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Abstract

Real-time ship motion predictions contributes to safer operations at sea and increases workability. Nowa-
days, a handful of people and companies are actively working on this subject. Most approaches use the ship’s
navigational radar to first predict the wavefield surrounding the vessel and then calculate the motion re-
sponse. One of the methods used to calculate the ship’s motions is a linear ship motion model based on a
frequency-domain approach. The downside of this approach is that the accuracy of the motion predictions
is affected by (for example) uncertainties in the Response Amplitude Operators. In this thesis, it is shown that
estimating transfer-functions from measured motions and a so-called "now-cast" prediction of the forces
will counteract for such uncertainties. For the estimation of these transfer-functions, different methods and
smoothing techniques are evaluated. Based on sea-trial data, it is shown that the accuracy of the motion
predictions increases with ∼ 1-10% when estimated transfer-functions are used, compared to the solutions
obtained by pre-calculated transfer-functions.
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1
Introduction

In this thesis, it will be shown that accuracy of real-time wave-induced ship motions predictions can be re-
fined with the use of estimated force-to-motion transfer-functions, derived from measured motions and a
so called "now-cast" prediction of the forces. The before mentioned forces are calculated by a prediction of
the wave-field in combination with wave-to-force transfer-functions, while the motions are measured with
a motion sensor. The prediction of the wave-field, and eventually motions and forces, will be explained in
more detail in Chapter 2. For the estimation of the transfer-functions different methods can be used which
will extensively be discussed in Chapter 3. Eventually in Chapter 4, it will be proven that the use of estimated
transfer-functions will increase the accuracy of real-time motion predictions.

Before discussing transfer-function estimation techniques and the prove that these transfer-functions will
increase the accuracy of real-time motion predictions, this chapter will give a formal description of the prob-
lem and the main objective. Afterwards, a literature review will be held as a general introduction of real-time
motion prediction and to highlight some of the difficulties of real-time motion predictions. Based on the
main objective and literature review, in Section 1.2 the hypothesis, sub-objectives, and research questions
will be given. The remaining sections in this chapter are dedicated to definitions used throughout this docu-
ment, a description of the structure of this document, and a summary.

1.1. Main objective & literature review
1.1.1. Historical background and research objective
Real-time prediction of wave-induced ship motions contributes to safer operations and enlarges the weather
window at which operations can be performed [13]. Nowadays there are a handful of people and companies
[13][1][5] actively working on this subject. The common denominator between of those parties is that they
all use the ship its navigational radar to first predict the wave-field and then use that information to calculate
the induced ship motions.

One of the used methods to predict wave-induced ship motions is via a frequency-domain approach
based on linear ship motion theory [13]. In this approach the ship motions are calculated by superposing
the ship its responses to individual wave components, using Response Amplitude Operators (RAO’s).

The downside of linear ship motion theory is that (a) it does not include viscous effects like non-linear roll
damping [3][1] and (b) the RAO’s are depending on the geometric properties, like the mass-moment of inertia,
which in practice are uncertain [1][14]. An addition to (a); to incorporate some of the non-linear effects, like
non-linear roll damping, linear equivalent terms, obtained from empirical formulas [10], are usually added
to the equation of motion from which the RAO’s are determined.

However, the uncertainties as described above are related to the forces which results from the motion of
the vessel itself, i.e. the inertia- and radiation forces, and not due to the wave-forces acting on the vessel, the
Froude-Krylov and diffraction forces. By assuming that the predicted wave-forces can accurately be deter-
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2 1. Introduction

mined (See Section 2.2.2 for more details) and the fact that motions can be measured, it might be possible
to estimate more accurate transfer-functions (TF’s) from measurements, via a Frequency-Analysis (FA), com-
pared to those pre-calculated. These estimated TF’s give the relation between the wave-forces and motions,
for every Degree-Of-Freedom separately, which after determination can be used for future motion predic-
tions. By estimating TF’s from measured data it might resolve (b) and give a better estimation for (a). With
the above said the objective of this research will be defined as:

“The objective of this research is to improve the accuracy of wave induced ship motion prediction by
combining a transfer-function estimated from measurements and a linear ship motion model based on a

frequency-domain approach”

This objective has been shared with NextOcean, a company which is specialized in motion predictions, who
was willing to cooperate in this project by providing sea-trial data for analysis.

1.1.2. Literature review
In this section a small literature review will be held about: different methods to calculate/predict wave-
induced ship motions, the main working principles behind real-time wave-field predictions, methods studied
in the past to increase the accuracy of motion-predictions, techniques to estimate transfer-functions based
on measured data, and the challenges of the aforementioned topics. These topics are discussed in order to
give a general introduction into real-time ship motion prediction as well as an introduction to the next sec-
tion where the sub-objective and research questions will be formulated.

Wave-field prediction
As already mentioned in Section 1.1.1, the wave-field is predicted using the ships its navigational radar. Ev-
ery revolution of the radar provides a 2-D image of the wave-field surrounding the vessel in a 1-5 km range,
depending on the kind of radar used[1]. Via a 3-D Fast Fourier Transform (FFT) and a dispersion filter, the
complex-wave amplitudes η̂a,n , wave-numbers ~kn , and wave-frequencies ωn [12], are extracted. In Section
2.1 this procedure will be discussed in more detail. With the components known, the wave field can be pre-
dicted by:

η(x, y, t ,τ) =R
[

N∑
n=1

η̂a,n ·e− j (ωn ·(t+τ)−kx,n ·x−ky,n ·y)

]
(1.1)

where τ is a time-constant which tells how far in the future the wave-field is predicted, i.e. τ = 1 means 1
second ahead prediction, τ = 30 means 30 seconds ahead prediction ect. When τ = 0 the wave-field will
be predicted 0 seconds ahead which is commonly referred to as the "nowcast". A typical number of resolve
wave-components N = 1500.

It is not hard to imagine that the quality/ reliability of the predicted wave-field depends on the accuracy
at which the components can be obtained. One of the most challenging parts of wave-field prediction is the
determination of the correct amplitudes of the wave-height components (|η̂a,n |) [13][18]. There are several
techniques developed to resolve this problem like shadowing techniques or techniques based on the Signal
to Noise ratio [4]. In these methods only the radar data is used for the estimation of the wave-heights. In
contrast to the methods as mentioned above, another commonly used method is to use the response of the
ship to scale the wave-components [13][16][17].

Real-time motion prediction models
There are several models developed to predict wave-induced ship motions which in general can be divided
into two categories: time-domain models and frequency-domain models. In this section three different mod-
els, found in literature, will be presented and discussed.

The first model which can be found [13][5] is a -classical- frequency-domain approach where the ship
motions are calculated by superposing the motion response of each individual wave-component using RAO’s.



1.1. Main objective & literature review 3

These RAO’s are pre-calculated using Boundary Element Method (BEM) software. In other words, the result-
ing ship motions are calculated by:

ξi (x, y, t ,τ) =R
[

N∑
n=1
~ηa,n ·Hi (ωe,nµn ,U ) ·e− j (ωn ·(t+τ)−kx,n ·t−ky,n ·y)

]
(1.2)

where the wave components ˆηa,n ,~kn and ωn are those obtained from the radar data, as described in the pre-
vious section, and H(ωn ,µn ,U ) are the RAO’s as mentioned above. The downside of this method is that it
does not take -higher order- viscous effects into account and only applies to small slow varying motions.
Furthermore, as already mentioned in Section 1.1.1 there are also uncertainties in the RAO’s due to loading
conditions.

The second model found [1], an adaptive filter method based on a frequency domain approach where
the ship is represented as a barge. Since the geometry of a barge can analytically be described, an analytical
time-domain description for the Froude-Krilov forces and moments can be made. Then by a power series
expansion of these forces, this analytical solution can be rewritten into a combination of three linear time-
series. In a frequency-domain representation for the i -th DOF the equation corresponding to the above is
defined as:

Y i (ω) = H i
y x,1(ω,U )X i

1(ω)+H i
y x,2(ω,U )X i

2(ω)+H i
y x,3(ω,U )X i

3(ω) (1.3)

where X i
1(ω)...X i

3(ω) are the Froude-Krilov forces and moments as mentioned above, Y j (ω) is the frequency-
domain description of the measured motions, and Hy x are TF’s which need to be determined. The advantage
of rewriting the force into three linear-time domain representations is that the additional terms introduced
represents higher-order corrections for shorter waves[1]. In order to solve Hy x , the history of the measured
motions in combination with the "historical" forces are used. The derivations of the TF’s and eventually the
prediction of the motions, will be explained in some more detail in the upcoming sub-sections. The downside
of this method is that no diffraction forces are included and that the geometry of a barge is not the same as
that of a ship.

The third model found in literature [3] is a time-domain model based on Cummins equations. The great
advantage of direct modeling in the time-domain is that -higher order- non-linear effects can be taken into
account which is impossible in first-order frequency-domain approaches. However, the research outlined in
this thesis is restricted to linear frequency-domain models only. Therefore the time-domain approach is out
of the scope of the research and will not be further discussed. Nevertheless, if at the end, it is concluded that
non-linearities have a significant on the results this time-domain model is a great reference for future studies.

Transfer function estimation and corrections based on measurements
In the past several attempts have been made to increase the accuracy of real-time motion prediction by de-
riving or adjusting the RAO’s / transfer-functions, based on historical measurements and predictions. The
difficulty of deriving RAO’s from measurements is that the function Hi (ωe,nµn ,U ) is depending on the wave-
direction[1].

As already discussed in one of the previous section, Alford et al. [1] uses an adaptive filter method to
calculate wave induced ship motions by deriving transfer-functions based on historical calculated forces and
measured motions. To determine the transfer-functions Hy x they first multiply Equation 1.3 with the complex
conjugate to obtain a system of cross- and auto spectra:

Φi
y x ( jω) = H i

y x ( jω)Φi
xx ( jω)

Then based on historical data they calculate the cross and auto-spectra Φy x and Φxx and solve Hy x . When
the TF’s are determined, in combination with the -in meanwhile- predicted values for X i

1(ω)...X i
3(ω) to ob-

tain Y (ω) via Equation 1.3. By transforming the acquired frequency-domain of the predicted motions into
the time domain, via an IFFT, motions in the time-domain are obtained. One may notice that this work has
similarities to the work presented in this report. Differences are, in this report a higher order expansion is not
made for the correction to shorter waves while the work by Alford. et. al. does not include the diffraction
forces and represents the ship as an barge. This does not mean that one approach is necessarily better than
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the other. A future -comparative- study should provide an answer to which approach is preferred.

Another approach -under the assumption that the wave-heights components can accurately be determined-
, linear-scaling of the pre-computed RAO’s by the difference in the 0th moment of the predicted and measured
motions [15]. The difference between this method and proposed solution in this report is that they use a lin-
ear scaling factor for the whole RAO, and thus a frequency independent solution, while via a spectral analysis
no initial RAO is assumed which results in a frequency dependent solution.

There is one part in the work mentioned above which, from a personal perspective, describes exactly what
the essence of accurate real time-motion prediction is all about and where this research fits in, namely: “The
relative difference between the calculated and the measured spectral moments, (. . . ), is an indirect measure
of how accurate (or inaccurate...) the onsite sea state is estimated or how well the RAO describes the consid-
ered response for the given conditions. In reality, it would be more precise to change the word ‘or’ with ‘and’,
since it is the combined effect of the estimated sea state and the particular RAO (. . . )” (Nielsen and Iseki, [15],
p.3). Relating this quote to this research, it will be shown that estimating transfer-functions from -unscaled-
forces and motions will counteract for both the uncertainties of the wave amplitudes (|η̂a,n |) as for the uncer-
tainties in the transfer-functions (as discussed in Section 1.1.1).

Spectral analysis
As mentioned in Section 1.1.1 the main objective is to estimate a force-to-motion TF from measured motions
and predicted forces which will be used to increase the accuracy of real-time motion prediction. For the es-
timation of the transfer-functions different techniques can be used which will all take as an input Fi (t ) and
ξi ,m(t ) as an output signal. Below a brief introduction of the used estimation method will be given

A literature review on spectral analysis showed that there are, in general, numerous options to estimate
a TF based on a system with an in- and output[11][21]. Since the area of the estimating transfer-functions
from measured ship responses is still quite unexplored, the choice has been made to start with the two most
straight forward methods found in literature; the Empirical Transfer Function Estimation method (ETFE) and
the Cross Spectral Method (CSM)[11][7][21]. In both methods two time-domain signals are first transformed
into the frequency-domain, via a Fourier Transformation, and afterwards the TF’s are simply obtained due
to multiplications and divisions of those spectral results. In these books also methods are described how the
outcome of the TF’s can be stabilized by for example: Welch-averaging and applying window functions to
the time-domain signals. An extensive explanation about the estimation, smoothing techniques, and factors
which will affect the outcome of the estimated transfer-function, will be given in Chapter 3.

1.2. Sub-objective and research questions
To recall from Section 1.1.1, the main objective of this research is to refine the accuracy of real-time ship
motion predictions by inserting estimated transfer-functions into a linear ship motion model bases on a
frequency-domain approach. In the previous section it was shown that there are several methods which can
be used to estimate these transfer-functions. In order to evaluate the different estimation methods and to
assess if these estimations result in more accurate predictions, the sub-objective of this research is described
as follows:

“The sub-objective of this research is to develop numerical models to assess if estimated transfer-function will
result in more accurate motion predictions by comparing the frequency- and time-domain solutions to those

based on pre-calculated transfer-functions”

As one may notice from the problem description and literature review from the previous section, the
problem has become a two-fold. At the one hand, one may want to which estimation method should be used
to estimate a transfer-function from measurement. At the other hand, one would like to know if and by how
much the accuracy of the motion predictions increases when those estimated transfer-functions are used.
Therefore, the first main question will be defined as:

“Which transfer-function estimation method and smoothing techniques should be used to increase the
accuracy of real-time motion prediction?”
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As stated in the previous section, beside the different estimation methods there are also techniques to smoothen
the results. Furthermore, there may also be other factors, which not have been initially anticipated, which in-
fluences the results. Also, the solution should be obtained within an acceptable time-window for practical
usage. Therefore, to answer the first main questions the following sub-questions need to be answered:

• “What are the -dis- advantages of the CSM and ETFE?”

• “How can the results of the estimation methods be smoothend?”

• “Which factors will influence the outcome of the estimation methods?”

• “In which time-window can a reliable estimate of the transfer-function be made?”

For the second part the main question will be defined as:

“How much does the accuracy of real-time ship motion prediction increase when an estimated
transfer-function is used in a linear ship motion model, based on a frequency-domain approach, compared to

the solutions obtained from pre-calculated transfer-functions?”

To answer this question the following sub-questions have been defined:

• “Which measure(s) should be applied to asses the accuracy of the predicted ship motions?”

• “How accurate can ship motions be predicted when a pre-calculated transfer-functions are used?”

• "How accurate can ship motions be predicted when an estimated transfer-function is used?”

• "Are there other factors which influences the accuracy of real-time motion prediction?”

1.3. Notations & Definitions
1.3.1. Axis system
For the sake of notation, Figure 1.1 shows the definitions of the axis systems used throughout the document.
Table 1.1 shows the definitions related to those axis system. As shown in the figure, an earth- and ship bound
axis system is defined. The origin (O) in the ship-bound axis system is defined in the Center Of Gravity (COG).
The spatio-temporal origin (O′) is defined at a certain geographical position on earth which will changes over
time. The z-axis in both the ship- as earth bound axis system is pointing towards the reader, i.e. a right-
handed coordinate system. Table 1.2 shows the definitions and notations of the different of the 6 (DOF). The
axis column as shown in table indicates among which axis, as defined in Figure 1.1, the translation or rotation
occurs. A important remark, θ andΨ are defined counterclockwise with respect to the axis system.

Figure 1.1: Axis system definition

Notation Unit

Wave direction θ rad

Heading Ψ rad

Ship fixed coordinates x0, y0 m

Earth fixed coordinates x, y m

Table 1.1: Axis system definition

Table 1.2: Definitions of translations and rotations.

Translations Axis Notation Unit Rotations Axis Notation Unit

Surge x0 ξ1 m Roll x0 ξ4 rad

Sway y0 ξ2 m Pitch y0 ξ5 rad

Heave z0 ξ3 m Yaw z0 ξ6 rad
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1.3.2. Transfer function estimates
In Chapter 3 two methods to estimate a TF from measured data will be presented, the Cross-Spectral method
(CSM) and the Empirical Transfer Function Estimation ETFE. Also different techniques will be presented to
average the results, i.e. the ET F E and C SM methods. By averaging it is meant that the full motion and force
record is divided into M blocks and their intermediate results are averaged. The equations for the different
transfer-function estimations are defined as:

ET F E/C SM : Ǧi ( jω) = Yi ( jω)

Xi ( jω)

ET F E : Ǧi (iω) = 1

M

M∑
m=1

Y m
i ( jω)

X m
i ( jω)

C SM 1 : Ǧi ( jω) =
1

M

∑M
m=1 Y m

i ( jω)X ∗m
i ( jω)

1
M

∑M
m=1 X m

i ( jω)X ∗m
i ( jω)

C SM 2 : Ǧi ( jω) =
1

M

∑M
m=1 Y m

i ( jω)Y ∗m
i ( jω)

1
M

∑M
m=1 X m

i ( jω)Y ∗m
i ( jω)

(1.4)

where i denotes the DOF observed, Yi ( jω) is the Fourier Transform of the motion signal (ξi (t )), Xi ( jω) the
Fourier Transform of the force signal (Fi (t )),and ∗ denotes that the complex conjugate is taken. An extensive
discussion about these estimation methods is given in Section 3.1.

1.4. Document structure
The document has been well organized following the so called IMRAD structure, i.e.: Introduction, Method-
ology, Results, and Discussion. This and the previous sections were part of the introduction, Chapter 1. The
content of the other chapters will be briefly discussed below.

The methodology part of this research has been spread out over two chapters, Chapter 2 and 3. In Chap-
ter 2 the numerical models which have been developed to estimate the TF and predict ship motions are
discussed. In more detail, some topics which will be presented are: how wave-components can be obtained
trough radar data, what the governing equations are to calculate the wave-induced ship motions, explanation
of the the prediction time parameter τ ,and what the difference is between reconstructing and predicting ship
motions.

In Chapter 3 different techniques are presented how to estimate the TF’s from measured motion and
force records. The estimation methods discussed are the -averaged- Empirical Transfer Function Estimation
method (ETFE,ET F E) and the averaged Cross-Spectral Method (C SM 1,C SM 2). Also different techniques are
shown on how to smoothen the estimations via window-functions and Welch-averaging.

In Chapter 4, synthetic and sea trial data will be used to derive a transfer-function to reconstruct and
predict wave induced ship motions, obtained from the numerical model described in Chapter 2.3 and the
transfer-function estimation techniques as given in Chapter 3. The results are analyzed via defined assess-
ment criteria defined in section 4.1. And finally, in Chapter 5 the conclusions and reccomendations will be
given.



2
Ship motions prediction

To predict wave-induced ship motions there are basically two main components required. A prediction of
the wave-field and a method on how the ship response to those waves. In this section a thorough explanation
will be given how the information from a ship its navigational radar can be used to obtain wave components
and how these can be used to calculate the wave-induced ship motions, based on linear ship motion theory.
In this chapter also an explanation about the developed models will be given and the argumentation why the
wave-induced forces can be used as an input for the estimation of transfer-functions. The described models
are used in Chapter 3 and 4 to estimate transfer functions and predict the ship motions, driven by syntheti-
cally generated data and sea trial results.

2.1. Wave-field prediction
As already mentioned in Section 1.1.1 the wave components can be predicted with the use of the ship its (co-
herent) navigational radar. For the explanation on how wave components can be subtracted from radar data
the explanation as given by Naaijen et. al.[14][13] will be followed.

