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Summary

Most, if not all, vessel new builds within the offshore heavy lifting industry are designed with specific char-
acteristics (stability, dynamic response, transition speed etc.) in mind. Subsequently a crane is designed and
supplemented to the vessel complying with the characteristics of the vessel. However, what happens if this
design process is turned around? That is, for specific crane design and maximum lifting load, what is the
optimum vessel geometry? If one would exactly know what the soul operational purpose of a new build ves-
sel would be, designing a vessel in this manner could be more cost effective. This method of analysis would
provide a different approach and possibly a different outcome to the design process.

A first and important step in this new design process is to define how/whether the geometric properties
of a vessel are of influence on the response characteristics during lifting operations. This report provides
a method of analysis to combine vessel response terms, obtained from hydrodynamic diffraction software,
with the terms related to the crane load motion, defined through the Lagrangian method. An example vessel,
namely the Lewek Connector, is chosen to analyze the model.

This coupled model of analysis has been compared with the current method of analysis, where the crane
load is modeled as a lump loaded mass at the crane tip. The two separate model set-ups are evaluated within
the frequency domain, focusing on the resonance frequency, maximum excitation at the resonance frequency
and the effective motion of the system. The coupled system provides a better representation of reality com-
pared to the current lump loaded system.

Using the coupled set-up, a model has been created enabling the user to alter the geometric properties
of a vessel. Either the length, width, and/or depth of the vessel can be changed. All parameters (Center of
gravity/buoyancy, radii of gyration, mass, draft) linked to the geometry of the vessel are calculated within the
model. Altering the vessel geometry of the example vessel will in fact make the model imaginary and non
existent in real life, hence there is no existing vessel with the altered Lewek Connector’s geometry.

It has been shown that the swaying of the crane motion only affects the vessel motion within roll. The
crane load will not affect the pitch motion, even for increasingly small vessel sizes dynamic coupled motion
within pitch does not occur. The inertia forces generated by the swaying crane load are not large enough to
force the pitch motion to exert any coupled behavior. Due to the model set-up, with a single large crane at
the aft of the vessel, the static pitch excitation increases for increasingly smaller vessels.

It has been shown that swaying of the crane load will have a greater influence on the roll motion for
increasingly smaller vessels. However, the damping of the crane load highly dictates the maximum occurring
motion. Further research must include any form of CFD analysis and/or structural damping analysis in order
to determine the occurring crane load damping.

Both resonance frequency related to the vessel motion as well as the resonance frequency related to the
swaying crane load motion are dependent on the vessel geometry. Therefore it cannot be assumed the crane
load will resonate at the natural frequency of a freely swaying pendulum that’s only dependent on the crane
cable length.
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1
Introduction

In the past 10 years the offshore oil & gas industry has seen an increasing demand in offshore installation
work. With larger oilfields discovered and deeper waters accessible, the offshore construction market reacted
to this demand by building more and larger construction assets and crane ships. Most, if not all, of these
construction assets have been monohull vessels, as like the in 2007 built EMAS vessel Lewek Champion seen
in figure 1.1. Despite the fact currently the offshore vessel new-build market is slow, future investments for
large heavy lift crane vessels is expected. To keep investment and operational costs competitive, owners tend
to build relatively small vessels with large heavy lift cranes. This may come in conflict with the operational
capabilities like stability and wave motion response. For the owner it is interesting to have a tool at hand at
the conceptual phase of a new-build vessel, helping to determine better dimensional properties with respect
to operability characteristics.

Figure 1.1: Lewek Champion

1



2 1. Introduction

1.1. Problem statement
A primary field of difficulty with respect to optimizing crane vessel dimensions is the dynamic interaction
between vessel and the crane suspended load, also known as dynamic coupling. The approach currently used
by EMAS to analyze the dynamic response of the crane vessel system, is to model the crane load lumped at the
crane tip as seen in figure 1.2a. This implies that the excitation of the load is simply a prescribed motion of the
crane tip. Lump loading the crane load at the crane tip is a fully legitimate and validated method of analysis
for static stability analysis. Regarding the dynamic interaction between the crane load and vessel motion, as
illustrated in figure 1.2b, the lump loaded analysis method neglects the influence of the suspended crane load
motion on the motion of the vessel. The general consensus is that the crane load is relatively small compared
to the actual mass of the vessel. However, reducing the vessel size will inadvertently have consequences on
the coupled motion behavior of the vessel/crane system. This thesis therefore challenges the assertion made.
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Figure 1.2: Lump loaded vs. coupled loaded

1.1.1. Research question
EMAS AMC has clearly stated a vision for future investments, new built crane vessel designs must be opti-
mized to reduce construction costs and maximize operational up-time of the vessel. As explained in section
1.1, reducing vessel dimensions may have an effect on dynamic coupling. Therefore the research question
for this research thesis has been defined as:

"What is the effect of vessel geometry on dynamic crane load coupling?"

To accurately answer the main research question a subdivision into several sub questions must be made.
These sub questions will cover all aspects of the main question and will assist in structuring the research
thesis. The sub questions for this research are defined as:

1. What is dynamic coupled motion?

2. What induces crane load coupled motion on a crane vessel?

3. In which degrees of freedom does dynamic crane load coupled motion occur?

4. Does dynamic crane load coupled motion occur during current operations and is this significant with
respect to current method of analysis?

5. Which geometrical vessel parameters have the most influence on dynamic crane load coupled motion?



2
Reference study

As preparation, several research papers have been examined used as reference throughout the research. To be
able to understand the general challenges regarding dynamic coupling of crane vessels, the problems these
reference papers faced must be set out.

2.1. Coupled crane vessel motion
First of all, one must know what is defined as a dynamically coupled system. A dynamic coupled system is
one composed of subsystems, that is, the states of certain subsystems affect the time-evolution of the other
[11]. The coupled system researched will be the vessel coupled with the crane system. Dynamic coupling
with respect to this system would therefore be, the influence of the vessel motion on the crane load motion
and vice versa.

In general, the roll and pitch motion of a crane vessel are seen as the most governing motion with respect
to the operability during lifting operations. EMAS has done an initial research performed by Vu et. al. [10]
into roll and pitch characteristics of a generalized barge like crane vessel. The research examines the rela-
tionship between swinging of the lifted crane load on the natural frequency for either roll or pitch. By using
the hydrostatic stability equations, a highly simplified dynamic system was created. In essence the system
researched is represented as a 2 degrees of freedom system. The aim of the research was to have a simple
rudimentary model at hand to predict natural periods of vessel and crane load. If correct, a system like this
could quickly give an educated guesstimate into the natural frequency of the vessel and crane load without
the need for extensive computing power and programming efforts.

The main conclusion from the research is a large difference between the natural crane period calcu-
lated by the analytic formulation and the actual natural periods calculated by numerical dynamic software
(MOSES). The error between the analytic and numerical natural load frequencies are anywhere between 0.0%
and 27.9%. Although not included in the conclusion of the research, the natural period for roll also shows a
great discrepancy. The error for roll is anywhere between 0.2% and 9.0%.

This discrepancy is credited to the modeled stiffness of the crane system. This assertion however is not
entirely correct. The unknown stiffness of the crane system will most likely contribute to the discrepancy
examined, however this is not the only contributor in the dynamic system. Results from the research are
rather monolithic in nature, it does not account for higher order natural frequencies, it does not incorporate
higher degrees of freedom, and both environmental loading conditions and damping terms are not present.
To better understand the actual system, it must be expanded to a higher degree of freedom, removing the
incited simplification in order to better understand the problem. This implies the system can no longer be
described by the hydrostatic characteristics of a generalized barge like vessel in 2 degrees of freedom. There
is a vast array of possible contributors to the discrepancy examined, the assumed simplifications to describe
the system therefore just does not represent the actual system.

The research performed by Coric et. al.[3] implements a more complex dynamic model incorporating
both the vessel motion as well as the crane load motion. Compared to the more simplistic model research
by Vu et. al. [10], this model incorporates three additional degrees of freedom due to the swinging of the
crane load and elongation of the crane cable. This implies the set-up system has 9 degrees of freedom, three
vessel translation motions (surge, sway and heave), three rotational vessel motions (roll, pitch and yaw), two

3



4 2. Reference study

additional angular motions of the crane cable and finally the crane cable elongation motion. This model is
only viable for small oscillatory motions, for greater oscillatory motions nonlinear effects come into play. The
crane load is modeled as a singularity load, which implies the load only has mass properties and no further
dimensional properties such as rotational moment of inertia.

The model has been verified with towing tank testing and shows very good comparison in data trend,
maximum error is equal to 2.2%. Greater errors occur when the mass is lifted significantly from the deck
towards the tip of the crane, a maximum error of 18.4% has been observed. This however is not a real world
scenario, hence there is no real reason to hoist a mass towards the tip of the crane. The main conclusion of
the research is that the data show acceptable accuracy for practical applications.

Not included in the model is the initial displacement of the vessel, the model only looks at dynamic dis-
placements due to incoming waves. It must however be notified this assertion most likely is correct evaluating
rolling motion, hence the crane is symmetrically placed at the aft of the vessel and therefore does not give any
initial rolling displacement. For pitch however, this assertion is not entirely correct. Although the effect most
likely is not even noticeable, it must not be discarded without proof.

2.2. Analytic coupled vessel motion
A more in depth mathematical research by Ibrahim and Grace [7] into vessel motion has been performed.
This research examines two different approaches to analytically describe vessel motions in 6 degrees of free-
dom (surge, sway, heave, roll, pitch & yaw). The first approach utilizes a mathematical development based on
a Taylor expansion of the force function. I.e. the system is described as a system at a certain equilibrium. This
method accounts for the vessel inertia forces, inertia moments and restoring forces. This method would give
a rather accurate display of the nonlinear equations of motion in 6 degrees of freedom. The second method
employs the integration of hydrodynamic pressure acting on the ship’s wetted surface to derive the external
forces and moments.

However modeling the roll damping is much more complicated. Existing information on the structural
damping of ships is far from satisfactory [2]. Symmetric responses to wave excitation can be estimated on the
basis of existing hydrodynamic theories, with use of rough estimates of hull damping. Limited knowledge of
structural damping is likely to be a handicap. Much less is known about antisymmetric responses to waves
and the effect of hull damping [2].

For small roll angles, the damping moment is directly proportional to the angular roll velocity. But with
increasing roll angle, nonlinear damping will become significant. Due to the occurrence of strong viscous
effect, roll damping moments cannot be computed by means of potential theory [7].

A research performed by Y. Himeno [6] lists all linear and nonlinear contributors to the roll damping
coefficients. The total roll damping with all individual contributors is seen in equation 2.1.

b44(ω) = BE +BF +BL +BW +BBK H +BBK N +BBK W (2.1)

Eddy damping BE , nonlinear damping caused by the pressure variation on the naked hull, excluding the
effect of waves and bilge keels. The nonlinearity is proportional to the quadratic angular roll velocity term of
the vessel motion.

Friction damping BF is caused by the skin-friction stress on the hull in roll motion. Therefore it may be
influenced by the presence of waves and bilge keels.

Lift effect BL , at forward speed a vessel exerts an upward lift force. This effect in turn will increase the roll
damping of a vessel linearly.

Wave damping BW , denotes the increment of the hull-pressure damping due to presence of free surface
waves, so it includes the interaction between waves and eddies and between waves and lift. Free surface
waves being waves without the presence of any shear stress.

Hull-pressure damping due to bilge keels BBK H , corresponds to the pressure change on the hull when bilge
keels are installed. This term stands for an interaction between hull and bilge keels.

Normal force damping of bilge keels BBK N , is due to the normal force on the bilge keels themselves.
Wave damping of bilge keels BBK W , the damping induced by the interaction of free surface waves.
Although the mathematical approach gives the coupled vessel motion in 6 degrees of freedom it does

not suit the needs for this research. Damping terms are highly nonlinear and difficult to accurately calculate
through analytic calculations. Therefore an analytic approach to the research is deemed to be fruitless. If
possible, a software program that calculates the dynamic properties of a vessel accurately and predicatively
should be incorporated.



2.3. Numerical coupled vessel motion 5

2.3. Numerical coupled vessel motion
The research must incorporate numerical modeling of vessel dynamics to accurately compute the dynamic
properties of the vessel. Several software programs exist to calculate these dynamic properties of the vessel.
These software packages use geometry dependent diffraction theory. Different sea states are implementable,
damping terms related to the vessel damping as well as to the bilge keels are implemented and subsequently
give a better approximation compared to the analytic estimates described in section 2.2.

The crane system implementing the degrees of freedom related to the crane load movement must be
added to the system increasing the number of degrees of freedom as seen in the research performed by Coric.
et. al. [3]. Simplifications made to the system may only be implemented whenever there is proof it will not
compromise the results. The dynamic system will be evaluated within the frequency domain, this will ensure
all dynamic properties are easily obtainable.

The set-up of the modeled system therefore may be subdivided into two separate parts. First the hydro-
dynamic model describing the vessel motion will be set up and secondly the additional crane terms will be
added. This adaptation of the crane terms to the vessel is only possible whenever all terms involved are within
the linear domain. Therefore it has to be proven the subsequent crane terms are modeled correctly within
the linear domain.

The performed analyses are subdivided into three parts. First the current method of analysis will be com-
pared to the coupled system within the base case. Implying, a known vessel will be used to compare the differ-
ent methods of analysis. Secondly, the geometric vessel properties will be reshaped proportionally, implying
the vessel is made smaller or bigger. Thirdly a disproportional sensitivity analyses is performed evaluating
the dependency of either the length, width or depth of the vessel on the motion characteristics.

Finalizing the research, conclusions are made and the research questions are answered followed by rec-
ommendations on how to incorporate the researched model and what to research next. The set-up of the
research may be seen in figure 2.1.
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Subquestions

1. What is dynamic coupled motion?

A coupled dynamical system is one composed of subsystems, that is, the states of certain subsystems
affect the time-evolution of others [11]. The system researched is respectively the vessel system and secondly
the crane system, i.e., the effect of the vessel motion on the crane load motion and vice versa.
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In able create the matrices related to the vessel motion, diffraction software is used. To be able to answer
the premise of the research the set-up of the diffraction software calculations must be done correctly for all
cases examined. I.e., all properties related to the geometric parametric commutation must be calculated
correctly. This chapter, figure 3.1, will discuss how the diffraction software was implemented before moving
on to coupling of the crane terms.

This research will evaluate the dimensional parametric modification based on an existing vessel. The
Lewek Connector is chosen as a suitable candidate vessel, the Connector is a SURF vessel with a record of high
dynamic stability during installation. The vessel has two medium sized subsea knuckle boom cranes located
respectively at the aft and amidship [1]. These cranes however will not be used throughout the research. The
model will be set up as a traditional heavy lift vessel with a single large crane dead center at the aft of the ship.
This configuration is usually used for heavy lifting operations, the maximum lift capacity is greater compared
to lifting from the side of the vessel, this will be discussed in chapter 4.

The diffraction software package used is the WADAM HydroD package by DNV GL™provided by EMAS
AMC. This software is able to calculate the mass-inertia-, damping- and stiffness- matrices as well as the force
vectors representing the wave response of the vessel. The diffraction software is able to include bilge keels
that give the vessel better roll damping characteristics.

The calculations performed by the diffraction software are all in stationary position, no forward speed is
added. Second order wave drift terms are not included into the calculations hence the natural period of these
terms is very large and not noticeable for the crane load. This has been done to reduce the computing time
needed.

The wave forces calculated by the diffraction software must be evaluated for different wave encounter
angles, hence the forcing of the system is both dependent on wave frequency as well as encounter angle. The
encounter angle µ will be set at small increments for head and following waves (see figure 3.2), hence these
angles will give the most desirable dynamic output and therefore will most likely be the wave encounter
angles used during operation. For bow, beam and quartering waves the increments are set further apart due
to the fact that these encounter angles will not be used during operations hence the dynamic characteristics
of the vessel with these encounter angles is highly unfavorable. The encounter angles evaluated are listed in
equation 3.1 with respect to the vessel as seen in figure 3.2.

µ= [
0◦,5◦,10◦,15◦,20◦,25◦,45◦,90◦,135◦,155◦,160◦,165◦,170◦,175◦,180◦

]
(3.1)

7
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Figure 3.2: Encounter angles

3.1. Vessel properties
The Lewek Connector’s geometrical properties are listed in table 3.1. The vessel draft Tpp is dependent on the
loading condition of the vessel. During vessel transition the draft is equal to the unloaded draft Tpp = 6.5m,
during lifting operation the ballast tanks are filled to get the draft down to Tpp = 8.5m. This draft increase,
increases the static- and dynamic- stability of the vessel.

The dimensional parameters listed in table 3.1 are the main parameters that will be evaluated in the
model, the model will be set up in such a way that it is possible to increase or decrease each dimensional
parameter independently. Implying that the vessel can either be elongated-shortened, widened-contracted
or elevated-lowered.

Table 3.1: Vessel properties

Parameter Value Unit
Length Lpp 153.0 m
Width Bpp 32.0 m
Depth Hpp 12.1 m
Draft Tpp 8.5 m

3.2. Environmental properties
Analysis for heavy lifting operations usually considers a certain sea state for which motion analysis is per-
formed. I.e., given sea state A, what is the vessel response? To ensure the research questions are answerable,
the environmental conditions are taken constant throughout the research. This research will compare the
vessel response for different vessel sizes within a certain sea state. In further research studies the effect of the
encountered sea state may be evaluated.

The environmental conditions are set as input values for the diffraction software WADAM. The water
depth is set at 300m, this is the minimum water depth for which the shape of the waves are not scanted due
to frictional terms of the sea floor and at which the computational ’cost’ is lowest [15].

A typical analysis wave spectrum used for dynamic analysis is a low energy Jonswap spectrum. The Jon-
swap (Joint North Sea Wave Project) spectrum is specifically designed to represent limited fetch North Sea
sea states. A typical Jonswap spectrum used for dynamic analysis is a wave height of 2m and a significant
wave period of 10s.

3.3. Analyses set-up
To determine whether the vessel shows coupled motion with the crane load and what the effects of the in-
dependent geometrical parameters are, three different analyses are set up. First the unaltered vessel will be
evaluated (Base case analysis), secondly the vessel will be proportionally geometrically altered (Proportional
sensitivity analysis) and thirdly the independent dimensional parameters will be altered (Dis-proportional
sensitivity analysis).
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3.3.1. Base case analysis
The base case analysis will use the Lewek Connector vessel to compare the current method of analysis with
the coupled method of analysis. The base case analysis will determine whether the crane load has an effect
on the vessel motion within current operations. I.e., is the coupled vessel - crane load motion relevant for the
current operations.

3.3.2. Proportional sensitivity analysis
The proportional sensitivity analysis will give insight into whether the dynamic coupled motion is dependent
on the size of the vessel. That is, how does the dynamic coupled motion change for smaller and larger vessels?
If the base case is not dynamically coupled, the proportional sensitivity analysis will determine if different
vessel sizes will induce dynamic coupled motion. Again the Lewek Connector vessel is used to perform the
analysis.

The sensitivity vector λ is defined as seen in equation 3.2. Where the independent scalars account for the
sensitivity multiplier in either X-, Y- or Z- direction. Consider the dimensional properties of the base vessel
as seen in equation 3.3.

λ=
λx

λy

λz

 (3.2)

λbase =
1.00

1.00
1.00

 (3.3)

The geometrically altered length(Lpp), width (Bpp) and height (Hpp) are determined by the product of the
base geometry with the sensitivity vector λ.

Lpp

Bpp

Hpp

=
Lpp,base

Bpp,base

Hpp,base

◦
λx

λy

λz

 (3.4)

Within the proportional sensitivity analysis the sensitivity multipliers in either X-, Y- or Z- direction are
equal, equation 3.5. A total of 21 different cases are analyzed for the proportional sensitivity study, seen in
equation 3.6. Although the vessel will be geometrically altered, the proportions of the vessel will not change.
Sensitivity multipliers smaller than λ< 1.00 imply a vessel that is smaller than the base case vessel and sensi-
tivity multipliers λ> 1.00 imply a vessel that is larger than the base case vessel.

