coupled system is the Darcy-Stokes problem, in our
case, while the coupled Stokes-poroelasticity system is considered when the
porous medium is deformable. By the poroelasticity system of equations,
fluid motion and solid deformation are both taken into account, based on
the well-developed Biot model. In Biot’s model, the Darcy equation is
used for the fluid motion, and linear elasticity equations are employed for
the solid deformation. At the interface of the Stokes and porous medium
equations, proper conditions such as conservation of mass and momentum,
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a balance of normal stresses, no-slip conditions, need to be imposed.

The coupled system is discretized by the finite volume method, often
on a staggered grid, which results in a discrete system of saddle point
structure. Multigrid methods are efficient for solving the saddle point
problem. We develop efficient and robust monolithic multigrid algorithms
for the coupled system. Different from the classical domain decomposition
(DD) method, the complete discrete system arising from the governing
equations and the interface conditions is treated simultaneously during the
solution process. In multigrid, the choice of each component affects the
multigrid convergence performance. We pay special attention to the choice
of each multigrid component, especially to the choice of the smoother.

To gain a deep insight in the equations, we start this PhD Thesis by
focussing on the efficient iterative solution of the poroelasticity equations,
in Chapters 2 and 3, as many studies have already been performed for
the Stokes problem. We solve the linear as well as the nonlinear poroelas-
ticity equations by means of the geometric multigrid method. Regarding
the nonlinear system of partial differential equations, two nonlinear multi-
grid variants, i.e., Newton’s multigrid and the Full Approximation Scheme
(FAS) are employed in Chapter 2. Newton’s multigrid is based on global
linearization. The resulting linear problem after application of Newton’s
method, is then solved by linear multigrid. Different from the idea of
Newton’s multigrid, by FAS one solves the nonlinear problem on each fine
and coarse grid level by employing nonlinear smoothers. We also solve a
nonlinear problem with heterogeneous physical parameters, that are pre-
scribed by random coefficients. In the test cases, we compare a point-wise
Gauss-Seidel smoother with a coupled box smoother (also called “Vanka
smoother”).

In Chapter 3, we investigate the multigrid performance when employing
a so-called decoupled Uzawa smoother for the linear poroelasticity equa-
tions. The Uzawa smoother is based on a symmetric Gauss-Seidel smooth-
ing iteration for the displacements and a basic Richardson iteration for
the updates of the pressure field. To choose optimal relaxation parameters
within the Richardson iteration, Local Fourier Analysis (LFA) is applied.
The asymptotic convergence factors of multigrid can be predicted quite well
by means of two-grid LFA. To further accelerate the multigrid convergence
for highly nontrivial heterogeneous problems, the iterant recombination
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scheme is advocated in Chapter 3.

Based on the obtained knowledge of the poroelasticity (and Stokes) sub-
systems, we solve the coupled Darcy-Stokes system in Chapter 4, assuming
that the porous medium is rigid. A special discretization scheme is devel-
oped for the unknowns at the interface. We propose a monolithic multigrid
method with the decoupled Uzawa smoother, based on the grid partition-
ing strategy. Optimal relaxation parameters in the Uzawa smoother are
again calculated by means of LFA for each subproblem. We have confirmed
that the global convergence of multigrid matches the worst multigrid con-
vergence factor of the individual subproblems. It is further worth noting
that the multigrid convergence is independent of the physical parameter
values. Moreover, we study the effect of heterogeneity on the multigrid
convergence.

Finally, we develop a monolithic multigrid method for the coupled Stokes-
poroelasticity system by taking into account the elastic deformation of the
solid in Chapter 5. A novelty in our work is that at the interface between
the two subsystems, two unknowns from the different subsystems are de-
fined at the same grid point. We propose a special discretization for the
unknowns at and close to the interface. In this chapter, we investigate the
multigrid performance with both the coupled Vanka and decoupled Uzawa
smoothers. In the Uzawa smoother, the results obtained in Chapter 3 pro-
vide us the necessary insight in the optimal relaxation parameter values for
the poroelasticity equations. Within the grid partitioning scheme, the in-
formation is exchanged between neighboring subdomains on each grid level.
This forms the basis to achieve a highly satisfactory multigrid convergence
behavior in multi-block geometries.

So, this thesis reports on research about the monolithic multigrid method
for the coupled free fluid flow and porous media systems. The theoreti-
cal quantitative analysis, numerical algorithms and results presented here
provide insight and knowledge into multigrid methods for multi-physics
systems. The combination of these two aspects, i.e., multigrid and coupled
systems, is exciting and challenging.






Samenvatting

Multigrid Method for the Coupled
Free Fluid Flow and Porous Media System

Peiyao Luo

Koppeling van vloeistofstroming en stroming in een poreus medium is
een aantrekkelijk onderzoeksgebied vanwege de vele toepassingen. Een
voorbeeld is te vinden in afvalwaterbehandelingssystemen, namelijk wan-
neer het afvalwater door een filter stroomt. Een ander voorbeeld is de
interactie tussen de bloedstroom en de bloedvaten tijdens het transport
van voedingsstoffen. De koppeling wordt doorgaans gemodelleerd door in-
teractie tussen twee verschillende systemen. Dit is uitdagend, omdat elk
systeem op een specifiek fysisch model is gebaseerd en bijbehorende interne
koppelingsvoorwaarden zijn nodig om ze te verbinden.

In ons geval wordt de vloeistofstroming gegeven door de incompressibele
Stokesvergelijkingen, terwijl de stroming in het poreuze medium wordt
beschreven door ofwel de Darcy-stromingsvergelijking of de poroelasticiteitsvergeli-
jkingen, afhankelijk van aannames betreffende het medium. Als we aan-
nemen dat het poreuze medium stijf is, dan is het gekoppelde systeem een
Darcy-Stokesprobleem. In ons geval is het poreuze systeem vervormbaar en
daarom wordt het gekoppelde Stokes-poroelasticiteitssysteem beschouwd.
In het systeem van poroelasticiteitsvergelijkingen worden vloeistofbeweg-
ing en vervorming van het poreuze medium beide meegenomen. Dit is
gebaseerd op het Biotmodel, waarin de Darcy-vergelijking gebruikt wordt
voor de vloeistofbeweging, terwijl lineaire elasticiteitsvergelijkingen de ver-
vorming van het medium weergeven. Aan de koppeling van de Stokes- en
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de poreuze mediumvergelijkingen moeten goede randvoorwaarden worden
opgelegd, zoals behoud van massa en impuls, een evenwicht van spanning
en geen wrijving.

Het gekoppelde systeem wordt gediscretiseerd met de eindige volumemeth-
ode, vaak op een gestaggered rooster, wat resulteert in een discreet systeem
met een zadelpuntstructuur. Multiroostermethoden zijn efficiént voor het
oplossen van zadelpuntproblemen. Wij ontwikkelen efficiénte en robuuste
monolithische multiroosteralgoritmen voor het gekoppelde systeem. An-
ders dan in een klassicke domeindecompositie methode (DD), wordt het
volledige discrete systeem dat voortvloeit uit de overkoepelende vergelijkin-
gen en de koppelingscondities gelijktijdig behandeld tijdens het oplospro-
ces. In multigrid beinvloedt de keuze van elke component de convergentie.
Wij schenken speciale aandacht aan de keuze van elke component, en met
name ook aan de keuze van de smoother.

Om een goed inzicht te krijgen in de vergelijkingen, beginnen we dit
proefschrift met het focusseren op de efficiénte iteratieve oplossing van de
poroelasticiteitsvergelijkingen, in Hoofdstukken 2 en 3, omdat er reed vele
studies zijn uitgevoerd naar het Stokesprobleem. We lossen zowel de lin-
eaire als de niet-lineaire poroelasticiteitsvergelijkingen op met behulp van
de geometrische multiroostermethode. Met betrekking tot het niet-lineaire
systeem van partiele differentiaalvergelijkingen, worden twee niet-lineaire
multiroostervarianten, d.w.z. Newtons multigrid en de Full Approximation
Scheme (FAS), gebruikt in Hoofdstuk 2. Newtons multigrid is gebaseerd
op globale linearisatie. Het verkregen lineaire probleem, na toepassing van
Newtons methode, wordt opgelost met een lineaire multiroostermethode.
Anders dan met Newtons multigrid, lost men met FAS het niet-lineaire
probleem direct op. Dit gebeurt op zowel een fijn als een grof rooster
door gebruik te maken van niet-lineaire smoothers. We lossen ook een
niet-lineair probleem met heterogene fysische parameters op. Deze param-
eters worden gegeven door random coéfficiénten. In onze numerieke testen,
vergelijken we een puntsgewijze Gauss-Seidelsmoother met een gekoppelde
Vanka-smoother.

In Hoofdstuk 3 onderzoeken we de multiroosterprestatie met een zoge-
noemde ontkoppelde Uzawa-smoother voor de lineaire poroelasticiteitsvergeli-
jkingen. De Uzawa-smoother is gebaseerd op een symmetrische Gauss-
Seidel-iteratie voor de verplaatsingen en een Richardson-iteratie voor de
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updates van het drukveld. Om optimale relaxatieparameters in de Richardson-
iteratie te bepalen wordt Lokale Fourier Analyse (LFA) toegepast. De
asymptotische convergentiefactoren van de multiroostermethode kunnen
goed voorspeld worden door middel van twee-rooster LFA. Om de conver-
gentie voor niet-triviale heterogene problemen verder te versnellen, wordt
een recombinatieschema voorgesteld in Hoofdstuk 3.

Op basis van de verkregen kennis van de (Stokes- en) poroelasticiteitssub-
systemen, lossen we het gekoppelde Darcy-Stokessysteem op in Hoofdstuk
4. Daarbij wordt aangenomen dat het poreuze medium stijf is. Een spe-
ciaal discretisatieschema is ontwikkeld voor de onbekenden op de koppel-
ing van de beide subsystemen. Wij stellen een monolithische multiroost-
ermethode in combinatie met de Uzawa-smoother voor, gebaseerd op de
roosterpartitie parallelisatiestrategie. Optimale relaxatieparameters in de
Uzawa-smoother worden opnieuw berekend door middel van LFA voor
elk subprobleem. We hebben bevestigd dat de convergentie van multi-
grid overeen komt met de minste multiroosterconvergentiefactor van de
individuele deelproblemen. Het is verder goed om op te merken dat de
multiroosterconvergentie onafhankelijk convergeert van de fysische param-
eterwaarden. Bovendien hebben we het effect van heterogeniteit op de
multiroosterconvergentie bestudeerd.

Tenslotte ontwikkelen we een monolithische multiroostermethode voor
het gekoppelde Stokes-poroelasticiteitssysteem door rekening te houden
met de elastische vervorming van het poreuze medium in Hoofdstuk 5. Een
vernieuwing in ons werk is dat bij de koppeling van de twee subsystemen,
twee onbekenden uit de verschillende subsystemen worden gedefinieerd in
hetzelfde roosterpunt. Wij stellen een speciale discretisatie voor de on-
bekenden op en nabij dit roosterpunt. In dit hoofdstuk onderzoeken we de
multiroosterprestatie met de gekoppelde Vanka- en de ontkoppelde Uzawa-
smoothers. Voor de Uzawa-smoother geven de resultaten uit Hoofdstuk 3
ons het nodige inzicht om de waarden van de relaxatieparameters voor de
poroelasticiteitsvergelijkingen te optimaliseren. Binnen het roosterparti-
tieschema wordt de informatie uitgewisseld tussen naburige subdomeinen
op elk roosterniveau. Dit vormt de basis om een zeer bevredigende mul-
tiroosterconvergentie te bereiken in multi-blok geometrieén. Dit proef-
schrift presenteert onderzoek naar de monolithische multiroostermethode
voor systemen van gekoppelde vloeistofstromen en poreuze materialen. De
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theoretische kwantitatieve analyse, numerieke algoritmen en resultaten die
hier worden gepresenteerd geven inzicht en kennis in multiroostermetho-
den voor multi-fysicische systemen. De combinatie van deze twee aspecten,
d.w.z. multigrid en gekoppelde systemen, is spannend en uitdagend.
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Chapter 1

Introduction

1.1 Background

Fluid flow is everywhere in our natural and technical environment. The
movement of a fluid is usually described by the dynamics of the flow and the
interaction with its surrounding environment. Researchers are interested in
applying fluid dynamics to various kinds of problems to better understand
the flow patterns. In agriculture, people construct channels and water
supply systems for the purpose of irrigation. In biology, essential nutrients
and drugs are transported by flow in the blood vessels. In environmental
sciences, people remove contaminants from sewage by filtration processes.
In geosciences, hydraulic fracturing [53] is regarded as one of the methods
for extracting oil or gas resources from the Earth surface.

Fluid dynamics [6] is an ancient science, which may date back to An-
cient Greece, where Archimedes developed the fundamental principles of
buoyancy. Ever since, outstanding scientists have devoted research efforts
to fluid motion. In the 15th century, Leonardo da Vinci derived the con-
servation of mass equation for a one-dimensional steady-state flow. In the
17th century, Isaac Newton postulated the laws of motion and brought us
the concept of Newtonian fluids. In the 18th century, the Bernoulli and
Euler equations were stated respectively by Daniel Bernoulli and Leon-
hard Euler [34]. The Navier-Stokes equations [74, 89, 92] were stated in
the 19th century when Newtonian viscous terms were added to the equa-
tions of motion. They are widely used to model water flow in a channel,
ocean currents and air flow around aircraft. As a simplification of the full
Navier-Stokes equations, the Stokes equations describe flow for which fluid

1
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velocities are very slow and viscosities are large.

For long time, researchers have also been interested in the process of
flow passing through a porous medium [25]. A porous medium consists of
material containing voids, like rock and soil in natural, man-made cement
and ceramics, sponges and also muscle or skin tissues. Often the solid skele-
ton and the pores network are tightly connected. Henry Darcy, in 1856,
discovered the basic laws of flow [28] in porous media in one-dimension,
based on experiments. Theoretically, Darcy’s law can be derived from the
Stokes equations via homogenization. In Darcy’s law, the porous medium
is assumed to be rigid and saturated. Moreover, for the movement of fluid
in unsaturated porous media, the nonlinear Richards’ equation [79] was
derived by Lorenzo Richards in 1931. In unsaturated flow, hydraulic prop-
erties may change when fluids pass through the medium, filling some pores
and draining others.

By taking also into account the deformation of the solid material, the
theory of poroelasticity was proposed by Biot in 1941 [8]. Poroelasticity
studies the interaction between the solid deformation and the fluid motion.
In Biot’s model, the fluid in saturated pores is modeled by the Darcy
equation, and the deformation by means of linear elasticity equations. The
poroelastic coupling implies that a change in the applied stresses of the
solid skeleton will affect the pressure of the fluid, while a change in fluid
pressure will lead to a change in the volume of the porous material.

Modeling the interaction of free flow and porous medium flow requires to
consider coupled models with, in our case, the Stokes equations in the fluid
domain and flow in the porous medium, like the Darcy equation or poroe-
lasticity equations, resulting a coupled multi-physics system [85]. From
this point of view, the application examples mentioned at the beginning
of this introduction can be represented by a coupled model. In the filtra-
tion process, for example, the filter usually consists of a porous material.
When fluid passes through a filter, properties of the material or fluid, such
as pressure, permeability, stress and so on, may change. Simultaneously,
these changes may affect the free fluid movement. Filtration processes have
a wide range of application from engineering to biology, like waste water
treatment, percolation of drugs into tissues, etc.

For the purpose of understanding and controlling the coupled process,
it is desirable to simulate and investigate the interactions between fluid
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flow and porous media. In the coupled system, except the separate models
for each subdomain, the interface where the two domains meet plays an
important role. In order to connect two subregions, appropriate boundary
conditions need to be chosen at the interface [55, 82].

Figure 1.1: A filtration model (obtained from www.porexfiltration.com).

1.2 Solution strategies

The numerical solution of multi-physics problems is an active research area
[30, 32, 51, 80, 81], since it is often impossible to solve the coupled problem
analytically. Generally, there are two ways to solve a coupled multi-physics
system numerically. The domain decomposition (DD) method is a popular
approach, where the basic idea is to divide the problem geometry into sub-
domains, and the adjacent subdomains are related to each other by means
of proper interface conditions. The subproblems are treated independently,
which makes domain decomposition methods suitable for parallel compu-
tation. Regarding parallel computing, DD implies a distribution of the
separate subdomain problems to different processors. An important aspect
regarding the convergence of DD methods concerns the strength of the cou-
pling of the different physical models in a multi-physics problem. We need
to formulate accurate interface conditions to guarantee well-posedness of
the problems and a meaningful information exchange across interfaces. DD
methods can also be used as preconditioners for Krylov subspace iterative
methods, such as the Generalized Minimal Residual (GMRES) method or
the Conjugate Gradient (CG) method. More details and applications of
DD methods can be found in [18, 23, 24].

There are several researchers applying DD methods for the coupled free
fluid flow (Stokes equation) and the rigid porous media (Darcy equation)
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model. In the coupled Darcy-Stokes model, the interaction between the
fluid and the solid matrix in the porous media is neglected. In other words,
the elastic properties of the solid matrix are not considered. Several ad-
vanced iterative solvers have been applied to the Darcy-Stokes system, as
for example the Dirichlet-Neumann-type DD method [31], Robin-Robin
DD method [22, 33], Lagrange multiplier-based DD method [61] and many
others [19, 20, 69]. The main idea is to update the subdomain problems
iteratively, until convergence.

The multi-physics problem becomes more involved by also considering
the deformation of the porous medium. The coupling of free flow (Stokes
equations) and deformable porous media (poroelasticity) has not yet been
widely studied, probably due to the involved coupling at the interface.
The DD method allows for each subdomain to employ different meshes,
solvers and /or discretization schemes. The authors in [72] solve the coupled
Stokes-poroelasticity system by means of a DD method, by using a separate
multigrid method for the poroelastic equations and a SIMPLE-algorithm
[76] for the Stokes equations. The essence of the DD method is modularity,
where an important requirement is the data transfer at the interface be-
tween two existing fluid and poroelasticity software packages. The solvers
are usually specifically designed for different subproblems. The issue is
however the efficiency and convergence of the overall problem. In [17],
the authors adopt a Lie operator splitting scheme for the fluid-poroelastic
structure interaction (FPSI) problem, while in [71] partitioning strategies
based on a Nitsche’s coupling approach are proposed.

A second approach to deal with coupled multi-physics problems is to
consider monolithic methods. In a monolithic approach, the complete dis-
crete system arising from the coupled model of free flow and flow in the
porous medium is treated at once. A single solution method is developed
to simultaneously solve the governing equations together with the interface
conditions. In this thesis, a monolithic multigrid method is developed as
an efficient iterative solution method for the coupled multi-physics system.

1.3 Multigrid method

The multigrid method is an iterative solution method for solving linear as
well as nonlinear discretized partial differential equations. The multigrid
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technique was first proposed in 1964 by Fedorenko [35], who formulated a
multigrid algorithm for the discrete Poisson equation obtained by the stan-
dard central finite difference method. In 1973 and 1977, Brandt reported
practical results and showed the main insights in the multigrid method
[11, 12]. The work by Brandt is regarded a landmark in the field of multi-
grid method development laying firm foundations for further development.
Other pioneers include Hackbusch [42, 43, 44, 45], who developed the fun-
damental theory of multigrid. The multigrid method can be applied to
various mathematical problems, such as elliptic and parabolic partial dif-
ferential equations, integral equations and eigenvalue problems. There are
many other applications of multigrid techniques and multilevel ideas in
general, see [15, 46, 47, 73, 96].

Here, in this thesis, we restrict our attention to the application of multi-
grid methods in computational fluid dynamics which has a long tradition.
At an early stage, multigrid methods were developed for the compress-
ible potential equation [87]. Multigrid has been widely used for solving
the incompressible Navier-Stokes problems, see [13, 99]. Highly efficient
multigrid techniques have been developed for the Stokes and unsteady in-
compressible Navier-Stokes problems.

The main insight of multigrid methods is that they may improve the
convergence properties of classical iterative methods, such as Gauss-Seidel
and Jacobi methods, by additional corrections obtained from the solutions
on coarser grids. Detailed information of multigrid, along with applications
of practical problems can be found in the review article [90] by Trottenberg
and Stiiben, and the book [94].

It is well-known that the basic iterative relaxation methods are efficient
for eliminating high frequency components of an error between exact so-
lution and its numerical approximation. When the oscillatory components
have been removed, the convergence of Jacobi or Gauss-Seidel methods
slows down. When the resolution of the computational grid increases, the
convergence of basic iterative methods gets much slower. These are the lim-
itations of the classical iterative methods. The insight is that the smooth
components of the error appear again oscillatory on a coarser grid forms the
basis of the multigrid method. It becomes natural to transfer the smooth
error components to coarse grids, where the basic iterative methods become
effective again. Multigrid can be regarded as a technique in which basic
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fine grid

coarse grid

v

Figure 1.2: A sequence of coarse grids.

iterative methods are made efficient for all high and low frequency error
components. The basic iterative methods are called relaxation methods or
smoothers in the context of the multigrid method.

Just as its name implies, a multigrid method is based on a sequence
of meshes obtained by successive coarsening, see Figure 1.2. The solu-
tion process may start with a basic iterative relaxation on the finest grid.
Then, the residual belonging to the finest grid approximation of the solu-
tion is transferred by a restriction operator to a coarser grid. Since the
problem on a coarser grid is similar to the fine grid problem, the same
basic iterative relaxation method may be applied to eliminate the corre-
sponding components of the error. This procedure is repeated until the
coarsest grid is reached, where a direct solution of the problem is cheap.
After that, the corrections to the solutions obtained on the coarsest grid
are transferred back by a prolongation operator to finer grids. Additional
relaxations by means of the basic iterative methods are needed on the finer
grids for a rapid and reliable convergence. The multigrid method has a
recursive structure. There are several possibilities when moving through
the grid hierarchy, that are called the multigrid cycles. A typical property
of multigrid is that the convergence rate is independent of the mesh size,
which makes multigrid suitable for the efficient iterative solution of very
large discretized systems of equations. It is challenging to define robust
and efficient multigrid methods for all sorts of PDE problems. In order to
determine suitable multigrid components, such as smoothers, transfer op-
erators, coarse grid discretizations etc., a quantitative theoretical analysis
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called Local Fourier Analysis (LFA) has been presented, see [94, 100]. The
analysis was first proposed by Brandt [12] then developed and refined in
various articles. The basic idea of LFA is that the errors can be expressed
as a formal linear combination of certain functions, i.e., Fourier modes.
A Fourier space is defined by these Fourier modes. We may analyze how
the multigrid components act on the Fourier space, and aim to predict the
performance of multigrid this way. LFA is based on the assumption that
operators are defined on infinite grids and that boundary conditions are
neglected.

An extension of the basic multigrid method for solving linear partial
differential equations is the nonlinear multigrid method, which has been
developed for solving nonlinear equations efficiently. To deal with nonlin-
earity, basically there are two multigrid approaches [94]. First of all, global
linearization is naturally applied, like by Newton’s method. After having
linearized the PDE problem, in each linearization step, the basic multigrid
method can be used for solving the resulting Jacobian system. Such a
scheme is called the Newton multigrid method, i.e., Newton’s method is
used in an outer iteration and linear multigrid solves as an inner iteration.

A second approach is called the Full Approximation Scheme (FAS).
Multigrid is then immediately employed for the nonlinear equations. It
is worth noting that instead of solving an equation for corrections of the
solution on a coarse grid, the original equation is prescribed and full solu-
tions are also computed on coarse grids. The smoother on each grid level
is a nonlinear basic iterative method, such as a nonlinear Gauss-Seidel or
Jacobi iteration.

1.4 Outline

In this thesis, we develop efficient monolithic multigrid algorithms for
multi-physics problems. First of all, we focus on the poroelastic equations.
The multigrid method is applied to both linear and nonlinear poroelastic
equations. An Uzawa smoother is used in this context, which is analyzed
based on Local Fourier Analysis (LFA), providing information about suit-
able relaxation parameters. The convergence of multigrid is also examined
for a heterogeneous poroelastic problem.

With a deeper understanding of the separate subproblems, we then pro-
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pose a monolithic multigrid algorithm including the Uzawa smoother for
the coupled Darcy-Stokes model. Based on the insights obtained in a pre-
vious chapter, we select optimal relaxation parameters for each subsystem.
We investigate the robustness of the algorithm for small and realistic values
of the physical parameters.

Moreover, the coupled Stokes-poroelasticity model is considered, in which
the deformation of the porous media is taken into account. For the un-
knowns at, or close to, the Stokes-poroelasticity interface special discretiza-
tion schemes have been developed. Monolithic multigrid methods with ei-
ther a coupled Vanka-type smoother or a decoupled Uzawa smoother have
been developed. The efficiency of multigrid is illustrated by several numer-
ical experiments under different settings.

The organization of this thesis is as follows.

e In Chapter 2, we solve the system of unsteady incompressible poroe-
lasticity equations by means of the two nonlinear multigrid methods,
mentioned earlier, i.e., the Full Approximation Scheme (FAS) and
Newton multigrid. Regarding the discretization of the equations, we
focus on a vertex-centered collocated grid arrangement in this chap-
ter. For accurate solutions, a stabilization term is added to one of the
continuous equations, since oscillations may occur when the system
is discretized on a vertex-centered grid by a finite volume method.
Steady problems are considered for both homogeneous and heteroge-
neous permeability cases. For the FAS method, the multigrid conver-
gence performance with two different smoothers is investigated. The
contents of this chapter are published in [63].

e In Chapter 3, for the efficient multigrid solution of the poroelas-
ticity system, a decoupled smoother called the Uzawa smoother is
employed. The Uzawa smoother can be interpreted as a combina-
tion of a symmetric Gauss-Seidel (SGS) smoothing iteration for the
displacement unknowns and a Richardson iteration for the pressure
field. To select an optimal relaxation parameter for the Richardson
iteration, the LFA is applied. The asymptotic convergence factors of
multigrid can be accurately predicted with the help of LFA. For the
poroelasticity system with heterogeneous coefficients, an acceleration
scheme by means of an iterant recombination to improve the multigrid
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convergence is applied. The contents of this chapter are published in
[64].

e In Chapter 4, we solve the coupled porous media and Stokes flow
problem by a monolithic multigrid method with the decoupled Uzawa
smoother for the whole system. The porous media are assumed to be
rigid. The coupled Darcy-Stokes system is discretized on a staggered
grid by the finite volume method. Special care is taken regarding the
non-trivial conditions at the interface between the two subproblems.
LFA is again used to determine optimal Richardson relaxation param-
eters for each subproblem. The coupled model with a heterogeneous
porous medium is also considered. The efficiency and robustness of
the algorithm are examined in quite some detail. The contents of this
chapter are published in [66].

e In Chapter 5, the staggered grid monolithic multigrid method is
extended to the coupled unsteady fluid flow and deformable porous
media system. At the interface between the Stokes and poroelas-
tic subproblems, two unknowns belonging to different subsystems are
defined at the same grid point. We present a special discretization
scheme for the unknowns at or close to the interface. To solve the
Stokes-poroelasticity system by multigrid, either a coupled Vanka or
a decoupled Uzawa smoother is employed here. In the algorithm, the
communication on each multigrid level between neighboring subdo-
mains is based on the grid partitioning strategy. The contents of this
chapter are presented in [65].

e In Chapter 6, conclusions are drawn and some possible topics for
future research are given.






Chapter 2

Multigrid method for nonlinear poroelasticity
equations

In this chapter, a nonlinear multigrid method is applied for solving the
system of incompressible poroelasticity equations considering nonlinear hy-
draulic conductivity. For the unsteady problem, an additional artificial
term is utilized to stabilize the solutions when the equations are discretized
on collocated grids. We employ two nonlinear multigrid methods, i.e. the
“Full Approximation Scheme” (FAS) and “Newton multigrid” for solving
the corresponding system of equations arising after discretization. For the
steady case, both homogeneous and heterogeneous problems are solved and
two different smoothers are examined to search for an efficient multigrid
method. Numerical results show a good convergence performance for all
the strategies. !

2.1 Introduction

Shale gas [27, 56] is natural gas which is formed by being trapped within
shale layer formations. Shale layers have typically low hydraulic conductiv-
ity which dramatically reduces the mobility of this so-called unconventional
gas. Hydraulic fracturing [53] has been regarded as one of the methods of
extracting these gas resources. It is a process in which injection of a highly
pressurized fluid creates fractures within rock layers.

!The contents of this chapter have been published in paper [63]: P. Luo, C. Rodrigo, F.J. Gaspar and
C.W. Oosterlee. Multigrid method for nonlinear poroelasticity equations. Computing and Visualization
in Science, 17(5):255-265, 2015.

