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Abstract

This thesis addresses profile-based optimization of longitudinal beam dynamics in the CERN Proton Syn-
chrotron Booster (PSB) at two levels of complexity. In the 1D case (double-harmonic), the task is to infer and
correct the second-harmonic phase @5 to achieve optimal bunch lengthening throughout the acceleration cycle.
The operational diversity of longitudinal profiles in this regime required a supervised learning dataset to cover
representative conditions. In the 5D case (triple-harmonic), the goal is to jointly optimize Viotal, 72, r3, P2, 3
to obtain a flat-topped, lengthened bunch under stability constraints. Prior Bayesian Optimization (BO) iden-
tified a Kullback-Leibler (KL) divergence on the central charge region as a usable objective, removing the
need for supervised labels in 5D.

For the double-harmonic optimization, a Convolutional Neural Network (CNN) with Convolutional Block At-
tention Modules (CBAM) was developed to map measured profiles directly to @5 corrections as a single-shot
regressor using a pre-made dataset of simulated profiles. Training leveraged cosine loss, intensity-agnostic
max-normalization, stratified training-validation splits, and realistic profile augmentation. A double-layered
hyperparameter optimization was performed with the BO framework Optuna using Tree of Parzen Estima-
tors (TPE), with feature importance via Random Forest-based fANOVA and MDI. When applied iteratively,
the single-shot regressor lacked an internal notion of convergence, so a decaying-corrections scheme tempered
updates. In simulation and on-machine validation in the PSB, CBAM produced strong approximations to
operator-tuned phases within sub—super-cycle latency, at times exceeding manual phasing performance in 10
iterations (5 minutes in the PSB). However, its sensitivity to initialization conditions, and limited corrective
amplitude under persistent noise motivated a Reinforcement Learning (RL) alternative with better compati-
bility to the unlabelled 5D case.

A recurrent Long Short-Term Memory—Twin Delayed Deep Deterministic policy gradient (LSTM-TD3) frame-
work was introduced to enable profile-based, continuous iterative control without supervised targets. Method-
ological advances included a learnable soft-threshold gate on profiles (actor and critic), Prioritized Experience
Replay (PER), action bounding, and twin critics trained with the Huber loss instead of Mean Squared Error to
hedge against Q-network overestimation bias amplified by PER. To our knowledge, this is the only open-source
LSTM-TD3 implementation that combines this loss choice with parallelized environments and PER.

For the ®, phasing problem, the RL agent used a simple phase-centric reward focusing on convergence and
beam-loss prevention. The optimised agent achieved the best simulated performance when benchmarked
against CBAM, producing better ®, phasing in simulation in fewer iterations with enhanced robustness against
different impedances and initial conditions. Due to time constraints, only an earlier, unoptimised variant was
validated in the PSB; its behaviour (including over-corrections over the cycle and dependence on initialization)
matched verification expectations and was used to extrapolate the optimised agent’s expected performance
on machine. The results highlighted the value of the gating and Huber loss redesign, with hyperparameter
optimization identifying TD3 training parameters as the most influential.

In triple-harmonic optimization, the same recurrent off-policy agent was trained with observations comprising
the normalized profile, normalized radio-frequency (RF) parameters (Viotal, 72,73, P2, 3), and a normalized
magnetic-field ramp rate. Reward shaping follows a stability-then-shape paradigm through bucket-area suffi-
ciency followed by a KL objective. TD3 training parameters were extrapolated from the 1D case. In simula-
tion, the agent converged in under 20 corrections to effective phases and amplitudes, achieving approximate
triple-peak matching within tolerance and demonstrating that RL can solve the 5D optimization without
supervised labels while learning safety-centred strategies. Again, the agent showed robustness to different
initialization conditions and impedances.

The project delivered embedded RF parameter control over the cycle, a data acquisition and preprocessing
pipeline, operational scripts with monitoring, and publicly released training code with supporting documenta-
tion. Although optimised agents (1D and 5D) could not be validated on machine within the available time,
verification results and safety mechanisms indicate readiness for testing and high likelihood of sufficiently high
performance. Future work includes PSB validation of the optimised agents, further latency reduction, online
PSB learning for the triple-harmonic agent, and testing for transferability to other accelerators.
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1

Introduction

At the heart of Europe’s particle physics research infrastructure lies CERN, where the accelerator complex has
continuously evolved to push the boundaries of scientific discovery. These machines are constantly improved
to deliver higher intensities and brighter beams to experiments, creating new opportunities for groundbreaking
research, but also presenting unprecedented technical challenges. Among the most demanding applications is
the Isotope Mass Separator On-Line (ISOLDE) facility, which requires ultra-high-intensity (i.e. a high number
of particles per bunch) proton beams to produce radioactive isotopes for nuclear physics research, and with
an upgrade to ISOLDE on the horizon, even higher intensities are desired [10]. However, as beam intensities
reach new heights, the limiting factor increasingly becomes space-charge effects that can destroy beam quality
and prevent successful acceleration to higher energies. The term space-charge is used to describe the effect of
electromagnetic forces between charged particles within a beam, causing, among other phenomena, transverse
beam resonance effects, which ultimately lead to beam loss.

1.1. The CERN Accelerator Complex and Its Evolution

Understanding the context of space-charge challenges in modern accelerators requires appreciation of the
sophisticated multi-stage acceleration process employed at CERN. The accelerator complex at CERN, shown
in Figure 1.1, is an accelerator chain where each stage builds upon the previous to achieve higher particle
energies.

x
*, HiRadMat

. EIm

LHC Large Hadron Collider  5P5 n  PS Proton Synchrotron

LEIR Low Energy lon Ring  LINAC LiNear ACcelerator ToF N i HiRadMat High-Radiation to Materials
Figure 1.1: CERN Accelerator Complex [37]

The proton acceleration chain begins with LINAC (Linear Accelerator) 4, which serves as the first stage by
accelerating protons from rest to 160 MeV before injection into the Proton Synchrotron Booster (PSB). This
injection energy represents a significant increase from the original 50 MeV design, implemented as part of the
LHC Injectors Upgrade (LIU) project specifically to combat space-charge limitations [20]. The PSB, comprising
four superposed rings sharing magnetic cores but equipped with independent RF systems, accelerates beams
up to 2 GeV of energy. The next stage is the Proton Synchrotron (PS), which achieves a final energy of 26
GeV before transferring beams to the Super Proton Synchrotron (SPS) with its 450 GeV capability. Finally,
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the Large Hadron Collider (LHC) takes protons at this energy and accelerates them to approximately 6.8 TeV
per beam, enabling collisions at a total centre-of-mass energy of 13.6 TeV.

Crucially, this complex serves not only the LHC but also a diverse array of experimental facilities through
strategic beam extraction points. As illustrated in Figure 1.1, beams can be extracted through transfer lines at
various stages for different experimental programmes. For instance, the PSB can extract at 1.4 GeV to supply
the ISOLDE experiment (shown in green), which produces radioactive ion beams for nuclear physics research.
The PS similarly serves the neutron Time-of-Flight (nTOF) facility, the Antiproton Decelerator (AD), and
other fixed-target experiments.

The accelerator complex’s evolution towards higher intensities reflects the physics community’s demand for
more precise measurements and access to rarer phenomena. For the PSB, space-charge has always been the
limiting factor for high-intensity beam production, as at these high charge densities space-charge-induced
phenomena become even stronger. As a result, understanding these limitations and developing solutions for
them has become critical not only for current operations but also for future upgrades.

As a result, the current work focuses specifically on the PSB, where the high intensity accelerated at low
particle energies makes the space-charge effects most severe. Each of the four PSB rings is equipped with
sophisticated wideband RF systems utilising Finemet-loaded cavities [8]. The Finemet material provides
exceptionally broadband impedance characteristics, enabling the cavities to support a wide frequency range
required as the proton’s relativistic velocity 8 = v/c changes dramatically from approximately 53% to 94%
the speed of light during which the proton’s revolution frequency nearly doubles [3, 5].

This multi-harmonic capability is essential for the advanced longitudinal beam manipulation techniques that
have become increasingly critical as intensity demands grow. The flexibility to operate with arbitrary voltage
divisions between harmonics, without requiring cavity retuning, provides the foundation for bunch shaping
strategies that form the core of this research.

1.2. Space-Charge Mitigation in Particle Accelerators

Space-charge effects represent one of the most fundamental limitations in low-energy, high-intensity particle
accelerators. These effects arise from the electromagnetic forces between charged particles within a beam that
change the oscillation frequencies of particles in the transverse plane to unwanted values, leading to resonant
excitation. This can ultimately lead to beam loss or blow-up. The severity of space-charge effects scales
approximately as \;/3v? (see Chapter 2), where ); is the longitudinal charge density (also called longitudinal
line density) and 8 and v are the relativistic factors of the particles [3, 16].

To combat these detrimental effects, the CERN Proton Synchrotron Booster (PSB) has undergone significant
upgrades to increase the injection energy provided by the linear accelerator (LINAC). The injection energy
has been increased from the original 50 MeV to the current 160 MeV following the LHC Injectors Upgrade
(LIU) project [8, 10]. This energy increase reduces space-charge effects by increasing the 52 factor from
BY20arer = 0.35 to Byisonrer = 0.71, essentially allowing twice the beam intensity while still maintaining the
same space-charge effects [10, 3, 16].

However, there are practical limitations to how much energy can be gained in a LINAC due to cost, the fact
that particles only go through the LINAC once, and technical complexity. Therefore, alternative approaches
must be pursued to further mitigate space-charge effects. This has led to research into other solutions, such
as varying the magnetic field ramp profiles to increase particle energy as rapidly as possible, thereby reducing
the time spent in the high space-charge regime where these effects are most detrimental. The degree to which
the ramp can be modified is constrained by main-magnet circuit cooling and stability considerations, which
also prompts the search for other solutions [3].

As a result, the challenge extends beyond simple parameter optimisation to encompass complex multi-harmonic
Radio-Frequency (RF) manipulation strategies. Since § and v are set by the invariant injection energy,
a primary alternative strategy involves minimising the longitudinal charge density A; while simultaneously
attempting to increase the total number of particles—objectives that are inherently competing and require op-
timisation. This can be achieved by adding higher-harmonic voltages with controlled amplitudes and relative
phases to reshape the RF potential well and flatten the longitudinal charge density as much as possible while
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Figure 1.2: Impact of multi-harmonic operation on simulated longitudinal bunch profiles with the same intensity

still maintaining the same intensity, as shown in Figure 1.2. This approach is used operationally in the PSB
to prepare the beam for the ISOLDE experiment and also LHC beams to reduce the transverse cross-section
of the beam, but requires careful tuning of multiple amplitudes and phases and is sensitive to beam intensity
changes, path differences in the wiring of the RF system, and the energy gained per turn [24, 50].

1.2.1. Longitudinal Bunch Profile Optimisation

As a result, the quest to minimise space-charge effects while maximising beam intensity has led to a focus on
flattening the longitudinal bunch profile as much as possible. This approach recognises that reducing peak
particle density through profile shaping can significantly mitigate space-charge effects without sacrificing to-
tal beam intensity. This strategy is currently employed not only in the PSB, albeit through time-intensive
manual optimisation processes, but also in other accelerators facing similar or more severe space-charge lim-
itations, such as the Rapid Cycling Synchrotron (RCS) at the Japan Proton Accelerator Research Complex
(J-PARC) [42].

In the PSB, longitudinal bunch shaping is achieved through sophisticated multi-harmonic RF systems utilising
wideband Finemet cavities operating at multiple harmonics simultaneously, with an arbitrary voltage division
between harmonics without the need to tune the cavity to a specific harmonic [3, 5]. This is due to the material
properties of the Finemet, and is ideal for the PSB as the proton’s revolution frequency changes significantly
during acceleration as the speed of the proton changes from ~ 53% of the speed of light to ~ 94% during
acceleration.

As mentioned earlier, the current optimisation process for triple-harmonic operation requires manual adjust-
ment of five critical parameters: three voltage amplitudes (V7,V2,V3) and two relative phases (9o, ®3) for the
harmonic RF systems. Meanwhile, double-harmonic operation requires the adjustment of 3 parameters (no V3
and ®3). This labour-intensive procedure can take 10-20 minutes for double-RF optimisation and 30-40 min-
utes for triple-RF optimisation. This represents a significant operational burden and limits the accelerator’s
ability to adapt to varying beam conditions without the need to re-optimise the parameters when the beam
conditions change, making the automation of this optimisation very attractive.
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Indeed, the PSB represents an ideal testing ground for developing and validating new automated approaches
to this optimisation challenge. The facility’s well-characterised beam dynamics, comprehensive bunch profile
measurements, and the Finemet cavity’s flexibility make it an excellent platform for implementing automatic
control systems. The potential benefits extend far beyond operational efficiency, as automated optimisation
could enable real-time adaptation to beam loading effects, machine drift, and varying cycle requirements.

1.3. Problem Statement and Solution Roadmap

The current manual optimization approach for longitudinal bunch profile control in the PSB faces several
critical limitations. First, the optimization process is extremely time-consuming, limiting the frequency with
which parameters can be adjusted within reason (considering the effort implied on RF experts who seek to
optimize other aspects of the accelerator). Second, the manual approach cannot adapt in real-time to dynamic
effects such as RF system drift, changes in the control loops, or changes in the beam intensity. Third, the
labor-intensive nature of the process prevents exploration of optimal settings for different operational scenarios,
potentially leaving performance improvements unrealized.

These limitations become increasingly problematic as the demand for higher intensity beams continues to grow,
particularly for ISOLDE operations where beam quality and intensity directly impacts the production rates
of exotic isotopes, with higher intensities yielding rarer isotopes [10]. The need for a real-time, automated
solution that can track optimal harmonic phase settings under varying beam-loading conditions and machine
drift has become critical for the facility’s future operational success, while also reducing the workload on the
accelerator operators.

1.3.1. Operational Requirements Beyond Space-Charge Mitigation
Although triple-harmonic operation is a partial solution to space-charge mitigation through longitudinal profile
flattening [10], the PSB’s operational diversity demands a more comprehensive approach to automated RF
control. Double-harmonic operation, utilising harmonics A = 1 and h = 2, forms the foundation of numerous
beam production schemes that extend beyond only space-charge reduction.

For example, the neutron Time-of-Flight (nTOF) beam production presents entirely different operational
requirements [38, 2]. The nTOF facility requires ultra-short, high-intensity proton pulses (7 ns root-mean-
square (RMS) width after PS extraction) delivered to a lead spallation target to generate neutrons for nuclear
physics experiments [38]. For nTOF operations, the optimisation objective in the PSB is initially space-charge
mitigation due to the high intensity, but then by the end of the cycle, a jump in the fundamental harmonic
voltage (h = 1) is used to improve the transfer of the beam to the PS.

However, this changes for the AD beam production, where the AD requires a high-intensity proton beam to
be delivered to a target to generate antiprotons for nuclear physics experiments [34]. For AD operations, there
are different extraction schemes per ring, which are not related to space-charge mitigation. To illustrate, rings
1, 2 and 4 extract at the fundamental harmonic (h = 1), while ring 3 extracts at the second harmonic (h = 2)
to produce 2 bunches. This is done in order to capture the 5 bunches in the PS at the sixth harmonic (h = 6)
and then perform manipulations and improve antiproton production [34].

1.3.2. Solution Approach and Implementation Roadmap

Given this operational complexity, a progressive implementation approach is essential. Double-harmonic phase
optimisation must be performed first before attempting to tackle the more complex triple-harmonic systems.
This progression is driven by several critical factors:

Operational Prevalence: Double-harmonic operation represents the backbone of PSB operations, being
used across the majority of beam types including Batch Compression, Merging and Splitting (BCMS) and
nTOF, and controlled longitudinal emittance blow-up procedures [5, 2].

Parameter Space Complexity: Double-harmonic operation optimisation involves only one primary param-
eter: the relative phase between the fundamental and second harmonic, ¢5. Only the phase must be optimised
as the RF experts still have to define the amplitudes of the voltages depending on the purpose of the beam. This
makes it an ideal proving ground for automatic optimisation techniques. Success in this reduced parameter
space provides essential validation before tackling the five-dimensional optimisation space of triple-harmonic
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operation (three amplitudes and two relative phases).

Generalisability Requirements: An automated system must demonstrate robustness across diverse oper-
ational scenarios, from space-charge mitigation (bunch lengthening) to beam compression (nTOF), to bunch
splitting (AD). Double-harmonic systems provide the broadest operational test bed for validating generalisa-
tion capabilities of the proposed optimiser, rather than only focusing on the space-charge mitigation.

Accuracy Constraints: The sensitivity of double-harmonic operation to the phase imposes stricter accuracy
requirements than what is required for sufficient space-charge mitigation. Demonstrating sub-degree accuracy
and sub-super-cycle latency in double-harmonic control establishes the foundation for the more complex triple-
harmonic implementations.

The implementation roadmap therefore follows a logical progression: establish automatic control for double-
harmonic operations across all operational scenarios, validate generalization capabilities and accuracy, then
extend the methodology to encompass triple-harmonic systems for space-charge mitigation.

1.4. Research Questions

As a consequence of the complex operational environment and diverse beam production requirements in the
PSB, this thesis addresses the following fundamental research question:

Primary Research Question: How can an automated tool for the phase (and amplitude) computation
of the second and third RF harmonics in the CERN Proton Synchrotron Booster provide robust, real-time
optimization across diverse operational scenarios while ensuring operational safety and maintainability?

Furthermore, to address key aspects concerning the feasibility, performance, safety, maintainability and scal-
ability of the developed solution, the following sub-questions are used to guide the research and development
process:

Sub-questions:
1. Technical Feasibility and Performance:

R.Q.1: Can machine learning approaches accurately predict optimal harmonic parameters from bunch
profile measurements across different beam types (ISOLDE, n'TOF, BCMS, etc.) with the precision
required for operational deployment?

R.Q.2: How do automated optimization techniques perform when confronted with the diverse operational
parameter space?

R.Q.3: What is the minimum response time achievable for real-time harmonic control while maintaining
the required accuracy standards for operational deployment?

2. Operational Robustness and Generalization:

R.Q.4: How effectively can automated approaches adapt to different PSB operational cycles under varying
beam intensities, injection conditions, and machine states?

R.Q.5: What level of robustness can be achieved against common operational variations such as beam
loading effects, path-delay miscalibrations, and transient machine conditions?

R.Q.6: How do automated optimization methods perform in dynamic operational scenarios compared to
traditional manual optimization approaches?

3. Safety and Fail-Safe Operation:

R.Q.7: What are the failure modes of automated approaches when deployed in operational accelerator
environments, and how can they be detected and mitigated?

R.Q.8: How can the system ensure safe operation when encountering out-of-distribution scenarios or unex-
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pected beam conditions not seen during development?

R.Q.9: What safeguards and fallback mechanisms are required to prevent beam loss or equipment damage
during automated operation?

4. Integration and Maintainability:

R.Q.10: How can an automated system be integrated with existing PSB control infrastructure while main-
taining operational transparency and operator oversight?

R.Q.11: What strategies ensure system maintainability and adaptability to future accelerator upgrades or
changes in operational requirements?

R.Q.12: How can automated approaches be validated and benchmarked against expert operator performance
across the full range of operational scenarios?

5. Scalability and Technology Transfer:

R.Q.13: Can the developed methodology scale from single-parameter optimization to full multi-dimensional
harmonic control while maintaining performance and safety standards?

R.Q.14: How transferable are automated optimization approaches to other accelerator facilities with similar
space-charge limitations, such as the Low Energy Ion Ring (LEIR)?

1.5. Project Goals

The primary objective of this research is to develop, validate, and deploy an automated control system for
longitudinal bunch profile optimization in the CERN PSB that meets the stringent requirements of operational
accelerator environments. The project goals are structured in progressive phases that are in line with answering
the previously stated questions:

Core Technical Development Goals

P.G.1: Develop robust automated optimization methods capable of determining optimal RF system
parameters from bunch profile measurements with sufficient accuracy across all operational beam types.

P.G.2: Implement adaptive optimization algorithms for continuous multi-dimensional RF parameter con-
trol, demonstrating stability and adaptation to time-varying beam conditions.

P.G.3: Achieve real-time operational performance with response times suitable for operational deployment
(latency < 1 super-cycle, approximately 30 seconds) while maintaining accuracy requirements.

P.G.4: Establish scalable optimization framework progressing systematically from single-parameter con-
trol to full multi-harmonic amplitude and phase optimization for comprehensive space-charge mitigation.

Validation and Verification Goals

P.G.5: Comprehensive simulation validation using physics-accurate models across the complete operational
parameter space, including collective effects, beam loading, and realistic machine imperfections.

P.G.6: Machine validation and benchmarking against expert operator performance using actual PSB op-
erational data across multiple beam types and operational conditions.

P.G.7: Robustness demonstration under realistic operational variations including intensity variations, injec-
tion transients, and changes in machine configuration.

P.G.8: Safety validation through comprehensive testing of failure modes, edge cases, and recovery mechanisms
to ensure beam preservation under all conditions.
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Integration and Deployment Goals

P.G.9: Control system integration with full operational deployment capability, including operator interfaces,

monitoring systems, and manual override capabilities through existing infrastructure.

P.G.10: Comprehensive safety protocol implementation with safeguards including beam loss detection,

parameter bounds checking, automatic fallback to manual control, and emergency stop capabilities.

P.G.11: Operational transparency and interpretability providing operators with clear insight into auto-

mated decision-making processes and confidence metrics for operational acceptance.

P.G.12: Documentation and training framework enabling technology transfer to operational teams and

ensuring long-term system maintainability.

Technology Transfer and Scalability Goals

P.G.13: Cross-facility applicability assessment evaluating approach transferability to other CERN acceler-

ators (LEIR), demonstrating broad methodology applicability.

P.G.14: Future-proofing and adaptability ensuring the optimization framework can accommodate future

accelerator upgrades, new beam types, and evolving operational requirements without fundamental re-
design.

P.G.15: Performance benchmarking establishment creating evaluation criteria and performance metrics for

automated accelerator control.

1.6. Scope and Approach

This research follows a systematic, safety-first progression from controlled simulation environments to full
operational deployment. The approach emphasizes validation at each stage and incorporates operational
requirements from the earliest development phases.

The methodology begins with comprehensive physics modelling to ensure accurate representation of PSB
longitudinal dynamics, including space-charge, beam loading, and impedance effects. Additionally, the pro-
gression from single-parameter control to full multi-harmonic optimization provides incremental validation
opportunities while building operational confidence.

The verification and validation pathway emphasizes three key stages: simulation verification under idealized
conditions, simulation validation with realistic machine imperfections, and finally machine validation using
actual operational data. Each stage includes comprehensive safety testing and failure mode analysis.

The scope explicitly encompasses operational deployment considerations including control system integration,
fail-safe protocols, operator training, and long-term maintainability. The potential for technology transfer is
evaluated through benchmarking and the assessment of the generalizability of the approach.

1.7. Thesis Structure

This thesis is organized to provide comprehensive treatment of automated harmonic control for operational
accelerator applications, structured as follows:

e Chapter 2: Beam Dynamics Background establishes the theoretical foundation: particle accelerator
fundamentals, longitudinal beam dynamics, collective effects and impedance, and the simulation frame-
work used in this work. It also studies the PSB-specific longitudinal profiles, BlonD code components,
and caveats in bunch-profile measurement that impact simulation accuracy.

e« Chapter 3: Requirements Analysis & Definition derives system requirements from stakeholder
needs, operational beam types, technical constraints and risk analysis. It defines the full set of system
requirements, the verification & validation methodology, the verification criteria for the requirements,
and the requirements traceability to the proposed solution.
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e Chapter 4: Machine Learning Background details dataset creation methodology and constraints
(simulated vs. experimental, temporal vs. static), the selected AI frameworks, Convolutional Neural
Networks (CNN) with attention, stratified sampling strategies, reinforcement learning (RL) and memory-
augmented RL, possibilities of augmented feature extraction, and hyperparameter optimization with
functional Analysis of Variance (fANOVA).

e Chapter 5: Double-Harmonic Operation: ®; Optimization presents the complementary solu-
tions:a CNN with attention mechanisms, and a memory-augmented RL agent. Both solutions are
presented and discussed along with their training considerations, possibilities of autoencoder-assisted
feature extraction, hyperparameter optimization, model and verification analyses, data acquisition &
preprocessing, and a validation procedure with PSB results.

e Chapter 6: Triple-Harmonic Operation: 5D Optimization extends to full five-dimensional triple-
harmonic control with the memory-augmented RL agent, including training, verification analysis in
simulation for space-charge mitigation, and a PSB implementation roadmap.

e Chapter 7: Conclusions & Recommendations evaluates outcomes against the research questions,
project goals, and requirements. It also provides recommendations for future work and states the overall
conclusions.

The thesis concludes with comprehensive assessment of the methodology’s impact on accelerator operations,
lessons learned from operational deployment, and recommendations for future automated control applications
in accelerator systems.
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Beam Dynamics Background

This chapter establishes the principles of acceleration and outlines longitudinal beam dynamics. Additionally,
synchrotron motion under multi-harmonic operation is discussed together with the theoretical principles for
double-harmonic particle motion and its different modes under constant RF system parameters. Naturally,
this is followed by the theoretical principles of triple-harmonic particle motion, also under constant parameters.
To demonstrate these concepts, idealised tracking code results are presented to showcase how this motion looks
under double- and triple-harmonic operation. This sets the stage to introduce the real-world effects particle
accelerators face, such as beam loading and space-charge, including how they relate to the problem statement.
Then, an analysis of the profiles produced by PSB operational cycles and their statistical features is performed
to identify possible optimisation routes. Finally, this chapter ends by presenting the simulation code and
model for the PSB, and its real-world fidelity is discussed.