λX =λY =λZ =λ (3.5)

λ=
0.50

0.50
0.50

 ;

0.55
0.55
0.55

 ;

0.60
0.60
0.60

 ; ...;

1.50
1.50
1.50

 (3.6)

3.3.3. Dis-proportional sensitivity analysis
Secondly, the vessel will be geometrically altered dis-proportionally in both length- (X), width- (Y) and depth-
(Z) direction. The vessel will be shortened and elongated in a single direction by equations 3.7 - 3.9. Note
that by reshaping the vessel in a single direction, whether in X-, Y- or Z- direction, the relative geometric
proportions are altered.
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λX =
0.50

1.00
1.00

 ;

0.55
1.00
1.00

 ;

0.60
1.00
1.00

 ; ...;

1.50
1.00
1.00

 (3.7)

λY =
1.00

0.50
1.00

 ;

1.00
0.55
1.00

 ;

1.00
0.60
1.00

 ; ...;

1.00
1.50
1.00

 (3.8)

λZ =
1.00

1.00
0.50

 ;

1.00
1.00
0.55

 ;

1.00
1.00
0.60

 ; ...;

1.00
1.00
1.50

 (3.9)

The four different sensitivity studies will give insight into the dimensional dependency of the system.
Knowing the relation between the dimensional properties and the dynamic output of the system will be the
first step into optimizing the vessel dimensions with respect to the dynamic characteristics of the vessel.

3.4. Numerical parameter calculation
To understand the diffraction software package used, the distinction between both WADAM and HydroD
will be explained. The HydroD software package uses a graphical user interface to set-up the analyses, the
analyses afterwards will be executed by WADAM.

Another method to set-up an analyses is through scripted commands and run it directly to WADAM. This
method is preferred over graphically computing the analyses, hence multiple cases will be run, if computed
correctly it does not need any manual effort to compute all the independent analyses and subsequently hu-
man error is eliminated.

As discussed in section 3.3, the vessel geometric properties will be altered either proportionally or dis-
proportionally throughout the sensitivity analysis. The only thing necessary to compute an analyses is a
geometry file of the vessel that represents the vessel as a set of independent panels. A program has been
developed that enables the user to alter the geometric properties of a vessel based on the sensitivity vector
λ. Besides altering the geometric properties of the vessel according to the sensitivity vector, the properties of
the bilge keels are altered as well. The properties that are dependent of the geometry of the vessel are:

• Draft

• Mass

• Center of gravity (COG)

• Center of buoyancy (COB)

• Radii of gyration (kx , ky and kz )

To define the mass of the vessel, HydroD can calculate the the uniformly distributed mass of the vessel
based on the displaced volume of water of the vessel. The displaced volume of water in turn is calculated
using the draft of the vessel. Although HydroD is able to calculate the mass based on the draft through the
graphical user interface, it is not possible to calculate the mass of the vessel through the scripted WADAM
commands. Whenever one would use the scripted command feature, the mass of the vessel must be known.
For normal analysis computed by EMAS this has never been an issue, hence the mass and all the specifica-
tions are known for a specific vessel.

Usually all these properties of a preexisting vessel are known and do not have to be calculated. Altering
the dimensional properties of the vessel will in turn also alter these properties. A numerical model has been
created to calculate the dimensional dependent properties. The numerical model must be validated to ensure
the properties are calculated correctly. Comparing the calculated properties with the known properties of the
base vessel will validate the numerical model.
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3.4.1. Assumptions
Although an actual vessel does not have an uniform mass distribution, mass is distributed rather unevenly
throughout the vessel, there is no accurate method to determine the distribution of mass. Therefore the
distribution is assumed to be uniform throughout the entire vessel. Assuming an uniform mass distribution
will influence the COG, COB and all three radii of gyration.

Another assumption related to the mass is ’constant average density’. The average vessel density is cal-
culated using the base vessel specifications, see equation 3.10. The vessel density is constant throughout the
sensitivity analysis and is used to compute the draft of the geometrically altered vessels.

ρvessel =
∇ρw

Vvessel
(3.10)

Where: ∇= Displacement

ρw = water density

Vvessel = Volume vessel

To accurately determine the location of the COG and COB it is assumed that there’s no heel nor trim.
Assuming that the vessel has no initial heel nor trim, both the x-coordinate and the y-coordinate of the center
of gravity (COG) and center of buoyancy (COB) align. Hence, whenever the COG does not align with the COB
in either x- or y- coordinate, a torque moment will be present and will subsequently result in a new stationary
equilibrium position.

3.4.2. Base vessel parameter calculation
To validate the methods used to calculate the parameters, the numerical model is compared with the known
values for the base vessel. The draft for the base vessel, as mentioned earlier, is set at Tpp = 8.5m. The dis-
placement of a vessel is defined as seen in equation 3.11. In order to approximate this integral numerically,
the geometry file used in WADAM HydroD is loaded into Matlab and used to compute the displacement ∇.

∇=
Tpp∫
0

Ï
A

f (x, y, z)dxdydz (3.11)

Where: f (x, y, z) = vessel geometry

It is known from hydrostatics that the mass of the vessel is equal to the mass of the displaced volume of
water.

M1 =∇ρw (3.12)

As seen in equation 3.10, the average density can now be computed, hence the total volumetric measure-
ment of the vessel is equal to:

Vvessel =
Ñ

V

f (x, y, z)dxdydz (3.13)

Previously it has been established the x- and y- coordinate of the COB and COG are aligned through the
assumption of no heel and no trim. The center of gravity is defined as the average location of the weight
of an object [12]. The center of buoyancy is defined as the center of gravity of the volume of water which a
hull displaces [14]. The numerical definition of COG and COB is given in equation 3.14, where ~R is defined
as the spatial vector including the x-, y- and z- coordinate. Implying that for a spatial distributed number
of elements N with corresponding mass mi and coordinate~ri the center of gravity can be calculated using
equation 3.14.
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~R =

N∑
i=1

mi~ri

N∑
i=1

mi

(3.14)

Where: ~R = Center of mass

N = Number of elements

mi = Mass element i

~ri = Coordinate within reference frame element i

As mentioned, a uniform mass distribution is assumed. In order to calculate the COB and COG the vessel
geometry file is ’filled’ with an equally spaced mesh of coordinate points, see figure 3.3. The COB and COG
formulation as seen in equation 3.14 can now be simplified, hence the mass is irrelevant to the equation.

mi = m j for: i 6= j & i = j (3.15)

Therefore: ~R =

N∑
i=1
~ri

N
(3.16)

Similarly the radii of gyration can be computed. The radius of gyration is defined as the equivalent dis-
tance of the mass from the axis of rotation [9]. This is mathematically similar to the root mean square distance
of the vessel with respect to the center of gravity. Numerically the radii of gyration can be defined as seen in
equation 3.17. Where ~K 2 is equal to the radii of gyration for either kx , ky or kz representing the radii of gyra-
tion for roll, pitch and yaw.

~K 2 = 1

N

N∑
i=1

(
~ri −~R

)2
(3.17)
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Figure 3.3: Equally spaced coordinate points

3.4.3. Geometrically altered vessel parameter calculation
Unlike the base vessel parameter calculation, the geometrically altered vessel does not have a predetermined
draft Tpp. Hence, altering the vessel geometry either proportionally or dis-proportionally influences the draft
of the vessel. Although the draft is not able to be computed using the sensitivity factor λ, hence the shape of
the vessel is not linear, using the assumption of constant average density the draft of the altered vessel can be
calculated, equation 3.20.
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Vvesselρvessel =∇ρw (3.18)

∇= Vvesselρvessel

ρw
(3.19)

Tpp∫
0

Ï
A

f (x, y, z)dxdydz = Vvesselρvessel

ρw
(3.20)

Numerically this implies a search function will find the draft Tpp for which the displaced water is equal
to the mass of the vessel under the assumption that the vessel has constant average density throughout the
sensitivity cases. The center of gravity, center of buoyancy and radii of gyration are calculated similarly to the
base vessel parameter calculation seen in equation 3.16 and 3.17.

3.5. Validation
Observing the discrepancy between the numerical model and HydroD, as seen in table 3.2, the error for all
numerically calculated properties is relatively low and within the same ball park range as the calculated Hy-
droD calculated values.

Table 3.2: Numerical model vs. HydroD

Parameter Numerical model HydroD Unit Error
Draft (Tpp) 8.50 8.50 [m] 0.0%
Mass (M1) 27.35 ·106 25.54 ·106 [kg] 7.1%
COG ([x, y, z]) [-4.90, 0.00, 6.59] [-4.65, 0.00, 6.59] [m] [5.4, 0.0, 0.0]%
COB ([x, y, z]) [-4.90, 0.00, 4.68] [-4.65, 0.00, 4.77] [m] [5.4, 0.0, -1.9]%
Radii of gyr. ([kx , ky , kz ]) [11.01, 39.17, 39.30] [10.53, 39.08, 39.62] [m] [4.6, 0.2, -0.8]%

The highest error is observed for the mass of the vessel. HydroD uses the same approach to calculate the
mass as the numerical model. Like the numerical model, HydroD is able to compute a homogeneous mass
model based on the draft of the vessel. The discrepancy however may be due to Matlab’s ability to describe
the volume of complex shapes. Computing the volume of a complex shape, like a vessel, Matlab creates a
convex hull to approximate the shape. Convex hull shapes use Delaunay triangulation theory to estimate the
volume of the vessel based on the geometry points. Think of the convex hull approximation as a rubber band
rapped around an arbitrary shape as seen in figure 3.4. The area included within the perimeter of the rubber
band will always be greater than the area of the actual arbitrary shape. Therefore for smooth sections of the
vessel this convex hull shape of the vessel is a rather good approximation, however sharp cavities are difficult
to approximate using a convex hull [13]. Using the convex hull to approximate the vessel therefore will always
give a greater volume and subsequently greater mass than the HydroD approximation.

Figure 3.4: Convex hull,(http://doc.cgal.org/latest/Convex_hull_2/)

The exact volumetric approximation algorithm HydroD implements is unclear. The discrepancy is the
only observable difference between HydroD and the numerical model.

http://doc.cgal.org/latest/Convex_hull_2/
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Similarly to the volumetric approximation of the vessel, the equally spaced mesh dots seen in figure 3.3,
used to compute the COG, COB, and radii of gyration, are also created using a convex hull approximation.
The discrepancy however is slightly lower.

Seen in figure 3.5 the bow of both the convex hull and the bow of the HydroD model are on display. Based
on the visual assessment, it can be seen that the convex hull approximation is less precise than the HydroD
model.
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(a) Convex hull

(b) HydroD panel hull

Figure 3.5: Convex hull vs. panel hull

As explained, HydroD is the graphical user interface representation of the hydrodynamic software WADAM.
The input parameters will be checked by WADAM and must be within certain error bounds for WADAM to
’approve’ the system. WADAM will not allow a mass discrepancy greater than 10%. The x- and y- coordinate
of the COG and COB must comparatively not have a discrepancy greater than 1%, hence otherwise an initial
heeling- or rolling- arm would be present and the assumed equilibrium position of the vessel is no longer
valid.

If WADAM completes a run without giving an error one may conclude the numerical calculated input
parameters are accurately enough, this is a rather rudimentary check to validate the numerical calculations.
Throughout the entire research there have not been any errors due to input parameter miscalculation.

The only parameters that are not subject to a WADAM check are the radii of gyration. The radii of gyration
represent how far away mass is allocated relative to the COG. For example the COG may be exactly the same
for different radius of gyration.

3.6. Output values
Diffraction software will calculate all matrices incorporating all dynamic properties of the vessel. The mass
and inertia properties are determined in form of a mass-inertia matrix (M) and the frequency dependent
added mass (a(ω)) due to the memory effect. Secondly the frequency dependent damping is calculated
(C(ω)). Thirdly the restoring force matrix is created (K). Note that the restoring force matrix is independent
of the frequency ω.

Besides the matrices, the frequency and encounter angle dependent wave force vector F (ω,µ) is calcu-
lated using the diffraction software. This force vector is determined by the environmental properties defined
in section 3.2. The force vector incorporates both a real and imaginary part, corresponding to a magnitude
(|ℜ+ℑ|) and phase shift (arg(ℜ+ℑ)) of the force. The system response is dependent on the environmen-
tal properties attributed to the diffraction software calculation. Throughout this research the environmental
properties are equal and unaltered.

Within the displayed reference system, see figure 3.6, it is known that a vessel has 3 displacement motions
(surge [x], sway [y] and heave [z]) and 3 angular motions (roll [φ], pitch [θ] and yaw [ψ]) [9].

Surge and sway motions provide no restoring forces within this reference frame [4]. Imagine pushing a
floating rubber duck and giving it a certain forward (surge), sideward (sway) or angular yaw velocity, does the
rubber duck return to its initial position from before you pushed the duck? No, there are no restoring forces
present to push the duck back in its initial position. Now try to imagine that same duck and either pushing
it downwards (heave) or tilting it sideways (roll) or frontward (pitch), does the duck return floating upright?
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Figure 3.6: 6 degrees of freedom vessel

Yes, the duck will restore its natural equilibrium, this is due to the hydrodynamic restoring forces acting upon
the rubber duck.

In general it may be assumed that a offshore lifting vessel has transverse symmetric properties, i.e. port
and starboard are symmetrical. The vessel however is asymmetrical within the sagittal plane, hence the bow
of the vessel has got a different shape than the stern of the vessel.

Whenever the vessel is transversely symmetric combined with the absence of restoring forces for both
surge and sway it gives the reduced form for the matrices [4] as seen in equation 3.21-3.23.

M =



m11 0 m13 0 m15 0
0 m22 0 m24 0 m26

m31 0 m33 0 m35 0
0 m42 0 m44 0 m46

m51 0 m53 0 m55 0
0 m62 0 m64 0 m66

 (3.21)

C =



c11 0 c13 0 c15 0
0 c22 0 c24 0 c26

c31 0 c33 0 c35 0
0 c42 0 c44 0 c46

c51 0 c53 0 c55 0
0 c62 0 c64 0 c66

 (3.22)

K =



0 0 0 0 0 0
0 0 0 0 0 0

k31 0 k33 0 k34 0
0 k42 0 k44 0 k46

k51 0 k53 0 k55 0
0 0 0 0 0 0

 (3.23)

The frequency dependent added mass and damping are of the same size as the static mass and damping
matrices (M and C). Hydrodynamic diffraction software calculates the frequency dependent matrices and
force vector, calculations are performed around a static equilibrium position of the vessel [15]. The obtained
matrices and force vectors will be used to describe the dynamics of the vessel, within chapter 4 it will be
explained how to use these matrices and how to obtain results.
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Figure 4.1: Research set-up

As discussed in chapter 2 the most viable model will be numerical, implementing the additional degrees
of freedom due to the crane system to couple both the vessel motion and the crane motion. It is known
from Coric et. al. [3] the coupled crane vessel system is a 9 degrees of freedom system, three translation
motions (surge, sway, heave), three angular vessel motion (roll, pitch, yaw), two degrees of freedom related
to the swaying pendulum motion and the last related to the crane cable elongation. However, questions
may be asked whether all additional degrees of freedom related to the crane load motion are of influence on
the vessel motion. I.e., do the additional degrees of freedom influence the dynamic response or may they be
discarded as negligible? This chapter, figure 4.1, will couple the crane terms with the vessel terms as discussed
in chapter 3.

Furthermore, it is known that a swaying mass pendulum system is nonlinear. A coupled vessel crane sys-
tem therefore must in place be a nonlinear system [5]. Therefore the linearity assumption must be validated,
this will be done in section 4.2.

As stated in chapter 1, EMAS currently uses a simplified lump loaded system to analyze the vessel motion.
The difference in dynamic set-up must be discussed between a lump loaded system and a coupled loaded
system seen in section 4.3.

4.1. Degrees of freedom analyzed
Previously it has been established that a vessel has 3 displacement motions (surge [x], sway [y] and heave
[z]) and 3 angular motions (roll [φ], pitch [θ] and yaw [ψ])[9]. The mass (M), frequency dependent added
mass(a(ω)), frequency dependent damping (C(ω)), stiffness matrices (K) and frequency and encounter angle
dependent wave force vector (F (ω,µ)) are calculated by means of the diffraction software as discussed in
chapter 3.

4.1.1. Crane dynamics
According to Coric et.al. [3] the crane system can be modeled as a simplified 3 degree of freedom pendulum
as seen in figure 4.2. The three degrees of freedom are comprised of two angular motions (α and β) and the
crane cable elongation (∆l ). Defining the equation of motion for this independent dynamic system could
easily be computed using the Euler Lagrangian method.

To define whether the designated degrees of freedom (either α, β or ∆l ) of the crane system will interact
with the vessel, the natural frequencies of the independent degrees of freedom must be within reasonable

17
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Figure 4.2: 3 degrees of freedom crane

margin of the natural frequency of the vessel. I.e., if an independent natural frequency is much greater than
the natural frequency of the vessel it will not cause any exciting motion to the vessel. Hence, a vessel does not
respond to higher frequency forces [9]. In general large offshore vessels have a natural frequency for both roll
and pitch anywhere between 0.5 and 1.5 rad/s [9], respectively natural frequency periods between 4.2 and
12.6 seconds.

The natural frequency equations for either pendulum swaying motion (ωp ) and crane cable elongation
(ω∆l ) are seen in equation 4.1 - 4.2. Note that the natural frequency for either α or β are irrespective of the
crane load M2 but dependent on merely the crane cable length Lc . The natural frequency for crane cable
elongation is both dependent on the mass M2, cable cross-sectional area A and crane load M2.

ωp =
√

g

Lc
for: α(t )&β(t ) (4.1)

ω∆l =
√

E A

M2Lc
for: ∆l (t ) (4.2)

A = 1

4
πD2 (4.3)

Example crane properties are listed in table 4.1. The crane cable length is evaluated from 10 m to 50
m representative of approximate emerged lifting operations, whenever the crane load would be submerged
frictional and viscous terms would inhibit swaying motion. To exemplify the effect of the mass on the inde-
pendent natural frequencies, the mass is chosen between 100 MT and 400 MT. The Young’s modulus E is that
of steel and the crane cable diameter is set at 0.10 m. This cable diameter is rather small, especially consid-
ering the fact that usually the crane load is suspended from multiple cables. A 100 mm cable has a factored
maximum capacity of 250 MT, implying that the 400 MT crane load must be suspended from two crane cables
of 100 mm. However, looking at the natural frequency equation of the crane cable elongation, equation 4.2, is
linearly proportional to the crane cable diameter (ω∆l ∝ D). Increasing the cable diameter will inadvertently
increase the natural frequency.

Table 4.1: Pendulum properties

Parameter Value Unit
Cable length Lc [10 50] m
Crane load mass M2 [100 ·103 400 ·103] kg
Young’s modulus E 210 ·109 Pa
Cable diameter D 0.10 m
Cable area A = 1

4πD2 7.9 ·10−3 m2

Seen in figure 4.3a -4.3b one can clearly see the natural frequency of the pendulum (α and β) is within the
same frequency domain as the natural frequency of vessel movement. The natural frequency for crane cable
elongation (∆l ) however is nowhere near the natural frequency of a vessel. The natural frequency for crane
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cable elongation in this particular case would come into play at a cable length of approximately 1800 meters
and beyond. At these cable lengths, a large array of other influences come into play (ex. vibrations of crane
cable, hydrodynamic forces on crane cable). This research is limited to air lifts, i.e. lifts where no hydrody-
namic effects on either the crane load or crane cable occur. The crane cable is set at an unrealistically small
diameter, however increasing the crane cable diameter would only further increase the natural frequency of
the crane cable elongation. Therefore it may be concluded that the elongation of the crane cable may be
discarded as a noticeable influence on the coupled motion.
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Figure 4.3: Natural frequencies

The equations of motion can now be expanded to include the two additional degrees is freedom α(t ) and
β(t ). Additional damping terms related to the swinging load are difficult to accurately measure/compute.
K. Ellerman [5] concluded that damping on the swinging load has little to no effect on the dynamics of the
system. The natural frequency due to the swaying of the pendulum is not altered due to the damping terms,
however the maximum displacement or in this case maximum angular displacement is suppressed by the
damping. The crane load damping may be implemented (c ≤ 0.1ccrit). This additional damping will suppress
extreme swinging excitation and therefore give more stable results at the natural frequencies.

η(t ) =



x(t )
y(t )
z(t )
φ(t )
θ(t )
ψ(t )
α(t )
β(t )


(4.4)

K. Ellerman [5] has concluded that for a perfectly balanced vessel, heave motion is coupled with other
degrees of freedom only through nonlinear terms. However, it can act under certain circumstances as a para-
metric excitation on the swinging load. What this implies is that the coupling between roll, pitch, load swing
and heave motion is a ’one way street’ of dynamic interaction. Roll, pitch and swing motion do not effect the
dynamic behavior of the vessel in heave, but the heave motion may have effect on the roll, pitch and swing
motion.
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4.2. Linearity assumption
In order to accurately add the additional degrees of freedom to the coupled system, the terms related to
the crane must be linear. It is generally known that the swaying of a pendulum is a nonlinear system [10]
and therefore coupled dynamic systems with a swaying pendulum as an independent degree of freedom are
nonlinear.

