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 A B S T R A C T

The increase in flight volumes in the aviation industry has significant socioeconomic implications that 
affect different aspects of our communities and economies. Although it has great economic benefits, it also 
causes annoyance and disturbance to communities living near airports. The latter requires understanding and 
prediction of the varying noise levels generated by various aircraft types. Noise assessment on a fleet level is 
traditionally achieved by using prediction models such as the DOC29. Such models need to be validated using 
real measurements. For Amsterdam Schiphol Airport, the so-called NOMOS (Noise Monitoring System) with 39 
measurement stations is used for this purpose. We analyze the time series of these stations, collecting annual 
data for the period from 2006 to 2023. The main objective is to determine how the aircraft-generated noise 
at these stations can be assigned to 13 different aircraft types, taking into account the different noise levels 
produced by each aircraft type. This is performed by time series analysis of individual stations and the averaged 
time series over all stations. The results from two least-squares methods, namely unconstrained least squares 
(LS) and a proposed bounded least squares subject to weighted constraints (BLS + WC), are compared. The 
constraints are based on certification data as prior information in the least squares method, which is expected 
to enhance the model’s performance. Based on the above two least squares methods, predictions are performed 
for 2022 and 2023. The results clearly demonstrate the superiority of the BLS + WC over the LS method. We 
further extend our analysis to predict noise levels for a hypothetical future year with more newer aircraft 
models. The results indicate a substantial reduction in the noise level compared to 2023. These findings can 
thus underscore the effectiveness of the proposed method in outperforming the LS and highlight the model’s 
capability to forecast the impact of fleet modernization on noise reduction.
. Introduction

Since its start, the impressive growth of the aviation industry has 
esulted in significant economic benefits. This advantage comes at the 
rice of high and increasing levels of aviation-induced noise, resulting 
n annoyance and health problems (Franssen et al., 2004; Hansell 
t al., 2013; Basner and McGuire, 2018). Aircraft noise can adversely 
nfluence public health, although its impact is often less pronounced 
han that of individual lifestyle factors. Consequently, communities 
ear airports now demand reductions in aviation activities.
The concerns are widely recognized, and measures to counteract the 

viation-induced noise are taken by aircraft manufacturers, airliners 
nd airports. There are continuous efforts to make aircraft more quieter, 
.g. by increasing the bypass-ratio of the turbofan engines and applying 
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acoustic lining (see e.g. Bertsch et al., 2015). In addition, flight proce-
dures and operations producing less noise in populated areas have been 
established. The implementation of these measures is enforced through 
charges and regulations (see Morrell and Lu, 2000; Schiphol Airport, 
2021).

Extensive research activities have been ongoing globally, particu-
larly within the European Union through initiatives such as Aviation 
Noise Impact Management through Novel Approaches (ANIMA) (AN-
IMA Project Consortium, 2025) and Aircraft noise Reduction Tech-
nologies and related Environmental iMpact (ARTEM) (von Karman 
Institute for Fluid Dynamics, 2025) projects, as well as internationally 
by organizations such as the International Civil Aviation Organization 
(ICAO), the National Aeronautics and Space Administration (NASA) in 
the United States, and the Aviation Sustainability Center (ASCENT), a 
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research initiative supported by the Federal Aviation Administration 
(FAA). These efforts aim to further understand and hence mitigate 
aircraft noise and its associated health and environmental impacts.

These regulations are such that hard limits are imposed on the 
yearly cumulative noise levels at various locations around airports. 
These noise levels are traditionally calculated using so-called best-
practice models or regulatory models, see e.g. Isermann and Vogelsang 
(2010). These models are based on legal compliance requirements, such 
as those described in Document 29 of the European Civil Aviation 
Conference (ECAC) (ECAC.CEAC, 2016), and are capable of calculating 
noise contours around airports with low computational cost and limited 
model inputs. The resulting contours, representing the noise impact of 
aircraft operations over large areas and e.g. for a full year, are typically 
employed to check compliance with noise limits and to estimate future 
aircraft impacts.

Various noise metrics can be used as a measure for annoyance
(Vieira et al., 2020). For current regulatory purposes aircraft noise 
contours using the 𝐿𝑑𝑒𝑛 metric (and the similar 𝐿𝑛𝑖𝑔ℎ𝑡 metric) are com-
monly considered. 𝐿𝑑𝑒𝑛 stands for the yearly-averaged day–evening–
night average noise levels (Simons et al., 2022). However, 𝐿𝑑𝑒𝑛 is not 
a direct measure of annoyance (Breugelmans et al., 2013; Gjestland, 
2024). While it serves as a useful indicator of noise exposure, further 
processing and assumptions, such as population density and the corre-
lation between 𝐿𝑑𝑒𝑛 and reported annoyance, are needed to estimate 
the actual level of annoyance in a population.

We emphasize that the noise indicators used in this study are 
𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡, in accordance with the European Environmental Noise 
Directive (European Parliament and Council, 2002), where 𝐿𝑑𝑒𝑛 incor-
porates specific time-weighted penalties for evening and night periods, 
unlike 𝐿𝑑𝑎𝑦 which refers only to the daytime average. Noise moni-
toring using best-practice models, which inherently employ significant 
approximations, can result in deviations of the model predictions from 
the actual noise levels, which, in turn, has given rise to distrust in 
communities near airports (Bewoners Aanspreekpunt Schiphol, 2021). 
Obviously, validation of these models against real measurements can 
possibly reduce this distrust (Simons et al., 2022).

Previous research has investigated the relation between aircraft 
noise exposure and its impacts using noise metrics such as 𝐿𝑑𝑒𝑛 and 
related measures derived from long-term monitoring data. For exam-
ple, Zaporozhets (2016) highlights the shift in aircraft noise annoyance 
from traditional high-exposure zones to wider areas. They highlighted 
increased community reactions beyond standard noise contours. In 
another study, the frequency of noise-induced annoyance was examined 
in relation to the number of aircraft movements, leveraging noise 
metrics and operational data to quantify community exposure lev-
els (Gjestland and Gelderblom, 2017). The U.S. aircraft noise policy 
was reevaluated, highlighting that changing flight patterns influence 
community annoyance (Cointin and Hileman, 2016). Although noise 
levels may have decreased due to quieter aircraft, the increased volume 
of flights and changes in arrival and departure patterns are significantly 
affecting public perception. Recent field data indicate rising aircraft 
noise annoyance at constant 𝐿p𝐴𝑒𝑞 levels, likely due to increased flight 
movements, fleet changes, and shifting public attitudes (Guski, 2017). 
This suggests revisiting noise metrics and regulatory thresholds. The 
above-mentioned studies illustrate the important role of empirical noise 
metrics and time series data in modeling aircraft noise exposure and 
its social impacts. However, a direct link to fleet composition changes 
remains a less explored area, which our study aims to address.

Our study fills the above gap by introducing an empirical framework 
that interlinks year-to-year changes in measured 𝐿𝑑𝑒𝑛 levels to the 
evolving fleet composition. To improve physical feasibility, we intro-
duce a bounded least squares method with weighted constraints (BLS + 
WC) that considers aircraft certification levels as soft constraints. While 
regular regression is common in general modeling (Freedman, 2009), 
its application to aircraft noise monitoring has not yet been explored. 
This approach is novel in two aspects: (1) it uses a unique long-term 
2 
and high-quality dataset of actual Lden measurements from 2006 to 
2023 at one of the busiest airports in Europe; and (2) it integrates 
certification-related constraints into an empirical trend model, which 
balances model fidelity and its physical feasibility. These aspects not 
only allow for the explanation of past trends, but also simulate future 
scenarios based on hypothetical fleet changes. The results presented in 
this paper are part of a bigger research program where, among other 
things, the experimental data analyzed here is used for validation of the 
best-practice models. Such model-data comparisons are not presented 
here. However, in this contribution we describe the development of an 
empirical model that relates the measured 𝐿𝑑𝑒𝑛 trend with the changing 
fleet composition at Schiphol Airport.