2.1. Accelerator Fundamentals

Particle acceleration relies on the manipulation of electromagnetic (EM) fields to control the motion and energy
of charged particles. In synchrotrons, both magnetic and electric fields play critical roles, with magnetic fields
guiding particles along a desired path, while electric fields provide the energy increase. This section outlines
the fundamentals of this process, emphasising the interplay between these fields and the role of RF cavities,
without needing to specify the type of accelerator.

2.1.1. Lorentz Force: Steering and Acceleration

The behaviour of charged particles in electromagnetic fields is governed by the Lorentz force law, which states
that a charged particle with charge ¢ and velocity ¥ experiences a force given by [19]:

F=q(E+7xB), (2.1)
where & represents the electric field and B represents the magnetic field.

In the presence of a magnetic field g, the term qv x B results in a force that is always perpendicular to the
particle’s velocity ¢. This means that while static magnetic fields can change the direction of the particle’s
motion, they cannot alter its speed or kinetic energy. As a result, magnetic fields alone are not capable of
accelerating particles in the direction of their motion; they only provide the force needed to bend particle
trajectories.

For acceleration, where an increase in particle speed or energy is desired, a parallel force component is necessary.
This is achieved through the application of electric fields, where the force q:‘? directly influences the particle
along the direction of the electric field. When the electric field aligns with the particle’s velocity, it performs
work on the particle, thereby increasing its kinetic energy [19].

In particle accelerators, RF cavities are used to confine oscillating electric fields that provide this acceleration.
These RF fields are synchronized with the particle beam’s motion, ensuring that particles gain energy at each
passage through the cavity. This will be discussed more in detail later on in Section 2.2.

2.1.2. Role of RF Cavities in Particle Accelerators

RF cavities are essentially volumes of empty space where the boundary is conductive and whose geometries are
specialised for creating the resonant electric field to accelerate particles when exposed to an RF wave. This RF
wave resonates inside the cavity due to the conductive walls, generating an electric field that resonates because
of the application of Maxwell’s equations considering the specific boundary conditions. The exact properties of



Y &
2 Beam Dynamics Background 2.1 Accelerator Fundamentals @ TUDelft

the electric field depend on the frequency of the RF wave, its amplitude and the material characteristics of the
cavity walls: their conductivity, their inductance, and other material characteristics such as the smoothness
of the walls. These factors will determine how electromagnetic waves reflect within the cavity and establish
standing-wave patterns, leading to the formation of resonant modes. There are also cavities that can generate
travelling waves that travel with the particles they accelerate, so they always see the same accelerating field as
they travel through it, which are used in accelerators like the SPS [19]. However, in the PSB only standing-wave
cavities are employed, so the discussion will be limited to these.

The cavities usually operate at single frequencies, tuned to match the beam’s motion, allowing them to provide
energy consistently as the particles circulate through the accelerator. As mentioned previously, the PSB has
broadband cavities, meaning they can operate at a range of frequencies. The oscillating electric fields in these
cavities impart small energy increments to the particles on each pass, gradually increasing their momentum.

The efficiency of energy transfer from the cavity to the beam depends on maintaining a precise phase rela-
tionship between the oscillating RF field and the circulating particles. This ensures that the particles are
accelerated at the right moment, optimising the energy gain per turn and maintaining beam stability [30].
There are other particularities of the geometry of the cavities that need to be considered in order to excite
only the desired modes, but this is out of scope for this project.

2.1.3. RF Cavities as RLC Circuits and Impedance

Each resonant mode of an RF cavity can be modelled as an equivalent RLC (Resistor-Inductor—Capacitor)
circuit to understand its electromagnetic properties and energy transfer characteristics [19]. This circuit is
shown in Figure 2.1. This model reduces the interactions of the beam with the cavity and its behaviour to
resonance and impedance. Key parameters in this model include:

» Resonance Angular Frequency (w;): The frequency at which the cavity naturally oscillates, given
by:

1
Wy = \/Tic" (2.2)

where L is the inductance and C' is the capacitance.

e Quality Factor (Q): A measure of the cavity’s ability to store energy relative to energy lost per cycle,

defined as:

energy stored wyL
=2 = —, 2.3
@ 7Tenergy dissipated R (2:3)

where R represents the resistive losses in the cavity (i.e. the resistor R in Figure 2.1).
o Shunt Impedance (R,p): Indicates how efficiently the cavity transfers power to the beam, defined as:

VI

Rs = 5
"7 2P,

(2.4)

where V is the peak voltage achieved in the cavity and P is the power delivered to the cavity. This
means that for a higher shunt impedance, for a given input power, a higher accelerating voltage V' can
be achieved.

Z(o) -

Figure 2.1: Cavity modelled as an equivalent LRC circuit [19]
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The impedance, Z, of the cavity, which describes its response to the beam current, is a complex function:

11 -t
where w is the angular frequency of the input signal. Additionally, because of this representation, it can be
said that when an impedance has the form Z = —iC, it is called a capacitive impedance, while it is called
inductive if it has the form Z = iL (with C and L being constant). This concept of impedance relates to the
shunt impedance, as the power input into the cavity is related to the voltage and impedance at resonance as
follows:

V2 1

1
Pp=o————=V*{ =+ — +iwC | = Poss + 2wi (We —W,, 2.6
Z(W)rcsonancc (R + twlL o ) ! T+ L,_l ( )

=0 at resonance

where Ploss = V?2/Rs,. However, this theory, and specifically Equation 2.5, describes the impedance for
resonant modes of cavities, but as stated in Chapter 1, the Finemet cavities in the PSB are broad-band cavities.
This means they support a broad range of frequencies and, thus, cannot be modelled by this resonant-cavity
description, but they still have an impedance, which will be shown in Section 2.3. It is also possible to model
other real-world effects related to the accelerator geometry, or the interaction of the particles with themselves
(known as collective effects) as impedances that add upon the impedance of the cavity as will also be shown
in Section 2.3. Now that the basics of longitudinal particle acceleration have been outlined, it is possible to
deepen the analysis into the dynamics of particles during acceleration.

2.2. Longitudinal Beam Dynamics

In order to be able to assess the performance of the final optimiser, it is necessary to have the relevant
background on longitudinal beam dynamics. To do so, it is even more imperative to establish how the RF
cavities synchronise with the beam passage to provide energy to the particles circulating within it. First, an
introduction to synchrotrons is given and how they confine the beam using the EM fundamentals described
previously. Then, the dynamics of the particles in the longitudinal direction are characterised through the
synchrotron equations of motion (EoM) which describe the evolution of the particles. This is followed by
analysing synchrotron EoMs under small-amplitude approximations to gain more insight into the type of motion
the particles undergo and the regions of stability in phase space. Finally, all these concepts are integrated by
analysing the results of a simplified tracking code which uses the full, non-linear EoM to describe the evolution
of the particles.

2.2.1. Synchrotrons

Now the discussion turns to particle acceleration in synchrotrons. The synchrotron is a circular accelerator
which uses EM fields to provide an energy gain to a group of particles, known as a beam, and also confine
this beam in a closed orbit. The electric field generated in the RF cavities is responsible for accelerating
(gaining kinetic energy) the particle through the Coulomb force ideally parallel to the direction of propagation.
The magnetic field provides a centripetal force, through the Lorentz force on charged particles, to keep the
beam in a quasi-circular orbit. The magnetic fields are provided by electromagnets whose beam-directing
properties depend on the geometry and quantity of magnetic poles. The discussion of the magnets is limited
to only the bending of particle trajectories within the plane of the accelerator (i.e. no consideration of focusing,
defocusing, nor chromatic aberration correction of the beam; for a full treatment of these effects see [19, 30]).
As is expected from Equation 2.1, the fact that a particle’s transverse control, through magnetic fields, depends
on its longitudinal dynamic properties (i.e. its speed), there should be some coupling between the longitudinal
beam dynamics and the transverse one. Nevertheless, it is sufficient to consider a decoupled system without
much loss of accuracy [30].

The bending of trajectories within the plane of the accelerator can be analysed by equating the centripetal
force with the magnetic component of the Lorentz force:

i

m; =quB — p=mv = qBp (2.7)

where p is the bending radius of the dipoles (not the radius of the synchrotron), and B is the magnetic field

11
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strength pointing into the plane of the accelerator for positively charged particles and out of the plane for
negatively charged particles. Thus, the magnetic field strength is related to the momentum of the particle
and, by taking the time derivative of Equation 2.7, the rate of change of the magnetic field is related to the
rate of change of momentum, meaning the accelerating force. The important thing to remember here is that
the rate of change of the magnetic field will determine the rate of change of the particle’s energy through the
relativistic energy equation (Fj is the kinetic energy and Ej is the particle’s rest energy) [19]:

E:\/szk+Eo—>EO(p:qBP (2.8)

Extraction ¢ Extraction magnet

QD = Horizontally
defocusing

f Injected beam (7 MeV) SX = Sextupole

Figure 2.2: Simplified schematic of a synchrotron [49]

In reality, synchrotrons are not perfectly circular machines (p # Ry = Ching/27), but are comprised of straight
sections and curved sections. Straight sections are where the beam is accelerated, focused transversely (using
higher-order magnets known as quadrupoles and sextupoles), extracted, among other things that interact with
the beam (collimators, beam dumps, detectors, etc.). Meanwhile, in curved sections the beam is directed
using the dipole magnets as shown in Figure 2.2, and possibly focused as well. Furthermore, for the entirety
of this work, the Frenet—Serret coordinate system is used, which is defined in Figure 2.3. Since the majority
of the work focuses on longitudinal beam dynamics, the main direction concerning the discussion is §, which
is defined as the direction perpendicular to the radius of the orbit #(s) and in the plane of the orbit, where s
is the position along the orbit.

7o(s)

eference orbit

Figure 2.3: The Frenet-Serret coordinate system used in accelerator physics [30]

Moreover, given that the Lorentz force will, by definition, always be perpendicular to the velocity and that the
electric field is parallel to the path taken by the particles and is only present at the RF cavities, the energy
gain can be written as (see [50]):

To
(AE)gain:f F-ds:qj{ 5-ds—|—q/ 'u><B~'vdt:q/ € -ds, (2.9)
path Sect 0 RF cavities

where (AFE)gain is the energy gain per turn for a given particle and Ty is the revolution period. Note that,

12
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ultimately, the only contribution to the energy gain comes from the electric field in the RF cavities and how
well aligned the resonating electric field is with the direction of propagation of the particles (denoted by the
dot product). This equation can be developed further by specifying the time-dependence of the electric field
and assuming only one RF cavity:

E(t) = Esin (wyst + ¢ue) (2.10)

where w,s and ¢.¢ are the RF angular frequency and phase, respectively. This can now undergo a variable
change from time to the distance s covered by the particle, i.e. ¢ = s/v, giving rise to the following energy
gain for a particle after transiting the length of the cavity lqp:

lgap 1
2

(AE)gain = q/l E(s)ds = qé/ ’ sin (%s + (brf) ds (2.11)

lgap

As mentioned before, in the PSB a standing wave is created in the cavity, so the particle sees different phases
along its passage through the cavity. Developing the equation further yields (using the trigonometric identity
sin(a + b) = sinacosb + sinbcosa and the fact that [* sinbdb = 0):

e 2q€vsin ¢ z
5 Wr . U sin . w
(AE)gain = q5/ cos (48) sin gyeds = — 2 sin ( al gap) ; (2.12)
_ lgap v Wrf 2v
which can also be rewritten by defining the transit time factor
sin <7w‘f21§"‘p )
711 == Tgap (213)
2v
that represents the energy gain lost due to the finite length of the cavity, and the RF voltage V¢ = 3)5—:
(AE)gain = qViT, sin ¢rfa (214)

Nevertheless, wit lgap /(20)  lgap /Cring > 50 if lgap <K Ching , Which is the case for the PSB, then T, ~ 1. This
comprises the fundamental physics of particle acceleration, but this still needs to be translated to the beam
dynamics world, which implies equations of motion (EoM) are required.

2.2.2. Longitudinal Equations of Motion

The term equations of motion refers to mathematical equations that describe the behaviour of physical systems
in terms of their motion over time. In the following derivations, the equations of motion of the single and
multi-harmonic system are defined through the use of a so-called “synchronous” particle (this does not need to
be the case), which is an idealized virtual particle that has the desired momentum at all times throughout the
acceleration ramp (see [50, 30] for full treatment). However, it is the magnetic field that defines the momentum
of the synchronous particle over time through Equation 2.7 and its time derivative, while taking into account
the geometry of the synchrotron. The following derivations are modified and expanded on from the derivations
presented in literature (see [30, 15]).

Single-Harmonic System

From this point onwards, any parameter which has an s as its subscript is referring to the synchronous par-
ticle, with the exception of the revolution frequency, which for the synchronous particle is wg. It is immensely
beneficial to define these synchronous parameters in the derivation of the EoM because the synchronous par-
ticle synchronizes with the RF wave used to accelerate it with frequency w,y = hwy where h is an integer
representing the harmonic of the revolution frequency. This means that as the particle is passing through the
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cavity, it will always synchronize with a particular RF phase angle ¢, = ¢ every turn, the value of which is
computed depending on the voltage and energy gain desired for that turn (which is derived from the magnetic
field). Thus, the energy change at turn n is (from Equation 2.14):

(AEs)n = qVi¢sin ¢sn = qV(¢s) (2.15)

where now ¢ = e for a proton, and V(¢,) is the accelerating voltage felt by the synchronous particle. In
order to find the rate of change of energy for the particles, it is necessary to define the parameters of the
non-synchronous, real particles in the accelerator:

{ w=wy + Aw (ang. rev. frequency), ¢ = ¢s+ A¢ (rf phase), E = E;+ AE (energy) (2.16)

0 = 65 + Af (azimuthal orbital angle), p = ps + Ap (momentum),

Using these parameters facilitates defining the EoM of the particles relative to the longitudinal motion and
energy increase of the synchronous particle, which is more intuitive when defining what the particles are doing
relative to our "ideal” particle. Again, note that the revolution frequency is defined as wg rather than w,
in order to avoid confusion for reasons which will become clear later on. The first step in the derivation is
establishing the relationship between A¢ and A6, which are related through the harmonic as 6 oscillates with
an angular frequency w, while ¢ oscillates with hw:

Ap= ¢ — ¢ = —hAO (2.17)

In addition, one can realize that the frequency offset, Aw, defines the rate of change of the orbital angle offset,
Af, as 0, oscillates with the synchronous angular frequency, giving:

_iAg:_liA(b:_l@ (2.18)

Aw= h dt hdi

This equation already provides (partially) the time evolution of one of the two phase-space coordinates, ¢, but
the rate of change of the energy difference relative to that of the synchronous particle, (A'E), must also be
defined. In longitudinal beam dynamics, phase-space is a conceptual coordinate system used to describe the
state of a bunch of particles in the variables of AF and ¢ (or any other equivalent coordinates). For this,
one can look at the acceleration rate given by the energy gain per turn when transiting the RF cavity and
multiplying by 2 to make the coordinate transformation from per turn to per second: (AE) = 5=eVi¢sin ¢.
Then, by subtracting the energy gain rate of the synchronous particle in Equation 2.15 divided by its angular

frequency, Afi", and putting the particle’s angular frequency within the time derivative, one can solve for
% (ﬁ—f) by using the following relation (and the relations in Equation 2.16):

1. 1 . 1. . A 1 . SA(1 d (AFE

—E-—FB = —AE-E= ~ —AE+ [E(/‘”O)} AE+ - = = ()

w wo wo w§ wo AFE dt \ wo
Where we have expanded %E = WﬁE using a Taylor series. This gives the following EoM for the energy-
offset: i /AR ) )

G (50) = oeviesing —singn) = V() - V(6.) (219)

where now V(¢) is the accelerating voltage felt by the real particles. As for the time evolution of the phase
angle, ¢, there are more relations and concepts that need to be introduced. A key concept is the off-momentum
variable, which indicates the ratio between momentum difference of the particle and the synchronous particle’s

momentum, § = % (it can also be related to the energy difference § = LD ﬁ—f) This variable defines the
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so-called dispersion function D(s), which relates how this off-momentum of the particles alters the path of the
circular orbit of the particle. Thus, these relations are defined below:

2rR _ 2mRg

Aw Bc Boc ﬁRo

=Y — 1 2.2

w BT RR 220
R=Ry(1+D(s)) = Ro (1 + b + a16® + az6® + - ) (2.21)

where Ry is the mean radius of a circular accelerator, R is the radius of the particle’s circular orbit which
is altered off-momentum of the particles (these perturbations are in the & direction in the Frenet—Serret
coordinate system in Figure 2.3). Moreover, the «, that define the dispersion function are called the Courant-
Snyder parameters a,,, where n represents the number of times that the initial oy has been propagated by the
transverse transfer matrix, but this will not be defined as it relates to transverse beam dynamics and escapes the
scope of the thesis (see [19, 30] for more information). These a;, can be related to another accelerator-specific
parameter called the momentum compaction factor a..:

1 dR

e = Ri()% = Qg + 20&15 + 30[252 + - (222)

Intuitively, by looking at the definition of a., one can assert that if g > 0, which is the dominant factor in
the formula (§ in the order of 1072 or smaller [30]), it means that particles with higher momentum than the
synchronous particle will travel a longer orbit path than that of the synchronous particle, and vice-versa for
a. < 0. Using the definition of the off-momentum variable, it is possible to express 8 and v in terms of § (after
some substitutions) [30]:

1
T=Dare= L = o g
6:&= il —1—>70 V183
po B 5 146 3 B -1)

5 5% + 5%+

1
R =1 + —
Bo 1+ 2538 + B36° w29 27

Replacing these expressions in Equation 2.20 and 2.22, integrating Equation 2.22 and replacing in Equation 2.20
ultimately allows expressing the relation in the following way:

Aw

wo

= —-n(d)d (2.23)
where 7 is the phase-slip factor and it can be expanded in the off-momentum variable as follows:

No = (ao_%)a
2
7](5):770+7715+77252+"'—> n1:%+a17a0770,

383 a0
=00+ ag — 20001 + % + adno — 522,
2 272 2 001 T 22 0o 292

Thus, in the first order approximation, only 79 is considered and then the difference in angular frequency is:

1
Aw = —nowgd = (’y2 — ac) wpd (2.24)
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Looking at the equation, it is beneficial to relate a. to a so-called transition Lorentz gamma ~yp to rewrite Aw
to :

1 1 1
ae=— — Aw= <2 - ) wod (2.25)
T v T
Much like for the momentum compaction factor, this means that below the transition gamma, a higher energy
particle with § > 0 will have a higher revolution frequency, and vice-versa with § < 0. Using this completes

the EoM for both energy difference and phase (substituting 6):

G (50) = 5ot Ging —sing) = 5-eV(o) - V(o) »
dp  hwin (AE (2.26)
dt — B2E (w0>

This could have also been derived through the synchrotron Hamiltonian, or also in a discrete manner on a turn
by turn basis, which allows for simple and sequential tracking of particles (see [50] for full discrete derivation).
This will be discussed in more detail in Section 2.2.3 because this is how particles are simulated computationally.
Ultimately, if this approach were followed, the following tracking equations would be obtained:

AE,11=AFE, +eVit (Sin $n — sin ¢s)

27h
¢n+1 == (bn + 6TE77AEH+1~

(2.27)

where again n is referring to the turn number. Note that this is obtained by simply discretizing the dt to be
the revolution period of the synchronous particle dt = Ty, which cancels out with the angular frequency term
on the r.h.s. of Equation 2.19.

These equations can be linearized in order to familiarize oneself with the type of motion that the particles
will undergo. To do so, consider again the non-discretized EoMs in Equation 2.26, and first linearize the AE
EoM for small variations in phase around the synchronous phase ¢ using a Taylor series and keeping only the
linear term:

d (AE 1
it (wo> ~ %e‘/rf cos @5 (¢ — ¢s) (2.28)

Then take the time derivative of the ¢ EoM to replace the linearized AE EoM within it to retrieve the linearized
EoM for the phase:

d? _ hwgeVng cos s

ﬁ (¢ - ¢s) - 27Tﬁ2E (¢) - ¢s) (2'29)

This equation is depicting a harmonic oscillator, with a frequency wso = wgy/ %, which is known as

the small-amplitude synchrotron frequency of the linearised system. Additionally, if one were to divide it by
the revolution frequency wyg, then one retrieves the synchrotron tune Qs, whose inverse represents the number
of turns needed to complete one full revolution in phase space:

| heVnq cos ¢
Qso =1/ TonE (2.30)
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Looking at Equation 2.27 and 2.29, one can appreciate the physical meaning of the phase-slip factor n (or its
first order approximation 7)), as when it is positive, then a particle with a positive AE will increase in phase,
meaning that the particles will oscillate in the clockwise direction in phase-space. Furthermore, it is well
known that these type of differential equations are solved by a linear combination of exponentials exp twgot
with real or imaginary arguments depending on whether the frequency is imaginary or real, respectively.
Thus, considering the system of particles as harmonic oscillators, the condition for the phase coordinate
to have a bounded evolution is that ws? < 0 in order to have an imaginary frequency, which means that
ncos¢s < 0. This essentially restricts the value of ¢s depending on whether the accelerator operates above
or below the transition gamma 7 (see Equation 2.25). Below transition for v < yp (meaning that n < 0
from Equation 2.25), then for stability (i.e. for the motion to remain bounded in phase-space) one must have
0 < ¢s < 5 and above transition § < ¢s < 7. If the motion becomes unbounded, and the particles deviate
sufficiently to become lost as the magnets are not synchronized with their momentum through Equation 2.7,
and their trajectories are bent either too much or too little and the particles are lost to the beam pipe. Also, it
is important to keep in mind that the PSB operates completely below transition so n < 0. Meanwhile,
other accelerators, like the PS, cross this transition boundary: initially v < «p and from a certain point in
the cycle v > ~p implying the voltage phasing in the cavities must change as well in order to keep the beam
stable [15].

Nevertheless, this linear analysis can only provide information on the low amplitude oscillations of the particles
in phase-space about ¢s;. To understand the how particles evolve within a larger region in phase-space, one
must consider the synchrotron Hamiltonian:

2
— lhnwg (AE> eVt [cos ¢ — cos s + (¢ — ¢s) sings] = K + U(o) (2.31)

2 B82FE \ wy 2

where we have now replaced ¢ = ¢59 which indicates the synchronous phase but for a single-harmonic system.
Additionally, K and U(¢) are the kinetic and potential energies of the particle, where the potential energy (also
called RF Potential) can be computed by integrating the r.h.s. of the energy difference EoM in Equation 2.19
with respect to ¢ and ¢, as follows (in general for any voltage V' (¢)) [19]:

-
T or

¢s
U(9) /¢ V(') — V(6)]ds! (2.32)

The Hamiltonian in Equation 2.31 does not describe the full picture given that transverse dynamics also couples
with the longitudinal dynamics, but as mentioned before, it is still sufficient to consider the decoupled system
[30]. Regardless, returning to the topic of stability, the potential well formed by U(¢) determines the region
of bounded orbits in phase-space (if the potential well is unperturbed), as is usual in Hamiltonian systems.
For example, in the single-harmonic case, the potential is shown in the middle plot of Figure 2.4 for multiple
values of ¢, meaning at different acceleration magnitudes. The voltage waveform that generates this potential
well is shown on the left plot of Figure 2.4. It is possible to distinguish a minimum and 2 maxima that define
the potential well. Actually, in the energy difference EoM in Equation 2.19, for given initial points, neither
the phase nor the energy difference will change. These points are called fized points and they can be unstable
or stable, depending on the whether the RF potential energy has a maximum or minimum at that particular
phase, respectively. For the single-harmonic system, the stable fixed point is located at (AE = 0,¢ = ¢,),
while the unstable fixed point is located at (AE = 0,¢ = 7 — ¢5).
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Figure 2.4: Accelerating voltage, potential energy, and separatrix for single-harmonic operation under different ¢ (dashed red
lines indicate RF period)

In the potential energy in Figure 2.4, the higher the acceleration, the shorter the potential well becomes, and
the allowed energy difference and phase divergence from ¢, before the particles escape the potential well is
smaller as well (this is defined by the smallest maxima present within one period). There is another way to
represent this potential well in phase-space with the coordinates (AE, ¢), which gives an even better picture of
the stability of particles in the same coordinate system in which the tracking occurs. It is achieved by obtaining
the contour in phase-space of the Hamiltonian value at the unstable fixed point (AFE = 0, ¢ = 7 — ¢ ), meaning
the maxima with the lowest potential energy. This representation is called a separatriz and are shown
for the same synchronous phases in the right plot Figure 2.4. This closed contour, also known as acceleration
bucket, is representing the area in which particles’ motion will be bounded (if no perturbations are present)
as they oscillate around the synchronous particle in phase-space, located at (AE = 0,¢ = ¢5). In addition, if
the Hamiltonian varies slowly with time, meaning that the system can be considered quasi-adiabatic, then the
particles will follow lines of constant Hamiltonian value while they oscillate around ¢, albeit with different
frequencies.

Particle trajectory after 100 turns

AF [arb. units]

# [rad]

Figure 2.5: The motion of 100 particles with varying initial phases ¢ but with AE = 0 in a single-harmonic system
The analysis in Equation 2.29 appears to indicate that the synchrotron frequency of the single-harmonic system,

ws, is independent of the particle’s Hamiltonian value, but this is not the case. This effect can be shown by
tracking particles for 100 turns using Equation 2.27 with an initial position along the ¢-axis distributed with
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¢ = [—m,0] as shown in Figure 2.5. As can be seen, particles with a higher absolute deviation from the
synchronous phase, ¢par = ¢ — @5, will have a smaller synchrotron frequency ws, whose dependency on ¢y,qz
can be calculated analytically for a single harmonic system [19, 30]:

Q0 IQHaX
Ws (Pmax) = WsOm ~ Wso (1 T 16 ) (2.33)

where K(-) is the complete elliptic integral of the first kind, and wgo is the synchrotron frequency of the
linearized system. This concept of oscillating motion with a certain frequency wy is important when considering
perturbations, such as non-RF-driven voltages, that are modulated by some frequency. This is because of
possible resonance between the perturbation and the system of particles oscillating at a certain synchrotron
frequency. This resonance would cause oscillations in phase space to have increasing amplitude (and thus
higher Hamiltonian values in Equation 2.31) and ultimately lead to particles escaping the potential well (or
separatrix) and become lost [19]. As a result, it is beneficial to have a large spread in w; as it would imply
that a perturbation driven at a particular frequency will not affect one’s beam as much as if the synchrotron
frequency is less spread out within the separatrix. This effect is known as coherent excitation.