To prove linearity assumptions are valid, a dynamic model representing a generalized barge like vessel
may be assumed. This barge like vessel has length, width, height and draft dimensions Lpp, Bpp, Hpp and
Tpp related to the EMAS vessel Lewek Connector, see table 4.2. The actual design of the Lewek Connector is
anything but barge like, but for this 2 degree of freedom example it may be assumed the vessel is a box shaped
hull. In this case the hydrostatic properties are easily computed. It is known that the rolling motion of a vessel
is the less stable degree of freedom, the model will therefore be set up with respect to the rolling motion of
the vessel.

The metacentric height for roll (GM4) will be used as the contributing restoring force in the system. This
may be assumed if the rolling angles of the system are less than 10◦ [9]. In terms of offshore lifting operability,
10◦ roll is seen as extreme and non-occurring.

Table 4.2: Vessel properties Lewek Connector

Parameter Value Unit
Length Lpp 153 [m]
Width Bpp 32 [m]
Depth Hpp 12.1 [m]
Draft Tpp 8.5 [m]
Water density ρw 1025 [kg·m−3]
Vessel mass M1 = LppBppTppρw 42.7 ·106 [kg]

The crane properties for this 2DOF example are listed in table 4.3 with crane height H0, crane cable length
Lc and suspended crane load M2. The rear view of the 2DOF system can be seen in figure 4.4. Note that the
crane load is emerged. The angles displayed are an exaggeration of actual vessel movement.

Table 4.3: Crane properties

Parameter Value Unit
Crane height H0 30 [m]
Cable length Lc 25 [m]
Crane load M2 400 ·103 [kg]

M2Hpp

Bpp

H0

LC

φ

β
z

y

Figure 4.4: 2 degrees of freedom system
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The roll restoring force (kr ) within this 2DOF system is defined by the roll metacentric height (GM4), a
measurement of the static stability of a vessel, and the vessel mass (M1) of a square box shaped vessel as seen
in equation 4.6.

GM4 = 1

2
Hpp

(
Tpp

Hpp
−1

)
+

B2
pp

12Tpp
(4.5)

kr = M1GM4g (4.6)

The vessel has got a certain rotational inertia, assuming that the mass is equally distributed throughout
the vessel 1, the rotational inertia of a vessel may be approximated by the rotational moment of inertia of a
square box.

J1 = M1

12

(
H2

pp +B2
pp

)
(4.7)

In Appendix A.1, by means of the Euler Lagrangian method, the nonlinear and linear equation of motion
are determined for the equation of motion as seen in equation 4.8. Note that the force vector for the nonlinear
case, equation 4.11, does not include any zeros. This is not due to any external forcing, the squared and cross
terms are better represented within the forcing vector.

Mη̈+Cη̇+Kη= F (4.8)

Where: η=
[
φ(t )
β(t )

]

Nonlinear system

M =
[

H 2
0 M2 + J1 H0Lc M2(cos(φ(t ))cos(β(t ))− sin(φ(t ))sin(β(t )))

H0Lc M2(cos(φ(t ))cos(β(t ))− sin(φ(t ))sin(β(t ))) M2L2
c

]
(4.9)

K =
[

kr 0
0 0

]
(4.10)

F =
[

H0Lc M2(cos(φ(t ))sin(β(t ))+cos(β(t ))sin(φ(t )))β̇(t )2 +M2g H0 sin(φ(t ))
H0Lc M2(cos(φ(t ))sin(β(t ))+cos(β(t ))sin(φ(t )))φ̇(t )2 −M2g Lc sin(β(t ))

]
(4.11)

Linear system

M =
[

H 2
0 M2 + J1 H0Lc M2

H0Lc M2 M2L2
c

]
(4.12)

K =
[−M2g H0 +kr 0

0 M2Lc g

]
(4.13)

F =
[

0
0

]
(4.14)

1Although the mass throughout a vessel is anything but equally distributed, including ballast tanks would ensure the vessel would be at
even keel position. Assuming equally distributed mass does not affect the dynamic properties too greatly[15].
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Damping terms
No damping terms have been defined in this representation of the vessel, therefore it is assumed the damping
is equal to 4% of the critical damping. This rather arbitrary damping amount is relatively small. Increasing
the damping would only decrease the maximum error. The critical damping term is a function of the linear
mass and stiffness matrix. This is also valid for the nonlinear case. This rather arbitrary number is within the
maximum damping range (C ≤ 0.1Ccrit). This is done to model the energy dissipation caused by the system.

C = 0.04 ·Ccrit

= 0.04 ·2
p

K ·M (4.15)

C11 = 0.04 ·2
√

(H 2
0 M2 + J1)(−M2g H0 +kr ) (4.16)

C22 = 0.04 ·2M2Lc
√

Lc g (4.17)

C = 0.04 ·
[

2
√

(H 2
0 M2 + J1)(−M2g H0 +kr ) 0

0 2M2Lc
√

Lc g

]
(4.18)

4.2.1. Time domain response 2DOF
A 60 second free vibrationtime trace for both the nonlinear and the linear case have been created and com-
pared, seen in figure 4.5. It can clearly be seen that for relatively small initial rolling angles, 0◦ < φ(t ) < 5◦,
the error is small and the system can be assumed to be linear. The maximum error between the linear and
nonlinear system are listed in 4.4. For greater rolling angles, φ> 10◦, the system will start moving differently,
the nonlinear terms would increasingly come into play. Therefore it may be assumed the system is linear,
hence rolling angles greater than 5 degrees should never be experienced during operations.

Table 4.4: Maximum error time trace

Max error φ(t ) [rad] Max error β(t ) [rad]
Initial condition φ= 1◦ 9.55 ·10−6 6.63 ·10−5

Initial condition φ= 3◦ 2.57 ·10−4 1.78 ·10−3

Initial condition φ= 5◦ 1.18 ·10−3 8.22 ·10−3

Initial condition φ= 10◦ 9.92 ·10−3 6.38 ·10−2

4.2.2. Natural frequencies 2DOF
The (undamped) natural frequencies for the linearized 2DOF system can be calculated according to the re-
search performed by Vu et. al. [10]. Representing the mass and restoring force matrices as factors of α, β2

and γ, the natural frequencies are calculated according to equation 4.22.

M =
[
α1 β1

β1 α2

]
(4.19)

K =
[
γ1 0
0 γ2

]
(4.20)∣∣K−Mω2∣∣= 0 (4.21)

ω2
1,2 =

(
α1γ2 +α2γ1

)±√(
α1γ2 +α2γ1

)2 −4γ1γ2
(
α1α2 −β2

1

)
2
(
α1α2 −β2

1

) (4.22)

2β does not represent the degree of freedom as seen in figure 4.4. α,β and γ in this case are used to display the indices of the mass matrix
M and restoring force matrix K



4.2. Linearity assumption 23

0 10 20 30 40 50 60

t [s]

-0.02

0

0.02
φ

(t
) 

[r
ad

]

Nonlinear φ(t)
Linear φ(t)

0 10 20 30 40 50 60

t [s]

-0.05

0

0.05

β
(t

) 
[r

ad
]

Nonlinear β(t)
Linear β(t)

0 10 20 30 40 50 60

t [s]

-0.1

0

0.1

E
rr

or
 [r

ad
]

Error φ(t)
Error β(t)

(a) Initial condition: φ= 1◦

0 10 20 30 40 50 60

t [s]

-0.1

0

0.1

φ
(t

) 
[r

ad
]

Nonlinear φ(t)
Linear φ(t)

0 10 20 30 40 50 60

t [s]

-0.2

0

0.2

β
(t

) 
[r

ad
]

Nonlinear β(t)
Linear β(t)

0 10 20 30 40 50 60

t [s]

-0.1

0

0.1

E
rr

or
 [r

ad
]

Error φ(t)
Error β(t)

(b) Initial condition: φ= 3◦

0 10 20 30 40 50 60

t [s]

-0.1

0

0.1

φ
(t

) 
[r

ad
]

Nonlinear φ(t)
Linear φ(t)

0 10 20 30 40 50 60

t [s]

-0.5

0

0.5

β
(t

) 
[r

ad
]

Nonlinear β(t)
Linear β(t)

0 10 20 30 40 50 60

t [s]

-0.1

0

0.1

E
rr

or
 [r

ad
]

Error φ(t)
Error β(t)

(c) Initial condition: φ= 5◦

0 10 20 30 40 50 60

t [s]

-0.2

0

0.2

φ
(t

) 
[r

ad
]

Nonlinear φ(t)
Linear φ(t)

0 10 20 30 40 50 60

t [s]

-0.5

0

0.5

β
(t

) 
[r

ad
]

Nonlinear β(t)
Linear β(t)

0 10 20 30 40 50 60

t [s]

-0.1

0

0.1

E
rr

or
 [r

ad
]

Error φ(t)
Error β(t)

(d) Initial condition: φ= 10◦

Figure 4.5: Time domain response 2DOF, free vibration

The natural frequencies of the highly simplified barge like vessel are listed in table 4.5. These values
will later on be compared with the actual higher degree of freedom system, see chapter 5. It is known from

section 4.1.1, that the natural frequency of an independent swaying pendulum is defined as ωp =
√

g
Lc

= 0.63

[rad/s]. The natural frequency of an independently rolling vessel, vessel without added crane load, can be
seen in equation 4.25. The coupled natural frequencies seen in table 4.5 therefore have a natural frequency
dependent on the swaying of the pendulum ωp and a natural frequency dependent on the vessel roll motion
ωv . When comparing the natural frequency of the coupled system, the two natural frequencies observed are
slightly skewed compared to the natural frequency of both independent (1DOF) natural frequencies.

Table 4.5: Natural frequencies independent natural frequencies vs. 2DOF

1DOF 2DOF
ωp [rad/s] ωv [rad/s] ωp [rad/s] ωv [rad/s]
0.63 0.91 0.60 0.93
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ωv =
√

kr

J1
(4.23)

=
√

12 ·GM4g

H2
pp +B2

pp

(4.24)

=

√√√√√√12 ·
(

1
2 Hpp

(
Tpp

Hpp
−1

)
+ B2

pp

12·T2
pp

)
g

H2
pp +B2

pp

(4.25)

= 0.91[rad/s] (4.26)

4.3. Coupling of crane terms
In order to research the effect of dynamic coupling of crane terms, the coupled system must be compared
to the current crane load model implemented by EMAS. The current analysis of vessel motion is to lump
load the crane load at the crane tip, seen in figure 4.6. This model does not give any additional degrees of
freedom to the 6 degrees of freedom represented by the vessel motion. The additional mass at the crane
tip however does give additional terms for the 6 degree of freedom equation of motion. It is established in
section 4.1.1 that the coupled system has an additional 2 degrees of freedom represented by the swinging
of the load. As established the crane cable elongation is not a viable degree of freedom that would exert
coupled vessel motion. In section 4.2 it has been shown that swinging motion of the load may be assumed
to be linear. Therefore, the linear terms due to the swinging load may be superpositioned to the 6 degree of
freedom system.

The geometric properties as well as the suspended crane load mass will be set as constant throughout
the research as seen in table 4.6. The crane characteristics are largely similar to the heavy lift vessel Lewek
Champion except for the maximum crane load. The (current) maximum crane load of the Lewek Champion
is equal to 800MT. The evaluated vessel however, the Lewek Connector, has a maximum lifting load of 400MT
suspended from the largest of the two knuckle boom cranes. To comply with the current maximum lifting
load, the maximum lifting load of the Lewek Connector is used as crane load. The crane characteristics there-
fore are a combination of the crane dimensions of the Lewek Champion combined with the maximum lift
capacity of the Lewek Connector.

The cable length is set at 25m, corresponding to emerged lift at which the crane load would be suspended
at deck level. At this crane cable length it is known the natural frequency related to the swaying of the crane
load is within the same realm as the natural frequency of the vessel response as seen in equation 4.27.

ωp =
√

g

Lc
=

√
9.81

25
= 0.63 [rad/s] 0.5 [rad/s] ≤ωp ≤ 1.5 [rad/s] (4.27)

The dynamic characteristics of the crane vessel is dependent on the crane properties. If one would change
the crane properties the system would be coupled system would be different. The crane properties are set as
constant in able to answer the premise of the research, what is the effect of the vessel geometry on dynamic
coupled behavior.

Table 4.6: Crane properties

Value Unit
Crane height 30 [m]
Overhang crane 15 [m]
Crane cable length 25 [m]
Mass crane load 400 ·103 [kg]
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4.3.1. Lump loaded system
Seen in figure 4.6, the lump loaded 6 degrees of freedom vessel is shown. In this representation the geometric
and forcing parameters are defined as seen in table 4.7.

Table 4.7: Parameters vessel 6DOF

Lpp Length vessel
Bpp Width vessel
Hpp Height vessel
Tpp Draft vessel
H0 Height crane
LOH Overhang crane
M2 Mass crane load
CT Crane tip

In Appendix A.2 the additional mass terms due to the lump loading are determined and listed in equation
4.28. These additional terms may be superpositioned to the 6 degrees of freedom matrices calculated by
hydrodynamic diffraction software. It must be noted, the force terms in F stat, equation 4.29, are static forces.
These forces may not be superpositioned to the force vector calculated by the hydrodynamic software, in
section 4.4 it will be discussed how to implement these static forces. The lump loaded system does not exert
any additional degrees of freedom. Therefore the equation of motion remains a similar 6 degree of freedom
system as like any other vessel.
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Figure 4.6: Lumped 6DOF system

Due to the reallocation of mass at the crane tip there are super-positioned mass terms. Using the geometry
relations, as seen in figure 4.6, the mass terms due to the lump loading at the crane terms are computed by
means of Euler Lagrangian formulation seen in Appendix A.2. Where xct , yc t and zc t are defined as the spatial
coordinates of the crane tip with respect to the center of gravity.

M = M2



1 0 0 0 zct −yct

0 1 0 −zct 0 xct

0 0 1 yct −xct 0
0 −zct yct (y2

ct + z2
ct ) −xct yct −xct zct

zct 0 −xct −xct yct (x2
ct + z2

ct ) −yct zct

−yct xct 0 −xct zct −yct zct (x2
ct + y2

ct )

 (4.28)

Since there are no additional degrees of freedom added to the system no additional damping or stiffness
terms will be present. Due to gravitational forces there will be an additional static forcing vector present.
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F stat = M2g



0
0
−1
−yct

xct

0

 (4.29)

4.3.2. Coupled system
Seen in figure 4.7, the 8DOF coupled system is shown. The two additional degrees of freedom (α and β) re-
lated to the swaying of the pendulum and the additional crane cable length (Lc ) distinguish the 8DOF system
from the 6DOF system. Note that all other dimensional properties are the same as that in the 6DOF system.
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Figure 4.7: Coupled 8DOF system

The additional linearized coupled terms for the 8 degrees of freedom system have been computed in
Appendix A.3. Similar to the 6DOF system, these matrices must be superpositioned to the hydrodynamic
matrices calculated by the diffraction software. Note that the superpositioning matrices described by the
coupled system give 8 by 8 dimensional matrices compared to the 6 by 6 matrices defined by the diffraction
software. Therefore the matrices defined by the diffraction will be expanded to include the two additional
independent degrees of freedom (α and β) due to the swinging of the crane load.

Mη̈+Cη̇+Kη= F (4.30)

Where: η=



x(t )
y(t )
z(t )
φ(t )
θ(t )
ψ(t )
α(t )
β(t )


When comparing both the lump loaded superpositioned mass matrix, equation 4.28, with the coupled

loaded mass matrix, equation 4.31, it must be noted that both matrices are largely similar except for the
terms related to the two additional degrees of freedom related to the swinging of the crane load. Whenever
the mass would be hoisted all the way up to the crane tip (Lc = 0), both the mass- and stiffness matrix for the
coupled loaded case would be exactly the same as that of the lump loaded case.
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M = M2



1 0 0 0 zct −yct Lc 0
0 1 0 −zct 0 xct 0 Lc

0 0 1 yct −xct 0 0 0
0 −zct yct (y2

ct + z2
ct ) −xct yct −xct zct 0 −Lc zct

zct 0 −xct −xct yct (x2
ct + z2

ct ) −yct zct Lc zct 0
−yct xct 0 −xct zct −yct zct (x2

ct + y2
ct ) −Lc yct Lc xct

Lc 0 0 0 Lc zct −Lc yct L2
c 0

0 Lc 0 −Lc zct 0 Lc xct 0 L2
c


(4.31)

Since the coupled loaded system has got two additional degrees of freedom related to the swinging of the
pendulum, there will be two additional restoring terms acting upon the crane load, equation 4.32. Note that
the restoring terms due to the swinging of the pendulum are caused by the gravitational forces acting on the
crane load. There are no additional restoring forces acting upon any degree of freedom of the vessel.

{K77, K88} = M2Lc g (4.32)

The damping terms related to the swinging of the pendulum is set at 10% of critical damping. This has
been done to restrict the maximum motion of the suspended crane load and thus the influence of the crane
load on the system. This amount of damping is considered reasonably high, therefore if the 8DOF system
would exert dynamic coupled motion, the effects of dynamic coupling would increase for less applied damp-
ing.

{C77, C88} = 0.1 ·2
√

K77M77 (4.33)

= 0.2 ·M2Lc
√

Lc g (4.34)

Similarly to the lump loaded case, due to gravitational forces there will be an additional static forcing vec-
tor present. Note that there are no additional forces present related to the two additional degrees of freedom.
No forces have been specified to account for forces (ex. wind) acting upon the crane load

F stat = M2g



0
0
−1
−yct

xct

0
0
0


(4.35)
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4.4. Frequency domain vessel response
The coupled matrices describing either the 6DOF as well as the 8DOF must be evaluated within the frequency
domain. The frequency response (η

dyn
) is defined as the dynamic response of the vessel to the wave force

(F dyn). The frequency response is complex valued due to the damping present.

(−ω2 (M+a (ω))+ iωC (ω)+K
)
η̃

dyn

(
ω,µ

)= F̃ dyn

(
ω,µ

)
⇒ η̃

dyn

(
ω,µ

)= (−ω2 (M+a (ω))+ iωC (ω)+K
)−1

F̃ dyn

(
ω,µ

)
(4.36)

The magnitude of the frequency response therefore gives the absolute motion at wave frequency ω and
encounter angle µ. This frequency domain vessel response relation gives the absolute displacement for the
three translanatory motions (x(ω,µ), y(ω,µ) and z(ω,µ)), the three angular vessel motions (φ(ω,µ), θ(ω,µ)
and ψ(ω,µ)) and, for the 8DOF system, the two additional angular degrees of freedom (α(ω,µ) and β(ω,µ))
as seen in equation 4.37. This response function will be used throughout the research as result function
where the characteristics of the function gives certain properties regarding the resonance frequencies and
maximum exerted motion.

Magnitude:
∣∣∣η̃

dyn
(ω,µ)

∣∣∣ (4.37)

Where:
∣∣∣η̃

dyn

(
ω,µ

)∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x̃
(
ω,µ

)
ỹ

(
ω,µ

)
z̃
(
ω,µ

)
φ̃

(
ω,µ

)
θ̃

(
ω,µ

)
ψ̃

(
ω,µ

)
∼ α̃(

ω,µ
)∼

∼ β̃(
ω,µ

)∼



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
As established in section 4.3.1 and 4.3.2, the allocation of the crane load will also in effect result in a static

force (F stat) and therefore result in a static response (η
stat

). The static response is only defined by the static

force and the stiffness matrix K as seen in equation 4.38. Throughout this research the crane is located dead
center at the aft of the ship as seen in figure 4.7. This implies due to the static excitation one would expect a
certain initial pitch angle (θ) but no initial rolling angle (φ) hence the y-coordinate of the crane tip is equal to
0 (yct = 0). Therefore the static pitch excitation will be evaluated.

η
stat

= K−1F stat (4.38)

The total frequency domain vessel response is defined as the static response supplemented to the dy-
namic frequency response function, equation 4.39. This function represents the maximum excitation from
the horizontal unloaded equilibrium at wave frequencyω and wave encounter angle µ. However, throughout
this research the dynamic response and static response will be evaluated separately.

∣∣∣η̃(
ω,µ

)∣∣∣= ∣∣∣η̃
dyn

(
ω,µ

)∣∣∣+ ∣∣∣η
stat

∣∣∣ (4.39)

4.4.1. Phase shift
The phase shift is defined as the angular phase of the transfer function H(ω), equation 4.41. The frequency at
which the phase shift is equal to ± 1

2π is equal to the natural frequency.