The paper is organized as follows. Section 2 briefly describes the 
NOMOS measurement system, and the data obtained from it. We also 
present the classification of different aircraft types along with their 
certification data and maximum take-off weights (MTOW). In Section 3, 
we present the methodology, which introduces two least-squares-based 
methods: (1) the (unconstrained) least squares (LS) method and (2) 
the bounded least squares subject to weighted constraints (BLS + WC) 
method. The latter is particularly of interest as it incorporates aircraft 
certification data as soft constraints in the least squares framework. 
This allows to derive an empirical model that correlates the measured 
𝐿𝑑𝑒𝑛 trend with the various aircraft types in the fleet at Schiphol over 
time. In Section 4, the results are presented and discussed. The section 
begins with a time series analysis of the measured yearly-averaged 𝐿𝑑𝑒𝑛
and 𝐿𝑛𝑖𝑔ℎ𝑡 data, making a distinction between aircraft noise and total 
measured noise. Linear least-squares curve fitting is applied to the data 
from NOMOS stations, averaged over all stations. Also, the precision 
of the obtained trends are determined. Additionally, maps using the 
data from individual NOMOS stations are presented, illustrating the 
obtained trends in 𝐿𝑑𝑒𝑛 over the area. As one of the scenarios, the 
model is determined for the period 2006–2021 and is used to predict 
the situation for 2022 and 2023, comparing the predictions to actual 
data. We further explore the application of the predictive model to 
forecast values for a hypothetical future year where no empirical data 
is available but some old aircraft are replaced by newer ones. Section 5 
summarizes the results and draws some conclusions.

2. Data and background

2.1. Noise monitoring system

This study uses data available at the website (European Aircraft 
Noise Services, European Aircraft Noise Services (EANS), 2021), which 
provides yearly-averaged 𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡 values obtained from the 
Noise Monitoring System (NOMOS) installed around Schiphol Airport. 
The NOMOS system consists of 43 measurement stations positioned in 
the Schiphol area, see Fig.  1.

Basically, each station is a calibrated microphone mounted on a 
6–10 m high mast, which is either connected on a roof of a building or 
just on the ground. The microphones continuously measure the noise 
in the environment. We consider the yearly-averaged 𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡
data from the above mentioned website for the period 2006–2023 
(see Crocker, 2008). A distinction is made between 𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡 data 
for aircraft noise events only and for the total noise measured.

The main focus of the present contribution is on modeling 𝐿𝑑𝑒𝑛
for aircraft noise only. The 𝐿𝑑𝑒𝑛 metric has units dBA. As already 
mentioned, contours of 𝐿𝑑𝑒𝑛 (and 𝐿𝑛𝑖𝑔ℎ𝑡) are calculated using best-
practice models for the area around an airport. Typically, 𝐿𝑑𝑒𝑛 values 
lie in the range 40−70 dBA.
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Fig. 1. Map of the Netherlands showing provinces, capital cities, and the location of NOMOS network around Schiphol Airport (a), WorldInMaps (2024); zoomed-in 
population density map of the Schiphol region with NOMOS stations, which highlights residential exposure (b), Simons et al. (2022).
Fig. 2. Number of aircraft, classification and certification data around Schiphol Airport for the period of 2006–2023. The analysis focuses on 13 aircraft types, 
excluding recent additions due to insufficient data. The bottom-right panel presents the total number of operations across all 13 aircraft types.
2.2. Aircraft types and certification data

To link the above 𝐿𝑑𝑒𝑛 data to aircraft types, we need details on the 
number of aircraft types over the years. The yearly statistics on aircraft 
movements by type are published by Amsterdam Airport Schiphol in 
their publicly available Traffic Review reports (Royal Schiphol Group, 
2024). There are in total 𝑝 = 13 aircraft types over 𝑚 = 18 years from 
2006 to 2023. These types are derived from larger fleet categories, 
namely Boeing 737 (2 types), Airbus narrow-body (3 types), Embraer 
and Fokker (3 types), Boeing wide-body (4 types), and Airbus wide-
body (1 type), see Fig.  2. We excluded a few aircraft types, including 
the Embraer E295, Airbus A321neo, Airbus A350, and Boeing MAX 8, 
due to insufficient data. These types are recent additions to Schiphol 
airport’s aviation sector, resulting in a total of 𝑝 = 13 analyzed aircraft 
types.

Table  1 provides the certification data 𝐿𝐸𝑃𝑁  for various aircraft 
types operating at Schiphol during take-off and landing, expressed 
in effective perceived noise level (EPNdB). Only the most commonly 
occurring aircraft types, as listed above, are included. For each aircraft, 
noise certification data are provided at three positions relative to the 
3 
flight path: lateral, takeoff, and approach. Noise certification stan-
dards and corresponding data (𝐿𝐸𝑃𝑁  at lateral, takeoff, and approach) 
were taken from the official International Civil Aviation Organization 
(ICAO) (International Civil Aviation Organization, 2017), and from 
the EASA Type Certificate Data Sheets for Noise (TCDSN) (European 
Union Aviation Safety Agency, 2025). For each aircraft type, cumu-
lative EPNdB values were derived by first plotting the 𝐿𝐸𝑃𝑁  values 
against the certified maximum take-off weights (MTOW) available in 
the certification data, fitting a line using the least-squares method, and 
then taking the midpoint of the fitted line as the representative noise 
level for that type, see Simons et al. (2022). These EPNdB values are
cumulative, meaning they are simply summed to represent total noise 
exposure.

Table  1 also includes each aircraft’s MTOW and indicates whether 
the aircraft is classified as older or newer, with newer models typ-
ically being quieter at the same MTOW. As previously mentioned, 
the aircraft types are grouped into five main categories: Boeing 737, 
Airbus narrow-body, regional jets, Boeing wide-body, and Airbus wide-
body. Fig.  3 shows the cumulative certification data plotted against the 
corresponding MTOW values. Blue markers represent the data for older 
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Table 1
Certification data 𝐿𝐸𝑃𝑁 and maximum take-off weight (MTOW) for various operational aircraft types (older and newer) taking 
off and landing at Schiphol.
 Aircraft category Aircraft type MTOW (Tonne) Cumulative (EPNdB) Old/new Used here 
 Boeing 737 B737–300 61 273.5 old 3  
 B737–400 66 274.9 old 3  
 B737–500 58 271.2 old 3  
 B737–700 62 272.3 old 3  
 B737–800 74 275.3 old 3  
 B737 MAX 80 265.0 new 5  
 Airbus narrow-body A319 66 269.0 old 5  
 A320 75 272.3 old 3  
 A321 87 279.3 old 3  
 A320neo 75 258.0 new 3  
 A321neo 93 268.0 new 5  
 Embraer and Fokker E170/175 38 269.7 old 3  
 (Regional jets) E190/195 48 269.2 old 3  
 F100 45 266.3 old 3  
 F70 37 255.7 new 3  
 E295 58 257.0 new 5  
 Boeing wide-body B747–400 395 299.1 old 3  
 B767–300 182 283.7 old 3  
 B777–200 298 285.7 new 3  
 B777–300 349 289.1 new 3  
 B787–9 253 273.8 new 3  
 Airbus wide-body A330 235 287.0 old 3  
 A350 250 272.0 new 5  
Fig. 3. Certification data 𝐿𝐸𝑃𝑁 versus maximum take-off weight (MTOW) for 
various aircraft types taking off and landing at Schiphol. Blue and red data 
points indicate old(er) and new(er) aircraft types, respectively; lines indicate 
the least squares fit.

aircraft from Table  1, while red markers correspond to newer aircraft. 
As before, the aircraft are grouped into five categories using distinct 
symbols. Linear fits are applied separately to the data for old and new 
aircraft (see Section 3); the fitted lines are also plotted in the figure. 
It is evident that newer aircraft exhibit significantly lower cumulative 
noise levels, by approximately 10 EPNdB, compared to older models at 
similar MTOW values. This highlights the noise reduction achieved in 
newer designs.