Furthermore, a larger frequency spread enhances a stabilization mechanism known as Landau damping, which
it becomes important to mitigate the onset of so-called longitudinal microwave instabilities in the PSB near
extraction. These microwave instabilities are formed by the self-driven excitations inside of the beam relating
to the longitudinal eigenmodes of the bunch of particles [24]. In addition, they become an issue at extraction as
this is where the beam has the highest energy E and 8, meaning that small-amplitude synchrotron frequency
wso and the tune Q4o will decrease, and Equation 2.33 will be overall more flattened, reducing the synchrotron
frequency spread [24].

An example of them is shown in the waterfall plot in Figure 2.6, where the waterfall plot is formed by
longitudinal bunch profiles stacked on top of each other over time. This instability (which occurs at transition
crossing in the PS: when the sign of 7 changes) causes transient oscillations in the longitudinal bunch profile,
with micro-bunches being formed which could lead to beam loss [39]. The understanding of why this happens
extends beyond just considering frequency spread and also looking at how the particles are distributed in phase
space: the higher the energy spread of the particles and the lower the bunch length, the more resilience the
beam has against microwave instabilities [30]. More analysis on this will be given in Section 2.2.3 (but if the
reader wants more information on the topic, see the Vlasov equation in [30]).

920
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Figure 2.6: Microwave instabilities at transition crossing in the PS shown through a waterfall plot [39]

Multi-Harmonic System
The extrapolation to multiple RF systems starts at Equation 2.26 because here is where the accelerating
voltage V(¢) is present, which is the RF signal inputted into the cavities. This voltage is now not only made
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up of one harmonic, but incorporates multiple harmonics of the revolution frequency hwy:

n

V(g) =D Vi sin(he + @) (2.34)
h=1

Here & represents the phasing of each harmonic with respect to the reference phase, which in this represen-
tation is ®,.y = 0. From here on out, the subscript in V;¢ is dropped for convenience and sources of voltage
external to the RF system will be defined when appropriate. Now plugging this new accelerating voltage in
Equation 2.15 change in energy of the synchronous particle is now:

h

(AES)gain = q Y Viny sin(hs + ®ny), (235)
h=1

where ¢ is the synchronous phase angle that is now modified by the presence of the multiple-harmonic system,
and h,, is the highest harmonic used in the cavity (note that h, = hs in the double-harmonic operation in
the PSB). Additionally, the multi-harmonic synchronous phase ¢ can be related to the single-harmonic one
¢so such that they both provide the same acceleration rate for the synchronous particle (meaning the same
programmed acceleration rate, regardless of the presence of higher harmonics). For this purpose and for future

convenience, we present the voltage ratio rp = “%:
Ry
sin(gso + 1) = Y rsin(hds + Pn)), (2.36)
h=1

By following the same derivation as earlier, but now replacing V(¢) in Equation 2.26 with Equation 2.34, the
discretized tracking equations are now modified:

h"L
AE, 1 =AE,+e(V(g,) —V(¢s)) = AE, + ¢ Z V(h)(sin (hon, + <I>(h)) — sin (hos + ‘I)(h))
h=1 (2.37)
27h
¢n+1 = ¢n + MAE

ﬁzE n+1-

Now the optimisation variable for the double-harmonic system becomes clear: ®5, while the other parameter
which has a substantial effect on the evolution of particles in phase space is the voltage ratio ro. The importance
of both parameters will be made clearer when analysing the potential of the double-harmonic system and the
corresponding separatrix. To do so, we again integrate as indicated by Equation 2.32 to get the general
potential for multi-harmonic systems:

7 (R) hn
U(@) = 5[~ (cos(he + Bny) = cos(hé, + D))+ D V" sinlhes +B))(6 = ¢s)]
h=1 h=1

where now ®(™ is the relative phase between the fundamental (1st) and nth harmonic of the voltage (i.e.
®; = 0 because @,y = ®1). This is defined as such because in the PSB, the voltage harmonic’s phases are
defined relative to that of the fundamental harmonic.

Double-Harmonic Operation The potential for the double-harmonic U(¢) is shown in the middle plots of
Figure 2.7 and Figure 2.8 for ro = 0.3 and r, = 0.6, respectively, where the effect of the second harmonic can
be appreciated in the shape of the potential well by comparing with Figure 2.4. The higher the voltage ratio
ro, then the flatter the distribution becomes (up to a certain extent). Additionally, there exists a threshold for
the voltage ratio, specifically » > 0.5 (but this varies with the energy gained per turn AEy), after which an
additional minimum and maximum form within a single hy period, which is slightly visible in the RF potential
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for r = 0.6 in Figure 2.8 in comparison to the single minimum found in the potential energy of Figure 2.7.
The maximum is now located essentially in the centre of the potential well for the non-accelerating bucket
(¢s = 0), shown in blue.
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Figure 2.7: Accelerating voltage, potential energy, and separatrices for double-harmonic operation under different ¢ for
r = 0.3 and ®2 = 7 (red lines indicate h1 periods)

This additional minimum and maximum essentially mean that there is another stable and unstable fixed point
within an h; period. Thus, by using the same method as in the single-harmonic case, given the presence of
three unstable fixed points and 2 stable fixed points, there will be two separatrices. This can be appreciated
in the blue separatrices of Figure 2.8 for the » = 0.6 case, where the dashed line indicates this inner separatrix.
Now a particle on this iso-Hamiltonian contour, will follow this closed orbit forming a figure-eight in the
absence of external perturbations due to the addition of these fixed points.
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Figure 2.8: Accelerating voltage, potential energy, and separatrices for double-harmonic operation under different ¢, for
ro = 0.6 and ®2 = 7 (red lines indicate hq periods). The dashed blue line in the right plot (for ¢s = 0) indicates the formation
of an inner separatrix.

Moreover, if the voltage ratio is increased even further to » = 0.9, then the outer separatrix is even more
perturbed such that now it also has more pronounced lobes rather than being flat as shown in the right plot of
Figure 2.9. Additionally, it can be appreciated in Figure 2.7, 2.8, and 2.9 that in the presence of acceleration,
meaning AF; > 0 and ¢, # 0 there is a perturbation in the depth of the RF potential for one of the lobes,
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Figure 2.9: Accelerating voltage, potential energy, and separatrices for double-harmonic operation under different ¢ for
ro = 0.9 and ®3 = 7 (red lines indicate hi periods). The dashed separatrices indicate the formation of an inner separatrix.

which essentially means that one of the lobes in the inner separatrix is going to be larger than the other. This
is a characteristic of an asymmetric potential well.

In order to compensate for this, one must also change the phasing of the second harmonic (®5) to shift the
synchronous phase ¢, according to Equation 2.36 and make the minima have the same potential energy. This
is done such that the lobes are symmetric and have the same depth, as the depth of the well is also proportional
to how many particles will fall into this well and be at that position in the longitudinal axis and will determine
the shape of the longitudinal charge density A;. This will be shown graphically in Section 2.4.

It is also imperative to define the two most common operational modes for double-harmonic operation which
are defined by @5 in Equation 2.34: Bunch Shortening Mode (BSM) and Bunch Lengthening Mode (BLM).
Thus, by choosing the relative phase of the second harmonic (®,.y = ®1) to be &3 = 0 or =, the operation
mode becomes BLM or BSM, respectively. These modes are depicted in phase-space in Figure 2.10 where the
closed, constant Hamiltonian contours are shown as well.
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Figure 2.10: Separatrices for Bunch Lengthening Mode (left) Bunch Shortening Mode (right) with closed, constant
Hamiltonian contours for ro = 0.9
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Thus, as can be seen in Figure 2.10, particle distributions inside a separatrix in BSM will be compressed in the
time (or ¢) domain, while those in BLM will be elongated. Since what we are obtaining in the longitudinal
bunch profile is the amount of particles in discrete bins in time, the bunch profile \; will also be more peaked,
which we know will induce higher space-charge. Depending on the characteristics of the RF manipulation that
operators want to perform, entering either of these modes allows shaping the bunch.

Furthermore, this can be extrapolated to the more general scenario where the beam is accelerating, as shown
in the left plot of Figure 2.11. Again, without the correct phasing of ®5, the potential well and separatrix
are asymmetric, leading to an asymmetric charge density in the longitudinal axis and larger space-charge
effects (as will be discussed in Section 2.3). By properly phasing the second harmonic, the separatrix in the
right plot of Figure 2.11 can be achieved which represents the symmetric potential well. This implies that,
under matched bunch conditions, the same amount of particles will sit in each minima of the potential well.
By definition, a matched bunch is a bunch distribution which has the same density of particles along every
constant Hamiltonian closed orbit that its particles are on (explained graphically in Section 2.4).

In addition, in reality, the RF system operates in a non-ideal environment with effects, besides that of ac-
celeration, that shift the synchronous phase ¢s in a multi-harmonic system. These effects can include path
delays in the wires that send signals to the cavities, noise in the signals, and other physical phenomena that
change the required ®s to make the potential wells symmetric. This again causes a non-symmetric potential
well which inevitably leads to a non-symmetric longitudinal bunch profile, which causes issues with stability
in relation to impedance effects (see Section 2.3).
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Figure 2.11: Uncorrected and corrected accelerating beam separatrix

Triple-Harmonic Operation To gain insight into how triple-harmonic operation potential wells and sep-
aratrices form, the plots in Figure 2.12 were produced. In the left plot of Figure 2.12, the voltage waveform
now has a larger extent of ¢ values near 0 voltage due to the formation of an additional maxima and minima
because of the presence of hs. Through the definition in Equation 2.38, this means that there will be less
change in the potential well during these phases, and it is represented in the middle plot where the potential
is now almost flat for the range [—2,2] rad (compare with Figure 2.8 where the flat part is only achieved in
the range [—1, 1] rad). Furthermore, the appearance of an additional maxima in the potential well, but both
maxima with the same potential energy, implies that the inner separatrix now has a more complex shape with
3 loops, rather than 2, with now two synchronous phases ¢s; and ¢s2 because of the two inner maxima in the
potential well. Additionally, in the accelerating case (red) there are two inner separatrices, as the maxima in
the potential well have different heights now, causing a slightly more complex motion in phase space.

Note that in Figure 2.12, the phasing for the third harmonic is now ®3 = 0 rad, as in general (for a non-
accelerating bucket) the phases of additional harmonics must be ®,, = (n — 1)7 in order to be in BLM. This
is exemplified in the contour plots in Figure 2.13 where the cases of three different phasings are shown for the
exact same voltage ratio configuration (ro = 1.3,75 = 0.9) as this was seen to produce the flattest potential
well. Additionally, when phasing the system such that the bunch is shortened as much as possible, one is
creating contours which cover less extent in the ¢ axis in comparison to BSM in double-harmonic operation,
demonstrating the increased bunch shaping capabilities when adding an additional harmonic.
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Figure 2.12: Accelerating voltage, potential energy, and separatrices for double-harmonic operation under different
acceleration rates AEs for 7o = 1.3,73 = 0.9 and 3 = 7, P3 = 0 rad (red lines indicate hy periods). Different inner separatrices
are represented with different dashed line patterns.
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Figure 2.13: Separatrices for the case of no acceleration for different triple-harmonic configurations of with closed, constant
Hamiltonian contours

Now that all the theory, tools, operational modes and coordinate spaces for tracking in multi-harmonic op-
eration have been defined, it is important to now look at simulation results without impedance effects
to understand the motion and the optimization problem at hand better. Thus, a non-linear beam dynamics
tracking tool was developed for the purpose of demonstrating the motion of particles in phase-space [47].

2.2.3. Idealized Tracking

Equation 2.37 was used for the turn-by-turn tracking, while the separatrix was computed through the use of
the multi-harmonic extension of Equation 2.31 using Equation 2.38. For this simplified tracking discussion,
only the non-accelerating case of AE; = 0 is considered for the evolution of the particles. Extending this to
the accelerating case does not provide any more insight into phase-space tracking, besides the fact that the
separatrix and closed orbits will be deformed as shown in Figure 2.11 and likewise for triple-harmonic operation.
Again, this is compensated by proper phasing of ®5 and ®3. The code used for this tracking simulation can
be found here [47]. Tt is encouraged to use it to gain intuition on how particles move in phase-space under
multi-harmonic operation.
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Double-Harmonic Tracking

For this discussion, three different initial distributions are employed to show the effect of the second harmonic
on synchrotron motion. They are characterised based on a parameter called the emittance e, which is simply the
area occupied by the bunch in phase space (usually in units €V -s when transforming from phase ¢ to time ¢ with
the frequency of the fundamental harmonic wy,). Thus, distributions that are tracked are the low-emittance
distribution (Figure 2.14), high-emittance distribution (Figure 2.15), and the shifted distribution (Figure 2.16).
The latter is simply a distribution which is not centred around the synchronous particle coordinate (AE =
0,¢ = 0), but instead (AF = 0, ¢ = 1.5rad). The simulation is run for only 1000 turns, as simulating any more
would not yield additional insight into the dynamics of particles. Note that the distribution is projected on the
¢-axis and the histogram is plotted above showing the bunch profile (line density), A4, while the distribution
projected on the AFE-axis shows the energy spread. Optionally, this can be converted from phase to time
through the transformation ¢ = w%f to retrieve the bunch profile in time, which is a direct observable in the

accelerator.
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Figure 2.14: Low-emittance particle distribution evolution within separatrix for ¢s = 0 rad for ro = 0.9
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Figure 2.15: High-emittance ¢, particle distribution evolution within separatrix for ¢s = 0 rad for ro = 0.9

As can be seen in the final plots in Figure 2.14b and 2.15b, in both the small and large emittance cases, the
particles stabilize around the inner separatrix and they end up with roughly the same symmetric shape despite
having different initial conditions, albeit with different final emittances which is important for the automatised
tool to be developed (see Section 2.4). However, when the initial particle distribution is shifted, then this effect
is lost as witnessed in Figure 2.16, where some particles have been trapped inside one of the loops of the inner
separatrix, which inevitably leads to a skewed bunch profile. This can be corrected in practice by performing
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Figure 2.16: Shifted, particle distribution evolution within separatrix for ¢s = 0 rad for ro = 0.9

RF manipulations to shape the charge distribution by modifying the orbit of the particles. For example, by
driving V5 — 0, shifting the bucket quickly by changing ®; to move the particles to new contours, then letting
the distribution settle into its new Hamiltonian contours, and finally returning V5 back to its original value.
This is not needed in practice as particle distributions injected into an accelerator are matched, such that this
shift never occurs.

Moreover, note that due to the fact that all initial particle distributions are unmatched, a process called
filamentation occurs in all phase-space plots, where the bunch filaments due to the dependence of synchrotron
frequency with the Hamiltonian value of the particle. This is clearly visible in Figure 2.16 because of the shift
and in Figure 2.17 where the separatrix has not been plotted, but all particles are in the region where orbits are
bounded and have been tracked for 100 turns. The particles that are oscillating with different frequencies with
a non-trivial relationship between the synchrotron frequency and the deviation of the phase from the centre of
the bucket at (AE = 0,¢ = 0), where ¢4, is the deviation from this point. At the centre of the bucket, the
oscillation stops as this is an unstable fixed point (i.e. a maxima in the RF potential energy). This ratio of the
synchrotron frequency relative to the small-amplitude (single RF) synchrotron frequency, ws/wso, and ¢pmaq
has been computed numerically in Figure 2.18 for a double-harmonic system [24, 15]. The ratio shown for
multiple harmonic ratios (r, = ha/h; in this case) is the ratio between the small amplitude single-harmonic
synchrotron frequency, wsp, and the synchrotron frequency. It can be seen that ws/wsy now appears to be
amplitude-modulated due to the presence of the second harmonic, and the curve crosses the single RF curve
rp, — 1 times [24].

Particle trajectory after 100 turns

AF [arb. units]
(=]

¢ [rad]

Figure 2.17: The motion of 100 particles with varying initial phases phi but with AE = 0 in a double-harmonic system (BLM
mode)

Even more important to the operational beams is the synchrotron frequency spread mentioned previously that
can be obtained in either BSM or BLM. In BSM we see that a higher synchrotron frequency spread is obtained
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Figure 2.18: Synchrotron frequency ratio for a double-harmonic system in BSM and BLM for multiple r; where
r = 1/rp (non-accelerating) [24]

when the entire bucket is filled, which is good for increasing Landau damping and mitigating the microwave
instabilities that can occur at extraction energies in the PSB [2]. This will be discussed in the context of PSB
beam types in Chapter 3.

Triple-Harmonic Tracking
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Figure 2.19: Initial distributions for particle evolution under double (r2 = 0.9) and triple (r2 = 1.3,73 = 0.9) harmonic
systems for &3 = 7w, 3 = 0 rad

Now, in order to compare the double-harmonic to the triple-harmonic operation, it is also interesting to look
at the final distributions for the same initial distribution, but evolving under the double and triple-harmonic
system. The initial distributions for both are shown in Figure 2.19, whereas the final distributions after
evolving for 1000 turns is shown in Figure 2.20. The vertical axes on the initial and final bunch profile plots
have been set to the same value in order to be able to compare how Ay reduces. As can be distinguished in
Figure 2.20a and 2.20b, the bunch profile is shorter in the case of the triple-harmonic system as the particles
are now oscillating further from the centre of the bucket. This motivates the seek for a quick and efficient
solution to setting the parameters in a triple-harmonic system, as now the complexity of adding two more
parameters in comparison to a double-harmonic system, becomes higher and more cumbersome for machine
operators and RF experts.

Finally, to complete the discussion, the synchrotron frequency ratio was also numerically computed for the
triple-harmonic system in BLM in Figure 2.21a using the tracking code. This wy corresponds to the RF system
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Figure 2.20: Final distributions for particle evolution under double (r2 = 0.9) and triple (r2 = 1.3,r3 = 0.9) harmonic systems
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in Figure 2.20b, where due to the formation of more loops in the inner separatrix there being 2 stable fixed
points and 3 unstable fixed points, there should be 5 points where the synchrotron frequency goes to 0. This
is almost achieved in Figure 2.21a, but due to small numerical errors one of the points does not go completely
to 0 (it corresponds to the stable fixed point in the right loop of Figure 2.20b). Visibly, in triple-harmonic
operation, BLM is even more detrimental to the synchrotron frequency spread, so it should definitely not be
used at extraction as it could cause considerable beam instability and losses. However, if microwave instabilities
become an issue for high intensity beams such as the LHC Multi-bunch beam types, there is potential to make
the synchrotron frequency spread larger by entering BSM as shown in Figure 2.21b, which aids in increasing
the resilience of the bunch to this instability mechanism.
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Figure 2.21: Numerically approximated synchrotron frequency ratio for a triple-harmonic system in BLM (left) and BSM
(right) for (ro = 1.3,73 = 0.9) (non-accelerating)

In conclusion, the incorporation of multiple harmonics (with proper relative phasing) also helps reduce the
collective effects that can cause longitudinal instabilities at high beam intensities, I, defined as the number
of particles per bunch. The onset of these effects effectively reduce the number of particles which can be
packed into a bunch, so correct phasing allows for higher intensities. These collective effects will be discussed
below in more detail in relation to selecting the proper parameters for double and triple-harmonic operation
in Section 2.3.
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2.3. Collective Effects

In the previous section, the tracking simulation was conducted without considering impedance nor collective
effects. However, in reality, the beam interacts with its surroundings and itself, leading to electromagnetic fields
that influence the beam’s energy, stability, and dynamics. These interactions must be considered to better
represent the behaviour of the beam in an accelerator. These effects can cause beam instabilities and energy
loss, so accurate modelling is essential for understanding beam dynamics and developing the automated tool.
This section will introduce three primary types of longitudinal effects: space-charge, resistive-wall impedance,
and cavity impedance, which are modelled in the Beam Longitudinal Dynamics (BLonD) code to simulate
real-world beam behaviour.

2.3.1. Wakefields and Impedance

When a charged particle beam travels through an accelerator, it generates electromagnetic fields that interact
with the surrounding structures, such as the beam pipe, RF cavities, or any geometric discontinuities. These
electromagnetic fields, known as wakefields, are left behind by the passage of the charged particles and act
back on beam, influencing their motion. In the context of the problem, only longitudinal wakefields, which
affect the energy and phase of particles, will be presented [30].

The concept of impedance provides a way to analyze these wakefields in the frequency domain. Impedance
is defined as the Fourier Transform (FT) of the wakefield. This means that while wakefields describe the
interaction of the beam in the time domain, impedance provides a complementary description in the frequency
domain. The longitudinal impedance Z(k) is related to the longitudinal wake function W) (s) through the
following relationship:

ZH(w) = ‘/_OO VVH(t)e_j“’tdt, WH(t) = % /OO Z”(w)ethdw (2.38)

where W) (t) (units are [V//C])represents the wakefield induced by a unit charge at a time ¢ behind the leading
particle, and w is the frequency. These relationships indicate that the frequency-dependent impedance char-
acterizes how the beam’s induced electromagnetic fields (wakefields) impact the beam itself, and provide ease
of computation in comparison to a convolution in the time domain. For a charged particle passing through a
cavity which can be modelled through the resonator (RLC circuit) model, the longitudinal wake function is
[30]:

1
T or

wrlfo

W (t) /Z(w)ej‘”tdw = 4nk, |cosit — sindt | et/ ToO(t) (2.39)

Q

where O(t) is the step function at ¢ = 0 imposing causality, Ty = i— is the unloaded filling time (time for the

field to decay to é, and k, = ﬂfﬂ—%“ is the loss factor of the impedance at frequency w,.. This wakefield interacts

with the voltage being generated by the cavity itself, causing dissipative power loss (through the real part of
the impedance) and phase shifts which perturb the shape of the potential well (through the imaginary part of
the impedance), but do not cause average power loss.

2.3.2. Space-Charge

Space-charge impedance arises from the Coulomb interactions between particles within the beam itself. At
low particle velocities, the repulsive forces due to space-charge can significantly affect the longitudinal and
transverse dynamics of the beam, particularly in low-energy accelerators such as the PSB. Given that space-
charge is repulsive, it causes particles to obtain a larger off-momentum magnitude |§|, which causes the
particles’ revolution frequency to increase or decrease depending on whether the particles are above or below
the transition gamma ~r. For the PSB, the particles are always below transition, meaning that a higher |J|
will cause a defocusing effect, spreading out the bunch, leading to bunch lengthening, and potentially causing
particle loss. As mentioned, this is more important in low-energy accelerators, as in the ultra-relativistic limit
the electric fields are essentially perpendicular to the direction of motion, so its longitudinal effect is negligible
[30, 50, 24].

Induced Voltage

The longitudinal space-charge can be separated into two components: direct and indirect space-charge. The
direct space-charge is the effect of the Coulomb repulsion between the particles, while the indirect space-charge
is the interaction of the particles via the environment around it, i.e. the beam pipe. The derivation of the
impedance of space-charge involves assuming a perturbation of line density dA; and calculating the electric
field generated by the charge perturbation and then using Faraday’s law together with the assumption of an
inductive beam pipe (see full derivation in [30]). As a result, space-charge impedance can be modelled as a
capacitive (i.e. imaginary) impedance at a given harmonic n expressed as [30, 50]:
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|Zsc| Zog ZO b
- - 1+2In2 ), 2.40
n 26373 26573 * na ( )

where Zj is the free-space impedance (377(Q), b and a are the radius of the beam pipe and the longitudinal
beam cross-section, respectively, and g is a geometrical form factor. Furthermore, in Equation 2.40 we retrieve
the proportionality mentioned in Chapter 1: the detrimental effect of space-charge scales with B%Q and higher

values of (s and ~, (being those of the synchronous particle) will reduce the magnitude of the impedance.
However, this equation solely depends on the synchronous momentum, the accelerator geometry and the
transverse beam size. To relate it to the longitudinal dynamics, one must consider the induced voltage due to
this space-charge effect, which can be defined as follows [50]:

_ € ‘Zscl i

Vielt) = 0 (2.41)

wg n dt

Thus, a flatter longitudinal charge density (low values of %)\t(t)) over the bucket leads to a lower space-
charge induced voltage. This is clearly desired, demonstrating why the phasing of the second harmonic is
so important to reduce V. when considering the discussion had on Figure 2.11. This impedance scales with
ﬁ%()‘t)v meaning that keeping the gradient of the profile low (reduce any abrupt changes) will reduce the
space-charge impedance. However, aside from this induced voltage, which clearly will affect the voltages that
are set in the cavities and cause perturbations, a more important effect of space-charge is seen in the transverse
plane.

Transverse Tune Shift

Here we must consider the coupled system of a 3D charge distribution in order to see the most critical effect
for the PSB (no detailed derivations will be shown as it escapes the scope of the work). In the transverse
plane, there is also oscillating motion in the transverse phase space, but now, much like in optical systems, the
state is defined by the deviation of the particle from the ideal orbit Z (or Z) and the angle 2’ (or z’) at which

the velocity component v, (or v,) is with respect to the on-orbit direction §: cos(z’) = %ﬁ and likewise for 2’

(see Figure 2.3). For reference, 2’ and z’ are of order mrad.