H(ω) =
η

dyn
(ω,µ)

F̃ dyn(ω,µ)
(4.40)

φp (ω) = arg
(
H (ω)

) ∈ [−π,π] (4.41)
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4.4.2. Damping ratio
The damping acting upon the vessel is frequency dependent, a useful measure to define how much damping
is present at any given frequency is through the damping ratio. As like the frequency response function the
damping ratio is dependent on the frequency ω, hence both the damping and added mass are frequency
dependent.

ζ(ω) = C(ω)

Ccrit(ω)
= C(ω)

2
p

K(M+a(ω))
(4.42)

Seen in figure 4.8 an example damping ratio figure is shown. The damping ratio at low forcing frequencies
(0 <ω< 0.3 [rad/s]), the damping ratio is equal to zero.
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Figure 4.8: Example damping ratio

It is known that the damping ratio applied to the crane load is set at 10% critical damping. The crane load
damping therefore is constant and independent of the frequency ω.
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4.4.3. Example frequency response and phase shift
In section 4.1 it has been established that dynamic coupling will only influence roll (φ) and pitch (θ) motion,
both angular displacements. Seen in figure 4.9 an example frequency response, figure 4.9a, accompanied
with the phase shift, figure 4.9c is shown. The large peak in the frequency response, figure 4.9a, represents
the resonance frequency with corresponding peak height representing the maximum motion at the resonant
frequency. The maximum roll and pitch motion throughout the research may not be greater than 5◦, any
greater excitation is beyond the maximum operability excitation and secondly from section 4.2 it is known
that for greater excitation the linearity assumptions are no longer valid.

Although the frequency shift through ± 1
2 would be the natural frequency, this research focuses on the

highest peak within the frequency response, representing the resonance frequency. This is an important dif-
ference, hence due to damping the resonance frequency will be slightly different from the natural frequency.
This effect is called resonance transmission. This effect can be seen in figures 4.9b representing a frequency
response, accompanied by figure 4.9d representing the phase shift. Note that the x-axis shows a dimension-
less scale, representing the frequency over the natural frequency (ω/ωn). For an increasing damping ratio ζ,
the resonance frequency increasingly differs from the natural frequency of the system. Similarly due to the
damping the phase shift ’jump’ becomes more gradual for increasingly large damping ratios.
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Figure 4.9: Example frequency response, transmission and phase shift
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4.4.4. Sensitivity relations
Comparing frequency response graphs several relations can be made that give insight into the characteristics
of the system. Seen in figure 4.10, four example frequency response graphs are set out to illustrate relations
of interest.

The frequency shift, figure 4.10a, whilst comparing frequency responses gives insight into the transcen-
dence of the resonance frequencies.

The peak shift, figure 4.10b, of two comparative frequency responses gives insight into the maximum
motion at the resonance frequency of the system. Hence a higher peak implies a greater amplitude response
of the system. Whenever the peak height increases substantially (ROTATION>>0.1 [rad]) one may conclude
the vessel has disastrous resonance implying the vessel will ’tip over’.

If the system show dynamic coupled motion, the frequency response would show two resonance frequen-
cies. I.e., the frequency response would display two prominent peaks, see figure 4.10c. This research focuses
on the interaction of the vessel movement and the swaying of the crane load. It has already been shown in
section 4.2.2 that a simple 2DOF system has two separate natural frequencies, ωv and ωp .

If the resonance frequencies of the coupled system converge towards each other, strong dynamic coupled
motion will occur. This implies that only a single peak will become present. Although two natural frequencies
may be present in the system, the frequency response will only show a single resonance frequency peak.
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Figure 4.10: Frequency response function relations
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4.4.5. Effective excitation, root mean square (RMS)
Although the frequency response relations give a good characterization of the system, it lacks the ability to
describe how much the average motion will be. For example, given two separate frequency responses, as
exemplified in figure 4.11, which of the two response figures will illustrate the most motion? It is known that
the dashed frequency response will have a larger maximum response at the resonance frequency compared
to the solid line frequency response, hence the peak height is greater. However, for most other frequencies the
dashed frequency response is less than the solid frequency response. An extremely narrow banded sharply
peaked frequency response could very well give a large excitation at the resonance frequency but very limited
excitation at all other frequencies.

To define the effective excitation of the system, the root mean square or RMS of the system must be com-
puted. The root mean square represents the quadratic average of the response function giving an effective
excitation of the system. A greater RMS excitation implies that the average motion in effect is greater. The
RMS value for a continuous function f (x) over interval x1 ≤ x ≤ x2 is defined by equation 4.43.

fRMS =

√√√√√√
x2∫

x1

f (x)2dx

x2 −x1
(4.43)

The RMS value for the frequency response is defined by the dynamic frequency excitation (η
dyn

) part.

Hence, the static excitation does not illustrate the effect of the wave force acting upon the system. Regarding
the dynamics of the system the static part therefore should not be taken into account. Since the frequency
response is defined over the interval 0 ≤ω≤ωmax, the RMS of the system is defined by equation 4.44.

η
RMS

=

√√√√√∫ ωmax
0

∣∣∣η
dyn

(ω,µ)
∣∣∣2

dω

ωmax
(4.44)
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Figure 4.11: Example frequency responses

Subquestions

2. What induces crane load coupled motion on a crane vessel?

A crane system has got three degrees of freedom, the degree of freedom related to the elongation of the
crane cable however has been proven to not exert any dynamic coupled motion. Even for an unrealistically
small cable diameter and at great cable lengths the dynamic elongation motion does not influence the vessel
motion. Dynamic coupled motion therefore will only be induced by the swaying of the crane load, namely
swaying in either longitudinal- or perpendicular- direction of the vessel.
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Figure 5.1: Research set-up

The base case scenario refers to the unaltered vessel, where all dimensional sensitivity multipliers are
equal to 1.00, equation 5.1.

λ=
λX

λY

λZ

=
1.00

1.00
1.00

 (5.1)

The base case analysis, figure 5.1, will comparatively evaluate the lump loaded (6DOF) and coupled
loaded (8DOF) system. If the effects of dynamic coupling in this case are noticeable, it will most likely have
an effect throughout the sensitivity analyses. Established in chapter 4, the only degrees of freedom that exert
coupled motion due to the swinging of the crane load are roll and pitch. To quantify the effect of dynamic
coupling on the base case, the effect on the natural frequency, peak height and RMS excitation must be evalu-
ated. If there would be a coupled effect due to the suspended crane load, the dynamic characteristics should
be noticeably different compared to the current analysis of lump loading at the crane tip.

While discussing the results the roll governed motion, roll (φ) and perpendicular pendulum sway motion
(β), will be discussed. Secondly the pitch governed motion, pitch (θ) and longitudinal pendulum sway motion
(α), will be discussed.

In order to represent the data as clear as possible, the resonance frequency dependent on the vessel move-
ment is referred to asωv and the resonance frequency dependent on the swaying of the pendulum is referred
to as ωp . This will be useful to distinguish the occurring resonance frequencies. It has been chosen to focus
on the first resonance frequency due to the vessel movement.

In section 4.4 it has been shown that the frequency response depends on both the wave frequency (ω) and
the wave encounter angle (µ). A total of 15 encounter angles are evaluated, however displaying 15 frequency
response functions for both roll and pitch will become rather confusing. Therefore a single encounter angle
that displays the effects of dynamic coupling best is chosen. Following and quartering seas give notoriously
large vessel motion for both pitch and heave, therefore the quartering encounter angle of µ= 135◦ has been
chosen to exemplify the effect of dynamic coupling. Shifting to a more pitch governed vessel response en-
counter angles (0◦ < µ < 45◦ v 135◦ < µ < 180◦), one would expect less coupled roll motion but an increased
coupled pitch motion if present. Similarly, if the encounter angles would be shifted towards a more roll dom-
inated encounter angle (45◦ < µ < 135◦) one would expect more coupled roll motion and less coupled pitch
motion if present.
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34 5. Base case analysis

The relative effects of dynamic coupling appeared to be irrespective of the encounter angle, therefore an
encounter angle of µ= 135◦ will best exemplify the effects of dynamic coupling hence both roll and pitch will
largely be present.

5.1. Roll governed motion
Looking at the roll motion frequency response, phase shift and damping ratio displayed in figure 5.2, it can
be seen that the rolling characteristics for the 6DOF- and 8DOF- system are different. The displayed reso-
nance frequency of the 6DOF system, figure 5.2a, appears to be at a lower frequency compared to the 8DOF
resonance frequency related to the vessel motion ωv . Lump loading the mass at the crane tip, the rotational
moment of inertia is greater compared to suspending the crane load from the crane cable, resulting in a
lower resonant frequency. The resonance frequency peak height, figure 5.2a, for the 6DOF system appears to
be greater than the resonance frequency peak of the 8DOF system (ωv ). Lump loading the crane load at the
tip of the crane will inadvertently make the system rather ’top heavy’.

Considering the 8DOF system, figure 5.2a, it can be observed that there is a prominent second resonance
frequency peak (ωp ). This is exactly what one would expect with respect to dynamic coupled motion. The
natural frequency of an 1DOF independent swaying pendulum system and the natural frequency of a vessel,
seen in section 4.1.1, can be calculated using equation 5.2 and 5.3. Note that the 1DOF natural frequency
related to the vessel motion ωv is a function for a box shaped vessel. The Lewek Connector is nowhere near
a box shaped vessel nor does this function incorporate the memory effect of the vessel, added mass is not
present, therefore the natural frequency related to the roll motion of the vessel is an approximation.

ωp =
√

g

Lc
=

√
9.81

25
= 0.63 [rad/s] (5.2)

ωv ≈

√√√√√√12 ·
(

1
2 Hpp

(
Tpp

Hpp
−1

)
+ B2

pp

12·Tpp

)
g

H2
pp +B2

pp

= 0.91 [rad/s] (5.3)

Table 5.1: Natural/resonance roll frequencies, 1DOF, 2DOF and 8DOF

1DOF 2DOF 8DOF(@ µ= 135◦)
ωp [rad/s] ωv [rad/s] ωp [rad/s] ωv [rad/s] ωp [rad/s] ωv [rad/s]
0.63 0.91 0.60 0.93 0.62 0.91

Comparing the natural/resonance frequencies, see table 5.1, for either the independent motion frequen-
cies (1DOF), the highly simplified model defined by Vu et. al [10](2DOF) and the more complex model de-
scribed in this research (8DOF), it can be seen that the natural frequency the 2DOF system compared to the
resonance frequencies of the 8DOF system are rather similar to one another.

For the base case scenario, where the geometric properties have yet to be altered, the 2DOF system ac-
tually appears to have a rather good approximation in comparison to the resonance rolling frequencies of
the 8DOF system. However, as explained in section 2.1 the 2DOF system is oversimplified and could give
differences most likely as contribution of the simplification.

Comparing the effective roll motion defined by the RMS of the frequency response of both the 6DOF and
8DOF system in table 5.2, the 6DOF system will exert more roll effective roll motion. I.e., the 6DOF system
will move more due to the incoming waves.

Table 5.2: RMS roll 6DOF vs. 8DOF

RMS roll 6DOF RMS roll 8DOF Difference
1.48 ·10−2 [rad] 1.40 ·10−2 [rad] -5.9%

One would expect a similar coupled motion behavior regarding the resonance frequencies of the crane
load motion. I.e., the pendulum would also exert multiple resonance frequencies. If the swaying crane
load motion would not show dynamically coupled behavior with the vessel motion, the resonance frequency

would be (largely) similar to the natural frequency of the independent swaying of a pendulum (ωp =
√

g
Lc

).
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Figure 5.2: Roll frequency response, phase shift and damping ratio base case, roll
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Looking at the perpendicular pendulum swaying motion (β) frequency response and phase shift seen in
figure 5.2b and 5.2d, there are two clear peaks visible related to the resonance frequency of either the swaying
pendulum (ωp ) and the vessel motion (ωv ). This implies that the vessel shows dynamic coupled motion with
the swaying of the pendulum. Regarding the peak height of the frequency response, figure 5.2b, both peaks
appear to be approximately equal in height. The perpendicular swaying motion of the pendulum therefore is
not dominated by a single motion.

5.2. Pitch governed motion
Considering the pitch motion frequency response, phase shift and damping ratio, figure 5.3, it can be con-
cluded that the 8DOF system does not exert any different behavior compared to the 6DOF system. Both the
shape of the frequency response, the occurring resonance frequency and phase shift are almost exactly the
same. Moreover the longitudinal crane load swaying motion shows a single resonance frequency peak and
therefore does not show any dynamic coupled motion.

Table 5.3: RMS pitch 6DOF vs. 8DOF

RMS pitch 6DOF RMS pitch 8DOF Difference
1.03 ·10−2 [rad] 1.02 ·10−2 [rad] -1.1%

Moreover the RMS pitch excitation for both the 6DOF- and 8DOF- system, table 5.3, are almost similar.
Therefore it may be concluded that for the base case, the swaying of the crane load does not have an effect
on the pitch motion. I.e., dynamic coupled motion due to the crane load does not occur within pitch motion.
This however does not imply dynamic coupled motion for pitch will not be present throughout the sensitivity
analyses, hence whenever geometric properties of the vessel will be altered, the dynamic characteristics of
the vessel inadvertently will be changed.

Seen in figure 5.3b, it can be seen that the swaying of the pendulum in longitudinal direction (α) shows
a single large peak. This is exactly what would be expected when comparing this motion with the frequency
response of the pitch motion, hence the 8DOF pitch motion also only exerts a single resonance frequency.
However, the resonance frequency of the swaying pendulum is not dependent on the vessel motion but by
the swaying of the pendulum itself. What this implies is that both the pitch motion and the longitudinal
swaying motion of the pendulum are independent of on another.
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Figure 5.3: Frequency response, phase shift base case and damping ratio, pitch
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5.3. Polar representation
As displayed in section 5.1 and 5.2, only a single encounter angle is shown to exemplify the effect of dynamic
coupled motion. Another representation of the data is to polar plotωv and, if present,ωp of all encounter an-
gles. However, properties regarding the peak height, phase shift and the effective excitation (RMS excitation)
is not known.

Due to the transverse symmetry of the vessel, there should not be any rolling excitation at encounter
angles µ= 0◦ and µ= 180◦. The diffraction software WADAM will always have an extremely small error com-
piling the vessel from the geometry file. Therefore the vessel will be ever so slightly asymmetric in transverse
direction. This asymmetry will therefore imply there would be rolling excitation for encounter angles µ= 0◦
and µ= 180◦. Looking at the data, the frequency response at both encounter angles give a maximum rolling
excitation of 2.98 ·10−19 ≈ 0 [rad]. This computational asymmetry error therefore may be neglected.
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Figure 5.4: Polar plot base case

Seen in figure 5.4 both ωv and ωp are set out for roll, pitch and the two additional degrees of freedom
caused by the swaying of the pendulum. Note that it has been chosen to display β in figure 5.4c first and
α in figure 5.4f second. As previously stated rolling motion interacts with the perpendicular motion of the
swinging crane load (β) and pitch motion interacts with the longitudinal motion of the swaying pendulum
(α). Representing the data in this order, the interaction between either roll and perpendicular swaying motion
or pitch and longitudinal swaying motion can be better evaluated.

Comparing the roll motion for the 6DOF system, figure 5.4a, with the rolling motion for the 8DOF system,
figure 5.4b, it can be seen that the resonance frequencies are entirely different from one another. This is
in consonance with the previous asserted notion that the rolling motion is dynamically coupled with the
perpendicular swaying motion of the crane load.

Due to the asymmetric sagittal plane, the vessel rolling motion should induce pitching motion at mostly
roll governed encounter angles (45◦ < µ < 135◦). This can clearly be seen in figure 5.4d and 5.4e. The natu-
ral frequency for pitch motion increases whenever roll motion becomes more dominant compared to pitch
motion. I.e., at µ = 90◦ the resonance frequency for pitch motion is equal to the resonance frequency of the
rolling motion.

If the vessel would show dynamically coupled pitch motion, one would expect the frequency response to
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have two resonance frequency peaks. This however is not the case regarding the pitch motion, no second
resonance frequency related to the swaying of the pendulum can be seen. Similar to the pitch motion of the
vessel the resonance frequency for the longitudinal swaying motion of the pendulum appears to be become
more dependent on rolling motion at encounter angle µ= 90◦.

5.4. Conclusion base case analysis
A first and rather important conclusion to be made is that the current representation EMAS considers to be
correct (6DOF system) has its shortcomings in reflecting the true nature of a heavy lift offshore operation.
Although motion for pitch motion is modeled almost correctly within this representation, for roll motion this
model deviates from the coupled loaded (8DOF) system. Lump loading the load at the crane tip will make the
vessel inherently unstable and increases the rotational moment of inertia, with consequences regarding the
calculated vessel response. The 6DOF system misrepresents the occurring resonance frequencies, does not
account for the resonance frequency related to the swaying of the pendulum, the effective motion is different
compared to the the more complex 8DOF system. Therefore, the 6DOF system will no longer be evaluated in
further sensitivity studies.

Subquestions

4. Does dynamic crane load coupled motion occur during current operations and is this significant with
respect to current method of analysis?

It has been proven that the coupled system exerts different resonance rolling frequencies compared to
the current set-up for the Lewek Connector. Within the roll governed motion of the coupled system (roll
and perpendicular crane load swaying motion) there are two resonance frequencies present compared to the
single resonance frequency of the current analysis. The resonance rolling frequency of the current system
is only dependent on the vessel motion and will always be at a lower frequency compared to the resonance
frequency of the coupled system.

Due to the allocation of the crane mass at the tip of the crane, the vessel is modeled as top heavy with neg-
ative consequences. The maximum exerted roll motion at the resonance frequency will therefore be greater
compared to the coupled system. Similarly the effective motion of the current system is greater than the
coupled system, implying the current system will exert more motion than the coupled system.

Summing up the differences between the current and coupled models, the current model has its short-
comings in reflecting the true nature of a heavy lift offshore operation. Firstly, the current system misrepre-
sents the resonance frequencies. Secondly the maximum exerted motion at the resonance frequency for the
current model is greater compared to the coupled model. Lastly the current model will exert more motion
than the coupled system. Dynamic coupled crane load motion therefore is absolutely significant.
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Figure 6.1: Research set-up

As explained in section 3.3, the proportionally sensitized vessel has equal sensitivity multipliers in ei-
ther X-, Y- or Z- direction, equation 6.1. This implies that the relative geometric proportion are not altered
throughout this sensitivity analysis. The vessel will be made smaller for λ < 1.00 and respectively larger for
λ> 1.00.

λX =λY =λZ =λ (6.1)

λ=
λX

λY

λZ

=
0.75

0.75
0.75

 ,

1.00
1.00
1.00

 ,

1.25
1.25
1.25

 (6.2)

Established in chapter 5, the base case scenario already shows dynamically coupled rolling motion. Per-
forming a proportional sensitivity study, figure 6.1, will evaluate whether the geometric properties of the
vessel are of influence towards the dynamic coupled motion of the vessel. It is known that smaller vessels are
more susceptible to excitation due to external forcing. Hence, by Newton’s second law of motion the acceler-
ation of an object is both dependent on the mass and the forcing applied. Not altering the properties related
to the crane and the crane load will imply that the dynamic forcing, caused by the swaying of the crane load,
relative to the mass of the vessel will in fact be more profound.

In chapter 5 it has been shown that the 6DOF system is considered to be an incorrect representation
of reality. The 6DOF system will therefore not be included within this- and further sensitivity analyses. In
Appendix C a similar analysis has been performed for a 6DOF- system showing an increase in inaccuracy for
increasingly smaller vessels.

It has also been established that the base case pitch motion and longitudinal swaying motion of the pen-
dulum do not show coupled motion behavior. If the pitch governed motion does not show coupled mo-
tion throughout the proportional sensitivity analysis, it may be concluded that pitch governed motion by no
means will show dynamically coupled motion for the disproportional sensitivity analyses, hence the dispro-
portional sensitivity analysis will only examine the effect of the dimensional properties of either the length,
width and height of the vessel. The frequency response will be evaluated for two separate sensitized cases in
comparison with the base case vessel, equation 6.2. Again the encounter angle of µ= 135◦ has been chosen
to exemplify the relations between the dynamic properties and the sensitivity multiplier λ. At this encounter
angle the effects of dynamic coupled motion are most noticeable, the effects discussed appear to be mostly
invariant to the encounter angle.
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6.1. Roll governed motion
Seen in figure 6.2 the static relations with respect to the sensitivity multiplier λ can be seen. Looking at the
static relations, it can be seen that a smaller vessel (λ < 1.00) will become increasingly less statically stable,
hence the roll metacentric height of the vessel, figure 6.2b decreases. Both the mass, figure 6.2a, as well as the
radii of gyration, figure 6.2c, are positively dependent on the sensitivity multiplier λ. A larger vessel will have
a greater mass and a larger radii of gyration, both related to the moment of inertia of the vessel (I = kx2 ·M).
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Figure 6.2: Static relations, roll

Looking at the frequency response of the 8DOF system, figure 6.3a, the two prominent peaks related to
the resonance frequency of the rolling motion of the vessel and the swaying motion of the pendulum are
noticeable. The resonance frequency related to the swaying of the pendulum (ωp ) appears to be invariant to
the scaling multiplier and is roughly (ωp ≈ 0.60 rad/s). The peak height however is negatively correlated to
the sensitivity multiplier, the peak becomes greater for smaller vessels. This negative dependency will in fact
cause the pendulum motion to become the dominant resonance frequency over the resonance frequency
related to roll for smaller vessels1. I.e., the peak height related to the pendulum motion ωp will become
greater for smaller vessels and therefore will be the most governing motion regarding the roll of the vessel. The
resonance frequency related to the rolling motion of the vessel(ωv ), does appear to be negatively dependent
to the sensitivity multiplier. Implying a higher resonance frequency for smaller vessels.