11
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The concept of poroelasticity [25, 26, 29] can be used as a model describ-
ing the Earth. It is a well-developed theory that was originally studied by
Terzaghi [93] who proposed a model for a one-dimensional consolidation
problem. After that, in 1941, Biot [8, 9] extended the theory to a general
three-dimensional model. The model has been widely used for problems in
rock mechanics, and it describes the interaction between the solid (rock)
deformation and the fluid motion. It is a coupled model considering the
seepage and stress processes together. The 2D poroelasticity problem can
be formulated as a system of partial differential equations for the unknowns
displacements and pore pressure of the fluid. Existence and uniqueness of
the solution of this problem have been studied for example by Showalter
[84] and Barucq et al. [5].

Often porous material is assumed to be homogeneous in numerical ex-
periments, however, in fact materials usually have complicated properties
composed of different characteristics. Therefore, it is necessary to take
heterogeneity into account which can influence the poroelastic behavior in
many ways. Heterogeneity means that the coefficients in the equations
are not constant and all (or several) characteristics of the main problem
follow some distribution. Also the hydraulic conductivity of the material
plays a role. There is a significant difference in conductivity once mate-
rial deformations start to occur. The coefficient of conductivity depends
on the stress and fluid pressure, resulting in a nonlinear set of equations.
Both heterogeneity and nonlinear conductivity are included in the non-
linear poroelastic model studied here. As an analytic solution is usually
not available, we solve the poroelasticity system by means of numerical
techniques. We will employ the finite volume method for the nonlinear
system of poroelasticity equations. Details about the convergence results
of the multi-dimensional finite volume discretization for the nonlinear sys-
tem of poroelasticity equations is, to our knowledge, not yet known or
available in the literature. In one dimension, however, convergence of the
discrete solution has been shown in [37] for a staggered arrangement of
the poroelasticity unknowns in the nonlinear case. Convergence results of
discrete schemes for the (multi-dimensional) linear system of poroelasticity
equations, on a staggered and on a collocated grid, are available, see, for

example, [38, 40].
We would like to employ the multigrid method [14, 16, 46, 94, 98] as
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the iterative solution method for the discretized partial differential equa-
tions. It is known that many classical iterative methods, like Jacobi or
Gauss-Seidel cannot efficiently eliminate low-frequency errors appearing in
a numerical approximation. This may cause slow convergence, as low fre-
quency error modes tend to disappear extremely slowly from a discrete
approximation. Therefore, the multigrid method is chosen as a highly
efficient solution method, improving the performance of the basic relax-
ation schemes. Regarding the nonlinear system, the multigrid iterative
method can also be employed as a nonlinear solver. The “Full Approxima-
tion Scheme” (FAS) and “Newton Multigrid” are both considered for the
time-dependent problem. With respect to the smoother in the multigrid
algorithm, coupled smoothers called Vanka and point Gauss-Seidel (PGS)
are chosen and compared.

The organization of this chapter is as follows: First of all, we present the
governing equations of the unsteady and steady poroelastic model, together
with the finite volume discretization scheme on a collocated grid in Section
2.2. In Section 2.3, the nonlinear multigrid methods are introduced. Each
component of multigrid is clarified. After that, numerical experiments are
presented in Section 2.4. All of the results show satisfactory convergence
performance of the proposed methods. Finally, a conclusion is given in
Section 2.5.

2.2 Problem formulation

2.2.1 Unsteady case

Governing equations

We deal with a deformable fluid-saturated porous medium, whose solid
matrix is elastic and the fluid is viscous. Both solid matrix and pore
network are considered to be continuous, and thus fully connected. Biot’s
poroelastic theory [8, 9] is based on the coupling between the coherent
solid skeleton and the pore fluid flow. A change in the applied stress of the
skeleton will affect the pressure or mass of the fluid, and a change in fluid
pressure will lead to a change in the volume of the porous material.

A poroelasticity system is constructed on the description of the fluid
pressure, stress, displacement and strain in the medium, and mass and
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momentum conservation principles. Supposing that the porous matrix is
fluid-filled, the total Cauchy stress tensor o;; can be divided into two parts,
pore pressure (fluid) p and effective stress of the soil skeleton (solid) of;.
The effective stress is defined as a subtraction of pore pressure from the
total stress. Pore pressure only influences the normal stress. The total

momentum balance reads:
oij; + =0 (1,7 =1,2,3), (2.1)

where F; is the body force in the i-th direction. The summation convention
is used when repeated subscripts occur. The strain quantity, €;;, is a
measure of the solid deformation with respect to an initial state. Variables
u; and €;; are related according to the compatibility condition:

1
eij = 5 i + ). (2.2)

Moreover, €, = €11 + €99 + £33, is the volume strain. The constitutive
equation in Biot’s model is based on the assumptions of linearity between
stress and strain:

0i; = 0ij — apdiy = Aoye, + 2Gejj, (2.3)

where A and G are the effective Lamé constants; d;; is the Kronecker delta;
a denotes the coefficient of pore pressure, which is also called effective
stress coefficient.

Darcy’s law [52] describes the rate at which a fluid flows through a
permeable medium. The seepage equation in the poroelasticity model is
obtained when substituting Darcy’s law into the continuity equation for

the fluid, i.e.

6]9 . 851)
LE—V-(KVp)——oz 5

with K the hydraulic conductivity, and ¢ is the product of the porosity and
the compressibility of the fluid.

When an element of rock undergoes elastic deformation, its hydraulic
properties will change. Hydraulic conductivity regarding its transport
property describes how easily fluid flows through the rock material which
will be influenced by variation of stress. Supposing that the conductivity
and stress follow a negative exponential function, the conductivity reads

K (03, p) = EKge P38 —on), (2.5)

(2.4)
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where K is the initial conductivity of the rock element; 3 is a coupling
coefficient which reflects the influence of stress on the coefficient of con-
ductivity; 0;;/3 is the average stress; and £ is a mutation coefficient to
account for the increase in conductivity of the material during fracture
formation. When & > 1, the above expression gives a higher conductivity
caused by damage. In other words, the conductivity in equation (2.5) will
dramatically increase when there is a “failure” in the element.

For the unsteady-state case in 2D, the governing equations have a time
dependent term and a Navier-type equation for displacement vector u re-
sulting by applying the constitutive equation (2.3) and the geometric rela-
tion (2.2), where ¢;; is expressed in terms of the displacement gradient to
the balance equation (2.1), with F; =0, i.e.,

—GAu— (A +G)graddivu + agradp = g,
~V - (KVp) + a%(div u) = f, (2.6)
K (0.p) = £ Kye- P0Gy divu-op)

The source terms g = (g1, 92) and f are supposed to be in (L?(2))? and
L?(), respectively. They are used to represent a density of applied body
forces and a forced fluid extraction or injection process for each case [38].
The term (agradp) presents the stress due to fluid pressure within the
medium, and div u is the volume change rate.

Coefficients A and G are related to Young’s modulus and Poisson’s ratio
by

vE E

A= AT =) G:m' (2.7)

Discretization

When discretizing the poroelasticity equations (2.6), we employ a col-
located grid [38, 75, 94] on which all variables - displacements vector
u = (u,v) and fluid pressure p, are placed at the vertex-centered grid
points. Collocated grid arrangements are convenient for numerical itera-
tion methods like multigrid. Whereas for unsteady poroelasticity simula-
tions an artificial stabilization has to be used, this is not the case for the
steady poroelasticity case, as oscillations of pressure do not occur in that
case.
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Figure 2.1: Control volume for an arbitrary node (i,j) and corresponding numbering of
the neighboring grid points.

The finite volume method is employed as the discretization scheme. We
take the first equation in (2.6) as an example. It can be written as

—dive + aVp = g, (2.8)

: : . (Ow O :
where o denotes the two-dimensional stress matrix ( o Iy). In Fig-
Oye O
yr Oyy

ure 2.1, the square with dotted lines represents a control volume V; ; used
for the vertex-centered grid, and €2; ; denotes the boundary of V, ;.

Now, we consider the first equation in (2.8) for example, which can be
expressed as,

=V - (O4z; Oay) + ape = g1. (2.9)

By integration of (2.9) over the control volume V; ;, one obtains,

_/ V. (O_zxy 09:y> dvzg + Oé/
Vi \%

The Gauss divergence theorem converts volume integrals to surface inte-

Dz dVi’j = / aJi1 dVi,j. (210)
A%

,J ]

grals, resulting here in

¥

(Opz, Ozy) -1 ds+ a/

Px dvi,j = / a1 dvi,j, (211)
Viyj A

(2% 2%
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—/am ds—/amy ds—|—/am ds—l—/axy ds
1 T2 T3 T4

—f—Oé/ Pz dVi’j = / a1 dVZ-,j, (212)
A% A%

ij
where n is the unit normal vector to the volume, and 7; (i = 1,2, 3,4) is the
right, top, left and bottom boundary of control volume V;, ;, respectively.
By applying to (2.12) the following relations,

or
.3

Ory = G(uy + vl“)a
Tyy = Mg + (A + 2G)vy, (2.13)
Opx = (A 4+ 2G)uy + Avy,

the resulting discrete equation is given by

—h[(A +2G)u, + M}y]zdr%,j — h[G(uy, + Ux)]z’,jJr%
R[N+ 2G)uy + vyl _s; + B[G(uy + vg)]; 1
+@h(pi+§,j - pi—%,j) = g1, (2.14)

where h is the grid size of a uniform grid used for the space discretization.
Central differences are applied to the first-order derivatives u,, u,, v,, and
vy. Similarly, the discrete equation for the second equation in (2.8) can
also be obtained.

[t is convenient to apply stress boundary conditions to equation (2.12),
by substituting the given stress at boundaries, of course, adapting the
control volume.

Regarding the seepage equation, we discretize it on a collocated grid as
well. However, such discretization for unsteady problems will be unsta-
ble, because oscillations may appear in the first time steps of a numerical
solution. After this phase, the solution becomes smoother and these os-
cillations tend to disappear. Some special care is needed to construct a
stable discretization for the whole process. A stabilized discretization can
be achieved by adding an artificial elliptic pressure term [38, 75] to the
seepage equation in (2.6), as follows

(diva) — 2(V - (cVp) = 1. (2.15)

0
—V - (KVp) + p

ot
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where the artificial term is 2(V - (Vp)), with & = (A+2G) see [38]. When
the mesh size h — 0, the artificial term tends to 0. Now the system of
equations with a stabilization term added, can be discretized on a collo-
cated grid by the finite volume method. Since this term is proportional to
h?, second-order accuracy can be maintained.

Since equation (2.15) represents a time-dependent problem, a time dis-
cretization is required. The discrete problem has to be solved each time
step. In each of the finite volumes V; ;, the integral formulation of (2.15)
has the form,

8

/(% (eVp)) dVi; = /de” (2.16)

Using the Gauss theorem, we have
—(e+ Ki+%,j97>pﬁ+11] (e + Ki,j+%97)P%++11
—(e + KZ;;, 07)}92’“{1] (e + Ki,jf%HT)p;"JHl

%%;‘1*15 ﬁ%, + vr;:a o) =

—(e - (1 - 8>T)pi+1,j — (e - Ki,jJr%(l - Q)T)pz_JH

—(e - z—f (1 - ‘9)7')]9?11,]‘ — (e — Ki,j—%(l - 9)7')291,]71

+(de — (K1, + K K+ Km-_%)(l — 0)7)p;;
%h(uﬁlj - Uﬁu + 0l — v )

+70 R 4+ (1= 0) [ R, (2.17)

where 7 is the step-size in time direction and the approximation of con-
ductivity K; 11 can be expressed as

Ujt1,5 — Ui 4
K1y = EKoexp(—B[(A + G)[%
1 Vit1,j4+41 — Vit+1,5-1 Vij+1 — Vi j-1
T )]

_ Pt ‘f‘pi,j]).

5 (2.18)
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For other values of permeabilities, a similar formulation can be obtained
without any difficulties. Obviously, the values of unknowns {u®*! pm+t}
at a new time t + 7 can be calculated immediately from the values of
the previous time. From discrete formula (2.17), the backward Euler and
Crank-Nicolson schemes can both be used by choosing with # = 1 and
0 = 0.5, respectively. We prefer to use the Crank-Nicolson scheme here, so
that second-order accuracy in time can be obtained.

2.2.2 Steady case

Governing equations

Under steady-state conditions, (2.4) becomes a Poisson-like equation,
-V - (KVp) =0. (2.19)

From equations (2.6) and (2.19), the governing equations for the 2D steady
poroelasticity model can be obtained as

—GAu— (A+G)graddivu + agradp = 0,
—V - (KVp) =0, (2.20)
K(O’, p) _ gKoe—B(()\-ﬁ-G)divu—ap).

Here we simply consider the case that the source terms are all zeros.

Discretization

Since the seepage equation in (2.20) is a Poisson-type equation, second-
order accuracy can be achieved again by applying finite volumes on a uni-
form rectangular grid. Note that the artificial stabilization term is not
needed for the steady case. The discrete form of the seepage equation
reads

—/ V- (KVp) dV,',j = 0. (221)

The left-hand side of (2.21) can be reformulated as an integral over the
boundary of the volume V; ;,

—/Kg—p /K d+/K—ds+/K ds=0. (222
T1 xz
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Replacing p, and p, by a centered approximation, one obtains

_KH-%,]'(pH—l,j - pz‘,j) - Km’—&—%(pi,ﬁ—l — pi,j)
+K;_1(pij — pi-1j) + K j_1(pij — pij-1) = 0. (2.23)

2

It can be seen that Lamé coefficients and permeabilities are required at
the four mid-points (i + %,j), (1 — %,j), (1,7 + %) and (i,] — %) that are
at the control volume boundaries. If the material is heterogeneous, these
parameters are determined from a stochastic distribution, which means
they are different at each vertex of the collocated grid. Due to this, the
averaged values of two adjacent vertices are used for those middle points in
the discrete formulas. Boundary conditions will be specified in Section 2.4.

2.3 Numerical Method

The multigrid method - an efficient numerical technique for solving sys-
tems of linear and nonlinear equations - is employed for the solution of
the discretized poroelastic partial differential equations, based on earlier
multigrid work on poroelasticity model problems [38, 75].

2.3.1 Nonlinear multigrid method

To deal with the nonlinearity, there are basically two approaches.

Newton multigrid. There is no doubt that Newton’s method is the most
important method for solving nonlinear equations. Newton multigrid is
based on global linearization. Newton’s method is applied to linearize the
equations, and multigrid solves the resulting linear Jacobian system.

Full Approximation Scheme. The other multigrid technique suitable for
nonlinear problems is the Full Approximation Scheme (FAS) [14, 94] which
treats directly the nonlinear equations on fine and coarse grids. In FAS, a
nonlinear iteration, such as the nonlinear Gauss-Seidel method is applied to
smooth the error. Differently from linear multigrid, the full-scale equation
is solved on the coarse grid instead of the residual equation, because of the
nonlinearity:.
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2.3.2 Multigrid components

For efficient multigrid methods, each component of multigrid needs to be
selected with special attention. Those components are related to the col-
located grid arrangement of the poroelasticity discretization chosen here.
The multigrid transfer operators, restrictions and prolongations, are then
well-known in geometric multigrid. Regarding the most important compo-
nent in this setting, i.e., the smoothing scheme, we consider two methods
for the time-dependent system of equations - Gauss-Seidel relaxation and
box-relaxation [38, 75].

Smoothers. The choice of smoother is the most significant part which can
crucially affect the performance of multigrid. Several branches of robust
smoothers have been developed for the poroelasticity equations. They all
fall into two major categories: decoupled and coupled smoothers. With
respect to the decoupled smoothers, that are also denoted as equation-
wise relaxation, DGS (distributive Gauss-Seidel) is the original method,
introduced in [13]. Here we focus on the other type of smoothers - coupled
relaxation. A coupled smoother is a state-of-the-art relaxation scheme
for saddle point problems. The technique is based on processing the grid
cells in some order and to relax all unknowns associated with that cell
simultaneously.

A point-wise collective Gauss-Seidel (PGS) relaxation is chosen, which
processes three unknowns wu; j, v;; and p;; at grid point (¢,j) simultane-
ously. A small 3 x 3 system is solved for each grid point. We consider the
correction equation during smoothing for convenience, i.e.,

i1 7
a1 air2 aps EU; 5 TU; 5
ap1 22 (23 evj j = | rvij , (2.24)
as,1 az2 Aa3z3 EPi,j 'Dij
where euzf’?’l = u%ﬂ — u;; is an increment to the solution u corresponding
9. ) 9

to node (4,j). It is the same for v and p. ruw;;, rv;; and rp;; repre-
sent the corresponding residuals. After solving the residual equations, the
computed increments will be added to the current solution (take w for
example),

Al _ i i+
ul =yt wew]s (2.25)
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with an underrelaxation parameter w € [0, 1].

The use of a collective smoother in the case of nonlinear systems of
equations requires some more explanation. In principle, we have a variety of
choices of local linearization and grid point processing at our disposal, like
Newton-Gauss-Seidel, Newton-Jacobi, Picard-Gauss-Seidel, Picard-Jacobi
relaxation, and many others, see, for example [46, 94].

We here employ a “straightforward” basic linearization variant to deal
with the nonlinearity locally.

When we process the unknowns at a certain grid point, in the collocated
grid, we assume that we work in a lexicographical Gauss-Seidel fashion, and
that we have already updated the poroelasticity unknowns on previous grid
points. Because of the form of the nonlinearity in (2.20), we will use the
most recent updated unknowns when we set up the matrix element related
to the nonlinearity, in the system (2.24).

In the nonlinear term,

K(0,p) = EKye PG divu—ap)

we need to define divu at a certain grid point (i,7), and we will always
take the latest updates of the displacement unknowns to define this matrix
element. This means, the just updated neighbouring u-values are combined
with the “old” displacement values for the points that have not yet been
processed. For the pressure in the nonlinear term, we always take the “old”
value, in the linearization process.

This is a pragmatic way of linearization, related to Gauss-Seidel-Picard
linearization. We will perform the same local linearization when dealing
with the Vanka smoother in (2.26), and carefully consider each equation,
take the latest values for all unknowns. These are sometimes recently
updated values, and sometimes the values from a previous iteration.

The second smoothing scheme considered is the Vanka smoother which
is also called box relaxation. It was originally proposed by Vanka [95]
for solving the Navier-Stokes equations discretized by the finite difference
method on a staggered grid. This approach can be applied to a wide range
of problems, which we extend to the poroelasticity equations, see also [38].
Instead of the three unknowns at each grid point as in PGS, five unknowns
(pressure p; ; and displacements ;1 j, wi—1j, Vij+1, Vij—1 ) are relaxed at
the same time (see Figure 2.2). At each grid-point, a (5 X 5)-system is
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Vi, j+1

Ui—1,5 Dij Uit1,5

Vi, j—1

Figure 2.2: Five unknowns updated simultaneously in the Vanka-type smoother.

solved. Similarly as for PGS, we solve the so-called correction equations
which play a vital role during relaxations,

m+1 m
a1 a2 ai13 a4 Q15 EUj+1,5 TUj41,5
21 QAa22 Aa23 dA24 425 EU;—1,5 TUj—1,5
aszy1 32 0azsz daAz4 ass €Vj j+1 = TV 541 . (2-26)
g1 Q42 Q43 A44 0A45 €V; j—1 TV j—1
as1 G52 0Aa53 dAs4 Q55 €Pi.j T'Dij

Obviously, in one iteration for the whole domain, all displacement un-
knowns are updated twice, whereas pressure unknowns are updated once.
The updated solution has the same expression as (2.25).

Coarse grid correction. With respect to the coarse grid correction, we
choose geometric grid coarsening as we will deal with regular Cartesian
grids in these experiments. The sequence of coarse grids is obtained by
doubling the mesh size in each spatial direction and we use a (2 x 2)-grid
as the coarsest grid. As in the scalar case, any suitable solver can be
applied on the coarsest level.

Transfer operators. Supposing we have performed several smoothing steps
to obtain an updated solution and a sequence of coarse grids is ready, the
next step is to restrict the approximation to the next coarser grid. Since we
are trying to solve a system of equations, there is more than one equation
at each grid point. The restriction is done separately for each of these
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equations in the system. As a standard choice for the scalar problem, the
Full Weighting (FW) operator [94] is chosen for the restriction in our case.

With respect to the prolongation, a typical choice is bilinear interpo-
lation for each unknown grid function from coarse grid to the next finer
grid.

Grid Smoother | Conv. | Time(s) ”pmlim ”“lmzﬂoo
16 x 16 x 2 PGS 0-20 0-06 6.89 x 1073 | 1.96 x 1073

Vanka 0.19 0.08

32 x32x4 PGS 020 1 0.24 9.83 x 107 | 5.69 x 1074

Vanka 0.18 0.46
64 x 64 x 8 PGS 0.20 | 1.56 1.81 x 1074 | 1.39 x 1074
Vanka 0.17 3.30

128 x 128 x 16 PGS 0-20 1148 5.69 x 107> | 3.50 x 107

Vanka 0.17 25.58

Table 2.1: Convergence performance by FAS.

2.4 Numerical Results

2.4.1 Unsteady case

We present some comparison results for the unsteady case for a model
problem.

Initial settings. For the unsteady problem, we first consider the case of a
homogeneous, isotropic and incompressible medium. The computational
domain is (0,1) x (0,1). We numerically solve the poroelasticity problem
with a simple analytic solution given by

u = cos(mx)sin(my)sin(wt),
v = sin(mx)cos(mwy)sin(mt), (2.27)
p = —2(A+ 2G)wsin(mz)sin(my)sin(nt).
Source terms g and f are consequently determined from (2.6). Dirich-
let boundary conditions are considered. Before fluid starts to flow, the
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following initial condition is considered,

div u(z,y,0) =0, (x,y) € (0,1) x (0,1). (2.28)

e G)divu=p i y50d in the compu-

The nonlinear conductivity K (o,p) =
tations.

We discretize the incompressible and time-dependent poroelasticity equa-
tions with an artificial pressure term by finite volume methods and Crank-
Nicolson scheme in time. The PGS smoother and box-relaxation, i.e.
Vanka smoother, are both taken into consideration. The Lamé coefficients

are taken as A = G = 0.1 and the final time is set as t = 0.5.

FAS. First of all, FAS is employed to solve the time-dependent problem.
It is known that in FAS the full equation is solved on the coarse grids. It
is required to transfer the current approximation from the fine grid to the
coarse grid. After this process, the coarse grid error is subtracted from the
solution. The correction is then interpolated and added to the fine grid
approximation [50].

The underrelaxation parameters for the two smoothers, i.e. PGS and
Vanka, are w = 1.0 and w = 0.7, respectively. The results are generated
by an F'-cycle with two pre- and two post-smoothing steps. The stopping
criterion is that the maximum norm of the residual |70 + 70|00 + |7 ]| 0
should be less than 10~7. Table 2.1 presents the relative errors between
analytic and numerical (with subscript h) solutions in the maximum norm
at final time ¢ = 0.5 with the artificial pressure term for different target
grids. With the decrease of the mesh size, the relative error is one quarter
of the previous one. The CPU time and multigrid convergence factors are
also shown in Table 2.1. The convergence factor represents an average
residual reduction factor over previous iterations. From Table 2.1, we can
conclude that second-order accuracy is maintained and FAS performs very
well.

When the nonlinear conductivity is an extremely small value, i.e. K(o,p) =
10713 . MG)divu=p the convergence performance of Vanka is much better
than PGS, see Table 2.2. With very fine grids and a small time step, we will
have a saddle point problem. PGS doesn’t work, which results in multigrid
divergence. Vanka is still efficient for this kind of problem.
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Grid Smoother | Conv. | Time(s)
6x16x2 | PGS 0.52 | 0.09
Vanka 0.33 0.12
32x32x4 | PGS 0.67 | 0.90
Vanka 0.44 0.89
6axGixg | LOO 0.79 | 12.60
Vanka 0.52 8.83
198 x 198 x 16 | TGS 0.88 [ 161.67
Vanka 0.60 89.44
956 x 256 x 32 | 1 OO /S

Vanka 0.68 1001.82

Table 2.2: Convergence performance by FAS with an extremely small conductivity. (“”
denotes divergence)

Newton multigrid. Different from the idea of FAS, Newton multigrid is
employed too. A standard Newton method is applied to linearize the equa-
tions, then multigrid follows for the solution of the (linear) Jacobian system
in each iteration. It is a combination of Newton’s method for the outer
iteration and multigrid for the inner iteration.

In this test, only one F'-cycle is used to solve the Jacobian system. The
convergence factors in Table 2.3 are corresponding to the Newton multigrid
method. A comparison between Table 2.1 and Table 2.3 indicates that
convergence of FAS is a bit faster than that of Newton multigrid. In
general, the convergence performance of both methods is very satisfactory.

Regarding the small value of the nonlinear conductivity, we reach the
same conclusion. Vanka relaxation still works fine even with fine grids
and a small time step. However, PGS fails to get a convergent solution,
see Table 2.4. Here we still applied one multigrid cycle for the Jacobian
system.

2.4.2 Steady case

Now we only consider FAS as the solver for the steady numerical tests. In
this section, we will also consider poroelasticity systems with heterogeneous
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Grid Smoother | Conv. | Time(s)
16x16x2 | TGS 042 [0.07
Vanka 0.35 0.11
39x32x4 | LGS 0.45 | 0.39
Vanka 0.34 0.61
Vanka 0.32 4.45
198 x 128 x 16 | T &5 0.45 | 2291
Vanka 0.30 34.74

Table 2.3: Convergence performance by Newton multigrid.

Grid Smoother | Conv. | Time(s)

16 x 16 x 2 PGS / /
Vanka 0.81 0.47

32 x32x4 PGS 4 /
Vanka 0.76 2.82

64 x 64 x 8 PGS / /
Vanka 0.79 25.42

128 x 128 x 16 PGS / /
Vanka 0.80 215.44

256 x 256 x 32 PGS / /
Vanka 0.78 1736.54

Table 2.4: Convergence performance by Newton multigrid with an extremely small con-

ductivity.
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coefficients, which is closer to the real engineering applications.

The simulation domain is again a (0, 1) x (0, 1) block of porous material.
The average Young’s modulus Ey, Poisson ratio v, conductivity K, coef-
ficient of pore pressure a and coupling coefficient 3 are taken as H0GPa,
0.25, 0.01m?, 1 and 0.01, respectively. A compressive stress o = 5MPa is
applied on both top and bottom boundaries. There is also an injection wa-
ter pressure p = 2MPa on the bottom. The lateral boundaries are assumed
to be impermeable and the rigid condition is applied, see Figure 2.3.

p=0
1 Oyy = =5, 0zy =0

u=0 u=20
K(Vp) -n={( K(Vp)-n=0

0 1

Oyy =9, Ozy =0
p=2
Figure 2.3: Boundary conditions.

Homogeneous test

First, a numerical test with homogeneous material is chosen for the steady
problem (2.20). The mechanical parameters are constant at each grid point.

System (2.20) is solved iteratively by multigrid with both the PGS
smoother and the Vanka smoother on different grid sizes. Table 2.5 shows
the multigrid convergence results by using an F-cycle. F'(3,3) means three
pre- and three post-smoothing steps. The numbers in the table denote
multigrid convergence factors, and the corresponding CPU time in seconds
is presented in brackets. In general, the performance of both smoothing
schemes is satisfactory, resulting in h-independent convergence of the multi-
grid method. PGS takes less CPU time than the box relaxation method,
as expected.

Heterogeneous test

Weibull distribution. Usually, a material has complicated properties and
boundaries. Rock mass is assumed to be a heterogeneous deformable body
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Smoother | F-cycle | 32x32 64 x 64 128 %128

PGS F(2,2) [0.22 (0.13) | 0.21 (0.44) | 0.21 (1.64)
F(3,3) |[0.19 (0.15) | 0.19 (0.49) | 0.18 (2.00)

Vanka F(2,2) |0.23 (0.25) | 0.23 (0.88) | 0.23 (3.58)
F(3,3) | 0.18 (0.28) | 0.18 (1.05) | 0.18 (3.98)

Table 2.5: Multigrid convergence results for the homogeneous test.

composed of different material properties. Heterogeneity is a concept re-
lating to nonuniformity (composition or character) in a substance. Rock
specimen in numerical tests is subdivided into square elements with ran-
domly distributed mechanical properties in each element. Due to the size
and shape consistency, there is no geometric preference orientation in the
specimen. In order to simulate random heterogeneity in a rock, a statis-
tical approach is used. In [91] the material heterogeneity is defined by a
Weibull distribution, with the probability density function given by

=" e (). em

where s denotes a given mechanical property, such as Young’s modulus,
the coefficient of conductivity or the strength; 5 is the mean value; and
m represents the homogeneity index which defines the shape of the distri-

bution function. The corresponding Weibull distribution function is given
by

B 1 —exp(— ()" if s >0,
F(S;m’s):{o PG if 5 < 0. (2.30)

Figure 2.4 displays, for different values of the homogeneity index m, the
probability density function in terms of the ratio between s and s. It is
obvious that a higher value of m represents a more homogeneous material
and vice versa, as for higher m, the values of s are concentrated around s.
As an example, we consider initial Young’s modulus Ej with a mean value
Ey of 50GPa and homogeneity index m = 3. In this case, Figure 2.5 shows
a possible randomly distributed Young’s modulus Fy in each element.