3. Methodology

This section provides the methodologies used in this paper. It mainly 
includes the least squares (LS) method and the bounded least squares 
subject to weighted constraints (BLS + WC).
4 
3.1. Establishing a linear observation model

The time series measurements are the yearly-averaged 𝐿𝑑𝑒𝑛 and 
𝐿𝑛𝑖𝑔ℎ𝑡 in dBA of the NOMOS stations. Two linear models of observation 
equations will be used to conduct the 𝐿𝑑𝑒𝑛 time series analysis. The first 
model is just the linear regression model as 
𝐿𝑑𝑒𝑛(𝑡𝑖) = 𝐿0 + 𝑟 𝑡𝑖 (1)

where 𝐿0 is the intercept, 𝑟 is the rate (two line parameters), and 𝑡𝑖
is the time at year 𝑖. This leads to the 𝑖th row of the design matrix 
as 𝐴𝑖 = [1, 𝑡𝑖], where 𝑖 = 1,… , 𝑚 = 18. The results presented in 
Section 4.1 are based on the above linear model.

The results of Section 4.1 will indicate a decreasing trend in the ob-
served 𝐿𝑑𝑒𝑛 data. We therefore aim to investigate a possible correlation 
between the observed trend in the measured 𝐿𝑑𝑒𝑛 over the years with 
changes in fleet composition at the airport. A question arises regarding 
the extent to which the observed noise reduction can be attributed to 
the quantity and quality (indicated by certification data) of the most 
commonly used aircraft types taking off and landing at Schiphol. To 
establish a linear model of observation equations for 𝐿𝑑𝑒𝑛, we may now 
write (a similar formulation can be developed for 𝐿𝑛𝑖𝑔ℎ𝑡) 

𝐿𝑑𝑒𝑛(𝑡𝑖) = 𝛼0 + 𝛼1𝑁1(𝑡𝑖) +⋯ + 𝛼𝑝𝑁𝑝(𝑡𝑖) (2)

where 𝑁𝑗 (𝑡𝑖) is the number of aircraft type 𝑗, 𝑗 = 1,… , 𝑝 = 13 for 
the given period from 𝑡1 = 2006 to 𝑡𝑚 = 2023 (see Fig.  2). The above 
equation leads to the 𝑖th row of the design matrix 𝐴 in Eq. (4) as 
𝐴𝑖 = [1, 𝑁1(𝑡𝑖), ..., 𝑁𝑝(𝑡𝑖)] (3)

where 𝑖 runs from 1 to 𝑚. In this context, the design matrix, also 
referred to as the coefficient matrix in estimation theory, includes a 
column of ones to represent the offset term 𝛼0 introduced in Eq. (2), 
in addition to the columns corresponding to the explanatory variables 
𝑁𝑖’s.

The above linear relationships (i.e. Eqs.  (1) and (2)) can be rewrit-
ten in a compact matrix form using the following linear model of 
observation equations: 
𝑦 = 𝐴𝑥 + 𝑒, 𝖣(𝑦) = 𝑄𝑦 (4)

where 𝑦 is a vector of 𝑚 observations (𝐿𝑑𝑒𝑛 values), 𝑒 is a vector of 𝑚
residuals, 𝑥 is a vector of 𝑛 unknown parameters, and 𝐴 is an 𝑚 × 𝑛
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design matrix. 𝑄𝑦 is the 𝑚 × 𝑚 covariance matrix of observations 𝑦
and 𝖣(.) denotes the dispersion operator. In the model of 𝑦 = 𝐴𝑥 + 𝑒, 
𝖣(𝑦) = 𝑄𝑦, all the lowercase italic variables like 𝑦, 𝑒, and 𝑥 are vectors, 
and all uppercase italic variables like 𝐴 and 𝑄𝑦 are matrices. The 𝑛-
vector 𝑥 (with 𝑛 = 𝑝+1) is assumed to be unknown and will be estimated 
using the least squares method (Teunissen, 2000a). In this paper, we 
provide the results of two least-squares-based methods tailored for our 
application, which include the unconstrained Least Squares (LS) and 
Bounded Least Squares subject to Weighted Constraints (BLS + WC).

3.2. Least squares method

To derive the unconstrained least squares solution for estimating 𝑥, 
the least squares principle states that the squared norm of the residuals 
𝑒 should be minimized. This leads to the following objective function 
for our minimization problem: 

𝜙 = 1
2
‖𝑒‖2 = 1

2
(𝑦 − 𝐴𝑥)𝑇𝑄−1

𝑦 (𝑦 − 𝐴𝑥) (5)

where ‖.‖ = (.)𝑇𝑄−1
𝑦 (.) represents the norm of a vector. Noting that 

𝑦𝑇𝑄−1
𝑦 𝑦 in the above equation is constant (independent of 𝑥), we aim 

to minimize the following objective function: 

min
𝑥

𝜙 = min
𝑥

( 1
2
𝑥𝑇𝑁𝑥 − 𝑢𝑇 𝑥

)

(6)

where 𝑁 = 𝐴𝑇𝑄−1
𝑦 𝐴 is the 𝑛 × 𝑛 normal matrix and 𝑢 = 𝐴𝑇𝑄−1

𝑦 𝑦 is an 
𝑛-vector. Differentiation of the above objective function with respect 
to the unknowns 𝑥 results in the following estimate 𝑥̂ (as a global 
minimizer of Eq. (6)) 

𝑥̂ =
(

𝐴𝑇𝑄−1
𝑦 𝐴

)−1
𝐴𝑇𝑄−1

𝑦 𝑦 = 𝑁−1𝑢 (7)

The least squares estimate of the observations 𝑦 and the residuals 𝑒 are 

𝑦̂ = 𝐴𝑥̂, 𝑒 = 𝑦 − 𝑦̂ (8)

The covariance matrices of the above estimators are given as 
⎧

⎪

⎨

⎪

⎩

𝑄𝑥̂ =
(

𝐴𝑇𝑄−1
𝑦 𝐴

)−1

𝑄𝑦̂ = 𝐴𝑄𝑥̂𝐴𝑇

𝑄𝑒 = 𝑄𝑦 −𝑄𝑦̂

(9)

which express the precision of the estimates 𝑥̂, 𝑦̂, and 𝑒, respectively.
Validating the fit between observed data and the linear model is 

essential, with hypothesis testing playing a key role in identifying 
model mis-specifications such as the detection and removal of outliers. 
The data snooping procedure based on hypothesis testing in linear 
model (including the w-test for outlier detection) has been elaborated 
in Appendix.