The peak height increase of the resonance frequency related to the swaying of the pendulum (ωp ) for
the roll motion appears to be caused by the decrease of damping. Figure 6.3e shows that a smaller vessel
in general exerts comparatively less critical damping than a larger vessel. This effect therefore has rather
negative consequences on the maximum excitation at the resonance frequency.

Within the perpendicular pendulum swaying motion frequency response, seen in figure 6.3b, two promi-
nent resonance peaks are visible, again related to the swaying of the pendulum (ωp ) and the rolling of the
vessel (ωv ). The resonance frequency related to the swaying of the pendulum, does not appear to differ
throughout the sensitivity analysis. I.e., for larger vessels the resonance frequency related to the swaying
of the pendulum appears to be similar to that of a smaller vessel. The resonance frequency related to the
roll motion of the vessel however appears to be negatively related to the sensitivity multiplier. I.e., for larger
vessels, the resonance frequency related to the roll motion of the vessel will be lower than the resonance fre-
quency of a smaller vessel. The resonance frequency due to the rolling motion for the larger vessel appears
to converge towards the resonance frequency of the pendulum motion.

The effective motion (RMS) for both the roll motion as well as the perpendicular swaying motion, table 6.1
show a negative dependency on the sensitivity multiplier λ. A larger vessel will effectively exert less motion
than a comparatively smaller vessel.

Table 6.1: RMS roll and perpendicular sway

λ RMS roll RMS perpendicular sway
[0.75;0.75;0.75] 1.89 ·10−2 [rad] 3.32 ·10−2 [rad]
[1.00;1.00;1.00] 1.40 ·10−2 [rad] 3.01 ·10−2 [rad]
[1.25;1.25;1,25] 1.07 ·10−2 [rad] 2.92 ·10−2 [rad]

1This will later be discussed when discussing figure 6.5
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Figure 6.3: Frequency response, phase shift and damping ratio roll governed motion
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6.1.1. Frequency shift roll governed motion
To further justify the relations made regarding the frequency shift of the resonance frequency for the roll gov-
erned motion, the resonance frequency due to vessel motion (ωv ) and, if present, the resonance frequency
due to the swaying of the pendulum (ωp ) are set out comparative to the sensitivity multiplier λ. Again en-
counter angle µ= 135◦ is chosen to exemplify the resonance frequency relations. Representing the frequency
shift in this manner however incapacitates the ability to see which of these two resonance frequencies is more
dominant. Therefore, the peak shift of the two resonance frequency must subsequently be set out as function
of the sensitivity multiplier λ.

Seen in figure 6.4 the resonance frequency due to the vessel movement and, if present, the resonance
frequency due to the swaying pendulum are set out with relation to the sensitivity multiplier λ for roll motion
and perpendicular crane load swaying motion. The horizontal axis displays the sensitivity multiplier and the
vertical axis shows the resonance frequencies.
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Figure 6.4: Frequency shift roll governed motion

Both the roll motion as well as the perpendicular swaying motion exert almost similar behavior regarding
both resonance frequencies. The resonance frequency due to vessel motion appears to have a nonlinear neg-
ative dependency on the sensitivity multiplier λ. Thus, for smaller vessels (λ< 1.00) the resonance frequency
due to the vessel motion will be greater. The resonance frequency due to the swaying of the pendulum (ωp )
is constant throughout all sensitivity multipliers.

6.1.2. Peak shift roll governed motion
Evaluating the peak height of both the resonance frequency due to the vessel movement (ωv ) and if present
the resonance frequency due to the swaying of the pendulum (ωp ) will give insight into which of the two res-
onance frequencies is dominant and will give insight into the motion exerted at the resonance frequencies.
Hence, a larger peak at the resonance frequency implies more motion. Figure 6.5 shows this relation with re-
spect to the sensitivity multiplier λ. The horizontal axis displays the sensitivity multiplier and the vertical axis
shows the resonance frequency peak values (I.e. the height of the peak in the frequency response function)
representing the maximum motion at the resonance frequency.

As seen in the roll frequency response of figure 6.3a the peak height related to the pendulum swaying
motion (ωp ) increases for increasingly smaller vessels. For vessels smaller than λ≤ 0.90 the resonance rolling
frequency actually becomes dominated by the swaying of the pendulum motion, hence the peak height due
the resonance frequency of the pendulum is greater than the resonance frequency due to the vessel mo-
tion2(ωp > ωp ). Even for a system that has considerable crane load damping, as like the system evaluated,
the swaying of the pendulum becomes dominant for smaller vessels. The peak height increase related to
the pendulum motion is clearly non linear, it increases significantly for increasingly smaller sensitivity mul-

2Note that this is dependent on the damping applied to the swaying of the crane load, whenever the damping becomes less, the swaying
crane load motion becomes more dominant. Throughout this research the damping at the crane load is set at 10% critical damping.
This amount of damping is considered rather large.
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tipliers. For sensitivity multipliers less than λ < 0.60 the maximum exerted motion related to the crane load
resonance frequency will in fact be greater than the maximum allowed 5◦ of roll motion. For vessel sizes
smaller than λ< 0.60 this will imply the motion is too large and secondly the model is no longer valid hence
the linear system no longer represents the true nature of the motion.

Contrary to the peak height related the pendulum motion, the peak height related the vessel motion
clearly decreases nonlinear for increasingly small sensitivity multipliers. Implying less motion due to ves-
sel motion for increasingly smaller vessels.
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Figure 6.5: Peak height shift roll governed motion

The conclusion therefore can be made that for increasingly smaller vessel dimensions, the swaying of the
pendulum will in fact become the dominant motion of the system. For increasingly smaller vessel geometry,
the rolling motions will therefore be highly dependent on the movement of the suspended crane load.

The peak height related to the vessel motion for sensitivity multipliers greater than λ> 1.00 do not seem
to decrease as significantly. For increasingly larger vessels the peak related to both the vessel and pendulum
motion ever so slightly decrease, however the peak related to the swaying of the pendulum slightly decreases
more than the peak related to the vessel motion. Implying the pendulum will have a decreasing effect on the
vessel motion for increasingly large vessels.

Looking at the peak height sensitivity for the perpendicular pendulum sway motion, figure 6.5b, it does
not exert similar behavior to the rolling motion of the 8DOF system. The peak height of the resonance fre-
quency due to the vessel motion (ωv ) appears to be positive linearly dependent on the sensitivity multiplier
and the peak height related to the swaying of the pendulum appears to be negatively dependent on the sen-
sitivity multiplier. Implying the motion of the crane load will become more dominated by the resonance
frequency related to the vessel motion for larger vessels. Similarly the crane load motion will become domi-
nated by the resonance frequency related to the swaying of the pendulum for smaller vessels.

6.1.3. Roll damping ratio shift
Previously it has been established that both the damping ratio at the resonance frequency related to the vessel
motion (ωv ) and, more importantly, the damping ratio at the resonance frequency related to the pendulum
motion (ωp ) decreases. The damping ratio dependency on the sensitivity multiplier λ is in clear coalescence
with that assertion, seen in figure 6.6. The damping ratio at the resonance frequency related to the pendulum
motion (ωp ) decreases linearly for increasingly smaller vessels and approaches zero at λ = 0.50. This is in
consonance with the peak height sensitivity seen in figure 6.5a, hence the peak height increases significantly
for increasingly smaller vessels. Besides the decrease in damping, the decrease of the metacentric height, as
seen back in figure 6.2b, also contributes to the increase of roll motion at the resonance frequency related to
the crane load motion (ωp ) for increasingly smaller vessels.

Regarding the damping at the resonance frequency related to the vessel motion (ωv ), it can be seen that
the damping ratio decreases more than linearly for increasingly smaller vessel sizes. Therefore, one would
also expect a higher peak height at these sensitivity multipliers, as established in figure 6.5a, the peak height
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related to the vessel motion actually decreases for increasingly smaller vessel sizes. This is all due to the
frequency shift of the resonance frequency related to the vessel motion. Smaller vessels will have increasingly
higher resonance frequencies related to the vessel motion. The wave force at higher frequencies is smaller
and will therefore exert less motion.
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Figure 6.6: Damping ratio shift roll

6.1.4. Effective excitation (RMS) roll governed motion
The effective exerted roll motion, figure 6.7a has a clear nonlinear negative dependency to the sensitivity
multiplier. This implies there will be more motion for smaller vessels, this is in consonance with the observed
frequency response as seen in figure 6.3a and peak height shift seen in figure 6.5, hence for smaller vessels
the frequency response appeared to be much broader and for smaller vessels the peak height increases due
to the swaying of the pendulum. The effective exerted pendulum swaying motion, figure 6.7b, does not show
a clear trend. The effective motion over all sensitivity multipliers appears to be rather constant and therefore
invariant of the sensitivity multiplier λ.
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6.2. Pitch governed motion
Looking at the static pitch relations as seen in figure 6.8, it can be seen that both the pitch metacentric height,
figure 6.8b, and pitch radius of gyration, figure 6.8c, are much greater compared to the roll motion. Pitch
motion therefore is statically more stable than roll.
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Figure 6.8: Static relations, pitch

Seen in figure 6.9, the frequency response, phase shift for both pitch as well as longitudinal pitch motion
and pitch damping ratio are illustrated.

Whilst discussing the frequency response for the pitch governed motion a first and rather essential ob-
servation must be made regarding the pitch motion, figure 6.9a. Neither the larger vessel λ = 1.25 nor the
smaller vessel λ = 0.75 seems to exert any coupled motion behavior. Equally, the longitudinal crane load
swaying motion, figure 6.9b, shows a single resonance frequency peak.

The effective exerted motion, table 6.2, show both a negative dependency for either the vessel motion and
the longitudinal swaying motion. Implying more motion for smaller vessels and less motion for larger vessels.

Table 6.2: RMS pitch and longitudinal sway

λ RMS pitch RMS longitudinal sway
[0.75;0.75;0.75] 1.49 ·10−2 [rad] 3.69 ·10−2 [rad]
[1.00;1.00;1.00] 1.02 ·10−2 [rad] 2.87 ·10−2 [rad]
[1.25;1.25;1,25] 0.76 ·10−2 [rad] 2.26 ·10−2 [rad]
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Figure 6.9: Frequency response, phase shift and damping ratio pitch governed motion
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6.2.1. Frequency shift pitch governed motion
Looking at the resonance frequency shift for the pitch motion, figure 6.10a, no additional resonance frequen-
cies are noticeable for either larger sensitivity multipliers (λ > 1.00) nor for smaller sensitivity multipliers
(λ < 1.00). Implying there is no dynamic coupling in pitch direction for any analyzed vessel size. The reso-
nance frequency related to the vessel motion ωv appears to have a negative dependency on the sensitivity
multiplier λ. Similarly, the longitudinal swaying motion, figure 6.10b, stays absolutely monolithic through-
out all sensitivity multipliers. Implying no dynamic coupled motion. The resonance frequency related to the
crane load motion (ωp ) appears to remain rather constant throughout all sensitivity multipliers. Therefore it
can be concluded that dynamic coupled motion just does not occur for pitch governed motion. The inertia
forces generated by the longitudinal crane load swaying motion are just not great enough to generate any
coupled motion behavior.
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Figure 6.10: Frequency shift pitch governed motion

6.2.2. Static pitch excitation
Due to the placement of the crane at the aft of the vessel it is known that the vessel will exert static excitation.
It can be seen in figure 6.11 that for increasingly smaller vessels the static response increases significantly.
Therefore whenever one would design a new monohull heavy lift vessel, one should be more vigilant towards
the static response compared to the unlikelihood possibility dynamic coupled pitch motion may occur.
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6.3. Conclusion proportional sensitivity analysis
Table 6.3 summarizes all the relations observed in the proportional sensitivity study for the roll governed
motion. Regarding the roll and perpendicular pendulum swaying motion it may be concluded that dynamic
coupled motion definitely occurs and the motion of the crane load will dominate the response motion for
both roll and perpendicular swaying motion whenever the vessel will become smaller. This assertion is highly
dependent on the damping applied on the crane load, decreasing this damping would further increase the
dominance of the swaying crane load.

For vessel sizes smaller than 0.60 times the original vessel size the maximum rolling motion exceeds the
maximum allowed 5◦ roll excitation.

Table 6.3: Summary proportional sensitivity study roll governed motion

x Not present
X Present
c Constant
d Discontinuous
↑ Increases
↑↑ Increases more than linear
↓ Decreases
↓↓ Decreases more than linear
ωv Resonance frequency related to the vessel motion
ωp Resonance frequency related to the pendulum motion

Roll 8DOF Perpendicular sway (β)
λ< 1.00 λ> 1.00 λ< 1.00 λ> 1.00

Coupled motion X X X X
Strong dynamic coupled motion x x x x
Effective motion (RMS) ↑↑ ↓ c c

ωv

Freq. shift ↑↑ ↓ ↑ ↓
Peak height shift ↓↓ ↓ ↓ ↑
Damping ratio ↓↓ c c c

ωp

Freq. shift c c c c
Peak height shift ↑↑ ↓ ↑ ↓
Damping ratio ↓ ↑ c c

Regarding pitch motion, no dynamic coupled motion is noticeable throughout the proportional sensitiv-
ity analysis. The pitch motion remains monolithic in nature, no additional resonance frequencies contributed
by the swaying of the crane load are observed. The longitudinal pendulum motion in turn also does not seem
to exert any additional resonance frequency related to the vessel motion. It is known the coupled motion is
highly dependent on the damping applied to the swaying of the pendulum. In appendix B a short sensitivity
analysis illustrates the effect of decreasing the crane load damping, in order to force the system to show dy-
namically coupled behavior for pitch motion. It can be seen that for damping ratios nearing or equaling zero
the crane system will in fact start to exert coupled motion behavior. However, this coupled motion behavior
is at damping ratios of 1% or less. In one would be able to better define the damping acting upon the crane
load, one could definitively exclude dynamic crane load pitch coupled motion. Considering the assumed
10% critical damping acting upon the crane load, further examination of dynamic coupling motion within
pitch governed motion will no longer be examined in further sensitivity analyses.
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Subquestions

3. In which degrees of freedom does dynamic crane load coupled motion occur?

The swaying of the crane load could effect both the roll and pitch motion of the vessel. Roll motion has
been proven throughout all sensitivity analyses to show dynamic coupled behavior. However, whilst exam-
ining the results, no clear indication has been found regarding dynamic coupled motion in pitch motion.
However, for crane load damping ratio approaching zero the pitch motion will start showing dynamic cou-
pled behavior. Better defining the crane load damping could in fact help exclude dynamic pitch motion as an
occurring phenomena. Under the assumption of 10% critical damping acting upon the crane load, one may
exclude dynamic coupled pitch motion.

Static excitation in pitch motion due to the crane load however increases significantly for increasingly
smaller vessels. This static excitation is due to the placement of the crane at the aft of the vessel.

6.4. Data errors
Although the diffraction software set-up shows very stable and mostly correct results, there have been some
discrepancies using the diffraction software WADAM. As seen in most sensitivity figures, the results for λ =
[1.45;1.45;1.45] appear to be not inline with the trends observed. Looking at the frequency response as seen in
figure 6.12, at higher frequencies (ω≥ 1.00 [rad/s]) the frequency response becomes rough and noisy. Diffrac-
tion software usually is used for low frequency hydrodynamic calculations, however the frequency bandwidth
applied in this research should not induce this much noise. For all other sensitivity multipliers this error has
not been observed.
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Figure 6.12: Error frequency response

The diffraction software input values are created through scripted commands, chapter 3, and seen in
the static relations in figures 6.2-6.8 there does not seem to be a discrepancy at λ = 1.45. The numerical
parametric calculation therefore most likely will not be the reason for the observed error.

Besides the scripted commands to calculate the input values for the diffraction software, scripted com-
mands have been created to alter the geometric properties of the vessel according to the sensitivity multipli-
ers. A visual inspection has been done to check if either the shape of the vessel or the shape of the bilge keels
have been altered incorrectly. This however was not the case.

The last possible contributor to the observed error could be WADAM’s ability to compile a closed vessel
shape. WADAM compiles a closed vessel hull shape by means of large array of geometric data points [15].
A closed vessel hull basically implies that the vessel is watertight. If WADAM is not able to compile a closed
vessel hull, strange effect will come into play hence fluid interactions will also act on the inside of the vessel.
This could very well be the cause of the error.

Although the error gives very unsatisfying results it by now means compromises the outcome of the re-
sults, the trends observed do not seem to be affected by the error. During all sensitivity analyses performed
the error has only been witnessed three times over a total of 336 cases calculated by WADAM. If anyone would
ever incorporate the programmed calculation methods, one must be vigilant for the possible occurring errors.
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Figure 7.1: Research set-up

This chapter will discuss the last analyses, figure 7.1, related to the length, width and depth sensitivity of
the system. Previously in chapter 6 it has been established that there is no noticeable dynamic coupled mo-
tion within the pitch governed motion (pitch and longitudinal crane load sway). Within the disproportional
sensitivity analysis the pitch governed motion therefore will no longer be evaluated.

Concluding the dis-proportional sensitivity analysis will compare the effect of either the length, width and
depth comparatively to on another. I.e., which of the dimensional properties has the least and most effect on
the dynamic coupled behavior.

7.1. Length sensitivity
Seen in equation 7.1, the sensitivity vector λ is only dependent on the sensitivity multiplier in X-direction,
λX . I.e. the vessel is elongated and compressed using these sensitivity multipliers, the width and depth of the
vessel remain equal to the base case depth and width throughout the sensitivity analysis.

λ=
λX

λY

λZ

=
0.75

1.00
1.00

 ,

1.00
1.00
1.00

 ,

1.25
1.00
1.00

 (7.1)

Seen in figure 7.2, it can be seen that the mass of the vessel is the only static relation dependent on the
sensitivity multiplier λX . The roll metacentric height, figure 7.2b, is constant for all sensitivity multipliers
similarly the roll radius of gyration, figure 7.2c, remains constant throughout the sensitivity multipliers. From
a simplified model as discussed in chapter 4, it is known that the vessel roll restoring force is proportional to
the mass and the restoring force (kr ∝ M ,GM4). This however does not account for the added mass of the
vessel.
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Figure 7.2: Static relations roll, length sensitivity

The frequency response, phase shift and roll damping, seen in figure 7.3, are on display for both roll and
perpendicular crane load swaying motion. It can clearly be seen that both the resonance frequency related
to the vessel motion (ωv ) and the resonance frequency related to the swaying of the pendulum (ωp ) are both
present in the two separate degrees of freedom, figures 7.3a-7.3d. Similar to the proportional analysis, the
resonance frequency related to the swaying of the pendulum (ωp ) is irrespective of the sensitivity multiplier
λX . However, it can be seen that the peak height related to the swaying of the pendulum (ωp ) is negatively
dependent on the sensitivity multiplier λX for both the roll motion as well as the perpendicular sway motion.
This can be elucidated by the fact that the roll damping ratio at the resonance frequency related to the swaying
of the pendulum, seen in figure 7.3e, is less for the shorter vessel.

Looking at the shape of the frequency response of the roll motion, figure 7.3a, the shorter vessel (λX =
0.75) is clearly different than the other sensitized cases. The shape gets skewed, this is a clear sign that both
the roll motion and the crane load swaying motion have strong dynamic coupled motion.

In table 7.1, it can be seen that the effective roll motion decreases for larger sensitivity multipliers λX . The
perpendicular swaying motion however does not show a clear trend and appears to be rather constant. The
vessel will exert more roll motion for shorter vessels and will exert less motion for longer vessels.