In our model, the Young’s modulus and initial conductivity are modeled
in this way. So, these parameters differ for each element.



30 2. Multigrid method for nonlinear poroelasticity equations

%i%grihution of rock properties for different homogeneity indices

——m=20
m=6
—— m=3
0.2t -
m=2
——m=15
0.15F .
-
0.1f -
0.05F 4 -
e
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s/mean(s)

Figure 2.4: Probability density function for different values of the homogeneity index
m = 1.5, 2, 3, 6, 20.

Distribution of E when m=3 <10t
10

10 20 30 40 50 60

Figure 2.5: Distribution function of Ej in each element of the grid.
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Figure 2.6 presents histograms of the observed Young’s modulus in three
simulations with different homogeneity indices, m = 1, 3, 5. The chosen
average is the same as in Figure 2.5.

Notice that the randomly distributed parameters on coarser grids are
generated from finer grids. In this way, the coarse system is related to the
fine system, thus the same characteristics of the material are presented.
The standard restriction operator “Full Weighting” is used to transfer these
parameters to each grid level of the grids. Then we perform a regular finite
volume method discretization with these averaged coefficients on the coarse
grids.

Some results. In this test we solve the steady equations for a heterogeneous
material. Two different homogeneity indices m are chosen to investigate the
convergence results of multigrid. Figure 2.7 shows the randomly distributed
Young’s modulus £y = 50GPa with different homogeneity indices m = 1
and m = 5. Obviously, m = 5 denotes a more homogeneous material
compared to m = 1. Conductivity also follows the stochastic distribution
and the average value of Kj is taken as 0.01m?. All the other parameters,
i.e. Poisson ratio v and coupling coefficient 3, are the same as for the
homogeneous test.

We consider it a challenge to deal with these heterogeneous cases using
the standard multigrid components described above. So, we do not use the
Galerkin coarse matrices or operator-dependent prolongation and restric-
tion here. We merely wish to study the impact of the heterogeneity on the
FAS multigrid convergence using the standard geometric multigrid com-
ponents, like the direct discretization of the operator on the coarse grids,
and the two described smoothers.

Tables 2.6 and 2.7 show the multigrid convergence results for the het-
erogeneous tests with m = 1 and m = 5, respectively. It can be seen that
the convergence factors are larger than the results from the homogeneous
test case, as expected. Comparing the results in Table 2.6 with those in
Table 2.7, the multigrid convergence is better when the distributions of the
mechanical parameters are more homogeneous. PGS is still faster than the
Vanka method for this steady problem in CPU time. Overall, the multi-
grid convergence is still highly satisfactory for the heterogeneous test cases
used here with the standard multigrid components. Convergence can be
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further improved in this framework by using multigrid as a preconditioner
for a Krylov subspace iteration, like in the setting of the recombination
technique in (88, 97].

Smoother | F-cycle | 32 x 32 64 x 64 128 x 128

PCS F(2,2) |0.43(0.22) | 0.44 (0.82) | 0.54 (4.04)
F(3,3) |0.38 (0.25) | 0.40 (0.97) | 0.48 (4.60)

Vanka F(2,2) |0.47 (0.50) | 0.44 (1.78) | 0.65 (13.47)
F(3,3) | 0.38 (0.54) | 0.40 (2.45) | 0.56 (14.17)

Table 2.6: Multigrid convergence results for homogeneity index m = 1.

Smoother | F-cycle | 32 x 32 64 x 64 128 x 128
PGS F(2,2) [0.22 (0.17) | 0.22 (0.49) | 0.21 (1.82)
F(3,3) | 0.18 (0.19) | 0.19 (0.55) | 0.18 (2.30)
Vanka F(2,2) |0.27 (0.30) | 0.24 (1.00) | 0.26 (4.35)
F(3,3) | 0.17 (0.45) | 0.18 (1.18) | 0.17 (4.60)

Table 2.7: Multigrid convergence results for homogeneity index m = 5.
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Figure 2.6: Histograms of the heterogeneity distribution in numerical examples.
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Figure 2.7: Heterogeneity of Fy for different homogeneity values m.

2.5 Conclusions

In this chapter, we have used the nonlinear multigrid method to solve the
poroelasticity system considering material heterogeneity and a nonlinear
conductivity:.

First, we have solved an unsteady problem. Since oscillations may occur
in the first time steps of the solution when the equations are discretized on
a collocated grid by the finite volume method, some special care is needed.
The stabilization can be achieved by adding an artificial term in one of
the continuous equations. A simple analytic test is employed to verify
our method. This is done by FAS and Newton multigrid with a coupled
smoother “Vanka” which solves the discrete equations locally cell by cell,
and the point Gauss-Seidel (PGS) method. Numerical results show that
both nonlinear strategies are stable and second-order accurate. Vanka is
more efficient and robust for some difficult problems where the values of
the coefficient are extremely small or the system is discretized on a very
fine grid.

Next to these tests, we consider steady problems for homogeneous and
heterogeneous cases. Heterogeneity means that some characteristics of
the main problem follow a random distribution. The Full Approximation
Scheme with collective point-wise Gauss-Seidel smoother, that is, updating
all unknowns at each grid point together, shows highly satisfactory multi-
grid convergence. For the heterogeneity tests performed, we do not need
the commonly used box relaxation scheme as smoother.






Chapter 3

On an Uzawa Smoother in Multigrid for
Poroelasticity Equations

In this chapter, for the efficient solution of the poroelastic equations, a
multigrid method is employed with an Uzawa-type iteration as the smoother.
The Uzawa smoother is an equation-wise procedure. It shall be interpreted
as a combination of the symmetric Gauss-Seidel smoothing for displace-
ments, together with a Richardson iteration for the Schur complement in
the pressure field. The Richardson iteration involves a relaxation param-
eter which affects the convergence speed, and has to be carefully deter-
mined. The analysis of the smoother is based on the framework of local
Fourier analysis (LFA) and it allows us to provide an analytic bound of
the smoothing factor of the Uzawa smoother as well as an optimal value
of the relaxation parameter. Numerical experiments show that our up-
per bound provides a satisfactory estimate of the exact smoothing factor,
and the selected relaxation parameter is optimal. In order to improve the
convergence performance, the acceleration of multigrid by iterant recombi-
nation is taken into account. Numerical results confirm the efficiency and

robustness of the acceleration scheme. 1

3.1 Introduction

The concept of poroelasticity describes the behavior of a deformable fluid-
saturated porous medium. Usually, there are two basic phenomena regard-

!The contents of this chapter have been published in paper [64]: P. Luo, C. Rodrigo, F.J. Gaspar and
C.W. Oosterlee. On an Uzawa Smoother in Multigrid for Poroelasticity Equations. Numerical Linear
Algebra with Applications, 24, €2074. do0i:10.1002/nla.2074, 2016.
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ing poroelastic behavior. One is the “solid to fluid coupling” which means
that a change in the applied stresses of the skeleton will affect the pressure
or mass of the fluid. The other is the “fluid to solid coupling” when a
change in the fluid will lead to a change in the volume of the material.

The multigrid method is employed for solving the discretized poroelas-
tic partial differential equations. An important multigrid component is the
smoother, and the performance of multigrid crucially depends on it. There
are several branches of robust smoothers developed for the poroelasticity
equations. They all fall into two major categories: coupled and decoupled
smoothers, see [38, 39, 75]. Here we focus on a specific type of decou-
pled smoothers called Uzawa smoothers, for different discretizations of the
poroelasticity problem.

A first study of the Uzawa smoother was done in the PhD thesis, as
well as in a conference proceedings paper, by P. Nigon [68]. A symmetric
Gauss-Seidel (SGS) smoother will be employed here for the displacement
variables. In [68], two forward Gauss-Seidel sweeps were used instead, but
numerical results in [41] revealed that, everything else being equal, the SGS
choice is indeed more effective. In addition, for the pressure unknowns, the
Uzawa method shall be interpreted as a Richardson iteration for solving the
Schur complement equation in which a relaxation parameter is involved.
Optimization of this parameter is necessary for fast multigrid convergence.
Detailed research of this method for a family of Stokes problems has already
been done in [41].

A suitable relaxation parameter is chosen by means of local Fourier
analysis (LFA) [94]. In this chapter, we are concerned with the conver-
gence behavior of multigrid with the Uzawa smoother with respect to re-
laxation parameters and the poroelastic model’s coefficients. We get an
upper bound for the smoothing factor and a concrete formulation of the
relaxation parameter which is governed by the main problem coefficients.
We consider both staggered and collocated finite volume discretizations of
poroelasticity equations in our analysis for which we find different relax-
ation parameters. In order to confirm our study, several numerical tests
are performed.

We are also interested in heterogeneous poroelasticity problems. For
the heterogeneous case, the same multigrid method with Uzawa smoother
is applied, however the convergence performance will be influenced by the
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anisotropy. To improve the convergence, the so-called acceleration of multi-
grid by an iterant recombination scheme [94] is taken into account. In
practice, this leads to a similar algorithm as a multigrid preconditioning
method. Different numerical experiments validate the efficiency and ro-
bustness of the acceleration scheme.

The organization of the chapter is as follows. We present the incom-
pressible poroelasticity equations in Section 3.2. The numerical method is
introduced in Section 3.3. In Section 3.4, we analyze the proposed smoother
in the framework of local Fourier analysis. We obtain an analytic bound
of the smoothing factor. After that, the multigrid method is applied to
both staggered and collocated grids. Numerical experiments illustrate the
efficiency of the method and confirm our analysis in Section 3.5. Accel-
eration of multigrid by the iterant recombination scheme is employed for
the heterogeneous poroelasticity system. Finally, conclusions are drawn in
Section 3.6.

3.2 Problem formulation

3.2.1 Poroelasticity equations

We consider the quasi-static Biot model for soil consolidation. The porous
medium is assumed to be linearly elastic, homogeneous and isotropic, and
the porous matrix is supposed to be saturated by an incompressible New-
tonian fluid. The continuous medium is characterized by the knowledge of
elastic displacements u = (u,v), and fluid pressure p at each point, and
in terms of these unknowns the governing equations of the consolidation
problem are given by

—V-GVu—-VA+G)(V-u)+Vp=g(x1), (3.1)
0 k
E(VU)—V(EVP):f(X,t), XEQ, O<t§717 (32)
where A and G are the Lamé coefficients, which can be computed from the
values of the Young modulus E and the Poisson ratio v in the following
way,
vE E

A= 1+ v)(1-2v) G:2(1—+u)’ (3:3)
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k is the permeability of the porous medium and 7 is the viscosity of the
fluid. The source terms g(x,t) and f(x,t) represent a density of applied
body forces and a forced fluid extraction or injection process, respectively.
The following initial condition is assumed,

V-u(x,00=0, xel

For simplicity, we will consider homogeneous Dirichlet boundary conditions
for both displacements and pressure, u = 0 and p = 0 on 0f).

Whatever the chosen space discretization scheme and an implicit scheme
in time, the discretization of (3.1)-(3.2) leads at each time step to a linear

system of the form
A BT u) (g
(5 %) (3)=(5) =

where A is the discrete representation of the elasticity operator — V-GV u—
V(A4 G)(V -u). It follows that A is symmetric positive definite (SPD).
The matrix block BT is the discrete gradient and B the negative discrete
divergence; C' contains the term —V - (%Vp) and also it can contain a
stabilization term that is needed for some discretization schemes to avoid
spurious oscillations. Notice that in practice operator C' is an almost zero
block since the permeability k is very small and also this block contains
the time-discretization parameter as a multiplicative factor, which can also
be arbitrarily small.

3.2.2 Discretization

Discretization on staggered grids In a staggered arrangement of the poroe-
lasticity equations, the discrete values of u; and vy, the components of
the displacement vector, are located at the grid cell faces in the e- and
o-points, respectively, and the discrete pressure unknowns p;, are defined
at the grid points (the x-points), as in poroelasticity applications pressure
values are often prescribed at the boundary, see Figure 3.1 (left side).

For each equation, the discretization is centered around the equation’s
primary unknown. On a staggered grid, the stencil form in the case of
constant coefficients and the finite volume scheme typically results in the
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following:
-G —1 1
—()\—I—QG) 2()\—|—3G) —(/\—l—QG) uh—O\—{—G) * Uhp
-G 1 —1
+h[ =1 % 1]py =gyl
(3.5)
—1 1 —(A+2G) 1
—(A+G) * up, + | =G 200 +3G) —G | v +h| * | pn=gih*
1 —1 — (A +2G) —1
(3.6)
1 —1
hl =1 % L]up+h| x |op+r| -1 4 =1 |py=fihk? (3.7)
—1 —1

where Kk = %T, with 7 the time step. The x denotes the position on the grid
at which the discrete operator is applied, i.e., ®, o or X-points, respectively.

Discretization on collocated grids We also consider the vertex-centered fi-
nite volume discretization of the poroelastic system on a collocated grid.
We assume a uniform grid of cells of size h. In a collocated grid all vari-
ables are placed at the grid points, see Figure 3.1 (right side). Collocated

®
®
®
®

& D, U,V

[ ]

[ ]

®

®
o & X
SRS

Figure 3.1: Staggered (left) and collocated (right) grid location of unknowns for poroe-
lasticity equations.
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grid arrangements are convenient for grid generation and also for numeri-
cal methods like multigrid. However, as mentioned in Chapter 2, when a
standard collocated discretization is used for the poroelasticity problem,
non-physical oscillations can appear in the pressure field approximation of
the numerical solution [38, 75]. To avoid this, a stabilization term has to
be added to the flow equation (3.2). A stable discretization was proposed
in [38]. In this way, matrix C' in (3.4) contains an artificial term, i.e.

h2
—(C=V-(kV)+V.-(—F-~-V|. 3.8
(RV) + <4()\+2G) ) (3:8)
Since the stabilization term is proportional to h%, second-order accuracy
is maintained if all terms in the system are discretized with second-order
accuracy.

3.3 The numerical method

3.3.1 Multigrid and acceleration

With respect to the numerical solution method, multigrid is considered for
the discrete poroelasticity problems due to its efficiency and robustness.
The multigrid method is based on two crucial components. One is the
relaxation method (the smoother), the other is the coarse grid correction.
Regarding the coarse grid correction, geometric grid coarsening is chosen
as we will deal with regular Cartesian grids here. The sequence of coarse
grids is obtained by doubling the mesh size in each spatial direction.

For the staggered case, the inter-grid transfer operators that act on
the different unknowns are defined as follows: At u- and v-grid points one
considers 6-point restrictions and at p-grid points a 9-point vertex-centered
full weighting restriction is applied. In stencil notation the restriction
operators are given by

1 1 1 1 1 21 1 1 21
%,2h:§ 2 % 2 ; Z,2h:§ * »RZ,%:E 2 42
11/, 121), 121),

respectively. As the prolongation operators quh/ Q;L/ P one applies the usual in-

terpolation operators based on bilinear interpolation of neighboring coarse
grid unknowns on the staggered grid.

-
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For the collocated case, the multigrid transfer operators, restriction
Ry, 05 and prolongation P, are well-known in geometric multigrid. In
a standard way, the full-weighting restriction and the bilinear interpola-
tion are applied as the inter-grid transfer operators, see ([94], Chapter 2).

The choice of smoother, which has a great impact on the behavior of
a multigrid method, needs to be done with special attention. The Uzawa
smoother which is discussed in detail in the next section, is chosen here
since it is a simple algorithm with low computational cost.

To improve the multigrid performance, we also consider an acceleration
scheme. The acceleration of multigrid means that multigrid is applied
as a preconditioner in connection with a Krylov subspace method. As
is known, a Krylov acceleration technique helps to capture eigenvectors
connected to the isolated large eigenvalues of the iteration matrix. These
eigenvectors are the main reason for limited multigrid convergence in some
specific situations. For detailed information, see [97].

From the multigrid point of view, multigrid as a preconditioner is iden-
tical to multigrid acceleration by iterant recombination [94, Section 7.8].
The technique of iterant recombination is easily implemented on both stag-
gered and collocated grids, and can also be used in the nonlinear case. This
algorithm will be described shortly.

Supposing we already had successive approximations of the solution w}ll,
w2...., wi with wi = (u},p}), i =1, ...,q, and corresponding residuals rj,
r%,..., rj from previous multigrid cycles. For the sake of a more optimal
approximation of the solution Wy, pe,, a linear combination of the ¢ + 1
(¢ < q), recent intermediate approximations wi ',i =0, ..., g, is considered,

Whnew = Wi + Z ai(wz_i —wi). (3.9)

1=1

For linear problems, the improved residual will have the same form as (3.9),

rhnew—rh+2al _'—rh (3.10)

In order to select an optimal candidate wy, ;¢ for the solution, the param-
eters «; are required to minimize the residual (3.10), for example, with
respect to the Lo-norm || - ||2.
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The acceleration of multigrid is thus transferred to a classical minimiza-
tion problem. Usually, we search for the desired coefficients a; through
a (Gram-Schmidt) orthonormalization process. The structure of a multi-
grid V-cycle with the acceleration by iterant recombination is presented in
Figure 3.2. We will particularly employ the acceleration for the heteroge-
neous poroelastic cases, for which it may be nontrivial to define an optimal
multigrid solver.

M Recombination

®  Smoothing

O . Coarse grid solution

Figure 3.2: Recombination of multigrid iterants.

3.3.2 The Uzawa smoother

Here, we are interested in a decoupled Uzawa smoother which was analyzed
for Stokes problems in fluid dynamics in [41].
The smoother is obtained by splitting the discrete operator as follows

A BT\ [ My My—A -BT
<B —0>_< B —w‘1[>_( C—w‘1]>’ (3:11)

where M, is a typical smoother for A and w is some positive parameter.
M 4 helps to make the approach less costly because of the inexact solve for
displacements at each iteration.

Supposing we already got an approximation of the solution (u,p)? to
the system, the relaxed approximation (u,p)? is computed according to
the decoupled Uzawa smoother as

(% ) G- o220 ) () +(5),

A single step of the iteration is described as
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e Relax the displacements by applying M 4: G = quMg1 (g — Au — BTp) :
e Update the pressure: p=p+w(Bu—Cp— f).

Here, the symmetric Gauss-Seidel method is considered as My, which con-
sists of one forward and one backward sweep for all displacements in the
computational domain. M4 has two important properties used in our the-

oretical analysis. One is that M4 is SPD if A is SPD. The other is that
the associated largest eigenvalue satisfies (see, e.g., [3, Theorem 7.17])

Amaxc(M7'4) < 1. (3.13)

3.4 Local Fourier Analysis (LFA)

The Uzawa smoother is analyzed by means of Local Fourier Analysis (LFA).
In particular, we aim to define an optimal w in (3.12). We assume the
parameters A\, G and k are constants here.

3.4.1 Basis of LFA

In LFA, it is assumed that the discrete operator is defined on an infinite
grid Gy, and boundary conditions are neglected. For example, an infinite
collocated grid in 2D can be defined as

Gn = {x = kh := (kyhy, ksohy), k € 7%}, (3.14)

where we denote * = (x1,29) € G, and h = (hy, hy). The basic idea of
LFA is that all occurring multigrid components, the discrete approxima-
tion and its corresponding error or residual can be represented by linear
combinations of Fourier modes, defined in the case of a collocated grid as

where 8 € © := (—m, 7|%, which form a unitary basis of the space of infinite
grid functions. The Fourier space generated by Fourier modes is given by

F(Gp) :=span{pn(0,-)|0 € O}. (3.16)

For the analysis, we distinguish high and low frequency components on Gy,

o%h . Tw

®low T (_57 5]27 ®f2z?gh = G)\GQh (317)

low*
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In multigrid, the purpose of the smoother is to eliminate the high fre-
quency components of an error, whereas the low frequency ones are typi-
cally reduced by coarse grid correction. In our case, the Uzawa smoothing
iteration can be written as @, = I — Mh_lKh, where K, and M), are the
matrices of systems (3.4) and (3.12), respectively. To study how the high
frequency components are eliminated, we define the smoothing factor u as:

p= sup p(Qn(0)). (3.18)

2h
ae@high

2h

In the transition from G, to Gy, each low-frequency 8 = 8% € O, s

coupled with three high-frequencies 8', 81°, 8", given by
0" = 0" — (i sign(0y),j sign(6;))m, i,5 =0, 1. (3.19)

Only low frequency components are distinguishable on the coarse grid Gyy,.
In other words, for each #%, three other Fourier modes gy, (011, -), 021, (61°, )
and (o, (Y, ) are identical to 95 (0%, ) on Go. This means that they are
invisible on the coarse grid. As a result, the Fourier space is subdivided
into corresponding four-dimensional subspaces, known as 2h-harmonics,

'F2h(0) = Span{cph(eooa ‘)7 Soh(elln ')7 (Ph(eloa ')7 ('Ph(ema )}7 with 6 = 000 €O

(3.20)

By the definitions above, we can analyze the behavior of multigrid by
investigating the effect of the multigrid components acting on the Fourier
space.

In a two-grid analysis, it is assumed that the coarse grid solution is
exact on the first coarser grid level. The iteration operator of the two-grid
method is given by

Mo = Q7 (I, — Popp(Kon) ™' Ry on K3 Q7' (3.21)

where v1, 15 are, respectively, the number of pre- and post-smoothing steps.
Since the representation of M), 9, on the Fourier space has a block-diagonal
structure regarding the partitioning in 2h-harmonics, it is possible to effi-
ciently calculate the LFA two-grid convergence factor,

p = p(Mpnan). (3.22)

For the staggered case, the definition of the infinite grid and as a con-
sequence the definition of the Fourier modes are different, what makes the

2h
low*
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analysis more involved, see [67, 100] and Section 4.4.2 for details. (Please
note that the staggered grid in Section 4.4.2 is a little different from the
staggered grid in Figure 3.1 (left).)

3.4.2 LFA for the Uzawa smoother

A local Fourier analysis for the considered Uzawa smoother was already
developed in [41]. In particular, the authors provided an upper bound on
the smoothing factor associated with the proposed Uzawa smoother which
gave an excellent estimate of the exact smoothing factor. More concretely,
this bound was given by

p < fi = max ((MA)I/Q; us) : (3.23)

where 114 is the smoothing factor corresponding to the relaxation scheme
My, and pug can be interpreted as the smoothing factor associated with the
Richardson iteration for the Schur complement,
pis 1= Sup p (I —w (C’ + BA_IBT)) .

2

high
In order to bound puy, available results in the literature were used from
scalar elliptic PDEs. Notice that in our case also the smoothing factors
of several smoothers for the elasticity operator are well-known. However,
bounding pg is more involved since the eigenvalues of the Schur comple-
ment contribute to the analysis of this smoothing factor. In addition to
that, the information of these eigenvalues plays an important role in se-
lecting the relaxation parameter for the Richardson iteration. In [41], a
detailed study of the maximum and minimum eigenvalues of the Schur
complement gave rise to the following bound of pug:

(s < max (C - 1,1— i) : (3.24)
kg
where 3
/-iﬁ = Bméx, (3.25)
with Bnax and B the following eigenvalue bounds,
max (6(0) + E(@)F(@)ET(@)) = Bunas, (3.26)
ISCT
min (C(6) + E(@)X—?(e)é?(e)) = Bunin, (3.27)

2h
Oee)m.gh
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with C/(8), B(8), ;1\—/1(9) and BT (0) the symbols or Fourier representations
of operators C, B, A~! and B7 for a fixed frequency 8, and where ( is a
positive real number such as { < 2 (to ensure that pug < 1). This analysis

resulted in a formula to determine the appropriate relaxation parameter
as (see [41], Theorem 3.2)

_ ¢ 2
6max Bmax + Bmin’

where ¢ was chosen to minimize the value of the maximum in (3.24). All
these results can be extrapolated to the analysis of the Uzawa smoother for
the poroelasticity equations that we consider here, and in the next section
we will provide exact values for the bounds of the eigenvalues which will
give us optimal relaxation parameters for different discretizations of our
problem.

w (3.28)

3.5 Uzawa based multigrid for poroelasticity equa-
tions

We will work out the smoothing analysis from the previous section for
staggered and collocated poroelasticity discretizations.

3.5.1 Staggered grid arrangement of unknowns

Theoretical analysis. For the staggered discretization of the poroelastic
equations, a geometric multigrid is adopted. The Uzawa smoother can
be applied, and we can perform the theoretical analysis explained in Sec-
tion 3.4.2 in order to obtain a suitable parameter w for the part corre-
sponding to the Richardson iteration for the pressure.

To obtain Buax(h) and Bum(h), in (3.26) and (3.27), we will take into
account the following equalities which are valid only for the staggered ar-
rangement

~ ~ ~

B(0)A(0) = —(\ + 2G)A(0)B(), (3.29)
B(6)BT(8) = —A(0), (3.30)

so that
B(6)A1(6)B7(0) = ———A1(0)B(6)BT(6) — — (3.31)
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Denoting s; = sin? (%) and sy = sin? (%), the symbol of —A for a fre-
quency 0 = (6;,6,) is given by —A(6) = %(81—{—82). Therefore, the symbol
of the Schur complement is written as
C(6) + B(0)A1(0)BT(8) = i—j(sl +52) 5 +1 el (3.32)
Then, we obtain
Bame(h) = o2 4 L (achieved for ) = 65 = 1), (3.33)
h? A+ 2G
Pmin(h) = 2k + ! (achieved for ; = 0,60, = z). (3.34)
h? A+ 2G 2
With these values, we can write
 Buax  8K(A+2G) + h? (3.35)

" B 26N+ 2G) + B2

and when x = 0 the simplified expression reads kg = 1. We find the value
of ¢ which gives the lowest value of the maximum in (3.24), resulting in
(taking into account that ¢ < 2)

2k BK(A+2G) + R’
 1+k  5e(N+2G) + h?’

¢ (3.36)

and with this value, the smoothing factor is bounded by 0.6, independently
of the values of k and Lamé coefficients A, G,

 3k(A+2G)
- 5r(\ + 2G) + h?

s < 0.6. (3.37)

Moreover, following (3.28) the relaxation parameter is given by the expres-
sion

(A +26)
~ 5e(A+2G) + h?

(3.38)

Some results. We would like to quantitatively determine pg based on the
previous theory. A suitable relaxation parameter w needs to be selected
for the Richardson iteration. To define this w with the rule (3.38), we need
first to compute Bpax(h) and PBuin(h) from (3.33) and (3.34). After that,
kg and ¢ are obtained via (3.35), (3.36).
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Table 3.1 shows the values of the parameters necessary to compute the
relaxation parameter and smoothing factor ug for different coefficients of
k on the staggered grid. We consider the following values of the Lamé

coefficients: A = 12500 and G = 8333.

Parameters | k = 1 k=1073 k=107 | k=107 | k=0

Brnax 524 % 10° | 524.29 0.52 867 x 107 | 343 x10°7
Brin 1.31 x 10° | 131.07 0.13 4.74x107° [ 3.43 x 107
Py 1 1 4 1.83 1

¢ 1.6 1.6 1.6 1.29 1

w 3.05 x 107° | 3.10 x 1072 | 3.05 14913 29166

s 0.6 0.6 0.6 0.29 0

Table 3.1: Values of the parameters computed by the theory, together with the resulting

relaxation parameters w and smoothing factors ug when h = flﬁ on a staggered grid.

The smoothing factor corresponding to the symmetric Gauss-Seidel smoother
is s = 0.4927 for only one smoothing step. Therefore, (u4)"/? = 0.70,
which results in a bound of the smoothing factor for the whole system
based on inequality (3.23).

In Table 3.2, we present the smoothing and two-grid convergence fac-
tors for the proposed multigrid method with Uzawa smoother for different
values of xk and considering only one smoothing step. Also, the asymptotic
convergence factor pp, experimentally obtained, is shown in the table. Ho-
mogeneous Dirichlet boundary conditions are applied and the right-hand
sides of the poroelasticity equations are all set to zero, so that we can it-

erate until the asymptotic convergence factor is reached. All results are
based on the relaxation parameter w given in Table 3.1.