3.3. Bounded least squares (BLS)

Because the above least squares method is unconstrained, the esti-
mated 𝑥 is not guaranteed to be realistic for some applications. Many 
engineering data-processing techniques benefit from introducing differ-
ent types of constraints on the parameters of interest. These constraints 
may include weighted constraints as well as hard equality and/or 
inequality constraints. An example of an inequality-constrained adjust-
ment model is the non-negative least squares (NNLS) problem, which 
addresses a linear least squares problem while enforcing the estimated 
parameters to be non-negative. This model is encountered in many 
engineering applications such as aviation industry, control systems, 
and artificial intelligence. For example, in aviation acoustics, the non-
negativity constraints can be used when estimating the contributions 
of different aircraft types to the overall noise levels around airports. 
It is widely recognized that such contributions must be calculated as 
non-negative values (𝑥 ≥ 0 indicating 𝛼 ≥ 0 in Eq. (2)).
𝑖
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In the NNLS problem, the objective function in Eq. (6) is modified 
to include the non-negativity constraints (Amiri-Simkooei, 2016): 

min
𝑥

𝜙 = min
𝑥

( 1
2
𝑥𝑇𝑁𝑥 − 𝑢𝑇 𝑥

)

, subject to 𝑥 ≥ 0 (10)

The above minimization problem subject to non-negativity constraints 
is a convex quadratic programming problem (Bemporad, 2015). Convex 
functions play crucial roles in many optimization problems due to 
their advantageous properties. For example, they guarantee a unique 
solution for their minimum.

In convex optimization problems, the Karush–Kuhn–Tucker (KKT) 
conditions are the necessary and sufficient conditions to obtain the 
optimal solution. The Lagrange function for the NNLS problem is then 
given as 

𝐿(𝑥, 𝜇) = 1
2
𝑥𝑇𝑁𝑥 − 𝑢𝑇 𝑥 − 𝜇𝑇 𝑥 (11)

where 𝜇 represents the Lagrange multipliers (or dual variables). The 
following conditions must be satisfied to obtain the optimal solution: 
𝜕𝐿(𝑥, 𝜇)

𝜕𝑥
= 𝑁𝑥 − 𝑢 − 𝜇 = 0, with 𝑥 ≥ 0, 𝜇 ≥ 0, 𝜇𝑇 𝑥 = 0 (12)

There are standard methods to solve the above quadratic programming 
problem (see e.g. Coleman and Li, 1996; Bro and De Jong, 1997; Franc 
et al., 2005).

In a generalized form, the non-negativity constraints can be replaced 
by the bounded constraints, where the unknown vector 𝑥 is assumed 
to have a lower and upper bounds as 𝓁𝐵 ≤ 𝑥 ≤ 𝑢𝐵 . The bounded 
least squares (BLS) is an extension of non-negative least squares, which 
has been introduced by Amiri-Simkooei (2016), Franc et al. (2005). 
BLS has been developed to replace the non-negative constraints with 
bounded constraints. The algorithm is presented in Fig.  4. The above 
KKT conditions are particularly relevant in our BLS method as they 
formally characterize the optimality of the solution to our constrained 
formulation, see Boyd and Vandenberghe (2004).

3.4. BLS with soft certification constraints

In addition to the above bounded constraints, the linear model 
in Eq. (4) can incorporate additional types of constraints known as 
weighted constraints (WC), or soft constraints, hereinafter referred to as 
BLS + WC. The equality constraints serve to stabilize the linear systems 
and enhance their accuracy and reliability. Such soft constraints can 
always be considered as an additional linear model (Amiri-Simkooei, 
2019): 
𝑐 = 𝐶𝑇 𝑥 + 𝑒𝑐 , 𝖣(𝑐) = 𝑄𝑐 (13)

which can be added, as prior information, to the linear model 𝑦 =
𝐴𝑥+ 𝑒. The covariance matrix 𝑄𝑐 determines the weighting assigned to 
these weighted constraints. This will consequently modify the objective 
function to 
𝜙 = 1

2
‖𝑒‖2 + 1

2
‖

‖

𝑒𝑐‖‖
2 (14)

leading to 

min
𝑥

𝜙 = min
𝑥

( 1
2
𝑥𝑇𝑁𝑥 − 𝑢𝑇 𝑥

)

(15)

where the soft constraints can also be incorporated as 
{

𝑁 = 𝐴𝑇𝑄−1
𝑦 𝐴 + 𝐶𝑄−1

𝑐 𝐶𝑇

𝑢 = 𝐴𝑇𝑄−1
𝑦 𝑦 + 𝐶𝑄−1

𝑐 c (16)

The unconstrained least squares estimate of 𝑥 is then 

𝑥̂ =
(

𝐴𝑇𝑄−1
𝑦 𝐴 + 𝐶𝑄−1

𝑐 𝐶𝑇
)−1

(𝐴𝑇𝑄−1
𝑦 𝑦 + 𝐶𝑄−1

𝑐 𝑐) (17)

which is worth noting again that the solution is not guaranteed to be 
bounded, e.g. it is possible for it to become negative (cf. Eq. (7)). For 
this application we also aim to obtain the BLS solution, so minimizing 
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Fig. 4. Symbolic algorithm for implementation of bounded least-squares (BLS) 
estimation in the linear model of observation equations 𝑦 = 𝐴𝑥 + 𝑒; 𝑥[𝑗] is the 
vector of unknown parameters 𝑥 estimated in iteration 𝑗.

Eq. (16) subject to 𝓁𝐵 ≤ 𝑥 ≤ 𝑢𝐵 . This can easily be implemented by 
applying the algorithm outlined in the previous section, with the matrix 
𝑁 and vector 𝑢 as those provided in Eq. (16).

A final remark on the construction of the constrained model 𝑐 =
𝐶𝑇 𝑥 + 𝑒𝑐 using the certification data is in order. The certification data 
of the 𝑝 = 13 aircraft classes are given in Fig.  2. Let us assume that 
the certification values for two aircraft classes 𝑖 and 𝑗 are given as 𝑑𝑖
and 𝑑𝑗 , converted to intensity from the EPNdB values. Consequently, 
we introduce a constraint such that 
𝛼𝑖
𝛼𝑗

=
𝑑𝑖
𝑑𝑗

(18)

indicating the unknown coefficients in Eq. (2) should be proportional to 
their corresponding certification data. This is however a soft constraint, 
which could be represented as 

𝛼𝑖𝑑𝑗 − 𝛼𝑗𝑑𝑖 + 𝑒𝑖𝑗 = 0 (19)

where the error term 𝑒𝑖𝑗 indicates the softness of equation. The above 
formulation can simply be used to form the constraints equations 𝑐 =
𝐶𝑇 𝑥 + 𝑒𝑐 , with 𝑐 = 0. For example, this equation can lead to one 
constraint equation as follows: 

0 = 𝑐𝑇𝑖𝑗𝑥 + 𝑒𝑖𝑗 =
[

0 ⋯ 𝑑𝑗 0 ⋯ 𝑑𝑖 0 ⋯
]

⎡

⎢

⎢

⎢

⎢

⎣

𝛼0
𝛼1
⋮
𝛼𝑝

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑒𝑖𝑗 (20)

The aforementioned constrained certification equation has been for-
mulated for all pairs of 𝛼𝑖 and 𝛼𝑗 where 𝑖, 𝑗 = 1,… , 𝑝, making in 
total 𝑝(𝑝−1)∕2 constraint equations. For example, we consider the first 
constraint between 𝛼1 and 𝛼2 and the last constraint between 𝛼𝑝−1 and 
𝛼 . For this case, the constrained matrix 𝐶𝑇  is then of size 𝑝(𝑝−1)∕2×𝑛.
𝑝
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3.5. Prediction using the established empirical model

The observation model 𝑦 = 𝐴𝑥 + 𝑒 subject to possible equality and 
inequality constraints can be used to establish a predictive model 𝑦𝑝 =
𝐴𝑝𝑥. Once we have obtained the least squares solution 𝑥̂ for either the 
unconstrained least squares (LS) or the BLS with weighted constraints 
(BLS + WC), we can use the predictive model to predict 𝑦̂𝑝. This can 
be performed simply if the design matrix 𝐴𝑝 of the predictive model 
is available, which results in 𝑦̂𝑝 = 𝐴𝑝𝑥̂. For example, if the training 
observations 𝐿𝑑𝑒𝑛 data are available for time instants 𝑡1 to 𝑡𝑚, we may 
use 𝑦(𝑡1) to 𝑦(𝑡𝑚) to establish 𝐴 and estimate 𝑥̂. To predict 𝐿𝑑𝑒𝑛 for the 
time instant 𝑡𝑚+1, we need to know the number of aircraft types at that 
time instant and therefore establish the 𝐴𝑝 as 

𝐴𝑝(𝑡𝑚+1) = [1, 𝑁1(𝑡𝑚+1), ..., 𝑁𝑝(𝑡𝑚+1)] (21)

which subsequently provides the prediction as 𝑦̂𝑝 = 𝐴𝑝𝑥̂ at 𝑡𝑚+1.
In the next section, we implement predictions for one and two years 

ahead and compare the results with real data. Additionally, we simulate 
a hypothetical year where all old aircraft are replaced with the newer 
generations, assumed to be quieter, to predict the noise level for that 
year.