Thus, like in synchrotron motion (now called betatron motion for the transverse plane), the particles will have
their own betatron frequency wg_ ,. and tune Qz/-, and will also encounter resonances, but that are more
inherent to the magnets and their inevitable imperfections (see p295-302 of [19] for more information). These
resonances occur at combinations of nQ, + m@Q, = N where n, m, and N are integers, and the resonance is
of (n +m)th order. So, by controlling the strength (and spacings) of the individual magnets that make up

the accelerator (see Figure 2.2), one essentially determines the tunes @Q, . such that they are far away from
resonances.

The issue is that space-charge causes a tune shift AQ,,. that scales as follows [3, 30, 19, 9, 10]:

AQ,). (2.42)

A
p?
This causes a spread of the tune that makes the tunes cross resonance lines. This is graphically depicted in the
so-called necktie diagram for the PSB at injection in Figure 2.22 (Q. = @) in the graph). Here the tune spread
is shown for single (red), double (green) and triple (blue) harmonic operation for the same intensity, where
the tune spread is much larger when the peak line density is larger (as it is for the single harmonic bunch). In
addition, several resonances are crossed, and this can be partially mitigated by selecting higher working points
for the tunes Q. > 4.4, but it still requires mitigation through other tecnhiques like phase-space painting at
injection[6], or using triple-harmonic operation.

2.3.3. Resistive-Wall Impedance

Resistive wall impedance is caused by the interaction between the beam and the conducting walls of the
accelerator’s vacuum chamber. As the beam passes through the vacuum chamber, it induces moving image
charges in the chamber walls, which in turn leads to the generation of wakefields that oppose the beam’s
motion. Additionally, due to the finite conductivity of the wall material, these currents experience resistance.
This results in energy loss for the beam and can, again, induce beam instabilities.

The longitudinal resistive wall impedance can be expressed as [30]:
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Figure 2.22: Analytically estimated necktie diagram for the PSB injection (left) for the operational high brightness beams for
the single (red), double (green) and triple (blue) case. Resonance lines up to 4th order plotted, normal in solid and skew in
dashed, systematic in red and non-systematic in blue. The longitudinal bunch profile (right) for single, double and
triple-harmonic operation is also shown for the same intensity. [10]

Z w 1/2
Zj(w)=QQ+y Sgn(w))%bﬂ <|w0|) Ssicin 0 (2.43)

Here dgkin 0 is the penetration depth of the electric field in the material of the beam pipe. Resistive wall
impedance has a stronger effect at lower frequencies, making it particularly important for machines where the
beam current spectrum has a high component at these low frequencies. This means it is specially important
for beams with long bunches or narrow vacuum pipes [19].

2.3.4. Resonator Impedance

Resonator impedance results from the interaction between the beam and resonant structures, such as the
RF cavities. The RF cavities are designed to operate at specific resonant frequencies to accelerate the beam
efficiently. However, the wakefields of the particles within the beam can also excite higher-order modes (HOMs)
in the cavity, leading to unwanted electromagnetic fields that affect the beam.

Resonant impedance is typically categorized into two types: narrow-band impedance and broad-band impedance.
However, they can be represented by an equivalent RLC circuit using the quality factor @) and the shunt
impedance Ry, to rewrite Equation 2.5 to:

Rsh

Z(w) = 14+ 5Q w/wy — wr/w)’

(2.44)

where w, is the resonance frequency. Narrow-band impedance occurs typically due to parasitic modes and

cavity-like structures in the accelerator which resonate at certain small frequency bands. Broad-band impedance,
on the other hand, affects a wide range of frequencies and arises from a combination of geometric discontinu-
ities in the accelerator, such as collimators, beam position monitors, or other non-resonant structures (usually

modelled with @ = 1). This implies that for the PSB, given the broad-band impedance of the Finemet cavities

and Equation 2.39, that wakefields die off quite quickly. Regardless, this model is not entirely accurate for the

Finemet cavities, but it does give an intuitive feel for the wakefield decay.

To get to the final induced potential that the beam sees, one must consider the induced voltage Vinq, whose
computation involves a convolution in time due to the beam passing and affecting itself in the future with its
own wakefields. Thus, the computation can be simplified in the frequency domain (convolution in the time
domain is a multiplication in the frequency domain) by considering the beam current spectrum S(w) which is
the FT of the longitudinal charge density A:(¢). Thus, the induced voltage is [50]:

Vind (W) = —Z)|(w)S(w) (2.45)

This would then have to undergo an Inverse Fourier Transform (IFT) to be computed back to the time domain
and obtain the effect of wakefields on the voltage inside the resonator. The effect of the beam affecting RF
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cavities and the voltage produced is known as beam loading. As a result, the phase of the voltage needs to be
adjusted to compensate and fix the potential well, and this effect varies with the intensity of the bunch given
that the wakefields are being generated by individual particles. In order to address this effect, the phase of
both the 1st and 2nd harmonic can be slightly offset depending on the induced voltage and its phase. This
makes it such that the summation of the voltage coming from the amplifier V3t and the induced voltage Ving

leads to the desired voltage. This proves why it is relevant to seek an automatized solution, as ®5 needs to be
adjusted every time the intensity is changed, as the required phasing for BLM (or whatever mode is desired)
changes.

However, as mentioned, the impedance model in Equation 2.44 is not fit for the PSB’s Finemet cavities, and
while there are ongoing works to characterize the impedance with an accurate physical model, the impedance
must be defined through measurements and integrated into tracking codes. Regardless, it is important to see
how the impedance relates to the voltage that is induced in the cavities by the beam. This becomes even
more important when realizing that the total impedance can be treated as a vector sum of all the
impedances in the complex plane and then transformed into an induced voltage through Equation 2.45.

2.4. Longitudinal Beam Profiles in the PSB

Given how in practice, one cannot easily obtain the separatrix and perturbed potential wells that the particle
beam sees in the machine without considerable computational effort, the degree to which parameters are
correctly chosen for multi-harmonic operation must be identified solely through the longitudinal bunch profiles.
Consequently, it becomes important to identify the variety and statistical properties of the profiles which can
be obtained under double and triple-harmonic operation in the PSB that the automatic tool will be looking
at. This directly relates to Goal P.G.1, P.G.2, P.G.7 and P.G.8 by analysing the profiles that are produced by
the entire span of operational configurations.

Double-Harmonic Bunch Profiles

As was already shown previously, there are several types of potential wells that can be obtained under double-
harmonic operation with ro and AFEs;. However, what was not explored is how varying the combination of
(Viotat = Y. Vi, ro for a given energy gain AFE; changes the correct BLM ®; phasing. Indeed, while keeping
either one of (Viotar, 2 and varying the other, the correct phasing changes, even in the absence of impedances
of any type. This effect is shown in Figure 2.23 where the the correct phases have been determined in order to
flatten the potential well as much as possible or, in the presence of two minimas in the potential well, making
the minimas equal to generate a symmetric inner and outer separatrix.

First, observe the plot on the left where Viotq; = 3.2,4.8,6.4 for the blue, red and yellow curves, respectively,
under 7y = 0.6. Thus, while keeping a constant ry, and increasing the total voltage, the required ®- for BLM
increases (or gets closer to its non-accelerating BLM value ®5 = 7). This is because with a higher total voltage,
for a given energy gain AFEj, the potential U(¢) does not get deformed as much as for a lower total voltage,
so the required change in phasing is closer to its non-accelerating BLM value.

Now, for the case of varying ro = 0.3,0.6,0.9 for the same V;,1q; = 5 we see that the necessary phasing also
changes. The potential wells are stacked on top of each other with lower r, having a deeper potential well.
This is because V; is lower for higher r, with a fixed total voltage, and because V5 is operated in counter-phase
it is acting against V; which is voltage that accelerates the particles and, thus, increases the bucket area. This
is because in BLM V5 is directed towards shaping the bunch and the potential well, while V; is providing the
main component of the acceleration. Then, because of the lower V7, higher 5 values require a larger shift from
the non-accelerating BLM ®5 = 7 because of this effect. It is also apparent when considering the separatrices,
as we see that the higher r, values have a smaller bucket area because of the smaller V. Finally, this is also
indicated by the larger ¢, for increasing ry because when looking at Equation 2.35 with ®; = 0, for the same
AF,, a lower Vi will require a larger ¢,.

So, this goes to show that the correct ®5 phasing for BLM depends on the combination of these three parame-
ters: Viotai, 72, AF,. Then, when one starts to consider the impedance effects, because of the wakefields being
proportional to the amount of charge in the bunch, then the correct phasing will also depend on the intensity
of the bunch I (and of course the total impedance Z(w) of the accelerator). Thus, we arrive at the important

conclusion that:
Oo(BLM) = f(Viotal, 72, AEs, I), for a given accelerator (2.46)

As for the overall shape of the bunch profile, we have already seen how the emittance € can affect the shape of
the bunch by comparing Figure 2.14 and 2.15. To really drive this concept home and show how this happens
when having a matched distribution we turn to Figure 2.24 and 2.25 where the formation of a matched
distribution is shown for a incorrect and correct BLM &, phasing, respectively. Here, the concept of filling
factor, FF, is introduced, which refers to the percentage of the outer separatrix that is filled with particles,
such that the emittance of a certain distribution of particles can be defined as €, = F'F' - A, where Ay is the
bucket area. Thus, for a matched distribution €, increases from the lowest point of the potential U(¢) up to a
certain height in the potential well (like the water analogy used previously), but it could be that the bulk of
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Figure 2.23: Effect of varying Vioeqr (left) and ra (right) on correct BLM &2 phasing, exemplified through the potential wells
and separatrices (red dashed lines indicate a single hy period

particles are not completely connected in the ¢ axis. This would occur when the filling factor is low enough
and there are two minima such that only the region inside either loop of the inner separatrix is filled. The
result of different filling factors on the bunch profile is shown in the right plot of either figure.

The important point here is that the shape of the bunch profile A; will be determined also by the filling factor
F'F, so the another important relation comes to light:

At = f(Viotat, 72, P2, AE, I, FF'), for a given accelerator (2.47)

where “for a given accelerator” implies for a certain Z(w). Finally, this means that we can obtain a large
variety of profiles in the PSB, and to exemplify this, Figure 2.26 shows the bunch profiles for a selection of
parameter combinations. Here the bunch profile is normalized by the intensity I, which is the same for all
plots. Thus, any automatized tool would need to be able to cater to all these shapes, and since the problem is
completely geometric in nature, it raises the question if this could be solved through traditional optimization
methods.

Traditional optimisation methods for continuous variables (as is the case for ®3) can be broken up into
linear, such as the Simplex method and its variants or interior point search, and non-linear methods, such as
non-linear programming (NLP) like sequential quadratic programming (SQP) [27]. However, all traditional
methods depend on an objective value: a figure of merit defining how well phased an RF system is just
by looking at the profiles. One could imagine that any of the metrics depicted in Figure 2.27 would aid in
this process since the main qualities we look for in profiles are: symmetry, flatness, and a spread out charge
distribution.

To that end, we define the metrics:

« Kullback—Leibler (KL) Divergence — defines the dissimilarity between the measured bunch profile
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Figure 2.24: Effect of varying filling factor F'F' in the case of an asymmetric potential and separatrix (incorrect BLM @4
phasing)

A¢(t) and a uniform distribution of particles Ayean (as this would be the most optimal configuration to
minimise space-charge), where both are normalised by the intensity (as the metric is defined for proba-
bility distributions). Minimising it should drive the profile toward the most spread out and lengthened

solution: Drcc O [l Avet) = / Ae(o < ref( ))/ /II> “w

e Symmetry — defines mirror balance of the bunch about the centre of charge ¢g. The symmetry of the
profile reflects the symmetry of the potential well, so this value should be minimised:

5:%/0 A(Go +7) — Ao — 7)| dr

o FWHM — defines the bunch length at half of its peak. This value is to be maximized in order to be in
BLM:

FWHM = g — 61, A(61) = Mld) = 2™, 61 < 0

e Flatness — defines how uniform the top 80% plateau of the bunch profile is, but also favours profiles
whose flatness extends for a larger domain. Higher flatness again indicates the flatness of the potential
well, so this value should be minimised:

At (¢)¢€W - mean()\t((ﬁ%ew)

F= 2 — @1 ’

W ={¢1 <<}, A(h1) = Ae(P2) = 0.8 - A"

e Bunching Factor — defines ratio between the mean and the maximum line density in the bunch. It
should be maximized in order to have the bunch in BLM [15]:

_ mean(A(9))

)\tmax

Now one could make a combination of these metrics in order to find an objective (or loss) function £ that
correctly minimises its value at the correct BLM phasing ®5(BLM). In the pursuit of achieving this, the
following generalised objective function was defined:

L(w)=w - [Dky,S,—FWHM,F,1/b)" (2.48)
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Figure 2.25: Effect of varying filling factor F'F' in the case of an symmetric potential and separatrix (correct BLM ®2 phasing)

with w a (strictly positive) 6D weight vector. Now, in order to find the optimal weights that would generate
such a loss function, the correct ®, phases for BLM for a variety of different parameters were defined through
manual phasing (much like how it is currently done in the PSB). Using this dataset, the true deviations of each

profile to the optimal phase were defined and normalised by 7, yielding the ”"ground truth”, A®5? ! Finally,
the weights were optimised through Bayesian optimisation to minimise the difference between the predicted
optimum of the loss function and that of the ground truth (A; = |ming,(£(w)) — ming, (A®Y")]), and the
correct prediction of the sign of the gradient at all points such that £(w) could leverage gradient information

when close to the optimum (Ay = |sign(df%2£(w)) - sign(ﬁA@Sm)D. Thus, the loss used to optimise the

weights was A = Ay + As. The full explanation of this process and Bayesian optimisers in general is given in
Appendix A.

The results of the attempt to find a general objective function can be derived from Figure 2.28 and 2.29. In the
left plot of Figure 2.28, the ground truth A®S"" is plotted together with the optimised loss function £(w o),
while on the right the optimal profile and an example of the incorrect profile is shown. As can be seen, the loss
function correctly identifies the location of ®3(BLM), and the gradient behaves correctly in the vicinity of the
optimum, but breaks down later on due to profiles in BSM being very symmetric and somehow having a lower
loss than profiles such as those in the upper-middle plot of Figure 2.26. However, as long as the traditional
optimizer used has sufficient exploration behaviour, it should find the minimum in this case.

However, in Figure 2.29, the loss function fails in identifying the minimum and also producing the correct
gradients. This occurs at low filling factors because, as shown in Figure 2.25 and 2.24, the matched profiles
give a bad representation of the potential well. This can also be seen in essentially all the incorrectly phased
profiles at low filling factors of Figure 2.26, they all look almost identical and also they can be confused with a
well phased profile at low voltage ratios (as seen in the lower-left plot). As a result, this justifies the pursuit
of Machine Learning (ML) based methods that can identify more features than those possible
through simple metrics. Finally, knowing this, analysing the dependency shown in Figure 2.23 becomes
quite important when generating the dataset for these ML methods, as there will need to be a grid scan of
parameters in order to generate sufficiently diverse situations such that the neural network can generalize to
all operational conditions.

Triple-Harmonic Bunch Profiles

In the case of triple-harmonic operation, there are many different shapes of profiles that can be obtained as
now the RF system has more versatility. Essentially, now the bunch shape \; adds dimensions to Equation 2.47
and has the following dependency:

At = f(Viotar, T2, 73, P2, P35, AE,, I, FF), for a given accelerator (2.49)

Thus, it becomes impractical to define all the types of profiles that can be obtained, especially since in this
case, there is one singular goal: minimize space-charge by reducing A; and %)\t in equations Equation 2.41
and 2.42. Additionally, since operationally space-charge only becomes an issue when the amount of particles
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Figure 2.27: Different profile metrics to solving the double-harmonic problem through traditional optimization approaches

is considerable, there is no need to worry about the cases of low filling factors that hinder the definition of an
objective value. Consequently, multiple test can be performed in simulation with the aforementioned metrics
and a robust black-box optimizer to determine if the metric is fit for optimizing the parameters in a 5D setting,
without needing to map out the objective value manifold in 5D. Much like the previous section, a Bayesian
Optimizer is fit for the task (now using the Optuna framework defined in Section 4.8 and the procedure outlined
in Appendix A).

Given the fact that with triple-harmonic operation there is the possibility to obtain bunches which are not
simply connected in the ¢ axis (i.e. we obtain concentrations of charge distribution as indicated by the
separatrix on the right plot of Figure 2.13), the FWHM metric is not used as is caused substantial issues.
Meanwhile, for the same reason, the flatness metric was also yielding incorrect results and the flatness is
better represented by the KL divergence metric anyway. Thus, the three metrics were used across a range of
acceleration rates represented by the B in the PSB, with the least complicated case to optimize being B = 0
T/s as there are multiple solutions of V1, V3, V3 with ®3 = 7, ® = 0 rad for which a flat bunch is achieved under
matched conditions. As such, this case is shown in Figure 2.30, where KL-divergence is the metric which best
represents a flat distribution. Additionally, to prove that this metric can be used at other acceleration rates,
Figure 2.31 shows the optimization results for moderate (1.18 T/s) and high (3.7 T/s) in Figure 2.31a and
2.31Db, respectively. Nevertheless, the solution identified after 5000 trials is not optimal, which is suspected
to improve if more trials are used. Indeed, running the optimizer several times yields flatter profiles in some
cases, while underperforming in others, showing how high B require more fine tuning of the 5D in comparison
to lower acceleration rates.
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Figure 2.30: Optimal profiles for a non-accelerating bucket (AEs = 0) after 5000 trials for three separate metrics as the
objective function to minimise: KL divergence (blue), symmetry (orange) and bunching factor (green)

Regardless, this goes to show that triple-harmonic optimization could be achieved using an unsupervised
dataset in the case of offline learning, or to generate the data in simulation as parameters are explored in an
online learning scenario. This will be important when considering the ML. methods used to optimize the 5D
parameter space for space-charge mitigation.

2.5. Simulation

Now that all the theory and concepts behind the formation of bunch profiles have been outlined, it is time to
consider how all the data will be generated in simulation for the optimization tool. Considering that exploring
parameters in the machine does not cater to safety requirements in operations due to the potential of irradiating
the beam pipe and the electronics with lost particles, the simulation needs to be as faithful as possible to the
physical phenomena that occur in the PSB. Thus, this section caters to how the Beam Longitudinal Dynamics
(BLonD) code is set up and its fidelity to the PSB processes.

2.5.1. BLonD Code Components

BLonD is a particle tracking simulator similar to the idealised tracking code that was shown in Section 2.2.3,
but highly optimised and with many built in functionalities regarding impedances and feedback loops present
in the accelerators [58]. Nevertheless, the feedbacks are not considered, and solely the impedances are modelled
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Figure 2.31: Bayesian Optimization solutions after 5000 trials for non-zero acceleration rates (AFEs # 0) using KL-divergence
as the objective function

in the present work. Furthermore, the parameters for the PSB which are used in the code are summarised
in Table 2.1 with their respective descriptions, and the main objects that are used in the simulation are
shown and described in Table 2.2. The objects are defined in a sequential manner as how they appear in the
code, for example the Ring object needs to be defined before the RFStation object, as the latter uses the
revolution frequency derived from the momentum (defined by the magnetic field and the bend radius through
Equation 2.8) to determine the frequency of the harmonics. The RingAndRFTracker serves as the central
component of the BLonD simulation framework. It integrates the models of the beam, RF system parameters,
and induced voltages, thereby providing an object that can track the effects of the modelled system on the
beam on a turn by turn basis. Nevertheless, full documentation with examples and a guide can be found in
the GitLab repository of the code [4].

Table 2.1: Key parameters for PSB modeling in BLonD

Parameter Value(s) Unit Description

Radius R 25.0 m Mean machine radius

Bend radius p 8.239 m Bending radius of the dipole magnets
Transition 4.4 - Transition Lorentz factor v

Number of particles N, 0.9 x 1013 particles Highest achieved operational intensity
Number of macroparticles N,, 1x 108 macroparticles Macro-particles used in tracking
Harmonic numbers h,, [1, 2] or [1, 2, 3] - RF harmonic numbers

Number of RF systems 2o0r3 - Number of active RF systems

The aspect of the code that is important for its fidelity to the data acquired in the accelerator is how the
cumulative impedance is modelled of the space-charge, Finemet, and any broadband resonator components
such as discontinuities in the accelerator. The total impedance is as follows [50, 40]:

Z(w)total = Zsc + ZFinemet(W) + Zdisc (250)
—376.730313462
= 5—’72 + Zrinemet(w) + 34.6669349520904 - w[GHz] (2.51)
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Table 2.2: Overview of Key Objects in BLonD Implementation [58]

Object Purpose Key Defining Parameters

Represents the accelerator ring, including its
geometry and beam dynamics properties.
The particle type is chosen and the
momentum program is set.

circumference, bend_radius,
alpha_O, magnetic_field,
Particle

Ring

Models the RF cavities, and their effects on

Ri h i 1t
RFStation the beam. Configures both voltages and thg, harmonics, voltages,

. h
phases over the cycle for all harmonics. phases
Beam Represents the particles, storing their number_of _particles, Ring,
longitudinal coordinates and energies. intensity
Profile Computes the longitudinal charge density of = Beam, bin_width,
the beam for each time step. number_of_bins
. I tTable for Fi t and
Represents the induced voltages from beam AP ab @ of TINCIEt an
. . . . Resistive-Wall Impedance,
interactions with structures such as Finemet .
TotalInducedVoltage " . . InductiveImpedance for
cavities and resistive walls. Includes inputs
. Space-Charge Impedance and
for impedance models. . e .
discontinuities in the beam pipe
Integrates all other objects to simulate the
luti f the b ti lyi
the RF fields and tracking the response of S FE-SEaE10,
RingAndRFTracker & p total_induced_voltage,

the beam to external voltages. It is the core
object that manages the dynamic interaction
between the beam and the RF systems.
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Figure 2.32: Real and imaginary impedance of a single Finemet cell, including some of the relevant ranges of interaction with
the beam hi, ho and hi2 [40}

where Zpinemet 1S given by an InputTable which defines the real and imaginary components at a range of
frequencies. This impedance was calculated through single stretched wire measurements in 2024 and is shown
for one single cell in Figure 2.32 [40]. Given that this is the impedance for one cell, and there are 4 cells per
cavity, 3 cavities per straight section of the PSB and 3 straight sections in a ring, this impedance needs to be
multiplied by 4 % 3 x 3 = 36.

However, this Finemet impedance does not consider the action of the servoloops, which are feedback loops that
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compare the voltage in the cavity to the desired value, and act to reduce the error through the LLRF (Low-
Level RF) system. These servoloops create notches in the real and imaginary impedance shown in Figure 2.32
at the location of the harmonics from hy to hig [12]. Also, the notches are dynamic, as the revolution frequency
varies significantly over the cycle as the particles are moving faster and the ring circumference is constant. This
is shown in the ranges of hi,hs and his in Figure 2.32. It was found that its effect on the overall bunch profiles
can be approximated by dividing the overall real and imaginary impedance by 50. As such, Zpinemet(w) is
equal to the curves shown in Figure 2.32 but multiplied by a factor of % = 0.72. On a final note, it is
important to note that the space-charge and Finemet impedances Zs. and Zg;nemer dominate the impedance
contribution, while discontinuities account for a very small portion of the impedance.

2.5.2. Caveat: Bunch Profile Measurement

BCT secondary winding

sensing resistor

magnetic core

Figure 2.33: Schematic of the Wall Current Monitor (WCM) used in the LHC [28]

In the PSB, Wall Current Monitors (WCMs) are employed to detect the longitudinal beam profile. The issue
is that a notable difference is observed between the measured longitudinal bunch profiles and those outputted
in simulation. This discrepancy arises from how the beam is detected and the induced wakefields that are
created by the bunches.
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Figure 2.34: Induced signal in the PSB’s WCM after the bunch detection due to wakefields of the passing bunch

A WCM is installed around the beam pipe of the PSB and consists of conductive electrodes, placed in a
segmented cylindrical arrangement as shown in the schematic in Figure 2.33. Note that Figure 2.33 is the
WCM in LHC, not the PSB, but it helps to visualize the phenomena that occur with detection in the PSB. As
the beam travels through the pipe, it induces image currents on the inner surface of the chamber due to the
movement of charges as explained in Section 2.3.3. These image currents are proportional to the instantaneous
beam current and generate a corresponding voltage signal across the WCM electrodes. The WCM detects this
voltage, converting it into a time-resolved electrical signal that represents the bunch’s longitudinal profile [28].
Unlike some other monitors, the WCM is sensitive to the complete frequency spectrum of the bunch, including
fast, short-time structure. Its high bandwidth makes it especially suitable for measuring rapid changes in
beam current, such as the passage of bunched beams.

Simulated profiles represent only the direct bunch charge distribution, and the effect of the induced wakefields
on that charge distribution, assuming an idealized detection that does not account for secondary electromag-
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netic effects. In contrast, the real measurements are influenced by the delayed induced voltages generated by
the wakefields of the charges in the bunch. The principal manifestation is a baseline distortion or ”droop”
in the measured signal as shown in Figure 2.34. This droop shifts the base level of the profile measurement
away from its flat value, and its temporal evolution does not match the simulated, undistorted profile com-
ing from BLonD. The amplitude and time dependence of this effect are dictated by the chamber geometry,
material properties (e.g., skin depth and resistivity), and the frequency spectrum of the bunch [13]. As a
result, this phenomenon needs to be considered when generating the simulated profiles and will be discussed
in Section 4.1.
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Requirements Analysis & Definition

This chapter provides a comprehensive requirements analysis for the development of an automated tool for
longitudinal bunch profile optimisation in the CERN PSB. As derived from Chapter 2, the tool addresses
two primary optimisation challenges: second-harmonic phase optimisation in double-harmonic operation and
five-dimensional (5D) triple-harmonic optimisation for Vi, Va, V3, @5, and ®3. These requirements are derived
from the project goals outlined in Section 1.5 and the operational constraints of the PSB beam dynamics
environment.