K 1 1073 107 10710 0

7 0.60 0.61 0.60 0.52 0.50
p (pn) | 0.60 (0.59) | 0.61 (0.60) | 0.60 (0.59) | 0.48 (0.54) | 0.61 (0.57)

Table 3.2: Smoothing and two-grid convergence factors predicted by LFA for different
values of k by using one smoothing step, together with the asymptotic convergence factors
experimentally computed.
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Numerical computation shows that the asymptotic multigrid conver-
gence factor is accurately predicted by the LFA two-grid convergence fac-
tor. Regarding the smoothing factor, we obtained an upper bound for all
cases.

Remark 3.1. A well-known challenge for poroelasticity equations is to
constder incompressible materials, when the Poisson ratio is close to 0.5.
As can be seen from formula (3.37), the smoothing factor pg is bounded
by 0.6, independently of all physical parameters. However, it is known that
standard smoothers, like the one considered here, for the elasticity operator
do not give satisfactory results in the incompressible case, since it s a
grad-div dominating problem. For this case, more suitable smoothers, as
for example the distributive relaxation proposed in [36], should be used.

The presented analysis can be adapted to the case of non-square meshes,
and the corresponding results are shown in Appendix 3.A.

Comparison with Vanka smoother In order to support the choice of the

1
proposed Uzawa smoother, in Table 3.3 for a finest grid with h = 256"

we observe that its convergence rate is comparable to that of the Vanka
smoother, which has been widely used for saddle point problems and for
poroelasticity equations, see also Chapter 2. A relaxation parameter w =
0.7 is used for the Vanka smoother to perform a fair comparison, since this
parameter provides the best multigrid convergence with this smoother. In
Table 3.3, for different values of permeability and numbers of smoothing
steps, the number of multigrid iterations to reduce the maximum norm of
the residual by 107! are presented. Whereas the number of iterations is
comparable, the Uzawa smoother has a lower computational cost.

Three-dimensional case The analysis performed in the two-dimensional

case can be straightforwardly extended to the three-dimensional case. In

12 1 2
particular, it is easy to derive 5,4, (h) = hf + ETE and Bin(h) = h_/;+

1
. As a consequence, the bound for the smoothing factor is <3
A +2G ATEHES, ) & Hs =7

if the optimal value w = 517 is chosen. The LFA smoothing
and two-grid convergence factors are Zglisplayed in Table 3.4 for different
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smoothing steps | smoother | k =102 | k=10° |k =107 | k=0

1 Vanka 30 30 31 31
Uzawa 32 32 28 35

9 Vanka 16 16 16 17
Uzawa 17 17 15 18

3 Vanka 11 11 12 14
Uzawa 12 12 11 13

4 Vanka 9 9 11 12
Uzawa 10 10 9 10

Table 3.3: Number of multigrid iterations necessary to reduce the initial residual by a
factor of 10710,

values of the permeability and different smoothing steps. The numerically

obtained asymptotic convergence factors are also included to validate the
LFA results.

(1,0) (1,1) (2,1) (2,2)
K e I I I I I I T A S B sl A S
1 071 [0.71]0.70 [ 051 | 051049036 |0.36]0.35]0.26 |0.26|0.24
1073 [0.71 [ 071070051 [051]049]0.36 |0.360.35|026 |0.26] 0.24
107 1070 [0.70]0.68]049 [049 047034 |0.34]033]024 [024]0.22
1001055 |0.55]054]030 [030]029]0.16 |0.17 017009 |0.12]0.11
0 055 |0.55 054030 |0.30/029017 |0.17]0.17]0.09 |0.12]0.11

Table 3.4: Three-dimensional results - factors predicted by LFA and the asymptotic
convergence factors with different number of pre- and post-smoothing steps (v; and vs,
respectively) and for different values of k.

3.5.2 Collocated grid arrangement of unknowns

Theoretical analysis. Next, we consider the multigrid method with Uzawa
smoother for the poroelastic system of equations discretized on a collocated
grid. In this case, we also determine the optimal w-value by the theoretical
results in Section 3.4.2. For this purpose, we first need to get bounds of
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the eigenvalues of the Schur complement.

The theoretical analysis for the collocated grid is more involved than
the staggered case, since equalities (3.29) and (3.30) do not hold in the
collocated case and therefore we need to follow a different strategy. We
rewrite the symbol of the elasticity operator as follows,

A(B) = (A +G)Y(8) = (A + G)(N () + BT(6)B(9))

~(A+G) ((—A%&(m + h{f(e)) - §T<e>§<e>> - 8%)

N —75(s1 + 52) 57 165)

where A,(0) = h 1 and J(0) = " e

—m(81 + 52) h42
. A a{ECCl'.T
are the Fourier symbols of operators A, = and J = :
A Dyyyy
with 040 and 0,,,, the standard discretization of the fourth-order deriva-
tive with respect to x and y, respectively.

Instead of computing the symbol of A1 we first consider the symbol

of Y71, Y-1(0) can be calculated by applying the Sherman-Morrison-
Woodbury formula,

Y=1(0) = (N(6) + B7(6)B(6)) " o

N-1(0) — N-1(6)BT(6)(I + B(§)N-1(8)BT(6))"'B(B)N-1(9),
(3.40)

and therefore

B(6)Y 1(0)BT(9) = B(§)N(8)BT(9)

— B(O)N-1(0)BT(6)(I + B(§)N-1(6)BT(8)) ' B(O)N-1(6) BT(8).
(3.41)

—

Denoting X = B(6)N~1(8)BZ(6), then

BO)Y 1(0)BT(0) =X — X(1+X)'X = 3 fx'

(3.42)
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We would like to compute X, based on the symbol of N, i.e.,

4( ) , [ 16 -
~ ——\S1 59 h -
N(6) = G | w N

(3.43)

A+ G
—— R | G(si+ %) + (A + G)s?
4 A+ G
G(81 + 82) + (/\ + G)S%
(3.44)

By computing the symbol of B and BT, we can write
7 8In (91
—isinf; —isinfy\ — h
XZ( h ' h )Nl(a) i sin 0,
h
81(1 — 81) i 82(1 — 82) )
(s1+82) +(AN+G)st G(sy+s)+ AN+ G)s3 )

=A+G) (G

(3.45)

With the relations above, we get

L 1 o~ — 1 X
B(0)A-Y0)BT(0) = ——B(0)Y1(0)BT(0) = : A4
O)AHO)B(6) = - BOY OB 0) = - (3:40)

~ 4
With the symbol of C given by C(0) = i1++2<‘2 + h—Z(sl + s2), the following

symbol of the Schur complement is obtained,

~ ~ ~ —~ 4r(s1 + s s1+ s 1 X
S(0)=C(0)+ B(O)A~1(0)BT(0) = ( 22 2) )\1_|_ 2G2 + L Ol X

(3.47)
with X from (3.45). We obtain fyax and i, as the maximum and mini-
mum of S(@) in the high frequencies. Based on (3.24), an optimal (-value

2/%5
1+ kg

minimizing the smoothing factor, is given by ( =

. Relaxation pa-

rameter w has the same expression as in (3.28).



3.5. Uzawa based multigrid for poroelasticity equations 53

Approximation. From (3.47), it is nontrivial to obtain a closed formula for
the maximum and minimum eigenvalues of the Schur complement. How-
ever, we find by using a sufficiently fine computational grid in the frequency
space that these values for the high frequencies can be accurately expressed

as,
N 8K 2

Bmax(h) = 73 + ETE (achieved for 6; = 6, = m), (3.48)
2 1
Buin(h) ~ h_’z + 1 ag (achieved for 6, =0, 6, = 7/2). (3.49)
The ei lues of —— 11 d to the ei lues of
1g€en I m mpar 1gen
eegevaueso)\+G1+Xaes all compare (0] € eigenvalues o

C. We have checked the eigenvalues numerically and the maximum and
minimum values are identical to the expressions (3.48) and (3.49). Taking
into account these approximations, we can write

_ Buax(h) _ 8K(A+2G) + 2h?
" Bum(h) T 26\ +2G) + k2’
and in the limit case, when x = 0, the simplified expression reads kg = 2.
With an optimal (-value,

K3 (3.50)

_ 2k5 _ 16K(A+2G) + 4h?
14ks 106N+ 2G) + 3h%

the smoothing factor is found to be

S (3.51)

6r(\ + 2G) + h?
h)y=(—1=~ :
ush) = ¢ 105(\ + 2G) + 312

If kK = 0, then pug = 1/3, independently of h, whereas if k # 0, then
s = 0.6, for h sufficiently small. Therefore, we can write

prs = sup ps(h) = 0.6,
h<ho

independently of the values of x and the Lamé coefficients A and G. From
(3.28), (3.48) and (3.49), the expression for w approximately reads
2h%(\ + 2G)
W= :
10x(A + 2G) + 3h2
Obviously, w is dependent on the mesh size, and the relaxation parameter

needs to be determined on each grid level. The limit case k = 0 yields
¢(=4/3, ps =1/3 and w = 2/3(\ + 2G).

(3.52)
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Numerical results. Table 3.5 shows the values of the parameters for the
computation of the smoothing factors ug and relaxation parameters w > 0
for different values of the parameter x, when h = 5= (fixed).

256
Parameters | k = 1 Kk =1073 k=10"%| k=107 | k=0
Bruax 5.24 x 10° | 524.28 0.52 1.21 x 107* | 6.86 x 107
Brin 1.31 x 10° | 131.07 0.13 4.74 x 107 | 3.43 x 107
K3 4 4 4 2.55 2
¢ 1.6 1.6 1.6 1.44 1.33
w 3.05 x 1079 | 3.05 x 1073 | 3.05 11877 19444
s 0.6 0.6 0.6 0.44 0.33

Table 3.5: Values of the parameters computed by the theory, together with the resulting

smoothing factors g when h = ﬁ on a collocated grid.

We are also interested in the smoothing factor of the symmetric Gauss-
Seidel method p4 of the elasticity operator on the collocated grid. This
value can be computed by LFA, giving jt4 = 0.47 and therefore (j4)Y/? =
0.68. Since ug is smaller, we get a bound /i for the smoothing factor of the
whole system from (3.24), as ¢ = max(0.68, ug) = 0.68. The upper
bound on the smoothing factor is determined by the smoother considered
for the displacements in this case.

As commented before, the relaxation parameter w has to be determined
on each grid of the hierarchy. Table 3.6 shows the values of w from (3.52)
for different values of the mesh size h and permeability «. In this table,
only results for three grid sizes are presented for simplicity.

mesh size | k=103 k=100 k=10"" | k=108

h = 5% 7.63 x 107 | 7.60 x 10~ | 7.63 x 10° | 7.60 x 10*

== |3.05x 1072 ] 3.05x 10° | 3.05 x 10 | 3.00 x 102

= [1.22x107%2| 1.22 x 10" | 1.21 x 10 | 1.20 x 103

Table 3.6: Relaxation parameters w on different levels of the grid hierarchy.

Next, with a fixed value of k = 1079, we analyze the performance of
the Uzawa smoother for the collocated discretization of the poroelasticity
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system. For different sizes of the finest grid, the LFA smoothing factor
i for the whole system together with the two-grid convergence factor p
predicted by LFA with only one smoothing step are given by u = p = 0.60
in all cases, using w as in Table 3.6.

We also consider the numerical multigrid convergence. The performance
of the multigrid algorithm and the results predicted by LFA are compared
in Table 3.7. The actual multigrid convergence factors p; are obtained
when the residual is reduced to 1072" in maximum norm. The results
are shown for different numbers of smoothing steps ((1,0) and (1,1)) and
using the relaxation parameters w as in Table 3.6. The numerical multigrid
results are computed for F-cycles on a grid with A = ﬁ. The numerical
experiments show that the asymptotic multigrid convergence factors pj,
accurately resemble the LFA two-grid convergence factors p.

(1,0) (1,1)
K Mu1+1/2 p Oh Iul/1+1/2 p Ph
1073 | 0.60 0.60 | 0.60 | 0.36 0.36 | 0.36

107° | 0.60 0.60 | 0.60 | 0.36 0.36 | 0.36

1078 | 0.60 0.60 | 0.539 | 0.35 0.35 | 0.38

Table 3.7: Comparison results - factors predicted by LFA and the asymptotic convergence
factors with different number of pre- and post-smoothing steps (14 and vy, respectively)
and for different values of .

We also confirm the h-independent convergence behavior of the multi-
grid method. For k = 1073 and a multigrid F'(1,1)-cycle, computing on
different meshes with h = 1/2%, k; = 6,7,8,9, the multigrid convergence
factor is around 0.22 for all cases, and the multigrid method exhibits a
highly satisfactory behavior.

We wish to check the sensitivity of the multigrid convergence with re-
spect to the exact choice of the relaxation parameter w. Supposing w has
already been obtained from (3.52) on each level (h = 755 being the finest
grid here), the convergence behavior of the multigrid is plotted in Fig-
ure 3.3 (dashed line). However, we can also simply round the significant
digits of w to the nearest integer number, while leaving the exponent part
unchanged. For example, instead of w = 7.63 - 10~* in Table 3.6, we use
“the inexact value” w = 8-10~%. The convergence with the inexact param-
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eter is denoted by asterisks in Figure 3.3. There is no significant difference
between the multigrid convergence results with exact parameters and those
with these inexact parameters. To improve the convergence performance,
the iterant recombination scheme as presented in Section 3.3.1, can be em-
ployed. The acceleration scheme with either exact or inexact w are denoted
by crosses and circles, respectively. The results show a highly satisfactory
convergence performance in Figure 3.3.

number of multigrid cycles

number of multigrid cycles

r=10" r=10"°
10 T T 10 T T
L]
— = -exactw — = -exactw

8 —#k— inexact w 7 8r % —#— inexact w
= — » - recombination with exact w = x —» - recombination with exact w
2 6 % recombination with inexact w| 2 6 recombination with inexact w|
A B % il
g e B Loat
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= £
= 2 & \\ i s ol
(=] o
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5 0 % ) — g of
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Figure 3.3: Sensitivity regarding the choice of w when h = ﬁ for different values of the
permeability.

The deviation from the “exact” value of w can be assessed by LFA too.
In Figure 3.4, we show the two-grid convergence factors predicted by LFA
with respect to the ratio between the “inexact” value of w and “exact”
optimal w, for the case k = 107%. Similar pictures are obtained for other
values of the permeability:.
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Figure 3.4: Two-grid convergence factors predicted by LFA for different choices of “inex-
act” wand k = 1076,

Some more numerical tests in which we consider Uzawa parameters for
non-square meshes are discussed in Appendix 3.B.

3.5.3 Heterogeneity case (collocated grids)

In this section, we consider the poroelasticity system with heterogeneous
coefficients. The heterogeneity can influence the poroelastic behavior in
many ways. We wish to consider the effect of heterogeneity on the multigrid
convergence. To simulate heterogeneity in the porous medium, the Wibull
distribution is considered as in Section 2.4.2.

It is known that heterogeneity is one of the complicating factors which
can influence the multigrid convergence behavior. To improve the conver-
gence performance, we consider the acceleration scheme for multigrid as in
Section 3.3.1.

In a multigrid algorithm, the material properties need to be transferred
to coarse grids. In this way, the coarse system is related to the fine system,
so that the same characteristics of the material are present. Lamé coeffi-
cients and the permeability are restricted to each grid level by full weight-
ing operators. Then we perform a regular finite volume discretization with
these averaged coefficients on the coarse grids. The highly varying proper-
ties cannot represent the original material on coarse grids accurately. We
wish to study the impact of the heterogeneity on the multigrid convergence
using the standard multigrid components described above on a collocated
grid.
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Comparison test. In Table 3.8, for different homogeneity indices m and
permeabilities x, the numerical multigrid convergence factors for an F-
cycle with one pre- and one post-smoothing step are presented. The values

index | scheme k=107 | k=10 | k=10"" | k=10"°
g | Multigrid 0.24 (23) | 0.28 (25) | 0.30 (27) | 0.43 (38)
Ace Multigrid | 0.12 (15) | 0.13 (16) | 0.14 (17) | 0.17 (19)
| Multigrid 0.25 (24) | 0.28 (26) | 0.31 (27) | 0.43 (33)
Acc Multigrid | 0.12 (16) | 0.14 (17) | 0.15 (17) | 0.19 (19)
| Multigiid 0.28 (26) | 0.29 (26) | 0.31 (28) | 0.42 (37)
Ace Multigrid | 0.13 (16) | 0.16 (18) | 0.19 (20) | 0.24 (23)
| Multigid | 031 (28) | 031 (28) | 0.38 (31) | /
Acc Multigrid | 0.15 (18) | 0.24 (23) | 0.28 (26) | 0.69 (93)

Table 3.8: Convergence factors (and number of iterations between brackets) of multigrid
method and multigrid with iterant recombination for a heterogeneous test. (“,” denotes
divergence)

in parentheses are the numbers of multigrid iterations needed to reduce
the residual to 107% in maximum norm. All results are obtained on a grid
with h = ﬂls' Notice that the relaxation parameters w are varied in the
computational domain for the heterogeneity case, since w is related to the
stochastically distributed Lamé coefficients and permeability. Multigrid
does not converge for very small homogeneity index, such as m = 1. This
is due to the heterogeneity properties of the material and the choice of
multigrid components here. For the problems with strongly “varying” co-
efficients, Galerkin coarse matrices, operator-dependent prolongation and
restriction should be considered, (see [94], Chapter 7).

To illustrate the efficiency of the acceleration method proposed in Sec-
tion 3.3.1, Table 3.8 also shows the convergence results with multigrid
acceleration by iterant recombination denoted as “Acc Multigrid”. All the
initial settings in this numerical test are the same as in “Multigrid” with-
out acceleration. When the acceleration scheme is applied, ¢ is set equal
to 5. Obviously, the convergence behavior corresponding to “Multigrid” is
nicely improved by the iterant recombination for each heterogeneity case.
The additional work required for “Acc Multigrid” is negligible.
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m=2, x=10"3

\ —#— with recombination
—— without recombination | ]

maximum norm of the residual

0 5 10 15 20 25 30
number of multigrid cycles

Figure 3.5: Comparison results between the history of the convergence for multigrid
method and iterant recombination scheme.

We consider an extreme case where the homogeneity index is two and
the coefficient of permeability is 1073. Figure 3.5 plots the decreasing
residuals with respect to multigrid iterations. The errors are plotted in
logarithmic scale. It can be seen that it takes fewer multigrid cycles for
the acceleration scheme to reach a same residual tolerance. The CPU
time is also compared. The cost of iterant recombination is much less
than the cost of standard multigrid to solve the problem. Based on the
discussions above, the robustness of the iterant recombination is confirmed.
For complicated problems, the recombination technique may give a more
prominent acceleration performance.

3.6 Conclusion

In this chapter, we focused on an efficient multigrid method for the poroe-
lasticity equations based on Biot’s model of consolidation. A decoupled
smoother called Uzawa smoother is chosen in the multigrid algorithm. It
involves a symmetric Gauss-Seidel smoothing for displacements and a sim-
ple Richardson iteration for the Schur complement regarding the pressure
field. In order to select an optimal relaxation parameter in the Richardson
iteration, local Fourier analysis is applied. The convergence performance
can also be predicted in the framework of LFA. Numerical tests confirm
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our theoretical analysis. At the same time, some test problems towards
engineering applications are considered. We use the iterant recombination
scheme for the heterogeneous poroelasticity equations. It is demonstrated
that the convergence factors are nicely improved by this scheme in many
cases.

Appendix

In this appendix we detail the extension of the proposed analysis for the
Uzawa-based multigrid method to the case in which the grid has different
horizontal and vertical mesh sizes h, and h,. We describe the analysis for
both staggered and collocated meshes.

3.A Non-square meshes: Staggered grid arrangement
of unknowns

When the mesh size in z-direction h, is not equal to the size in y-direction
hy, it is not immediately clear which parameter w should be used. The
symbol of —A is in this case,

~ S1 59
~A(6) =4 <ﬁ + ﬁ> . (3.53)
My
From (4.41) and (3.53), the symbol of the Schur complement S equals
~ S1 S92 1
SO) =4k | =+ —= . 3.54
(6) K<h§+h§)+)\+2(¥ (3:54)
The maximum eigenvalue of —A is achieved when s; = sy = 1, then
1 1 1
max(f) = 4 7o T 79 . 3.99
Prnas (1) “(h§+h§>+A+2G (3:55)

2
The minimum value of —A results to be h_I: if hy > h, (for s; =0, sy = %)
y

or h_/; otherwise (for s; = 1 and s, = 0). Therefore Byin(h) becomes

1 1 1 2K 1
minh =2 I Z799 79 - . .
P (1) “mm{hg h§}+)\+2G max (252} At (300



3.A. Non-square meshes: Staggered grid arrangement of unknowns 61

To compute kg = Oimar using (3.55) and (3.56), we have that
p B

[ h2hI 4 4k(h2 + h2) (A + 2G)
h2h2 + 2k(A + 2G)h2
hZh? 4+ 4k(h7 + h2) (A + 2G)
h2h2 + 2k(A + 2G)h2

,when h, > h,,

/€5:<

,when h, < h,.

Therefore,
272 2 2
hihy + 4k(h; + hi) (A + 2G)

/-ig = - .

h2h2 + 2k(\ + 2G) min{h2, h2}

Assuming h, > h, for the following analysis, we choose the optimal ¢
giving the lowest value of the maximum from (3.24),

2% h2h? + 4k(X + 2G) (k3 + h2)
C=1q +rg  hZR2 4+ 3k(A 4 2G)h2 4 2k(A + 2G)h2

(3.57)

(3.58)

In this way, the relaxation parameter can be obtained by substituting (3.55)
and (3.56) in the expression of w in (3.38),

2 1

B ﬁmax'i'ﬁmin - 1 S_KJ 2_5
N+2G

w (3.59)

By using these relaxation parameters, the smoothing factor can be com-
puted as
(A =+ 2G)(2h2 + h7)
- h2h2 4 35(A 4 2G)h2 4 2k(A + 2G)h2

s =C—1 (3.60)
If the grid size is extremely small, the term h}h? can be neglected. The
2h3 + h3
3h3 + 2h7
case h, >> h,, the smoothing factor tends to 1. It indicates that when
the grid becomes anisotropic, we obtain worse convergence results and
appropriate block-wise smoothers or semi-coarsening may be required.

In Table 3.9, we fix h, to % and gradually change h,. We have chosen
k = 107% and two smoothing steps. The optimal parameter w on the
finest grid and the two-grid convergence factor p predicted from LFA are

displayed.

smoothing factor is dominated by the value However, for the
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- L
hla“_ 128 " "
mesh hy:6_4 hy:m hy:ﬁ

w | 22.17 12.20 2.55
p | 0.67 0.38 0.69

LFA

Table 3.9: Values of w, p predicted by LFA when h, # h, on a staggered grid.

3.B Non-square meshes: Collocated grid arrangement
of unknowns

Here, we will analyze the case where the collocated grid has different hor-
izontal and vertical mesh sizes h, and h,. We have

h? h,
C=—krA— . e — 0
ST A0 26) A0 +2G) 7"
. o1 . 481 482
with the stabilization term. The symbols of 0,, and 0,, are 72 T2
x y

and

~ S1 S9 S1 1+ S2
CO) =4k | =+ — :
(6) R(h§+h§>+)\+2G

Subsequently, the symbol of the Schur complement is given by

~ ~ ~ et iy S1 59 51-|-82 1 X
S(0) =C(0)+B(0)A1(0)BT(0) =4k | — + —
(6) (6)+5(6) (6)57(6) li(h?chhZ) >\+2G+>\+G1+X’

—

where X = B(0)N-1(0)BZ() and N(8) = —<S-A,(0) + J;(0).

T MG
Note that
S1 59
— - (;7 * h_>
A,(0) = r y :
S1 S9
- (h_ N h_)

4%
N i N isinf. —isind
J1(0) = < hi 452 ) and B(0) = ( sz L sz 2) are the necessary

symbols for computing X. The exact expression of the relaxation parame-
ter w is not obtained due to the involved expression for the collocated case.

So, we compute the parameter numerically for non-square meshes.
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In the following test, h, is fixed to 1—%8
LFA is applied to compute the optimal parameter w on the finest grid and
predict the two-grid convergence factor p. With the obtained w-values,
we employ both the pure multigrid cycles and the iterant recombination

and h, is gradually changed.

scheme mentioned earlier for a homogeneous problem. When the residual
is reduced to 107?° in maximum norm, the asymptotic convergence fac-
tor py is well predicted by the two-grid convergence factor p. However,
in real applications, such a small residual is not necessary. In Table 3.10,
we display the convergence factors and the number of multigrid cycles (in
parentheses) needed to reduce the initial residual to 107% in maximum
norm, together with the values of w and p obtained by LFA. The efficiency
of the recombination scheme is demonstrated since the observed conver-
gence factors reduce by a factor two compared to those obtained with the
multigrid cycle. Obviously, the convergence factor pj 4. is much smaller
than py, for all cases.

h, = =

128

_ 1 —_ 1 _ 1
mesh hy = & hy = hy = 555

w 22.17 12.20 5.55
p 0.67 0.36 0.67

LFA

pn | 0.58 (58) | 0.27 (25) | 0.60 (62)
Phace | 0.28 (25) | 0.13 (16) | 0.28 (26)

Table 3.10: Convergence factors (and number of iterations between brackets) correspond-
ing to multigrid (pn) and to the iterant recombination technique (pp qcc) necessary to
reduce the initial residual to 107¢ together with values of w, p predicted by LFA when
hy # hy.

In Table 3.11, the same test as in Table 3.10 is performed, with the only
difference that we use non-optimal parameters associated with h, = h,
256 for all the cases in Table 3.11. We observe that the convergence factors
become much worse compared to the values in Table 3.10. This points out
the need for a good choice of relaxation parameters.

In addition we find that if the relaxation parameters corresponding to
hy = hy = 128 are used for the case h, 256, hy = 128, the algorithm does
not converge. The value of w depends on the minimum size of the grid.

Therefore, for the test 256 = h, < hy = 128, the parameter with respect
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hy = L
ml 256 I I
mesh hy:m hy:m hy:%
LFA | p 0.81 0.60 0.36

pn |1 0.72(99) | 0.47 (44) | 0.26 (25)
Phace | 0.36 (32) | 0.21 (22) | 0.12 (16)

Table 3.11: Convergence factors (and number of iterations between brackets) correspond-
ing to the multigrid p, and to the iterant recombination technique (pp qcc) necessary to
reduce the initial residual to 107¢ together with values of p predicted by LFA with w
corresponding to h, = hy, =

1

256"

to the smaller size h, should be considered. The convergence performance
is described in Table 3.11. Again, LFA can predict the asymptotic con-
vergence factor (not shown in the table) accurately and the recombination
scheme indeed improves the efficiency. When h, # h, and even the optimal
parameters are not available, we can use the parameters that correspond
to the minimum of A, and h,.



Chapter I

Uzawa smoother in multigrid for the coupled
porous medium and Stokes flow system

In this chapter, the multigrid solution of coupled porous media and Stokes
flow problems is considered. The Darcy equation as the saturated porous
medium model is coupled to the Stokes equations by means of appropriate
interface conditions. We focus on an efficient multigrid solution technique
for the coupled problem, which is discretized by finite volumes on staggered
grids, giving rise to a saddle point linear system. Special treatment is re-
quired regarding the discretization at the interface. An Uzawa smoother is
employed in multigrid, which is a decoupled procedure based on symmetric
Gauss-Seidel smoothing for velocity components and a simple Richardson
iteration for the pressure field. Since a relaxation parameter is part of
a Richardson iteration, Local Fourier Analysis (LFA) is applied to deter-
mine the optimal parameters. Highly satisfactory multigrid convergence is
reported, and, moreover, the algorithm performs very well for small val-
ues of the hydraulic conductivity and fluid viscosity, that are relevant for
applications.!

4.1 Introduction

Coupling of free flow and a saturated porous medium has received consider-
able attention due to applications in environmental and industrial context,
such as in flood simulation, filtration and contamination. It is challeng-

!The contents of this chapter have been published in paper [66]: P. Luo, C. Rodrigo, F.J. Gaspar and
C.W. Oosterlee. Uzawa smoother in multigrid for the coupled porous medium and Stokes flow system,
SIAM journal on Scientific Computing, in press, 2017.