4. Results and discussion

4.1. Observed trends in measured 𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡

In this section, we present the results for the individual NOMOS 
stations and for the data averaged over all NOMOS stations. The 
NOMOS network consists of 43 monitoring stations; however, only 39 
stations were used in our analysis, as three stations had data coverage 
below 50% over the 18-year period (2006–2023) and were therefore 
excluded. Fig.  5 shows the percentage of available data for these 39 
stations, ranging from 50% to 100%. The yearly-averaged 𝐿𝑑𝑒𝑛 for 
aircraft noise only, for the period 2006–2023, is shown in Fig.  6 for 
NOMOS stations 2 and 21, as two representative examples. A noticeable 
dip is evident in 2020, which is attributed to the COVID-19 pandemic 
period. This drop is not an anomaly or data error, but rather reflects 
the substantial reduction in air traffic during the global lockdowns. 
While this effect is prominent in the examples shown, similar behavior 
is observed across some other NOMOS stations (not shown). The impact 
of COVID-19 is a well-known phenomenon, and its influence on aircraft 
noise levels, during this period, has been taken into account in the 
subsequent subsections when assigning noise levels to aircraft types 
(see also Eq. (2)).

A linear least-squares fit (Eq. (1)) applied to the data shows that in 
these cases a significant decreasing trend (i.e., negative slope) is ob-
tained. As observed from the figures, a few data points deviate notably 
from the local trend. These deviations may stem from atypical but real 
events, such as altered flight procedures, temporary shifts in runway 
usage, or specific operational anomalies. For example, the relatively 
high values observed in 2017 at Station 2 might reflect such factors. As 
already mentioned, the decrease in 2020 can be attributed to the well-
documented reduction in air traffic during the COVID-19 pandemic. 
To test the robustness of the trend, we applied an outlier removal 
procedure based on the test statistic 𝑤𝑖, as described in Appendix, 
using a two-sided 5% significance level. The recalculated slopes after 
removing detected outliers (shown as red squares) are also indicated 
in the figures (green dashed line). While there are differences, the 
presence of negative slopes remains consistent across most stations, 
both before and after outlier removal.

The (updated) slopes obtained for all NOMOS stations are mapped 
in Fig.  7a. It is observed that nearly all stations exhibit a negative 
trend in aircraft noise levels, with only 2 out of 39 stations (yellow 
circles) showing a slightly positive trend. For comparison, a map of the 
obtained slopes for the total noise (i.e. background noise plus aircraft 
noise) measured is shown in Fig.  7b. In contrast to aircraft noise, a 
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Fig. 5. Percentage of available data for each of 39 NOMOS stations used in 
our analysis (2006–2023), with station names indicated alongside each point. 
Data availability ranges from 50% to 100%.

considerably larger number of stations display a positive trend in total 
noise, while negative trends are less prominent (see Fig.  7a). This 
divergence suggests that, while aircraft noise has generally decreased 
over time, other sources of environmental noise have either remained 
stable or increased at several locations.

To illustrate this, Fig.  7b provides three examples (indicated by 
orange circles) of stations with a positive trend in total noise. Station 
42, for example, is located in a residential area with significant com-
munity and background noise, and is situated adjacent to a water canal 
where sound reflections may further amplify the noise levels (Fig.  8). 
Similar conditions apply to stations 28 and 46. Station 28, in particular, 
is not only close to a road and residential surroundings but is also 
densely surrounded by trees, which can influence the propagation and 
reflection of ambient noise. These environmental and situational factors 
likely contribute to the observed positive trends in total noise at these 
locations, and may also reflect increases in road traffic or other local 
activities not directly related to aircraft operations.

It should be also noted that the separation between aircraft noise 
and total noise is based on event detection algorithms that classify 
individual noise events as aircraft-related when they coincide with 
aircraft movements tracked by radar or transponder data (e.g. using 
ADS-B data). This methodology is standard in airport noise monitoring 
systems (see e.g. European Commission, 2020), which allows for a 
reliable distinction between aircraft and background noise sources. 
While misclassification may occur at the event level, the long-term 
trends remain still robust for our analysis.

This result is also observed when the aircraft noise data are pre-
sented in a different way. In Fig.  9 (a and c), we show all measured 
yearly-averaged 𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡 data in one graph, together with the 
𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡 data per year, averaged over all NOMOS stations. The 
averaged data are linearly least-squares fitted (Eq. (1)). For 𝐿𝑑𝑒𝑛, the 
estimated slope of the averaged data and its precision is 𝑟̂ ± 𝜎𝑟̂ =
−0.52 ± 0.04 dBA/year, i.e. a decrease in 𝐿𝑑𝑒𝑛 of almost 9 dBA for the 
period 2006–2023. Similar conclusions can be made for the aircraft 
noise 𝐿𝑛𝑖𝑔ℎ𝑡. The estimated trends are not only statistically significant 
but also substantial. For example, a 3 dBA decrease in 𝐿𝑑𝑒𝑛 for aircraft 
noise corresponds to a reduction of a factor of two in number of flight 
movements when we assume the aircraft in the fleet are the same, 
i.e. having the same loudness.

For comparison, similar results for the total noise are also shown in 
Fig.  9 (b and d). Now, for 𝐿𝑑𝑒𝑛, the slope and its precision turns out to 
be 𝑟̂ ± 𝜎 = −0.17 ± 0.04 dBA/year, i.e. a decrease in 𝐿  of 3 dBA for 
𝑟̂ 𝑑𝑒𝑛
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the period 2006–2023. Note that, on average, the 𝐿𝑑𝑒𝑛 for total noise 
is more than 10 dBA higher than the 𝐿𝑑𝑒𝑛 for aircraft noise alone. This 
means that the contribution of background noise, i.e. all noise other 
than that due to aircraft, to the 𝐿𝑑𝑒𝑛 for total noise is dominant (Simons 
et al., 2022). The origin of the observed 𝐿𝑑𝑒𝑛 negative trend for aircraft 
noise is believed to be due to changes in the fleet composition at 
Schiphol, at least for a substantial part (see Section 4.2). The origin of 
the observed 𝐿𝑑𝑒𝑛 trend for total noise is less obvious and might be due 
to an increase in background noise, the decrease in aircraft noise (as it 
is still present in the total noise) or due to be a combination of both. 
Also, a decrease in microphone sensitivity due to overdue maintenance 
can play a role (see e.g. Simons and Snellen, 2023).

The results for 𝐿𝑛𝑖𝑔ℎ𝑡, both for aircraft noise and the total noise, are 
also shown in Fig.  9. Similar trends and conclusions as those described 
above for 𝐿𝑑𝑒𝑛 can be drawn for 𝐿𝑛𝑖𝑔ℎ𝑡.