The requirements follow established Product Requirements Document (PRD) guidelines and are formulated to
be SMART (Specific, Measurable, Achievable, Relevant, and Time-bound). This systematic approach ensures
that the developed tool will meet operational demands while maintaining the safety and reliability standards
required for particle accelerator operations.

3.1. Requirements Analysis
3.1.1. Stakeholder Analysis

The primary stakeholders for this automated optimisation tool include:

e PSB Operations Team: Requires reliable, fast, and accurate optimisation to maintain operational
efficiency across diverse beam types, while also needing fail-safe mechanisms to prevent beam loss and
equipment damage.

e Beam Physics Experts: Need a tool that preserves the physical understanding of beam dynamics
while automating routine optimisation tasks.

e Experimental Users: Depend on consistent, high-quality beam delivery for physics experiments
(ISOLDE, nTOF, AD, LHC injection).

¢ Current and Future Accelerator Projects: Benefit from generalized solutions applicable beyond
the PSB.

e Control Systems Team: Benefit from using existing controlling software for the tool to integrate easily
with the machine.

All of these stakeholders have to be catered to by the operational tool. As a result, they must be considered
by the requirements that are to be fulfilled by the optimisation tool.

Parameter Control in CERN’s Accelerators

The last item on the list is quite important and has not been discussed in Chapter 2. The status quo of RF
system parameter control, and also the control of any system in the accelerator, is to modify device parameters
through a variety of means, where a device refers to a specific setting of the accelerator and the sub-settings
are referred to as fields. The most common means is the Java front-end, available through Graphical User
Interfaces (GUIs) on computers connected to the CERN Technical Network. It allows manual modification of
the voltage and phase time-series. Parameters can also be set through the Java API (Application Programming
Interface), or Java API for Parameter Control (JAPC); with the mass adoption of Python, a Python interface
was developed on top of the Java APL: PyJAPC [17]. To decouple from the Java API and provide a data
model specifying the type of data a device field expects, the Control Systems Team at CERN developed Python
Device Access (PyDA) [18]. This is the tool used to set parameters through the Python API and allows the
optimisation tool to integrate easily with the control systems, while also allowing for modification of settings
should anything change in the future.

3.1.2. Operational Beam Type Requirements

The automated harmonic optimisation system must accommodate the PSB’s diverse operational range, which
spans three orders of magnitude in intensity (from O(101%) to O(10'3) particles per bunch) and longitudinal
emittances e ranging from 0.3 to 3 eVs. Each beam type presents unique optimisation challenges and constraints
that directly impact system requirements [2].
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LHC Multi-Bunch Beams (BCMS and LHC25)

Operational Parameters:

« Intensity: around 3.2 x 10'2 protons per bunch.
o Extraction Energy: 2 GeV.
o Longitudinal Emittance at Extraction: 3.0 eVs (highest among operational beams)

o Primary Objective: Brightness preservation for High Luminosity (HL) LHC operations.

Optimisation Requirements: These beams represent the most demanding brightness requirements, where
transverse emittance blow-up directly impacts LHC beam brightness, as brightness is inversely proportional
to the transverse cross-section. As a result, space-charge mitigation is critical during the early cycle phase
(275-400 ms), requiring double- (or ideally triple-) harmonic Bunch Lengthening Mode (BLM) operation. The
system must maintain voltage ratios and relative phases that minimise peak longitudinal charge density while
preserving the large longitudinal emittance required at extraction.

Technical Constraints: The optimisation system must handle space-charge mitigation (early cycle) and
transition to the controlled longitudinal emittance blow-up (mid-cycle). Since the tool is to set RF system
parameters consistently to achieve BLM, it will not directly cater to the emittance blow-up which is primarily
done using hqg.

Neutron Time-of-Flight (nTOF) Beams

Operational Parameters:

« Intensity: 8.5 x 10'2 protons per bunch
o Extraction Energy: 2.0 GeV
e Longitudinal Emittance: 1.7 eVs

o Temporal Requirements: Ultra-short pulses from the PS (7 ns RMS width at target).

Optimisation Requirements: nTOF beams demand a similar optimisation strategy to LHC multi-bunch
beams, but have more than double the intensity, so microwave instabilities become more of an issue. Initial
BLM operation mitigates space-charge effects during acceleration, followed by extraction with a very low
voltage ratio ro to maximise synchrotron frequency spread and preserve stability.

ISOLDE High-Intensity Beams

Operational Parameters:

o Intensity: Up to 9 x 102 protons per bunch (highest operational intensity).
e Extraction Energy: 1.4 GeV.
e Longitudinal Emittance at Extraction: similar to that of nTOF.

e Primary Objective: Radioactive isotope production through high-intensity proton bombardment.

Optimisation Requirements: ISOLDE beams present one of the most severe space-charge challenges in
the PSB due to the high intensity, requiring considerable longitudinal profile flattening during injection and
early acceleration phases [10]. The system must transition from intensive space-charge mitigation at least from
injection to C-400 ms (the C refers to C-Time; injection occurs at C-275 ms) to beam stability considerations as
energy increases. Triple-harmonic operation becomes essential at maximum intensities, with the optimisation
system managing the five-dimensional parameter space while ensuring tune shift remains below resonance-
crossing thresholds (AQ,, ., < 0.5).

SPS Fixed Target Proton (SFTPRO) Beams

Operational Parameters:

o Intensity: 2.5 x 10'? protons per bunch

e Longitudinal Emittance: 1.3 eVs
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¢ Unique Requirement: Bunch splitting in every ring to produce 2 bunches per ring such that the beam
is optimised for injection with (2) hg RF cavities operating in PS to spread out the beam longitudinally
as much as possible while maintaining a constant current for the fixed target experiments.

Optimisation Requirements: SFTPRO beams present the most complex optimisation challenge, requiring
longitudinal bunch-splitting operations. These operations require the most precise ®5 settings to ensure the
same amount of charge per bunch in each ring [2].

LHC Single Bunch Beams (LHCINDIV and LHCPILOT)

Operational Parameters:

o« LHCPILOT: 0.5 — 2 x 10'° protons per bunch, at e = 0.2 eVs
« LHCINDIV: 2 — 12 x 10'° protons per bunch, at ¢ = 0.3 eVs

e Primary Objective: Consistently reproducible low-intensity, low-emittance beam production

Optimisation Requirements: These beams operate outside the primary scope of the automated system
due to their exclusive use of fundamental harmonic (h;) operation.

Antiproton Decelerator (AD) Beams

Operational Parameters:
e Intensity: Moderate intensity levels optimised for antiproton production
o Extraction Scheme: Ring-specific extraction harmonics (rings 1,2,4 at h=1; ring 3 at h=2)

e« PS Compatibility: Optimised for PS hg capture and subsequent manipulations using hs; to only fill
one quarter of the ring [34].

Optimisation Requirements: AD beams require ring-specific optimisation capabilities, with the system
managing different harmonic configurations across the four PSB rings simultaneously. Ring 3 presents the only
unique hy extraction requirement and demands specialised bunch splitting for improved antiproton production
[34]. As a result, the optimisation system must be able to act independently on rings to cater to these cases,
or at least be able to run different instances of itself to handle per-ring parameters.

Operational Constraints and System Integration Requirements

Intensity-Dependent Parameter Relationships: as demonstrated in Section 2.3, due to induced voltages
and phase shifts, the system needs continuous parameter adjustment capabilities throughout the acceleration
cycle as beam conditions evolve, and also be general enough not to depend on knowledge of impedances.

Induced voltages change with intensity, and this will also aid generalisation capabilities across different accel-
erators.

Filling Factor Considerations: The system must accommodate varying filling factors (percentage of RF
bucket area occupied by particles), which directly influence bunch profile characteristics and optimization
effectiveness. Low filling factors present particular challenges for traditional optimization metrics, requiring
more capable pattern recognition capabilities than statistical metrics allow for.

Collective Effects Integration: Real-time optimisation must account for impedance effects from Finemet
cavities, space-charge, and resistive-wall interactions, but without explicit knowledge of them. The system
must essentially integrate beam-loading compensation by solely looking at the profiles, as operators do (they
do not calculate impedances to perform adjustments).

Operational Window Management: Each beam type requires specific optimisation windows within the
acceleration cycle, with some demanding continuous optimisation (ISOLDE) while others require selective
activation periods to avoid instability. As such, the tool should be selectively applicable over certain ranges of
C-Time without issue.

This operational beam type analysis directly informs the technical requirements for the automated harmonic
optimisation system, establishing the foundation for robust, generalisable optimisation algorithms capable of
meeting the diverse demands of the PSB and possibly of other accelerators requiring similar capabilities.

3.1.3. Technical Constraint Analysis

Several technical constraints shape the requirements definition:
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e Supercycle Timing: 30-second operational window for complete optimization cycle to at least be able
to apply a correction with the minimum super-cycle efficiency: 1 slot inside of the super-cycle.

e RF System Limitations: Mainly relating to total voltage constraints, which is 24 kV at maximum
when summed across all cavities, but kept to 20 kV to have a safety margin.

e Measurement Systems: The system must be able to cope with the SNR of the profiles captured
through the WCM (this is not a limiting characteristic as demonstrated by the profiles shown in Fig-
ure 2.34).

e« Computational Resources: There are processing limitations within the control system environment
such that the optimization algorithm does not cause issues with other operational programs (i.e. crash
the control system).

o Safety Considerations: The optimization tool must not cause significant beam loss and if it does, it
must be able to stop the operations and remove the intensity from the particular ring or from all rings.

3.1.4. Risk Assessment & Mitigation

It is important to also analyse the risks that come with automated tools, such that they can be mitigated in
software or in hardware. The risks that have been contemplated are the following, along with their likeliness
L and severity S in brackets where their values range from H =High, M=Medium and L= Low:

» Convergence Failure (L = H, S = H): Risk of optimization algorithm failing to find suitable solution
and oscillating wildy, possibly causing significant beam loss in doing so.

Mitigation: When deploying the tool, first perform the necessary corrections at a very low beam intensity,
such that if the RF system enters in BSM (for double-harmonic) or does not flatten the bunch (for triple-
harmonic), the beam loss is limited to a minimum. Furthermore, for the triple-harmonic optimizer, it
must never be able to decrease the total voltage to a minimum of 6 kV such that a separatrix always
forms. This can always be scaled down after the optimization is performed if desired (for example for
longitudinal shaving or bunch manipulations).

o Parameter Drift (L = H, S = L): Risk of solution becoming invalid due to machine parameter
changes or the devices that are being interacted with no longer existing or have been migrated.

Mitigation: Consider solutions that do not consider machine parameters and focus solely on profile
geometry and generalized machine parameters. Additionally, when impractical or impossible to do so,
give sufficient documentation to be able to modify the code where necessary to integrate well with the
existing system.

e Beam Loss (L = H, S = H): Risk of optimization causing excessive particle losses, whether in the
converged solution or in the pursuit of that solution.

Mitigation: There are already systems in place in the accelerator that will remove the injection intensity
from a cycle that is causing too much beam loss. However, in the case that the solution varies significantly
causing instabilities in the bucket position, the user using the optimizer will be informed and a safe
approximation for ®5(¢) (for double-harmonic) or Vi(t), Va(t), Va(t), Po(t), 3(t) (for triple-harmonic)
will be used. Additionally, the corrections that can be performed to the parameters will be bounded in
some region to avoid large changes.

o System Integration (L = L, S = H): Risk of incompatibility with existing control system due to
being computationally prohibitive.

Mitigation: Optimizing techniques that require too much computing power will be neglected, and the

computing power of the solutions implemented will be monitored in simulation before their implementa-
tion in the PSB.

o Performance Degradation (L = L, S = H): Risk of tool performance degrading under high-intensity
conditions and failing to achieve operational luminosity.

Mitigation: The optimizing tool should be agnostic to the amount of intensity and its generalization to
different intensities will be verified in simulation before its implementation in the PSB.

o Time Constraints (L = H, S = L): Risk of not having enough time during the project to deploy the
optimization tool operationally with all desired features.

Mitigation: Provide sufficient documentation and baseline code such optimization efforts can be contin-
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ued, with possible improvements well documented.

3.2. System Requirements

Given the operational beam constraints, the technical constraints presented and the project goals outlined in
Section 1.5, while also addressing the risks presented previously, the following functional requirements have
been set for the optimisation tool. The requirements in Table 3.1 must all be catered to if the tool is to be used
online continuously in a safe and reliable manner. For all requirements, “the system” refers to the optimisation
tool and the project goals that the requirement caters to are referenced.

Table 3.1: System Requirements

Req. ID Requirement Description Rationale Project
Goals
Functional Requirements
Double-Harmonic Phase Optimiser
DHF-001 The system shall optimise the second- BLM operation is primarily used in the P.G.1, P.G.4
harmonic phase ¢2 to achieve Bunch PSB and is critical for mitigating space-
Lengthening Mode (BLM) operation charge effects.
for all supported beam types.
DHF-002 The system shall derive optimal phase Profile-based optimisation provides P.G.1,P.G.3,
corrections from longitudinal bunch machine-independent solutions that P.G.7, P.G.13,
profiles and general RF system param- are robust to parameter variations and P.G.14
eters. allows for quick inference.
DHF-003 The system shall support optimisation Coverage of all major operational P.G.1, P.G.7
for all operational beam voltage pro- beams ensures the tool provides com-
grammes using hi and hz harmonics, prehensive operational support.
excluding LHCINDIV and LHCCPI-
LOT beams.
DHF-004 The system shall handle bunch- Different beam types require different P.G.1, P.G.7
lengthening operations for space- optimisation objectives while using the
charge mitigation and bunch-splitting same RF hardware.
operations for SFTPRO beams.
Triple-Harmonic Optimiser
THF-001 The system shall optimise five parame- Full 5D optimisation is required to P.G.2, P.G.4
ters simultaneously: three voltage am- achieve optimal bunch flattening for
plitudes (V1,V2,V3) and two relative maximum space-charge mitigation.
phases (®2, ®3).
THF-002 The system shall achieve longitudinal Equal peak heights provide quasi- P.G.2, P.G.4,
bunch profiles with three peaks of equal  uniform particle distribution minimis- P.G.15
height for optimal space-charge mitiga- ing local space-charge.
tion.
THF-003 The system shall base optimisation on  Geometry-based approach ensures ro- P.G.1, P.G.3,
profile geometry and general RF sys- bustness to machine and accelerator P.G.7, P.G.13,
tem parameters. variations and quick inference. P.G.14
THF-004 The system shall maintain optimisa- PSB operates with intensities varying P.G.2, P.G.7
tion effectiveness across the full range by orders of magnitude requiring adap-
of operational beam intensities. tive optimisation.
THF-005 The system shall operate effectively Different cycles require space-charge P.G.2, P.G.8,
from injection (C-275) to extraction (C- mitigation for different periods. P.G.14
805).
THF-006 The system shall implement fallback to  Ensures safe operation even when con- P.G.8, P.G.10

flattest produced profile when conver-
gence is not achieved.

vergence cannot be achieved within
time constraints.

Continued on next page
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Table 3.1 — continued from previous page

Req. ID Requirement Description Rationale Project
Goals

THF-007 The system shall operate effectively Different emittances require different P.G.1, P.G.2,
across bucket area range from 1.3 eVs RF parameter precision for optimal P.G.7
to 3 €Vs under operational beam condi- flattening (see Figure 2.25).
tions.

Performance Requirements
Timing Requirements

TIM-001 The system shall complete one full op- To be at least as performant as opera- P.G.3, P.G.9
timisation cycle within one PSB super- tors, it requires super-cycle latency to
cycle (< 30 seconds), including data maintain beam quality throughout op-
acquisition, processing, and correction eration.
implementation.

TIM-002 Double-harmonic optimisation shall Convergence time must balance opti- P.G.3
converge to BLM within at least 30 misation quality with operational effi-
super-cycles. ciency requirements.

TIM-003 Triple-harmonic optimisation shall pro- 5D optimisation requires more itera- P.G.3
duce a flattened profile within at least tions but must still meet operational
50 super-cycles. time constraints.

Accuracy Requirements

ACC-001 Double-harmonic phase ®5 shall be set  Phase accuracy directly impacts bunch P.G.1, P.G.6,
within at least +3 degrees of optimal lengthening effectiveness and beam sta- P.G.15
BLM phase for high-intensity opera- bility.
tions.

ACC-002 Triple-harmonic parameters shall be Uniform peak heights ensure optimal P.G.1, P.G.6,
adjusted to achieve peak height varia- space-charge distribution along the P.G.11, P.G.15
tions < 5% between the three profile bunch.
peaks.

ACC-003 Long-term optimisation accuracy shall Operational stability requires consis- P.G.2, P.G.7
be maintained over at least 30 cycles. tent performance over extended peri-

ods.
Safety Requirements

SAF-001 The system shall not cause an intensity =~ Beam loss limits protect machine com- P.G.8, P.G.10
loss of 20 x 10'® ppb for more than 2 ponents and ensure operational feasibil-
consecutive cycles across all supported ity.
beam types and magnetic field ramps.

SAF-002 Upon optimisation failure, the system Fail-safe operation ensures beam P.G.8, P.G.10
shall automatically alert the operator, preservation when optimisation cannot
revert to the synchronous phase esti- converge and a somewhat flattened
mate, and for the triple-harmonic op- bunch in the case of triple-harmonic,
timiser set second-harmonic voltage ra- as allowing r3 # 0 could cause even
tio to 0.5 (r2 = 0.5) and disable the higher peak line densities \; (see right
third harmonic (rs = 0). plot in Figure 2.13).

SAF-003 The system shall detect and handle Low voltage ratios indicate a poorly P.G.8, P.G.10
cases where voltage ratio < 0.2 by re- defined BLM phase which can lead to
verting to the synchronous phase es- phase oscillation.
timate for the double-harmonic opti-
miser.

SAF-004 All optimisation parameters shall be Parameter bounds prevent hardware P.G.8, P.G.10

constrained within predefined safe op-
erational limits.

damage and beam instabilities.

Continued on next page
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Table 3.1 — continued from previous page

Req. ID

Requirement Description

Rationale

Project
Goals

SAF-005

SAF-006

Operators shall maintain capability to
override automatic optimisation and
manually control parameters.

Before implementation in the PSB, the
system shall be verified across all beam
types in simulation with varying inten-
sities and major impedances modelled.

Human supervision ensures safety con-
trol in abnormal situations.

Required to ensure that the optimisa-
tion tool works in principle, and that
there is a certain degree of perfor-
mance.

P.G.10, P.G.11

P.G.5, P.G.7

Reliability Requirements

REL-001

REL-002

REL-003

REL-004

REL-005

The system shall maintain functional-
ity across all operational beam voltage
programmes and magnetic field ramps,
excluding when BLM is not well de-
fined.

The system shall operate effectively
from minimum operational intensities
up to maximum PSB capacity (9 x 1012
ppb for ISOLDE).

The system shall maintain performance
under typical accelerator environmen-
tal conditions.

The system shall adapt to variability
in profile measurement system charac-
teristics and calibration states.

The system shall automatically recover
from transient faults within two super-
cycles.

PSB operates diverse beam types re-
quiring consistent optimisation perfor-
mance, but the cases where BLM is not
well defined are excluded to avoid solu-
tion oscillation.

Intensity variations of several orders
of magnitude occur during normal op-
eration, which lead to different emit-
tances.

This is to exclude cases where there is
something malfunctioning in the PSB.

Measurement systems might change
over time requiring robust data process-
ing.

Quick recovery minimizes impact of
beam losses and increases tool effi-
ciency.

P.G.7, P.G.14

P.G.7

P.G.7

P.G.2, P.G.7

P.G.7, P.G.8

Compatibility Requirements

COM-001

COM-002

The system shall integrate with exist-
ing PSB control systems and beam in-
strumentation.

The system shall interface with stan-
dard PSB data acquisition systems for
profile measurements and parameter
setting.

Seamless integration ensures opera-
tional deployment without infrastruc-
ture changes and possibility to use in
other accelerators with similar systems.

Standard interfaces ensure maintain-
ability and compatibility with future
upgrades.

P.G.9, P.G.13

P.G.9, P.G.14

Operational Requirements

OPR-001

OPR-002

OPR-003

OPR-004

The system shall operate autonomously
during bunch-lengthening periods in
the cycle with minimal operator inter-
vention.

The system shall provide comprehen-
sive diagnostics including optimisation
convergence status, parameter values,
and performance metrics.

The system shall log all optimisation
activities, parameter changes, and per-
formance data for post-analysis.

The system shall provide intuitive op-
erator interface for monitoring, configu-
ration, and manual override functions.

Automation reduces operator workload
and ensures consistent optimisation.

Transparency builds operator confi-
dence and enables troubleshooting.

Data logging enables performance anal-
ysis and continuous improvement.

User-friendly interfaces ensure safe and
efficient operation.

P.G.1, P.G.9

P.G.11, P.G.12

P.G.11, P.G.15

P.G.9, P.G.11

Continued on next page
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Table 3.1 — continued from previous page

Req. ID Requirement Description Rationale Project
Goals
OPR-005 The system shall support configuration Flexibility = accommodates  diverse P.G.14
changes for different beam types and operational requirements and future
operational scenarios. changes.
OPR-006 The system’s training framework, pa- Extensive documentation is required P.G.11, P.G.12

rameters and integration with the PSB
shall be documented extensively.

for future-proofing and also giving op-
erators insight into how the tool func-

tions.

3.3. Requirements Verification
3.3.1. Optimization Tool Verification & Validation Methodology

The verification process for the optimization tool involves comprehensive testing at multiple levels for all
operational beam types to ensure the tool meets all specified requirements before operational deployment.

Simulation Verification

All operational beam types will be verified in simulation using the BLonD physics framework, as specified in
requirement SAF-006. This allows comprehensive testing across the full parameter space including;:

e All voltage programmes and magnetic field ramps

« Complete intensity range from minimum to maximum values (up to 9 x 10'2 ppb for ISOLDE as per
REL-002)

e Various initial conditions and beam distributions

o Edge cases and failure scenarios including low voltage ratios (SAF-003)

e Major impedance sources to verify performance under realistic conditions

The simulation environment enables safe testing of extreme conditions and systematic exploration of parameter
spaces that would be prohibitive in the actual machine.

Machine Validation

Contrary to the the verification in simulation, in validation procedures, the testing will focus on a representative
subset of beam types that cover the operational diversity:

« ISOLDE: High-intensity operation with strong space-charge effects, testing the upper intensity limits.
e nTOF: Medium intensity with specific bunch structure requirements.
« BCMS: LHC-type beam with stringent emittance preservation needs.

e SFTPRO: Bunch splitting operation requiring precise phase control for equal particle count in each
bunch(DHF-004).

These four beam types represent sufficient variety in:

o Intensity ranges (from 1 x 10! to 9 x 102 ppb).

o Bunch profiles (single bunch to multi-bunch operations).

o Optimisation objectives (lengthening vs. splitting).

o Relevant optimisation interval from injection (C-275) to extraction (C-805).

e Bucket areas from 1.3 to 3 Vs as specified in THF-007.

3.3.2. Requirement Verification Criteria

FEach requirement category has specific verification criteria, all of this information is shown in Table 3.2. Note
that for the accuracy, reliability and one of the operational requirements (OPR-005), they are already satisfied
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by previous verification criteria.

Table 3.2: Verification Criteria

Ver. ID Verification Description Related Requirements
Functional Requirements Verification

VER-F-001 Demonstration of BLM achievement for all supported beam  DHF-001, ACC-001
types within 4+3 degrees of optimal phase, or at least visual
comparison with existing operational phase setting to com-
pare performance.

VER-F-002 Verification of being able to perform only profile-based opti- DHF-002, THF-003 , OPR-
mization without requiring specific machine parameters. 005

VER-F-003 Confirmation of triple-harmonic peak matching within 5% THF-002, ACC-002
tolerance for all three peaks.

VER-F-004 Characterisation of the performance of the achieved solution DHF-003, DHF-004, THF-
with validation beam types and intensities across the full 004, THF-005, THF-007,
operational range. REL-001, REL-002

VER-F-005 Validation of fallback mechanisms when convergence is not THF-006
achieved, ensuring system defaults to flattest achieved pro-
file.

VER-F-006 End-to-end demonstration of simultaneous 5D optimization THF-001
with all of V4, Vo, Vs, @2, &3 adjusted and correctly applied.

Performance Requirements Verification

VER-P-001 Confirming super-cycle response time with full optimization = TIM-001
cycle completed within 30 seconds.

VER-P-002 Convergence testing demonstrating BLM achievement TIM-002
within 30 cycles for double-harmonic optimization.

VER-P-003 Convergence testing demonstrating profile flattening within ~ TIM-003
50 cycles for triple-harmonic optimization.

VER-P-004 Long-term stability verification over 30 cycles after initial ACC-003
convergence (this necessitates convergence to be achieved
first).

Safety Requirements Verification

VER-S-001 Beam loss monitoring confirming losses remain below 20 x  SAF-001
10'° ppb limit during optimization.

VER-S-002 Testing of automatic reversion to synchronous phase for SAF-002, SAF-003
double-harmonic optimization and returning to safe settings
for triple-harmonic optimization.

VER-S-003 Validation of parameter bounds enforcement when correc- SAF-004
tions indicate exceeding predefined operational limits.

VER-S-004 Verification of operator override capabilities with successful ~SAF-005
manual parameter control.

VER-S-005 Reporting tool performance for all operational beams in sim- SAF-006
ulation with impedance models included.

Integration Requirements Verification

VER-I-001 End-to-end testing with setting parameters and checking suc- COM-001
cessful parameter application through the Java front-end.

VER-I-002 Data flow validation from measurement systems to param- COM-002
eter settings with graphical demonstration of the complete
data pipeline.

VER-I-003 Performance testing under realistic operational conditions REL-003
including typical machine variations.