65
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ing to deal with a coupled multi-physics system, since each part of the
system is based on a different model and an appropriate coupling at the
interface is required. Flow in the saturated porous medium is modeled
by the conventional Darcy equation here (the solid framework is assumed
to be rigid and there is no interaction between the fluid and solid matrix
in the porous medium), while the Newtonian flow through a channel is
modeled by the incompressible Stokes equations. Appropriate interface
conditions are based on the principles of mass conservation, equilibrium
of normal stresses across the interface and a special condition called the
Beavers-Joseph-Saffman condition [55, 82] describing the relation between
the shear stress and the tangential velocity. Many researchers have studied
multi-physics problems theoretically, see, for example, [2, 21, 62, 70].

The numerical solution of these multi-physics problems is also an active
research area [30, 32, 51, 80, 81]. We discretize the Darcy-Stokes problem
by the finite volume method on a staggered grid, which results in a sym-
metric system. The mixed formulation of the Darcy problem is used, so
that the discretized equations on the staggered grid result in a matrix of
saddle point form [7], where a zero block appears on the diagonal of the
system matrix. The zero block thus appears in the matrix of the complete
problem, because a stable staggered discretization is used for the Darcy-
Stokes equations.

There are basically two ways to solve a coupled multi-physics system.
A popular approach is based on the domain decomposition (DD) method
[78, 86]. DD exploits the principle of divide-and-conquer and is based on
decoupling the global problem so that mainly independent subproblems
are to be solved. Several advanced iterative solvers of this type have been
applied to the Darcy-Stokes system, as for example the Dirichlet-Neumann-
type DD [31], Robin-Robin DD [22, 33|, Lagrange multiplier-based DD [61]
and many others [19, 20, 69]. DD is often used as a preconditioner for a
Krylov subspace method for such coupled multi-physics problems. On the
other hand, the so-called monolithic solution approach focusses on the si-
multaneous solution of the multi-physics system. Methods in this class
typically exhibit robust convergence when there is a strong coupling be-
tween the two subsystems. Based on this insight, different monolithic
methods have been proposed in the literature, such as preconditioned GM-
RES methods [18, 23, 24], where it was demonstrated that block-triangular
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and constraint preconditioners yield mesh-independent convergence.

We solve the coupled system by developing an efficient monolithic multi-
grid algorithm. Often, multigrid methods have been applied for the effi-
cient solution of saddle point systems, even dating back to the early days
of multigrid for systems of incompressible Navier-Stokes equations [13, 14].
Other efficient multigrid methods for Stokes and incompressible Navier-
Stokes problems have been developed, for example, in [10, 41, 54, 60,
95]. In [1] an efficient monolithic method was proposed for the magneto-
hydrodynamics system.

Basically, there are two major categories of multigrid smoothers for
saddle point problems, classified as coupled and decoupled smoothers, see
(38, 39, 75]. In this paper, we consider the equation-wise decoupled Uzawa
smoother within monolithic multigrid for the Darcy-Stokes system. The
Uzawa smoother [68] will be applied for this discrete coupled system. This
smoother has been enhanced for the Stokes equations in [41]. For the prob-
lem considered here, the velocities in the Darcy and Stokes equations are
updated first, after which the pressures for both subsystems are relaxed.
The Uzawa smoother is based on a Richardson iteration in which a relax-
ation parameter is present. As the optimal relaxation parameter for the
Stokes problem has already been determined in [41], we are concerned with
the selection of an optimal parameter for the Darcy problem through LFA
in the present chapter. LFA is applied to the Darcy and Stokes subprob-
lems separately, and it is shown that the worst of these factors results to
be the global multigrid convergence for the coupled problem. By using
the monolithic multigrid approach, we are able to achieve a textbook multi-
grid convergence rate, even when the values of the physical parameters are
realistically small.

We deal with the so-called multiblock multigrid method which is based
on the grid partitioning technique [94]. Boundary updates are communi-
cated between neighboring blocks within the algorithm on each multigrid
level. In [94] (Chapter 6), a detailed introduction of the grid partitioning
technique is given. The convergence of the multiblock multigrid algorithm
is identical to its single block equivalent in our case.

The chapter is organized as follows. The equations in free flow and
porous media, together with the interface conditions are introduced in
Section 4.2. Section 4.3 deals with the discretization of the coupled Darcy-
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Stokes system. We give the discrete formulas for the coupled system in-
cluding the discretization at the interface. The solution method, the Uzawa
smoother and its analysis by means of LFA, are presented in Section 4.4.
In Section 4.5, several numerical experiments are performed to show the
efficiency of the algorithm. Conclusions are drawn in Section 4.6.

4.2 Problem formulation

We restrict ourselves to the two-dimensional Darcy-Stokes problem. The
proposed solution strategy can be straightforwardly extended to a three-
dimensional setting.

We consider the Darcy-Stokes problem on a bounded domain Q C R?,
and assume that (2 is subdivided into two disjoint subdomains Q¢ and Q/,
corresponding to the porous medium and free flow regions, respectively. Let
I" denote the interface between the two subregions, that is, I' = QN 9O/ .
The geometry of the problem is represented in Figure 4.1, where we also
display n/ and n?, denoting the unit outward normal vectors on 09/ and

0Q¢, respectively. At the interface I', we have n/ = —n?.
Of
e ]
in/  ,n L
Qd

Figure 4.1: Geometry of the Darcy-Stokes problem. Subdivision of the domain €2 into a
free flow subregion € and a porous medium subdomain ¢, by an internal interface T

We describe the porous media and free flow models considered on the dif-
ferent subdomains, including the boundary conditions for the outer bound-
aries, in Sections 4.2.1 and 4.2.2, and the internal interface conditions
governing the interactions between the fluid and the porous medium, in
Section 4.2.3.
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4.2.1 Porous medium description

The fluid flow through a rigid and saturated porous medium ¢ is described
by Darcy’s law, which is an expression of conservation of momentum. The
mixed formulation of the Darcy problem is natural for computations in the
porous medium region since it allows to directly approximate the velocity.
In this work, we will consider this formulation which reads

Klul+Vpl=0 inQ?,

4.1
Veou'=f inQf, 1)

where u? = (u?,v?) describes the velocity and p? the fluid pressure inside

the porous medium. K is the hydraulic conductivity tensor, representing
the properties of the porous medium and the fluid. Here, the case K = KT,
K > 0 is considered. Sinks and sources are described by the force term f.

We assume that the boundary 99\ I is the union of two disjoint sub-
sets 'Y and 'Y, where Dirichlet and Neumann boundary conditions are
imposed. More concretely, we consider the following boundary conditions

p'=g} onT9,

] (4.2)

u’-n?=g% onlY.

4.2.2 Free flow description

The free flow subproblem is modeled by the Stokes equations for a viscous,
incompressible, Newtonian fluid. It is a linearized form of the Navier-Stokes
equations in the limit case when the nonlinear term becomes negligible.
The Stokes flow in the region 2/ is described by

—V.-ol=f/ inQ/,

4.3
V-u = in Q| (4:3)

where u/ = (u/,v/) is the fluid velocity, f/ = ( flf : f2f ) represents a pre-
scribed force, and the fluid stress tensor o/ is given by

ol = —p/T+ 20D (u’),

with p/ denoting the fluid pressure, v representing the fluid viscosity and
where D(u/) = (Vu/ + (Vu/)T)/2 is the strain tensor. The first equation
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in (4.3) is the momentum equation and the second one is the continuity
equation. By writing the stress tensor o/ as

ol = <%’ Tay ) , (4.4)

Oyz Oyy
where
ou! oul ovf ov'
Oxr = —pf+2V%, ny = O_yx = V(a_y—'—a_x)’ O'yy = —pf+2ya—y,
(4.5)
we can rewrite (4.3) as follows
*ul 0%l op’ ,
vl 9*f op’ ,
—V<a$2 5 ) oy = £ in Q) (4.7)
oul o’
8_Z;+8_7; — 0 (. (4.8)

For the free flow subproblem, we split 9Q/\I" into two disjoint parts Fé
and F{\,, where we impose the following boundary conditions

uf:ng onF{),

f

4.9
O'f-nf:gN onF{V. (4.9)

4.2.3 Interface conditions

The Darcy and Stokes systems must be coupled across the internal interface
I' by adequate conditions. To describe them, we fix the normal vector to
the interface to be n = n/ = —n? and we denote by T (see Figure 4.1) the
tangential unit vector at the interface I', obtained by rotating the normal
vector in the counter-clockwise direction by 90°. Across I' the continuity of
fluxes and normal stresses must be imposed. This gives rise to the following
two standard coupling conditions on I':

e Mass conservation:

w n=u’n onT. (4.10)
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e Balance of normal stresses:

—n-o/-n=p" onT. (4.11)

As the third coupling condition, the so-called Beavers-Joseph-Saffman
interface condition is widely used, which is supported by experimental find-
ings and rigorous mathematical theory of homogenization. This condition
relates the tangential velocity along the interface with the fluid stresses,
that is,

yaol 7476/ - n=0 onT, (4.12)

where 7 is a parameter which needs to be experimentally determined and
depends on the properties of the porous medium.

An alternative to this third interface condition neglects the second term
in (4.12), giving rise to a no-slip interface condition,

w-T=0 onT. (4.13)

4.3 Discretization

The finite volume method on a staggered grid [77] is considered as the
discretization scheme for the Darcy-Stokes problem. By using this dis-
cretization we ensure that spurious oscillations do not appear in the nu-
merical solution [49], and we obtain a mass conservative algorithm for the
whole system. The computational domain is partitioned into square blocks
of size h X h, so that the grid is conforming at the interface I'. For no-
tational convenience, we choose equal-sized blocks but the description in
the more general case would be straightforward. Different control volumes
are defined depending on which variable is considered. In Figure 4.2, we
represent in different colors the control volumes associated with the equa-
tions collocated with the primary variables u, v and p 2. The pressure
unknowns p are defined at the centers of the blocks (marked by x-points
in Figure 4.2), and the components of the velocity unknowns, u and v, are
located at the centers of the block faces (denoted by the o- and e-points in
the same figure). For the description of the discrete scheme, we need to fix
an adequate indexing for the unknowns, which can be seen in Figure 4.3,

2Tn the following figures, the superscript, either d or f, is omitted, as we have the same arrangement
of unknowns for both sub-problems.
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Figure 4.2: Staggered grid location of unknowns for the coupled model, and corresponding
control volumes.

where each unknown is depicted together with the corresponding control
volume and the different variables around it.

Vi g+t Yir1,j41 Yi-3+1 Pig+1 Yird s+ Yij+d
@ > 19} S
n
o lw AT : 1.
Pij Q. 1 XPi+1 ° Uil x Uiy 1
it 5. Vg4t Di,j
S O—x—0 e
Yij-1 Vit1,5-1 Yi-35  Pig Wil Vij-1

Figure 4.3: Control volumes for the primary unknowns: w (left), v (middle), p (right),
together with the corresponding indexing for each variable.

We describe in detail the discretization for the mixed formulation of
the Darcy problem in Section 4.3.1, the discrete scheme for the Stokes
equations in Section 4.3.2, and the special discretization considered for the
internal interface I' in Section 4.3.3.

4.3.1 Discretization of Darcy equations

Since in the mixed formulation of the Darcy problem the pressure and
the velocities are the primary variables, we describe the corresponding dis-
cretizations for each equation. Regarding the horizontal velocity unknown,
let us consider control volume Vs ; for variable ul‘?lﬂ /2] (Figure 4.3, left
side). By discretizing the first equation in (4.1) in such control volume, we
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obtain,
pd+1 i pfl j
~1,.d i+1, Jo_
K Uitl + — 0. (4.14)
Similarly, by discretizing the equation for v¢ in (4.1) over a control vol-
ume V; ;110 (Figure 4.3, middle), one obtains the discrete equation for the

. . d
vertical velocity unknown v, o,

d _d
K-yl +pz',j+1 D

des =0, (4.15)

Equations (4.14) and (4.15) are associated with internal velocity unknowns.
In the case of variables located at the external boundary where Dirichlet
boundary conditions for the pressure are imposed, the corresponding con-
trol volumes to consider are half the size of the inner control volumes, and
are treated accordingly.

Finally, the discrete equation corresponding to the pressure unknown
pf’j is obtained by discretizing the second equation in (4.1) over control
volume V; ; (Figure 4.3, right side), resulting in

d d d d
; . — U. . () — V..
l+%7] Zi%v] Z7]+% 1) —

h h

_l_
N[ =
I
~~
S

(4.16)

4.3.2 Discretization of Stokes equations

We proceed by briefly presenting the discretization of the Stokes equations.
Regarding the mass balance equation, similarly as in the previous section,
we discretize the second equation in (4.3) over control volume V; ; to obtain
the following discrete equation,

;oo B
it Niha | Dy~ Naed (4.17)

h h

U

Regarding the momentum equation in (4.3), we describe only the first
component of the equation since the second one would be deduced in a
similar way. Thus, discretizing such component over control volume V;__ 1
yields

- (Ml e b 2O gy
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where o0,, and o0,, are components of the stress tensor. Approximating
these components as

¥ u{+§j B uzj':tlj
_ 27 27
(Oaz)e = —Djy1,; T2V n ;
f u{Jrlj - uzf—l 7
J— 27 2
(Uxx)w - _pivj + 2v h )
f ot f o
1 1 (% 1 1
(0_ ) —y i+3.J+1 1+3,] + i+1,5+5 4,)+5
zy)n — h h )
f ot f o
[ Yy T Y Vit T il
(ny)s =V h h )

and substituting them in (4.18), we obtain the following equation,

2
o —2uf1.—|—uf1 /

f f
—ﬁ(“¢+g,j i+1.] z—i,j) - ﬁ(uz’%,jﬂ —2u .t )

i+1.j i+1,5-1

Vot / / / Lo Iy (ff
_ﬁ(vi—&-l,j—&—% - Ul'7j_|_% - vH—Lj—% + Ui,j_%) + E(pz’—i—l,j o pz,]) - (fl )i-i—%,j'

4.3.3 Discretization at the interface

In this section, we describe how we deal with the interface conditions. Our
proposal is to obtain a special discrete equation for the unknowns at the
internal interface. Due to the staggered arrangement of the unknowns, the
only variables at the interface are the vertical components of the velocity,
see Figure 4.4. For this purpose, we integrate the momentum equation of
the Stokes system over a half volume, as displayed in red color in Figure 4.4,
giving rise to the following equation

_ ((ny)e ;L (02y)w + (Uyy)”h72(0yy)5> = (fzf)z‘,j+%> (4.19)

where, as can be seen in Figure 4.4, e and w denote locations at the inter-

face, whereas n and s denote the locations of pzf it and ’U%‘il, respectively.
’ 5 3

The approximation of (¢, ), is easily obtained as

2v
(Op)n = —plj + 5005 =0 0). (4.:20)
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Figure 4.4: Staggered grid location of the unknowns for the interface conditions.

whereas the approximation of the other components of the stress tensor
requires the use of the interface conditions. To approximate the component
(0yy)s, we directly apply the interface condition (4.11), obtaining

(oyy)s = —pg. (4.21)

The pressure p? is not known at the interface, but it can be approximated
with the help of the Darcy problem. By integrating the corresponding
equation over a half volume as displayed in yellow in Figure 4.4, we obtain,

=, (4.22)

Substituting this equation in (4.21), the approximation reads,

(yy)s = —p?,j + %U?’j%- (4.23)
To approximate the remaining components of the stress tensor, we need to
use either the no-slip or the Beavers-Joseph-Saffman interface condition.
Here, we consider the latter since it is the most involved case. The stan-
dard approximation of the Beavers-Joseph-Saffman condition (4.12) at the
location denoted by e reads

f —ul o o
vl — v it5,J+1 e n i+1,5+3 ij+3
‘ h/2 h

u

~0. (4.24)
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Here, u/ can be obtained from (4.24) and substituted into the standard
approximation of the stress (o, )e, resulting in

f ot f ot
(02, = v Wir1 1~ Ye N Vitrj+3 ~ Yig+l
e h/2 h
(4.25)
f ot
o 2v¢ f vz’+1,j+% vi,j+%
- Tuﬁé,jﬂ e B ’
where ¢ = (1 — hfﬁ . The approximation of (o,,), can be calculated

in a similar way. The discrete equation for the vertical velocities for the
Stokes problem at the interface is thus obtained by substituting (4.20),
(4.23) and (4.25) into equation (4.19), giving

2vs 1 f VS (of

f /
T2 (ui+§,j+1 - ui—%,j+1) - ﬁ(viﬂ,ﬁ% - 2vz’,j+§ + Uz’—l,j+%) (4.26)
2 4 1 '
f d f / f _ (¢S
_I_E(pi,jJrl - pl,j) o ﬁ(vi,j—i—% o UZ'7]'+%) + Xwi,j-i-% - (f2 )i,j+%7
where we have used the interface condition v?®. , = vl L.
7”.]+§ Za.]+§

The discretization at the interface is of great importance and can be
viewed as a relevant ingredient towards the construction of a highly effi-
cient multigrid method. Since the coupled system is treated as a single
problem, the equations of fluid dynamics, solid mechanics and their com-
plex interaction are all included in one discrete formulation. By such a
discretization, the fully coupled system possesses a saddle point structure
which is suitable for monolithic multigrid.

4.4 Numerical method

This section is devoted to the design of a monolithic geometric multigrid
for the Darcy-Stokes problem. For this purpose, we will first study the
application of multigrid methods based on Uzawa smoothers to the Darcy
and Stokes problems separately. In this analysis we will take into account
the LFA technique to obtain suitable parameters for these methods. These
algorithms will form the basis to construct a monolithic multigrid for the
coupled problem. This will be possible since the individual Stokes and
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Darcy systems, as well as the fully coupled problem, lead to saddle point
linear systems of the form

(55)()=(5), a1

by choosing an adequate arrangement of the unknowns. For both problems
BT and B represent the discrete gradient and the minus discrete divergence
operators, respectively, and A is the discrete representation of either the
Laplace-type operator —vA for the Stokes equations, or K 11 for the Darcy
equation. For the coupled problem, rearranging the vector of unknowns
to order first the velocities for both problems and thereafter the pressure
unknowns, we obtain the following linear system,

AL 0 (BHT 0 u? 0
0 A" R BHT u/ £/
Bd R O <0) pd - fd ) (428)
0 B 0 0 p! 0

where the system matrix in (4.28) has the same saddle point structure as
in (4.27), by denoting

A:(Ad 0)) B:(Bd R)) BT:((Bd)T 0 >
0 Af 0 BY R (BHT
Here, R is a diagonal matrix containing the relations given by formula
(4.26) between the vertical velocities v/ and the corresponding pressure
unknowns in the Darcy domain p?. So, most of its elements are zero, and
the only nonzero diagonal terms are those corresponding to the Darcy pres-
sure unknowns close to the internal interface, appearing in the equations of
the vertical velocities on I'. Due to this structure of the coupled problem,
a geometric multigrid method together with an Uzawa smoother, as will be
introduced in Section 4.4.1, can be applied for the whole system. As we will

see, the choice of adequate relaxation parameters for the Uzawa smoother
on each subproblem will be crucial for excellent multigrid convergence.

4.4.1 Multigrid based on Uzawa smoother

In order to develop an efficient multigrid solver, it is necessary to carefully
define each component of multigrid, such as the smoothing operator and
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the coarse-grid correction components (i.e., the restriction and prolonga-
tion operators, and the coarse grid operator). Regarding the coarse grid
correction, geometric grid coarsening is chosen, as we will deal with regular
Cartesian grids. The sequence of coarse grids is obtained by doubling the
mesh size in each spatial direction. We further use well-known, proven,
components for the transfer operators between the fine and coarse grids,
that are dictated by the staggered grid arrangement, and focus our efforts
on the analysis of the smoothing operator. In particular, the interplay be-
tween the relaxation method (the smoother) and the coarse grid correction
is crucial for the multigrid performance.

Taking the staggered arrangement of the unknowns into account, the
inter-grid transfer operators that act on the different unknowns are defined
as follows: at velocity grid points six-point restrictions are considered,
and at pressure grid points a four-point restriction is applied. In stencil
notation, the restriction operators are given by

| 1 21 1 1 1 1
hoh = 5 * , Rpop =735 | 2 % 2 ; Rh,gh == *

8 1 21 8 1 1 4
respectively. As the prolongation operators quh/ 1;1/ P we choose the adjoints
of the restrictions.

The choice of smoother requires special attention due to the saddle point
structure of the considered system. An Uzawa smoother, which was pro-
posed for the Stokes problem in [41] and in Chapter 3 for poroelasticity, is
considered for the coupled system.

Uzawa smoother We give a general description of the considered Uzawa
smoother. We will see that this relaxation can be successfully applied in
multigrid for both Stokes and Darcy systems, and also in the multigrid
method for the coupled system. As presented in Chapter 3, the Uzawa
smoother is obtained by splitting the discrete operator as follows

A BT My 0 My—A -B
(50 )=(% 20) (" " 20r) e

-
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where M 4 is a typical smoother for A and w is some positive parameter. M4
makes the approach less costly because of the inexact solve for velocities
at each iteration.

From a given approximation of the solution to the system (u, p)?, the re-
laxed approximation (1, p)? is computed according to the decoupled Uzawa
smoother in the following way

(i D) (8)- (5 22 (2)+(8)-om

More concretely, a single step of the relaxation process is described as
follows

e Relax the velocities by applying M4: 1t = u+ Mjl (g — Au — BTp) :
e Update the pressure: p = p+w(Bu — f).

In general, the Uzawa method is equivalent to a stationary Richardson
iteration applied to the Schur complement system. This relation allows to
deduce an expression for parameter w which minimizes the spectral radius
of the corresponding iteration matrix, i.e.,

2

w=—————————
)\max + >\min’

where Apa.x and Apin denote the largest and smallest eigenvalues of the
Schur complement, respectively (see [7]). In the local Fourier analysis
section we will estimate optimal relaxation parameter w in the Uzawa
smoother for the Darcy and Stokes problems, and we will also obtain a
similar expression in which A, and Ay, are substituted by the largest
and smallest eigenvalues but only on the high frequencies for smoothing
analysis purposes.
M 4 is based on the symmetric Gauss-Seidel iterations for A; i.e.,

My = (Da+La) Dt (Da+Uy), (4.31)

where Dy, La and Uy are, respectively, the diagonal, the strictly lower,
and the strictly upper parts of A. Numerical experiments in [41] revealed
that, for essentially the same cost, the convergence associated with M4
in (4.31) is most efficient. So, this variant is the one that we extend to
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the Darcy equation. The efficiency of the proposed Uzawa smoother for
three-dimensional Stokes and Biot’s poroelasticity equations was presented
in [41] and [64], respectively.

We wish to mention the importance of the choice of an adequate value
for the relaxation parameter w to obtain a satisfactory performance of the
Uzawa smoother. As in [41] for the Stokes equations, analytic expressions
for w can also be obtained by means of a theoretical analysis for the Darcy
problem. We present this analysis first in a general way to make this work
self-contained and later we will describe the particular case of the Darcy
equations.

4.4.2 Local Fourier analysis

We briefly introduce the local Fourier analysis for staggered grids, before
we focus on the analysis of the Uzawa smoother.

Basis of LFA To perform LFA, all discrete operators are assumed to be
defined on an infinite grid G, and boundary conditions are neglected. Due
to the arrangement of unknowns on a staggered grid, G is divided into
three subsets GF defined as

) ) ) N (1/2,0), if /E;: 1
GF ={xF . = (i,))h+ 6"h| i,j € Z}, with 6" =< (0,1/2), if k=2
(Z’]) Y ) 9
(0,0), if k=3,

(4.32)

such that G, = G} U G7 U G3. Corresponding to Figure 4.2, the ve-
locities u%/ and v¥f are situated at nodes a:zlj and a:z-%j,
whereas mf’] is for the pressure unknowns p%/. The basic idea of LFA
is that all occurring multigrid components, the discrete approximation
and its corresponding error or residual can be represented by formal lin-
ear combinations of Fourier modes. In the case of a staggered grid, con-
sidering ¢} (0, z; ;) = (eio’“:%xj/}L,O,O)T, w2 (0,x; ;) = (O,eie’w?,j/h,O)T, and
w3 (0,z; ;) = (0,0, ¢=i/MT the Fourier modes are defined as

respectively,

en(0,xi)) = [p1(0,zi;) 10, xi;) @50, xi))] , (4.33)
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L)) and 6 € © = (=, x]%, which form a unitary

basis of the space of infinite grid functions. The Fourier space generated
by Fourier modes is given by F(G},) := span{,(8,-)|0 € O}.

where x; ; = (x

The analysis is similar as in Section 3.4.1. The smoothing factor pu is
defined as:

= sup p(S(8)), (4.34)

2h
€Oy,

where high frequency component @%?gh is defined in (3.17), and Sp(0)
represents the Fourier symbol of the relaxation operator. In our case, the
Uzawa smoothing iteration can be written as S, = I, — M, 'L, where
Ly, is the discrete operator given by the system matrix in (4.27) and M),
represents the iteration matrix in (4.30).

We can analyze the behavior of multigrid by investigating the effect of
the multigrid components acting on the Fourier space. The iteration op-
erator of the two-grid method is similar as (3.21), thus the LFA two-grid
convergence factor can be obtained as (3.22).

LFA for the Uzawa smoother A detailed study of the Uzawa smoother in

the framework of LFA was already done in [41]. In that work, it was proved
that

p < i = max ((/JA)”Z, us) : (4.35)

where 14 is the smoothing factor of M4 and ug can be interpreted as the
smoothing factor of the Richardson iteration for the Schur complement,

ps == sup p (I —w (BAABT)) : (4.36)

2h
9li,igh

There are no particular difficulties to obtain bounds for w4, since LFA
results for many scalar elliptic PDEs are available in the literature, see
for example [100]. However, to estimate ug is somewhat involved since
information about the eigenvalues of the Schur complement is needed. In
particular, the bound of g is determined by the maximum and minimum
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eigenvalues on the high frequencies, that is,

max (E(e)ﬁ(e)é?(e)) < Bunaes (4.37)
ISCTas

min (E(@)X—’l(e)ﬁ?(e)) > Buoims (4.38)
6co7

with B(6), A-1(0) and BT(8) the symbols or Fourier representations of
operators B, A~! and BT for a fixed frequency 8. Let ¢ be a positive real
number such that ¢ < 2. By defining kg = BL?X, the following bound for
s is obtained (see [41] for more details), o

ps < max (C —-1,1- i) : (4.39)

kp
Note that the choice of { < 2 is to ensure that ugs < 1. Then, by choosing
a value of ¢ to minimize the expression in (4.39), we obtain an optimal

relaxation parameter for the Uzawa smoother as follows
B 2
Bmax + Bmin .

Next, we apply this analysis to obtain approximations of the smoothing
factor of the Uzawa smoother for our problem, as well as optimal relaxation
parameters for the Richardson iteration involved in the relaxation process.

In [41], the following bound for the smoothing factor of the Uzawa
smoother was obtained in the case of Stokes equations, p = max(0.5,(—1),
by choosing the optimal relaxation parameter w = (v. Notice that pus =
0.25 for the symmetric Gauss-Seidel for the Laplace operator, and therefore
(114)"? = 0.5. These results can be directly used for our free flow problem.

w (4.40)

Uzawa smoother analysis for Darcy equation We work out the analysis for
Darcy’s equation in order to obtain a suitable parameter w for the part
corresponding to the Richardson iteration for the pressure, as well as an
approximation for the smoothing factor of the Uzawa smoother.

Following the general analysis in the previous section to obtain .« and
Pmin in (4.37)-(4.38), we will make use of the following equality

—
~

B(6)A~1(0)BT(8) = KB(0)BL(0) = —~KA(9) . (4.41)
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8K 2K
From this result, it is straightforward to obtain 3,,,, = 77 and B = =k
which implies
ﬁmax
Kg = =4 . 4.42
’ Bmin ( )

Choosing ¢ = 1.6, which gives the lowest value of the maximum in (4.39),
the smoothing factor is bounded by 0.6, independently of the value of K.
This theoretical bound for the smoothing factor i matches perfectly with

the value p predicted by the local Fourier analysis. Moreover, following
h2

(4.40) the relaxation parameter is given by the expression w = e Pa-

rameter w depends on the grid size, and therefore it will be different on

each grid of the hierarchy used in the multigrid method.

4.4.3 Multigrid for the coupled Darcy-Stokes problem

Due to the saddle point structure of the coupled problem, a geometric
multigrid method together with an Uzawa smoother, as introduced in Sec-
tion 4.4.1, can be applied for the whole system. For this purpose, it is
important to note that to keep the structure of the matrix of the saddle
point system on the whole grid hierarchy, interface I' has to be present on
each grid level. Regarding the smoothing process, all velocity unknowns
are relaxed before the pressure unknowns will be updated. The relaxation
parameter w for the Richardson iteration for the Schur complement has to
be chosen differently if we are updating pressure unknowns from the Darcy
or the Stokes problems. For the other components, the same operators can
be used at every grid point since the discretization for both problems is
performed with the same staggered arrangement of unknowns.