On every revolution of the radar a 2-D image is obtained from the back-scatter of the radar, σr (x, y, t ),
which is illustrated in Figure 2.1 (left). From this data than a 3-D spectrum can be obtained as function of
the wave number,Sσr (~k,ωr ), using a 3-D Fast Fourier Transform (FFT). To gain conficende of the spectrum
obtained the solutions of multiple radar revolutions/images, typically between 5-10, are averaged [13]. Then
a so called dispersion filter is used to only keep the wave components which are related to the ocean waves
which results in a 2-D spectrum Sσr (~k). By assuming that the back-scatter is related to tilt, the following
relation should hold:

δσr (x, y) =βi∂rη(x, y) (2.1)

where βi is a scaling factor, which will be discussed below, and η(x, y) is defined as:

η(x, y) =R
[
η̂a(~kn)e i (~k~x )

]
(2.2)

from which the complex amplitudes η̂a(~kn) are solved by a least square fitting method. An example of the
wave-components obtained from the described above is illustrated in Figure 2.1 (right). The scaling param-
eter βi is required since the "image" obtained from the radar is 2-D. This thus means that the exact wave-
heights are unknown. To -linearly- scale the wave components the ratio between the standard deviation of
the calculated unscaled motions and measured motions are used, for every DOF separately. In mathematical
notations this thus yields:

βi =

√√√√√ σ2
ξi

σ2
ξi ,m

. (2.3)

7
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The estimation of the true amplitudes of the waves is in general a challenging task, as already mentioned
in Section 1.1.2, and can be accomplished in several ways [13][18][4][15]. However, in this research it is as-
sumed that this scaling is naturally adopted when a TF is estimated from unscaled force records and absolute
measured motions thus βi will not be adopted into the model when forces are calculated.

(a) Example of raw back scatter σr (x, y) image (b) Example of wave-amplitudes |η̂a (~kn )| as function of |kx |
and |ky |

Figure 2.1: Raw scatter data obtained from radar (left) and the phase resolved wave field components (right)[14][13]

2.2. Separation of the directional dependent wave-forces
The main goal of this section is to show that wave induced forces and moments can be used as an input sig-
nals for the estimation of transfer-functions, which will be discussed in Chapter 3. Before this argumentation
will be given first, a brief recap of linear ship motion theory will be held be used for the argumentation of this
statement as well as an introduction to the next section.

2.2.1. Linear Ship motion theory: a brief recap
It is well known and accepted that under mild conditions, i.e. small displacements and angles, wave induced
ship motions can be calculated by linear ship motion theory[9]. In this theory the resulting ship motions are
calculated by the summation of the steady-state responses of the ship to each individual wave, also known as
the super-position principle. The steady state response, to a single wave, of the motions (ξi (t )) is the result of
the following mass-spring system:

~FF K (t ,ω,µ)+~Fd (t ,ω,µ) = (I + A(ω,U ))~̈ξ(t )+B(ω,U )~̇ξ(t )+~ξ(t ) (2.4)

where: A(ω,U ) and B(ω,U ) are the frequency dependent added mass and damping coefficients matrices, I
is the inertia/ mass matrix, and the matrix C contains information of the spring coefficients. Furthermore,
Fi ,F K (t ,ω,µ) and Fi ,d (t ,ω,µ) are the Froude-Krilov and respectively diffraction forces, which together form
the wave-induced forces, i.e. ~Fw (t ,ω,µ) = ~FF K (t ,ω,µ)+~Fd (t ,ω,µ). The time-domain steady state solution of
the wave-forces of a single frequency can be defined as:

Fi ,w (t ,ω,µ) =R
[

Fa,i (ω,µ)e− j (ωt+εη,Fi )
]

(2.5)

and for the motion yields:

ξi (ω,µ,U ) =R
[
ξa,i (ω,µ,U )e− j (ωt+εη,ξ)

]
(2.6)

Substituting the two expressions as given above into equation 2.4 yields:

R
[

Fa,i (ω,µ)e− j (ωt+εη,Fi )
]
=R

[(−ω2 (I + A(ω,U ))−ωB(ω,U )+C
)
ξa,i (ω,µ,U )e− j (ωt+εη,ξ)

]
(2.7)
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In order to find to find ξa,i and εη,ξ requires Fa,i (ω) , εη,Fi , A(ω), B(ω), I , and C , to be defined. Since it is
assumed that the reader of this report is somewhat familiar with -linear- ship motion dynamics, the determi-
nation of the static matrices, that is: I and C , will not be discussed and only a brief recap of the determination
of the fluid related coefficients will given below to highlight the important aspects in this and the following
sections.

For the determination of the fluid-related -normalized- coefficients, that is: Fa,i (ω), εη,Fi , A(ω,U ), and
B(ω,U ), usually Boundary Element Method software (BEM), based on potential theory, is used. By normal-
ization is meant that the obtained coefficients are divided by the, usually small, wave-height or displacement
they have been calculated with. This can be rectified by the fact that linear theory is used which means that
if (for example) the wave forces are calculated with a wave-height of ηa = 1 [m] that the wave-forces at (for
example) ηa = 2 [m] can be found by multiplying the normalized coefficient with 2. In other words, for a
single wave of height ηa and a certain ω the a time-domain description of the force is defined as:

Fi ,w (t ,ω,µ) =R
[
ηa

Fa,i (ω,µ)

η1
e− j (ωt+εη,Fi )

]
=R

[
ηa H ′

0( jω,µ)e− j (ωt )
]

(2.8)

where the jω notation has been adopted as a reminder that the transfer-function H ′
0,i ( jω,µ) is complex. The

additional 0 in the subscript of the TF has been chosen as a reminder that these are pre-calculated. Similar
argumentation about normalizing the coefficients also holds for the other fluid related coefficients (A(ω,U )
and B(ω,U )), which are related to the fluid motion due to the motion of the vessel itself, and thus not the
wave height as for the wave forces. As a final remark, the coefficients as defined above are usually calculated
at the Center Of Gravity (COG). If eventually a displacement or rotation at another point is required transfor-
mation matrices are used.

By solving Equation 2.7, with the normalized coefficients as described above, will eventually result in:

ξi (t ,ω,µ,U ) =R
[
ηa

ξa,i (ω,µ,U )

η1
e− j (ωt+εη,ξ)

]
=R

[
ηa H0,i ( jω,µ,U )e− j (ωt )

]
(2.9)

With the motions and forces for one single wave defined it follows that the resulting motions,for the i th
DOF, can be found by the summation of N wave-components. By taking also into account: vessel speed, the
distance between the vessel and spatio-temporal origin, wave numbers, and the random phase angle of the
wave-component, that this results in:

ξi (x, y, t ) =R
[

N∑
n=1

η̂a,n ·H0,i ( jωe,n ,µn ,U ) ·e− j (ωn ·t−kx,n ·x−ky,n ·y
]

(2.10)

where H0,i ( jωn ,µn ,U ) are the wave-to motion transfer-functions, also as Response Amplitude Operators
(RAO’s). The frequency of encounter (ωe,n) as shown in the equations above can be calculated by:

ωe =ω−|~k|U cos(µ) (2.11)

For the force a similar expression can be found, namely:

Fi ,w (x, y, t ) =R
[

N∑
n=1

ηa,n ·H ′
0,i (ωe,n ,µn) ·e− j ( jωn ·(t )−kx,n ·x−ky,n ·y−εn )

]
(2.12)

where H ′
0,i ( jωn ,µn) are the wave-to-force transfer functions.

2.2.2. Forces and moments as input signals for transfer-function estimations
In this report it is assumed that the calculated wave-forces (Fw = FF K +Fd ), which will be shorthanded as F
in further notations, can be taken as an input for the different estimation techniques of the TF, which will
be discussed in Chapter 3. The argumentation why this is a reasonable assumption will be discussed in the
upcoming paragraphs.

As stated by -for example- Alford et. al [1] solving the inverse problem, to find the RAO’s as given in
Equation 2.10 from measurements, can be a quite challenging task due to the directional dependent transfer
function H0,i ( jω,µ,U ). However, from Equation 2.4 it can be seen that the directional dependency is "added"
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to the transfer-functions by the wave forces F (ωn ,µn ,U ) and not by: mass- and inertia forces (I ), forces due
to fluid-motions induced by the ship its motions (A(ω,U ),B(ω,U )) , and spring forces (C ). In other words,
applying the same excitation force (Fw,i (t )) from two different directions results in the same motion response,
when the coupling terms are neglected. As a result, when the main-diagonal of the matrices I ,A,B , and C , are
used for calculating the transfer-function H0,i ( jωn ,µn ,U ) the operation:

Gi ( jωn ,µn ,U ) = H0,i ( jωn ,µn ,U )

H ′
0,i ( jωn ,µn ,U )

(2.13)

results in a polar-symmetric force-to-motion transfer-function, for a constant U . What is meant with polar-
symmetry is illustrated in Figure 2.2 in the form of a contour plot and two similar cross sections.

Figure 2.2: Polar symmetry in case of zero velocity

Since the solution for Gi is the same in every direction, µn can be eliminated from Equation 2.13 and the
3-D problem becomes a 2-D problem (for a constant U). By rewriting Equation 2.10 to an equivalent form
defined as:

ξi (x, y, t ) =R
[

N∑
n=1

η̂a,n ·H ′
0,i ( jωe,n ,µn) ·Gi ( jωe,n)e− j (ωn ·t−kx,n ·x−ky,n ·y

]
(2.14)

results in a description for the total/resulting ship monitions which contains a part which is and part which
is not directional dependent. In more detail, the H ′

i ( jωe,n ,µn) is the directional depending wave-to-force TF
while Gi ( jωe,n) is the directional independent force-to-motion TF. By taking the force in the i -th direction
(Fi (t )) as an input and the motions in the i -th direction (ξi ,m(t )) as an output, in the next chapter different
method will be discussed on how the transfer-function Gi ( jωe,n) can be estimated.

Elaborating on the coupling terms, also for the coupling terms (non-diagonal terms) holds that the direc-
tional dependency is added by the wave forces (see Equation 2.4). This means that also for each non-diagonal
term the solution of Equation 2.13 is polar-symmetric. When (for example) the coupling between heave and
pitch is made, for heave Equation 2.14 can be extended to:

ξ3(x, y, t ) =R
[

N∑
n=1

η̂a,n H ′
0,3( jωe,n ,µn)G33,i ( jωe,n)e− j (ωn ·(t+τ)+kx,n x+ky,n y)

]

+R
[

N∑
n=1

η̂a,n H ′
0,5( jωe,n ,µn)G35,i ( jωe,n)e− j (ωn ·(t+τ)+kx,n x+ky,n y)

] (2.15)

where G33,i ( jωe,n) relates the heave force to the heave motion and G35,i ( jωe,n) relates the pitch moment to
the heave motion. As a consequence of extending the equation, there is now one equation with two un-
knowns which cannot be solved straight away. However, the contributions of the coupling terms to the total/
resulting motions are in general small compared to those from induced by the main excitation force. There-
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fore, in this research the coupled effects are initially neglected1.

2.3. Numerical models
In this section the numerical models to estimate the transfer-functions and to predict the ship its motions
will be discussed. The main idea behind the model is that for every DOF separately the -historical- measured
motions (ξm,i ) and calculated forces (Fi ) will be used to estimate/train the TF’s. Then, those estimated TF’s
will be used to predict the ship its motions in the future.

Although the main idea behind the model and the corresponding governing equations are rather simple,
due to the large amount of -in time changing- variables the model has become quite complex. Therefore,
before discussing the models themselves the following topics will be discussed:

• Governing equations

• Time-variables

• Spatio-temporal origin

• Influence of heading and velocity

• Training data

• The numerical models

Governing equations
In the model three governing equations can be found: one to calculate the forces (Fi (x, y, t ,τ)), one to cal-
culate the motions (ξi (x, y, t ,τ)) based on estimated transfer-functions (Ǧi ( jω)), and one to calculated the
motions (ξi (x, y, t ,τ)) based on pre-calculated transfer-functions functions (H0,i ( jω)). The difference to the
force- and motion equations as shown in the previous section (Equation 2.10, 2.12 and 2.14) is that an addi-
tional time parameter is included τ. This parameter will be discussed in more detail in one of the following
sub-sections.

The motion predictions based on the pre-calculated TF’s (the current situation) are for the i -th DOF cal-
culated by:

ξi (x, y, t ,τ) =R
[

N∑
n=1

βi η̂a,n H0,i ( jωe,n ,µn)e− j (ωn ·(t+τ)+kx,n x+ky,n y)

]
. (2.16)

The motion prediction based on estimated TF’s (the proposed solution) are for the i -th DOF calculated by:

ξi (x, y, t ,τ) =R
[

N∑
n=1

η̂a,n H ′
0,i ( jωe,n ,µn)Ǧi ( jωe,n)e− j (ωn ·(t+τ)+kx,n x+ky,n y)

]
(2.17)

And the wave-force predictions for the i -th DOF are calculated by:

Fi (x, y, t ,τ) =R
[

N∑
n=1

η̂a,n H ′
0,i ( jωe,n ,µn)e− j (ωn ·(t+τ)+kx,n x+ky,n y)

]
(2.18)

In which:
βi = Scaling factor for the wave-height components

Fi (x, y, t ,τ) = -Predicted- wave forces for DOF i

ξi (x, y, t ,τ) = -Predicted- motions for DOF i

kx,n ,ky,n = Wave number components

x, y = Distance to spacial-temperol origin

η̂a,n = complex wave-height component

(2.19)

1In the final stage of this research, a small additional study has been performed where the coupling between heave and pitch was made.
In Section 4.4 this method and the results will be shown. The coupling of the other DOF’s will be left for future studies.
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ωn = Wave-frequency component

µn = Wave direction relative to the vessel

H ′
0,i ( jωe,n ,µn) = Pre-calculated wave-to-force TF

H0,i ( jωe,n ,µn) = Pre-calculated wave-to-motion TF

Ǧi ( jωe,n) = Estimated force-to-motion TF

U = vessel velocity

t = Time

τ = Prediction time

(2.20)

The jω notation in the transfer-functions has been chosen as a reminder to the fact that these are com-
plex variables.

Time-variables

One may notice that there are two time-variables involved in these equations, t which is a time variable with
respect to the spatio-temporal origin and τ the prediction time. By keeping τ fixed, at for example τ= 30, and
evolving over t will result in constant prediction of the motions 30 seconds ahead. There is one specific case
which should be mentioned called a now-cast prediction, in this case τ = 0 while evolving over t . In other
words the motions are real-time predicted 0 seconds ahead.

One of the difficulties of the additional time parameter τ is that parts of the Equations 2.16 till 2.18 are
depending on parameters which are basically unknown in the future, like the velocity U and the heading Ψ,
and therefore need to be estimated as well. However, when a vessel is sailing at a constant speed in a certain
direction it is safe to assume that these parameters can be predicted with decent accuracy and are therefore
considered to be known in the models. More specifically, since the motion predictions will be re-simulated
from sea-trial data, and thus the exact positions are known, "future" information is used to determine the
heading, position and velocity.

Spatio-temporal origin

As mentioned in Section 1.1.2 and 2.1, the wave-field is predicted with a spatio-temporal origin. In other
words, the origin at which the wave-field is predicted changes over time, due to movement of the vessel and
thus also the positions at which the radar images are obtained. This origin corresponds to a certain geologi-
cal position on earth expressed in latitude and longitude, like for example: 52.0171774, 4.3595728 (in decimal
degrees).

Since the wave-field predictions are updated every 6 [s], the distance from the ship its COG to the spatio-
temporal origin also changes over time. The above is illustrated in Figure 2.3 where O′

1..O′
3 denotes the differ-

ent spatio-temporal origins and t1...t6 the position of the vessel as function of time. Relating the above to the
force and motion equation as shown in the Equations 2.16 till 2.18, at every point in -future- time the position
x and y needs to be defined. As previously stated, it is assumed that under a constant heading and speed the
future positions can accurately be calculated and therefore will be adopted into the model as known param-
eters.
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Figure 2.3: Change of spatio-temporal origin and movement of the vessel

Heading and velocity

As shown in the Equations 2.16 till 2.18, the transfer-function H ′
0( jωe,n ,µn) is depending on the wave direc-

tion, relative to the vessel, and the velocity (ωe,n). By the definition of the heading of the vessel as Ψ and the
wave direction in the earth fixed axis system as θ as illustrated in Figure 1.1 the wave-direction relative to the
vessel can be calculated by:

µn =Ψ(t +τ)−θn (2.21)

This variable needs to be calculated as well, for every future time step.

For the vessel velocity U , as shown in Equation 2.11 the frequency of encounter is a speed- and directional
dependent variable which makes H0( jωe,n , H ′

0( jωe,n ,µn), and Ǧi ( jωe,n) a speed dependent variables as well.
The speed is, again, a -future- time dependent variable which has been adopted into the model as a known
variable.

Training, predicting and reconstructing

When ship motions are predicted during operations by the method proposed in this report, the transfer-
functions can only be estimated/ trained from data which lies in the past. This may sound quite arbitrary
but, in Chapter 4 sea-trail data will be used for re-simulating motion predictions. This thus means that also
data which lies in the -re-simulated- future is available what can be used for training the TF as well. Figure
2.4 illustrates this difference where ΩT denotes the set of data which available for training the TF and Ωt

represents the data which is used for training, i.e. Ωt ⊆ΩT . The data which is contained within ΩT are the
recorded motions (ξi ,m(t )) and a now-cast prediction of the forces (Fi (t )).

The reason why the future data is used is because some of the data records from the Sea-trials are rela-
tively short. After the estimation of the TF there would thus not be a sufficient amount of data left to make a
qualitative assessment if the accuracy of the motion predictions increases. The justification that this can be
done is because the transfer-function is time independent function which should not change over a -short-
time interval.
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(a) Data set in case that no future data is used for estimating the TF’s

(b) Data set in case that future data is used for estimating the TF’s

Figure 2.4: Difference in the use of the available data for training the TF’s

Numerical models
Two numerical models have been made, in Matlab2018a, to determine if the use of estimated transfer-functions
will result in a more accurate motion predictions. The main difference between the models, one model uses
data from obtained from sea-trials measurements while the other model uses synthetically generated data.
A flowchart of both models is illustrated in Figure 2.5 and 2.6. As shown in the figures, both models contain
the same four blocks. In the first block, the green block, the transfer functions are estimated (Ǧi ( jω)). In the
second block, the blue block, the motions are predicted based on those estimated transfer-functions. In the
yellow block, the motions are predicted based on the pre-calculated transfer-functions H0,i ( jω). In the last
block, the predicted motions are compared. Furthermore, in both models the same pre-calculated TF’s (H0,i

and H ′
0,i ) are used. These transfer-functions correspond to a SPA-4207, a navy patrol vessel build by Damen

Shipyards, and are illustrated in Appendix C.

Sea-trial data driven model
Figure 2.5 shows the flow-chart of the numerical model, based on sea trial data. As shown in the chart, there
are several components required to estimate the transfer-functions (in the green block) and to predict the
motions (in the yellow and blue block). The transfer-functions H0,i ( jω) and H ′

0,i ( jω) are obtained by BEM
software, as already mentioned above. The other variables will be discussed below.

For the wave-components, every 6 seconds a file is received from the radar data analysis that contains the
wave-components: ωn ,~kn and η̂n , which are related to a certain geographical origin (O′). As shown in the
chart, the amplitudes (η̂n) and wave-numbers (~kn) are directly inserted into the (corresponding) equations.
For the wave-frequency (ωe,n) and wave directions (µn), an additional step is required since these variables
are depending on the heading (Ψ) and velocity (U ) of the vessel, as already discussed in one of the previous
sub-sections.