4.2. Establishing an empirical predictive model

To further support our previous statement regarding the underlying 
cause of the estimated negative trend in 𝐿𝑑𝑒𝑛 attributed to aircraft 
noise, which is presumed to originate from shifts in the fleet compo-
sition at Schiphol, we establish an empirical model between measured 
𝐿𝑑𝑒𝑛 trend and fleet composition over time. The model described here 
indicates that if we know the number and composition of the aircraft 
types operating around Schiphol airport, we can predict the 𝐿𝑑𝑒𝑛 asso-
ciated with those aircraft. This is referred to as the empirical predictive 
model, which can, in principle, be applied to both 𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡; 
however, for the sake of brevity, we focus here on 𝐿𝑑𝑒𝑛 only.

We note that our analysis is based on airport-level averages of 𝐿𝑑𝑒𝑛
and does not incorporate detailed operational data such as runway us-
age or the distribution of takeoffs and landings per aircraft type, as such 
data are not available for the full study period (2006–2023). Therefore, 
in this model, the implemented noise abatement flight procedures and 
operations at Schiphol have not been taken into consideration (Si-
mons et al., 2022); the contribution of these less noisy operations 
is subject to further research. Therefore, the model focuses on the 
relationship between fleet composition and average noise levels, rather 
than operational factors.

Our motivation for averaging was to enable modeling and predic-
tion of overall trends in average total aircraft noise exposure. While 
individual NOMOS stations may be differently affected by arriving or 
departing aircraft, plotting the typical flight paths over the station 
map in 2018 (Fig.  7a) shows no consistent directional bias in average 
exposure across the network. The distribution of arrivals and departures 
appears random with respect to station locations and their long-term 
average noise levels. This supports the assumption that, when averaged 
across a sufficiently large and spatially distributed set of stations, 
such directional effects tend to cancel out. Furthermore, the sensitivity 
analysis in Section 4.3 confirms that the estimated coefficients, linking 
noise levels to fleet mix composition, are robust across different station 
selection strategies, which reinforces the validity of our analysis.

The less prominent ‘‘Covid dip’’ (approximately 1 dBA reduction) 
in the 𝐿𝑑𝑒𝑛 time series in 2020 and 2021, as shown in Fig.  9, despite 
the significant reduction in air traffic in 2020, is likely due to several 
contributing factors rather than a single cause. First, while the total 
aircraft movements dropped to less than half of 2019 levels, there was 
a notable modal shift in traffic composition: cargo aircraft, typically 
louder than passenger aircraft, increased their share to 10.5% of all 
flights, nearly four times their proportion in 2019. This shift likely off-
set a portion of the noise reduction expected from reduced movements 
alone. Second, in theory, halving the number of flight operations would 
yield an approximate 3 dBA decrease in 𝐿𝑑𝑒𝑛. However, the precision 
of our noise data, as illustrated in Fig.  9, shows a standard deviation 
of around 0.8 dBA, corresponding to a 99% confidence interval of 
±2.0 dBA. This variability may have masked part of the expected drop. 
Third, while some individual stations (e.g., stations 2 and 21 in Fig.  6) 
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Fig. 6. The yearly-averaged 𝐿𝑑𝑒𝑛 for aircraft noise only, its linear least-squares fit and outlier removal for two typical NOMOS stations (2 and 21).
Fig. 7. Scatter plot of estimated slopes for all NOMOS stations based on least-squares fitting after outlier removal, showing (a) aircraft noise and (b) total noise. 
In panel (a), typical arrival (red lines) and departure (blue lines) flight paths at Schiphol Airport for 2018 are also shown for reference.
Fig. 8. Location of station 42 near a water canal and residential area, where 
reflections and community noise may elevate ambient levels.
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show a dip during the Covid period, this was not consistent across all 
stations, which further diminishes the visibility of the overall effect.

We establish a linear model 𝑦 = 𝐴𝑥 + 𝑒 using the model in Eqs. (2) 
and (3). To link the above 𝐿𝑑𝑒𝑛 data to aircraft types, we require 
information on the number and distribution of aircraft types over time. 
In total, we include 𝑝 = 13 aircraft types spanning 𝑚 = 18 years 
from 2006 to 2023. These aircraft types are grouped into broader 
fleet categories: Boeing 737 (2 types), Airbus narrow-body (3 types), 
Embraer and Fokker (3 types), Boeing wide-body (4 types), and Airbus 
wide-body (1 type), see Fig.  2. A few aircraft types like the Embraer 
E295, Airbus A321neo, Airbus A350, and Boeing MAX 8 were excluded 
due to insufficient data. This refers to either a relatively low number 
of movements (i.e., takeoffs and landings), a limited number of oper-
ational years at Schiphol, or both. In addition, including more aircraft 
types would increase the number of unknowns in the linear model 
𝑦 = 𝐴𝑥+𝑒, which reduces data redundancy and can affect the stability of 
least squares estimation. Therefore, we focus on a subset of 13 aircraft 
types with sufficient temporal and operational representation for robust 
modeling. The final design matrix 𝐴 is thus of size 𝑚 × 𝑛 = 18 × 14.

We aim to train and implement a predictive model using two 
scenarios (Table  2). For each scenario we split the 18 data points into 
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Fig. 9. Comparison between trends in aircraft (a and c) and total (b and d) noise levels over the period 2006–2023: 𝐿𝑑𝑒𝑛 (a and b) and 𝐿𝑛𝑖𝑔ℎ𝑡 (c and d). In each 
panel, gray squares represent individual stations, black squares denote mean values over all stations, the dashed black line indicates the least-squares fit, and 
error bars show the corresponding standard deviations.
Table 2
Details of two scenarios for training and testing data splitting used to establish 
a predictive model. 𝑚 − 𝑛 is the redundancy of the training model 𝑦 = 𝐴𝑥 + 𝑒
(Scenario 2 has less redundancy (𝑚−𝑛 = 2 vs. 𝑚−𝑛 = 3 of Scenario 1) because 
it uses one fewer training data point, 16 vs. 17.
 Scenario Training Prediction Size of 𝐴 (𝑚 × 𝑛) Size of 𝐴𝑝 𝑚 − 𝑛 
 1 2006–2022 2023 17 × 14 1 × 14 3  
 2 2006–2021 2022, 2023 16 × 14 2 × 14 2  

‘estimation’ and ‘prediction’ as explained in Section 3. The estimation 
process is the training step (based on historical data), and the prediction 
is the testing step (to test the performance of the prediction for future 
events). For example, for scenario 1, we use the first 17 data points 
(from 2006 to 2022) for training and the last data of 2023 for prediction 
(testing).

The results of the above two scenarios, and for the two methods 
of LS and BLS + WC, are presented in Fig.  10. A few observations are 
highlighted. (i) For the 𝐿𝑑𝑒𝑛 prediction, it is evident that while there is 
consistency among the BLS + WC method to forecast the first or second 
year, the LS method can overestimate (frames a and c) the 𝐿𝑑𝑒𝑛. No-
tably, BLS + WC exhibits more stable and consistent performance than 
the unconstrained LS in both scenarios 1 and 2, particularly in terms of 
generalization to testing data. In the next paragraph, we interpret these 
results through the lens of the bias–variance trade-off, which highlights 
why BLS + WC generalizes better despite not always outperforming LS 
in every year. (ii) As another scenario (the results not presented here), 
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we have also tested the prediction results using the NNLS method, 
so without considering the weighted certification constraints. The pre-
diction results are not much better than the unconstrained LS, and 
still worse than BLS + WC. These findings suggest the importance of 
considering the soft constraints related to the certification data when 
forecasting 𝐿𝑑𝑒𝑛 values using BLS. This offers new opportunities and 
potential challenges for future studies on 𝐿𝑑𝑒𝑛 noise monitoring around 
airports.  (iii) We also compared the performance of the methods on 
training and testing data separately, as shown in Fig.  11. While the 
LS approach fits the training data closely (i.e., small residuals), it 
produces large root mean square errors (RMSE) on the test set, which is 
indicative of overfitting. In contrast, BLS + WC yields consistent results 
across both estimation and prediction phases for both scenarios. We 
note that the RMSE in scenario 1 is based on a one-year prediction and 
in scenario 2 on a two-year prediction. To further evaluate robustness, 
we also tested a three-year ahead prediction scenario, training the 
model on data from 2006 to 2020 and testing on 2021, 2022, and 2023. 
Although these results are not shown in the paper, they continue to 
demonstrate stable predictive performance for BLS + WC. The RMSE 
for this extended prediction is 1.32 dBA under this scenario.