In the monolithic multigrid method we do not distinguish the subprob-
lems and the internal interface. All the unknowns play essentially the same
role. Only the relaxation parameter of the smoother is different for each
subproblem. For the discretization at the interface, the unknowns for both
subproblems are included in one equation. We keep the same philosophy
for the other components in the monolithic multigrid. For example, to re-
strict the unknowns at the interface, six points from both subgrids around
it are employed. A suitable discretization for the unknowns at the interface
of the coupled system is a key step in achieving robustness and efficiency
of our approach.
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The proposed multigrid method for the coupled Darcy-Stokes problem
can also be implemented as a multiblock version in which the Darcy and
Stokes domains are assumed to be two different blocks. This is appeal-
ing from a practical point of view, for example when one has to solve the
coupled problem by using two different codes. Moreover, this multiblock
approach is easily parallelizable. Next, we describe in detail how this im-
plementation can be done.

Multiblock multigrid algorithm We divide our domain into two different
blocks corresponding to the Darcy and Stokes domains. In this way, the
original staggered grid is split into two different subgrids. Starting with an
approximation on the partitioned grid, it is trivial to compute a new iterate
for the interior points of each subgrid. Near the boundary of each subgrid,
the old approximations at those points belonging to the neighboring sub-
grid are needed. It is standard within a grid-partitioning framework [94]
for a subgrid to not only store its own data but also a copy of the data
located in a strip of the neighboring subgrid in an overlap region. Thus,
the mesh corresponding to the Stokes domain is extended by adding an
overlap region of one cell length, as can be seen in Figure 4.5. After a full
iteration, on each grid level, the copies in the overlap region have to be
updated by communication so that a next iteration can be carried out.

Next, we explain in detail the two-grid version of the multiblock algo-
rithm. For simplicity in the presentation of the algorithm, we use pre-
smoothing but no post-smoothing. By recursion, the multigrid version
follows straightforwardly.

Multiblock two-grid algorithm: (with pre-smoothing but no post-smoothing)

1. Relax velocity unknowns for both blocks.

2. Stokes to Darcy transfer: vertical Stokes velocity unknowns at the
interface are transferred to the Darcy block (see the red dots in Fig-
ure 4.5).

3. Update pressure unknowns by the Richardson iteration with the op-
timal relaxation parameters corresponding to each block.
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Figure 4.5: Communications between two partitioned subgrids.
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4. Darcy to Stokes transfer: Darcy pressure unknowns are transferred to
the Stokes overlap region (see the blue crosses in Figure 4.5).

5. Compute the residual.

6. Darcy to Stokes transfer: the residual of the vertical Darcy velocity
unknowns is transferred to the Stokes overlap region (see the green
dots in Figure 4.5).

7. Restrict the residual.
8. Solve exactly the defect equation on the coarsest grid.

9. Stokes to Darcy transfer: vertical Stokes velocity unknowns at the
interface are transferred to the Darcy block.

10. Interpolate the error and correct the approximation to the solution.

This multiblock algorithm requires only little data communication. In
particular, each communication step involves transfer of information in
only one way. Moreover, each stage in the algorithm can be performed in
parallel since the data required for each operation is available in the same
process. Finally, although this multiblock approach can be cast into the
class of domain decomposition (DD) methods, we wish to emphasize that
in our case the communication between both Darcy and Stokes problems is
performed on each level in the hierarchy instead of only on the finest grid
as usual in the DD methods. This is crucial to achieve a highly efficient
solver for this coupled problem, as we will see in the numerical experiments
section.

Local Fourier analysis results In this section, we confirm that the asymp-
totic convergence factor of the monolithic multigrid based on the Uzawa
smoother for the coupled problem can be estimated with a high accuracy
by means of the worst of the two-grid convergence factors predicted by LFA
for the individual Darcy and Stokes subproblems. In Table 4.1, we display
the two-grid convergence factors predicted by the LFA for the Darcy prob-
lem varying the hydraulic conductivity K, and for the Stokes equations for
different values of the viscosity . These results are obtained for different
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Darcy Stokes
4w | K=1K=1072 | K=10°%|v=1|{v=10"%|v=10"°
2 0.600 0.600 0.600 0.304 0.304 0.304
3 0.360 0.360 0.360 0.143 0.143 0.143
4 0.216 0.216 0.216 0.081 0.081 0.081

Table 4.1: Two-grid convergence factors, p, predicted by LFA for the Darcy and Stokes
subproblems, separately, for different values of the parameters K and v and different
numbers of smoothing steps, vy + vs.

K 1 1073 1076
v | 1 [103710%] 1 [103]10%] 1 [102]10°F®
2 1059059059059 0.59] 059 059 0.59 | 0.59
vi+uvs | 31036036 0.36|0.36| 0.36 | 0.36 | 0.36 | 0.36 | 0.36
4102110211021 ]021]0211]0.21]0.21]0.211|0.21

Table 4.2: Asymptotic convergence factors, pj, for the multigrid W-cycle based on the
Uzawa smoother for the coupled Darcy-Stokes problem, for different values of the physical
parameters K and v and different numbers of smoothing steps v + vs.

numbers of smoothing steps, v; + 5. From this table, we can observe the
robustness of the multigrid method based on the Uzawa smoother for each
subproblem, separately.

In Table 4.2, we show the asymptotic convergence factors experimen-
tally obtained by using the monolithic multigrid W-cycle based on Uzawa
smoother for the Darcy-Stokes coupled problem. These values have been
computed on a fine-grid of size h = 1/128, and by using a random initial
guess and zero right-hand side in order to avoid round-off errors. We dis-
play the convergence factors obtained after 100 multigrid cycles, since in
each test case the numerical convergence has stabilized. Comparing Ta-
bles 4.1 and 4.2, we observe that these factors match perfectly with the
worst of the two-grid convergence factors predicted by LFA for both sepa-
rate subproblems. This means that the treatment of the discretization at
the interface as well as the implementation of the Uzawa smoother for the
whole coupled problem have been performed in the most efficient way.

Discussion and comparison with other methods In this section we discuss al-
ternative solution methods to the proposed monolithic multigrid approach.
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In the discussion we include, on the one hand, monolithic multigrid meth-
ods with different smoothers, and, on the other hand, domain decomposi-
tion techniques and preconditioning strategies.

In a monolithic multigrid method we aim to solve the multi-physics system
all-at-once. The choice of the smoother is important for the performance
of the multigrid method. The proposed smoother in our work is based on
Uzawa relaxation, but different relaxation schemes can be considered. The
Braess-Sarazin method [1, 10] is an example of another relaxation method.
More concretely, the Braess-Sarazin is based on the matrix system

Ny BT
B 0

as the smoothing iteration matrix for saddle point system (4.27), where N4
is usually of the form N4 := xdiag(A) or N4 := xI, with xy € R a parameter
which is not smaller than the maximum eigenvalue of A. For the solution
of the pressure it is then necessary to solve a system whose matrix involves
the Schur complement BNZIBT. However, in practice, an inexact solve is
sufficient. In that case, an inexact Braess-Sarazin smoother is comparable
to the Uzawa iteration and seems an appealing alternative to the Uzawa
smoother. Next to the Braess-Sarazin smoother, the well-known coupled
Vanka smoother [95] is based on solving several small-sized and local sad-
dle point problems in a block Gauss-Seidel fashion. Originally proposed
for the incompressible Navier-Stokes equations, this approach can be eas-
ily extended to solving the Darcy-Stokes system. The interface conditions,
discretized on a staggered grid, can be naturally incorporated within the
coupled Vanka smoothing approach. In particular, in the staggered case
that we consider, five unknowns (pressure p; ; and velocities u;_ Ljs Uigd s
Vi j—1 and v; ;. 1) that are simultaneously updated (see Figure 4.3), which
results in solving 5 x 5-systems for each cell in the grid. A coupled smoother
is often somewhat more expensive than an equation-wise smoother. We
will compare the Uzawa smoother with the Vanka smoother, in terms of
computational efficiency, in the numerical section. Note, however, that
the performance of a point-wise coupled smoother is not satisfactory when
stretched grids or anisotropic problem parameters are encountered (see [39]
for example), and their extension to line-wise Vanka relaxation gives rise to
a significant increase in computational cost, since several lines of unknowns
have to be updated simultaneously.
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As mentioned in the introduction, other approaches for solving coupled
problems are based on domain decomposition methods, splitting the multi-
physics system into separate subproblems that are treated mainly indepen-
dently, as specific preconditioning techniques for the global saddle point
problem. In this context, preconditioned GMRES methods with block or
constraint preconditioners [18, 23, 24] usually show a mesh-independent
convergence rate, yielding an effective approach for solving Darcy-Stokes
problem. However, in the literature it can be observed that these methods
can exhibit some parameter specific convergence, depending on the values
of the physical parameters (see [19] for example). Our monolithic method
provides convergence characteristics independent of parameters K and v.
Even for very small parameter values, when the subproblems are strongly
coupled, the multigrid convergence is excellent. One of the advantages of
the considered monolithic multigrid method is thus the robustness with
respect to the values of the physical parameters.

Remark 4.1. As is commonly done, we mainly focus on the case of con-
stant hydraulic conductivity K. The proposed multigrid solution method
can however be generalized to varying K-values and also to the case where
the hydraulic conductivity is prescribed by a full tensor K. In [64], see also
Chapter 3, we applied a variant of the Uzawa smoother for porous media
flow when anisotropies due to grid stretching appeared. Also heterogeneous
coefficients were considered in that chapter. Grid anisotropies basically
have the same impact as anisotropic conductivity. Therefore, the proposed
algorithm can be adapted to such setting. When a full SPD (symmetric
positive definite) tensor K is encountered, the same solution strategy may
be applied since K can be diagonalized. For the case of a heterogeneous
porous medium, some multigrid results are presented in Section 4.5.4.

4.5 Numerical experiments

We present three numerical tests in order to study the accuracy of the dis-
crete scheme and the convergence and robustness of the proposed multigrid
method based on the Uzawa smoother with respect to different values of
the kinematic viscosity v and the hydraulic conductivity K. For the im-
plementation, we will consider the optimal relaxation parameters for the
Richardson iteration defined in Section 4.4, with values of ( = 1 for Stokes
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and ¢ = 1.6 for the Darcy problem. For Stokes it follows that w = v, that
is, the relaxation parameter is fixed on all grids and equal to the viscosity
of the fluid. This is due to the fact that the Schur complement is spec-
trally equivalent to the identity matrix for the considered discretization,
and therefore the eigenvalues are bounded from below and above by %osi—
tive constants which do not depend on the mesh size. We have w = h—K in
the Darcy domain, so w depends on K which is the hydraulic conductivity
of the porous media and on the size of the grid (different on each mesh in
the hierarchy).

In all numerical experiments, the initial solution is chosen to be random,
and the stopping criterion is

||residual ||« < tolerance - ||initial residuall|

4.43
||right-hand side|| ||right-hand side]| (443

where the tolerance is chosen as 1071, Moreover, for simplicity we consider
uniform meshes with grid-size h in both directions on each subdomain.

4.5.1 No-slip interface condition

In this first numerical experiment we deal with a coupled Darcy-Stokes
problem with a known analytic solution on the domain €2 = (0,1) x (0, 2),
which is a benchmark test widely used to assess the behavior of different
numerical algorithms, see [19, 32, 33] for example. The domain 2 is divided
into two subdomains by the interface I' = (0,1) x {1}. The Stokes region is
the upper part / = (0,1) x (1,2) whereas the Darcy region is the bottom
part Q7 = (0,1) x (0,1). We choose the right-hand side terms and the
boundary conditions so that the exact solution is given by

S (CEY Y (v -2+l
) (vf(x,y)> ( Tt —a )
pl(x,y) =2v(z +y—1) +3LK> )

)= (e ) < (=Dl oKy

1 3

Pz, y) = (@ = )y —1) + ‘% — 2+ 9y) + 2w
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Dirichlet boundary conditions for velocity are prescribed at 9/ \ I' and
at the bottom boundary (0,1) x {0}. Neumann boundary conditions for
pressure are imposed at the remaining parts, i.e., the lateral boundaries
of the porous medium. Moreover, a simplified no-slip interface condition
(4.13), together with (4.10) and (4.11) are considered here at the internal
interface.

First of all, we compare the numerical solution with the given exact
solution for fixed values of viscosity ¥ = 1 and hydraulic conductivity K =
1. For different grid-sizes, in Table 4.3 we display the maximum norm of the
error for each variable. As expected, second-order accuracy is obtained for

32 x 64 64 x 128 128 x 256 | 256 x 512
u? [ 2.03x107% [ 538 %1075 [ 1.39 x 1077 | 3.51 x 10°©
v? [ 3.11x 107* | 8.81 x 1075 | 2.34 x 107° | 6.02 x 10~°
p? [ 243 x 107 | 6.09 x 107° | 1.52 x 10~ | 3.81 x 10~¢
uwf 229 x107% [ 591 x 1075 | 1.50 x 1077 | 3.78 x 107©
vf [ 3.11x107* | 8.81 x 107° | 2.34 x 107° | 6.02 x 107©
p/ | 3.61 x 1072 | 1.81 x 1072 | 9.07 x 1073 | 4.54 x 1073

Table 4.3: Maximum norm errors of variables u®’, v 1 p#/I for different grid-sizes, by
considering fixed values v =1 and K = 1.

Darcy problem, whereas for the Stokes problem, we achieve second-order
accuracy for velocities and first-order for the pressure field. The maximum
errors for vertical velocities are the same in both subdomains due to the
fact that the maximum is achieved at the internal interface I.

Now we focus on the study of the behavior of the proposed multigrid
method for the Darcy-Stokes problem. First, a multigrid W-cycle with
two pre- and two post-smoothing steps is applied in order to see the h-
independent convergence of the algorithm for fixed values v = K = 1. In
Figure 4.6 we show the history of the convergence for different grid-sizes
h = 1/2% for k; = 5,6, 7,8. The maximum norm of the residuals divided by
the maximum norm of the right-hand sides is plotted in logarithmic scale
against the number of multigrid cycles necessary to fulfill the stopping
criterion. It can be seen that the convergence rate is independent of the
space discretization parameter, and that the proposed multigrid method
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performs well for the coupled problem, since only 15 iterations are needed
to achieve the desired convergence.

K=1, v»=1, W(2,2)

—6— 32464

—&— 64128

8 i
(] S 128256

—#— 256512

[Iresiduall| /l[right hand side||

10 F

-12

0 5 10 15
number of multigrid cycles

Figure 4.6: History of the convergence of the W (2, 2)-multigrid method for different grids.

Next, we investigate the robustness of the multigrid algorithm with
respect to a wide range of values of the physical parameters v and K.
This is important since the values of the parameters that are relevant for
geoscientific applications are typically very small. For example, K = 1072
is the hydraulic conductivity for sand and K = 107° for limestone, and
v = 107 is the viscosity of water. In Table 4.4, we show the number
of iterations necessary to reach the stopping criterion for different values
of v and K, and for different multigrid cycles and numbers of pre- and
post-smoothing steps. All these results are obtained on a grid with space
discretization parameter h = ﬂls'

As it can be observed, the proposed multigrid method results in a robust
solver when W-cycles are used. If V-cycles are chosen, we can also observe a
satisfactory behavior of the multigrid method. Moreover, very good results
are obtained for small values of the physical parameters. In order to analyze
the efficiency of the proposed method, we have done a comparison of the
number of arithmetic operations needed for both cycles. The most efficient
multigrid cycle in Table 4.4 is the V' (3, 3)-cycle. Therefore, we choose this
cycle to compare the efficiency of the proposed multigrid based on the
Uzawa smoother with a multigrid algorithm based on the Vanka smoother.
For these two methods, the only difference is the smoothing part, on each
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K | v W@ [W(IL2) W22 [V(E2)]V(33)
1 1 38 21 15 22 13
105 1 38 20 14 28 13
1 1073 45 24 17 32 14
105105 | 38 20 14 23 10
10210 39 21 15 24 11
1077105 | 37 20 14 22 9
100100 37 20 14 22 9
107105 | 37 20 14 22 9

Table 4.4: Number of iterations necessary to achieve the desired convergence for different
values of the parameters v and K, by using W- and V-cycles with different numbers of
pre- and post-smoothing steps.

level of the hierarchy. By calculating the computational work per V-cycle,
we observe that the Uzawa smoother is approximately 30% cheaper than
the Vanka smoother. In Table 4.5, the number of multigrid cycles necessary
to achieve the desired accuracy is presented. Overall, the method based on
the Uzawa relaxation needs 50% fewer operations than the Vanka based
multigrid method. Therefore, in our present test case the use of the Uzawa
smoother is preferred to the Vanka relaxation.

K 1102 1 [103][102]107*[10°%]| 1077
v 1] 1 [10%]10%]10%[10%]10°6]10°©
Uzawa | 13 ] 13 | 14 | 10 | 11 9 9 9
Vanka || 12| 11 | 13 | 11 [ 12 | 11 | 11 | 11

Table 4.5: Number of iterations necessary to achieve the desired convergence for different
values of the parameters v and K, by using a V (3, 3)-cycle with both Uzawa and Vanka

smoothers.
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4.5.2 Beavers-Joseph-Saffman interface condition

Now we consider a more complicated and realistic numerical test in which
the Beavers-Joseph-Saffman interface condition is prescribed instead of the
no-slip condition previously considered. In this case, the domain 2 =
(0,1) x (—=1,1) is divided into a porous medium part Q2 = (0,1) x (—1,0)
and a free-flow subdomain Q/ = (0, 1) x (0, 1) by the interface I' = (0, 1) x
{0}. The source terms and the boundary conditions are chosen such that
the analytic solution of the Darcy-Stokes problem is as follows,

d
d _(u(z,y)\ [ —KeYcosx
(@, y) = (Ud(x,y) ) N ( —KeVsinx )’

pl(z,y) = ' sina,

(4.45)
o (2, y) = wl (z,y) \ _ [ N(y)cosz
W= iy Ay)sine )
P (z,y) =0,
Y v, K, :
where A(y) = _K_EJr(_EJFE)y . At the outer boundaries of the free-

flow domain, Dirichlet boundary conditions for velocities are prescribed.
In the case of the porous medium, the pressure is fixed at the bottom
(0,1) x {—1}, whereas Dirichlet conditions for velocities are imposed at the
lateral walls. Along the internal interface I', the Beavers-Joseph-Saffman
condition (4.12) is taken into account.

By comparing the numerical solution with the given exact solution for
fixed values of the parameters v = K = 1 and for different grid-sizes
h = 1/2% for k; = 5,6,7,8, second-order accuracy is again obtained for
all variables except for the pressure in the free-flow subdomain where we
achieve first-order accuracy. This time the errors for the vertical velocities
do not reach their maximum at the interface as in the previous numerical
test in which the no-slip condition was imposed instead the Beavers-Joseph-
Saffman condition.

Regarding the performance of the monolithic multigrid method for the
coupled problem considered in this numerical test, we display in Figure 4.7
the history of the convergence of the algorithm by using a W(2,2)-cycle
for different grids and v = K = 1. The W (2, 2)-cycle is chosen here since
it gives a more robust multigrid method. It is clear that the convergence
is independent of the mesh size and that the method performs efficiently
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since it only needs around 13 iterations to achieve the required stopping
criterion. In Figure 4.8 the robustness of the proposed multigrid method

K=1, =1, W(2,2)

2 .
—6— 32464
—5— 64x128
. 128256 |
= —%— 256x512
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=
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'\\'?}e\\_
-10 L

0 2 4 6 8 10 12 14
number of multigrid cycles

Figure 4.7: History of the convergence of the W (2, 2)-multigrid method when the Beavers-
Joseph-Saffman interface condition is considered.

is displayed, since for different values of v and K and different grid-sizes
the convergence of the algorithm is highly satisfactory and independent of
the parameters. We can observe that with the more complicated Beavers-
Joseph-Saffman condition at the interface I', the results provided by the
proposed multigrid method for the Darcy-Stokes problem are also highly
satisfactory.

4.5.3 Realistic test: cross-flow membrane filtration model

This test addresses the coupling of Darcy and Stokes problem which is
in a cross-flow filtration setting. The cross-flow filtration can be applied
in a wide range of industrial applications ranging from oil production to
medical treatment. The data in this test are taken from the experiment
presented in [48] which is a micro-membrane filtration model. It is used to
clean fluids that are difficult to filter and to separate fine matter such as
cells, proteins, enzymes and viruses [48].

The domain of the coupled problem is shown in Figure 4.9. Q/ represents
a channel on the top where the flow can go through, while Q¢ represents a
filter. Since the lengths of the free low domain and the porous medium are
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K=10"3, =1, W(2,2) K=10"%, »=10"°, W(2,2)

—&— 32x64 —&— 32x64
; —6— 64x128 L —5— 64x128
ol 128256 | 2 128-256| |
% —#— 256x512

—#— 256x512

[Iresidual]| /||right hand side||
=
[Iresidual|| /|Iright hand side||
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Figure 4.8: History of the convergence of the W (2, 2)-multigrid method when the Beavers-
Joseph-Saffman interface condition is considered for different values of the physical pa-
rameters: (a) v=1, K =103 and (b) v =10"%, K =107*.

not the same, the coupled domain is divided into four different blocks corre-
sponding to the Darcy (Blockl) and Stokes (Block2, Block3 and Block4)
domains. The two-block multigrid algorithm described in Section 4.4.3 can
be straightforwardly adapted to the four blocks. The information transfer
between Blockl and Block3 is the same as before. For the Stokes domain,
two artificial boundaries are generated by the partitioning. As the commu-
nication between the subgrids in f is necessary, an overlap region of one
cell length is created for Block2 and Block4 along the artificial boundaries.
The data located in the overlap region is computed and transferred from
the neighboring subgrid in Block3.

The unknowns at the artificial boundaries, i.e., u/, are updated in
Block?2 and Block4, and then sent to Block3. The communication is imple-
mented on each level of the multigrid algorithm. The inflow entering into
the domain €/ is specified. At the interface, the Beavers-Joseph condition
is imposed. At the bottom of the porous medium, the pore pressure is set
to zero.There is an exit (see Figure 4.9 in a dashed line) at the right-vertical
boundary of the free flow domain. The height of the exit is 0.00125 which
is quite small compared to the inlet. The stress-free boundary condition is
employed at the exit where the flow may leave the the domain freely. All
the other imposed conditions are shown in Figure 4.9.

Two values of hydraulic conductivity K = 0.1 and K = 107% are con-
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Figure 4.9: Geometry of the cross-flow membrane filtration model. Subdivision of the
domain 2 into a free flow subregion £/ and a filter subdomain Q¢, by an internal interface

.

sidered in the numerical experiment. The fluid viscosity is chosen as 1079.
The solutions are investigated on four grids as shown in Table 4.6. For the
test with /' = 0.1, the velocity components along the vertical and horizon-
tal centerlines are shown in Figure 4.10. It can be seen that the solutions
for Grid3 and Grid4 do not differ much. This indicates that the numerical
solution is convergent with the increase of the grid cells on these grids.
For a multigrid W (2, 2)-cycle, the multigrid convergence factor is around
0.2 for all cases, and the multigrid method exhibits a highly satisfactory
behavior. This is in accordance with the previous tests.

Blockl Block2 Block3 Block4

Gridl | 192 x 64 | 96 x 128 | 192 x 128 | 96 x 128
Grid2 | 96 x 32 | 48 x 64 | 96 x 64 48 x 64
Grid3 | 48 x 16 | 24 x 32 | 48 x 32 24 x 32
Gridd | 24 x 8 12x16 | 24 x 16 12 x 16

Table 4.6: Different grids in the computational tests.

In Figure 4.11, we show the velocity vector corresponding to K = 0.1.
Since the hydraulic conductivity of the porous medium is quite high, when
the fluid travels tangentially across the interface, the majority of the flow
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Figure 4.10: Velocity component (a) u along the vertical centerline in the coupled domain,
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seeps into the filter. While only a small amount of fluid goes through the
exit of the channel.

g X10 -3 velocity vector
T T

e e e = = m e m e m e e e e e
/2 T T T T T
U S

S T

6 s MMM NN R M N R N NN Y N e e e e

N S S

SANANANAN N NN N N N N N N N Y s s e e e e e
5F S N T N T S T S S NI I
S S S 0 N N T T T S e L
M’»—ﬁ—ﬁ—b—w\\\\\\\\\\\\ \ \ \ \ VUL e e e e e e

————————

N\
ANV
\ 1\
bhd
P H
AR
VD
PN
R
by
P
P4
f i

————— e -

A\
V)
b
[
by
|4
A\
\\
VA
V1
A
1
b
b

——— e — e e
—— e - - - - -

0 0.005 0.01 0.015

Figure 4.11: Velocity vectors over the cross-flow filtration domain with hydraulic conduc-
tivity K = 0.1.

In Figure 4.12, the velocity vector corresponding to K = 1079 is repre-
sented. With such a low hydraulic conductivity of the porous medium, the
minority of the flow penetrates the interface. Whereas most of the fluid
flows towards the small exit of the channel.

4.5.4 Heterogeneity test

Often, a porous medium is defined by complicated material properties.
Here we therefore consider a porous medium with a random heterogeneous
hydraulic conductivity K. Our aim is to study the effect of this hetero-
geneity model on the multigrid convergence. To simulate heterogeneity in
the porous medium, a statistical approach is chosen. In order to generate
random spatial data, here, a Gaussian model characterized by parameters
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Figure 4.12: Velocity vectors over the cross-flow filtration domain with hydraulic conduc-
tivity K = 107°. For a better sight, the vectors have been scaled by 1.5.

Ay and o is considered, i.e.,

d2
C(dy) = O'S exp _A_g : (4.46)
9

where d, is the distance between two points, A, defines the correlation
length and 02 represents the variance. By using a so-called circulant em-
bedding technique, outlined in [83], we generate a random field on a vertex-
centered grid which is twice as fine as the computational grid.

As an example, in Figure 4.13 we present a possible random sample
of the hydraulic conductivity K corresponding to the porous medium in
Figure 4.9 with parameters A, = 0.3 and (73 = 1. Dark blue in Figure 4.13
represents a higher value of the hydraulic conductivity, whereas dark red
is for low conductivity.

Note that when our multigrid algorithm with the Uzawa smoother is ap-
plied, the relaxation parameter w is varied in the Darcy domain, because w
depends on the hydraulic coefficient K. The corresponding suitable relax-
ation parameters for each grid point on each grid level can be calculated
and used within the Uzawa smoother. Moreover, the random field should
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Figure 4.13: Example of random field of hydraulic conductivity K in log-scale.

be transferred from the finest grid to the other grid levels, to present the
same characteristics of the porous medium on fine and coarse grids. Con-
ductivity K is restricted to each grid level as the average value of four
neighbouring fine grid points [58].

In our current experiment, for solving the problem in Section 4.5.3,
two different values for parameter A, are chosen to analyze the multigrid
convergence results; A\, = 0.1 denotes a more heterogeneous porous medium
than A\, = 0.3. Solutions are computed on three grids, as indicated in
Table 4.6. For each case, 50 realizations of the random field are generated
and we record the multigrid convergence factors of the W (2, 2)-cycle. The
mean value of the convergence factors is presented in Table 4.7. Since fine
grids are able to represent the field more accurately, the convergence results
are improved with grid refinement. Multigrid exhibits better convergence
for the less heterogeneous porous medium. In Figure 4.14, the solutions
for A\, = 0.3 are depicted. As expected, the velocity in the porous medium
is higher (blue and white color in Figure 4.14) where the value of hydraulic
conductivity is higher (Figure 4.13).

Ny =03 | Ay =01
Gridl | 0.19 0.20
Grid2 | 0.19 0.21
Grid3 | 0.20 0.29

Table 4.7: Mean value of the multigrid convergence factors after 50 realizations of the
random field.
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Figure 4.14: Lo-norm of the velocity vectors over the cross-flow filtration domain with
randomly distribution of hydraulic conductivity K (A, = 0.3).