The velocity and heading for the estimation of the TF’s (the green block) is obtained from historical GPS
data. In combination with the radar data, the distance to the spatio-temporal origin (x,y) and the remaining
wave-components are calculated (µ and ωe ). For the motion predictions in the blue and yellow block; As
already discussed in one of the previous sub-section, under normal circumstances the heading (Ψ), velocity
(U ), and the geological location of the origin of the vessel (O), have to be predicted as well. However, in this
model they have been taken as known variables and are therefore are also directly adopted from the GPS data
into the model.

In the red block, the predicted motions (ξi (t )) based on the pre-calculated and estimated TF’s are com-
pared to the measured motions (ξi ,m). In Section 4.1 different assessment criteria are defined, which are used
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to determine if the use of estimated-transfer functions (Gi ( jω)) will result in more accurate motion predic-
tions.

Synthetic data driven model
Figure 2.6 shows the flow-chart of the synthetic model. The main difference with the previously discussed
model is that the wave-components are synthetically generated. For the generation of those wave-components,
the method as described by Goda [6] is used. In this method first a 2-D wave spectrum is defined where, with
the use of a distribution-function, directional dependency is assigned to. This procedure is discussed in more
detail in Appendix B. The difference to the wave-components obtained from the radar-data analysis, the syn-
thetic components have the right amplitudes. As already discussed in Section 2.1, the wave-components
obtained from the radar-data analysis need an additional scaling factor (βi ) since no information about the
true amplitude can be subtracted from the 2-D "images".

Another difference to the model based on sea-trial data, the vessel is kept at a fixed position. This means
that the heading (Ψ), velocity (U ), and the distance to the spatio-temporal origin (x,y), are not taken into
account. Furthermore, to simulate the measured motions ξi ,m in the transfer-estimation block (green block),
motion signals (ξi ,m) are created using Equation 2.16. These motion signals are generated with the same
wave-components which are used for the generation of the force signal.

Verification and validation of the model
For the verification of the numerical models, motions calculated by pre-calculated TF’s (H0,i ( jω)) have been
compared to those calculated by Next Ocean. The results where identical which verified the model. For the
validation, in Section 4.1 assessment criteria will are defined to asses how accurate (or inaccurate) the mo-
tions are predicted compared to those measured.
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Figure 2.5: Flowchart of numerical model driven by sea trial data. In the green block the transfer-function is estimated by the methods
as described in Chapter 3. In the yellow block the motions are predicted based on those pre-calculated TF’s, Equation 2.16. In the blue
block the motions are predicted by the estimated TF’s, Equation 2.17. In the red block, the solutions based on the pre-calculated- and
estimated TF’s are compared to the measured motion signals.
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Figure 2.6: Flowchart of synthetic model. In the green block the transfer-function is estimated by the methods as described in Chapter
3. In the yellow block the motions are predicted based on those pre-calculated TF’s, Equation 2.16. In the blue block the motions are
predicted by the estimated TF’s, Equation 2.17. In the red block, the solutions are compared and evaluated.





3
Transfer Function Estimation

In this Chapter two methods will be presented on how to estimate transfer functions from measured motions
and forces. The methods which will be discussed are the Empirical Transfer Function Estimation (ETFE) and
the Cross Spectral Method (CSM), Section 3.1. Furthermore, different techniques will be discussed on how to
improve the results using: window-functions and (Welch) averaging (Section 3.3). In Section 3.4 synthetically
generated data will be used to evaluate the different estimation techniques, which will be used in Chapter 4.3
to estimate a transfer-function from sea trial data and eventually reconstruct and predict wave-induced ship
motions.

Independent of the method chosen, the steps required to estimate a transfer-function, for the i -th DOF,
are shown in Figure 3.1 and can be defined as follows: The recorded motion and force signal (a) are divided
into M -overlapping- blocks and then modified using a window-function (b). Each block is then transformed
from the time-domain into the frequency domain using a Fast Fourier Transformation (c). Using the fre-
quency domain descriptions different methods are deployed (d) to estimated the transfer-function Ǧi ( jω)(e).

Figure 3.1: Flowchart for estimation of transfer function

3.1. Transfer function estimation methods
Before discussing methods to estimate transfer functions (TF’s) -or more formally Frequency Response Func-
tions (FRF)- and smoothing the results, the basic system which is concerned will be discussed. This is a linear
time-invariant Single Input Single Output (SISO) system which ideally can be written for the i th DOF in the
time-domain as:

yi (t ) = gi ,0(t )∗xi (t ) (3.1)

where ∗ denotes convolution, g0 is the (exact) unit impulse function, y(t ) is the output, x(t ) is the input.
Relating this to the research, the output, y(t ), will be defined as the measured motions (ξi ,m(t)) and the in-
put, x(t ), are the wave induced forces and moments (Fi (t)). Now, by transforming the equation above from
the time-domain into the frequency domain using a Discrete Fourier Transformation (DFT), see Appendix A

19
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more information on this procedure, will results in:

Y ( jω) =G0( jω)X ( jω) (3.2)

where the jω notation has been chosen as a reminder that these Fourier Transforms are complex numbers.
The ultimate goal is thus to estimate the true transfer-function G0 by using the data from x(t ) and y(t ).

Noise
A careful reader may have noticed that in the paragraphs above words such as: estimate, linear and ideally,
have been emphasized. This is because the measured in and output signals are not ideal, which means that
they are affected by noise, and not necessarily have to be linear. In other words, the measured input (xi (t ) =
Fi (t )) signal as given in equation 3.1 can be defined as:

xi (t ) = x0(t )+nx (t ) (3.3)

and for the output signal yields (yi (t ) = ξi ,m(t ))

yi (t ) = y0(t )+ny (t ) (3.4)

where x0 and y0 represent the exact linear signals and nx (t ) and ny (t ) represents the noise disturbances.
Noise in this sense are contributes to everything which is disturbing the linear system, and thus also non-
linear phenomena. In the frequency-domain the two above expressions become:

Xi ( jω) = X0( jω)+NX ( jω) (3.5)

Yi ( jω) = Y0( jω)+NY ( jω) (3.6)

In this report it is assumed that the noise is uncorrelated to the in- and output and has a Gaussian distribution
with a zero mean. These assumptions underlie the fundamental principles of estimation methods presented
in the upcoming sections. In mathematical expressions the properties of noise are [21]:

E{NX ( jω)} = 0 E{NY (ω)} = 0

E{|NX ( jω)|2} =σ2
Y ( jω) E{|NY ( jω)|2} =σ2

Y ( jω)

E{NX ( jω)N∗
Y ( jω)} =σ2

X Y ( jω) E{NY ( jω)NX ( jω)} = 0

(3.7)

where the E symbol represents the expected value.

Figure 3.2: Basic system

Discrete signals
In the equations as shown in the previous sub-sections are shown in continuous time and frequency while
the actual signals are discrete. Figure 3.3 the difference between a continuous and discrete sampled signals is
shown, where ∆t is the time-step between each sample. The rate at which the the samples are collected will
be referred to as the sampling-frequency and is calculated by:

fs = 1

∆t
. (3.8)

This sampling rate should be at least twice the highest frequency which occurs in the system to prevent under-
sampling, also known as the Nyquist sampling theorem. The motion- and force signals used for the analysis
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in this thesis are sampled at 10 Hz which is well above this limit (∼ 0.6 Hz). Furthermore, the result of the DFT
are discrete as well. The frequency step can be calculated by:

∆ω= fs

Ns
(3.9)

where Ns is the number of samples used for the DFT.

(a) continuous signal

(b) Discrete sampled signal

Figure 3.3: Difference between a continuous and discrete signal

3.1.1. Empirical Transfer Function Estimation
A commonly used method to estimate the TF’s is by the Empirical Transfer Function Estimation method
(ETFE). In this method the TF is directly estimated by dividing the frequency-domain description,as given in
Equation 3.2, of the measured output by the frequency-domain description of the measured input, i.e. [11]
[21]:

Ǧi ( jω) = Yi ( jω)

Xi ( jω)
(3.10)

where the notation Ǧ is chosen as a reminder that the TF’s are estimates. As shown in the previous section the
input and output are contaminated by noise and so the estimate TF contains errors. Furthermore, in Section
3.3.1 it will be shown that leakage errors will occur due to the Fourier Transformation itself [11] [21]. In other
words, the TF which will be estimated can be defined as:

Ǧ( jω) := Y ( jω)

X ( jω)
= Y0(( jω))+NY (( jω))

X0(( jω)+NX (( jω))
+TG ( jω) =G0( jω)

1+NY (( jω))/Y0( jω)

1+NX (( jω))/X0( jω)
+TG ( jω) (3.11)

where TG ( jω) represents the contribution due to leakage as mentioned above.

Bias and variance properties
In general there are two main error sources that can be distinguished , which together form the total error,
variable errors and systematic errors. To understand some of the basic principles/ properties of the system-
atic and variable errors, in the upcoming paragraphs the explanation by Pintelon et. al [21] will be followed.

To evaluate the systematic error, bias (b( jω)), and the variability, variance var ( jω), in the approximation
as given in equation 3.11 the -transient- term (TG ( jω)) will be neglected and the remaining terms can be
written as an -equivalent- Taylor Series expansion [21] which yields:

ǦN (iω) =G0( jω)

(
1+ NY ( jω)

Y0( jω)

)(
1− NX ( jω)

X0( jω)
+

(
NX ( jω)

X0( jω)

)2

+higher order

)
(3.12)

Due to this notation all the terms after the true TF (G0( jω)) are related to the errors that may occur.

Neglecting the terms higher than first order, the bias error is defined as the absolute difference between
the expected and true TF which thus results in:

b( jω) := |EǦ( jω)−G0( jω)| =
∣∣∣∣E[

G0

(
1+ NY ( jω)

Y0( jω)

)(
1− NX ( jω)

X0( jω)

)]
−G0( jω)

∣∣∣∣ (3.13)
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where X0( jωn) 6= 0 and Y0( jωn) 6= 0. Evaluating this equation, one can observe that noise will not generate
a bias error, as according to equation 3.7 E{NX ( jω)} = 0 and E{NY ( jω)} = 0. However, the approximation as
given above does not take the -transient- leakage errors into account which are related to the DFT itself, this
will be explained in more detail in 3.3.1, and decays as 1/

p
Ns .

Now for the variance, this is per definition the expected value of the difference between the estimated and
expected transfer-function squared. i.e.:

var (Ǧ( jω)) = E
[∣∣Ǧ( jω)−EǦ( jω)

∣∣2
]

(3.14)

Following the same manner of reasoning as for the bias, by approximating the estimated TF using the first
order terms only knowing that EǦ( jω) =G0( jω) as Ns →∞ [7] results in:

var (Ĝ( jω)) = |G0( jω)|2
(
σ2

X ( jω)

|X0( jω)|2 + σ2
Y ( jω)

|Y0( jω)|2 −2R

(
σX Y ( jω)

Y0( jω)X ∗
0 ( jω)

))
(3.15)

From this equation it clearly can be seen that the variance will depend on the terms like
σ2

X ( jω)

X0( jω)2 which directly

are related to the signal-to-noise ratio which is defined as:

SN R = σsignal

σnoise
(3.16)

From equation 3.15 and the definition of the SNR as given above, one may notice that the variance can only
be small if the SNR ratio is high, i.e. σsignal >> σnoise. However, unlike the bias error, the variance will not
vanish for stochastic signals [11] [7]. A brief explanation why: When -for example- a sine wave with frequency
ωk is generated, on every period new energy/ information is added to X0(ωk ) and Y0ωk , which thus makes
the variance decrease (see Equation 3.15). For stochastic signals however, increasing the number of samples
will result in a more dense frequency grid but the energy/ information will also be distributed over those -
multiple- frequencies.

Summarizing the properties above, the ETFE for a stochastic signal has the following properties [11] [7]:

• The ETFE is asymptotically unbiased, i.e. limNs→∞ EG(e iω) =G0(e iω).

• The variance does not decrease with an increasing number of samples and converges to Φv v (ω)
Φxx (ω)

1 .

• The ETFE at different frequency’s are are asymptotically uncorrelated.

Averaging
To reduce the poor variance behaviour of the transfer-functions estimated by the ETFE first, the full length
of the signal is divided into M blocks blocks each containing lw samples. Second, for each block the in- and
output signals are transformed into the frequency domain using the DFT. Finally, to estimate the TF’s the
frequency-domain descriptions of each block are averaged in the following way [11]:

Ǧi ( jω) = 1

M

M∑
m=1

Y m
i ( jω)

X m
i ( jω)

(3.17)

This method will be referred to as the averaged Empirical Transfer Function Estimation method (ET F E). The
parameter lw related to the window-length which will be discussed in more detail in Section 3.3.1. One should
notice that the numerator and the denominator is divided simultaneously, due the phase relation between
X ( jω) and Y ( jω).

A brief explanation why the numerator and the denominator simultaneously have to be divided: Since
the signals are stochastic the phase angles in each block will be randomly distributed. When the blocks are
averaged separately this results in E

[ 1
M

∑M
m=1 Y m

i ( jω)
] = 0 and E

[ 1
M

∑M
m=1 X m

i ( jω)
] = 0. One may suggest

1See Section 3.2 & 3.1.2 for the definitions ofΦv v (ω) andΦxx (ω)
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that by zero-padding2 the signals to a fixed time origin, the phase angles will no longer be randomly dis-
tributed and thus the numerator and denominator can be averaged separately, i.e. E

[ 1
M

∑M
m=1 Y m

i ( jω)
] 6= 0

and E
[ 1

M

∑M
m=1 X m

i ( jω)
] 6= 0. However, in Section 4.4 it will be numerically shown that this way of averaging

will not result in a better approximation for Ǧ( jω) .

Although averaging, by Equation 3.17, will counteract the poor variance behaviour, still large outliers may
occur when Ym( jω) >> Xm( jω) due the presence of noise. In the next section it will be shown that the nu-
merator and denominator can be separately be averaged when the C SM method is used, which resolves the
problem due to the outliers.

3.1.2. Cross-Spectral method
In the previous section it was shown that estimating the TF with the ETFE method results in a rough estima-
tion of the true TF, due to the poor variance. In this section another method will be presented which -partaly-
resolves this problem and is called the cross-spectral method (CSM). It first will be shown that the CSM has
a -very- strong relation with the ETFE as mentioned in the previous section, but has an additional advantage
when the solutions are averaged.

Connection to the ETFE
The proof of the connection starts with multiplying both sides of equation 3.1 with x(t −τ) [2] [7]:

y(t )x(t −τ′) = go(t )∗x(t )x(t −τ′) (3.18)

which can be rewritten to an equivalent form defined as:

Ry x (τ′) = go(t )∗Rxx (τ′) (3.19)

where Ry x (τ′) is called the cross-correlation function, Rxx (τ′) is the auto-correlation function, and τ′ is an
additional time parameter. Transforming the equation from above into the frequency-domain yields:

Φy x ( jω) =G0( jω)Φxx (ω) (3.20)

where Φy x ( jω) is known as the cross-spectral density function and Φxx ( jω) is known as the auto-spectral
density function, which will be shorthanded as cross- and auto-spectra in further notations.

If it assumed that the process is quasi-stationary then, by definition, the cross-correlation function is
defined as [7]:

Ry x (τ′) := E[
y(t )x(t −τ′)]= lim

Ns→∞
1

Ns

Ns−1∑
t=0

[
y(t )x(t −τ′)] . (3.21)

From this equation it follows that the most straightforward way to estimate this function is by [7]:

Řy x (τ′) = 1

Ns

Ns−1∑
t=0

[y(t )x(t −τ′)]. (3.22)

By substituting this equation into the definition of the DFT (See Appendix A), this results in an estimation of
the cross-spectrum of:

Φ̌y x( jω) = 1

Ns
Y ( jω)X ∗( jω) (3.23)

where ∗( jω) denotes that the complex conjugate should be taken.

Following a similar procedures as for the cross-spectra, also for the auto-spectra a relation to the DFT can
be found:

Φ̌xx(ω) = 1

Ns
X ( jω)X ∗( jω). (3.24)

2Zero-padding is a technique where a number of zero’s are added to a signal to decrease ∆ω.
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By substituting the auto- and cross-spectra as defined above in Equation 3.20, the transfer function for
the i -th DOF can be estimated by:

Ǧi ( jω) := Φ̌i ,y x ( jω)

Φ̌i ,xx (ω)
= Yi ( jω)X ∗

i ( jω)

Xi ( jω)X ∗
i ( jω)

. (3.25)

The above mentioned method to estimate the TF will be referred to as the C SM 1 method in further notation.
By following a similar derivation as for the C SM 1 method, a second estimation method can be derived by
multiplying both sides of equation 3.1 with y(t −τ′). This alternative method will be defined as C SM 2 where
the TF’s can be estimated by the following equation:

Ǧi ( jω) := Φ̌i ,y y (ω)

Φ̌i ,x y ( jω)
= Yi ( jω)Y ∗

i ( jω)

Xi ( jω)Y ∗
i ( jω)

(3.26)

The two estimation methods as given above will by definition be equivalent to the ETFE, see equation
3.10, and thus will hold the same bias and variance properties, for one single realization. However, by mul-
tiplying the equation with the complex conjugate of one of the signal itself, the denominator or numerator
(depending on which definition observed) becomes a real value, i.e. the phase information is in the numera-
tor or denominator. This has an advantage which will be shown in the following sub-section.

Averaging

For the ET F E it was stated that averaging has to be performed for the whole fraction at once, due to to the
fact that the phase angles of Xi ( jω) and Y ( jω) are related. However, since the denominator of the C SM 1

only contains a real number the numerator and denominator can be averaged separately. Of course the same
applies for the C SM 2 but then for the numerator. This result for the C SM 1 in:

Ǧi ( jω) := Φ̌i ,y x ( jω)

Φ̌i ,xx (ω)
=

1
M

∑M
m=1 Y m

i ( jω)X ∗m
i ( jω)

1
M

∑M
m=1 X m

i ( jω)X ∗m
i ( jω)

(3.27)

and for the C SM 2 in:

Ǧi ( jω) := Φ̌i ,y y (ω)

Φ̌i ,x y ( jω)
=

1
M

∑M
m=1 Y m

i ( jω)Y ∗m
i ( jω)

1
M

∑M
m=1 X m

i ( jω)Y ∗m
i ( jω)

. (3.28)

By averaging the numerator and denominator separately the problem of the outliers due to the variance
is significantly reduced but an additional problem arises. Evaluating this problem for the C SM 1, since [21]:

a.s. lim
M→∞

≈G0( jω)
1+σ2

Y X ( jω)/E{Y0( jω)X ∗
0 ( jω)}

1+σ2
X ( jω)/E{X0( jω)X ∗

0 ( jω)
(3.29)

an additional bias error will arise, which did not appear in the ETFE, which only will be zero ifσ2
X ( jω) = 0 and

σ2
X Y ( jω) = 0. The same of course applies when the C SM 2 method is analyzed. The method which should

be applied depends on the signal where the highest SNR can be found [21]. If a higher SNR can be found at
the input signal (ξi ,m(t )) then the C SM 1 method should be used but if the SNR is much higher at the output
(Fi (t )) signal than the C SM 2 method should be deployed.