VER-I-004 Performance testing using noisier data coming from the Wall REL-004

Current Monitor (WCM) to verify robustness.
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Table 3.2 — continued from previous page
Ver. ID Verification Description Related Requirements

VER-I-005 Recovery testing demonstrating automatic recovery from REL-005
transient faults within two super-cycles.
Operational Requirements Verification
VER-0O-001 User interface validation covering autonomy monitoring, di- OPR-001, OPR-002, OPR-
agnostics, logging, and manual override: UI displays con- 003, OPR-004
vergence, parameters, and metrics; logs captured and ex-
portable; operator takeover and hand-back succeed.

VER-0-002 Documentation review checklist completed covering training OPR-006
framework, parameters, and PSB integration procedures.

3.4. Requirements Traceability

After the completion of the project, the state of requirement fulfillment with a Requirement Traceability Matrix
will be presented in order to give a proper hand-off to the next optimization efforts.

3.4.1. Risk Mitigation Mapping

The requirements framework systematically addresses all identified risks:

o Convergence Failure: Mitigated by THF-006 (fallback to flattest profile), SAF-002 (reversion to
synchronous phase), TIM-002/TIM-003 (convergence time limits)

o Parameter Drift: Mitigated by DHF-002, THF-003 (geometry-based approach), REL-004 (adaptation

to measurement variations)

o Beam Loss: Mitigated by SAF-001 (loss limits), SAF-004 (parameter bounds), SAF-006 (simulation
verification), REL-005 (quick recovery)

o System Integration: Mitigated by COM-001, COM-002 (standard interfaces), TIM-001 (performance
requirements)

o Performance Degradation: Mitigated by REL-002 (full intensity range), THF-004 (intensity adapt-
ability), THF-007 (emittance range coverage)

o Time Constraints: Mitigated by OPR-006 (extensive documentation), OPR-005 (configurability),
OPR-003 (data logging for future analysis)

3.5. Conclusion

This chapter has established a comprehensive requirements framework for the automated longitudinal bunch
profile optimization tool for the CERN PSB. The framework comprises 37 specific requirements organized into
six categories outlined in Table 3.1.

FEach requirement is justified by clear rationale linking it to operational needs and constraints, with explicit
traceability to the 15 project goals established in Chapter 1. The requirements address all identified project
risks through specific mitigation strategies embedded within the requirements themselves.

The validation and verification strategy emphasizes a two-tier approach: comprehensive simulation verification
using all operational beam types with major impedances modeled (SAF-006), followed by targeted machine
validation using four representative beam types (ISOLDE, nTOF, BCMS, and SFTPRO) that encompass the
full range of operational scenarios. This approach balances thorough testing with practical constraints of
machine time and operational efficiency.

Key performance targets include sub-super-cycle response times (TIM-001), phase accuracy within +3 degrees
(ACC-001), peak height equalization within 5% (ACC-002), and beam loss limits below 20 x 10*° ppb (SAF-
001). The framework ensures operational safety through automatic fallback mechanisms (THF-006, SAF-002),
parameter bounds (SAF-004), and mandatory operator override capabilities (SAF-005).

This requirements specification serves as the foundation for the subsequent design, implementation, and val-
idation phases of the project, providing clear success criteria and verification methods for each aspect of the
optimization tool’s functionality. The comprehensive documentation requirement (OPR-006) ensures knowl-
edge transfer and long-term maintainability of the system.
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4

Machine Learning Background

As shown in Section 2.4, traditional optimisation methods fall short when dealing with the control of RF system
parameters in double-harmonic operation due to the wide range of beam conditions which it must cater to, and
in triple-harmonic due to the complex 5D parameter space that needs to be optimised. As a result, this chapter
explores the machine learning (ML) frameworks considered for solving both the one-dimensional (1D) second
harmonic phase optimisation problem for routine PSB operations and the five-dimensional (5D) parameter
space optimisation for space-charge mitigation, encompassing total voltage, voltage ratios of harmonics, and
phases.

This chapter presents the dataset creation methodology and constraints, the selected ML framework, Con-
volutional Neural Networks (CNN) with attention mechanisms, stratified sampling strategies, reinforcement
learning (RL) and memory-augmented RL, possibilities of augmented feature extraction, and hyperparameter
optimisation with functional Analysis of Variance (fANOVA).

4.1. Dataset Creation Methodology and Constraints

The selection of appropriate ML frameworks is fundamentally constrained by the practical limitations of
dataset generation for multi-harmonic operation. Unlike conventional machine learning applications in other
fields within accelerator physics, such as fault detection and diagnosis, where experimental and historical
datasets can be readily collected from databases like Next CERN Accelerator Logging Service (NXCALS),
multi-harmonic operation requires collecting data and careful consideration of operational safety.

4.1.1. Simulated or Experimentally Acquired Dataset

Since profile datasets are not available in double- and triple-harmonic operation for the PSB, new data would
need to be generated in a safe manner. As the optimisation tool would need to learn from good and badly set
parameters, there exists the possibility that a certain parameter combination could generate significant beam
losses, irradiating the beam pipe. As a result, to be able to safely generate data, a simulation-based approach
to dataset generation is needed. This decision is driven by several critical factors:

o Safety considerations: Experimental parameter sweeps in operational accelerators risk significant
beam losses, potentially leading to component damage and radiation hazards [35].

e Operational constraints: The extensive parameter space exploration required would consume pro-
hibitive amounts of beam time.

e Reproducibility: Simulated datasets provide consistent, noise-free training examples that enable con-
trolled algorithm development and comparison.

e Coverage: Simulation allows exploration of parameter regimes that might be operationally risky or
impossible to achieve experimentally.

The simulation framework generates beam profiles using validated accelerator physics codes [58], ensuring
that the synthetic data maintains physical consistency with real accelerator behaviour while providing the
comprehensive coverage necessary for robust ML training. Furthermore, this imposes specific requirements on
the applicable ML architectures due to computational limitations.

4.1.2. Temporal vs. Static Dataset Considerations

The initial consideration for this optimisation problem involved the potential creation of temporal and causal
datasets that would capture the dynamic evolution of beam parameters throughout the acceleration cycle and
allow the model to learn the temporal dependencies between the parameters. Such datasets would need to
span sufficiently broad combinations of total voltage, voltage ratios of the second and third harmonics, their
respective phases, and magnetic field ramps. This approach would theoretically enable the application of
time-series based methods such as temporal transformers or temporal convolutional networks (TCN) which
would compute the entire time-series of the beam parameters (be it only the second harmonic phase or the
entire 5D parameter). In practice, it would also enable the model to learn the dependencies between the
parameters in the 5D scenario and understand the causal relationships between the profiles obtained and the
parameters that led to that profile, which would also allow corrections to be made considering the entire history
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of the longitudinal profile evolution at once. This would mean that the magnetic field ramp would be sampled
throughout the cycle as the profile would be allowed to evolve between the n,,: computation points, dividing
the cycle in intervals between injection (C-275) and extraction (C-805).

However, the generation of a temporal dataset becomes prohibitively complex when one considers the number
of combinations that would need to be sampled. The combinatorial explosion of parameter combinations
across the six-dimensional space given in Equation 2.47 (with AE; being determined by the sampling point
in the magnetic field ramp), results in a massive number of required simulations. For the double-harmonic
dataset, each combination of total voltage Vi1, voltage ratios ro = Vo /Vy, phases @4, and initial filling factors
FFy and intensity Iy at nep; (S0 nepe energy gains AE;) computation points would require a huge amount
of temporal samples. Additionally, given the discussion had in Section 2.4 and Equation 2.46, it means that
the phase would need to be computed manually at each one of these combinations as a supervised dataset is
required.

As an example, let’s consider n,,; = 20, meaning 20 points in which the phase is computed, for a single

initial intensity (since we also want to be agnostic to the intensity in order to be able to generalise to different
accelerators) and the following amount of discrete sampling in each parameter:

o Total voltage Vipar: 8 (i-e. from 6 to 20 kV in steps of 2 kV)
o Voltage ratio ro: 6 (i.e. from to 0.25 to 0.875 in steps of 0.125)

o Phase ®5: 360 (i.e. 360° in steps of 1°)

Initial filling factor FFy: 6 (i.e. from 10% to 100% in steps of 15%)

This would imply that at every computation point, there would be a total possible combination of 8y, , X
6, X 360g, X 20,,,, = 345,600 different full cycle-simulations. If we consider that the initial filling factor
is not fixed, but rather is a parameter that is sampled for each full cycle simulation, then the total number
of simulations to be performed would be 345600 x 6 = 2,073,600. This is a huge number of profiles to be
computed, and this doesn’t consider the fact that this is only for one initial intensity and one of the possible
magnetic field ramps, as there are 2 different operational ramps, but more are being investigated to mitigate
space-charge even further [3]. Additionally, the n computation points are now fixed and it could lead to
issues if the amount of points is changed when actually running the optimization on the machine, because one
would ideally want to sample where the estimated synchronous phase ¢s changes considerably or wherever it
is relevant (for example right before splitting operations to get improved performance).

As for why the entire cycle would need to be simulated, in order to be able to capture the true dependencies
between the parameters, considering as well how many particles would be lost due to large changes in the
parameters between successive computation points, the entire ramp would have to be simulated turn by turn,
leading to an excessive amount of time to be spent on the dataset generation. For reference, it takes about
30 minutes to simulate an entire ramp which is comprised of about 800,000 turns. This is not as relevant
to the double-harmonic optimizer as almost all the parameters would be set a priori, and only ®5 would be
computed by the tool, but for the triple-harmonic optimizer understanding this relation becomes important.
As a result, these constraints make it impossible to generate a temporal dataset in a reasonable amount of
time, without a significant amount of computational resources, automatically discarding the idea of time-series
prediction models. Additionally, one would have to consider an even larger dataset for the 5D parameter space
optimization due to the additional parameters that would need to be considered as shown in Equation 2.49.

4.1.3. Static Dataset Approach

Given these computational limitations, the dataset generation focuses instead on generating individual beam
profiles at discrete points in the magnetic field ramp, without considering the temporal dependencies between
the parameters. For the double-harmonic dataset, each profile represents a snapshot at a specific B value,
corresponding to a certain C-Time in the cycle, and then the dataset spans the different combinations of
(Viotai; T2, @2, F'F). Notice that the intensity is not included again as we want the tool to be agnostic to the
intensity to be able to generalise to more accelerators as indicated by Goal P.G.14. This also means that in
practice, the simulation will be done without impedance effects, since it should not have a significant
effect on characteristics that we are looking for in the profiles (symmetry of peaks and lengthening). The
accurate impedance modelling described in Section 2.5 is important for the verification procedures described
in Section 3.3.1.

This approach alters the nature of the optimization problem from a temporal sequence prediction task to a
pattern recognition problem for a given combination of parameters. As a result, the double-harmonic dataset

consists of beam profiles \;, paired with their corresponding parameter sets (Viotar, 72, <I>2,B, FF) and label
mapping the influencing parameters (for all filling factors) to their the optimal BLM phasing: (Viotar, 72, B) :
®y(BLM). This methodology is particularly well-suited for the PSB environment where profiles in individual
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points in time are not affected substantially by the wakefields generated by points farther in time due to
the quick wakefield decay discussed in Section 2.3.4. However, they will of course be influenced if ®5 varies
significantly in time causing big shifts in ¢ which moves the bucket and could cause mismatches that influence
the inference of the tool (see Figure 2.16).

4.1.4. Double-Harmonic Dataset

The double-harmonic dataset is generated through a systematic grid scan of the five key parameters that
govern the RF system behaviour. The generation of this dataset enables the possibilities of offline learning to
not restrict the possible ML frameworks that can be used Table 4.1 presents the parameter space explored for
creating the profiles for the training dataset.

Table 4.1: Double-Harmonic Dataset Grid Scan Parameters

Parameter Symbol Unit Range Grid Points Values

Total voltage Viotal kV 620 8 6, 8, 10, 12, 14, 16, 18, 20

Voltage ratio ro - 0.254 11 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1,
1.14, 1.6, 2, 4

2nd harmonic phase P, o 0-359 360 0,1, 2, .., 358, 359

Magnetic field gradient B T/s 0-3.70 7 0, 0.76, 1.05, 1.54, 2.10, 2.80, 3.70

Filling Factor FF % 10-100 7 10, 25, 50, 60, 75, 90, 100

The comprehensive grid scan results in a total of 8 x 11 x 360 x 7 x 7 = 1,552,320 unique profiles, and
8 x 11 x 7 = 616 different optimal BLM phases ®5 providing coverage of the operational parameter space.
This sampling ensures the machine learning model can accurately interpolate between grid points for any
operational scenario encountered in the PSB. To visualise what the magnetic field looks like, its gradient, and
how the sampling points lie on it, Figure 4.1 summarises this information. A final caveat of the dataset is
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Figure 4.1: Sampling points on the magnetic field B and its gradient B

Finding Optimal Phases

Now, as to how the optimal profiles are identified to create the mapping (Viotal, 72, B) : Po(BLM), it was done
considering the characteristics of the separatrices for double-harmonic operation and how the filling factor
influences the matched profiles. Consider again Figure 2.25 where the effect of the filling factor can be seen for
a voltage ratio ro high enough to generate two minima in the potential well, and imagine there is a slight offset
in ®5 such that the minima in the potential wells are not completely equal. In the case of a low filling factor,
the bunch profile would show a much more evident deviation between the height of the peaks than what could
be distinguished in the high filling factor case. As such, in these cases, having a low filling factor allows more
precision in setting the optimal phase. However, in the case that there no sufficient voltage ratio to generate
a double minima, then looking at a low filling factor profile will not give any important information on the
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shape of the separatrix as it will just look like a profile with a very small bunch length. As such, in these cases,
it is best to look at the profile matched with a high filling factor to be able to discern when the line density
¢ is minimized and provide the best estimate for ®s.

In order to be able to generate this mapping in the most efficient way (considering there are 616 different cases
that need to be mapped), a GUI was developed. It is shown in Figure 4.2. The GUT has several options which
are relevant to mention:

e Auto Sim: allows automatically simulating the profile whenever ®, changes.

o Mode: allows switching from FF = 10% (Fine) to 100% (Coarse) depending on what is needed. The
Fine mode is shown in Figure 4.3.

o Finalize Phase: once the optimum is reached, then this button stores the (Vtotal,rg,lg) : @o(BLM)
entry.

o Skip: if it is not possible to find an optimum due to a very high B and a low total voltage, then that
parameter combination can be skipped. This helps to not train the tool on combinations that would
never occur in practice, and if the combination is removed, then it represents 360, X 7Tpr = 2520 profiles
less in the dataset.
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Figure 4.2: Ul for finding the optimal ®5 under varying conditions (no impedance)
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Figure 4.3: Refined estimation of optimal ®2 under varying conditions through profile simulation at low filling factors (no
impedance)

This act of removing unphysical or impossible to optimise parameter combinations yields the dataset distri-
bution plot shown Figure 4.4. In this plot, the colour represents the highest B that could be obtained with
that particular combination of (Vietai,72). As can be expected, with a higher Vi, it is possible to increase
B as there is a higher V; to accelerate the particles. However, for increasing o, the lower V; is and it fails to
provide sufficient bucket area for accelerating particles (see Figure 2.23 to see how the bucket area decreases for
a given Vioar). Thus, after pruning all the incompatible combinations, the amount of profiles is now reduced
to 1,247,449 (after also adding the profiles at the optimal phases ®5(BLM)), representing a 20% reduction
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in the dataset size. Also note that the amount of profiles is not divisible by 360, and this is because of two
aspects

1. The optimal profiles matched at ®5(BLM) are added, making a complete parameter group 361 profiles
in length. However, the amount of profiles is not divisible by 361 either.

2. There are some ®5 values in cases where there is barely any potential well formation due to low total
voltage Viotai, and a voltage ratio ro high enough, that changing the phase changes the shape of the RF
potential sufficiently such that there is no potential well formation, and therefore no matching possible.
As such, some parameter groups contain fewer than 361 profiles.

Finally, Figure 4.5 shows an example of the profiles produced for a specific parameter group at low and high
filling factors F'F' in Figure 4.5a and 4.5b, respectively, where each slice represents a profile normalised by
its maximum value phased at a certain ®,. Here it can be seen that the profile passes from being phased in
BSM to BLM, and it can be appreciated that even in the case of a low B, the region in ®, space where BLM
features are visible is quite small. This effect becomes even greater at a high B as shown in Figure 4.6, where
a change of just 1° in phase has a huge impact on the matched profiles and the gradual changes are lost. This
is one of the main reasons why traditional methods fail for these problems as indicated in Section 2.4.
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Figure 4.4: Dataset distribution after neglecting non-physical or impossible to optimise (V;ota, 72, B) combinations

(a) FF = 25% (b) FF = 100%

Figure 4.5: Example of data visualization after processing for Vipra; = 10 kV, ro = 0.625 and B =0 T/s

Physics-based Data Augmentation

Now, to be able to augment the data from this raw dataset (which already represents a size of about 9 GB)
with other non-ideal features of profile acquisition in the PSB, there are two methods which are considered:
adding the droop discussed in Section 2.5.2, and adding simple Gaussian noise to the profiles. This would
make it such that the optimisation tool does not see the profiles acquired from the PSB as ”out-of-distribution”
inputs.

For the Gaussian noise, it is quite simple as noise is added at each bin in the simulated profiles with a standard

deviation o = 3% x max(\;). Meanwhile, to mimic the droop, the solution has to be a little more involved, but
still done quickly and through tensor operations in order to be efficient. As such, the procedure is presented
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(a) FF = 25% (b) FF = 100%

Figure 4.6: Example of data visualization after processing for Viytq; = 10 kV, 19 = 0.625 and B=28 T/s

in Algorithm 1. First, the non-zero portions of the profile are masked, and then a sinusoid S; with a random
phase shift and an amplitude of 2% x max();) is added to the non-zero regions, followed by a smoothing
Gaussian kernel being passed through the padded profile to make sure no kinks or discontinuities exist in the
profile and padded to conserve the same length. The results are shown in Figure 4.7 for a few profiles.

Algorithm 1 Baseline Droop Addition to Longitudinal Beam Profiles

RNXL

Require: Beam profiles tensor P € where N is number of profiles, L is profile length

Ensure: Drooped profiles Pgyo0p € RNXL

1: Step 1: Generate random phase shifts
2: ¢ < rand(N) x 27 > Random phase for each profile
3: Step 2: Create sinusoidal droop pattern
4: t <+ linspace(0,1, L) > Normalized time vector
5 M« 1(P <0) > Binary mask: 1 where profile is zero
6: fori=1to N do
7 S; < 0.02 x sin(¢; + 27t) © M; > Sinusoidal droop
8 Pl Pit+S; > Add droop to profile
9: end for
10: Step 3: Normalize profiles
11: fori=1to N do
12: Pmin min(Pémop)
13: Pmax < max(Pg,...)
14: Pliroop & % > Min-max normalization
15: end for
16: Step 4: Apply Gaussian smoothing
17: k + 51 > Kernel size
18: 0+ 7.0 > Standard deviation (in bins)
19: x « [—E5L L R > Kernel coordinates
20: g < exp (—%) > Gaussian kernel
21: g+ ZL > Normalize kernel

22: Step 5:g Pad and convolve

23: pad < |k/2]

24: Ppadded ¢ reflect pad(Paroop, pad) > Reflective padding
25: Paroop ¢ Ppadded * & > 1D convolution with Gaussian
26: return Pg,o0p

4.1.5. Triple-Harmonic Dataset

Given that the triple-harmonic optimisation does have an objective value which can be optimised for as seen in
Section 2.4 (KL divergence), it becomes unnecessary to follow a similar grid scan methodology, not to mention
also quite cumbersome in the added dimensionality of the parameter space. For example, if we were to follow
the same procedure, but now add the third harmonic voltage ratio r3 and also the third harmonic relative phase
®3 with the same amount of grid points, then we would have now a dataset that is 11,, x 3603, = 3960 larger,
which is far too massive in the order of magnitude of 10 TB. This would now imply a completely prohibitive
amount of simulation time to generate such a dataset.

As a result, making use of the KL divergence, we explore methods that are capable of analysing the profiles and
then deriving their flatness to know what continuous corrections should be performed in order to improve that
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Figure 4.7: Artificial augmentation of simulation profiles to show baseline droop as occurs in real data

flatness. This means that it would follow an online learning approach, interacting with the simulation itself
and seeing what profiles are obtained after its correction. Furthermore, now that most of the fixed parameters
become optimisation variables, the only varying fixed parameter is the acceleration rate exemplified through
B. The filling factor F'F is now removed from consideration as it causes problems with using KL divergence as
the measure and it is also consistent with the fact that when triple-harmonic operation is used is when there
is a large amount of beam intensity I, which correlates to higher filling factors. This online learning approach
would have to integrate the KL divergence as a method to rank the profile or rank the quality of a correction
and explore the 5D parameter space using it.

4.2. Artificial Intelligence Framework Selection

The constraints imposed by the static profile dataset approach eliminate several classes of ML methods from
consideration. Temporal neural networks, including recurrent neural networks (RNNs), long short-term mem-
ory (LSTM) networks applied to time series, and transformer architectures designed for sequential data, become
inappropriate due to the absence of temporal dependencies in the dataset structure.

First we look at the methods available for double-harmonic optimisation. It is important to consider that for
the optimisation problem, we consider a correction approach, instead of determining the absolute phase
at which the profile should be phased. This is to be able to generalise more and regress into one possible
parameter combination (Viptar, 2, B) with its particular ®3(BLM), and instead work in the space of A®,.
Therefore, the remaining viable approaches that are either inherently better at profile analysis or generalising
to different types of impedance which can shift the optimum phase ®2(BLM) fall into three primary categories:

1. Convolutional Neural Networks (CNN) with Attention Mechanisms: Direct regression from
beam profiles through convolutional analysis to a phase correction. As a result of the attention mecha-
nisms, it would also give the user information on what the model is paying attention to, making it more
transparent to the operators.

2. Reinforcement Learning (RL) Agents: Policy-based optimisation treating parameter adjustment
as sequential decision-making based on the profile and maximising a reward.

3. Memory-Augmented Reinforcement Learning: Extension of RL approaches to incorporate histor-
ical correction information.

4.2.1. Benefits and Detriments

Each framework addresses different aspects of the optimization challenge and exhibits distinct advantages and
limitations in the context of accelerator parameter optimization. While CNN with attention mechanism, also
known as Convolutional Block Attention Module (CBAM), use convolutional layers that provide good signal
analysis, they are still regressing a profile to a correction and that limits the generalization capabilities as they
are learning directly on the information that is given to them. In this case, the dataset that is being given
to train them does not include impedances, so the regression will be dependent on the characteristics of the
bucket and how shifted it becomes during acceleration, which as we have seen in Chapter 2 in turn depends
on a mixture of accelerator geometry, the magnetic field ramp and the voltages applied.

On the other hand, as RL methods are not focusing solely on a regression, but more on learning a policy
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which essentially is a strategy to maximize the reward. So instead of just computing the correct phase
correction, they can have more intricate behaviour such as slowly approaching the optimum when necessary,
rather than expecting to converge in one single correction. More importantly, RL methods usually employ
an online learning approach which is a significant benefit to triple-harmonic optimization considering the
dataset principles which make it prohibitive to have offline learning in the first place. As a result, for the
triple-harmonic optimization, only the RL frameworks are considered.

Nevertheless, RL agents lack the specialized signal processing that CNNs provide as RL agents with simpler
architectures, using only using traditional Multi-Layer Perceptrons (MLP) layers, usually perform better than
more complex ones like the CBAM CNNs [53]. On top of this, there is a fundamental incompatibility between
training RL agents that employ convolutional layers for feature extraction, as will be explained later. First,
the foundations of each framework considered for this work are explained.

4.3. CNNs with Attention Mechanisms
4.3.1. Theoretical Foundation

Convolutional Neural Networks represent a class of deep learning models specifically designed to process
data with a grid-like topology, such as images or, in the present case, one-dimensional longitudinal beam
profiles [41]. Their architectural bias for spatial feature extraction makes them exceptionally well-suited for
identifying characteristic patterns of BLM in longitudinal bunch profiles that correlate with optimal harmonic
phase corrections settings as has been shown by numerous applications for even more intricate waveforms such
as respiratory signals[Pan2021AnVentilation].

Convolutional Operations
The fundamental operation of a CNN is the convolution, which involves sliding a learnable kernel (or filter)
across the input data to produce a feature map. For a one-dimensional beam profile p € R, where L represents

the number of longitudinal sampling points (e.g., 1000 bins), the convolution operation with a kernel w € R¥,
where k is the size of the kernel, at position 7 is given by:

k—1

(Prw); = Zpi-i-j wj + b, (4.1)
=0

where b is a bias term. Additionally, the profile can be padded with zero values on either end of the profile such
that (p *w) still has L values (this padding is equal to the integer division int(k/2). Multiple such kernels in
a single layer learn to detect different, low-level features. In the context of beam profiles, initial convolutional
layers may learn to identify elementary shapes such as sharp peaks, troughs, slopes, and shoulders—features
intrinsically linked to the phasing of RF harmonics.

Feature Hierarchy Construction

A core strength of deep CNNSs is their ability to construct a hierarchical representation of features. The output
feature maps from an initial convolutional layer serve as the input to subsequent layers. This process can be
described by:

fUHD) _ g (W<z+1) £ O o b(l+1>) : (4.2)

where () represents the feature maps at layer [, WU+D are the learnable weights of the kernels, b(+t1) are
bias terms, and o is a non-linear activation function such as the Rectified Linear Unit (ReLU), defined as
ReLU(z) = max(0,z) [25]. Through this process, early layers capture simple, local features (e.g., edges in
an image, or a local spike in a beam profile). Subsequent layers combine these simpler features to form more
complex, abstract representations (e.g., the overall symmetry of a bunch, the presence of multiple peaks, or
the flatness of a distribution top). This hierarchical composition, combined with the fact that the kernel size
k can vary per layer, allows the network to develop a rich, multi-scale understanding of the input profile’s
geometry. So in essence its characteristics can be summarized in the following:

o Local receptive fields: Each neuron connects to a small region of the input, so the spatial encoding is
preserved.

e Parameter sharing: The same filter weights are applied across different input locations, which increases
efficiency.

e Pooling: Down-sampling operations that reduce dimensionality while preserving important features.