4.6 Conclusions

In this chapter, we investigated the multigrid convergence of a coupled sys-
tem consisting of a porous medium and incompressible flow. For this pur-
pose, a coupled model based on the Darcy equation and the incompressible
Stokes equations with appropriate internal interface conditions was formu-
lated. The model was discretized by finite volumes on a staggered grid,
and special care has been taken regarding the accurate discretization at the
interface. We focused on an efficient multigrid algorithm for the coupled
problem. A decoupled Uzawa smoother is employed, which is based on
symmetric Gauss-Seidel smoothing for the velocity components and a sim-
ple Richardson iteration on the Schur complement to update the pressure
field. By local Fourier analysis we have selected suitable relaxation param-
eters for both systems, and we have confirmed the global convergence of
the monolithic multigrid which results to be the worst of the convergence
factors between both the individual Darcy and Stokes subproblems. Nu-
merical tests have shown a highly satisfactory convergence of our multigrid
method for the coupled system. The algorithm performed very well in nu-
merical experiments for a wide range of physical parameter values and for
different interface conditions.



Chapter 5

Monolithic Multigrid Method for the Coupled
Stokes Flow and Deformable Porous Medium
System

The interaction between fluid flow and a deformable porous medium is
a complicated multi-physics problem, which can be described by a cou-
pled model based on the Stokes and poroelastic equations. In this chap-
ter, a monolithic multigrid method together with either a coupled Vanka
smoother or a decoupled Uzawa smoother is employed as an efficient nu-
merical technique for the linear discrete system obtained by finite volumes
on staggered grids. A specialty in our modeling approach is that at the
interface of the fluid and poroelastic medium, two unknowns from the dif-
ferent subsystems are defined at the same grid point. We propose a special
discretization at and near the points on the interface, which combines the
approximation of the governing equations and the considered interface con-
ditions. For the decoupled Uzawa smoother, local Fourier analysis (LFA)
helps us again to select optimal values of the relaxation parameter appear-
ing. To implement the monolithic multigrid method, grid partitioning is
used to deal with the interface updates when communication is required
between two subdomains. Numerical experiments show that the proposed
numerical method has an excellent convergence rate. The efficiency and
robustness of the method are confirmed in numerical experiments with
typically small realistic values of the physical coefficients. !

!The contents of this chapter have been written in a paper [65]: P. Luo, C. Rodrigo, F.J. Gaspar
and C.W. Qosterlee. Monolithic Multigrid Method for the Coupled Stokes Flow and Deformable Porous
Medium System. Submitted for pulication, 2017.

103



104 5. Multigrid Method for the Coupled Stokes-poroelasticity System

5.1 Introduction

The interaction between a free fluid and a poroelastic material is attracting
researchers’ attention because of the wide range of applications. In order to
detect or control the flow and the deformation of the porous medium, it is
of great importance to understand the mechanism of the coupled dynamical
process.

To model the incompressible and Newtonian free flow, the Stokes equa-
tions are considered here. The behavior of the deformable fluid-saturated
porous medium is described by the well-developed Biot’s model [8, 9], in
which the fluid motion and solid deformation are taken into account. In
Biot’s model, the fluid in the pores is modeled by the Darcy equation, and
the deformation by elasticity, resulting in the poroelastic equations. It is a
challenge to couple the Stokes and poroelasticity systems properly at the
interface. For this purpose, the conservation of mass and momentum, and
a balance of normal stress and tangential stress equilibria are imposed at
the interface. To our knowledge, the coupled model has not been widely
studied yet, probably due to the complex coupling at the interface. In [85],
Showalter models the interaction between the Stokes and the Biot’s poroe-
lasticity equations, and shows the model to be a mathematical well-posed
problem which is amenable to analysis and computation.

From the computational viewpoint, the finite volume method on a stag-
gered grid is taken into consideration as the discretization scheme for the
coupled Stokes-poroelasticity system. A challenge is to deal with the dis-
cretization at the interface, since two unknowns belonging to different sub-
systems are placed at the same location. In this special discrete system,
the governing equations of both free fluid and deformable porous medium,
and their complex interaction are all included, showing a strong coupling
between the two subsystems. Based on the discretization, a linear system
of saddle point structure is obtained. Saddle point systems [7] arise in a
wide variety of computational science and engineering fields, for example,
in fluid and solid mechanics.

In [72], a DD approach using the SIMPLE-algorithm [76] on a cell-
centered grid for the Stokes equations and a multigrid solver on a stag-
gered grid for the Biot equations is employed. The authors in [4] adopt an
extended DD method for the fluid-poroelastic structure interaction (FPSI)
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problem without considering the fluid motion in the porous medium. It
is a modular approach which only requires interface data transfer between
the two existing fluid and structure codes, without any modification of the
sources. In [71], partitioning strategies based on a Nitsche’s coupling ap-
proach are developed for the coupled Stokes-Biot system, while in [17] a
loosely coupled finite element solver by considering a Lie operator splitting
scheme is proposed for the coupled fluid-structure interaction.

Another approach is to consider monolithic methods. These are algo-
rithms that are developed for solving the fully coupled system at once. As
a highly efficient solver for a saddle point system, the monolithic multigrid
method is chosen in this chapter. Methods of this type have been suc-
cessfully applied for the system of Stokes equations [95, 68], and also for
poroelasticity equations [64, 38, 39]. In this chapter, both the coupled and
decoupled smoothers are considered for the Stokes-poroelasticity system.
With respect to the coupled smoothers, the Vanka smoother [95], in which
the unknowns appearing in the discrete divergence operator are relaxed
simultaneously, is popular and robust. Here, we also consider the Uzawa
smoother for the coupled system. In [64], [68], [41], and Chapter 3 and 4,
the Uzawa smoother was successfully applied for solving poroelastic equa-
tions and Stokes problems, respectively. To choose optimal values of the
parameters, local Fourier analysis (LFA) is applied.

Finally, from the implementation point of view, we consider a monolithic
multigrid based on grid partitioning [94], where communication between
neighboring subdomains is needed on each multigrid level.

The chapter is organized as follows. First of all, we introduce the gov-
erning equations of free fluid and deformable porous medium, as well as
the interface conditions in Section 5.2. The discretization of the coupled
Stokes-poroelasticity system is shown in Section 5.3. In particular, we
present the details about how we deal with the interface. The monolithic
multigrid method, together with the coupled and decoupled smoothers, is
shown in Section 5.4. After that, several numerical experiments are given
to confirm the efficiency and robustness of our proposed method. Conclu-
sions are drawn in Section 5.6. Some finer details on the discretizations and
on the communication within grid partitioning are found in the appendices.
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5.2 Problem formulation

The Stokes-poroelasticity problem is considered on a bounded domain €2 C
R?. Tt is again assumed that © is subdivided into two disjoint subdomains
Q) and QP, separated by a common interface I' = 9Q/NONP. Subregions Qf
and € represent the free flow region and poroelastic medium, respectively.
A model geometry of the problem is shown in Figure 5.1, where we also
displayed n/ and n”, denoting the unit outward normal vectors on 9/
and 0OP, respectively. At the interface I', we have n/ = —n”. Notice
that compared to Figure 4.1, the domains used for Stokes-poroelasticity
are reversed.

Figure 5.1: Example of a model geometry of the Stokes-poroelasticity problem. Subdivi-
sion of the domain € into a free flow subregion €/ and a porous medium subdomain ”,
separated by an internal interface I'.

The description of the free flow and poroelasticity models on the differ-
ent subdomains, including the boundary conditions for the outer bound-
aries, are presented in Sections 5.2.1 and 5.2.2. The internal interface
conditions governing the interactions between the fluid and the porous
medium are given in Section 5.2.3.

5.2.1 Stokes flow description

The 2D free flow subproblem is modeled by the Stokes equations for a

viscous, incompressible, Newtonian fluid. It is a linearized form of the

Navier-Stokes equations in the limit case when the nonlinear term becomes

negligible. The motion of the Stokes flow in the region €2/ is described by
ou’/

o— V.ol =f/ mQ, 0<t<T,

ot (5.1)

V-u/=0 mQ,0<t<T,
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where ¢ is the fluid density, u/ = (u/,v/) is the fluid velocity, f/ = ( flf , f2f )
represents a prescribed force, and the fluid stress tensor o/ is given by
o/ = —p/T+2vD(u/), with p/ denoting the fluid pressure, v representing
the fluid viscosity and where D(u/) = (Vu/ + (Vu/)T)/2 is the strain
tensor. The first formula in (5.1) represents the momentum equations and
the second one is the continuity equation.

We assume that the boundary 9/ \ T' is the union of two disjoint
subsets FfD and F{V, where Dirichlet and Neumann boundary conditions are
imposed, respectively. More concretely, we consider the following boundary
conditions

uf:g{) onF{), 0<t<T,

5.2
O'f-nf:g]{, onF{V,O<t§T. (5:2)

5.2.2 Poroelastic flow description

We consider the 2D quasi-static Biot’s model to represent the behavior
of a deformable fluid-saturated porous medium. Biot’s model is based on
the coupling between the coherent solid skeleton and the pore fluid flow.
The porous medium is assumed to be linearly elastic, homogeneous and
isotropic, and the fluid is supposed to be incompressible and viscous. The
governing equations in subdomain €2’ are given by

—V-.o?=f nmnQ,0<t<T,
TV W)V 0<i<T (5.3)
 =—KVp’ mQ 0<t<T.

The stress tensor of the poroelastic medium is o? = ¢ — pPI, where o
denotes the effective stress tensor and p” is the fluid pressure. The right-
hand side f? = (f], f}) represents the external body forces, whereas the
source term f? corresponds to a forced fluid extraction or injection process.
Since the porous skeleton is assumed to be deformable, the effective stress
tensor o is characterized by the displacement u” = (u?,vP), i.e. o¢(uP) =
2GD(u”) + Atr(D(u?))I, where A and G denote the Lamé coefficients for
the solid framework and D(u?) = (Vu? + (Vu?)?)/2. Parameter K is the
hydraulic conductivity, representing the properties of the porous medium
and the fluid. The flux g” is the relative velocity of the fluid within the
porous matrix.
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For the poroelasticity subproblem, at the outer boundary, 0QP\I', we
prescribe combinations of the following boundary conditions,

w=gh, K 0<t<T,
P=gp, 0<t<T,
ol -n’ =g 0<t<T,
=g, 0<t<T.

(5.4)

5.2.3 Interface conditions

To solve the coupled system, proper internal interface conditions are needed
to be set up at the interface I'. Here we denote by n = n/ = —n” the
outward normal vector to the fluid domain and by 7 the tangential unit
vector on the interface I', which is obtained by rotating the normal vector
in the counter-clockwise direction by 90°. It is natural to consider the
continuity of velocities and stresses at the interface of the fluid and the
poroelastic medium.

e For mass conservation, the continuity of normal fluid flux across the
interface is required,

ou?
W -2 =g, (5.5)

u?
where — 1is the velocity of the skeleton, and the flux gq” denotes the

filtration velocity.

e Regarding the exchange of stresses, the normal components of the
stress in the fluid phase should be in balance

n-o/n=—p". (5.6)

e The conservation of momentum prescribes the balance of contact forces,
i.e. the stress of the porous medium is balanced by the stress of the
fluid, that is,

n-c/'n—-n-o’n=0, (5.7)

and
T o/n—7.0'm=0. (5.8)
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e A no-slip interface boundary condition is considered,
ou?
ot

for the cases in which there is no tangential flow.

u 1= T, (5.9)

Remark 5.1. Besides to the no-slip interface conditions, also the
Beavers-Joseph-Saffman interface condition
—T-afn:é‘(uf—%)-f : (5.10)
ot
15 sometimes used in problems where porous media and free flow do-
mains are connected (see also Chapter 4). The slip rate coefficient 9
quantifies the resistance of the porous medium to the flow of the fluid
in tangential direction. The parameter that needs to be determined
in this interface condition is non-trivial and often connected to real
experiments. We do not consider the Beavers-Joseph-Saffman condi-
tion here for the Stokes-poroelasticity multi-physics experiments. We
would like to note, however, that the strateqy proposed in this work
can be also applied if the Beavers-Joseph-Saffman interface condition
would be employed.

5.3 Discretization

We consider the finite volume method on a staggered grid [77] as the spatial
discretization scheme for the coupled Stokes-poroelasticity problem. The
staggered grid location of the unknowns has been shown in Figure 4.2.
Our aim is to obtain a special discrete equation for the unknowns at and
near the internal interface I'. Details for the discretization of the interior
points of the poroelastic and Stokes equations are shown in Appendix 5.A
and 5.B. Due to the staggered arrangement of the unknowns, the only
variables at the interface are the vertical components of each system. Note
that at the interface, two unknowns v? and v/ share the same location, so
we have two different governing equations at one grid point, see Figure 5.2.

Remark 5.2. For the case in which the interface does not match with the
grid points, we refer to the modeling as done in [72, 59]. In [72], a cell-
centered grid in the fluid region and a staggered grid in the porous domain
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Figure 5.2: Staggered grid location of the unknowns and the control volume of v? (left)
and v/ (right) at the interface.

are used for the coupled system. To deal with the discretization of the
interface conditions, the authors introduce some specific grid points at the
interface, where the information between the two subdomains is exchanged.
The coupling with these additional points is done by means of a matching
function, which can, for example, be a bilinear interpolation. Alternatively,
the Mortar finite element method [59] is a suitable technique for interface
problems when considering the coupling of different discretization schemes
or non-matching meshes.

5.3.1 Discretization for v?» and v/ at the interface

First of all, we describe the discretization for the poroelastic unknown v? at
the interface. Note that in the following discrete formula, the superscript
m represents the values at current time, while m — 1 denotes the solutions
from a previous time step. For simplicity, we consider uniform meshes
with time step 7 and grid size A in both directions on each subdomain.
The y-momentum equation of the poroelastic system is integrated over a
half volume, as displayed in red color in Figure 5.2 (left), giving rise to the
following equation

) <<az;’ym>e - G <05@m>nh;2<05@m>s) = (1™,

where, as can be seen in Figure 5.2 (left), e and w denote locations at

. . D f
the interface, and n and s denote the location of p‘f’jﬂ and UW.JF%/UW.JF%,
respectively. In the discrete formula, for example, we denote the approxi-

mation of v” in the grid point (i, + %) at the interface as vf e
J T3

(5.11)

Similar
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notations are used for the other variables. (o7"), is easily approximated
by the existing variables as follows,

A . . A+ 2G .
, _ Aopm _pm Py
(o In = h(uﬂ—%,j—kl ui—%,j—kl) h (Uz‘,j+g i,j+§) i -

(5.12)

For the remaining components of the stress tensor, the interface conditions
are required. By applying the interface conditions (5.6) and (5.7), (ob:™),
is obtained as,

(D) = (™) = —p2™ . (5.13)
The stress tensors (0% )e and ("), are related to the horizontal dis-
placements u2™ and uf;™ at the interface as,
pam p,m D, o pvm
o), =G [ L2 NERA LA SR i 5.14
( xy )6 < h/2 h ( )
ul" —pm P P
—35,J+1 w 1,745 1—1,5+5
TR0 WS (i S + 2| . (515

Substituting (5.12)-(5.15) into (5.11) gives rise to the following discrete
equation for v

z,j+%’
20+ G) " 2G  pm ey G, ,
_T(U?Jr%,jJrl o uf——,ﬁl) 72 — (g™ —u™) = ﬁ< f+1,g+l T Uf Lj+i 1)
2\ +2G) 2G 20 +2G)\ a2, pm n m
_va.}ﬂ <h2 T h2 Uf,j-i‘% + E( ij+1 ") = (f")s

(5.16)
Since pressure p2 and the two displacements ul™ and ul;™ are not known
at the interface, we approximate them with the help of the interface condi-
tions. From the interface condition (5.5), the approximation of p?™ reads

i h g h

_ " _—
P = iJ+1+2K el T o — ) (5.17)

2K7‘( ij+3 ij+3

To approximate the horizontal displacement, we need to use the conserva-
tion of momentum (5.8) and the no-slip interface condition (5.9). Thus, by
applying (5.8) and (5.9) at the location denoted by e in Figure 5.2 (left),
we obtain the expressions of u?™ and u/™ as

ub" = Gre(ul™ 4P P

i+3,J+1 z+1g+— z,j—i—%) i+1,j+5  ij+

(5.18)

—vTé(— 2uf’ L —|—vf’ —vif’.ml)—|—2uﬁu£’m_l ,
2
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and
fym j22 g P\ fym fm f, p.m—1
e = G’f(QuHNH—I— i+lj+3 i,j+%) vE(~ 2u; ;,g—H) 1,541 Vil 1) 268Uy ’
(5.19)
where § = 5 +12GT. The approximation of the horizontal velocity at the

location w can be calculated in a similar way. Then, by applying (5.17),
(5.18) and the approximation of u£;™ to (5.16), we have the discrete formula

for the interface unknown v"" ;. This discretization does not only include
WJ T3

the poroelastic unknowns but also the unknowns of the Stokes system.
When implementing the discretization for one subsystem, the information
from the other subsystem is required. Strong coupling is thus guaranteed
through the interface conditions.

For the discretization of the second unknown, v/, at the interface, we
obtain (5.20) by integrating the corresponding equation over a half volume
as displayed in red color in Figure 5.2 (right),

olm), J{’ w olm), ol m—1 m
_(Uy) 2" (93") (yy))ﬁw —vl ) = (™

h * h/2 T\ hity bty
(5.20)
Following the same technique to approximate the components of the stress
tensor as above, we again obtain a formulation where three variables u/™,
w/™ and p?™ are not known at the interface. The variables u/"™ and
u/™ can be calculated from the interface conditions (5.8) and (5.9). By
applying these expressions to (5.20), the unknowns for both subproblems

are included in the coupling between the two systems.

5.3.2 Discretization for v’ and u/ near the interface

The discretizations for the unknowns near the interface are also special and
of great importance. Considering the control volume in Figure 5.3 (left) in

red, the governing equation for u” i+l is equation (5.30), which is shown in
33

Appendix 5.A. The related stress components (o2;")., (o%7"),, and (a2;"),
are similar to the equations in (5.31)-(5.33). However, component (o?™),

ry
1S now written as

p7m pm p7m pam
u. . Uy’ (% . v,
( P ) i+3.+1 s i+1,+3 i+ (5 21)
Ty )s = G h/2 h ! |
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Figure 5.3: Staggered grid location of the unknowns and the control volume of u? (left)
and v/ (right) near the interface.

where the horizontal displacement u2™ at the interface is needed. A similar
expression for u?"™ can be obtained by using two interface conditions. Since

uP™ includes the Stokes unknowns, the discrete equation for u!’ N is also
2)

coupled with the free fluid system.

Similarly, for the discretization of ulf iy
2

(ag@m)n in (5.36) needs to be redefined as

in Figure 5.3 (right), only

fom g fm fm _ g fm
_ U Vi1~V
(O_f,m)n — n h/QH— 357 + z+1,j+2h 1,45 , (522)

which relates the poroelastic system to u/"™

5.3.3 Discretization for p” and p/ near the interface

Following the notation in Figure 5.4, the discretization for p]; 11 18 given

by
i(up,m .y TIPS L ) — (pp + +
hr i+%,j+1 i—1.j+1 ij+3 ij+3 +1,j+1 i 1J+1 ,J+2

L) = ()i + o i’f:,jil W ol

(5.23)

From the interface condition (5.5), p2™ can be approximated using the

same strategy as in (5.17). For the Stokes pressure near the interface, the
discrete equation remains the same as in (5.41) in Appendix 5.B.
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Figure 5.4: Staggered grid location of the unknowns and the control volume of pP near
the interface.

5.3.4 Saddle point structure

As already explained, for the individual poroelastic and Stokes systems,
the discretization described in the previous subsections leads to a saddle
point linear system at each time step, of the form,

(5 %) (3)-(7) 20

For both subproblems B’ and B represent the discrete gradient and the
negative discrete divergence operators, respectively. For the poroelastic
system, A is the discrete representation of the elastic operator —GA —
V(A 4+ G)V-, and C corresponds to the diffusion operator —7V - (K'Vp),
whereas for the Stokes system, A represents the discretization of operator
2] —vA and C is a zero block. Although the term in C is nonzero for
the poroelasticity subsystem, it can become arbitrarily small because pa-
rameter K in the diffusion operator can be very small, as well as the time
step.

Analogously to the individual systems, the coupled system is also gov-
erned by the saddle point structure by rearranging the vector of unknowns
to order first the velocities and displacements and thereafter the pressure
unknowns. Thus the following linear system is obtained,

A RT (BHT (R [ W £/
R A 0 B || w f?
B o 0 0 N Il I

R B> 0 —CP P f
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Obviously, (5.25) has the same structure as (5.24) by denoting

() (3 8) e (3 )

R AP R BP 0 —C?

where R and R’ are matrices containing the coupling for the unknowns
at and near the interface. For each equation, most of the elements in R
and R’ are zero, whereas the nonzero elements correspond to the terms not
belonging to the current subsystem, but appearing in the special interface
discretizations. In particular, the nonzero elements are on the diagonal of
R'. In the discretization of the vertical component of u/ at the interface, the
nonzero elements in R’ represent the appearance of poroelastic pressure p?,
while in the discrete equation of p?, the vertical component of velocity u/
is present. R has more nonzero elements than R’, since the discretizations
for u/ and u” are more involved. For example, the Stokes velocity at three
grid points is needed when discretizing the vertical component of u? at the
interface, whereas in the discretization of the horizontal component of u”
near the interface, only two Stokes velocities are necessary.

5.4 Fast solvers based on multigrid

Our aim is again to design a monolithic geometric multigrid method for
the coupled Stokes-poroelasticity problem. To obtain an efficient multigrid
solver, it is necessary to carefully select the components of the algorithm.
In this section, the smoothing operator, the restriction and prolongation
operators and the coarse-grid discretization are all presented.

5.4.1 Smoother

Basically, there are two types of robust smoothers developed for our prob-
lem, classified as coupled and decoupled smoothers.

Coupled smoothers

Vanka smoother Regarding coupled smoothers, the Vanka smoother is
considered here. It can be straightforwardly applied to solving the Stokes-
poroelasticity problem. For the staggered arrangement of variables, this
approach is based on updating all equations of the system for each grid cell



116 5. Multigrid Method for the Coupled Stokes-poroelasticity System

simultaneously. Particularly, five unknowns are relaxed at the same time.
The relaxation is implemented in a block Gauss-Seidel fashion and for each
cell in the grid, a 5 x 5-system is solved. For the poroelasticity system, a
multigrid method based on the Vanka smoother has been applied in [39]
and in Chapter 4 showing a very robust performance.

Decoupled smoother

Uzawa smoother Regarding the decoupled smoothers, we focus on the
Uzawa smoother, which is an equation-wise relaxation method. The Uzawa
smoother was proposed for Stokes problems in fluid dynamics in [68], [41].
In [64], a multigrid method with an Uzawa smoother was successfully ap-
plied for solving poroelastic equations in Chapter 3. Thus, it seems natu-
ral to assume that this relaxation is also suitable for the coupled Stokes-
poroelasticity problem. Details have been presented in Section 3.3.2.

Optimal relaxation parameter In [64], [41] and Chapter 3, different an-
alytic expressions of the relaxation parameters w appearing within the
Uzawa smoother for the individual Stokes and poroelastic systems are ob-
tained by a theoretical analysis that we can use directly for the coupled
system as well. Local Fourier analysis helps to predict the asymptotic con-
vergence factor of the multigrid algorithm and provides a concrete formula
for the optimal relaxation parameter. In [64] and Chapter 3, the optimal
parameter for the poroelastic system is given by

 R(A+26G)
- 5KT(A+2G) + A%’

w? (5.26)

with the parameters K, X\, G, h, 7 as previously introduced. Meanwhile,

the optimal parameter for the Stokes system is obtained from [41] as follows

2

Foy g2 5.27

w =v+ o (5.27)

From (5.26) and (5.27), it can be seen that the relaxation parameters do

not only depend on the model coefficients but also on the grid size and on

time step 7, thus w? and w/ are different on each grid of the hierarchy in
the multigrid method.
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Remark 5.3. Besides the smoothers presented in this thesis, other re-
laxations may be considered, for example, the distributive Gauss-Seidel
smoother (DGS). DGS is a smoother which, after an operator transfor-
mation, results in a decoupled, equation-wise relaxation method and it has
been designed for discretizations on staggered grids. Distributive smooth-
ing methods for incompressible flow problems or poroelasticity systems have
been presented in [94, 13] and [39]. However, for the coupled Stokes-
poroelasticity system, DGS method is rather challenging. It is not clear
how to define the operator transformation due to the involved coupling of
the poroelasticity and Stokes unknowns at and near the interface.

Communication

The computational domain is divided into (at least) two different blocks
corresponding to the Stokes and poroelasticity domains. The points at
and near I' have special discretizations that contain the variables from
the neighboring subdomain. Therefore, it is necessary for each subgrid
to store not only the data from its own but also a copy of data of the
neighboring subgrid in an overlap region. The size of this overlap region
should however be one grid cell only. The communication between two
individual subsystems is based on the grid partitioning technique.

In Figure 5.5, the two subgrids are extended by adding “one cell” over-
lap regions that are drawn in dashed lines. The red circles, dots and crosses
represent the unknowns of the Stokes system, while the blue circles, dots
and crosses denote the poroelastic unknowns. Notice that this communi-
cation pattern is a little different from that in Figure 4.5. In the Stokes
subdomain 7, for example, the color of the unknowns in the overlap re-
gion (blue) is different from the color of those in 0/ (red). Since u?, v? and
pP appear in the discrete formula for the Stokes velocity v/ at the interface,
the values of these three poroelastic unknowns are transferred to the extra
region of the Stokes domain, represented by blue arrows in Figure 5.5. For
the poroelastic part, the transfer strategy is the same. The difference is
that only velocities v/ and v/ are needed in the special discretizations for
the poroelastic unknowns. So, the fluid pressure p/ is not transferred to
the overlap region in 2’. The communication from the Stokes subsystem
to the poroelastic subsystem is indicated by the red arrows in Figure 5.5.

In the monolithic multigrid method, we choose the grids so that I is
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Figure 5.5: Communications between two partitioned subgrids.
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present on the complete grid hierarchy. The communication between the
Stokes and poroelasticity problems is performed at each grid level instead of
only at the finest grid. After the smoothing process on each grid level, the
values of unknowns in the overlap region are updated by communication.

Comparing the communication steps of the two smoothers, the Vanka
smoother needs less communication than the Uzawa smoother. Here we
wish to precisely describe the relaxation order of the unknowns in the
Uzawa smoother which is different from that for the Vanka smoother. In
the Uzawa smoothing process, all velocity and displacement unknowns are
updated before all pressure unknowns are relaxed. Different relaxation
parameters w//? for the Richardson iteration for the Schur complement are
chosen when updating the pressure unknowns in the Stokes and poroelastic
domains. In a full smoothing iteration, we thus first relax the velocity u/ in
Q)/, then the updates are transferred to the overlap region in 2. With these
values, we update the displacement unknowns u”, and transfer them to the
overlap region in /. After that, we return to Q/ to update the pressure
p/ by using relaxation parameter w/ in (5.27), then we move to (? to relax
PP by using w? in (5.26). Finally, we return the updated values of p” to the
overlap region in €/ before a new smoothing iteration can be carried out.
We wish to emphasize again that this smoothing process with the data
communication is implemented on each grid level in the hierarchy. There
is no difference in the performance of the Uzawa smoother if we would start
the relaxation method with the poroelasticity part.

Comparing the communication steps of the two smoothers, the Vanka
smoother needs less communication than the Uzawa smoother. In a com-
plete smoothing iteration on the whole domain, the Vanka smoother re-
quires two communication phases. After the smoothing of the Stokes sub-
system, the data is transferred to the overlap region. Then, the transfer is
needed again when the poroelastic part is updated. Conversely, the Uzawa
smoother requires four communication stages in the smoothing process
since it is an equation-wise smoother. In a sequential implementation, we
see no significant difference in CPU time between a Vanka smoother and
an Uzawa smoother iteration. If the algorithm would be performed in par-
allel, the Vanka smoother could be more efficient, as the Vanka smoother
requires fewer communication phases which implies less communication
start-up time. Generally, a coupled smoother is often somewhat more ex-
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pensive than a decoupled smoother, if we need to consider line-wise or
plane-wise smoothing within a multigrid algorithm.

5.4.2 Coarse-grid correction

Regarding the discrete operators on the coarser grids in the hierarchy, di-
rect discretization of the continuous operators is considered. At the coars-
est level of the grid, a direct solver is implemented, which is easy, accurate
and cheap.

Besides the smoother, other important components in multigrid are the
inter-grid transfer operators. For the staggered arrangement of the un-
knowns, the transfer operators between two levels in the grid hierarchy
are defined as follows: at displacement or velocity grid points six-point
restrictions are applied and at pressure grid points one considers a four-
point restriction. The restriction operators have been shown in the stencil
notation in Section 4.4.1. As the prolongation operators PQUh/ 1;1/ P we choose
the adjoints of the restrictions. The interpolation and restriction operators
must be accordingly altered at boundary points or neighbors of boundary
points.