3.1.3. Summary estimation methods
In the previous sections two different methods were shown to estimate the TF’s, the Emperical Transfer Func-
tion Estimation method ETFE and the Cross-Spectral Method CSM. It has been shown that the CSM has a
close relation with the ETFE when one single record is observed but results in different estimation when av-
eraged. While the estimate of the TF by the ET F E will suffer from outliers the estimation by the C SM may
result in an additional bias error. To summarize all the definitions of the estimation techniques, which will be
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used in the rest of the report:

ET F E/C SM : Ǧi ( jω) = Yi ( jω)

Xi ( jω)

ET F E : Ǧi (iω) = 1

M

M∑
m=1

Y m
i ( jω)

X m
i ( jω)

C SM 1 : Ǧi ( jω) =
1

M

∑M
m=1 Y m

i ( jω)X ∗m
i ( jω)

1
M

∑M
m=1 X m

i ( jω)X ∗m
i ( jω)

C SM 2 : Ǧi ( jω) =
1

M

∑M
m=1 Y m

i ( jω)Y ∗m
i ( jω)

1
M

∑M
m=1 X m

i ( jω)Y ∗m
i ( jω)

(3.30)

3.2. Spectral density functions, coherence function & variance
In the previous section it was shown that in CSM cross- and auto-spectra are used for the estimation of the
transfer-function. Using such spectra can be appealing in such a way that they are related to "energy", or
more formally spectral-density functions. To recall from that section, the following system for estimating the
TF’s was defined [7] [11]:

Φy x ( jω) =G0( jω)Φxx (ω); (3.31)

In this equation there are no contributions to noise. This is because noise contributions (which will be gen-
eralized in further notations as v(t )) are uncorrelated to the in- and output signal, i.e. Φv x ( jω) = 0 and
Φv y ( jω) = 0. However, noise will subtract energy from the system and therefore also the following equi-
librium should be satisfied:

Φy y (ω) = |G0( jω)|2Φxx (ω)+Φv v (ω); (3.32)

where Φv v (ω) represents the noise contained in the system. By substituting Equation 3.31 into 3.32 an esti-
mation for the noise spectrum can be made:

Φ̌v v (ω) = Φ̌y y (ω)− |Φ̌y x ( jω)|2
Φ̌xx (ω)

(3.33)

where, to recall from the previous section, the auto- and cross-spectra should be calculated by:

Φy x ( jω) = 1

M Ns

M∑
m=1

Y m
i ( jω)X ∗m

i ( jω) (3.34)

Φy y (ω) = 1

M Ns

M∑
m=1

Y m
i ( jω)Y ∗m

i ( jω) (3.35)

Φxx (ω) = 1

M Ns

M∑
m=1

X m
i ( jω)X ∗m

i ( jω) (3.36)

Basically, the noise estimate as given above is nothing more than the difference between the measured auto-
spectra (Φy y (ω)) and calculated auto-spectrum based on estimated TF’s (|Ǧi ( jω)|2Φxx (ω)). The use such
noise estimations is of interest because it gives an indication about how well two frequencies are correlated.
Two signals become uncorrelated when Y m

i ( jω)X ∗m
i gives a different solution (in amplitude and/ or phase)

for every block m. Possible sources noise sources are [21]:

• A nonlinear distortion, like the non-linear behaviour of ship motions.

• Other inputs beside x(t ) which contributes to the output, like wind, steering and other external factors.

• Extraneous noise in the measurements, like a noise in sensors and due to modeling.

• Leakage errors due the DFT.
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In the field of spectral analysis and system identification, there are two measures related to the noise estimate
which are commonly used for the assessment of the system. The first, the so called Coherence function which
is defined as [21] [11]:

γ2
X Y (ω) := |Φ̌y x ( jω)|2

Φ̌xx (ω)Φ̌y y (ω)
. (3.37)

which provides a number between 0 and 1, as function of the frequency. If the Coherence function is 1 the
frequencies are perfectly correlated while the opposite applies when the coherence function is 0. As for a
second commonly used measure, from the coherence function also a direct estimation of the variance of
Ǧ( jω) can be made. This can be calculated by [21]:

σ̌2
Ǧ

( jω) ≈ |Ǧ( jω)|2 1−γ2(ω)

γ2(ω)
(3.38)

Because both the coherence and variance indicate how well the in- and out-put signals are correlated, they
will be used in Section 4.2 and 4.3 as assessment criteria for the frequency-domain solutions.

3.3. Window-functions & Welch-averaging
In this section two methods will be discussed to improve the TF estimates, applying window-functions and
Welch averaging. Window-functions are used to reduce the spectral leakage and Welch-averaging to recover
the energy lost due to the applied window-function.

3.3.1. Window function
As mentioned in Section 3.1.1 the quality of the estimated-transfer functions will be affected by a phenom-
ena called spectral leakage, caused by the Discrete Fourier Transformation (DFT) [11] [21]. This phenomena
occurs because one of the assumptions when using a DFT is that the signal is periodically extended outside
the measured interval. Since for stochastic signals this is not the case additional frequency components will
be generated. The generation of those additional frequency components can be explained by the following
example: The solid black line in the upper-part of Figure 3.4 shows a time-domain description of a generated
sine wave between 0 and ∼ 12.5 seconds. As one may notice, the dashed and dotted lines are time-shifted
copies the same sine wave periodically extended outside the measured interval. This extension outside the
measured interval, in this case, results in additional frequencies within the frequency domain which are not
present in the original signal. The result in the frequency-domain is shown in the bottom part of Figure 3.4,
which should be 1 solid spike.
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y(t+2T)
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Figure 3.4: Example of a sine wave periodically extended outside the measured interval. The top figure gives the time-domain description
and the bottom figure the frequency domain description

To reduce the effect of spectral leakage, so called window-functions are usually applied [11] [7] [21]. A
window-function, w(t ), is a function which tempers the beginning and the end of a time-domain signal



3.3. Window-functions & Welch-averaging 27

within a certain interval and is zero outside that interval, illustrated in Figure 3.5. These-functions can be
applied to the measured input and output signal, in the time-domain this yields:

w(t ) · y(t ) = g (t )∗ (w(t ) · x(t )) (3.39)

and in the frequency domain this yields:

W (ω)∗Y (ω) =G(ω) · (W (ω)∗X (ω)) (3.40)

From the equations as given above it can be seen that due to the convolution in the frequency-domain it is
easier to apply the window in the time-domain.
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s(t)  w(t)

w(t)

Figure 3.5: -Un- windowed sine wave

The window applied in Figure 3.5 was a Hamming window. Beside this window there are a lot of other win-
dow functions which can be used, all with there own characteristics which will be explained in the upcoming
paragraphs. In this report three window-functions will be shown and evaluated:

• Hamming Window

• Rectangluar Window (No window)

• Blackman-Harris window

There are 4 basic properties, illustrated in Figure 3.6, which can be defined when window-functions are eval-
uated:

• Main lobe width at -3dB: The width of the main lobe which indicates how many frequency bins next
to the main lobe will be effected by spectral leakage. This is of special interest for TF’s who have highly
fluctuating dynamic behaviour. If two frequency components with a high gradient are close to each
other the lower component can be buried underneath the higher component.

• Scallop loss: The maximum error which can occur. This error arises when the exact frequency compo-
nent falls between the frequency components obtained from the DFT. Although a low scallop loss will
result in a better amplitude estimation the main lobe width will increase as well. Therefore, a trade-off
between scallop loss and main lobe width is required.

• Highest side lobe level: The height, in dB, of the first side lobe. This gives an indication of the spectral
leakage outside the main lob width. A high side lobe level results in less spectral leakage, outside the
range of the main-lobe.

• Side lobe falloff: The rate at which the side lobes decreases.

Figure 3.7 shows a time-domain and frequency-domain description for three windows and Table 3.1 gives
the corresponding characteristics [22]. One may notice from the table and figure that increasing the main
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lobe width will decrease the scallop loss and side-lobe level. However, this thus also means a larger leakage of
the main-lobe into the neighbouring frequencies bins. Therefore, in Section 3.4.3 the window-functions will
compared.

Beside the type of window, the window-length (wl ) is also important. Figure 3.8 shows for wl = 64 and
wl = 512 a frequency-domain description of the Hamming window. With more samples the frequency res-
olution increases which will result in a narrower main lobe when evaluated in the "frequency-space" rather
than in the "sample-space". In other words, with an increasing window-length the effect of spectral leakage
reduces (with 1/

p
wl ) since the main-lobe will be spread over a narrower frequency band. Although applying

a window-function will reduce the effect of spectral leakage, it will never vanish [11].
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Figure 3.6: Properties of a window functions

Table 3.1: Characteristics of different window-functions

Window
Highest sidelobe

level (dB)

Side lobe falloff

(dB/octave)

Scallop loss

(dB)

Main lobe width at -3dB

(bins)

Rectangluar -13 -6 3.92 0.89

Hamming -43 -6 1.78 1.3

Blackman Harris

4-sample
-74 -6 1.03 1.74
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Figure 3.7: Comparison between window functions (Ns =64 samples)
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Figure 3.8: Hamming window with Ns =64 and Ns =512

3.3.2. Welch averaging method

In the previous section it was shown that spectral leakage can be reduced when the a window function is
applied. The downside of this method is that information/ energy will be lost due to the tempering of the
beginning and end of the signals. To overcome this problem, the total length of a record can be divided into
M overlapping blocks, with a length of lw samples, illustrated in Figure 3.9. Then, transforming the signals
into the frequency domain and deploying one of the averaged estimation methods as given in Section 3.1 will
provide a solution where most of the energy/ information is retained. This procedure is known as the Welch
method or Welch averaging [11]. Although the amount of overlap can be varied from 0 to 100%, an overlap
of more than ∼ 50% (depending on the amount of samples and type of window used) will not provide new
information and will not significantly improve the results [11]. For all the averaged estimation techniques
(ET F E and C SM 1 ) in this report the amount of overlap will be kept at a fixed value of 75%.
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Figure 3.9: A sine wave divided into M = 2 blocks. The top of the figure shows the original sine wave. The middle figure shows the same
sine wave with 0% overlap. The bottom figure shows the sine wave with 50% overlap. In both the middle and bottom figure an Hamming
window is applied

3.4. Transfer function evaluation
In Section 3.1 several methods were discussed on how a TF can be estimated from the calculated forces and
measured motions. In Section 3.3 different techniques were discussed that smoothen the estimation meth-
ods, by reducing spectral leakage and Welch-averaging. In this section synthetically generated data will be
used to analyze those estimation- and smoothing techniques, which will form the foundation of the estima-
tion of the TF in the next chapter.

In the following sub-sections the following topics will be discussed:

• The effect of noise on the transfer function

• The effect of record- and window length

• The effect of different window functions

The results shown in this section have been obtained by the numerical model as described in Section
2.3. The wave-components are synthetically generated using the method proposed by Goda [6]. The wave-
parameters have been chosen in such a way that they correspond to those during the sea trails, i.e. a JOHN-
SWAP wave-spectra, Tp = 7.6 [s], H1/3 = 2.2 [m] [14], and a mean wave direction of µ = 1/4π. Furthermore,
the sampling frequency ( fs ) of the motion and force signals has been set to 10 [Hz], which corresponds to the
frequency used in the sea trial data.

3.4.1. Effect of noise
In Section 3.1 it was stated that the presence of noise will affect the outcome of the estimated transfer-
function. To recall, for the ETFE and ET F E it is likely that a larger(er) variances may occurs while for the
C SM a bias error may be created. Furthermore, as already discussed in Section 3.1.2, according to R. Pin-
telon and J. Schoukens [21] the choice between the C SM 1 or C SM 2 depends on which signal which contains
the most noise. If the noise at the input signal is higher than the noise at the output signal, the C SM 2 method
should be applied. When the noise at the output signal is higher than the noise at the input signal, the C SM 1

method should be applied. For the averaged, that is:ET F E C SM 1, and C SM 2, the following settings are used
for estimation: An Hamming window, a window-length of wl = 400 [-], and an overlap of 75%.
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In the upcoming paragraphs and next section Gaussian white noise is added to the time-domain motion-
(ξi ,m(t )) and force (Fi (t )) signals to study the effected on the estimation techniques. In order to add noise, the
standard deviation of the noise is required for the Gausian distribution function. As shown in Section 3.1.1 a
quantity related to this is the SNR ratio defined as:

SN R = σsignal

σnoise
(3.41)

The standard deviation σsignal can easily be calculated for the (undisturbed) force- and motion signals. By
substituting these standard deviations with a pre-defined SN R ratio into the equation above, a standard de-
viation for noise (σnoise) can be obtained . In other words, the standard deviation for the noise at the output
signal can be calculated by:

σi ,y =ασξi ,m (3.42)

and the standard deviation noise at the input signal can be calculated by:

σi ,x =ασFi . (3.43)

were the factor α = 1
SNR . By increasing α more noise will added to the signal observed. In the following

paragraphs first, noise will be added to the output-signal (ξi ,m(t )) for the evaluation of the ETFE, ET F E , and
C SM 1. In this signal the highest noise level, i.e. lowest SNR ratio, can be expected due to the non-linear
behaviour of ship motions. Seconly, noise will be added to the in- and/or output signal for the evaluation
of the C SM 1 and C SM 2. This because, as already mentioned above the choice between the C SM 1 or C SM 2

depends on which signal which contains the most noise.

Figure 3.10a till 3.10c shows for an increasing noise level at the output signal, the TF’s (Ǧi ( jω)) estimated
by the ETFE, ET F E , and C SM 1. As shown in Figure 3.10a, when the signal is free of noise the estimated TF’s
(Ǧ3( jω)) are almost equivalent to the pre-calculated TF (G0,3( jω)). The largest deviations between the pre-
calculated TF and the estimated TF can be found when the ETFE method is used. Increasing the noise level,
as illustrated in Figure 3.10b and 3.10c, shows that the variable error strongly increases when the the ETFE is
used for estimating the TF. For the ET F E the variable error also increases but less than the ETFE results. This
can be explained by he fact that averaging will decrease the variable error. When the results of the C SM 1 are
compared to those of the ET F E , it is shown that the estimations by C SM 1 are slightly better as those of the
ET F E .

Figure 3.10d shows the estimation of the TF by the C SM 1 and C SM 2. In the top of the figure the results
are shown where only noise is added to the output signal (ξi ,m(t )), in the middle figure noise is added only
to the input signal (Fi (t )), and in the bottom figure noise is added to both signals. When only noise is added
to the output signal, the C SM 1 shows a lower bias error as the C SM 2. With a similar amount of noise only
added to the input signal, the opposite applies which means that the C SM 2 shows a lower bias error. When
noise is added to both the input and output signal, the C SM 1 shows much a lower bias as the C SM 2.

With the above observations made and the assumption that the most noise can be expected at the output
signal, i.e. measured motions ξi ,m , it can be concluded that the most accurate estimates of the transfer-
functions probably will be obtained by the C SM 1 or ET F E method.
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(a) Comparison estimation methods: σy = 0σξm
(b) Comparison estimation methods: σy = 0.5σξm

(c) Comparison estimation methods: σy = 1σξm
(d) Comparison noise at in- and output CSM methods

Figure 3.10: Estimation the heave transfer-functions under the influence of noise. The red line in all the figures represents the pre-
calculated TF.Figure 3.10a till 3.10c shows for an increasing noise level at the output signal, the estimated TF’s by the ETFE, ET F E and
C SM1. Figure 3.10d shows the estimated TF’s by the C SM1, and C SM2. In the top of the figure noise is only added to the output signal,
in the middle noise is only added to the input signal, and in the bottom figure noise is added to both signals. For the averaged results,
that is: ET F E , C SM1, and C SM2, the following settings are used: An Hamming window, a window-length of wl = 400 [-], and an overlap
of 75%.
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3.4.2. Signal & window length
In this section an analysis will be made between the maximum available time for training/estimating the TF
and the window-length wl . This evaluation is of interest because, increasing the window-length will decrease
the bias error but increases the variable error, especially when one of the signals contains noise. This is also
known as the bias-variance trade-off [11]. For the evaluation, a measure for the error between the estimated
TF (Ǧi ( jω)) and the pre-calculated TF (G0,i ( jω)) is defined. This error is the absolute difference between the
amplitudes of the estimated TF (|Ǧi ( jω)|) and those pre-calculated (|G0,i ( jω)|) integrated over the domain
0.5 ≤ω≤ 1.3, and averaged over R = 20 realizations. I.e.:

ε= 1

R

R∑
r=1

∫
Ω

∣∣∣∣∣Ǧr
i ( jω)

∣∣− ∣∣∣Gr
0,i ( jω)

∣∣∣∣∣∣ (3.44)

Figure 3.11 shows this error for different window-lengths, as function of the total time available for training
the TF. In the top of each figure the error is shown based on the C SM 1, the middle figure shows the results
based on the ET F E , and the bottom figure shows the results based on the ETFE. For the ETFE, the window-
length is (by definition) always equal to wl = t · fs . The difference between the Figures 3.11a till 3.11c is the
amount of noise added to the output signal. The noise at the output signal has been generated in the same
way as discussed in the previous sub-section.

Figure 3.11a shows the errors when no noise is added to the output signal (σi ,y = 0σξi .m ). As shown in the

figure, for the ET F E and C SM 1 in general holds that increasing the training time will asymptotically decrease
the error. This can be explained by the fact that more averages will reduce the variable error. The results of the
C SM 1 also show that for a long training time (t = 800) holds, increasing the window-length results in a lower
error. This can be explained by the fact that by increasing the window-length more samples are evaluated,
which reduces the leakage error by 1p

Ns
as discussed in Sections 3.1.1 and 3.3.1. One may also notice that the

error of the C SM 1 is in general lower as the one of the ET F E . This can be explained by the fact that the ET F E
is more sensitive for outliers, as explained in Section 3.1.1. The results of the ETFE (bottom figure) show that
these errors are much higher as those of the ET F E and C SM 1.

Figure 3.11b and 3.11c show the errors of the estimated TF’s, for an increased noise level at the output
signal. In Figure 3.11b the results are shown with a standard deviation for noise of σy,i = 0.5σξm,i and Figure
3.11c shows the results where σy,i = 1σξm,i . As shown in the figures, increasing the noise level will in general

result in larger errors. Furthermore, for the averaged estimation techniques (ET F E and C SM 1) also the decay
rate of the error decreases. This can be explained by the fact that the variable error increases and therefore
more averages are required to reduce this error. Another observation which one can make between the re-
sults of the ET F E and C SM 1, the decay rate of the error where the TF’s are estimated by C SM 1 is higher as the
one those by ET F E . Since the decay rate of the error decreases, a smaller window-lengths may be preferred
when only a limited amount of training time is available. When the results of the ETFE are observed (bottom
figures), the errors of the ETFE increases with an increased noise level and are much higher as those of the
ET F E and C SM 1.

With the above observations made, it can be concluded that the choice of the window-length (wl ) de-
pends on the noise level in the signal and the total training time available.



34 3. Transfer Function Estimation

(a) Comparison estimation methods: σy,i = 0σξm,i
(b) Comparison estimation methods: σy,i = 0.5σξm,i

(c) Comparison estimation methods: σy,i = 1σξm,i

Figure 3.11: Errors between estimated- and pre-calculated transfer-functions, as function of window-length and total training-time for
the TF’s. In the top of all the figures the results are shown when the TF’s are estimated by the C SM1, the middle figures show the results
of the ET F E , and the bottom figures show the results of the ETFE. The difference between the figures 3.11a till 3.11c are the noise levels
at the output signal. For the averaged results, an Hamming window is applied with 75% overlap.
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3.4.3. Window functions
In Figure 3.12 the estimated transfer functions are shown using different window functions. One may notice
from the different estimates that the worst solutions are obtained when a Rectangluar window is applied.
Comparing the Hamming window to the Blackman-Harris window shows that a slight better solution can be
obtained when a Hamming window is used, especially at ω> 1.
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Figure 3.12: Comparison of different window functions. The transfer-functions are estimated by the C SM1 with: a window-length of
wl = 400[-] and an overlap of 75%

3.4.4. Summary and discussion
In the previous sections several analysis where made to evaluate the different estimation methods as de-
scribed in Section 3.1, driven by synthetically generated data. It is shown that due to the presence of noise
bias- and variance errors occur. Especially the ETFE method will be affected by noise and therefore is not rec-
ommended for estimation the TF’s. It also is shown that the C SM 1 is less influenced by noise than the C SM 2.
Comparing the C SM 1 to the ET F E showed that the error faster decays when the TF’s are estimated by the
C SM 1. Furthermore, in general applies that the longer the record the lower the error. Although a very long
record in combination with a large window will result in a low(er) error, due to time limitations for training
the TF’s and the presence of noise a smaller window may be preferred.