Convolutional Block Attention Modules

To enhance the network’s ability to focus on the most important regions of the input profile, self-attention
mechanisms can be integrated [43]. These mechanisms compute a set of importance weights, often through a
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small neural network, that highlight relevant features while suppressing less informative ones. This CBAM is
represented graphically in Figure 4.8.

Convolutional Block Attention Module

Channel
Input Feature Attention Spatial Refined Feature

Attention

A

Figure 4.8: Convolutional Block Attention Module [43]

As to how they are defined mathematically, the attention weights «; for spatial locations in this work are
computed by taking the mean and the max of each spatial location across all feature maps n¢, and convoluting
the result with one convolutional layer with k£ = 3 (Convs) and a padding of 1 (to preserve the L bins):

a; = sigmoid(Convs(mean(f;)) + Convs(max(f;))) (4.3)

where f; are the values of all feature maps at bin ¢, while the sigmoid function allows keeping all values in the
range [0, 1]. The spatially attended feature representation cs is then a weighted sum:

L
e =Y aifi. (4.4)
i=1

This allows the model to adaptively weight different segments of the beam profile based on their relevance to
the phase prediction task, effectively ignoring noisy or uninformative regions. Meanwhile, the channel weights
are again values in the range [0, 1] for every feature produced. The weights ;7 are computed by summing the
components of either averaging or taking the maximum of the entire feature over the spatial dimensions and
then passing it through a learnable MLP network that bottlenecks with a certain reduction ratio 744, and then
expands out again. So, the learnable MLP network has 3 layers of size [nchannetss it (Nehannels/Tatts Nehannels)]:

p? = sigmoid(MLP (mean(f7)) + MLP(max(f7))) (4.5)

where f7 is the feature map j for all the bins. Thus, the channel attended representation for feature j, c./, is:

cd = it (4.6)

Learning Process

The CNN learns a direct mapping from an input beam profile p to a predicted phase correction Ad. In practice,
the network learns to predict the 2D vector [cos A, sin Ai)] such that it understand the cyclic nature of the
phase space such that A® = 7 = — and incorporates this in its loss gradient estimations. The learning process

involves minimizing the cosine loss function Lcsine that quantifies the discrepancy between the prediction A®
and the true optimal correction A®*. This cosine loss helps enforce the periodic nature of the loss:

B
1 A N
Lecosine = 1 — B g cos(A®; — ADY) (4.7)

=1

where B is the batch size. The network parameters 6 (weights and biases) are iteratively updated via back-
propagation and gradient descent to minimize this loss:

Ot41 =0 —nVoL, (4.8)
where 7 is the learning rate. Optimizers like AdamW are typically used to efficiently manage this process [54].

AdamW is a variant of the Adam optimizer that correctly implements weight decay regularization. This helps
in not overfitting to the data available. The update rule for AdamW can be formulated as follows:
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Where:

m; = fimy_1 + (1 — 1) VeL(0-1) (4.9)
Vi =Pavi1+ (1= B2)VoL(0;-1)? (4.10)
L Iy
LV
=g (4.12)
Oy = 0,1 — 1, <L + /\Ot_l) (4.13)

Vit €

0; represents the parameters at time step ¢

m; and v; are the first and second moment estimates (mean and variance of gradients)

m; and v; are the bias-corrected first and second moment estimates

B1 and s are exponential decay rates for moment estimates (typically f; = 0.9, 82 = 0.999)

r; is the learning rate and its value can dynamically change over the training in a process called scheduling.

In the current work, the scheduling is done by waiting for 20 epochs to see if the validation loss decreases,
if it doesn’t by more than 1%, then the learning rate halved.

e ¢is a small constant for numerical stability (typically 10~8)

o )\ is the weight decay coefficient (in this case 0.01)

Finally, the entire training procedure for the CNN is outlined in Algorithm 2. Here the profiles are used as
input, but the approximated synchronous phase ¢s,,,.,, is also used in order to give more information into how
large or small corrections have to be in the presence of acceleration due to the previous analysis exemplified
in Figure 4.5 and 4.6. The symbol ® represents element-wise multiplication. This model is depicted in a
graphical sense in Figure 4.9 to give a general idea of the forward pass, but an exact description will be given
when the hyperparameter optimization is discussed in Chapter 5

ﬂeature Extraction

Convolutional
Filters

Profile
[1x 1000]

&

Feature 1 X Weight 1
[1x 1000] 1]
Feature 2 X Weight 2
[1 x 1000] 11
Feature k-1 X Weight k-1
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[1x1000] [11 j
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Figure 4.9: CNN model with CBAM attention mechanisms: forward pass

4.3.2. Applicability and Limitations

The CNN with attention approach offers several advantages for the phase correction task:

e Direct Mapping and Feature Extraction: The network learns an end-to-end function from raw
beam profiles to phase corrections, eliminating the need for manual feature engineering. It autonomously
discovers which spatial characteristics of the profile are most indicative of the correct phase.

e Computational Efficiency: Once trained, inference is extremely fast, on the order of milliseconds,
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Algorithm 2 Training Procedure for CNN with Attention

e e e T e T e T

20:
21:
22:
23:
24:

Initialize network parameters 6
Load beam profile dataset D = {(Ds, Psapproz: AP*) Y,
Initialize sampling technique
Initialize learning rate r; and AdamW Optimizer
for epoch = 1 to max_ epochs do > discussed in Section 4.4
for each batch B C D do
# Forward Pass
£(O) < Tnput(Bprofiles) > Shape: [B, 1, L+1] profiles and ¢s,,0,
£f(1) + ¢(ConvID(f()) > Extract initial features
< ChannelAttentionModule(f(1)) > Compute channel attention weights
fitlt) —po fa(btlt) > Apply channel attention
£2) o(Conle(fétlt))) > Extract higher-level features
o+ Spatial AttentionModule(f(?)) > Compute spatial attention weights
fa(ft) —aof® > Apply spatial attention
frat Flatten(GlobalPoohng(fa(tQt) ) > Max Pool features and reshape to [B,dim(faa¢]
A® — MLP(fg,,) > Final prediction
# Loss Calculation and Backpropagation
L Loosine (A, ADTY)
VoL < BackwardPass(L) > Compute gradients
0 + Optimizer.step(d, Vo L) > Update parameters
end for
Evaluate on validation set
Check if we have to reduce the learning rate
end for

and can be batched for each individual C-Time to get all corrections at once, making it suitable for
integration into real-time control systems with tight latency constraints.

o Interpretability: Techniques like Gradient-weighted Class Activation Map (Grad-CAM) can be applied

to visualise the attention weights, providing insights into which parts of the beam profile most strongly
influenced the network’s decision, thereby building operator trust [56].

o Static Pattern Recognition: It is perfectly suited for the static dataset methodology, where each data

point is an independent snapshot of the beam state.

However, significant limitations emerge when considering the broader context of accelerator optimization:

e Lack of Convergence Behavior: The most critical shortcoming is its inherently static nature. The

CNN provides a single, one-shot correction based solely on the current profile. It possesses no memory of
past actions or states and cannot model the iterative, closed-loop process inherent to tuning the phase,
where each small adjustment provides information that informs the next. This can lead to suboptimal
convergence or oscillatory behaviour if applied repeatedly.

e No Exploration Capability: The model is purely deterministic and predictive. It cannot explore

alternative adjustment strategies that might lead to a better overall outcome, as it simply regresses to
the average optimal correction from its training data. This means there could be a certain point where
it has to compromise between correcting profiles at certain parameter combinations, and not performing
well for others.

e Limited Adaptability: The CNN learns a fixed mapping. While potentially robust to small variations,

it may not adapt well to significant changes in machine state or beam conditions that were not well-
represented in the training dataset.

¢ No Compatibility with Triple-Harmonic Online Dataset Approach: The fact that the dataset

would need to be generated beforehand in order to be able to determine the relevant loss for all the
parameters, makes this approach incompatible with the dataset generation methodology. Additionally,
with triple-harmonic optimization, there would be several solutions in the 5D parameter space that will
yield the desired flat profiles, albeit with different bucket areas, so this lack of a global minima would also
cause issues when defining how to propagate the loss through the network and also cause confusions when
making corrections (as both solutions would look practically the same due no potential-well information
being used).
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This absence of iterative reasoning and memory is the primary motivator for exploring alternative frameworks
that can capture the sequential decision-making nature of the tuning process, leading naturally to the formu-
lation of the problem as a task for Reinforcement Learning. First, however, we discuss the sampling strategies
for the training and validation datasets for the model.

4.4. Sampling Strategies

Traditional random sampling in machine learning often yields imbalanced datasets that under-represent certain
physical configurations, leading to biased neural network models with poor generalisation capabilities. To
address this, we implement a stratified sampling technique that preserves the distribution of the defining
parameters across training and validation datasets while ensuring representative coverage of all operational
regimes.

Stratified sampling is a probability sampling method where the population is partitioned into non-overlapping
subgroups, known as strata, based on shared characteristics. Unlike simple random sampling, which treats all
population members equally, stratified sampling ensures specific subgroups are adequately represented in the
sample, making it particularly valuable for heterogeneous parameter spaces. This has been shown to improve
prediction accuracy in learning tasks by 6 to 8% [55].

4.4.1. Fundamentals of Strata and Stratification

A stratum is a subset of the population that is relatively homogeneous with respect to specified character-
istics compared to the broader population. In the context of neural network training for double-harmonic
optimization, each stratum corresponds to a unique combination of RF system parameters that define distinct
operational conditions and different types of profiles.

The stratification process partitions the population into mutually exclusive and collectively exhaustive sub-
groups. This basically means that every profile, approximate synchronous phase, and phase correction triple
(P) Psapprox» AP) belongs to exactly one stratum and cannot belong to another one simultaneously. Also,

this assures that all the triples in the dataset belong to some stratum such that none are excluded. This
partitioning is advantageous when subpopulations vary significantly, because independent sampling from each
subgroup captures variability more effectively than simple random sampling, which is exactly what is desired
for the many beam shapes that the CNN has to deal with.

4.4.2. Multi-Dimensional Stratum Encoding

We encode five parameters into discrete strata:
S = Vp,ry,B,FF,0. (4.14)

Here,

e Vrp is the total RF voltage,

e 7 is the voltage ratio between harmonics,

o B is the magnetic field derivative,
e FF is the filling factor of the potential well,

e o represents the standard deviation of the Gaussian noise added to the profiles, or the amplitude of the
sinusoids added to simulate droop. In essence, it represents different types of augmentation.

Each dimension is discretized by identifying unique values within the dataset and mapping them to indices (a
sort of 5D variant of the data presented in Figure 4.4):
fmap(z) =1 where € Xuniquelt]- (4.15)

where 2 is the value in that particular dimension (i.e. 8 kV for Viutq;). This converts a continuous parameter
space into a finite set of discrete operational states, enabling systematic stratification across all parameter
combinations through parameter encoding.

4.4.3. Mixed-Radix Encoding for Compact Label Generation

To manage multi-dimensional stratification efficiently, we employ a mized-radiz encoding. Mixed-radix numeral
systems use position-dependent bases, making them ideal for encoding multi-dimensional indices with different
amount of sampling points within them (also known as cardinalities). The combined stratification label is

L =iy, - (ny-ng-npr-ne)+ir - (ng-nrr-ne) +ig- (Mrr - Ne) +irp - No + o, (4.16)

where n represents the number of unique values for each parameter (i.e. the cardinality), and ¢ represents the
index of a specific value within its parameter dimension.. This defines a bijective mapping from the multi-index
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space to N, enabling efficient grouping and sampling. To understand how Equation 4.16 gives unique indices
for each combination of (Vr,re, B, FF, o) consider the encoding of a simplified, 2D case in Table 4.2.

Table 4.2: Visualization of mixed-radix encoding for stratified sampling

Parameter Values Indices Mixed-Radix Final
Total Voltage (V) Voltage Ratio iry iyr  Calculation Label ID
200 0.1 0 0 0x2+0 0
200 0.2 0 1 O0x2+1 1
250 0.1 1 0 1x240 2
250 0.2 1 1 1x2+41 3
300 0.1 2 0 2x240 4
300 0.2 2 1 2x2+1 5

This table demonstrates the encoding scheme for a simplified 2-dimensional case with:

o Viotar With 3 unique values: [200, 250, 300] kV

o 7o with 2 unique values: [0.1,0.2]

4.4.4. Proportional Allocation Strategy

We adopt proportional allocation, where the sample size from each stratum is proportional to the size of that

stratum relative to the total population. For a stratum h with N}, profiles contained within it, total amount of

profiles N, and desired total sample size n (because we want to split between the training and the validation
dataset),

Ni

np=n X —. 4.17

p=nx (417)

This preserves the dataset’s natural distribution, which includes less amount of profiles where the matching

conditions were much more restrictive, but still ensures that these parameter combinations are not excluded.

4.4.5. Stratified Dataset Division Algorithm

The dataset division maintains proportional representation of all strata in both training and validation subsets
via the following procedure, which mirrors the supplied implementation:

Algorithm 3 Stratified Index Splitting for Balanced Dataset Division

1: Input: Label array L containing stratum identifiers, training fraction fiaim (80%), random seed
2: Output: Training indices, validation indices
3: > Initialization
4: Initialize empty dictionary to map each stratum to its sample indices
5: Initialize empty lists for training and validation indices
6: Set random number generator seed for reproducibility
7 > Group samples by stratum
8: for each sample index ¢ with corresponding stratum label /; in dataset do
9: Add index i to the list of indices belonging to stratum I;
10: This groups all samples with identical parameter combinations
11: end for
12: > Proportional split within each stratum
13: for each unique stratum s in the dataset do
14: Retrieve all sample indices belonging to stratum s
15: Randomly shuffle these indices to ensure unbiased selection
16: Calculate number of training samples (round-up): 7¢rain <— [ ftrain X Dumber of samples in stratum]
17: > Allocate samples to training and validation sets
18: Assign first ngpaqn shuffled indices to training set
19: Assign remaining indices to validation set
20: end for
21: > Combine all strata assignments
22: Concatenate training indices from all strata into final training index list
23: Concatenate validation indices from all strata into final validation index list
24: Return training indices, validation indices
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Using [-] (which is the same as rounding up) ensures very small strata contribute at least one training sample
when possible, preventing exclusion of rare conditions, even though it does not happen to that extreme extent
in the dataset (perhaps the lowest amount profiles in a parameter group is around 200 profiles).Furthermore,
as mentioned before, this balanced sampling approach offers several advantages in the context of machine
learning for longitudinal bunch profile control:

e Enhanced generalization: exposure to diverse operational conditions improves robustness across the
parameter space.

e Bias reduction: prevents under-representation of rare yet important situations that could potentially
occur in the accelerator, such as low total voltages to perform longitudinal shaving in BCMS beams.

Even though at these low total voltages, there will be a lower amount of matched profiles across the B
as shown in Figure 4.4.

e Reliable validation: stratified validation reflects true operational performance across the different op-
erational regimes, and different types of profiles, giving more confidence in the generalization capabilities
of the model.

o Statistical efficiency: typically lower variance in the computed solution than simple random sampling
when strata differ substantially, as is the case for the different types of profiles generated[55].

4.5. Reinforcement Learning Framework
4.5.1. Theoretical Foundation

Reinforcement Learning (RL) approaches the accelerator optimisation problem as a sequential decision-making
task, where an agent learns to select parameter adjustments based on observed beam states [22]. This method-
ology accommodates the iterative nature of accelerator tuning where one does not expect to immediately
converge to the optimal profile in one correction, and provides mechanisms for exploration and adaptation to
optimise its behaviour.

Markov Decision Process Formulation
The accelerator optimisation problem is formulated as a Markov Decision Process (MDP) defined by the tuple

(S, A, P,R):
e State space S: Beam profiles and current parameter settings

e Action space A: Parameter adjustments A®,, for double-harmonic and AVjgtar, Ara, Ars, APy, Adg
for triple-harmonic.

o Transition dynamics P: System response to parameter changes (in this case it is the profiles coming
from from the phase correction)

e Reward function R: Beam quality metrics

Central to many RL approaches is the concept of value functions, which estimate the long-term expected
reward for taking specific actions in particular states. The idea, in general, is to maximize this value as it
should relate to good performance of the algorithm:

Q(s,a) =E

Z’Yth-s-l

t=0

St =S,ar = a‘| (4.18)

Where:
e Q(s,a) represents the expected cumulative reward

e s is the current state
e q is the action taken

o ~ is the discount factor (typically between 0 and 1), higher values indicate rewards down the line have
a higher influence on the cumulative reward, and vice-versa.

e Ry41 is the reward received at timestep ¢ + 1

Other important concepts in RL are:
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e The Agent: The decision-making entity that interacts with the environment, it usually attempts to
follow what it believes will maximize Q(s,a).

e The Environment: The system in which the agent operates, which in this case is the BLonD simulation
code.

Furthermore, there are several RL algorithms that can be used to achieve this goal, and they are tailored to
either discrete, continuous or binary action spaces [52]. In the current task, we look for something that can
handle continuous action spaces such that it can theoretically achieve any type of accuracy, given that the
model converges to such a degree. As a result, given its many advantages in stability during training through
several tricks, Twin Delayed Deep Deterministic Policy Gradient (TD3) is used, but it is also important to
explain how it inherits from its predecessor Deep Deterministic Policy Gradient (DDPG).

Policy Gradient Methods

Policy gradient methods directly learn a parametrized policy mg(als) (parametrized by ) that maps states
to actions, also referred to as the “actor”. Unlike value-based methods that first estimate values using a
parametrized function Q(s,a) (like deep Q-learning), also referred to as the “critic”, and then derive a policy
to maximize those values (simply selecting the action with the highest associated Q-value), policy gradient
methods optimize the policy parameters directly[52]. Here the objective is to maximize the expected cumulative
reward by finding the right parametrized policy my:

J(0) =Erer,

T
> R(st, at)] (4.19)
t=0

Deep Deterministic Policy Gradient (DDPG)

The previous two methods set the stage to explain DDPG, which bridges the gap between policy gradient
methods and deep Q-learning, designed for continuous action spaces[22]. It introduces two key neural networks:

o Actor Network: Learns the policy m(s|6™)
« Critic Network: Estimates the Q-value Q(s, a|6?)

Furthermore, the actor network is trained by using the Q-values estimated by the critic network. DDPG
employs an off-policy learning approach, meaning it can learn from previously collected experiences stored in
a replay buffer which do not correspond to the actions taken by the current policy (i.e. they relate to previous
policies). Additionally, the key innovations in DDPG include:

1. Deterministic policy for continuous action spaces.
2. Separate target networks for stability, which will be clearer after introducing the loss function.
3. Experience replay to de-correlate training samples, as sequential samples of the environment are usually

highly correlated as a certain action is related to the previous one. For example, following a big correction
to get close to the optimum, will ideally lead to a smaller correction to slowly approach the optimum.

The DDPG loss function for the critic network is formed by attempting to reduce the Bellman error (also
called temporal difference or TD error) and can be expressed as:

L(69) = E(s,a,n,5n~p [(r +7Q' (s, 7 () = Q(s,a))?] (4.20)
Where:
e D represents the replay buffer.
e Q' and 7’ are target networks for the critic and the actor, respectively.

This loss function can be propagated backwards much like how it was done in the case of the CNN, and the
parameters can be updated. Here, the relevance of the target networks can be noted, as if Q and @’ where
parametrized by the same 6, then when minimizing the loss function, this would cause instability, as v ~ 1.
Thus, in DDPG, the parameters of the target networks generally lag behind the actual critic to avoid this
issue.

Despite its innovations, DDPG suffers from several limitations: overestimation of Q-values (also called over-
estimation bias), sensitivity to hyperparameters of actor and critic networks, and potential instability in the
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minimization of the loss function in Equation 4.20 caused by the overestimation of Q-values, which then influ-
ence the learned policy. However, these limitations can be addressed by similar algorithms. Specifically, the
Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm can be used to overcome these detriments
[22].

Twin Delayed Deep Deterministic Policy Gradient (TD3)
TD3 extends the Deep Deterministic Policy Gradient (DDPG) method [31] with several key improvements to

improve stability and performance which are catered towards reducing the impact of overestimation bias in
the training process.
The algorithm maintains four neural networks:

o Actor network 7y (s): Maps states to actions

o Target actor network 7y (s): Slowly updated copy of the actor

« Twin critic networks Qg, (s,a) and Qg, (s, a): TD3’s twin critic architecture helps mitigate overestimation
bias as we will see.

o Target critic networks Qg (s, a) and Qo (s,a): Slowly updated copies of the critic networks.

Aside from the introduction of the twin critics, there are two more innovations of TD3:

1. Delayed Policy Updates: The policy network is updated less frequently than the critic networks,
which allows the policy to be more robust to unreliable estimates of Q-values.

2. Smoothed Target Actions: Noise is added to target action predictions to prevent overconfident
exploitation of possibly erroneous Q-values. This is also known as policy smoothing as it prevents less
peaked policies caused by peaked Q-values.

So, like in DDPG, critic networks are trained to minimize the Bellman error:
Lo =Eans)~p (1 = Qu(s,0)’] (4.21)

but now the target value y is the minimum of the twin target critics, which helps reduce the overestimation
again:

y=r+7min Qg (s, a") (4.22)

with @’ = mg/(s") + € and € representing target policy smoothing noise.
Then the actor network has its own loss with is attempting to maximize the expected Q-value:

Ly = —Esnp [Qg, (s, mo(s))] (4.23)

Additionally, the target networks in this case are updated through a process called Polyak averaging, meaning
that they do still lag the actor and critic networks, but they are updated using a Polyak factor factor 7. Thus
the parameters are updated as follows whenever the policy is updated:

¢, =1¢; + (1 —7)¢, for i=1,2 (4.24)

(2

0 =m0+ (1—71)¢ (4.25)

RL Neural Network Learning in Context

The neural networks in TD3 learn through different mechanisms:
Critic Networks: Learn to estimate the value of state-action pairs by minimizing temporal difference errors.

The networks develop internal representations that capture the relationship between the longitudinal bunch
profile \i, parameter corrections (or actions), and resulting bunch profile /\{ .
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Actor Network: Learns a deterministic policy mapping from bunch profiles to optimal parameter corrections.
Through the policy gradient theorem, the network parameters are updated in directions that increase the
expected cumulative reward.

As mentioned before, in vanilla RL, the critic and actor networks are based on classic MLP modules (from now
referred to as dense layers), relying on the for feature extraction and computing the final action to be taken.
This could potentially be augmented with the use of convolutional layers to benefit from the signal analysis
capabilities of CNNs. However, as (very) recent research has shown, there is a fundamental disconnect between
convolutional layers and the dense layers that ensue when setting up an RL agent to use convolutional blocks
as a feature extractor [57]. This is mainly because the connection between the convolutional and dense layers
generates a bottleneck that, if not properly tuned, generates dormant nodes in the dense layers, meaning they
don’t contribute to the final result nor the learning. The authors also propose a simple and effective solution
of using a global average pooling (GAP) layer on the feature maps over the spatial dimension (which for the
current case would be the profile bins), and then feeding them to the dense layers and this reactivates the
dormant nodes [57]. However, at the time of making the models, this solution was not known and the standard
dense layer approach is considered.

To summarize the training procedure, Algorithm 4 shows this for the TD3 agent. Note that in the “update
step” criteria, it also implies that we wait until there are sufficient samples such that the update is meaningful
(usually after 8000 transitions). Again, the approximate synchronous phase is added to the state and in
this case the learning rate is kept constant over the training due to the fact that the learning is much more
explorative and dependent on the Q-values than just back-propagating the gradients as was done in the CNN,
so it makes no sense to reduce the learning rate when doing so can keep the actor in a local minima far away
from the true optima. Note that in this case, the model would be comparable to Figure 4.9, but completely
bypassing the feature extraction component and going straight to the dense layers.

4.5.2. Applicability and Advantages

The RL frameworks, in general, offer several advantages for accelerator optimization:

e Sequential decision-making: iterative optimization procedures to approach convergence, which gives
the optimization tool the desired behaviour not provided by CNNs.

« Exploration capability: ability to discover different approaches which lead to the fastest and most
efficient path to the desired outcomes. This becomes more important for the triple-harmonic optimizer
as the parameter space is more complicated and the amount of features that change when one or various
parameters are modified is much higher and less predictable than for second-harmonic operation.

e Adaptability: continuous learning and adaptation to changing conditions. Again this is not the case for
double-harmonic as it depends on the labelled dataset, but it does become important for triple-harmonic
as there is a figure of merit that allows for continuous adaptation and the possibility of continuing the
learning process in the machine itself.

o Safety considerations: action space constraints can limit potentially harmful parameter changes in a
way that is engrained in the model and it is not enforced, as will have to be done in the implementation
of the CNN.

e Convergence behaviour: as the reward function can be modelled to our liking, there is an implicit
modelling of the optimization trajectory that we would like the tool to take. As a result, convergence
behaviour, including small adjustments when near the optimum, can be encouraged.

The safety aspect deserves particular emphasis. The continuous action space can be constrained to ensure
that parameter adjustments remain within safe operational bounds, preventing large changes that could lead
to beam loss or equipment damage. While the primary safety mechanisms rely on external fail-safe systems,
the boundedness of the RL agent’s actions provides an additional layer of protection.

4.5.3. Limitations
Despite these advantages, TD3 RL agents exhibit significant limitations:

e No historical memory: Each decision is based solely on the current state, ignoring valuable information
from previous corrections. Unlike the CNN it can be modelled to possess convergence behaviour, but it
still has no memory of the previous states, which could prove troublesome for generalizing to different
impedances and accelerators.