Table 7.1: RMS roll and perpendicular crane load sway, length sensitivity

λ RMS roll RMS perpendicular sway
[0.75;1.00;1.00] 1.66 ·10−2 [rad] 3.02 ·10−2 [rad]
[1.00;1.00;1.00] 1.40 ·10−2 [rad] 3.01 ·10−2 [rad]
[1.25;1.00;1.00] 1.24 ·10−2 [rad] 3.12 ·10−2 [rad]
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Figure 7.3: Frequency response and phase shift roll governed motion, length sensitivity
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7.1.1. Frequency shift
Seen in figure 7.4, the resonance frequency is set out with respect to the sensitivity multiplier in X-direction
λX . It can clearly be seen that the resonance frequency related to the crane load swaying motion (ωp ) is
constant throughout the sensitivity multipliers for both roll motion, figure 7.4a, and perpendicular crane
load swaying motion, figure 7.4b. Regarding the roll resonance frequency, there is a clear discontinuity for
the resonance frequency related to the vessel motion (ωv ) at approximately λX < 0.75. This is a clear sign
of strong coupled motion in figure 7.5. What this implies is that the frequency response for shorter vessels
will be increasingly skewed due to strong coupled motion between the vessel motion and the swaying of the
crane load.
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Figure 7.4: Frequency shift, length sensitivity
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7.1.2. Peak shift
The previous asserted notion that for increasingly shorter vessels strong coupled motion will skew the fre-
quency response can also clearly be seen in the roll motion peak shift, figure 7.6a. The discontinuity occurs at
the previous stated interval of λX = 0.70 and λX = 0.75. Roll motion peak height related to the swaying of the
pendulum (ωp ) appears to have a negative linear dependency on the sensitivity multiplier λX . The swaying
crane load motion therefore will have an increased influence on shorter vessels and a decreased influence on
longer vessels.

Looking at the peak height shift for the perpendicular swaying motion, figure 7.6b, the peak height related
to the swaying of the pendulum (ωp ) shows a negative linear dependency on the sensitivity multiplier. The
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peak height related to the vessel motion (ωv ) however does not show a clear dependency on the sensitivity
multiplier. The peak height appears to have a positive parabolic dependency for shorter vessels and a negative
parabolic dependency for longer vessels.
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Figure 7.6: Peak shift, length sensitivity

7.1.3. Roll damping ratio shift
Seen in figure 7.7, the roll damping ratio at both the resonance frequency related to the vessel motion (ωv )
and the resonance frequency related to the pendulum swaying motion (ωp ) have a positive linear dependency
on the sensitivity multiplier. Due to the strong coupled motion for shorter vessels the vessel damping ratio
shows a discontinuity.
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7.1.4. Effective excitation (RMS) roll governed motion
The effective roll motion excitation as seen in figure 7.8a, increases more than linearly for increasingly shorter
vessels (λX < 1.00) and decreases approximately linearly for increasingly longer vessels (λX > 1.00). The
vessel therefore will exert increasingly more motion for ever shorter vessels and less motion for longer vessels.

Regarding the effective crane load swaying motion, figure 7.8b, the crane load will exert more motion for
increasingly smaller vessels (λX < 1.00). The swaying of the pendulum will however exert rather constant
motion for increasingly longer vessel (λX > 1.00).
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Figure 7.8: Root mean square, length sensitivity

7.1.5. Conclusion length sensitivity analysis

Summarized in table 7.2 the effects of elongation and shortening of the vessel are set out. The most impor-
tant conclusion for the X-sensitivity study is the fact that for shorter vessels the swaying of the pendulum and
the vessel motion will have strong coupled motion. Due to this strong coupled motion a clear discontinu-
ity regarding the resonance frequency related to the vessel motion is observable throughout the sensitivity
multipliers. The vessel will become more dominated by the swaying of the crane load for increasingly shorter
vessels and less dependent on the swaying of the crane load for longer vessels. The crane load in turn will
start to increasingly sway for ever shorter vessels but will not really decrease in motion for increasing vessel
lengths.

Table 7.2: Summary length sensitivity, roll governed motion

x Not present
X Present
c Constant
d Discontinuous
↑ Increases
↑↑ Increases more than linear
↓ Decreases
↓↓ Decreases more than linear
ωv Resonance frequency related to the vessel motion
ωp Resonance frequency related to the pendulum motion

Roll 8DOF Perpendicular sway (β)
λX < 1.00 λX > 1.00 λX < 1.00 λX > 1.00

Coupled motion X X X X
Strong dynamic coupled motion X x x x
Effective motion (RMS) ↑↑ ↓ ↑ c

ωv

Freq. shift d↑ ↓ c ↓
Peak height shift d↓ c ↓ ↑
Damping ratio d↓ ↑ c c

ωp

Freq. shift c c c c
Peak height shift ↑ ↓ ↑ ↓
Damping ratio ↓ c c c
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7.2. Width sensitivity
Seen in equation 7.2, the sensitivity vector λ is only dependent on the sensitivity multiplier in Y-direction,
λY . I.e. the vessel is broadened and made narrower using these sensitivity multipliers, the length and depth
of the vessel remain equal throughout the sensitivity analysis.

λ=
λX

λY

λZ

=
1.00

0.75
1.00

 ,

1.00
1.00
1.00

 ,

1.00
1.25
1.00

 (7.2)

Seen in figure 7.9, both the mass, roll metacentric height and roll radius of gyration are all positively de-
pendent on the sensitivity multiplierλY . Regarding the roll metacentric height, figure 7.9b, for an increasingly
slender vessel geometry the metacentric height approaches zero. A negative metacentric height implies that
the vessel is statically unstable. This decrease of metacentric height will make the vessel less statically stable.
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Figure 7.9: Static relations roll, width sensitivity

Comparing the frequency response for roll motion, figure 7.10a, it can be seen that the narrower vessel
(λY = 0.75) is much more peaked than the base case vessel (λY = 1.00) and even more so compared to the
wider vessel (λY = 1.25). This change in shape appears to be dictated by the roll damping. Looking at figure
7.10e it can clearly be seen that the roll damping for the more narrow vessel is much less. This decrease in roll
damping is a logical effect of making the vessel more slender. Hence the roll damping in effect is determined
by the torque arm the friction terms are able to generate. Making the vessel more slender, the arm decreases
implying the roll damping will be inherently lower. This results in less damped roll motion for more narrow
vessels and more damped roll motion for wider vessels. This decrease in damping is most noticeable at the
resonance frequency related to the swaying of the pendulum (ωp ). For increasingly narrower vessels the
roll damping ratio at the resonance frequency related to the pendulum motion approaches zero, implying
almost no damping at the resonance frequency. This results in an increase of motion hence the more peaked
nature of the frequency response. Seen in table 7.3 both the roll motion as well as the perpendicular swaying
motion exert more motion at smaller sensitivity multipliers (λY < 1.00) and less motion at greater sensitivity
multipliers (λY > 1.00). This in consonance with the fact that the narrower vessel is less damped and the
wider vessel is more damped.

Table 7.3: RMS roll and perpendicular crane load sway, width sensitivity

λ RMS roll RMS perpendicular sway
[1.00;0.75;1.00] 1.85 ·10−2 [rad] 3.70 ·10−2 [rad]
[1.00;1.00;1.00] 1.40 ·10−2 [rad] 3.01 ·10−2 [rad]
[1.00;1.25;1.00] 1.10 ·10−2 [rad] 2.21 ·10−2 [rad]

7.2.1. Frequency shift
Looking at the resonance frequency dependent on the sensitivity multiplier, as seen in figure 7.11 it can be
seen that the resonance frequency related to the vessel motion (ωv ) remains constant over all sensitivity mul-
tipliers. I.e., the width of the vessel does not change the resonance frequency related to the vessel motion.
Looking at the resonance frequency related to the pendulum swaying motion (ωp ) it can clearly be seen the
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Figure 7.10: Frequency response and phase shift roll governed motion, width sensitivity
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resonance frequency sharply decreases for increasingly narrow vessels. These observation both applies for
the roll motion, figure 7.11a, as well as the perpendicular swaying motion of the crane load, figure 7.11b.
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Figure 7.11: Frequency shift, width sensitivity

7.2.2. Peak shift
Looking at the peak height shift as seen in figure 7.12 it can be seen that the width of the vessel has a rather
significant effect on the maximum occurring motion. The vessel roll motion, 7.12a, becomes increasingly
dominated by the swaying of the crane load (ωp ) for increasingly narrower vessel dimensions. This relation
is nonlinear and is attributed to the decrease of metacentric height combined with the decrease of damping.
This implies that the motion at the resonance frequency related to the swaying of the crane load (ωp ) will
be much greater for increasingly narrow vessel dimensions. For vessels widths narrower than λY < 0.70 the
maximum roll excitation exceeds the maximum 5◦.

Regarding the peak height shift of the resonance frequency related to the vessel motion (ωv ), it can be
seen there is a negative dependency on the sensitivity multiplier. That is, for wider vessels the motion related
to the resonance frequency of the vessel will become less and for narrower vessels the motion will become
greater. However, regarding sensitivity multipliers less than λY < 0.75 this relation no longer holds.
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Figure 7.12: Peak shift, width sensitivity



62 7. Disproportional sensitivity analyses

7.2.3. Roll damping ratio shift
As previously stated the roll damping ratio at the resonance frequency related to the pendulum motion (ωp )
decreases for increasingly narrow vessels. This relation is clearly seen in figure 7.10e. The roll damping at the
pendulum swaying resonance frequency approaches zero at approximately λY < 0.70. Considering the roll
damping for the frequency related to the vessel motion (ωv ), it can be seen that the damping ratio decreases
for narrower vessels (λY < 1.00). For increasingly narrower vessels (λY < 0.70) the damping will significantly
increase again. This increase in damping is in consonance with the observed resonance frequency peak as
seen in figure 7.12a. Hence the peak height related to the vessel motion (ωv ) increases for increasingly nar-
rower vessels but become less again for sensitivity multipliers λY < 0.75. Considering the fact that the roll
damping at the resonance frequency related to the swaying of the crane load (ωp ) is equal to zero at very
narrow vessels (λY > 0.70). The peak height of the frequency response did not appear to go to infinity. The
vessel therefore is damped due to the applied crane load damping (10% critical damping).
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7.2.4. Effective excitation (RMS) roll governed motion
The effective roll excitation (RMS), figure 7.14a, increases more than linearly for ever narrower vessel widths.
Implying that the vessel will exert more motion for increasingly slender vessels. Similarly, for wider vessels
there will be less excited motion. Looking at the perpendicular swaying motion, figure 7.14b, one cannot
define a clear trend regarding the total exerted motion in comparison to the sensitivity multiplier λY . In
general a narrower vessel will exert more perpendicular swaying motion and a wider vessel will exert less
perpendicular swaying motion.
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Figure 7.14: Root mean square, width sensitivity
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7.2.5. Conclusion width sensitivity analysis
The most important conclusion regarding the width sensitivity of the vessel is that due to the decrease of the
roll damping and decrease of the metacentric height, the roll motion will become increasingly dominated by
the swaying of the crane load for increasingly narrower vessels. I.e., the maximum exerted roll motion at the
resonance frequency related to the pendulum swaying motion will become greater for increasingly narrower
vessels. The effective excitation therefore will also increase significantly for ever narrower vessels implying
that more narrow vessels will move more.

The second conclusion regarding the width sensitivity of the vessel is that the resonance frequency related
to the swaying of the crane load decreases sharply for increasingly slender vessel geometries. The resonance
frequency related to the crane load therefore is cannot be assumed to be similar to its independent natural

frequency (ωn =
√

g
Lc

). The dynamic characteristics related to the width sensitivity are listed in table 7.4.

Table 7.4: Summary width sensitivity, roll governed motion

x Not present
X Present
c Constant
d Discontinuous
↑ Increases
↑↑ Increases more than linear
↓ Decreases
↓↓ Decreases more than linear
ωv Resonance frequency related to the vessel motion
ωp Resonance frequency related to the pendulum motion

Roll 8DOF Perpendicular sway (β)
λY < 1.00 λY > 1.00 λY < 1.00 λY > 1.00

Coupled motion X X X X
Strong dynamic coupled motion x x x x
Effective motion (RMS) ↑↑ ↓ ↑ ↓

ωv

Freq. shift c c c c
Peak height shift ↓ ↓ ↓ ↓
Damping ratio ↓ ↑ c c

ωp

Freq. shift ↓↓ c ↓↓ c
Peak height shift ↑↑ ↓ ↑ ↓
Damping ratio ↓ ↑ c c
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7.3. Depth sensitivity
Seen in equation 7.3, the sensitivity vector λ is only dependent on the sensitivity multiplier in Z-direction λZ .
I.e., the vessel depth is elevated or lowered using these sensitivity multipliers whilst the length and the width
of the vessel remain equal throughout the sensitivity analysis.

λ=
λX

λY

λZ

=
1.00

1.00
0.75

 ,

1.00
1.00
1.00

 ,

1.00
1.00
1.25

 (7.3)

Compared to the mass of the vessel, figure 7.15a, and roll radius of gyration, figure 7.15c, the roll metacen-
tric height, figure 7.15b, is negatively dependent on the sensitivity multiplier λ. Implying the vessel becomes
less statically stable for increased vessel depths.
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Figure 7.15: Static relations roll, depth sensitivity

Seen in figure 7.16, the frequency response, phase shift and roll damping are on display for both the rolling
motion as well as the perpendicular swaying motion. Looking at the rolling motion of the vessel, figure 7.16a,
it can be seen that the resonance frequency related to the vessel motion (ωv ) is negatively dependent on the
sensitivity multiplier. A vessel with less depth will exert a higher resonance frequency related to the vessel
motion and a larger depth vessel will exert a lower resonance frequency related to the vessel motion. For
increasing vessel depths geometries, strong dynamic coupling of both the resonance frequency related to
the vessel motion (ωv ) and the resonance frequency related to the swaying of the pendulum (ωp ) comes
into play, resulting in a single large peak. Looking at the roll damping ratio, figure 7.16e, it can be seen that
the roll damping ratio for vessels with increased depth is less compared to less depth vessels. The effect
of decreased roll damping can be seen in the roll frequency response in figure 7.16a. Due to a decreased
damping for larger depth vessels, the peak height of both the roll motion and the perpendicular crane load
swaying motion increases. Regarding the effective excitation (RMS) for both the roll and perpendicular crane
load sway motion, table 7.5, it can be seen both the roll motion as well as the perpendicular swaying motion
will exert more motion for increased vessel depths, this is in consonance with the fact that the vessel is less
damped for vessels with a larger depth.

Table 7.5: RMS roll and perpendicular crane load sway, depth sensitivity

λ RMS roll RMS perpendicular sway
[1.00;1.00;0.75] 1.16 ·10−2 [rad] 2.75 ·10−2 [rad]
[1.00;1.00;1.00] 1.40 ·10−2 [rad] 3.01 ·10−2 [rad]
[1.00;1.00;1.25] 1.59 ·10−2 [rad] 3.93 ·10−2 [rad]
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Figure 7.16: Frequency response and phase shift roll governed motion, depth sensitivity
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7.3.1. Frequency shift
Seen in figure 7.17, the resonance frequencies of both ωv and ωp are set out with respect to the sensitivity
multiplierλZ for both the roll motion as well as the perpendicular crane load swaying motion. The resonance
frequency related to the vessel motion (ωv ) is clearly negatively dependent on the sensitivity multiplier λZ .
Due to strong dynamic coupled motion, the resonance roll frequency related to the vessel motion is discon-
tinuous. That is, between 1.10 < λZ < 1.20 only a single peak frequency is noticeable for roll motion related
to the swaying of the crane load (ωp ). This strong dynamic coupled motion can be seen in figure 7.18.

The resonance frequency related to the crane load swaying motion (ωp ) for increasingly tall vessels (λZ >
1.00) appears to decrease ever so slightly. This effect however is rather marginal. Again the resonance fre-
quency related to the crane load is dependent on the vessel geometry and cannot be assumed to be equal to

the independent natural frequency related to a swaying pendulum (ωn =
√

g
Lc

).
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Figure 7.17: Frequency shift, depth sensitivity
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7.3.2. Peak shift
Looking at the roll motion peak height shift as seen in figure 7.19a it can be seen that the peak height related
to the pendulum swaying motion (ωp ) increases more than linearly for greater sensitivity multipliers (λZ >
1.00). Implying that the vessel roll motion will exert increasingly more motion at the resonance frequency
related to the swaying of the crane load (ωp ) for larger vessel depths. The vessel depths greater than λZ > 1.45
the maximum roll motion will be greater than the maximum 5◦ allowed. Due to strong dynamic coupled
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motion, the roll motion is discontinuous with respect to the resonance frequency related to the vessel motion
(ωv ).

Looking at the perpendicular swaying motion, figure 7.19b, it can clearly be seen that for lower depth
vessels the peak height related to the crane load motion (ωp ) is constant. For increasingly tall vessel sizes, the
peak height related to the crane load motion however appears to increase more than linear. The peak height
related to the vessel motion (ωv ) appears to have a more than linear dependency on the sensitivity multiplier
λZ . The crane load swaying motion therefore is dominated by the resonance frequency related to the crane
load motion (ωp ) for lower depth vessels and is dominated by the vessel motion (ωv ) for increasingly larger
depth vessels.
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Figure 7.19: Peak shift, depth sensitivity

7.3.3. Roll damping ratio shift
The peak height increase of both the roll motion as well as the perpendicular swaying motion are largely
dependent on the fact that the roll damping decreases for increasingly large vessel depths, seen in figure 7.20.
Both the roll damping ratio at the resonance frequency related to the vessel motion ωv and the resonance
frequency related to the crane load swaying motion ωp appear to decrease significantly for increasingly large
vessel depth geometries.
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7.3.4. Effective excitation (RMS) roll governed motion
It can be seen that the effective roll motion, figure 7.21a, is positively linear dependent on the sensitivity
multiplier λZ . Implying that the vessel will exert more rolling motion for taller vessels and less rolling motion
for lower vessels.

Regarding the effective motion of the perpendicular crane load sway as seen in figure 7.21b it can be seen
that there is a clearly positive nonlinear dependency on the sensitivity multiplier. Implying that for ever taller
vessels the crane load will exert more motion.
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7.3.5. Conclusion depth sensitivity analysis
Compared to the length and width sensitivity analyses the dynamic characteristics for the depth sensitivity
appear to have an opposite dependency on the sensitivity multiplier. Increasing the depth of a vessel will
increase motion and secondly it will increase the maximum exerted motions at the resonance frequencies.
What this implies is that for a taller, heavier and therefore more costly vessel the dynamic response motions
for both the roll motion as well as the perpendicular swaying motion are less favorable. This dependency
therefore is contrary to the relations of the length and the width of the vessel, implying that for longer and
wider vessels the dynamic characteristics improve. One may ask why the base case vessel has the set vessel
depth in the first place, wouldn’t it be more reasonable to decrease the vessel depth? This research has focused
on the dynamic characteristics of the vessel, however, effects like free-boarding are not taken into account.
Simply stating that a vessel will have better motion response, oversimplifies the criteria a vessel has to comply
with.

Table 7.6: Summary depth sensitivity, roll governed motion

x Not present
X Present
c Constant
d Discontinuous
↑ Increases
↑↑ Increases more than linear
↓ Decreases
↓↓ Decreases more than linear
ωv Resonance frequency related to the vessel motion
ωp Resonance frequency related to the pendulum motion

Roll 8DOF Perpendicular sway (β)
λZ < 1.00 λZ > 1.00 λZ < 1.00 λZ > 1.00

Coupled motion X X X X
Strong dynamic coupled motion x X x X
Effective motion (RMS) ↓ ↑ ↓ ↑↑

ωv

Freq. shift ↑ d↓ ↑ ↓
Peak height shift ↓ d↑ ↓ ↑↑
Damping ratio ↑ d↓ c c

ωp

Freq. shift c ↓ c ↓
Peak height shift ↓ ↑↑ c ↑↑
Damping ratio ↑ ↓ c c

7.4. Comparative peak shift
In the separate sensitivity analyses the shift in either resonance frequency, peak height, damping ratio and
effective exerted motion has been set out in comparison to the sensitivity multipliers. The resonance fre-
quencies related to either the crane load motion (ωp ) and vessel motion (ωv ) have been proven to change for
different vessel lengths, widths and heights. To compare which of the geometrical properties, either length,
width or depth, has got the most influence on the motion behavior of the vessel the peak height shift will
be compared for both the resonance frequency related to the pendulum (ωp ) and the resonance frequency
related to the vessel motion (ωv ).