4
Results

The main objective of this research is to improve the accuracy of predicted wave-induced ship motions with
the use of TF’s estimated from measured motions (ξi ,m) and a now-cast prediction of the forces (Fi (t )). In
this section, the time- and frequency domain solutions resulting from these estimated TF’s will be compared
to the solutions where pre-calculated TF’s are used. To recall from Section 2.3, in case that pre-calculated
wave-to-motion transfer-functions (H0( jω)) are used the motions are predicted by:

ξi (x, y, t ,τ) =R
[

N∑
n=1

βi η̂a,n H0,i ( jωe,n ,µn ,U )e− j (ωn ·(t+τ)+kx,n x+ky,n y)

]
(4.1)

while in the case of the estimated force-to-motion transfer-function (Ǧi ( jω)) the motions are predicted by:

ξi (x, y, t ,τ) =R
[

N∑
n=1

η̂a,n H ′
0,i ( jωe,n ,µn)Ǧi ( jωe,n)e− j (ωn ·(t+τ)+kx,n x+ky,n y)

]
. (4.2)

In order to determine if the predicted motions are more accurate when estimated TF’s are used, in Sec-
tion 4.1 assessment criteria are defined. In Section 4.2 and 4.3 these criteria will be used for the evaluating
the results. The difference between Section 4.2 and 4.3 is that in Section 4.2 synthetically generated data is
while the results of 4.3 are based on sea-trial data. This chapter will end with a discussion about two different
topics, Section 4.4.

4.1. Assessment criteria
In this section time- and frequency-domain criteria are presented which are used in Section 4.2 and 4.3 to
evaluate if the use of estimated TF’s (Ǧ( jω)) will result in more accurate motion predictions. For the time-
domain comparison, the cross-correlation coefficient is used to evaluate the linear relationship between the
measured- and calculated motions, while the ratio of standard deviations will give an indication of the simi-
larity between the amplitudes of the measured- and calculated motions. For the frequency-domain solutions,
the motion response-spectra of the calculated- and measured motions will be compared. As already stated
in Section 3.2, the difference between the motion response-spectra based on the estimated TF’s (Ǧ( jω)) and
the measured motion-response spectra can be evaluated with the use of the so called Coherence function.
Therefore, also this function will be used as an assesement criterea.

Time-domain criteria
The cross-correlation coefficient (ρξi (τcc )) is an index between -1 and 1 which indicates how well two time-
domain signals are linearly related and how much the signals lag from one-another. This parameter is com-
monly used in real time-motion prediction to compare the predicted motions against those measured [13][1].

37
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This correlation coefficient can for the i -th DOF be calculated by:

ρξi (τcc ) = 1

T

∫ T

0

ξi (t )−ξi

σξi

ξi ,m(t +τcc )−ξi ,m

σξi ,m

dt , (4.3)

where ξi ,m represents the measured motion, T is the total time/ length of the record observed, τcc is a time-
shift operator, and σξi and σξi ,m are the standard deviations. Below an illustrative example will be given how
the outcome of this function should be interpreted.

Figure 4.1a shows an example of a measured sine wave (ξm) with an amplitude of 1 -blue line- and a
"calculated" sine wave (ξ) with an amplitude of 0.9 -green line-. Both the waves have a frequency of ω = 1
[rad/s]. Furthermore, one may notice from the figure that ξm lags ∼ 1.5 [s] from ξ or equivalent that ξ is ∼ 1.5
[s] ahead of ξm . Figure 4.1b shows the cross-correlation coefficient between these two signals ,as function of
τcc , calculated by Equation 4.3. From the figure, one may notice that the highest peak occurs around τcc ≈ 1.5
[s], which is the same amount of lag as observed from Figure 4.1a, with a peak value of 1. This peak value of
1 indicates that the signals are fully linear related which means that their time-domain behavior is equiva-
lent. This can be explained by the fact that both sine waves have the same frequency. However, as shown in
Figure 4.1a the amplitudes of the sine waves are different and cannot be distinguished from this correlation
function. Therefore, a second criteria will be defined in order to assess the similarities of the amplitudes of
the measured and calculated motion signals.

0 10 20 30 40 50

-1

-0.5

0

0.5

1

(a) "Measured" sine wave (ξm ) and "calculated" sine wave (ξm )
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Figure 4.1: An example for the interpretation of the cross-correlation coefficient. In the left figure: the blue line represents a measured
signal (ξm (t )) with an amplitude of 1 while the green line represents a calculated signal (ξ(t )) with an amplitude of 0.9. Both the signals
have a frequency of ω= 1 [rad/s]. The right figure shows the cross-correlation coefficient of the two signals by the green line.

For an assessment of the calculated amplitudes, a ratio of the standard deviations has been used. This
ratio is the ratio between the standard deviation of the calculated motions and the measured motions, i.e.:

σi ,d = σξi

σξi ,m
. (4.4)

This ratio can be found in the work by Naaijen et. al citeNaaijen2016 to determine the scaling/ correction of
the calculated motions and by Alford et. al [1] to assess how well the amplitudes of the measured motions
compare to those calculated. Ideally, this ratio should be 1 which means that the amplitudes of the calculated
and measured motions are within the same range. A lower number means that the amplitudes are underesti-
mated while a number higher than 1 indicates that the amplitudes are overestimated.

Frequency-domain criteria
For the frequency-domain solutions the estimated transfer-functions (Ǧi ( jω)) will be visually compared to
those pre-calculated (G0,i ( jω)) to judge there similarity/ differences. However, such a comparison will not
provide an answer to the question which method provides more accurate results. Therefore, it is more rel-
evant to compare the motion response-spectra -or auto-spectra- of the calculated motions to the response-
spectra of the measurements motions. A motion response-spectra can be estimated by:

Φ̌i ,y y (ω) = 1

N M

M∑
m=1

Y m
i ( jω)Y ∗,m

i ( jω), (4.5)
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where the Y ( jω) is the DFT of the measured- or calculated motion-signal, i.e. ξi ,m(t ) or ξi (t ). Furthermore,
the calculated motions can either be obtained using the pre-calculated TF’s H0,i ( jω) (Equation 4.1) or the es-
timated TF’s Ǧi ( jω) (Equation 4.2). One may notice that the difference between the motion response-spectra
of the calculated- and measured motions is similar to the estimate of the noise spectra (Φ̌v v (ω)) as defined in
Section 3.2 Equation 3.33.

In Section 3.2 it was also shown that noise estimates can be used to assess the quality of the system by a
so called Coherence function and to estimate the standard deviation for the estimated TF’s when the C SM
methods are used. To recall from that chapter, the coherence function is defined as [11]:

γ2
i (ω) = |Φ̌i ,y x (ω)|2

Φ̌i ,xx (ω)Φ̌i ,y y (ω)
, (4.6)

where Φ̌i ,y y can be calculated by the equation as shown above using the measured motions (ξi ,m) and the
remaining spectra can be estimated by:

Φ̌i ,xx (ω) = 1

N M

M∑
m=1

X m
i ( jω)X ∗,m

i ( jω) (4.7)

Φ̌i ,y x ( jω) = 1

N M

M∑
m=1

Y m
i ( jω)X ∗,m

i ( jω) (4.8)

In the equations above, Yi ( jω) is the DFT of the measured motions and X ( jω) is the DFT of a now-cast pre-
diction of the forces. The result of the coherence function provides a number between 0 and 1 as a function
of the frequency. Here 0 means that there is no correlation and 1 indicates a correlation between the in- and
output, at a certain frequency. In Section 4.2 and 4.3 it will be shown that this function has a direct relation
between the motion response-spectrum of the predicted and the one of the measured motions and therefore
can be used as an assessment criteria.

Finally, to recall from Section 3.2 the coherence function can also be used to estimate the standard devia-
tion of the TF’s obtained trough the C SM . This can be calculated by:

σ̌2
Ǧi

≈ |Ǧi ( jω)|2 1−γ2
i (ω)

γ2
i (ω)

(4.9)

In Section 4.2 and 4.3 the standard deviation will be added to the estimated TF’s. A large standard deviation
will mean that there is a lot of variance in each block (m) used to estimate the TF’s.

4.2. Synthetic results
In this section a now-cast motion prediction will be made, driven by synthetic data, using the model as de-
scribed in Section 2.3 with the transfer-function estimation techniques as described in Chapter 3. To recall
from those chapters, first a set of time-domain motion and force signals is generated using synthetically gen-
erated wave components. After this set is generated, the motion- and force signals are used to estimate the
TF’s (Ǧi ( jω)) by -in this case- the C SM 1. After the TF’s are determined, a second set of wave-components is
generated to make a prediction of the motions (ξi (t)) using Ǧi ( jω) and to generate the "measured" motions
(ξi ,m(t)). Finally, the time- and frequency-domain solutions will be compared and assessed by the criteria
given in the previous section. As already mentioned in section 3.4.4, beside an accurate solution it should
also be obtained within a practical time limit. Therefore, the time limit for training the TF’s has been set to 5
minutes.

The wave components required for the calculations have been synthetically generated by the method as
described by Goda [6], which is explained in more detail in Appendix B. As input values for the generation of
the wave-components, the same wave characteristics are chosen in such a way that they match those of the
sea-trials in the next section. To recall this means: a JOHNSWAP wave-spectra, Tp = 7.6 [s], H1/3 = 2.2 [m][14],
and a mean wave direction of µ= 1/4 [π]. Furthermore, the sampling frequency ( fs ) of the motion and force
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signals has been set to 10 [Hz].

As mentioned above, in the upcoming sub-sections the results will be shown when the transfer-function
is estimated using the C SM 1 method. Unless denoted otherwise, for the estimation an Hamming window
has been used, a window-length of wl = 400 [-], and an overlap of 75%. As a final remark, the solutions will be
shown for 6 degrees-of-freedom (DOF) of which the definitions are summarized in Table 4.1 as a reminder.

Table 4.1: Definitions degree of freedom

DOF Notation Unit DOF Notation Unit

Surge ξ1 [m] Roll ξ4 [rad]

Sway ξ2 [m] Pitch ξ5 [rad]

Heave ξ3 [m] Yaw ξ6 [rad]

Time-domain comparison
Figure 4.2b shows the time-domain solutions of the synthetically generated measured motion (ξi ,m) -the
blue line- and the motions obtained from the estimated transfer-function (ξi ) -the green line-. In almost all
cases a prefect fit between the predicted- (ξi ) and measured-motions (ξi ,m) is shown. The largest deviations
can be found at the roll- and yaw motions. Figure 4.2b shows the cross-correlation coefficients between the
measured- (ξi ,m) and calculated motions (ξi ), obtained by Equation 4.3. To recall, this function shows the
linear similarity between two signals and how much one lags from the other. The figure shows that in all
cases this function is almost 1 at τ= 0 which means that the signals are almost perfectly related without any
lag. This observation was also made from the time-domain solutions shown in Figure 4.2b.

In Section 3.4 is was shown that the accuracy of the TF’s estimations depends on the amount of noise
contained within the signals. Furthermore, it was also shown that in a noise free environment, in combina-
tion with an increased total time of estimating the TF’s, in general holds that a larger window-length (wl ) will
result in a lower error. However, when noise is added to the system a shorter window was recommended to re-
duce the variable error. Therefore, in the two following paragraphs the time-domain results will be presented
in a noise-free environment (σy = 0) and an environment where noise is present (σy 6= 0). In more detail, fist
noise has been added to the time-domain motion signal from which the TF’s are estimated. Second, those
estimated TF’s (Ǧi ( jω)) are used to predict the ship motions (in a noise free environment).

For the first case, Table 4.2 shows the maximum cross-correlation coefficients for an increasing window
length (wl ) in a noise free environment (σy = 0). It can be seen from the figure that increasing the window-
length results in a higher maximum correlation-coefficient. This is what one may expect since it was already
shown in the previous section that increasing the window length will decrease the total error on the transfer
function.

For the second case, Table 4.3 shows the maximum correlation coefficients in the case that the TF’s are
estimated under the presence of noise which, after estimation, where used make a noise free motion predic-
tion. The results presented in the table show that increasing the window-length will not longer guarantee a
lower correlation coefficient.

Table 4.2: Maximum cross-correlation coefficients in a noise free environment (σy = 0), for an increasing window-length (wl ). For the

estimation of the TF’s the C SM1 has been used with an Hamming window and 75% overlap. The total amount of time for training the
TF’s has been limited to 5 min

Surge Sway Heave Roll Pitch Yaw

wl [-] ρξ1 ρξ2 ρξ3 ρξ4 ρξ5 ρξ6

400 0.9906 0.9945 0.9984 0.9848 0.9976 0.9857

800 0.9925 0.9894 0.9985 0.9932 0.9973 0.9879

1600 0.9992 0.9992 0.9996 0.9946 0.9991 0.9811
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Table 4.3: Maximum cross-correlation coefficients where the TF is estimated under the presence of noise (σy = 1σξi ,m
), for an increasing

window-length (wl ). For the estimation of the TF’s the C SM1 has been used with an Hamming window and 75% overlap. The total
amount of time for training the TF’s has been limited to 5 min

Surge Sway Heave Roll Pitch Yaw

wl [-] ρξ1 ρξ2 ρξ3 ρξ4 ρξ5 ρξ6

400 0.9875 0.9827 0.9967 0.9673 0.9917 0.8955

800 0.9957 0.9915 0.9942 0.9912 0.9985 0.9807

1600 0.9663 0.9485 0.9532 0.9699 0.9623 0.9302
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(b) Time domain solution

Figure 4.2: The left figure shows the cross-correlation coefficients between the measured (ξi ,m ) and predicted signal (ξi ). In the right
figure the time-domain solutions of the measured motions (ξi ,m ) are shown -the blue line- as well as the predicted motions (ξi ) -the

green line-. For the motion predictions the transfer-function has been estimated by the C SM1 with: an Hamming window, a window-
length of wl = 400 [-], and an overlap of 75%.
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Frequency-domain comparison

Figure 4.3 shows the amplitudes and phase angles of the estimated (force-to-motion) transfer-functions (Ǧi ( jω))
and pre-calculated (force-to-motion) transfer-functions (G0,i ( jω)). In the figure: The red solid line shows the
pre-calculated TF’s, the blue solid line the estimated TF’s, the blue dashed line represents the estimated stan-
dard deviation calculated by Equation 4.9, and the grey area represents the domain which contains 98% of the
energy of the motion-response spectra (ωPxx 98%). One may notice that within the grey area the amplitudes of
the pre-calculated- and estimated TF’s can deviate, especially at lower frequencies and for the roll-motion.

However, as stated in Section 4.1 it is more relevant to examine the motion response-spectra (Φ̌y y,i ( jω))
rater than the differences in the TF’s. Figure 4.4b shows these response-spectra for the measured motions
-the solid red line- as well as the predicted motions -the solid blue line-, calculated by Equation 4.5. From the
figure it can be seen that although the transfer-functions G0,i ( jω) and Ǧi ( jω) deviated at the lower frequen-
cies in most cases the response-spectra they produce are equivalent. Furthermore, it also can be seen that the
largest differences in the response spectra can be found in the roll and pitch motions which is consistent with
the observations from the time-domain comparisons. One possible explanation for this deviating behaviour
is that in this report an uncoupled system is used while in reality ship motions are coupled. By this is meant
that (for example) a motion in sway direction can also result in a additional roll motion. In Section 4.4 an
extensive discussion will be held on how the currently used model can be improved by defining a coupled
system.

As stated in Section 3.2 and 4.1, the so called Coherence function can be used as a measure of the differ-
ences in the motion response-spectra and gives an overall assessment of the system. To recall from Section
3.2, a value of 1 means that the in- and output signal are perfectly correlated -at a certain frequency- while 0
means that there is no correlation between the signals. Figure 4.4a shows the coherence function -solid black
line- as well as the mean of the coherence over the grey interval -dashed red line-. When the Coherence func-
tion is compared to the differences of the motion response-spectra, Figure 4.5, a direct relation can be found.
By taking the mean value over the grey domain, a single value can be obtained which can be used to assess
similarity of the motion response-spectra of the measured- and predicted motions. These single values will
be used in the next section, where sea trial data is used for motion predictions.
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(a) Amplitudes of the estimated- and pre-calculated TF’s
(b) Phase angles of the estimated- and pre-calculated
TF’s

Figure 4.3: Amplitudes and phase angles of the pre-calculated TF’s (G0,i ( jω)) -solid red line- and and the estimated TF’s (Ǧi ( jω)) -solid
blue line-. Ǧi ( jω) has been estimated by the C SM1 with an Hamming window, a window-length of wl = 400 [-], and an overlap op 75%.
The dashed blue line in the left figure represents the Ǧi ( jω) plus or minus the variance, calculated by Equation 4.9
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(a) Coherence function (b) Motion response spectra

Figure 4.4: The coherence function (left) and the motion response spectra (right) where the solutions obtained from an estimated TF
are obtained via the C SM1 with: an Hamming window, a window-length of wl = 400 [-], and 75% overlap. The red dashed line in the
coherence plot is the mean coherence over the interval which contains 98% of the energy of the motion response spectra.
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4.3. Sea-trial results
In this section the data of the sea-trials conducted by Next Ocean in cooperation with Damen Shipyards will
be used to evaluate if estimated TF’s will increase the accuracy of real-time motion prediction. In the first
part of the evaluation, Section 4.3.1, the full domain of the data records will be used to estimate the TF’s. After
determination those estimates will be used to (re)calculate a now-cast prediction of the motions. The esti-
mation method used in that section is the C SM 1 with a window-length wl = 400[−], a sampling frequency
fs = 10 [Hz], an Hamming window, and an overlap of 75%. In the second part,Section 4.3.2, variables like: the
window-length and estimation method, are varied to study there influence on the results. In this section also
cases will be studied where the now-cast will be changed to a forecast of τ = 30 and τ = 60 seconds, where
half the record is used for training and the other half for predicting the motions of the vessel. From the results
of the above mentioned analysis, in Section 4.3.3 conclusions will be drawn.

The sea trials as mentioned above where conducted on September 29th 2016, at the Northern Sea on a
SPA-4207. This is a standard navy patrol vessel build by Damen Shipyards from which an example is shown
in Figure 4.5. Table 4.4 summarizes some specifications of this vessel. The conditions at which the trials have
been performed are summarized in Table 4.5. All the time-domain data has been generated at 10 [Hz]. As a
final remark, the DOF’s which will be evaluated in the upcoming sections are heave, roll and pitch.

Figure 4.5: SPA-4207

Magnitude Unit

Length 42 [m]

Breadth 7 [m]

Draught 2.5 [m]

Max speed 26.5 [kn]

Table 4.4: Vessel specifications

Table 4.5: Sea trial conditions

Run no. Name SOG [m/s] µ [deg] Duration [s] Tp [s] H1/3 [m]

1 Bow-quartering seas 0.52 161 736 7.6 2.2

2 Head seas 2.32 174 1306 7.5 2.2

3 Stern-quartering seas 4.10 307 1392 7.7 2.2

4 Following seas 2.72 346 1256 7.6 2.2

5 Bow-quartering seas 0.71 129 884 7.4 2.2

6 Beam seas 3.17 84 936 7.5 2.2

4.3.1. Now-cast predictions for all runs
In this section a now-cast motions prediction by using TF’s estimated by the C SM 1 (Ǧi ( jω)). These time- and
frequency domain solutions will be compared to the solutions from pre-calculated TF’s (G0,i ( jω) & H0,i ( jω)),
using the assessment criteria as defined in Section 4.1. In this section the figures shown correspond to run 2.
The same figures for the other runs can be found in Appendix D.