In particular, the unknowns at the interface are treated as boundary
points of their own subdomains. For the unknowns v? at the interface, the
restriction operator is adapted to

1 1 1
R?::Zh — é 2 % 2 )
0 0

h

which has the same structure as those stencils for the inner grid points,
but we set the weights of the points outside the poroelastic subdomain €»?
to be zero. Following the same rule for the Stokes unknowns v/ at the
interface,

. 1 0 0
Ryon=5|2*2],
1 L),
is obtained as the restriction in that case.

Remark 5.4. As is commonly done, we mainly deal with the case of con-
stant physical parameters, such as parameter K. However, the proposed
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multigrid solution method can be generalized to varying K -values. In Chap-
ter 4 (and in [57]), we have performed numerical experiments for the cou-
pled Darcy-Stokes system in which the porous medium was modeled by a
random heterogeneous hydraulic conductivity K. When the multigrid algo-
rithm with Uzawa smoother is applied, the optimal relaxation parameter w
1s varied within the poroelastic domain, because w depends on K. Addition-
ally, the random field values should be transferred from fine to coarse grid
levels in an accurate way, for an efficient multigrid method. Therefore, the
corresponding suitable relaxation parameters for each grid point on each
grid level should be calculated.

5.5 Numerical experiments

Three numerical experiments are presented in this section. We aim to study
the accuracy of the discretization scheme, the convergence performance of
the proposed multigrid method with the coupled and decoupled smoothers,
and the application of the method for some test cases that may resemble
realistic situations. The efficiency and robustness of the monolithic multi-
grid method with respect to different values of the physical parameters are
also investigated.

In all numerical experiments, the initial approximation is chosen to be
random, and the stopping criterion is given by,

||residuall| < tolerance - ||initial residuall|

5.28
||right-hand side|| |[right-hand side||s (5.28)

where the tolerance is chosen to be 107, Moreover, for simplicity we
consider uniform meshes with grid size h in both directions on each sub-

domain. 2

5.5.1 Analytic test

In the first numerical experiment, we deal with a coupled Stokes-poroelasticity
problem with a known analytic solution on the domain © = (0,1) x (0, 2).
The domain is divided into a free flow part Q/ = (0,1) x (0, 1) and a porous

2In [64] and Chapter 3, we applied the multigrid method for porous medium flow when anisotropies
due to grid stretching appeared. It is thus straightforward to generalize the proposed method for the
coupled system to an anisotropic grid setting.
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medium subdomain QP = (0,1) x (1,2) by the interface I' = (0,1) x {1}.
The exact solution is chosen to be

uf:up:(y2_y)€t7
vl =P =0,
pl =p’ =ae

and the source terms have been subsequently determined. Dirichlet bound-

(5.29)

ary conditions are imposed at the exterior boundaries of the coupled ge-
ometry. At the internal interface, equations (5.5)-(5.9), are considered. In
this test, the analytic solution satisfies all interface conditions when G' = v.

Errors on different grid sizes F'irst of all, we compare the numerical solution
with the given exact solution for the following values of the coefficients,
K =XM=G=v=p=1. The final time is T' = 1. The errors in maximum

norm for each unknown on different meshes are shown in Table 5.1. As we

Grid-size
16 x32x1|32x64x4|64x128 x 16 | 128 x 256 x 64
uf [ 245 x 1073 [ 7.58 x 1071 [ 2.00 x 10=* | 5.04 x 10~
v/ 1422 x1072 [ 1.28 x1073 [ 3.34 x 107* | 843 x 10~
pf [ 1.60 x 1071 | 6.99 x 1072 | 3.02 x 1072 | 1.37 x 1072
uP [ 238 x 1073 [ 6.30 x 1072 [ 1.62 x 107* [ 4.09 x 10~
VP | 9.45 x 107* | 2.31 x 107* | 5.89 x 107° 1.49 x 1076
pP | 5.64 x 1074 | 1.81 x 107* | 4.94 x 107° 1.28 x 107°

Table 5.1: Maximum norm errors of variables u//?, v//P and p//P for different grid sizes
with parameters K =1, A=1,G=1,v=1and p= 1.

expected, by decreasing the time step with a factor 4 and the spatial mesh
width by a factor 2, second-order accuracy is confirmed for poroelasticity
problem, whereas for the Stokes problem, we achieve second-order accuracy
for velocities and first-order for the pressure field.

Local Fourier analysis results In this section, we confirm that the asymp-
totic convergence factor of the monolithic multigrid based on the Uzawa
smoother for the coupled problem can be predicted by means of the worst
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Poroelasticity Stokes
4w | K=1K=1072 | K=10°%|v=1|{v=10"%|v=10"°
2 0.36 0.36 0.36 0.20 0.20 0.78
3 0.22 0.22 0.22 0.09 0.09 0.51
4 0.14 0.14 0.14 0.06 0.05 0.37

Table 5.2: Two-grid convergence factors, p predicted by LFA for poroelastic and Stokes
subproblems, separately, for different values of the parameters K and v and different
numbers of smoothing steps, vy + vs.

of the two-grid convergence factors obtained by LFA for the individual
poroelastic and Stokes subproblems. For different values of the hydraulic
conductivity K and viscosity v, the two-grid convergence factors predicted
by LFA are presented for the poroelastic and Stokes problems separately
in Table 5.2. The results are obtained for different numbers of smoothing
steps, 11 + 5. From the table, it is observed that the multigrid method
based on Uzawa smoother is robust for each subproblem.

In Table 5.3, the asymptotic convergence factors obtained by using the
monolithic multigrid W-cycle together with Uzawa smoother for the cou-
pled Stokes-poroelasticity problem are presented. Homogeneous Dirichlet
boundary conditions are applied at the exterior boundaries of the cou-
pled domain. To avoid round-off errors, a random initial guess and zero
right-hand sides are chosen on a fine-grid of size h = 1/128. We show
the convergence factors after 100 multigrid cycles so that the asymptotic
convergence rates can be reached. Comparing Table 5.2 and 5.3, we ob-
serve that these factors match the worst of the two-grid convergence factors
predicted by LFA for the individual subproblems. When v is small, the
numerical convergence factors can be estimated by LFA at a high accuracy.
The slight discrepancy for some test cases is due to the involved coupling
at the interface. The discretization scheme at the interface as well as the
implementation of the Uzawa smoother for the whole coupled problem lead
to an efficient solver.

Comparison between different cycles Next, we investigate the efficiency
of the multigrid W- and V-cycles with different pre- and post-smoothing
steps. We employ the Vanka as well as the Uzawa smoother in the mono-
lithic multigrid algorithm for the coupled problem. More realistic and
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K 1 1073 10°¢
v 1 J103]10°] 1 [103[10%] 1 [103]10°°®
21040 0.40 | 0.71 | 0.40 | 0.40 | 0.72 | 0.40 | 0.40 | 0.72
v+ | 31027027 049|027 ] 0.27 | 0.49 | 0.26 | 0.26 | 0.49
41023023036 |023]0.23]0.36 |0.22] 0.22 | 0.36

Table 5.3: Asymptotic convergence factors, pj, for the multigrid W-cycle based on Uzawa
smoother for the coupled Stokes-poroelasticity problem, for different values of the physical
parameters K and v and different numbers of smoothing steps vy + vs.

difficult values of the coefficients are chosen for this test. In particular
K =1073%, v = 0.035, A = 10° and G = 2.5 x 10°. In Table 5.4, the num-
ber of iterations necessary to reach the stopping criterion as well as the
average multigrid convergence factors (in brackets) are shown for different
smoothers, multigrid cycles and pre- and post-smoothing steps. The results
are computed on a 64 x 128-grid with only one time step. As it can be seen
from the table, generally highly satisfactory results are obtained for both
Vanka and Uzawa smoothers. Taking into account both the convergence
rates and their computational cost, the W (2, 2)-cycle results to be fastest
among the different choices. We compare the CPU time of a W (2, 2)-cycle
with either the Vanka or the Uzawa smoother. For the Vanka smoother,
it takes around 0.86s, whereas for the Uzawa smoother, it takes 1.08s. It
has been implemented on a MacBook Pro with a 2.6 GHz Intel Core i5
processor.

K=103A=10°, G=25x10°, v = 0.035 and g = 1
Smoother || W(1,1) | W(1,2) | W(2,2) V(2,2) | V(3,3)
Varka || 19 (0.31) | 14 (0.22) | 13 (0.20) || 19 (0.35) | 16 (0.29)
Uzawa | 25 (0.45) | 18 (0.33) | 15 (0.26) || 26 (0.48) | 20 (0.38)

Table 5.4: Number of iterations necessary to achieve the desired convergence (and con-
vergence factors in brackets) by using W- and V-cycles with different numbers of pre- and
post-smoothing steps on a 64 x 128 x 1-grid.

Multigrid convergence with different parameters We are interested in the
multigrid performance with respect to different values of the physical pa-
rameters. In geoscientific applications, parameters K and v are typically
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very small numbers. It is a challenge for any solution method to deal with
these small parameters and exhibit rapid convergence. In Figure 5.6, for
different grid sizes h = 1/2% (k; = 5,6,7,8), the robustness of the pro-
posed multigrid method with the Vanka smoother is displayed for different
values of K and v and different grid sizes. The maximum norm of the
residual divided by the maximum norm of the right-hand side is plotted in
logarithmic scale against the number of multigrid cycles necessary to fulfill
the stopping criterion. The multigrid convergence rate is independent of
the physical parameters and the grid sizes, and approximately 13 iterations
are needed to reduce the residual by 11 orders of magnitude for these more
difficult cases.

K=10", =10, W(2,2) K=10"%, ,=10°, W(2,2)
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Figure 5.6: History of the convergence of the W (2, 2)-multigrid method for different values
of the physical parameters: (a) K =107* v =1073 and (b) K =107% v = 107°.

Convergence results with different time steps Four different values of the
time step 7 = 1073, 5 x 1074, 2.5 x 1074, 1.25 x 10™* are chosen to check
the convergence behavior of multigrid with the two smoothers. As it can
be observed from Table 5.5, where the number of iterations needed to
fulfill the stopping criterion together with the mean convergence rate (in
brackets) are shown, the proposed method is stable and robust with the
varying time step.
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K=103A=105, G=25x10°, v =103 and o = 1

T 103 5x 107 [25x 107 ] 1.25 x 102
Vanka | 16 (0.20) | 16 (0.20) | 16 (0.20) | 16 (0.20)
Uzawa | 19 (0.28) | 19 (0.28) | 19 (0.28) | 19 (0.28)

Table 5.5: Convergence results with different values of time step 7.

5.5.2 Two-block realistic test

In the next numerical test, we simulate the dynamical coupling process in a
straight pipe with deformable porous media at the boundaries. To reduce
the computational effort, we consider a halved domain with symmetry
boundary conditions. This domain for the coupled problem is depicted in
Figure 5.7, where Q/ represents a pipe with free flow inside, while O is a
thin porous medium layer at the top. The Neumann condition is imposed
at the inlet of free flow system, while at the outlet a homogeneous Neumann
condition is applied.

Y
Ogy = Oyy =P =

0. QF
up:%p:pp:() up:Up:pp:

' T
of, = —[10000(1 — cos(3z25=)) ol, =0l =0
agy =0
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o o o o g TT T a
oy ~— oy ~ Oy

Figure 5.7: Geometry of the coupled two-block Stokes-poroelasticity problem. Subdivision
of the domain into a free flow subregion €2/ and a porous medium subdomain 27, separated
by an internal interface T'.

We take the data from the experiment in [4]. The final time is 7' = 0.01
and the time step is 7 = 1.25 x 1073. The values of the physical parameters
are chosen as K = 107*, A = 105, G = 2.5 x 10°, v = 0.0035 and o = 1.
Within the porous medium, the fluid velocity in the pores is related to
the pressure gradient and can thus be computed and visualized too. In
Figures 5.8 and 5.9, velocity vectors and corresponding streamlines of the
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fluid flow in the whole domain {2 are shown at two different time points,

= 0.0025 and t = 0.005. Since the inlet stress is periodic, we have
of = 20000 at times ¢ = 0.0025 and ¢t = 0.0075, whereas o/, = 0 when
t = 0.005 and ¢t = 0.01. A 160 x 80-grid is considered as the finest grid,
and a 5-level multigrid method is used in this test. By using the multigrid
W (2,2)-cycle, a similar highly satisfactory convergence is obtained as for
the first test.

For the case with the large stress value at the inlet (Figure 5.8), the
fluid penetrates the porous medium and we see deformation in the porous
material near the interface (Figure 5.10 (a)). The pressure solutions are
presented in Figure 5.10 (b). When the inlet stress is zero (Figure 5.9),
the flow hardly seeps into the porous medium. Due to periodicity, at
t=25x10"% and t = 7.5 x 1073, the solutions are similar, as expected.
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Figure 5.8: For ¢t = 0.0025: (a) Velocity vectors in the domain 2. For a better view, the
velocity vectors in the porous medium are multiplied by 4. (b) Corresponding streamlines
of the fluid flow.

5.5.3 Multi-block realistic test

Here we investigate the performance of the proposed multigrid method
for the coupled system for a more complex geometry. The domain of the
coupled problem is shown in Figure 5.11. Since the length of the free
flow domain €/ and the porous medium Q” are not identical, the domain
is divided into four different blocks corresponding to the Stokes (Blockl,
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Figure 5.9: For ¢ = 0.005: (a) Velocity vectors in the domain 2. For a better view, the
velocity vectors in the porous medium are multiplied by 4. (b) Corresponding streamlines
of the fluid flow.

Block2 and Block3) and porous medium (Block4) domains, respectively.
A strategy similar to the one used in the previous two-block test can be
straightforwardly adapted for the four block case. The information trans-
ferred between Block2 and Block4 is the same as before. For the Stokes
domain, two artificial boundaries are generated by the grid partitioning
approach. As communication between the subgrids in Q/ is necessary, an
overlap region of one cell length is created on each grid level along the artifi-
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Figure 5.10: For t = 0.0025: (a) Displacement vectors in QP and (b) pressure in the
domain €.
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cial boundaries. The fluid inflow in Q/ is specified by o, = —20000. There
is an small exit at the right-side vertical boundary of the fluid flow domain,
where the stress-free boundary is imposed. The height of the exit is 0.1.
All the other boundary conditions are specified in Figure 5.11. We are in-
terested in the motion of the fluid flow under different parameter settings.
In particular, we examine whether we can mimic two different conditions
for the porous medium, i.e., we prescribe either permeable or impermeable
conditions at the exterior boundary of 2. The values for the physical pa-
rameters (except the hydraulic conductivity K') are as in the two-block pipe
flow test. The solution is computed on the target grid shown in Table 5.6.

Yy
Ogy = Oy =0
upg'% =0 QOp uP =P =0
0.4 Block4
Tluf =0fl=0 r ul|l=v =0 ngzagyzo
Osjﬂcr # 0 Block1 Block?2 Block3 ul =vl =0
agy =(
Of
0 02 ol _ o _ 0 _ 0.8 1 "
Jy oy oy

Figure 5.11: Geometry of the coupled multi-block Stokes-poroelasticity problem.

The numbers of iterations necessary to achieve the desired convergence by
using the W (2,2)-cycle with both Uzawa and Vanka smoothers are very
similar for all multi-block tests. For the Vanka smoother, 20 iterations
are required, whereas for the Uzawa smoother we need 22 iterations. Both
smoothers perform highly satisfactory. The Vanka smoother is again some-
what more robust when the physical parameters are extremely small.

Blockl Block?2 Block3 Block4

Grid | 64 x 128 | 192 x 128 | 64 x 128 | 192 x 32

Table 5.6: Fine grid in the computational tests.
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Permeable conditions on the exterior boundary of ”

We first impose drained conditions (p” = 0) for the pressure on the exterior
boundary of the porous medium. This test addresses a tangential flow
filtration setting. Tangential flow filtration can be used in applications, as
waste water treatment or protein purification.

We present time-varying flow fields. The velocity vectors in the compu-
tational domain, together with the streamlines are shown in Figures 5.12
and 5.14 at different times. It is observed that at the beginning (Fig-
ure 5.12) there is much flow seeping into the porous medium. The flow in
the top filter then leaves the porous medium through the exterior bound-
ary. The deformation of the porous medium is presented in Figure 5.13 (a).
As expected, deformation occurs at the left part of the porous medium.
The pressure solutions in the domain are shown in Figure 5.13 (b). The
velocity of the flow in the porous medium is much smaller than the velocity
of the fluid, see Figure 5.14.

velocity vectors (t=0.0025) 05 t=0.0025

0.6

045
0.4

0.35

E
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Figure 5.12: For K = 107* and ¢ = 0.0025: (a) Velocity vectors in the domain €.
For a better view, the velocity vectors in the porous medium are multiplied by 4. (b)
Corresponding streamlines of the fluid flow.

—~

Impermeable conditions on the exterior boundary of (?

Next, impermeable conditions are imposed on the exterior boundary of the
porous medium, which can be applied in a reservoir simulation. We study
the fluid motion with different values of hydraulic conductivity K.
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In Figures 5.15 and 5.16, we show the results corresponding to K = 0.01.
With such a high hydraulic conductivity of the porous medium, the free
flow can easily penetrate the porous medium. The values of the velocity in
Qf and 2 do not differ much. Since it is supposed there is no Darcy flow
across the external boundary of P, the fluid is forced to leave the porous
medium through the interface, then flows towards the exit of the Stokes
domain, see Figure 5.15. The pressure (Figure 5.16 (b)) drops more or less
linearly throughout the domain.
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Figure 5.15: For K = 0.01 and ¢t = 0.0025: (a) Velocity vectors in the domain . All
vectors have been scaled by 2. (b) Corresponding streamlines of the fluid flow.

In Figure 5.17, the velocity solutions corresponding to K = 10~% are
represented. Since the hydraulic conductivity of the porous medium is
very low, the velocity of the Darcy flow is one to two orders of magnitude
smaller compared with the velocity of the Stokes flow. A bulk of fluid goes
through the exit of the channel directly. The deformation of the porous
medium for smaller values of K is bigger than that for higher values of K.
The higher the hydraulic conductivity, the smaller resistance of the porous
medium to the fluid flow and thus, the smaller the stresses are. Lower
stresses imply smaller deformation or displacements.

5.6 Conclusions

In this chapter, an efficient monolithic multigrid method was developed for
a coupled system composed of a free fluid flow and a deformable porous
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medium flow. A model based on the Stokes equations and poroelastic
equations was formulated with appropriate interface conditions. The finite
volume method on a staggered grid was chosen as the discretization scheme
for the coupled problem. For the variables near the interface, special dis-
cretizations are required based on the interface conditions. Note that in
our work at the interface two unknowns belonging to different subsystems
were defined at the same grid point. To solve the Stokes-poroelasticity
system, a monolithic multigrid method with either a coupled Vanka or a
decoupled Uzawa smoother was employed and these smoothers were com-
pared. Both smoothers perform highly satisfactory for many parameter
sets; only for extremely small parameters the coupled smoother exhibited
a more robust convergence.

In the smoothing process, the two subsystems were coupled based on the
grid partitioning technique. To achieve an excellent multigrid convergence
behavior, the information is exchanged between neighboring subdomains
on each grid level. Numerical experiments confirmed that the discretization
scheme is stable and accurate. Moreover, a highly satisfactory convergence
of the monolithic multigrid method was obtained for the coupled system.
Particularly, for some realistic and difficult problems where the values of
the physical parameters are typically small, the proposed method performs
very well.

Appendix

5.A Discretization of poroelastic equations at inte-
rior points

.j
Uiyl Vig1,5+1 Ui ljr1 Pig+1 Wil jn Vi j41
n @ >< © <
Pij Q 1 ¥Pit1j ) Ui-3g X Wil
i+3. Yij+t Dij
S o o
Uy -1 Vit1,5-1 Wil Pig Wirly Vi1

Figure 5.18: Control volumes for the primary unknowns: u (left), v (middle), p (right),
together with the corresponding indexing for each variable.
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Here we briefly present the staggered discretization of the poroelastic

equation. We take the horizontal displacement u” ip1; Asan example, since
2

the discretization for the vertical component can be deduced in a similar
way. The control volume V, 1 L1510 Figure 5.18 is considered. By discretizing

the r-momentum equation, we have
(0h)e — (00w (08" )n — <0p’ )s ,
- (fode e (Mg (530

where (0%7") and (0%") are components of the stress tensor, respectively.
Approximating these components as

(o) = LI T )+ S =) s (53)
(02w = 22 ) +%<v§;;i S P (5.32)
(OB = SO =l ) (5.33)

(oh)s = %(ufgj UZ+2J . +vfjrl7]_7 vp’;_f) : (5.34)

and substituting them in (5.30), we will obtain the discrete formulation.

For the pressure unknowns pf ;» the backward Euler scheme is considered
for the time-dependent term in (5.3). The discrete equation is obtained
by discretizing the second equation in (5.3) over control volume V;; (Fig-
ure 5.18, right side), resulting in

M , ,m ;ym—1 ,m 1 ,m—1 ;m—1
— (" =l T =P ) — — (Ul w4t =)
hr\ i3 i—5.J 7J+* ij—3 hr ' it3.d Yiel ij+s b=

ﬁ(pfﬁj + iinf,j + zgnll + z]ﬂil - 4p€)]m) = (f"")ij -

(5.35)

Superscripts m and m — 1 denote the current and the previous time steps

respectively. The solutions at current time step m can be calculated im-
mediately from the values at the previous time.

In the case of variables located at the external boundary, where Neu-
mann boundary conditions for the displacement are imposed, the corre-
sponding control volumes are half the size of the inner control volumes,
and are treated accordingly.
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5.B Discretization of Stokes equations at interior points

Regarding the momentum equations in (5.1), we here describe the dis-
cretization for the first component of the equation. By discretizing the

equation over control volume Vi1, (Figure 5.18, left side), the discrete
. f .
equation for u; ey yields

) fmy (G fm af’ n Uf’
Q( f.m U,f’n}.l)_<(0—xx )e h(gxx )w +( Ty ) ; ( ) ) (fl’ )H—%,j

Z+27] Z+§7]

(5.36)
The components of the stress tensor are approximated as
f fm
_ u — U
(0f7)e = —plli 4+ 2 (5.37)
N
fony _ _ fm i+3. =5
(03w = —pi;" +2v ; : (5.38)
fim fm [ s
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ufmz ulm oP™ f X
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The discrete formula for the horizontal unknown uZ . 1 - then is obtained by
substituting (5.37)-(5.40) into (5.36).
For the mass balance equation, the following discrete equation is ob-

tained by discretizing the second equation in (5.1) over control volume
Vij

i+, —15 Vil ij—1
Tl Tad gy W W), (5.41)



Chapter 6

Conclusions and Outlook

6.1 Conclusions

The numerical solution of multi-physics systems has received much atten-
tion due to a wide range of application fields and modern hardware on
which obtaining multi-physics solutions is feasible nowadays. This thesis
had its focus on the development of efficient and robust multigrid algo-
rithms, in particular for the coupled free fluid flow and porous media flow
system. We basically addressed three research objectives. In this chapter,
the conclusions for each objective are drawn.

Multigrid method for nonlinear and linear poroelasticity equations

In the first part of the thesis, we focussed on the poroelasticity equations,
with a nonlinear hydraulic conductivity. We discretized the equations on
a collocated grid by the finite volume method. To avoid oscillations in
the first time steps of the solution process, an artificial term was added
to one of the continuous equations. To solve the nonlinear problem, the
global linearization method combined with linear multigrid for the lin-
earized system, “Newton Multigrid”, was employed, as well as the “Full
Approximation Scheme” (FAS). Both methods lead to rapid multigrid con-
vergence. Within the multigrid method, we employed the coupled Vanka
box smoother as well as the point-wise Gauss-Seidel relaxation. Moreover,
a heterogeneous nonlinear problem with random physical parameters was
considered. From the numerical experiments we concluded that both non-
linear multigrid methods and both smoothing methods gave rise to very
good multigrid convergence, independent of the mesh width in the compu-
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tational grid.

Moreover, we investigated the multigrid performance when a decoupled
Uzawa-type iteration was used as the smoother for linear poroelasticity
equations, that were discretized on staggered grids. The Uzawa smoother
is a combination of a symmetric Gauss-Seidel smoothing iteration for the
poroelasticity displacements, together with a Richardson iteration, which
contains a relaxation parameter, for the pressure solution. Since the re-
laxation parameter needs to be chosen with care within the Richardson
iteration, we applied Local Fourier Analysis (LFA) to determine the suit-
able parameter. The optimal parameter values, that were estimated by
smoothing factors and predicted multigrid convergence factors, could be
obtained this way. The multigrid method was applied to both collocated
and staggered grid discrete problems. Numerical tests confirmed our anal-
ysis results very well. Regarding the non-trivial heterogeneous media prob-
lem, an iterant recombination scheme was employed, resulting in very fine
convergence acceleration of the underlying multigrid method.

Monolithic multigrid method for the coupled Darcy-Stokes system

Based on the knowledge from the previous chapters, we solved the cou-
pled free fluid flow and the rigid porous media system, which was rep-
resented by the Darcy-Stokes model. The discrete formulas for the cou-
pled multi-physics system, with a special discretization at the interface,
were generated by finite volume discretization on a staggered grid. A
monolithic multigrid method with the Uzawa smoother was applied to the
multi-physics system, based on a multiblock multigrid algorithm. Opti-
mal relaxation parameters in the Uzawa smoother were computed by LFA
for each subproblem. The global convergence factor of multigrid was well
approximated by the worst multigrid convergence factor of the individual
subproblems by LFA, which forms an indication that our discretization
and implementation for the coupled system were done in an efficient way.
Moreover, a porous medium with a random heterogeneous hydraulic con-
ductivity was studied. A highly efficient monolithic multgrid algorithm for
the Darcy-Stokes problem on a staggered grid resulted.
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Monolithic multigrid method for the coupled Stokes-poroelasticity system

Finally, as an extension of the Darcy-Stokes model, we worked on the cou-
pled Stokes-poroelasticity system, based on the assumption that the porous
media is also deformable. This means that the fluid motion and solid defor-
mation are both considered. Different from the Darcy-Stokes problem, we
here defined two unknowns belonging to different subsystems at the same
grid point at the interface. Special discretizations were implemented, not
only for the unknowns at the interface, but also for the variables close to
the interface. For reference test cases, we could confirm that we achieved
second-order spatial convergence. For this Stokes-poroelasticity system,
monolithic multigrid methods with either a coupled Vanka or a decoupled
Uzawa smoother were employed, and their convergence performance was
compared. Both smoothers showed highly satisfactory results for a wide
range of parameter values. The coupled smoother appeared more robust
in the case of extreme parameters or computational grid cells.

6.2 Outlook

In this section, some suggestions for future research are presented.

Three-dimensional problems

Since the work in this thesis focuses on two-dimensional problems, a con-
tinuation to three-dimensional problems seems a logical research direction.
It is worth noting that when the multigrid method with decoupled Uzawa
smoother is applied, optimal relaxation parameters will be different but
can be calculated in the framework of LFA for each subsystem. We expect
that the coupling of the two subsystems in 3D will bring several additional
research challenges.

Other smoothers in multigrid

In the multigrid method, the choice of the smoother is an important com-
ponent. In this thesis, we focussed our attention to the coupled Vanka
and decoupled Uzawa smoothers. Of course, other smoothers may also be
interesting to investigate, like ILU smoothers or Braess-Sarazin smoothers.
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Robustness with respect to stretched grids, or nonstaggered grid arrange-
ments, are important research topics.

Parallel computing

The multiblock multigrid algorithm described in Chapter 4 can be per-
formed in parallel, as mentioned before. In this algorithm, the information
transfer in each step is only in one direction. The data required for each
operation is available in the same process. So it is possible to consider high
performance computing for large-scaled problems, and search for different
ways of communicating information.

Unsaturated porous media

Another interesting coupling is between Stokes flow and the Richards equa-
tion by assuming that the porous medium is unsaturated. The Richards
equation is a nonlinear partial differential equation, which will give us chal-
lenges in the numerical solution, the multi-physics coupling and also the
multigrid solution.

Navier-Stokes equations in the coupled model

Instead of the Stokes equations, we may consider either the steady or un-
steady Navier-Stokes equations in the coupled system. To deal with the
non-zero convective terms in the Navier-Stokes equations, nonlinear multi-
grid methods are needed. However, we have gained experience on solving
the nonlinear poroelasticity equations in the second chapter of this thesis.
It may therefore be possible to solve a more challenging coupled system
arising from the Navier-Stokes equations and nonlinear poroelasticity equa-
tions.
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