Within figure 7.22 four figures illustrating the peak height shift related to the pendulum motion (ωp ),
figure 7.22a and 7.22b, and the peak height shift related to the vessel motion (ωv ), figure 7.22c and 7.22d, are
seen for both the X-, Y- and Z- sensitivity. Just giving the figures a quick glans shows there is a significant
difference between either sensitivity analysis.

Regarding the roll motion of the vessel, figure 7.22a and 7.22c, it can be seen that the maximum motion
is both highly dependent on the crane load resonance frequency (figure 7.22a) and both the width and depth
sensitivity. I.e., the maximum occurring roll motion for narrower (Y-sens) or larger depth (Z-sens) vessel
geometries will be increasingly dominated by the swaying of the crane load. Although the roll motion peak
height also changes for the resonance frequency related to the vessel motion (figure 7.22c), the maximum
occurring motion throughout all sensitivity analyses is more dependent on the swaying of the crane load.
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Figure 7.22: Comparative peak height

Contrarily, the maximum occurring motion for the crane load swaying motion, figure 7.22b and 7.22d, is
mostly dependent on the vessel motion (figure 7.22d). Especially the depth sensitivity (Z-sens) will make the
crane load swing increasingly more for increasingly taller vessels.

Looking at all figures it may be concluded that both the width (Y-sens) and depth (Z-sens) sensitivity have
the most influence on the maximum occurring motion both considering the roll and perpendicular crane
load swaying motion. The maximum roll motion is mostly dependent on the width sensitivity, second by the
depth sensitivity and lastly by the length sensitivity.
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7.5. Comparative effective motion (RMS)
Seen in figure 7.23 the effective motion shift of both length-, width and depth- sensitivity analyses are shown
for both the roll motion and perpendicular pendulum swaying motion.

It can clearly be seen that the depth sensitivity (Z-sens) has an opposite relation to the sensitivity mul-
tiplier compared to the length- (X-sens) and width- (Y-sens) sensitivity. Implying that the motion of both
the roll motion as well as the perpendicular swaying motion increases for vessels with increasing depth. De-
creasing the vessel depth would therefore give better dynamic characteristics, less effective motion and less
maximum exerted movement at the resonance frequency. However decreasing the vessel depth will most
likely compromise other characteristics besides the dynamic response. Therefore one cannot make the as-
sertion that decreasing the vessel depth will only see positive improvements. Other conditions must be taken
into account.

Looking at the comparative effective roll motion, figure 7.23a, it can be seen that the exerted rolling mo-
tion is mostly dependent on the width of the vessel (Y-sens). For smaller sensitivity multipliers (λn < 1.00) the
effective motion for the Y-sensitivity analysis changes the most compared to decreasing the length (X-sens)
or increasing the depth (Z-sens).
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Figure 7.23: Comparative RMS shift

Subquestions

5. Which geometrical vessel parameters have the most influence on dynamic crane load coupled motion?

The size of the vessel has a significant influence on the dynamic coupled motion of the vessel, in general
one may conclude the swinging of the crane load has an increased influence on the dynamic coupled motion
behavior for increasingly smaller vessels. Oppositely, for larger vessels the vessel motion is the absolute dom-
inant motion within the system, implying the crane load motion will influence the vessel motion less and less
for increasingly larger vessels.

Both the vessel roll resonance frequency as well as the perpendicular swaying resonance frequency are
highly dependent on either the length, width or depth of the vessel. The length sensitivity of the vessel will
only change the resonance frequency related to the vessel motion whereas the width- (Y-sens) and depth-
(Z-sens) sensitivity show a resonance frequency shift for both the resonance frequency related to the vessel
motion as well as the resonance frequency related to the swaying of the crane load. Implying that changing
the vessel length will only change the resonance frequency related to the vessel motion whereas changing the
width or the height will in turn also change the resonance frequency related to the crane load motion.

The maximum exerted motion at the resonance frequencies are mostly dependent on the width and depth
of the vessel. Implying that either a narrower vessel as well as larger depth vessels will both increase the max-
imum roll motion as well as the maximum perpendicular crane load swaying motion. Similarly the effective
motion is mostly dependent on the width and depth of the vessel, implying that a narrower- or larger depth-
vessel will exert more motion.
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Figure 8.1: Research set-up

Concluding the research, figure 8.1, a short summary with respect to the evaluated model is given followed
by the answered research questions. The subquestions have been answered throughout the research, this
chapter therefore is reiteration and recital of all subquestions.

8.1. Summary
The model presented in this research incorporates both the hydrodynamic calculations needed to describe
the vessel motion as well as the the coupled motion due to the crane load. Implementing the additional de-
grees of freedom due to the swaying of the crane load, has been proven to be a viable method of analysis.
The model is able to reconfigure any existing vessel, with respect to its length, width or depth. Moreover the
model is able to reconfigure all geometry based components like bilge keels, outputting smooth frequency
response figures. Throughout most sensitivity analyses the obtained results show predictability and stability.
Some data errors, section 6.4, have been observed but they by no means compromise the data trends. How-
ever, due to these discrepancies, if one would incorporate the model in future works one must be vigilant
towards possible misrepresented calculated characteristics.

8.2. Research questions
In order to conclude the research the research question and subsequently the subquestions as seen in chapter
1 must be answered.

"What is the effect of vessel geometry on dynamic crane load coupling?"

In general, the swaying of the crane load will have an increasing effect on increasingly smaller vessels. The
influence of the swinging crane load on the motion behavior is highly governed by both the length, width and
depth of the vessel. However, both the width and depth of the vessel have proven to have to most effect on
the dynamic coupled characteristics.

1. What is dynamic coupled motion?

A coupled dynamical system is one composed of subsystems, that is, the states of certain subsystems
affect the time-evolution of others [11]. The system researched is respectively the vessel system and secondly
the crane system, i.e., the effect of the vessel motion on the crane load motion and vice versa.
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2. What induces crane load coupled motion on a crane vessel?

A crane system has got three degrees of freedom, the degree of freedom related to the elongation of the
crane cable however has been proven to not exert any dynamic coupled motion. Even for an unrealistically
small cable diameter and at great cable lengths the dynamic elongation motion does not influence the vessel
motion. Dynamic coupled motion therefore will only be induced by the swaying of the crane load, namely
swaying in either longitudinal- or perpendicular- direction of the vessel.

3. In which degrees of freedom does dynamic crane load coupled motion occur?

The swaying of the crane load could effect both the roll and pitch motion of the vessel. Roll motion has
been proven throughout all sensitivity analyses to show dynamic coupled behavior. However, whilst exam-
ining the results, no clear indication has been found regarding dynamic coupled motion in pitch motion.
However, for crane load damping ratio approaching zero the pitch motion will start showing dynamic cou-
pled behavior. Better defining the crane load damping could in fact help exclude dynamic pitch motion as an
occurring phenomena. Under the assumption of 10% critical damping acting upon the crane load, one may
exclude dynamic coupled pitch motion.

Static excitation in pitch motion due to the crane load however increases significantly for increasingly
smaller vessels. This static excitation is due to the placement of the crane at the aft of the vessel.

4. Does dynamic crane load coupled motion occur during current operations and is this significant with
respect to current method of analysis?

It has been proven that the coupled system exerts different resonance rolling frequencies compared to
the current set-up for the Lewek Connector. Within the roll governed motion of the coupled system (roll
and perpendicular crane load swaying motion) there are two resonance frequencies present compared to the
single resonance frequency of the current analysis. The resonance rolling frequency of the current system
is only dependent on the vessel motion and will always be at a lower frequency compared to the resonance
frequency of the coupled system.

Due to the allocation of the crane mass at the tip of the crane, the vessel is modeled as top heavy with neg-
ative consequences. The maximum exerted roll motion at the resonance frequency will therefore be greater
compared to the coupled system. Similarly the effective motion of the current system is greater than the
coupled system, implying the current system will exert more motion than the coupled system.

Summing up the differences between the current and coupled models, the current model has its short-
comings in reflecting the true nature of a heavy lift offshore operation. Firstly, the current system misrepre-
sents the resonance frequencies. Secondly the maximum exerted motion at the resonance frequency for the
current model is greater compared to the coupled model. Lastly the current model will exert more motion
than the coupled system. Dynamic coupled crane load motion therefore is absolutely significant.

5. Which geometrical vessel parameters have the most influence on dynamic crane load coupled motion?

The size of the vessel has a significant influence on the dynamic coupled motion of the vessel, in general
one may conclude the swinging of the crane load has an increased influence on the dynamic coupled motion
behavior for increasingly smaller vessels. Oppositely, for larger vessels the vessel motion is the absolute dom-
inant motion within the system, implying the crane load motion will influence the vessel motion less and less
for increasingly larger vessels.

Both the vessel roll resonance frequency as well as the perpendicular swaying resonance frequency are
highly dependent on either the length, width or depth of the vessel. The length sensitivity of the vessel will
only change the resonance frequency related to the vessel motion whereas the width- (Y-sens) and depth-
(Z-sens) sensitivity show a resonance frequency shift for both the resonance frequency related to the vessel
motion as well as the resonance frequency related to the swaying of the crane load. Implying that changing
the vessel length will only change the resonance frequency related to the vessel motion whereas changing the
width or the depth will in turn also change the resonance frequency related to the crane load motion.
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The maximum exerted motion at the resonance frequencies are mostly dependent on the width and depth
of the vessel. Implying that either a narrower vessel as well as larger depth vessels will both increase the max-
imum roll motion as well as the maximum perpendicular crane load swaying motion. Similarly the effective
motion is mostly dependent on the width and depth of the vessel, implying that a narrower- or larger depth-
vessel will exert more motion.
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Figure 9.1: Research set-up

This chapter, figure 9.1, will discuss how the model could be implemented in future works or analysis.
Several recommendations regarding the research have been made. The recommendations have been

subdivided into two categories, first certain recommendations regarding the implementation of the model
will be discussed and secondly recommendations regarding the improvement of the research will be set out.

9.1. Implementation
If one would like to design a new vessel based on the geometry of an existing vessel this model will be able to
redefine the geometric properties of the existing vessel. The model uses the WADAM diffraction software to
create the reshaped vessels.

If the vessel is programmed correctly within the diffraction software and if the supplemented crane char-
acteristics are known (height, crane cable length, crane load) the model will output frequency response and
static response graphs from which conclusions can be made regarding the dynamic and static characteristics
of the reshaped vessel.

A crude manner of analysis therefore could be, reshape a vessel with respect to its length, width and/or
depth, evaluate the characteristics of the output graphs and define whether the newly designed vessel com-
plies with the predetermined boundary conditions. In order to better evaluate the optimum vessel geome-
try/crane ratio, limiting boundaries must be determined and subsequently evaluated. A few example bound-
ary conditions could be:

• Maximum or minimum displacement

• Maximum or minimum length/width/depth

• Maximum or minimum metacentric heights

• Maximum exerted motion at resonance frequencies

• Maximum effective exerted motion

Using the model as defined in this research an optimization tool could be created defining a vessel that
has the most optimum geometric properties that will comply with all the limiting boundaries set.
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This research has focused on the sensitivity of both the size (proportional sensitivity analysis) and length,
width or depth (disproportional sensitivity analyses) sensitivity of the vessel response. The optimum vessel
geometry however could very well be one that has rather strange geometric proportion. An optimization
tool would therefore be convenient in determining the optimum geometric properties. An optimization tool
could use different algorithms to determine the best geometric properties. Easiest but most time consuming
would be creating a data set with of reshaped vessel geometries and evaluating each and every geometry
and finding the optimum vessel geometry. A single diffraction software run approximately has a duration
of 30 minutes to complete. This research has performed 336 diffraction software runs, culminating to an
approximate analysis time of 8400 minutes or exactly 7 days continuous calculating time. If one would create
a large data set of geometrically altered vessel sizes the total run time would be tremendous. Therefore a
better defined algorithm would be much better.

9.2. Recommendations for implementation
1. Implement the coupled system: A rudimentary 2DOF system as described by Vu et. al. [10] as well as

the 6DOF system have seen their shortcomings in representing the true nature of vessel motion during
heavy lift offshore operations. Therefore it is highly recommend to implement this higher degree of
freedom system.

2. Ask DNV GL to implement higher degree of freedom coupled terms: As of now, the WADAM HydroD
package provided by DNV GL does not include the ability to implement additional terms related to
coupled systems. If DNV GL would enable the implementation of higher degree of freedom (>6DOF)
coupled systems, one could implement any coupled system of interest. This would drastically decrease
the external programming needed to define the influence of coupled systems. Due to the fact that the
additional crane terms were not implementable within the diffraction software, all results had to be ob-
tained externally using Matlab. If the additional coupled terms were implemented within WADAM, the
results could have been computed much more easily without the need of any external programming.
The best solution would be an easy user interface within HydroD, were the user could easily define the
additional coupled terms.

3. Ask DNV GL to increase the evaluation frequency range: A great problem throughout creating the
different analyses has been the coarseness of the output values. Due to limited evaluated frequency
increments, the results at first were rather coarse in nature. In able to create the smooth frequency
response functions as seen throughout the research, multiple runs had to be created and subsequently
put together to improve the coarseness of the results. This is a time consuming process and could easily
be avoided by increasing the frequency mesh from a maximum of 50 evaluated frequencies to at least
200 evaluated frequencies.

4. Implement sensitivity programming: The defined model is able to reshape any existing vessel with
respect to its length, width or depth including all related properties. Implementing this programming
related to the vessel dimensions will enable the user to research different vessel dimensions of interest.
One can choose to implement the crane terms or disregard the crane terms.

5. Better define other vessels within WADAM: Additionally the research was posed to research the effect
of dynamic coupling on a different vessel, namely the Lewek Champion, however this vessel was not
modeled as accurately in WADAM as one would want, making it impossible to use the built program-
ming. One of the main problems with respect to the inability to use the Lewek Champion was that the
vessel geometry file, used to describe the hull of the vessel, was not set up accurately within the pre-
ferred reference frame. Using the manual HydroD user interface this has never been a problem, but
through the scripted commands this has been proven to be a great struggle.
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9.3. Recommendation for future research
1. Better determine damping terms: One of the parameters that has the most influence on the results

is the applied damping upon the crane load. Within this research the crane load damping is set at a
reasonably high 10% critical damping. It has been established that decreasing the crane load damping
towards ever smaller damping ratios the pitch motion would as well show dynamic coupled motion
behavior. If one would be able to define the damping acting upon the crane load correctly it will give
different results. Damping terms related to the swinging crane load could be due to structural damping,
frictional damping and viscous damping. Secondly the diffraction software is not able to calculate the
quadratic damping terms related to the vessel, these damping terms must be defined through experi-
mental tow tank testing.

2. Create time domain analysis: This research has focused on the frequency response functions, time
domain analysis will give insight into the actual occurring motion. The time domain analysis will also
give a better insight into the statistical operability of the vessel and the maximum occurring motion.
Within the time domain analysis one should vary the environmental conditions.

3. Motion reduction systems: During operation the vessel will have several controlled systems managing
the motion of the vessel and crane load. The coupled system is set-up in such a way that the crane
load is able to freely swing from the suspended crane cable. In reality a crane operator will not allow
the mass to exert large motion. Therefore a restoring force due to the crane operator will impact the
results. Similarly the roll motion will be controlled using active ballast tanks, gyroscopes, active fin
stabilizers or any other stabilizing system. These systems have not been modeled within this research.

4. Research different crane configurations: This research has focused on a heavy lift vessel configuration
with a single large crane operating at the aft of the vessel. This has implied that the vessel remained
transversely symmetric. Replacing the crane, or altering the dimensions of the crane will have an in-
fluence on the motion response of the vessel. Using the formulation and the programming developed
this can easily be done.

5. CFD research into crane load: Within this research the crane load modeled did not have any attributed
physical properties. If the crane load would have some sort of attributed physical properties one could
in fact define environmental forces (wind, hydrodynamic etc.) acting upon the load. This could be
done by CFD modeling of the apparatus being installed

6. Towing tank tests: To validate the presented model one must perform actual towing tank tests. Hence
all the vessels evaluated throughout the sensitivity analyses are imaginary, there is no method besides
performing towing tests to compare and validate the results. Validating the system through towing tank
research will also help define the quadratic roll damping terms.





A
Euler Lagrangian calculations

In chapter 4, three different dynamic systems are defined. Either the simplified 2DOF system representing
roll motion (φ) and perpendicular pendulum swaying motion (β), the 6DOF vessel system and lastly the
more complex 8DOF system incorporating the swaying motion of the pendulum in both longitudinal (β) and
perpendicular (β) direction. This appendix will show how these equation of motion are determined.

The vessel system remains within the frequency domain, therefore the coupled matrices must be linear.
The defined matrices will be super-positioned to the matrices related to the vessel dynamics. Both the 6DOF
system as well as the 8DOF system have super-positioned dynamic matrices, these matrices first have to be
determined using the Euler Lagrangian method.

The Euler Lagrangian method examines both the potential and kinetic energy in the system and is an
alternative to the Newtonian approach. This method is especially useful for multiple independent degrees of
freedom but is restricted to holonomic systems [8] (The number of generalized displacement variables used
to the describe the system is equal to the number of degrees of freedom).

The Lagrangian is defined as the kinetic energy (T ) minus the potential energy (V ).

L ≡ T −V (A.1)

The Euler Lagrangian equation is defined as the partial derivative as seen in A.2. This is equal to the
equation of motion of variable j .

EOMj:
d

dt

∂L

∂η̇
j

− ∂L

∂η
j

= 0

(A.2)

A.1. Euler Lagrangian calculations 2DOF
The simplified 2DOF system, figure A.1, representing the roll motion and perpendiclar sway motion has got
two degrees of freedom. First of all, the transitional location of the crane mass M2 must be defined, seen in
equation A.3 - A.5.

y2(t ) = H0 sin(φ(t ))+Lc sin(β(t )) (A.3)

z2(t ) = H0 cos(φ(t ))−Lc cos(β(t )) (A.4)

∆z2(t ) =−H0(1−cos(φ(t )))+Lc (1−cos(β(t ))) (A.5)

The velocity of the crane load mass is defined as the Pythagorean term of both the velocity in y and z
direction, equation A.6.
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M2Hpp
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LC
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β
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Figure A.1: 2DOF system

v2(t ) =
√(

d

dt
y2(t )

)2

+
(

d

dt
z2(t )

)2

(A.6)

=
√

2H0 Lc

(
d

dt
φ (t )

)
cos

(
φ (t )

)( d

dt
β (t )

)
cos

(
β (t )

)
...

...−2H0 Lc

(
d

dt
φ (t )

)(
d

dt
β (t )

)
sin

(
φ (t )

)
sin

(
β (t )

)+H0
2

(
d

dt
φ (t )

)2

+Lc
2

(
d

dt
β (t )

)2

(A.7)

The total Lagrangian potential energy term is defined as the potential energy of the crane load and the
spring term (kr ) related to the geometric height of the vessel, equation A.8.

V = M2g∆z2(t )+ 1

2
krφ(t )2

= M2 g
(−H0

(
1−cos

(
φ (t )

))+Lc
(
1−cos

(
β (t )

)))+ 1

2
kr

(
φ (t )

)2 (A.8)

The total kinetic energy is defined as the quadratic velocity terms multiplied with their corresponding
mass term, equation A.9. Note thatφ(t ) is an angular motion and therefore the mass is defined as the moment
of inertia of the vessel J1.

T =1

2
J1

d

dt
φ(t )2 + 1

2
M2v2(t )2

=1

2
J1

(
d

dt
φ (t )

)2

+ 1

2
M2

(
2H0 Lc

(
d

dt
φ (t )

)
cos

(
φ (t )

)( d

dt
β (t )

)
cos

(
β (t )

)
...

...−2H0 Lc

(
d

dt
φ (t )

)(
d

dt
β (t )

)
sin

(
φ (t )

)
sin

(
β (t )

)+H0
2
(

d

dt
φ (t )

)2

+Lc
2
(

d

dt
β (t )

)2 )
(A.9)

The Lagrangian is defined as the kinetic term minus the potential term.

L ≡ T −V (A.10)

The independent equation of motion, either the rolling motion or the pendulum swaying motion, are
defined by equation A.11 - A.12.
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EOM1:
d

dt
(
∂L

∂φ̇
)− ∂L

∂φ
= 0

−H0 Lc M2 cos
(
φ (t )

)( d

dt
β (t )

)2

sin
(
β (t )

)−H0 Lc M2

(
d

dt
β (t )

)2

cos
(
β (t )

)
sin

(
φ (t )

)
...

...+H0 Lc M2 cos
(
φ (t )

)
cos

(
β (t )

) d2

dt 2β (t )−H0 Lc M2 sin
(
φ (t )

)
sin

(
β (t )

) d2

dt 2β (t ) ...