In more detail, the TF’s are estimated by the C SM 1 with a window-length wl = 400[−], a sampling fre-
quency fs = 10 [Hz], an Hamming window, and an overlap of 75%. For the training of the TF’s the full domain
of the data records are used, i.eΩt = [tstart...tend]. After the TF’s are estimated, the motions are re-calculated.
The reason why for training the full data record is used is because some of the records are relatively short.
This means that otherwise an insufficient amount of data would be left to make a qualitative assessment on
how much the accuracy of the motion prediction increases. As already mentioned in Section 2.3 the use of
"future" data for training can be justified because the transfer-function is a time independent variable.
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Time domain solutions
Figure 4.6b shows a part of the time-domain solution of the measured- and predicted motions for run 2. From
visual observations it can be noticed that the predicted motions, the green and red line, are in general quite
comparable to those measured, the blue line. It also can be noticed that in the case that when the estimated
TF’s (Ǧi ( jω)) are used, the amplitudes of the motions are lower as those calculated with the pre-calculated
TF’s (H0,i ( jω)). In general, the fit between the measured and calculated motions depends on the run and
DOF observed (see Appendix D). Another general observation, the best fit between the measured- and pre-
dicted motions can be found for heave and pitch and the worst fit for roll. Furthermore, it has been noticed
that using Ǧ( jω) to calculate the motions often results in an underestimation of the amplitudes. A possible
explanation for this last observation will be given in the next section, where the frequency-domain solutions
are discussed.

Figure 4.6a shows the maximum cross-correlation coefficients, as function of τcc , between the measured
motions and those predicted. The green line represents the results where the motions are predicted with the
estimated TF’s (Ǧi ( jω)), obtained from the C SM 1, while the red line shows the results where the motions are
predicted by H0,i ( jω). As shown in the figure, the maximum correlation-coefficients are slightly higher when
a Ǧi ( jω) is used. Furthermore, a maximum correlation-coefficient at τcc 6= 0 indicates that the calculated
motions are lagging in time. Since for all DOF the maximum correlation coefficient τcc ≈ 0, the predicted
motions barely lags with respect to the measured motions. This observation yields for the prediction where
H0,i ( jω) is used as well as the prediction using Ǧi ( jω).

For the other runs, in Table 4.6 the maximum cross correlations are summarized as well as the difference
in percentage. This difference has been calculated by:

Difference % =

∣∣∣ρH0,i ( jω) −ρǦ( jω)

∣∣∣(
ρH0,i ( jω) +ρǦ( jω)

)
/2

(4.10)

taking the negative sign into account when ρH0,i ( jω) > ρǦ ( jω). As shown in the table, in almost all cases the

correlation-coefficient increases with ∼ 1−10% when estimated TF’s (Ǧi ( jω)) are used. The only case where
the maximum correlation-coefficient does not increase is for run 6. In the next section it will be shown that
this can either come from non-linear phenomena or an erroneous predicted force signal. In Table 4.7 the lag
between the measured- and predicted motions are summarized. The table shows that beside an increased
correlation-coefficient also the lag is reduced when Ǧi ( jω) is used.

Table 4.8 shows the ratio between the standard deviation of the calculated and measured motions, calcu-
lated by Equation 4.4. In contrast to the correlation-coefficient, much larger deviations can be found when
the Ǧi ( jω) is used for predicting the motions. This underestimation was already observed from the visual
comparisons for which a possible explanation will be given in the next section. However, as mentioned in
Section 4.1 the cross-correlation coefficient does not change when the motions are linear scaled. Therefore,
the poor behaviour of this standard deviation can be artificially increased applying a linear scaling factor.
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Table 4.6: Comparisons between the maximum cross-correlation coefficient of the measured (ξi ,m ) and calculated (ξi ) motion signals.
The calculated motions are obtained with the use of the pre-calculated (H0,i ( jω)) or estimated (Ǧi ( jω)) TF’s. Here Ǧi ( jω) has been

estimated with: C SM1, wl = 400[-], an Hamming window, and an overlap op 75%

.

H0,i ( jω) Ǧ( jω) Difference [%]

Heave Roll Pitch Heave Roll Pitch Heave Roll Pitch

Run ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5

1 0.83 0.53 0.84 0.87 0.59 0.85 2.36 5.09 1.02

2 0.82 0.65 0.85 0.87 0.72 0.88 2.69 6.09 1.86

3 0.73 0.61 0.74 0.84 0.72 0.79 7.05 9.55 3.23

4 0.74 0.32 0.75 0.80 0.38 0.79 3.37 5.52 2.72

5 0.80 0.61 0.78 0.84 0.65 0.82 2.74 3.49 2.19

6 0.71 0.71 0.41 0.76 0.67 0.39 3.32 -3.69 -1.39

Table 4.7: Summary of lag in seconds between the predicted and calculated motions, in seconds. The calculated motions are obtained
with the use of the pre-calculated (H0,i ( jω)) or estimated (Ǧi ( jω)) TF’s. Here Ǧi ( jω) has been estimated with: C SM1, wl = 400[-], an
Hamming window, and an overlap op 75%

H0,i ( jω) Ǧ( jω)

Heave Roll Pitch Heave Roll Pitch

Run lag3 lag4 lag5 lag3 lag4 lag5

1 -0.1 0.4 0.4 0 0 0

2 -0.4 -0.3 0.5 -0.2 -0.4 -0.1

3 0.4 0.2 0.7 0 0 0

4 1.5 1.4 1.5 -0.1 -0.1 0

5 -1.1 0.3 -0.1 0 -0.1 0

6 -2.2 -2.0 -1.9 0.4 0.3 -0.2

Table 4.8: Ratio of standard deviations between the calculated- and measured motions. The calculated motions are obtained with the
use of the pre-calculated (H0,i ( jω)) or estimated (Ǧi ( jω)) TF’s. Here Ǧi ( jω) has been estimated with: C SM1, wl = 400[-], an Hamming
window, and an overlap op 75%

H0,i ( jω) Ǧ( jω)

Heave Roll Pitch Heave Roll Pitch

Run σ3,d σ4,d σ5,d σ3,d σ4,d σ5,d

1 0.97 0.90 1.00 0.86 0.49 0.89

2 1.05 1.06 0.95 0.71 0.62 0.74

3 1.10 1.22 1.05 0.86 0.70 0.81

4 1.01 1.34 1.00 0.79 0.35 0.75

5 0.97 1.11 1.01 0.84 0.67 0.81

6 1.01 1.53 1.20 0.85 0.62 0.46
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(a) Cross-correlation coefficient (b) Time domain solution

Figure 4.6: Run 2: The left figure shows the cross-correlation coefficients between the measured- and predicted motions for. In the right
figure the time-domain solutions of the measured motions are shown by the blue line. The green lines in both figures represents that the
motions are predicted by using estimated TF’s while the red lines show the solutions of the pre-calculated TF’s. Furthermore, Ǧi ( jω) has
been estimated by the C SM1 with: an Hamming window, a window-length of wl = 400 [-], and an overlap of 75%.
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Frequency domain solutions

Figure 4.7 shows the amplitudes and phase angles of the TF’s estimated by the C SM 1 (Ǧi ( jω)) method and
the pre-calculated TF’s (G0,i ( jω)) for run 2. The grey-shaded areas represents the domain which contains
98% of the energy of the motion response-spectrum, which will be referred to as ΩP xx98%. As shown in the
figure, the order of magnitude between the pre-calculated TF’s (G0,i ( jω)) and the estimated TF’s (Ǧi ( jω)) is
significantly different. This difference comes from the fact that the amplitudes of the wave-components ob-
tained from the "raw" radar data are un-scaled [14].

Furthermore, one may also notice from the figure that the pre-calculated TF’s (red-solid) and the esti-
mated TF’s (solid-blue) are showing some deviations. The reason for these deviations can be found in a
number of reasons like: the uncertainty in loading conditions, noise, errors in the wave-field predictions, and
other reasons which will be discussed in the upcoming paragraphs. One single cause for the deviations can
thus not be given. However, as shown during the synthetic analysis in Section 4.2 a deviation between the
estimated- and pre-calculated transfer-functions does not directly results in a bad prediction.

Figure 4.8a shows the motion response-spectra of the of the measured- and calculated motions. To re-
call, these response-spectra are directly estimated by Equation 4.5 from the measured- and predicted time-
domain signals (ξi ,m(t )& ξi (t )). The dashed-blue line shows the response-spectra of the motions calculated
by the pre-calculated TF’s (H0,i ( jω)) and the solid blue line shows the results for the estimated TF’s (Ǧi ( jω)).
As illustrated in the figure, the motion response-spectra based on estimated TF’s has a better agreement with
the response-spectra of the measured motions compared to the spectra obtained from pre-calculated TF’s.
The above made observations does not only hold for run 2 but also for the other runs, except run 6 (see Ap-
pendix D).

The deviations between the response-spectra of the measured- and predicted motions can be found in
several reasons. The first reason, an insufficient amount of resolved wave-components. In (for example) run
4 the wave-components are resolved till ωe ≈ 1 while the motion response spectra shows an additional peak
at ωe ≈ 1.25, due to the natural frequency (See Appendix D Figure D.12a). Since these frequency components
are not resolved by the radar-data analysis, the motions at those frequencies will not be modeled.

As a second reason, the system used in this research does not take coupling effects between the motions
into account. As already discussed in Section 4.2, in reality ship motions are coupled which means that a
displacement in one direction also causes a displacement in another direction. In Section 4.4 an extensive
discussion will be held on how the currently used model can be improved by defining a coupled system.

A third reason, uncorrelated signals/ non-linear phenomena. For the estimated TF’s (Ǧi ( jω)) the correla-
tion between the signals also plays an important roll. By this is meant, if the excitation force is uncorrelated
to the motion (at a certain frequency) the estimated TF’s will tend towards zero1 (Φ̌i ,y x → 0). One of the
sources for signals/ frequencies to be uncorrelated is due to non-linear phenomena. When (for example) the
response-spectra of the roll motion of run 3 is observed (See Appendix D Figure D.9a), it can be seen that near
the natural frequency (ωe ≈ 1.25) the estimated TF (Ǧ4( jω)) tends toward zero, while the wave-components
are resolved near that frequency. From a physical point of view this makes sense since large motions and/ or
high velocities will make the system/ ship motions less linear, especially for the roll motion.

As a final remark for the differences in the response-spectra, the measured and calculated motion response-
spectra for the heave motion in some cases have the same shape/ solution (See for example: D.9a & D.12a).
This observation holds for the calculated response-spectra obtained using pre-calculated TF’s (H0,i ( jω)) as
well as the spectra obtained from the estimated TF’s (Ǧi ( jω)). The reason why especially the heave motion
is of interest, is because it is the most linear motion which can be observed. This means that the (on linear
theory based) calculated response-spectra should be the most comparable. Due to the similarity in these re-
sponse spectra, it is quite assumable that during those runs the wave-components are well resolved and more
importantly, the force can be used as a reliable input. Under the assumption that these (linear) forces can be
taken as a reliable input, in future work other models can be defined where the non-linear response of the

1A brief explanation: When Φ̌i ,y x is estimated (used for the estimation of the TF in the C SM1, see Section 3.1.2) the full length of the
signal is divided into blocks and averaged. When the amplitude and phase angles in each block are different, on average the solution
will tend to zero.
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ship motions is taken into account. Defining a non-linear model may eventually result in even more accurate
motion predictions. However, since the similarity among the response-spectra does not hold for every run,
also a study will is recommended with the aim to asses the quality of the predicted force signal.

As already shown during the synthetic evaluation in Section 4.2, a direct relation of the difference between
the calculated and predicted motion response-spectra (based on Ǧi ( jω)) can be found in the Coherence func-
tion. For run 2 this functions is illustrated in Figure 4.8b. The red-dashed line in the figure represents the
mean coherence over the domain ΩP xx98%. One may observe from the figure that in general the highest Co-
herence can be found at the lowest frequencies, within ΩP xx98%, and decays with an increasing frequency.
Furthermore, when the different DOF’s are compared shows that the coherence for the roll motion is sig-
nificantly lower than those of the heave- and pitch motion. As already discussed above, due to non-linear
phenomena the in- and output signals become less correlated which results in Φ̌i ,y x → 0. Since roll is the
most non-linear motion which can be observed, also from a physical point of view it makes sense.

Table 4.9 summarizes the mean coherence function over the domainΩP xx98% for all the runs. Comparing
these results to the correlation-coefficients from Table 4.6 shows a strong similarity. By this is meant that a
low correlation also results in a low coherence and vice versa.

In the previous section it was shown the correlation-coefficient only decreases for run 6. Two possible
explanations for this are: an inaccurate predicted force signal or strongly non-linear behaviour. As shown in
Table 4.9, the mean coherence of run 6 is in general low compared to the other runs. As already discussed
above, a low coherence means that the in- and output signals are not well correlated. One of the reasons why
signals are uncorrelated can be found in the non-linear response of the ship (output signal). If the system is
strongly non-linear, the linear approximation will no longer hold and will thus result in poor prediction of the
motions. However, one should also bare in mind that also the force (input signal) can contribute to the un-
correlated behaviour. This can occur when the solutions of each block (X m( jω)) varies from one realization
to another, with respect to the solutions of the input signal (Y m( jω)). Because the coherence for heave (the
most linear motion which can be observed) in run 6 is relatively low compared to the other runs, one may
also say the force is inaccurate predicted.

Table 4.9: Mean coherence over the domainΩP xx98%

.

Run γ2
3 γ2

4 γ2
5

1 0.78 0.49 0.81

2 0.79 0.55 0.79

3 0.72 0.56 0.65

4 0.63 0.38 0.63

5 0.74 0.59 0.72

6 0.48 0.33 0.26
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(a) Amplitudes of the TF (b) Phase angles of the TF

Figure 4.7: Run 2: The amplitudes and phase angles for of the pre-calculated TF’s (solid red) and estimated TF’s (solid blue). The blue
dashed line represents the estimated TF plus or minus the estimated standard deviation. The grey area represents the domain which
contains 98% of the energy of the motion response-spectra. Ǧi ( jω) has been estimated by C SM1 with: an Hamming window, a window-
length of wl = 400 [-], and an overlap of 75%.

(a) Motion response-spectra (b) Coherence function

Figure 4.8: Run 2: The motion response-spectra (left) and the Coherence function (right). The blue dashed line in the left figure repre-
sents the motion response-spectra of the predicted motions obtained from pre-calculated TF’s. The solid blue line shows the motion
response-spectra in the case that estimated TF’s are used. In the right figure, the red-dashed line is the mean coherence of the grey
domain. Ǧi ( jω) has been estimated by C SM1 with: an Hamming window, a window-length of wl = 400 [-], and an overlap of 75%.
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4.3.2. Case studies
In the previous section a now-cast prediction was made for all the runs, based on pre-calculated TF’s and
TF’s estimated by C SM 1. In this section some of the variables will be changed to gain confidence that the
obtained solutions is the best one may get, by the methods as discussed in this report. The cases which will
be studied are:

• A comparison between the C SM 1 and C SM 2

• A comparison between the C SM 1, ET F E and ET F E

• Varying the window length

• Time evaluation for transfer-function estimation

• Predicting motions for τ= 30 and τ= 60 [s], rather than reconstructing in the previous sections.

Unless denoted otherwise: Run 2 has been used for evaluations, where the full data record is used for train-
ing. For the averaged results (ET F E and C SM), the following settings have been used: an Hamming window,
wl = 400 [-], and 75% overlap.

Comparison between C SM 1 and C SM 2

In Section 3.1.2 and 3.4 it was stated that for the C SM a bias error can arise due to the presence of noise in the
input and/or output signal [21]. Depending on where the largest noise source can be found, either the C SM 1

or C SM 2 is recommended. Figure 4.9 shows the difference in estimation of the TF’s for each method. The
figures shows that bot estimates are different, especially at the higher frequencies. To assess which method
should be used, Table 4.10 shows the maximum cross-correlation coefficients and Table 4.11 shows the stan-
dard deviations.

The results in the Table 4.10 show that in general the highest cross-correlation is obtained using the C SM 1

method. When the relative standard deviations between the calculated and measured motions are compared,
Table 4.11 shows that the C SM 2 method tends to overestimate the amplitudes while the C SM 1 tends to un-
derestimate the motion amplitudes. However, as already mentioned in one of the previous section "poor"
standard deviations can be resolved without affecting the correlation coefficient, by applying a linear scaling
factor to the calculated motions. Therefore, high correlations are preferred above high standard deviations
which makes the C SM 1 more appealing for practical use.

Comparing these results to the results from Section 3.4 and the corresponding theory given in Section
3.1.2, these answers are also what one may expect. This because, the non-linear behaviour of the ship its
measured motions will cause "noise" in the output signal which is higher than the noise of the linear mod-
eled input signal, i.e. forces. In other words, due to the higher SNR at the output signal an higher bias error is
expected when C SM 2 is used and therefore the C SM 1 will give a better approximation of the TF.

Table 4.10: Comparison of the maximum correlation coefficients between the C SM1 and C SM2. For the estimations in both cases: an
Hamming window, wl = 400 [-], and 75% overlap.

C SM 1 C SM 2

Run Name ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5

2 Head seas 0.86 0.72 0.88 0.85 0.72 0.87

3 Stern-quartering seas 0.83 0.72 0.79 0.82 0.67 0.77

4 Following seas 0.79 0.38 0.79 0.75 0.35 0.71

5 Bow-quartering seas 0.84 0.65 0.82 0.73 0.53 0.80

6 Beam-seas 0.76 0.67 0.39 0.74 0.66 0.40
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Table 4.11: Summary of the Ratio of standard deviations obtained by the C SM1 and C SM2. For the estimations in both cases: an
Hamming window, wl = 400 [-], and 75% overlap.

C SM 1 C SM 2

Run σξ3,d
σξ4,d

σξ5,d
σξ3,d

σξ4,d
σξ5,d

2 0.71 0.62 0.74 0.85 1.12 0.84

3 0.86 0.71 0.81 1.08 1.35 1.20

4 0.79 0.35 0.75 1.14 0.79 1.22

5 0.84 0.67 0.81 1.33 1.77 1.09

6 0.86 0.62 0.46 1.79 4.43 2.35

(a) C SM1 (b) C SM2

Figure 4.9: The amplitudes of the estimated TF’s (Ǧ( jω)) and the pre-calculated TF’s (G0,i ( jω)), for run 3. The left figure shows the results

of the estimated TF’s by C SM1 and the right figure shows the results of C SM2. For the estimations in both cases: an Hamming window,
wl = 400 [-], and 75% overlap.
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Comparison between estimation methods
Table 4.12 shows the correlation-coefficients for the three different methods. The results in the table clearly
show that -Welch- averaging will improve the result. This can explained by the fact that averaging will re-
duce the variance of the estimated TF. Comparing the correlation-coefficients obtained from the ET F E to
the results of the C SM 1 method shows equivalent results. However, when the transfer-functions estimates
are visually compared, as is illustrated in Figure 4.10, shows that the C SM 1 provides a smoother solution as
the ETFE. Therefore, it is recommended to use the C SM 1

Table 4.12: Summary of cross-correlation coefficients (of run 2) obtained by the ETFE, C SM1, and ET F E . For the averaged results: an
Hamming window, wl = 400 [-], and 75% overlap,

Heave Roll Pitch

Method ρξ3 ρξ4 ρξ5

C SM 1 0.85 0.72 0.87

ET F E 0.85 0.72 0.87

ETFE 0.22 0.39 0.53

(a) Amplitudes of the transfer function (b) Phase angles of the transfer function

Figure 4.10: Comparison between TF estimation methods for run 2. The solid blue line represents the TF estimation by the ET F E
method, the solid red represents the TF estimation by the C SM1 method, and the black dashed line represents the TF estimation by the
ETFE method. For the averaged results: an Hamming window, wl = 400 [-], and 75% overlap,
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Change in window length
Table 4.13 shows the correlation coefficients for an increasing window length, obtained using the TF’s esti-
mated by the C SM 1 method. The results clearly show that for all DOF the cross-correlation asymptotically
increases and that a length of 400 samples seems sufficient. However, it should be noticed that the full do-
main of the record has been used for training the TF’s, i.e. Ωt = [tst ar t ...tend ]. This means that even for large
windows, enough averages can be made to reduce the variance. An evaluation of both window-length and
the total available time for training will be left for future studies.