A remark on the last observation mentioned above, regarding the 
application of LS and BLS + WC, is in order. The observed differences 
in performance between LS and BLS + WC highlight a classic issue in 
statistical modeling: the bias–variance trade-off (Geman et al., 1992). 
The LS method, which fits the training data very well, is likely to 
have a low bias but a high variance. This means that while the model 
approximates the training data closely (called over-fitting), it becomes 
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Fig. 10. Estimation and prediction performance of 𝐿𝑑𝑒𝑛 data using LS (a and c) and BLS + WC (b and d) methods in Scenario 1 (a and b) and Scenario 2 (c and 
d).
Fig. 11. Performance of LS and BLS + WC methods on training (estimation) and testing (prediction) datasets, measured by root mean squared error (RMSE).
very sensitive to small fluctuations and noise, which leads to poor 
performance on unseen data. On the other hand, the BLS + WC method, 
which fits the training data less perfectly but performs better on testing 
data, likely has higher bias but lower variance. This implies that BLS + 
WC, being a simpler model, does not capture all the complexities of the 
training data, but its simplicity makes it more reliable and less sensitive 
to noisy data, leading to better performance in the testing data set.

Before running the predictive model for a simulated year using 
the estimated coefficients (next section), we plot the estimated 𝛼’s 
of the BLS + WC model against the certification data shown in Fig. 
2. The results are depicted in Fig.  12. For the LS model (not shown 
10 
here), many 𝛼 values are estimated as negative, which is not physically 
interpretable.

Fig.  12 shows that the estimated coefficients are significantly corre-
lated with the certification data, as also shown by the fit. For example, 
the loudest aircraft (i.e. B747) has the largest estimated coefficient 𝛼. 
This correlation results from incorporating certification data as soft 
constraints in the BLS + WC model, which regularizes the 𝛼 estimates 
and helps ensure physically meaningful values. In contrast, the LS 
method can produce negative coefficients, which are not physically 
feasible. A closer match to the certification data can be achieved by 
increasing the weight of the regularization, but this would reduce the 
fit quality. The current balance reflects a trade-off between fidelity to 
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Fig. 12. Estimated coefficients 𝛼’s (converted to 10 log(𝛼)) versus the certifica-
tion data in the BLS + WC model; the blue dashed line shows the least squares 
fit.

certification data and predictive performance. This regularization effect 
is absent in the LS and NNLS methods.

4.3. Sensitivity analysis

To investigate the robustness of the estimated coefficients and as-
sess the potential influence of spatial and temporal variations in the 
measurement network, we performed a sensitivity analysis using three 
different station selection strategies. The analysis aimed to determine 
whether the overall trends are sensitive to the subset of NOMOS 
stations included in the averaging process.

1. Test Case I: This case included 14 stations located within 10 
km of the center of the NOMOS network (representing the 
central area near Schiphol runways). These stations are generally 
influenced by both approach and departure operations and offer 
a compact spatial sample.

2. Test Case II: This case included 25 stations located beyond 
10 km from the network center. These peripheral stations are 
often more strongly influenced by specific operational modes 
(e.g. mainly approach or departure).

3. Test Case III: This case included 18 stations with complete data 
availability (100% coverage over the entire 18-year period), 
thereby eliminating potential biases introduced by data gaps.

The estimated rates are 𝜎𝐼𝑟 = −0.47 ± 0.04, 𝜎𝐼𝐼𝑟 = −0.52 ± 0.04, 
and 𝜎𝐼𝐼𝐼𝑟 = −0.40 ± 0.04 for Test Cases I, II, and III, respectively. The 
estimated coefficients linking noise levels to fleet mix composition in 
Eq. (2), derived from each of the three test cases, closely match those 
obtained from the full set of stations (i.e., averages over all available 
stations). 

The results, shown in Fig.  13, demonstrate a high degree of con-
sistency in the estimated coefficients across all configurations. This 
confirms that the long-term trends identified in the analysis are not 
significantly driven by a particular spatial subset or temporal sampling 
bias. 

4.4. Running the predictive model for a simulated year

In this section, we explore the application of the predictive model to 
forecast values for a hypothetical future year, where no empirical data 
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is available. Therefore the exercise aims to demonstrate the model’s 
ability to provide predictions based on existing trends, patterns and 
expectations of future fleet mix scenarios. The input variables for the 
hypothetical year are similar to those of 2023 for the number of aircraft 
types. However, the following assumptions were made to include more 
newer aircraft in the prediction:

(1) The Boeing 737 fleet will remain unchanged, meaning that no 
Boeing 737 (300, 400 and 500) will be operational, but Boeing 
737 (600, 700, 800 and 900) will continue to operate as they do 
currently.

(2) All Airbus narrow body aircraft (320 and 321) will be replaced 
by the 320neo.

(3) All Embraer aircraft (E170/190) will continue to operate as they 
do now. Note that F70 and F100 are no longer operational.

(4) All Boeing wide body aircraft will be replaced by the 787.
(5) The Airbus aircraft (i.e. 330) will continue to operate as it does 

now.

The rationale behind the assumption that all Boeing wide-body 
aircraft will be replaced by the B787 is based on the fact that aircraft 
with similar MTOW, whether passenger or cargo, can be substituted by 
newer and quieter models of equivalent capacity. For example, older 
types like the B747 and B777 may, in certain contexts, be replaced with 
the B787, which is available in both passenger and cargo configura-
tions. The share of B747 operations has already declined significantly 
in recent years. This optimistic fleet modernization scenario is consistent 
with long-term fleet renewal projections in the Boeing Commercial 
Market Outlook (2024–2044) and the EUROCONTROL Aviation Out-
look 2050, both of which foresee replacement of older aircraft with 
quieter and more efficient types (Boeing, 2024; Eurocontrol, 2022).

The prediction results for the simulated year are presented for both 
scenarios in Fig.  14, and they appear to be identical. For the simulated 
year, we obtain 43.5 dBA, i.e. a reduction of 5.5 dBA in the 𝐿𝑑𝑒𝑛 data 
is observed compared to 2023 (49.0 dBA). This reduction is substantial 
(see Section 4.1).

A decrease in 𝐿𝑑𝑒𝑛 of nearly 9 dBA over the period 2006–2023 
has already been shown in Fig.  9. However, achieving such a sig-
nificant reduction in the near future is unlikely. There are several 
reasons why the above-mentioned 𝐿𝑑𝑒𝑛 reduction of 5.5 dBA remains 
challenging. One key assumption is the replacement of the B747 (the 
loudest aircraft) and the B777 (the second loudest) with the B787. 
This replacement accounts for approximately 4 dBA of the estimated 
5.5 dBA reduction. However, it is important to note that the B747 
is still in operation as a cargo aircraft, and a substantial number of 
B777s remain in service. Consequently, their contribution to the noise 
levels will persist in the coming years. Furthermore, the B767, the 
third loudest aircraft, has already experienced a significant decline in 
operations at Schiphol Airport, leading to a notable reduction in its 
noise contribution (the remaining B767 fleet contributes less than 0.5 
dBA to overall noise levels). Our analysis also assumes that the Boeing 
737 fleet and all Embraer and Fokker aircraft (E170/190 and F100) will 
remain unchanged from their 2023 configurations. The replacement of 
Airbus narrow-body aircraft (A320 and A321) with the newer A320neo 
models contributes a reduction of approximately 1 dBA.