...+H0
2M2

d2

dt 2φ (t )−M2 g H0 sin
(
φ (t )

)+ J1
d2

dt 2φ (t )+krφ (t ) = 0 (A.11)

EOM2:
d

dt
(
∂L

∂β̇
)− ∂L

∂β
= 0

−M2 Lc

(
H0

(
d

dt
φ (t )

)2

cos
(
φ (t )

)
sin

(
β (t )

)+H0

(
d

dt
φ (t )

)2

cos
(
β (t )

)
sin

(
φ (t )

)
...

...−H0 cos
(
φ (t )

)
cos

(
β (t )

) d2

dt 2φ (t )+H0 sin
(
φ (t )

)
sin

(
β (t )

) d2

dt 2φ (t ) ...

...−Lc
d2

dt 2β (t )− sin
(
β (t )

)
g

)
= 0 (A.12)

Mη̈+Cη̇+Kη= F (A.13)

Where: η=
[
φ(t )
β(t )

]

A.1.1. Non linear system
The non linear terms in the mass, damping and stiffness matrices as well as the force vector now can be
compiled, equation A.14 - A.17. Note that within the force vector terms related to the motion of both φ and β
are listed. These terms are the complex nonlinear terms, these are better represented within the force vector
notation.

M =
[

H 2
0 M2 + J1 H0Lc M2(cos(φ(t ))cos(β(t ))− sin(φ(t ))sin(β(t )))

H0Lc M2(cos(φ(t ))cos(β(t ))− sin(φ(t ))sin(β(t ))) M2L2
c

]
(A.14)

C =
[

0 0
0 0

]
(A.15)

K =
[

kr 0
0 0

]
(A.16)

F =
[

H0Lc M2(cos(φ(t ))sin(β(t ))+cos(β(t ))sin(φ(t )))β̇(t )2 +M2g H0 sin(φ(t ))
H0Lc M2(cos(φ(t ))sin(β(t ))+cos(β(t ))sin(φ(t )))φ̇(t )2 −M2g Lc sin(β(t ))

]
(A.17)

A.1.2. Linearization
Linearizing the system will get rid of the nonlinear terms and simplify the system. The linearization assump-
tions are listed in equation A.18 - A.20.

sin
(
φ(t )

)=φ(t ), sin
(
β(t )

)=β(t ) (A.18)

cos
(
φ(t )

)= 1− φ(t )2

2
≈ 1, cos

(
β(t )

)= 1− β(t )2

2
≈ 1 (A.19)

φ̇(t )2 = 0, β̇(t )2 = 0 (A.20)
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The linearized mass, damping and stiffness matrices as well as the linearized force vector can now be
compiled, equation A.21 - A.24. Note that the force vector now is empty, no external forces are present and
the highly complex nonlinear terms are gotten rid of during the linearization.

M =
[

H 2
0 M2 + J1 H0Lc M2

H0Lc M2 M2L2
c

]
(A.21)

C =
[

0 0
0 0

]
(A.22)

K =
[−M2g H0 +kr 0

0 M2Lc g

]
(A.23)

F =
[

0
0

]
(A.24)

A.2. Euler Lagrangian calculations 6DOF

The lump loaded 6DOF system, figure A.2, is used to compile the superposition mass, damping and stiffness
matrix as well as the static force vector. Similarly to the 2DOF system seen in section A.1, the Lagrangian
method is used to determine the dynamic matrices. The Cartesian crane tip locations are respectively xct , yct

and zzt .

y

x

z

G

O

ψ

φ

θ

M2

CT

L
pp Tpp

Hpp

Bpp

H0

LOH

Figure A.2: 6DOF system

The time dependent displacement of the mass M2 is defined as seen in equation A.25 - A.27.

x2(t ) =x (t )+xct −yct ψ (t )+zct θ (t ) (A.25)

y2(t ) =y (t )+xct ψ (t )+yct −zct φ (t ) (A.26)

z2(t ) =z (t )−xct θ (t )+yct φ (t )+zct (A.27)

Again the velocity of the mass M2 is defined as the Pythagorean of the velocity in both x, y and z direction,
equation A.29.
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v2(t ) =
√(

d

dt
x2(t )

)2

+
(

d

dt
y2(t )

)2

+
(

d

dt
z2(t )

)2

(A.28)

=
√(

d

dt
ψ (t )

)2

xct
2 +

(
d
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)2

yct
2 −2

(
d
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ψ (t )

)(
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yct zct ...

...−2
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(
d
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zct
2 −2
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d
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)(
d
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)
yct +2

(
d
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)(
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)
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d
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)(
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(
d
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θ (t )
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(
d

dt
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)(
d
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)
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(

d
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(

d
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)2

(A.29)

The potential energy of the Lagrangian is defined in A.30. Note that because there is no additional degree
of freedom (no stiffness terms) the term related to the potential energy is rather short.

V =M2g z2(t )

=M2 g
(
z (t )−xct θ (t )+yct φ (t )+zct

)
(A.30)

The kinetic energy terms are calculated using equation A.31.

T =1
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M2v2(t )2
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2
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(
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)(
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zct ...

...+2

(
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)(
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(A.31)

Again the equations of motion can be calculated using the Lagrangian, seen in equation A.33 - A.38.

L ≡ T −V (A.32)

EOM1:
d

dt
(
∂L

∂ẋ
)− ∂L

∂x
= 0

−M2

(
yct

d2

dt 2ψ (t )−zct
d2

dt 2 θ (t )− d2

dt 2 x (t )

)
= 0 (A.33)

EOM2:
d

dt
(
∂L

∂ẏ
)− ∂L

∂y
= 0

−M2

(
zct

d2

dt 2φ (t )−xct
d2

dt 2ψ (t )− d2

dt 2 y (t )

)
= 0 (A.34)
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EOM3:
d

dt
(
∂L

∂ż
)− ∂L

∂z
= 0

M2

(
yct

d2

dt 2φ (t )−xct
d2

dt 2 θ (t )+ d2

dt 2 z (t )+ g

)
= 0 (A.35)

EOM4:
d

dt
(
∂L

∂φ̇
)− ∂L

∂φ
= 0

M2

((
d2

dt 2φ (t )

)
yct

2 +
(

d2

dt 2φ (t )

)
zct

2 −
(

d2

dt 2ψ (t )

)
xct zct −

(
d2

dt 2 θ (t )

)
xct yct ...

...+
(

d2

dt 2 z (t )

)
yct −

(
d2

dt 2 y (t )

)
zct + g yct

)
= 0 (A.36)

EOM5:
d

dt
(
∂L

∂θ̇
)− ∂L

∂θ
= 0

−M2

((
d2

dt 2φ (t )

)
xct yct +

(
d2

dt 2ψ (t )

)
yct zct −

(
d2

dt 2 θ (t )

)
xct

2 −
(

d2

dt 2 θ (t )

)
zct

2...

...+
(

d2

dt 2 z (t )

)
xct −

(
d2

dt 2 x (t )

)
zct + g xct

)
= 0 (A.37)

EOM6:
d

dt
(
∂L

∂ψ̇
)− ∂L

∂ψ
= 0

−M2

((
d2

dt 2φ (t )

)
xct zct −

(
d2

dt 2ψ (t )

)
xct

2 −
(

d2

dt 2ψ (t )

)
yct

2 +
(

d2

dt 2 θ (t )

)
yct zct ...

...−
(

d2

dt 2 y (t )

)
xct +

(
d2

dt 2 x (t )

)
yct

)
= 0 (A.38)

The mass, damping and stiffness matrix as well as the static force vector can now be compiled, equation
A.40 - A.43. Note that the damping and stiffness matrices have no additional terms related to the superposi-
tioning of the crane load at the crane tip. This is exactly what one would expect, the only terms added to the
system are basically terms related to the mass inertia and gravity forces.

Mη̈+Cη̇+Kη= F (A.39)

Where: η=



x(t )
y(t )
z(t )
φ(t )
θ(t )
ψ(t )



M = M2



1 0 0 0 zct −yct

0 1 0 −zct 0 xct

0 0 1 yct −xct 0
0 −zct yct (y2

ct + z2
ct ) −xct yct −xct zct

zct 0 −xct −xct yct (x2
ct + z2

ct ) −yct zct

−yct xct 0 −xct zct −yct zct (x2
ct + y2

ct )

 (A.40)

C =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (A.41)
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K =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (A.42)

F stat = M2g



0
0
−1
−yct

xct

0

 (A.43)

A.3. Euler Lagrangian calculations 8DOF
The coupled loaded 8DOF system, figure A.3, is used to compile the superpositioning mass, damping and
stiffness matrix as well as the static force vector. This system incorporates the two additional degrees of
freedom related to the swaying of the pendulum. Similarly to the 2DOF and 6DOF system as seen in section
A.1 and A.2, the Lagrangian method is used to determine the dynamic matrices. The Cartesian crane tip
locations are respectively xct , yct and zct . This system also incorporates a crane cable with length Lc and two
corresponding degrees of freedom α and β. During Lagrangian method approach the linearization steps are
skipped, hence showing the nonlinear terms to this system would give way more equations than need be.
Similarly the full equations are not written down.
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Figure A.3: 6DOF system

The time dependent displacement of the mass M2 is defined as seen in A.44 - A.46. Note that compared
to the 6DOF system the location of the mass is also dependent on the crane cable length and motion.

x2(t ) =x (t )+xct −yct ψ (t )+zct θ (t )+Lc sin(α (t )) (A.44)

y2(t ) =y (t )+xct ψ (t )+yct −zct φ (t )+Lc sin
(
β (t )

)
(A.45)

z2(t ) =z (t )−xct θ (t )+yct φ (t )+zct −Lc cos(α (t ))cos
(
β (t )

)
(A.46)

Again the velocity of the mass M2 is defined as the Pythagorean of the velocity in both x, y and z direction,
equation A.47.

v2(t ) =
√(

d

dt
x2(t )

)2

+
(

d

dt
y2(t )

)2

+
(

d

dt
z2(t )

)2

(A.47)
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The Lagrangian energy of the system is defined as seen in equation A.48.

V = M2g z2(t ) (A.48)

The Lagrangian kinetic energy of the system is defined as seen in equation A.49.

T = 1

2
M2v2(t )2 (A.49)

The (linearized) equation of motion can be seen equation A.50 - A.57.

EOM1: −M2

(
−Lc

d2

dt 2α (t )−zct
d2

dt 2 θ (t )+yct
d2

dt 2ψ (t )− d2

dt 2 x (t )

)
= 0 (A.50)

EOM2: −M2

(
−Lc

d2

dt 2β (t )+zct
d2

dt 2φ (t )−xct
d2

dt 2ψ (t )− d2

dt 2 y (t )

)
= 0 (A.51)

EOM3: M2

(
yct

d2

dt 2φ (t )−xct
d2

dt 2 θ (t )+ d2

dt 2 z (t )+ g

)
= 0 (A.52)

EOM4: M2

(
−Lc

(
d2

dt 2β (t )

)
zct +

(
d2

dt 2φ (t )

)
yct

2 +
(

d2

dt 2φ (t )

)
zct

2 −
(

d2

dt 2 θ (t )

)
xct yct ...

...−
(

d2

dt 2ψ (t )

)
xct zct −

(
d2

dt 2 y (t )

)
zct +

(
d2

dt 2 z (t )

)
yct + g yct

)
= 0 (A.53)

EOM5: −M2

(
−Lc

(
d2

dt 2α (t )

)
zct +

(
d2

dt 2φ (t )

)
xct yct −

(
d2

dt 2 θ (t )

)
xct

2 −
(

d2

dt 2 θ (t )

)
zct

2...

...+
(

d2

dt 2ψ (t )

)
yct zct −

(
d2

dt 2 x (t )

)
zct +

(
d2

dt 2 z (t )

)
xct + g xct

)
= 0 (A.54)

EOM6: M2

(
−Lc

(
d2

dt 2α (t )

)
yct +Lc

(
d2

dt 2β (t )

)
xct −

(
d2

dt 2φ (t )

)
xct zct −

(
d2

dt 2 θ (t )

)
yct zct ...

...+
(

d2

dt 2ψ (t )

)
xct

2 +
(

d2

dt 2ψ (t )

)
yct

2 +
(

d2

dt 2 y (t )

)
xct −

(
d2

dt 2 x (t )

)
yct

)
= 0 (A.55)

EOM7: M2 Lc

(
Lc

d2

dt 2α (t )+zct
d2

dt 2 θ (t )−yct
d2

dt 2ψ (t )+α (t )
d2

dt 2 z (t )+α (t ) g + d2

dt 2 x (t )

)
= 0 (A.56)

EOM8: M2 Lc

(
Lc

d2

dt 2β (t )+β (t )
d2

dt 2 z (t )+β (t ) g −zct
d2

dt 2φ (t )+xct
d2

dt 2ψ (t )+ d2

dt 2 y (t )

)
= 0 (A.57)

The mass, damping and stiffness matrices as well as the static force vector now can be compiled. Equation
A.59 - A.62. It can be seen the mass matrix for the 6DOF- and 8DOF- system are almost entirely similar except
for the two additional degrees of freedom related to the swaying of the pendulum. Note that due to the
swaying of the pendulum an additional restoring forces are present, equation A.61. No damping has (yet)
been specified and therefore the damping matrix are all zeros.
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Mη̈+Cη̇+Kη= F (A.58)

Where: η=



x(t )
y(t )
z(t )
φ(t )
θ(t )
ψ(t )
α(t )
β(t )



M = M2



1 0 0 0 zct −yct Lc 0
0 1 0 −zct 0 xct 0 Lc

0 0 1 yct −xct 0 0 0
0 −zct yct (y2

ct + z2
ct ) −xct yct −xct zct 0 −Lc zct

zct 0 −xct −xct yct (x2
ct + z2

ct ) −yct zct Lc zct 0
−yct xct 0 −xct zct −yct zct (x2

ct + y2
ct ) −Lc yct Lc xct

Lc 0 0 0 Lc zct −Lc yct L2
c 0

0 Lc 0 −Lc zct 0 Lc xct 0 L2
c


(A.59)

C =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(A.60)

K = M2



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 Lc g 0
0 0 0 0 0 0 0 Lc g


(A.61)

F = M2g



0
0
−1
−yct

xct

0
0
0


(A.62)
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(c) Frequency response pitch 8DOF, 3% critical damping
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Figure B.1: Frequency response function pitch governed motion, damping < 10 percent critical damping
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(a) Frequency response pitch 8DOF, 1% critical damping
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(c) Frequency response pitch 8DOF, 0% critical damping
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(d) Frequency response longitudinal sway, 0% critical
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Figure B.2: Frequency response function pitch governed motion, damping < 10 percent critical damping



C
Proportional sensitivity analysis 6DOF

This Appendix chapter shows the ineffectiveness of the lump load 6DOF system. The proportional sensitivity
analysis implements equal sensitivity multipliers in either X-, Y- and Z- direction.

λX =λY =λZ =λ (C.1)

λ=
λX

λY

λZ

=
0.75

0.75
0.75

 ,

1.00
1.00
1.00

 ,

1.25
1.25
1.25

 (C.2)

Seen in figure C.1 both the roll and pitch frequency response, phase shift and damping ratio are on dis-
play for the three sensitized vessels. It can be seen that the roll motion frequency response, figure C.1a, is
very sharply peaked. At the resonance frequency the amplitude motion becomes increasingly large for ever
smaller vessel sizes. This is in consonance with the previously discussed top heaviness as seen in chapter 5.
The peak height for smaller vessels increases, this is due to the damping decrease as seen in figure C.4a. The
shape of the frequency response differ entirely from the frequency response as seen in chapter 6. Therefore,
for increasingly smaller vessel sizes one may say the 6DOF system becomes less and less compatible as means
of analysis.

Regarding the pitch analysis, there is no sharp peak like the seen in the roll motion. The frequency re-
sponse appear to be entirely similar to the frequency response of the 8DOF system as seen in chapter 6.

The effective excitation as seen in table C.1, shows that the 6DOF system especially for the roll motion
becomes increasingly different from the 8DOF system for smaller vessel sizes (λ< 1.00). Regarding the pitch
motion, it can be seen that for increasingly smaller vessels the difference between the 6DOF- and 8DOF-
becomes greater, similarly the difference becomes less for larger vessels. What this implies is that for increas-
ingly large vessels the pitch motion for the 6DOF system becomes similar to that of the 8DOF system.

Table C.1: Effective excitation (RMS)

λ RMS roll 6DOF RMS roll 8DOF Diff. RMS pitch 6DOF RMS pitch 8DOF Diff.
[0.75;0.75;0.75] 1.75 ·10−2 [rad] 1.89 ·10−2 [rad] 7.8% 1.55 ·10−2 [rad] 1.49 ·10−2 [rad] -3.6%
[1.00;1.00;1.00] 1.48 ·10−2 [rad] 1.40 ·10−2 [rad] -5.8% 1.03 ·10−2 [rad] 1.02 ·10−2 [rad] -1.1%
[1.25;1.25;1.25] 1.24 ·10−2 [rad] 1.07 ·10−2 [rad] -13.4% 0.77 ·10−2 [rad] 0.76 ·10−2 [rad] -0.4%

C.0.1. Frequency shift
Seen in figure C.2 the resonance frequency is set out with respect to the sensitivity multiplier λ. It can be seen
that both the roll motion as well as the pitch motion are negatively dependent on the sensitivity multiplier
λ. I.e., the roll and pitch resonance frequency for smaller vessels will be greater and less for larger vessels.
Regarding the roll motion, figure C.2a, it can be seen that there is a nod in the resonance frequency shift at
approximately λ = 0.80. This in effect is due to the instability of the system. This will further be shown in
section C.0.2.
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(d) Phase shift pitch 6DOF
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(e) Damping ratio roll 6DOF
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Figure C.1: Frequency response function, phase shift and damping ratio roll governed motion
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Figure C.2: Frequency shift

C.0.2. Peak shift
Seen in figure C.3a it can be seen that the resonance frequency peak height for vessels smaller than λ< 0.80
increases significantly and actually appears of the charts (|φ| >> 0.1 [rad]). This implies the vessels will have
destructive resonance and in fact tip over. For increasingly smaller vessels one may conclude that the 6DOF
system becomes increasingly unreliable.

Regarding the resonance frequency peak height of the pitch motion, it can be seen that the peak height
increases more than linearly for increasingly smaller vessels. This shape appears to be largely similar to the
8DOF system.
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Figure C.3: Peak height shift 6DOF

C.0.3. Damping ratio shift
It can be seen that the damping ratio, figure C.4, decreases for increasingly smaller vessels. Especially regard-
ing the roll case, the damping ratio at the resonance frequency approaches zero. This explains the extreme
excitation seen in the peak shift of figure C.3a. The pitch damping ratio, figure C.4b, appears to exert similar
behavior, although the decrease of damping is not as significant as with roll motion.
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Figure C.4: Damping ratio shift

C.0.4. Effective excitation (RMS)
Looking at the effective excitation motion as seen in figure C.5, it can be seen that the effective excitation
increases significantly for increasingly smaller vessels. This is in consonance with the previous asserted top
heaviness of the vessel. I.e., due to lump loading of the crane load at the crane tip, the vessel will tip over
implying more motion.

0.5 1 1.5
λ [-]

0

0.01

0.02

0.03

0.04

0.05

φ
R

M
S
 [r

ad
]

Roll 6DOF( φ), µ=135°

(a) Roll, 6DOF

0.5 1 1.5
λ [-]

0

0.01

0.02

0.03

0.04

0.05

θ
R

M
S
 [r

ad
]

Pitch 6DOF( θ), µ=135°

(b) Pitch, 6DOF

Figure C.5: Total exerted motion 6DOF
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C.0.5. Conclusion 6DOF proportional sensitivity analysis
Concluding the 6DOF proportional sensitivity analysis, it may be stated that the 6DOF system is less suitable
for increasingly smaller vessels especially with respect to the roll motion.

Table C.2: Summary 6DOF proportional analysis

x Not present
X Present
c Constant
d Discontinuous
↑ Increases
↑↑ Increases more than linear
↓ Decreases
↓↓ Decreases more than linear
ωv Resonance frequency related to the vessel motion
ωp Resonance frequency related to the pendulum motion

Roll 6DOF Pitch 6DOF
λ< 1.00 λ> 1.00 λ< 1.00 λ> 1.00

Coupled motion x x x x
Strong dynamic coupled motion x x x x
Effective motion (RMS) ↑↑ ↓ ↑↑ ↓

ωv

Freq. shift ↑ ↓ ↑ ↓
Peak height shift ↑↑ ↓ ↑↑ ↓
Damping ratio ↓↓ c ↓↓ c
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