Table 4.13: Maximum cross-correlation coefficients for an increasing window-length (wl ), run 2. The TF’s used to calculate the motions
are estimated by C SM1 with: an Hamming window and an overlap of 75%.

Heave Roll Pitch

wl [-] ρξ3 ρξ4 ρξ5

100 0.82 0.61 0.85

200 0.84 0.68 0.86

400 0.87 0.72 0.87

1000 0.87 0.72 0.87

2000 0.87 0.72 0.87

Training time for the TF
Table 4.14 shows for an increasing training time the maximum cross-correlation coefficients, for the runs 2-4.
For the motion predictions the estimated TF’s are estimated by the C SM 1 method. The results in the table
shown that within 2 minutes already high correlation factors can be found for all runs. However, it is recom-
mended to use at least 5 till 7 minutes of data for the solution to converge. As an indication, the total number
of blocks used for averaging are also shown in the table.

Table 4.14: Maximum cross-correlation coefficients for an increasing training time -run 2 till 4-. The TF’s used to calculate the motions
are estimated by C SM1 with: wl = 400[-], an Hamming window, and an overlap of 75%.

Run 2 Run 3 Run 4

Heave Roll Pitch Heave Roll Pitch Heave Roll Pitch

training time [s] No. Blocks (M) ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5

120 8 0.86 0.73 0.87 0.84 0.69 0.78 0.78 0.38 0.77

180 14 0.86 0.74 0.86 0.84 0.71 0.79 0.78 0.38 0.78

240 20 0.85 0.74 0.86 0.84 0.71 0.78 0.78 0.37 0.77

300 26 0.86 0.72 0.87 0.84 0.71 0.78 0.79 0.37 0.77

360 32 0.86 0.72 0.87 0.84 0.72 0.79 0.79 0.38 0.78

420 38 0.86 0.72 0.87 0.84 0.72 0.79 0.79 0.38 0.78

Motion prediction
In this sub-section one half of the data records are used for training TF’s, i.e. Ωt = [tst ar t ...tend /2]. The other
half of the data records is used to make a prediction of τ= 0, τ= 30 and τ= 60 seconds ahead. For the estima-
tion of the TF’s the C SM 1 method has been used with: an Hamming window, a window-length of wl = 400
[-], and an overlap of 75%.

Table 4.15 till 4.17 shows the correlation-coefficients for an increasing prediction horizon τ. Comparing
the results in the tables shows that with an increasing τ the cross-correlation between the measured and
predicted motions mildly decreases, independent of the method used to calculate the motions. More im-
portantly, in all the cases the motions predicted by the estimated TF’s (Ǧi ( jω)) outperform the predictions
where the pre-calculated TF’s (H0,i ( jω)) are used. This observation contributes again to the statement that
TF estimated by measurements will increase the accuracy of real-time motion prediction.
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Table 4.15: τ= 0[s]: Comparisons between the maximum cross-correlation coefficients of the measured (ξi ,m ) and calculated (ξi ) motion
signals. The calculated motions are obtained with the use of the pre-calculated (H0,i ( jω)) or estimated (Ǧi ( jω)) TF’s. Here Ǧi ( jω) has

been estimated with: C SM1, wl = 400[-], an Hamming window, and an overlap op 75%

H0,i ( jω) Ǧ( jω) Difference [%]

Heave Roll Pitch Heave Roll Pitch Heave Roll Pitch

Run ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5

2 0.84 0.67 0.85 0.88 0.74 0.87 2.27 6.26 1.07

3 0.76 0.56 0.71 0.88 0.70 0.77 7.51 12.40 3.68

4 0.70 0.30 0.76 0.77 0.37 0.76 4.31 6.05 0.52

Table 4.16: τ= 30[s]: Comparisons between the maximum cross-correlation coefficient of the measured (ξi ,m ) and calculated (ξi ) mo-
tion signals. The calculated motions are obtained with the use of the pre-calculated (H0,i ( jω)) or estimated (Ǧi ( jω)) TF’s. Here Ǧi ( jω)

has been estimated with: C SM1, wl = 400[-], an Hamming window, and an overlap op 75%

H0,i ( jω) Ǧ( jω) Difference [%]

Heave Roll Pitch Heave Roll Pitch Heave Roll Pitch

Run ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5

2 0.83 0.66 0.84 0.87 0.73 0.86 2.36 7.09 1.09

3 0.76 0.57 0.713 0.88 0.71 0.77 7.30 12.41 3.78

4 0.68 0.29 0.74 0.75 0.36 0.75 4.63 6.10 0.36

Table 4.17: τ= 60[s]: Comparisons between the maximum cross-correlation coefficient of the measured (ξi ,m ) and calculated (ξi ) mo-
tion signals. The calculated motions are obtained with the use of the pre-calculated (H0,i ( jω)) or estimated (Ǧi ( jω)) TF’s. Here Ǧi ( jω)

has been estimated with: C SM1, wl = 400[-], an Hamming window, and an overlap op 75%

H0,i ( jω) Ǧ( jω) Difference [%]

Heave Roll Pitch Heave Roll Pitch Heave Roll Pitch

Run ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5 ρξ3 ρξ4 ρξ5

2 0.82 0.65 0.83 0.86 0.73 0.85 2.38 7.41 0.80

3 0.74 0.58 0.70 0.86 0.73 0.76 7.31 13.83 4.17

4 0.67 0.28 0.74 0.74 0.36 0.74 4.74 7.77 0.11
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4.3.3. Summary and conclusions sea trial analysis
In Section 4.3.1 a now-cast prediction of the ship motions was made based on TF’s estimated by the C SM 1

method, where the full length of the data set was used for training. It is shown that these estimated TF’s
(Ǧi ( jω)) will result in an increasement of the cross-correlation coefficient of ∼ 1 − 10%, compared to the
results where pre-calculated TF’s (H0,i ( jω)) are used. Although the cross-correlation increases, the ratio of
standard deviations between the calculated and measured motion is lower when estimated TF’s are used.
Therefore, an additional scaling factor is required to compensate for this. From the frequency-domain solu-
tions it is shown that the estimated TF’s (Ǧi ( jω)) are different compared to those pre-calculated (G0,i ( jω)).
However, by comparing the motion response-spectra it is shown that those obtained by using estimated TF’s
(Ǧi ( jω)) have a better relation to the response-spectra of the measured motions compared to the solutions
obtained from pre-calculated TF’s (G0,i ( jω)).

In Section 4.3.2 different cases where studied. It is shown that the best and most smooth results are ob-
tained from the C SM 1 method. It also is shown that with a window-length of 400 samples, within ∼ 5−7 min-
utes the solution has converged. And finally, for an increasing prediction horizon (τ) the cross-correlation
using estimated TF’s always outperforms the solutions from pre-calculated TF’s.

With the above said, it is safe to conclude the use of estimated TF’s by the C SM 1 method will increase the
accuracy of real-time ship motion predictions with ∼ 1−10%.

4.4. Discussion
In this section two topics will be discussed. First, the system which is concerned in this report is a Single
Input Single Output system while in reality the motions are coupled. Therefore, in Section 4.4.1 an alterna-
tive method will briefly be discussed on how to improve the accuracy of real-time motion predictions further
using a coupled motion system. Secondly, an alternative method for averaging the ETFE will be presented.

4.4.1. A coupled system
As mentioned in Section 2.2.2 and 3.1, the system concerned in this thesis is a Single Input Single Output
system (SISO). However, in reality ship motions are coupled which results in a Multiple Input Single Out-
put system (MISO). By this is meant that (for example) a heave motion will also generate a pitch motion
and vise versa. As already discussed in Section 2.2.2, taking the coupling terms into account results in one
equation with two (or multiple) unknowns which cannot be solved straight away. However, in the upcoming
sub-sections a method will be briefly discussed which resolves this problem. In more detail, the coupling
between the heave- and pitch motion will be made while the couplings of the other DOF’s will be left for fu-
ture studies. The method which will be shown is basically an extension of the C SM 1 and comparable to the
method used by Alford et. al [1].

Governing motion equations

Lets first assume that the total pitch motion is generated due to the force/moment in heave- and pitch direc-
tion (F3(t ) & F5(t )). Than the resulting ship motion for pitch can be calculated by:

ξ5(x, y, t ,τ) =R
[

N∑
n=1

η̂a,n H ′
5( jωe,n ,µn)G55,i ( jωe,n)e− j (ωn ·(t+τ)+kx,n x+ky,n y)

]

+R
[

N∑
n=1

η̂a,n H ′
3( jωe,n ,µn)G53,i ( jωe,n)e− j (ωn ·(t+τ)+kx,n x+ky,n y)

] (4.11)

where G53( jω) is the TF which relates the heave force (F3(t )) to the pitch motion and G55( jω) relates the pitch
moment (F5(t )) to the pitch motion. From the equation above one may notice that this is nothing more than
an extension of the motion equation as given in Equation 2.17, Section 2.3, with an additional term for the
coupling between the heave-force and pitch-motion. Furthermore, for heave similar argumentation’s hold
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which results in the following equation:

ξ3(x, y, t ,τ) =R
[

N∑
n=1

η̂a,n H ′
3( jωe,n ,µn)G33,i ( jωe,n)e− j (ωn ·(t+τ)+kx,n x+ky,n y)

]

+R
[

N∑
n=1

η̂a,n H ′
5( jωe,n ,µn)G35,i ( jωe,n)e− j (ωn ·(t+τ)+kx,n x+ky,n y)

] (4.12)

where G35( jω) is the TF which relates the pitch-moment (F5(t )) to the heave-motion and G33( jω) relates the
heave force (F5(t )) to the heave motion.

Transfer-function estimation
Similar to the (SISO) system of the uncoupled motions defined in Section 3.1, the linear time invariant system
which now is concerned for pitch is defined as:

y5(t ) = g5,5(t )∗x5(t )+ g5,3(t )∗x3(t ) (4.13)

and for heave:
y3(t ) = g3,3(t )∗x3(t )+ g3,5(t )∗x5(t ). (4.14)

From the equations as given above, one may notice that in each equations now two unknowns arise, i.e. the
gi , j (t ) terms. Since there is only one equation, per DOF, and two unknowns this cannot be solved straight

away. In the following paragraphs a system of auto- and cross-spectra will be defined, similar to the C SM 1,
which resolves this problem. The derivation will be shown only for pitch because the same derivations also
hold for heave.

As for the C SM 1, both sides of Equation 4.13 are first multiplied with ∗x3(t ). Then by substituting the
equation into the definition of the DFT the frequency-domain solution becomes:

Y5( jω)
1

N
X ∗

3 ( jω) =G53( jω)X3( jω)
1

N
X ∗

3 ( jω)+G55( jω)X5( jω)
1

N
X ∗

3 ( jω) (4.15)

which is equivalent to:
Φy5x3 ( jω) =G53( jω)Φx3x3 (ω)+G55( jω)Φx5x3 ( jω) (4.16)

By following the same procedure but now by multiplying Equation 4.13 with ∗x5(t ) we can a second equation
defined as:

Φy5x5 ( jω) =G53( jω)Φx3x5 ( jω)+G55( jω)Φx5x5 (ω) (4.17)

Since there are now two equations and two unknowns (G53( jω) and G55( jω)), the TF’s can be estimated by
solving the following matrix vector equation:[

Φ̌x3x3 (ω) Φ̌x5x3 ( jω)

Φ̌x3x5 ( jω) Φ̌x5x5 (ω)

][
Ǧ53( jω)

Ǧ55(ω)

]
=

[
Φ̌y5x3 ( jω)

Φ̌y5x5 (ω)

]
(4.18)

For the estimation of the auto- and cross-spectra shown in the equation above, the same techniques can be
used as for the C SM 1, that: is Welch averaging and applying window functions.

Following the same line of reasoning for the coupled heave motion, the transfer function G33( jω) and
G35( jω) can be found by solving the system:[

Φ̌x3x3 (ω) Φ̌x5x3 ( jω)

Φ̌x3x5 ( jω) Φ̌x5x5 (ω)

][
Ǧ33(ω)

Ǧ35( jω)

]
=

[
Φ̌y3x3 (ω)

Φ̌y3x5 ( jω)

]
(4.19)

Results
Table 4.18 shows the maximum cross-correlations for heave and pitch for the cases where a coupled- and an
un-coupled system is used, as well as the solutions of the pre-calcualted TF’s. The differences shown in the
table are with respect to the correlation coefficients from the pre-calculated TF’s (H0,i ( jω)). This difference is
calculated by Equation 4.10. From the table one may notice that using a coupled system will always result in
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a better/higher correlation coefficient. The largest improvement can be found for heave in run 4. Therefore,
in future studies is recommended to use a coupled system rather than an uncoupled system.

Table 4.18: Summary of the cross-correlation coefficients for heave and pitch using a coupled and uncoupled model. The differences as
shown are calculated by Equation 4.10 and are with respect to the results when the pre-calculated TF’s are used.

Pre-calculated TF Coupled TF estimation Uncoupled TF estimation

ρξi ρξi Difference [%] ρξi Difference [%]

Run Heave Pitch Heave Pitch Heave Pitch Heave Pitch Heave Pitch

1 0.81 0.83 0.87 0.86 4.39 2.49 0.87 0.86 3.92 1.85

2 0.82 0.85 0.88 0.88 3.48 2.11 0.87 0.88 2.79 1.79

3 0.73 0.73 0.85 0.81 7.75 4.85 0.84 0.79 6.89 3.22

4 0.75 0.77 0.86 0.82 6.32 3.17 0.81 0.80 3.19 1.97

5 0.80 0.79 0.87 0.82 3.98 2.26 0.87 0.82 2.65 1.97

6 0.71 0.41 0.77 0.38 3.63 -1.35 0.76 0.37 3.26 -2.38
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4.4.2. An alternative method for averaging the ETFE
In Section 3.1.1 it was stated that the numerator and denominator have to be averaged simultaneously when
the ET F E method is used, because the signals are stochastic. However, one may say that when the block-
s/signals are zero padded to a fixed time origin this is not necessarily required. By zero padding the signals
to a fixed point, the phase angles in each block are no longer randomly distributed and so the numerator and
denominator can be averaged separately. In other words, when the signals are zero padded to a fixed time
origin the TF’s can be estimated by:

Ǧi ( jω) =
∑M

m=1 Y m( jω)∑M
m=1 X m( jω)

(4.20)

Figure 4.11 shows for run 2 the estimated transfer-function when this alternative way of averaging is de-
ployed. Comparing this solution the to the solution of the ET F E illustrated in Figure 4.10 shows that the
variable error is much higher when this alternative way of averaging is used. A possible explanation2 for this,
by averaging the numerator and denominator simultaneously the (cor)relation between X ( jω) and Y ( jω) is
averaged which may act as a filter. By this is meant: Due to (for example) non-linear effects the solutions for
each block Y m( jω) will vary from one realization to another, which on average will result in a rough estima-
tion. However, when the numerator and denominator are averaged simultaneous the outliers in Y m( jω) will
be tempered by the solutions of X m( jω), which on average results in a better approximation for the TF’s.

(a) Amplitudes of the transfer function (b) Phase angles of the transfer function

Figure 4.11: Transfer-function for run 2, obtained by alternative averagaing of the ET F E . For averaging the following settings have been
used: an Hamming window, wl = 400 [-], and 75% overlap,

2Despite great efforts, no proof have been found in literature which sustain this explanation nor another explanation has been found.





5
Conclusions and recommendations

The main objective of this research is to increase the accuracy of real-time motion predictions by substitut-
ing an estimated transfer-function from measurement into a linear ship motion model, which is successfully
achieved. In this Chapter the main- and sub-questions as defined in Chapter 1 will be answered based on
literature, synthetic simulations, and sea trial results. Furthermore, in this chapter also recommendations
will be given on how the accuracy of real-time ship motions predictions can be further improved using other
models as well as an improvement of the currently used model.

5.1. Conclusions
In Section 1.2 the two main questions, and their sub-questions, of this research where formulated. As stated
in that section, a distinction is made between estimation techniques recommended for the derivation of
transfer-functions and the accuracy of motion predictions. In this section those two main questions will be
answered separately.

(A) Which transfer-function estimation method and smoothing techniques should be used to increase the
accuracy of real-time motion prediction?

In this report two methods are discussed on how to estimate transfer-functions from measured data, the
(averaged) Empirical Transfer Function Estimation and the (averaged) Cross-Spectral Method. These meth-
ods are both linear approximations which hold a close relationship among each-other, but give different re-
sults when averaged. While larger variable errors occur with the ET F E methods a bias error may arise when
the C SM methods are used. Deploying the estimation methods onto synthetic generated data showed that
the exact transfer-function can be reasonably well estimated, especially with a combined increasement of
time and window-length, but depends on a numbers of factors such as: the amount of noise contained in
the system. From the analysis based on sea trial data, it is shown that the most smooth/best estimations can
be obtained when the C SM 1 is used. Comparing these estimated transfer-functions to those pre-calculated
showed that they give different solutions. However, the motion response-spectra based on the estimated
transfer-functions has a better relation to the response-spectra of the measured motions compared to the
response-spectra based on the pre-calculated transfer-functions. With the above said, it can be concluded
that the best estimation of the transfer-function can be obtained by the cross-spectral method in combina-
tion with Welch-averaging (C SM 1).

(B) How much does the accuracy of real-time ship motion prediction increase when an estimated transfer-
function is used in a linear ship motion model, based on a frequency-domain approach, compared to the
solutions obtained from pre-calculated transfer-functions?

From the sea-trial data analysis it is shown than estimated transfer-functions, by the C SM 1 method, will
increase the maximum cross-correlation coefficient (a measurement of similarity between two signals) with
∼ 1−10%. From the ratio between the standard deviation of the measured motions and the standard deviation
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of the predicted motions, it is shown that the amplitudes of the predicted motions are generally underesti-
mated when estimated transfer-functions are used. With the use of a linear scaling factor, this poor ratio of
standard deviations can be resolved without affecting the maximum cross-correlation coefficient. Further-
more, the time-window at which reliable transfer-functions can be estimated is within approximately 5 till
7 minutes. With the above said, it can be concluded that the accuracy of real-time ship motion prediction
increases with ∼ 1−10% when estimated transfer-functions are used.

5.2. Recommendations
Although it is shown that the accuracy of real-time motion prediction increases by using the method de-
scribed in this report, there are a few recommendations to further improve the accuracy of real-time ship
motion prediction.

The first recommendation, an assessment of the quality/ reliability of the linear wave-force signal (Fi (t )).
In this report it is assumed that the force signal can be taken as a reliable input for estimation of the transfer-
functions and eventually for the motion predictions. From the similarity between the motion-response spec-
tra obtained from the calculated- and measured (heave) motions, it was stated in Section 4.3.1 that this as-
sumption has to be true till some extend but cannot be generalized. Furthermore, in Section 4.3.1 it was
also noticed that for some cases the amount of wave-components resolved from the radar data analysis is
insufficient, especially for the higher frequencies. As a direct consequence, the motions and forces will not
be modeled in for those frequencies and will therefore also not be taken into account when estimating the
transfer-functions. In either way, a more accurate force prediction will most likely also result in more accurate
motion predictions.

The second recommendation, improving the current model by coupling of the DOF’s. In this research a
so called Single Input Single Output system is used while in reality the ship motions are coupled, resulting in
a Multiple Input Single Output system. In Section 4.4 a method is proposed on how these couplings can be
taken into account, by an expansion of the current model and an estimation of the transfer-functions com-
parable to the C SM 1 method. A first research showed that by coupling the heave and pitch motion, the the
cross-correlation coefficient can be increased with an additional ∼ 0.2-3%. Therefore, it is recommended in
future studies to expand the proposed method from Section 4.4 to all the other DOF’s and use that model
instead.