We can therefore conclude that the 5.5 dBA reduction is likely to 
occur over the long term. In this timeframe, additional sources of noise 
reduction may also become significant. For example, quieter aircraft 
models such as the Embraer E295, Airbus A321neo, Airbus A350, 
and Boeing MAX 8 were excluded from our current analysis due to 
insufficient data, as these aircraft types are relatively new to operations 
at Schiphol airport. Once these aircraft become fully integrated into the 
airport’s fleet in the long term, they are expected to contribute further 
to the noise reduction, and therefore to the 𝐿𝑑𝑒𝑛 values.

For comparison, another scenario was evaluated in which, instead 
of replacing all Boeing wide-body aircraft with the B787, only the older 
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Fig. 13. Comparison of estimated coefficients based on different subsets of NOMOS stations. Three test cases are compared against the baseline case using all 
available stations: Test Case I includes 14 stations within 10 km of the network center; Test Case II includes 25 stations located beyond 10 km from the center; 
and Test Case III includes 18 stations with complete data availability over the full 18-year period.
Fig. 14. Prediction of 𝐿𝑑𝑒𝑛 for a hypothetical future year using the BLS + WC model in Scenario 1 (a) and Scenario 2 (b).
B747 (the loudest aircraft in the fleet) was assumed to be replaced by 
the newer B777. In this case, the projected noise reduction was limited 
to approximately 2.5 dBA, still underscoring the significant influence 
of wide-body fleet renewal on the overall noise mitigation potential.

5. Summary and conclusions

Traditional noise models, while cost-effective, often differ from 
actual measurements, which lead to community distrust and the need 
for validation with real monitoring data like noise monitoring systems 
(NOMOS). In this study, we analyzed NOMOS data from 2006 to 
2023, observing a significant decreasing trend of −0.5 dBA/year in 
yearly averaged 𝐿𝑑𝑒𝑛. This trend indicates a considerable reduction 
in noise levels over this period, primarily attributed to changes in 
the fleet composition at Schiphol Airport. The established empirical 
model demonstrates that by knowing the number and types of aircraft 
operating at the airport, we can predict the associated 𝐿𝑑𝑒𝑛 value.

Using the least squares methods, including the unconstrained least 
squares (LS) and bounded least squares subject to weighted constraints 
of certification data (BLS + WC), we assigned measured 𝐿𝑑𝑒𝑛 to 13 
different aircraft types. The BLS + WC method showed superior per-
formance, with significantly smaller prediction errors compared to the 
unconstrained LS method. This highlights the importance of incorporat-
ing certification data as soft constraints, which improves the accuracy 
and reliability of noise predictions.

We further extended our analysis to predict noise levels for a hy-
pothetical future year with newer aircraft models. The results indicate 
12 
a substantial reduction of ∼ 5.5 dBA in noise levels compared to 2023, 
primarily due to the replacement of the B747 and B777 with the quieter 
B787 and the introduction of the Airbus A320neo model. These findings 
underscore the potential for fleet modernization to significantly reduce 
noise pollution around airports.

This study highlighted the high potential of using empirical data to 
model average annual aircraft noise levels based on fleet composition. 
Our findings showed that changes in aircraft types over time can 
explain a large portion of the long-term variation in average 𝐿𝑑𝑒𝑛
values at Schiphol Airport. These insights can support airport man-
agement to evaluate the effectiveness of fleet modernization strategies 
and estimating the scale of fleet changes needed to meet regulatory 
noise thresholds. While the current analysis is constrained by the lack 
of detailed operational data (e.g., runway usage and flight paths), 
future research could benefit from integrating such variables to im-
prove model accuracy. In addition, the use of more relevant noise 
metrics and advanced analytical methods like machine learning could 
further enhance predictive capabilities and community trust in noise 
management efforts.
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Appendix. Hypothesis testing in linear models

In many engineering applications, validating the fit between ob-
served data and the linear model is crucial. In this context, hypothesis 
testing plays a significant role to identify mis-specification in the func-
tional model. Among such mis-specifications, outliers identification and 
removal is an essential step. This will guarantee that the final LS 
estimates are unbiased (Teunissen, 2000b). For simplicity, we assume 
that the observations are independent and have identical variance, 
leading to the covariance matrix as 𝑄𝑦 = 𝜎2𝐼𝑚, where 𝐼𝑚 is an identity 
matrix of size 𝑚. Two cases can usually be considered: (1) ’𝜎 known’, 
and (2) ’𝜎 unknown’.

Each individual observation is screened for the presence of an 
outlier (Teunissen, 2000b; Baarda, 1968). This is usually performed 
by computing a so-called w-test statistic. An important application of 
the w-test is thus blunder detection. A blunder (called also outlier) 
affects just a single observation. To screen the observations and identify 
outliers, we usually formulate 𝑚 alternative hypotheses, corresponding 
to 𝑚 observations. If the covariance matrix of observables is diagonal 
(𝑄𝑦 = 𝜎2𝐼𝑚), with 𝜎2 known, the expression for the w-test statistic 
reduces to a simple form as 

𝑤𝑖 =
𝑒𝑖
𝜎𝑒𝑖

(A.1)

with 𝜎𝑒𝑖 = (𝑄𝑒)
1∕2
𝑖𝑖  the standard deviation of the least-squares residual 𝑖, 

for 𝑖 = 1,… , 𝑚 = 18 (see Eq. (9) for 𝑄𝑒). This test statistic is referred to 
as the normalized residual. This test statistic can be tested within a given 
confidence level 1− 𝛼. When 𝜎 is known, the test statistic will follow a 
standard normal distribution under the null hypothesis H0, expressing 
that the data is not an outlier.

When 𝜎 is not known, it can also be estimated using the least 
squares residuals. The least squares estimate of the variance 𝜎2 is 
then (Amiri-Simkooei, 2007) 

𝜎̂2 = 𝑒𝑇 𝑒
𝑚 − 𝑛 − 1

(A.2)

where 𝑚 − 𝑛 − 1 is the redundancy of the functional model under the 
alternative hypothesis. This hypothesis assumes that one observation 
contains a blunder and is therefore removed from the analysis. This 
estimate will also affect the covariance matrix 𝑄𝑦 = 𝜎2𝐼𝑚 as 𝑄̂𝑦 = 𝜎̂2𝐼𝑚. 
This consequently leads to the modification of 𝑄𝑥̂, 𝑄𝑦̂, and 𝑄𝑒 as 𝑄̂𝑥̂, 
𝑄̂𝑦̂, and 𝑄̂𝑒, where the estimated 𝑄̂𝑦 is used instead of 𝑄𝑦. The w-test 
statistic is accordingly modified as 

𝑤𝑖 =
𝑒𝑖
𝜎̂𝑒𝑖

(A.3)

with 𝜎̂𝑒𝑖 = (𝑄̂𝑒)
1∕2
𝑖𝑖  the standard deviation of the least-squares residual 

𝑖, for 𝑖 = 1,… , 𝑚. This test statistic can also be tested within a given 
confidence level 1 − 𝛼. Under H0, the above test statistic will have a 
Student 𝑡 distribution with a 𝑚 − 𝑛 − 1 degrees of freedom.
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Data availability

The yearly-averaged 𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡 data used in this contribution 
can directly be obtained from the European Aircraft Noise Services 
(EANS) website, Schiphol, https://www.eans.net/.
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