The third recommendation, system identification via a non-linear ship motion model. It has been shown
from the frequency-domain solutions in Section 4.3 that the largest deviations between the calculated- and
measured motion response-spectra can be found near the peak frequencies extending to the higher frequen-
cies. In other words, the solutions becomes less correlated in the regions where large amplitudes and/ or
velocities occur. This uncorrelated behaviour comes from non-linear effects which cannot be taken into
account using the currently used (linear) motion model. Therefore, a non-linear ship motion model is rec-
ommended for future studies. A suggestion where one can start, a time-domain model based on Cummins
equation with a quadratic damping term for the viscous damping. This representation of the ship motions is
recommended because it is a commonly used method for non-linear ship motions modeling, for example by
Conell et al. [3]. In mathematical terms this representation yields:

~Fw (t ) = (I + A∞)~̈ξ(t )+
∫ t

0
K (t − t ′)ξ̇(t ′)dt ′+~bvi s |~̇ξ(t )|~̇ξ(t )+C~ξ(t ) (5.1)

where:
Fw (t ) =Wave forces and moments

I =Mass and inertia matrix

A∞ =Added mass matrix at ω=∞
C =Spring forces matrix

K =Retardation function

bvi s =Viscous damping term

Furthermore, the recommended modelling technique is a space state model. This is recommended be-
cause, it has already be shown that the Cummins equation can be represented in such a model [19][20][23]
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and also quadratic terms can be included. Also, an advantage of parametric modeling is that uncertainties
can be estimated from measured data while certain values can be kept fixed values. Under the assumption
that the wave-forces can accurately be determined, for an initial starting point it is recommended to take
the additional viscous damping coefficient (bvi sc ), terms related to inertia (Ixx , Iy y , Izz ) and the spring terms
related to the metracentric height as unknown variables. This is recommended because these variables are
depending on the loading conditions of the ship while the other variables are related to the geometry of the
vessel, which are quantities which can be quite accurately determined using BEM software.

The final recommendation, a comparative study of different motion prediction models. As mentioned
in Section 1.1.2 there are several models developed with the aim of motion prediction[5][13][1][3]. Since the
sea trial results presented in these works are conducted under different circumstances, that is sea state and
vessel, a comparative study is recommended to evaluate which model performs best.
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A
(Discrete) Fourier Transform

A Fourier Transform transforms a signal from the time-domain into the frequency-domain. In continuous
form this function is defined as [7]:

F ( jω) = 1

2π

∫ ∞

−∞
f (t )e− jωt dω. (A.1)

The inverse operation, known as the Inverse Fourier Transformation (IFT), transforms the frequency-domain
description back into the time-domain and is defined as:

f (t ) =
∫ ∞

−∞
F (ω)e jωdt (A.2)

The combined equations as given above are often referred to as a Fourier transform pair. Since the FT is a
complex numbers it has an amplitude and a phase-angle. The amplitudes can be calculated by taking the
square root of the reel parts and the imaginary parts squared. I.e.:

Fa(ω) =
√

Re F (ω)}2 + Im {F (ω)}2 (A.3)

And the phase angles can be calculated by taking the inverse tangent:

ε(ω) = t an−1
(

Im(F (ω))

Re(F (ω))

)
(A.4)

Discrete and Fast Fourier Transform
The FT given in Equation A.1 assumes that the signal f (t ) is continuous and infinite, while in practice dis-
crete signals are finite and discrete. Therefore, in the numerical model the discrete version, the DFT, of this
equation has been used which is defined as [21]:

F (ωd ) =
Ns−1∑
ns=0

f (ns fs )e− j 2π
Ns
ωd ns (A.5)

and its inverse (IDFT) is given by:

f (ns fs ) = 1

Ns

Ns−1∑
ωd=0

F (ωd )e j 2π
Ns
ωd ns (A.6)

Similar to the FT, the amplitudes for each frequency component kn can be calculated by:

xan (kn) =
√

Re {F (ωd ))}2 + Im {F (ωd )}2 (A.7)

and the phase angles by:

εn(kn) = t an−1
(

Im(F (ωd ))

Re(F (ωd ))

)
. (A.8)
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70 A. (Discrete) Fourier Transform

Furthermore, the frequency step related to the DFT as given in the equation above is defined as:

∆ω= fs

Ns
. (A.9)

In order to solve the DFT and IDFT in literature different algorithms can be found. The collective name of
these DFT algorithms is the Fast Fourier Tranfrom (FFT) where the most common algorithm is the Coolney
algorithm.



B
Synthetization of oceanic waves

This appendix describes how synthetic are generated for the synthetic evaluations in Section 3.4 and 4.2. For
the synthetization of the the wave-field the method as proposed by Goda [6] is used. For this method first, a
2-D wave-spectrum needs to be defined. Secondly, with the use of a distribution function directional. The
wave-spectrum which is used in this report is a JONSWAP spectrum

Wave-field description
The behaviour of oceanic and coastal waves can be classified a stochastic process [8]. Although it is stochastic,
when the surface elevation is recorded with for example a wave-buoy or radar it is possible to reconstruct the
surface elevation using a Fourier Series expansion. A 3-D time-domain description of the wave-field using
such an expansion can be defined as [8]:

η(x, y, t ) =R
[

N∑
n=1

ηa,ne−i (ωn ·t−kx,n ·x−ky,n ·y−εn )

}
(B.1)

where:

kx,n = kn · cos(µn)

ky,n = kn · si n(µn)

.

(B.2)

where the wave number kn can be found solving the dispersion relation, i.e.:

ω2
n = kg t anh(kh). (B.3)

According to Goda [6] the phase angle εn should be chosen random with a normal distribution between
0 ≤ εn ≤ 2π. Before the wave amplitudes, ηa,n , and wave directions,µn , can be determined a wave energy
spectrum and a directional function have to be defined.

JOHNSWAP wave spectrum
A wave energy spectrum contains information about how energy is distributed among the frequency compo-
nents. In literature different wave energy spectra can be found like the Pierson-Moskowitz, JOHNSWAP and
Bretschneider spectra. These spectra are developed for certain geological positions on earth. For the gen-
eration of the synthetic data the JOHNSWAP spectrum has been adopted into the model, developed around
1970 and is defined as [8]:

Sη(ω) = 320 ·H 2
1/3

T 4
p

·ω−5exp

(
−1950

T 4
p

ω−4

)
γA (B.4)

where:
γ= 3.3 (B.5)
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A = exp

−( ω
ωp

−1

σ
p

2

)2
 (B.6)

σ=
{

0.07 ω≤ωp

0.09 ω>ωp
(B.7)

where ωp is the peak frequency. Figure B.1a shows an example of the JOHNSWAP spectrum with Tp = 8[s]
and H1/3 = 2 [m].

Distribution functions
The spectrum defined in the previous section does not contain any directional information. In practice this is
added by applying a distribution functions. This function distributes the wave-energy among different wave
directions and in general expressed as:

Sη(ω,µ∗) = S(ω)ηD(µ∗|ω) (B.8)

where:

µ∗ =µ+ µ̄. (B.9)

µ̄ is defined as the mean wave direction. Although many distribution functions can be found in literature
they all have to satisfy the condition: ∫ π

−π
D((µ∗| f ))dµ∗ = 1 (B.10)

which ensures that energy is preserved. In this thesis the distribution function is defined as [6] :

D(µ∗) = 1p
π

Γ(1+ s)2

Γ(2s +1)
cos2s

(
µ∗

2

)
with: −π/2 ≤µ∗ ≤π/2 (B.11)

where Γ is the gamma function and s = 5. Figure B.1b shows an example of the directional function as de-
scribed above.

Wave amplitudes and directions
For the selection of the individual wave-height components from Equation B.1 the most robust method, the
single summation method, as proposed by Goda [6] has been used. Here a single wave height component
can be calculated by:

ηn =
√

2Sζ(ωn)∆ωn (B.12)

which takes the wave spectra from Equation B.4 into account. When this equation is substituted in Equation
B.1 the wave-field can be calculated by:

η(x, y, t ) =R
[

N∑
n=1

√
2Sζ(ωn)∆ωne−i (ωn ·t−kx,n ·x−ky,n ·y−εn )

}
(B.13)

The last thing remaining is to define a wave-direction, µn . This has been accomplished by solving:

µn = F−1(Rn)− µ̄ : F (µ∗|ωn) =
∫ 2π

0
D(µ∗|ωn)dµ, (B.14)

where F (µ∗|ωn) is the cumulative distribution function and Rm is a random number normally distributed
between 0 and 1. I.e., µn is the solution of the inverse cumulative distribution function for a random number
Rn .
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Figure B.1: JOHNSWAP spectrum and directional spreading function





C
Response Amplitude Operators

In this Appendix the TF’s corresponding to the SPA-4207 are shown, for illustrative purposes. Due to confi-
dential reasons the numbers on the axis are not shown. Figure C.1a shows the wave-to-force TF’s (H ′

0,i ( jω)).

Figure C.1b shows the force-to-motion TF’s (G0,i ( jω)). Figure C.1c shows the wave-to-motion TF (H ′
0,i ( jω))

or RAO’s
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(a) Pre-calculated wave-to-force TF’s (b) Pre-calculated force-to-motion TF’s

(c) Pre-calculated wave-to-motion TF’s

Figure C.1: Illustrative example of the amplitudes and phase angles of the pre-calculated TF’s. Figure C.1a shows the wave-to-force TF’s
(H ′

0,i ( jω)). Figure C.1b shows the force-to-motion TF’s (G0,i ( jω)). Figure C.1c shows the wave-to-motion TF (H ′
0,i ( jω)) or RAO’s



D
Sea trial results

In this Appendix the figures equivalent to those shown for run 2 in Section 4.3.1 for all the runs are given. To
recall, the transfer-functions have been estimated by the C SM 1 method with a Hamming window, a window-
length of wl = 400 [-], and an overlap of 75%. The figures which will be shown for each run are:

• A time-domain description of the measured an calculated motions

• The cross-correlation coefficients

• An estimation of the TF’s (Ǧi ( jω)) and the pre-calculated TF’s (G0,i ( jω))

• The motion response-spectra -or auto-spectra- of the measured and calculated motions

• The Coherence function

The conditions at which the sea-trials were conducted are re-summarized in the table below.

Table D.1: Sea trial conditions

Run no. Name SOG [m/s] µ [deg] Duration [s] Tp [s] H1/3 [m]

1 Bow-quartering seas 0.52 161 736 7.6 2.2

2 Head seas 2.32 174 1306 7.5 2.2

3 Stern-quartering seas 4.10 307 1392 7.7 2.2

4 Following seas 2.72 346 1256 7.6 2.2

5 Bow-quartering seas 0.71 129 884 7.4 2.2

6 Beam seas 3.17 84 936 7.5 2.2
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Run 1
Time-domain solutions

(a) Pierson cross-correlation coefficient (b) Time domain solution

Figure D.1: Run 1: The left figure shows the cross-correlation coefficients between the measured- and predicted motions for. In the right
figure the time-domain solutions of the measured motions are shown by the blue line. The green lines in both figures represents that
the motions are predicted by using estimated TF’s (Ǧi ( jω)) while the red lines show the solutions of the pre-calculated TF’s (H0,i ( jω)).

Furthermore, Ǧi ( jω) has been estimated by the C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an overlap of
75%.
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Frequency domain solutions

(a) Amplitudes of the transfer function (b) Phase angles of the transfer function

Figure D.2: Run 1: The amplitudes and phase angles for of the pre-calculated TF’s (solid red) and estimated TF’s (solid blue). The blue
dashed line represents the estimated TF plus or minus the estimated standard deviation. The grey area represents the domain which
contains 98% of the energy of the motion response-spectra. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a window-
length of wl = 400 [-], and an overlap of 75%.

(a) Motion response-spectra (b) Coherence function

Figure D.3: Run 1: The motion response-spectra (left) and the Coherence function (right). The blue dashed line in the left figure repre-
sents the motion response-spectra of the predicted motions obtained from pre-calculated TF’s (H0,i ( jω)). The solid blue line shows the
motion response-spectra in the case that estimated TF’s (Ǧi ( jω)) are used. In the right figure, the red-dashed line is the mean coherence
of the grey domain. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an overlap of
75%.



80 D. Sea trial results

Run 2
Time-domain solutions

(a) Pierson correlation-coefficient (b) Time domain solution

Figure D.4: Run 2: The left figure shows the cross-correlation coefficients between the measured- and predicted motions for. In the right
figure the time-domain solutions of the measured motions are shown by the blue line. The green lines in both figures represents that
the motions are predicted by using estimated TF’s (Ǧi ( jω)) while the red lines show the solutions of the pre-calculated TF’s (H0,i ( jω)).

Furthermore, Ǧi ( jω) has been estimated by the C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an overlap of
75%.
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Frequency-domain solutions

(a) Amplitudes of the transfer function (b) Phase angles of the transfer function

Figure D.5: Run 2: The amplitudes and phase angles for of the pre-calculated TF’s (solid red) and estimated TF’s (solid blue). The blue
dashed line represents the estimated TF plus or minus the estimated standard deviation. The grey area represents the domain which
contains 98% of the energy of the motion response-spectra. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a window-
length of wl = 400 [-], and an overlap of 75%.

(a) Motion response-spectra (b) Coherence function

Figure D.6: Run 2: The motion response-spectra (left) and the Coherence function (right). The blue dashed line in the left figure repre-
sents the motion response-spectra of the predicted motions obtained from pre-calculated TF’s (H0,i ( jω)). The solid blue line shows the
motion response-spectra in the case that estimated TF’s (Ǧi ( jω)) are used. In the right figure, the red-dashed line is the mean coherence
of the grey domain. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an overlap of
75%.



82 D. Sea trial results

Run 3
Time-domain solutions

(a) Pierson correlation-coefficient (b) Time domain solution

Figure D.7: Run 3: The left figure shows the cross-correlation coefficients between the measured- and predicted motions for. In the right
figure the time-domain solutions of the measured motions are shown by the blue line. The green lines in both figures represents that
the motions are predicted by using estimated TF’s (Ǧi ( jω)) while the red lines show the solutions of the pre-calculated TF’s (H0,i ( jω)).

Furthermore, Ǧi ( jω) has been estimated by the C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an overlap of
75%.
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Frequency-domain solutions

(a) Amplitudes of the transfer function (b) Phase angles of the transfer function

Figure D.8: Run 3: The amplitudes and phase angles for of the pre-calculated TF’s (solid red) and estimated TF’s (solid blue). The blue
dashed line represents the estimated TF plus or minus the estimated standard deviation. The grey area represents the domain which
contains 98% of the energy of the motion response-spectra. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a window-
length of wl = 400 [-], and an overlap of 75%.

(a) Motion response-spectra (b) Coherence function

Figure D.9: Run 3: The motion response-spectra (left) and the Coherence function (right). The blue dashed line in the left figure repre-
sents the motion response-spectra of the predicted motions obtained from pre-calculated TF’s (H0,i ( jω)). The solid blue line shows the
motion response-spectra in the case that estimated TF’s (Ǧi ( jω)) are used. In the right figure, the red-dashed line is the mean coherence
of the grey domain. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an overlap of
75%.
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Run 4
Time-domain solutions

(a) Pierson correlation-coefficient (b) Time domain solution

Figure D.10: Run 4: The left figure shows the cross-correlation coefficients between the measured- and predicted motions for. In the right
figure the time-domain solutions of the measured motions are shown by the blue line. The green lines in both figures represents that
the motions are predicted by using estimated TF’s (Ǧi ( jω)) while the red lines show the solutions of the pre-calculated TF’s (H0,i ( jω)).

Furthermore, Ǧi ( jω) has been estimated by the C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an overlap of
75%.
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Frequency-domain solutions

(a) Amplitudes of the transfer function (b) Phase angles of the transfer function

Figure D.11: Run 4: The amplitudes and phase angles for of the pre-calculated TF’s (solid red) and estimated TF’s (solid blue). The
blue dashed line represents the estimated TF plus or minus the estimated standard deviation. The grey area represents the domain
which contains 98% of the energy of the motion response-spectra. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a
window-length of wl = 400 [-], and an overlap of 75%.

(a) Motion response-spectra (b) Coherence function

Figure D.12: Run 4: The motion response-spectra (left) and the Coherence function (right). The blue dashed line in the left figure
represents the motion response-spectra of the predicted motions obtained from pre-calculated TF’s (H0,i ( jω)). The solid blue line
shows the motion response-spectra in the case that estimated TF’s (Ǧi ( jω)) are used. In the right figure, the red-dashed line is the mean
coherence of the grey domain. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an
overlap of 75%.
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Run 5
Time-domain solutions

(a) correlation-coefficient (b) Time domain solution

Figure D.13: Run 5: The left figure shows the cross-correlation coefficients between the measured- and predicted motions for. In the right
figure the time-domain solutions of the measured motions are shown by the blue line. The green lines in both figures represents that
the motions are predicted by using estimated TF’s (Ǧi ( jω)) while the red lines show the solutions of the pre-calculated TF’s (H0,i ( jω)).

Furthermore, Ǧi ( jω) has been estimated by the C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an overlap of
75%.
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Frequency-domain solutions

(a) Amplitudes of the transfer function (b) Phase angles of the transfer function

Figure D.14: Run 5: The amplitudes and phase angles for of the pre-calculated TF’s (solid red) and estimated TF’s (solid blue). The
blue dashed line represents the estimated TF plus or minus the estimated standard deviation. The grey area represents the domain
which contains 98% of the energy of the motion response-spectra. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a
window-length of wl = 400 [-], and an overlap of 75%.

(a) Motion response-spectra (b) Coherence function

Figure D.15: Run 5: The motion response-spectra (left) and the Coherence function (right). The blue dashed line in the left figure
represents the motion response-spectra of the predicted motions obtained from pre-calculated TF’s (H0,i ( jω)). The solid blue line
shows the motion response-spectra in the case that estimated TF’s (Ǧi ( jω)) are used. In the right figure, the red-dashed line is the mean
coherence of the grey domain. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an
overlap of 75%.
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Run 6
Time-domain solutions

(a) Pierson correlation-coefficient (b) Time domain solution

Figure D.16: Run 6: The left figure shows the cross-correlation coefficients between the measured- and predicted motions for. In the right
figure the time-domain solutions of the measured motions are shown by the blue line. The green lines in both figures represents that
the motions are predicted by using estimated TF’s (Ǧi ( jω)) while the red lines show the solutions of the pre-calculated TF’s (H0,i ( jω)).

Furthermore, Ǧi ( jω) has been estimated by the C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an overlap of
75%.
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Frequency-domain solutions

(a) Amplitudes of the transfer function (b) Phase angles of the transfer function

Figure D.17: Run 6: The amplitudes and phase angles for of the pre-calculated TF’s (solid red) and estimated TF’s (solid blue). The
blue dashed line represents the estimated TF plus or minus the estimated standard deviation. The grey area represents the domain
which contains 98% of the energy of the motion response-spectra. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a
window-length of wl = 400 [-], and an overlap of 75%.

(a) Motion response-spectra (b) Coherence function

Figure D.18: Run 6: The motion response-spectra (left) and the Coherence function (right). The blue dashed line in the left figure
represents the motion response-spectra of the predicted motions obtained from pre-calculated TF’s (H0,i ( jω)). The solid blue line
shows the motion response-spectra in the case that estimated TF’s Ǧi ( jω) are used. In the right figure, the red-dashed line is the mean
coherence of the grey domain. Ǧi ( jω) has been estimated by C SM1 with: a Hamming window, a window-length of wl = 400 [-], and an
overlap of 75%.
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