» Sample efficiency: RL agents are famously very sample inefficient[52]. They require extensive training
data to learn effective policies and explore different routes to the desired outcome.

e Stability concerns: Policy learning can be unstable, particularly in complex environments, and the
hyperparameter sensitivity of the final performance of the agent is very high, even with the improvements
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Algorithm 4 TD3 Training for Double and Triple-Harmonic Phase Optimization

1: Initialize actor network mg(s), critic networks Qg4, (s,a), Qg, (s, a)

2: Initialize target networks with same weights: 6’ < 0, ¢} < ¢1, &y + P2

3: Initialize Adam optimizer with constant learning rate

4: Initialize replay buffer D

5: for episode = 1 to max_ episodes do

6: Reset accelerator simulation and get initial bunch profile pg

7: Define initial state so <= (Po, @sapprox))

8: for t = 0 to max_ steps_ per_episode do

9: > Action Selection and FEzxecution
10: Sample action from policy with exploration noise: a; < m(s:) + €, where € ~ N (0, o)
11: Apply correction a; to the simulated RF system
12: Observe the new bunch profile p;4; and calculate the reward r;
13: Define next state syy1 < (P41, Psapprox)
14: Store transition (¢, as, ¢, S¢+1) in replay buffer D
15: if update step then > Perform updates every few steps
16: > Sample and Compute Target
17: Sample a random minibatch of B transitions (s;, a;,7;,sj4+1) from D
18: Select target action with clipped noise: @;41 < mgr(sj11) + clip(€/, —¢, ¢)

19: Compute the target Q-value using the clipped double-Q trick:
20: Yyj < 7j +ymini=1 2 Qg (Sj4+1,a5+1)
21: > Critic Updates
22: Update critic networks by minimizing the MSE loss:
23: Lg, % Zf(Q¢7<SW aj) - yj)2
24: ¢; + Optimizer.step(¢;, Vg, Lo,) for i = 1,2
25: if policy update step then > Delayed policy and target updates
26: > Actor Update
27: Compute actor loss (policy gradient): L. + —5% Zf Qo (85, m9(s5))
28: 0 + Optimizer.step(8, VL)
29: > Target Network Updates (Polyak Averaging)
30: ¢ T+ (1—7)p, for i =1,2
31: 0+ 710+ (1—71)0
32: end if
33: end if
34: end for
35: end for

of TD3 over DDPG.

The lack of historical memory represents a critical limitation in accelerator applications. Human operators
naturally consider the sequence of previous adjustments and their outcomes when making tuning decisions.
This historical context provides crucial information about system behaviour, and implicitly handles varying
impedances and convergence trends that pure Markovian policies cannot capture.

4.6. Memory-Augmented Reinforcement Learning
4.6.1. Theoretical Foundation

The limitations of memoryless RL agents motivate the integration of memory mechanisms that can capture and
utilize historical information from previous optimization steps. Long Short-Term Memory (LSTM) networks
provide a natural solution by maintaining internal state representations that evolve over the course of an
optimization episode [36]. It was initially formulated to deal with Partially Observable Markov Decision
Processes (POMDP) where sensors are required for state formulation and they can break or malfunction. In
the current case, given that there are some incomplete parameter groups as explained in Section 4.1.4, this will
help when the environment finds itself in one of these unmatchable situations as it will yield a bunch profile

that is identically 0 everywhere. This is the partial observability behaviour that we are dealing with in the
current case.

LSTM Architecture

The core of the LSTM architecture is its cell, which maintains a cell state C; to act as a long-term memory
and a hidden state hy as a working, short-term memory. The flow of information is controlled by three primary
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gating mechanisms: the forget gate, the input gate and the output gate.

The first step is to determine which information from the previous cell state C;_1 should be discarded. This
decision is made by the forget gate, a sigmoid layer that takes the previous hidden state h;—; and the current
input z; as inputs. It outputs a number between 0 and 1 for each element in the cell state, where 1 means
"keep this” and 0 means "forget this”.

fe=0(Wy - [he—1,24] + by) (4.26)

Next, the network decides what new information to store in the cell state. This process has two parts. First,
an input gate layer (a sigmoid function) decides which values will be updated. Second, a tanh layer creates a

vector of new candidate values, C~'t, that could be added to the state.

it == O'(Wl . [ht—l; It} + bl) (427)
Cy = tanh(We - [he_1, 4] + be) (4.28)

The old cell state C;_; is updated into the new cell state C;. The previous state is multiplied element-wise by

the forget gate vector f;, discarding the selected information. Then, the new candidate values C, are scaled
by the input gate vector iy and added to the result. This additive interaction is important for mitigating the
vanishing gradient problem that RNNs .

Ci=f; ®Ci1 +1i @ Cy (4.29)

Finally, the network determines its output, which is a filtered version of the cell state. The output gate, a
sigmoid layer, decides which parts of the cell state will be included in the output. The cell state is passed
through a tanh function to squash the values between -1 and 1, and this is then multiplied by the output of
the sigmoid gate to produce the new hidden state h;.

O = O'(WO . [ht—h th] + bo) (430)
ht = oy ® tanh(C}) (4.31)

In these equations, [hi—1, 2] denotes the concatenation of the two vectors, Wy, W;, W¢, W, are the weight
matrices, and by, b;,bc, b, are the bias vectors for each respective layer. As before, the symbol ® represents
element-wise multiplication.

LSTM-TD3 Integration

The integration of LSTM memory with TD3 creates a hybrid architecture where the policy and value functions
have access to historical information. The LSTM processes sequences of states and actions, maintaining an
internal representation of the optimization trajectory, much like a human would.

The modified actor network becomes:

ar = mo(st, hi—1) (4.32)

where h;_; represents the LSTM hidden state encoding historical information. Similarly, the critic networks
also incorporate memory:

Qo(stsat, hi—1) (4.33)

Learning with Memory

The learning process in LSTM-TD3 requires careful handling of temporal dependencies. The replay buffer
stores sequences rather than individual transitions, and training involves processing these sequences to maintain
the temporal structure necessary for LSTM operation.

Using this historical information LSTM learns to identify patterns in the optimization trajectory (also referred
to as the history buffer), such as:
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o Convergence trends and oscillatory behaviour.

o Effectiveness of different parameter adjustment strategies and system response characteristics under
various conditions, especially important for triple-harmonic operation.

e Correlation between consecutive adjustments and outcomes, with them being the rewards obtained or
the actions derived.

As a result of this, the amount of information the LSTM has to work with, meaning the length of the history
buffer hje,, becomes an important hyperparameter that is added on top of TD3 hyperparameters. Furthermore,
the usage of historical information implies that, in the programming sense, the replay buffer has to have
considerably more complex to be able to handle only taking as much information as there is available and
considering the termination signal of a given episode, as we don’t want to include information in the history
that is coming from another episode. Additionally, this becomes even more intricate when considering the
possibility of parallelizing environments to speed up data collection, and also the possibility of using a replay
buffer different from the traditional First-In-First-Out (FIFO) buffer. This will be discussed next.

4.6.2. Replay Buffers with Memory

The traditional experience replay mechanism in deep reinforcement learning employs a First-In-First-Out
(FIFO) buffer that stores transition tuples (¢, at, ¢, S¢+1) and samples them uniformly during training. While
this approach successfully breaks temporal correlations and enables stable learning, it treats all experiences
equally, regardless of their learning potential. This uniform treatment becomes particularly limiting when
dealing with sparse rewards or when certain transitions contain significantly more information about optimal
behaviour than others, as we have when we want convergence behaviour [33].

Prioritized Experience Replay

Prioritized Experience Replay (PER) addresses this limitation by assigning importance weights to stored
transitions based on their temporal difference (TD) error. The core insight is that transitions with larger TD
errors represent situations where the agent’s current value estimates are most inaccurate, and therefore offer
the greatest learning potential. The sampling probability for transition ¢ is defined as:

. D
Pli) = e DR
k Pk

(4.34)

where p; is the priority of transition ¢ (typically the absolute TD error plus a small constant € to ensure
non-zero probability), and « determines how much prioritization is used, with o = 0 corresponding to uniform
sampling. To compensate for the bias introduced by non-uniform sampling, importance sampling weights are
computed as:

wi= (o) (13)

where IV is the buffer size and S controls the amount of importance sampling correction, typically annealed
from an initial value to 1. By annealing, initially the weighting is less based on the sampling which makes
sense given that the networks are still in the early learning stages. Later on, it gets more and more confident
in the TD errors as more information is already in the buffers.

The efficient implementation of prioritized sampling relies on a sum tree data structure, a binary tree where
leaf nodes store transition priorities and internal nodes store the sum of their children’s priorities. This enables
O(logn) sampling and priority updates, making PER, computationally feasible for large buffers [32].

Memory-Augmented Prioritized Replay

Extending PER to LSTM-based agents introduces more challenges. Rather than sampling individual transi-
tions, the buffer must maintain and sample sequences of experiences while respecting episode boundaries. The
complexity arises from several factors:

1. The notion of "history” in LSTM-TD3 requires extracting not just a single transition but a sequence of
preceding transitions up to length hj.,. This historical context enables the LSTM to build its hidden
state representation, capturing temporal patterns that inform the current decision.

2. Episode boundaries must be carefully handled. When extracting history for a sampled transition, the
sequence must not cross episode boundaries, as this would mix information from unrelated trajectories
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and possibly different parameter combinations (Vtoml,rg,B,F F) in double-harmonic and B in triple-
harmonic. The implementation employs an iterative backward search from each sampled index:

Hy = {(St*kvat*k) k€ [Lmin(hle'rut - tepisodeistart)}} (436)

where H; is the history buffer at step ¢ and tcpisode_start denotes the first step of the current episode.

While there are studies that implement PER buffers with LSTM-TD3 agents (see [32]), they do not provide
their code. Also, the code provided by the original LSTM-TD3 paper (see [36]) is considerably unoptimised
(mainly due to the logging mechanism of keeping all details in memory) and made training very slow, besides
only using FIFO buffers. To top all of it off, there was no compatibility with parallelised environments
which would speed up data collection, so this implied taking the original LSTM-TD3 code from the authors,
optimising it, adding PER buffers and also adding compatibility for parallelisation.

Parallelized Environment Considerations

As mentioned, modern reinforcement learning often employs multiple parallel environments to accelerate data
collection. In the current case, in order for the parallelisation to benefit data collection, each environment has

to have a different shuffling order of the parameters used ((Viotar, 72, B, FF) for double-harmonic and B for
triple-harmonic), otherwise we would just be repeating the same order across all environments and it would
mean repeating almost the same corrections (with different noise) across many environments. This is handled
by making each environment have its own Random Number Generator (RNG) using a seed dependent on the
process ID.

This parallelisation introduces even more complexity to the replay buffer design. Two primary architectures
emerge:

The Separate Buffer Architecture maintains independent prioritized replay buffers for each environment
with each buffer providing a fixed amount of samples to the complete buffer. This approach ensures that
experiences from different environments remain isolated, preventing potential interference when adding samples
to the buffers and also when sampling history buffers. However, it may lead to imbalanced sampling if certain
environments generate more informative experiences than others because the TD errors may be higher in some
environments than others, but they all produce the same amount of samples for the complete buffer.

The Unified Buffer Architecture employs a single prioritized replay buffer shared across all environments,
with an additional integer environment identifier stored with each transition. This approach provides several
advantages:

« Global prioritization ensures that the most informative experiences are sampled regardless of their source
environment.

e Better memory utilization as the buffer capacity is not pre-divided among environments, which reduces
the overhead in the amount of memory taken up by the objects themselves.

e Simplified priority management with a single sum tree structure rather than individual sum trees.

The unified architecture’s history extraction mechanism employs an iterative search that skips experiences
from different environments while continuing to look backward for valid history and the algorithm is shown in
Algorithm 5. This iterative approach maximizes history utilization by continuing the search beyond experiences
from other environments, resulting in more complete historical context for the LSTM networks. Nevertheless,
it does imply more computational effort to iteratively look for relevant samples to add to the history buffer.

Another important consideration that must be made with parallelisation is the modification of the replay ratio
Treplay, Which is defined as the number of gradient steps done for each transition collected in the replay buffer.
It can be seen as how many times a sample in the replay buffer is used to update the networks before it is
kicked out of the buffer because new transitions enter. So when it is very high, the RL agent becomes more
sample efficient, but it is focusing a lot on reusing the samples in the replay buffer and it can lead to overfitting
and vice versa. With PER this equation changes a bit, as we remove samples from the buffer that have the
lowest priority, so it could be that a sample stays there for longer if it still represents a lot of information to
the learning in the critic networks. However, it still represents the same thing on average, only that some
transitions might stay for longer and others for a shorter number of updates.

As a result it is a very important value in the training that can lead to completely different results. To
mitigate this, we set a certain replay ratio and use it as a hyperparameter of the training, and then calculate
the amount of gradient updates that should be performed given that replay buffer, the number of parallelized
environments, and the batch size B of the updates (which is another hyperparameter as it changes the amount
of samples drawn from the buffer):
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Algorithm 5 Iterative History Extraction for Parallel Environments

1: Input: Sampling index in the buffer ¢dz, environment ID n, maximum history length hje,,
2: Initialize history buffer filled with zeros H < zeros(hien, dim(s))
3: Set search index j < idx — 1
4: while |H|< hje, and j > 0 do
5: if env_id_buf fer[j] = n then > Only consider the transitions within one environment
6: if done_buf fer[j] = 1 then
7 break > Episode boundary reached
8: end if
9: Append j to H
10: end if
11: j—j—1 > Keep going backwards in the buffer

12: end while
13: Return: Reversed H for chronological order

Nenv X Treplay (437)

Number of gradient steps / updates = 5

In practice we add this number of gradient steps to a “update credit” counter, which is considering how many
updates should be performed in that given step according to Equation 4.37. Then in the update itself, we
round down this update credit and perform that amount of gradient updates, subtracting the amount of times
we update (which is necessarily an integer) from the update credit. Like this we are sure to always update only
the amount of times indicated by the combination of the replay ratio rrepiay, the batch size B and the constant
amount of ne,, for a given training (which depends on the availability of cores/threads in the computer or
node where we are running the training).

History Processing . .
Pre-LSTM Feature Extraction LSTM Feed Forward Post-LSTM Processing

Previous States Dense Layer: LSTM Layer: Dense Layer:
[ Ryen, 1001 + a ] Feature Extraction Memory Processing
en’

Amax [ hyen, features] [ hyen, memory proc.]

[ hien, memory features]

Get processed LSTM
output (last index):
[ 1, memory proc.]

oo e atus Exract Combination of
[1,1001 + @ ] Feature Extraction

max [ hyen, current features] Concatenate

Current & Historical
Observations

Current State Feature Extraction Combination of Features

Figure 4.10: LSTM-TD3 model forward pass

The training procedure is now considerably modified from the TD3 variant with the introduction of the LSTM
network, the history buffers H, the PER buffer and the parallelisation, and the general procedure is shown in
Algorithm 6, while the graphical depiction of the forward pass for the model is shown in Figure 4.10. Note that
the action is now contained within the state to give even more context, but it is normalised by the maximum
action, Gmqz, such that the network always receives a value in the range [—1, 1]. This would help it to generalise
to even bigger actions in the case that this is desired.
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Algorithm 6 LSTM variant of TD3 with Prioritized Experience Replay (PER)

—
=

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

Replace actor/critics with LSTM variants: m(s, H), Qg, (s, a, H); clone targets as in TD3
Initialize PER buffer D with (a, 8p) — (0.6,0.4))
Initialize Neny environments with their RNGs and history buffers H(™ « zeros(hien, dim(s))
Initialize update credit < 0
for episode = 1 to max__episodes do
Reset environments and define initial states S(()n) < (P0s Psapproz))
for t = 0 to max_ steps_ per_episode do > Data collection (parallel)
for each env n in parallel do

> Sample/Compute Action and Apply
(n) random, t < startup_ steps
a
! ﬂ@(sgn), H™) + N(0,02), otherwise

Execute action a,E”), observe the reward Tt(n), get the next state sgi)l

> Store Transition with Max Priority
Store the transition in the buffer (with maximum priority P,,q. so it is used at least once)
> Update History Buffer
Update histories H(™ « append (s{",a{™)
if max steps reached then
Reset history H(™) < zeros(hjen, dim(s))
end if
end for
if t;0¢q; > update_after then
Add update credit + = " prentey
number of updates «+ int(update credit)
for £ = 1 to number of updates do
> Anneal 3
Update 5 — 6(ttotal)
> Sample from D using priorities j ~ P(j) o< p§
Sample batch of B transitions with histories (s;, H;, a;,7;, Sj+1, Hj+1) from D:
> Compute Update Weights
Compute update weights per sequence j: w; < (%%)6, normalize by max
> Compute Target and TD errors
Target smoothing: a;1=mp (5541, Hj41)) + N(0,08,,)
Choose the minimum of the target twin critics y;=r; + v min;— o Qq%(sj“, Hjit1,8541,)
Compute the TD error for each critic 6;,; + |Qg,(sj,H;,a;)—y;| for i =1,2
> Critic Updates
Update critic networks by minimizing the weighted MSE loss:
[’Qi:% Z]B w;j - (53‘71')2 for i = 1, 2
¢; < Optimizer.step(¢;, Vg, Lg,) for i = 1,2
> Priority Updates with small €,r; s0 pj >0
Update PER priorities per sequence: p; <— max|d; ;|+epi for i = 1,2
if policy update step then > Delayed policy and target updates
> Actor Update
Compute actor loss (policy gradient): L + —% Zf Qs (85, Hj,mo(s5,Hj))
0 < Optimizer.step(8, Vo L)
> Target Network Updates (Polyak Averaging)
¢ TP+ (1—T)¢p; fori=1,2
0 710+ (1—1)¢
end if
end for
> Remove the amount of updates from the credit
update credit — = number of updates
end if
end for
end for
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Another element introduced is the random sampling of the action space for a given number of startup_ steps
such that random data is used in the buffers before updating. As a result, startup_ steps < update_ after.
Finally, there is also saving logic and a testing sequence on a separate test environment with its own RNG and
rendering features showing the profile, the action taken, the error in phase and the reward at a given step (it
renders to an animation) to be able to monitor and confirm the progress of the learning, but it is not included
in Algorithm 6.

4.6.3. Applicability and Advantages

Memory-augmented RL provides several critical advantages:

e Historical context: Incorporation of previous corrections and their outcomes in decision-making.

o Trajectory optimization: Ability to plan sequences of adjustments rather than individual steps allow-
ing for more complex strategies.

o Convergence acceleration: Learning from patterns in successful optimization sequences.

« Robustness: Better handling of noisy or inconsistent system responses, which could very well occur
when there are inconsistencies in the data acquisition.

The historical context capability addresses the primary limitation of memoryless approaches. By maintaining
information about previous states, actions, and rewards, the agent can make more informed decisions that
consider the broader optimisation context and generalise to other accelerators and impedances which can shift
the phase further from the ideal value used in the dataset.

4.6.4. Computational Considerations
While LSTM-TD3 provides enhanced capabilities, it introduces additional computational complexity:

e Memory overhead: Storage of hidden states and longer sequence buffers.
e Training complexity: Sequential processing requirements for LSTM components.

e Inference time: Additional computation for memory state updates.

Despite these considerations, the inference time remains suitable for real-time accelerator applications, as the
primary computational bottleneck lies in data acquisition and preprocessing to match the simulated training
distribution.

4.7. Feature Extraction and Preprocessing
4.7.1. CNN-based Feature Extraction

To improve learning efficiency and robustness, a variant of the LSTM-TD3 training incorporates control-
relevant Convolutional Autoencoder (CAE) that extracts compact, physically meaningful features rather than
using raw profiles directly. This has been proved to help in visual learning tasks, so the attempt is also made
here, with the possibility of also validating the CNN approach by visualizing if profiles can be clustered by
the necessary A®y phase correction[7]. The CAE architecture employs hierarchical convolutional layers with
progressively larger receptive fields to capture multi-scale beam characteristics—f{rom local peak shapes to
global profile width and shape. The architecture is summarized in Table 4.3, but it is not fundamental as it
just contains many learnable kernels and pooling layers to capture different features of the profile.

Table 4.3: Control-Relevant Autoencoder Architecture Details

Layer Channels Kernels Pooling Information Scale
Encoder (Profile Processing)

Convl 1— 64 [3, 5, 7] MaxPool(2)  Fine details: peak shapes, local
variations

Conv2 64 — 128 [9,13,17] MaxPool(2) Regional patterns: peak clusters,
segments

Conv3 128 — 256 [19, 25, 31] MaxPool(2)  Global structures: symmetry, en-
velope

Continued on next page
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Table 4.3 — continued from previous page

Layer Channels Kernels Pooling Information Scale
Conv4 256 — 512 [35, 45, 55] None Full context: long-range depen-
dencies

Context Encoding

¢s Encoder 1—32 — — Phase sensitivity information

Feature Fusion

Fusion Layer 544 — 512 — — Combined profile + ¢, features
Projection 512 — 32/64 — — Control-relevant latent space
Decoder (Reconstruction)

FC Layers 32/64 — 512 — — Latent expansion

DeConvl 512 — 256 7 Upsample(2) Coarse reconstruction

DeConv?2 256 — 128 7 Upsample(2) Medium details

DeConv3 128 — 64 7 Upsample(2) Fine details

DeConv4 64 — 1 7 None Final reconstruction

Output 1—-1 - — Positive beam profile (Softplus)
Auziliary Head (Phase Prediction)

MLP 32/64 — 2 — — Predicts [cos(Ag), sin(A¢)]

The training follows a transfer learning approach, meaning that it is first trained on one task and then it moves
on to the next. Thus, the training is performed in two phases:

1. Initial training (epochs 0-99): The model optimizes a combined loss function:

¢ Reconstruction loss to preserve profile information.

o Control relevance loss with Variance-Invariance-Covariance (VICReg) regularization that clusters
profiles requiring similar phase corrections in the latent space, using the cosine similarity of phase
errors (similar to how the cosine loss was implemented for the CNN) [11].

2. Phase-aware refinement (epochs 100+): After the initial reward plateaus, an auxiliary phase head
is introduced that predicts signed phase errors as 2D unit vectors [cos(A¢),sin(A¢)] from the latent
representation. This additional supervision helps the encoder identify control-relevant features more
precisely, albeit with the possibility of losing precision in the reconstruction task if it finds an avenue for
steeper loss reduction through the phase-aware refinement.

This approach yields a latent representation organized by ”what correction is needed” rather than visual
similarity, providing the RL agent with features that are compact (reduction from 1001 to 32-64 dimensions),
and control-relevant as the features are forced to relate to required phase corrections. Furthermore, two
possibilities arise for how the CAE can be used in the training of the RL agent:

1. Reduce Dimensionality of RL Input: Use the CAE to encode raw profiles into a latent space which
has richer features for the RL agent to use and converge quickly to the ideal corrections.

2. Augment the Raw Profiles: Use the CAE to encode the raw profiles that are not augmented by any
means, and then decode them again to feed into the RL agent. By doing this, one would assume that
because the CAE has been conditioned into looking at the most relevant features for phase correction,
that the profiles that would be fed into the RL agent are more refined in the portions that contain
information relevant for corrections, while being noisier or simply 0 in the portions where there is no
phase information. Additionally, when applied in the PSB, this might yield better results as the profiles
would be reconstructed to profiles that the RL has seen before, which might not be the case when using
preprocessed WCM signals. However, this also depends on the reconstruction quality of the CAE, which
might deteriorate after the phase-aware loss comes into play (epochs 100+).

Both of these approaches will be considered for the training to see how much performance can be increased.
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On a final note, the same type of stratified sampling described in Section 4.4 is employed in the training of
the CAE.

4.8. Hyperparameter Optimization

To maximize model performance, Optuna, a Bayesian optimization framework, is used to systematically ex-
plore the hyperparameter space. This framework was chosen due to its simplicity and performance in both
accuracy and computation time, offering a good compromise between them in comparison to other highly
similar frameworks like HyperOpt[26]. This is a sample-efficient way to map out the validation loss (for the
CNN) or mean training reward (for the RL agent), which is used as the value to minimize, as a function of
the hyperparameters. This means that the hyperparameter optimization will only be performed for the
double-harmonic optimizers. This is because only RL is considered for triple-harmonic optimization and
the main driving hyperparameters parameters are expected to be the training parameters as the quality of
training is heavily influenced by them. Thus, the same parameters or similar ones with slight modifications
should be fit for the triple-harmonic RL agent as well.

The validation loss is used because the generalisation of the model to untrained datasets is desirable, and
given how well defined the correct second harmonic phase is (provided the voltage and voltage ratio is high
enough) and the convolutional nature of the model, there is a high chance that the geometric understanding
of the profiles can be extrapolated to unseen scenarios. This is essentially required as operators are still able
to correctly phase a profile even when new voltage or momentum programmes. Meanwhile, the mean training
reward is used because it is representative of the reward across several parameter combinations due to the
parallelisation and the independent RNGs of each environment. However, a small change is made to the
objective value for the RL agents given the noisiness of the reward curves, which can be very large. This
change is to use the following objective function for the RL agents, where y is the objective value:

Yy = mean(rﬁnal cpoch) - Std(rﬁnal cpoch) (438)

where r is referring to the episode returns for each of the n.,, the parallelized environments, and std refers
to the standard deviation of those returns (o). This is also because as the model gets better it should be
better across all parameter combinations, and not the majority. So if it does not manage to perform at least
somewhat well on all parameter combinations, the standard deviation should be very large.

4.8.1. Optimization Procedure

The hyperparameter optimization process can be formalized as finding the set of hyperparameters A that
minimizes some 108 Liraining, Which in this case is either the validation loss or the mean training loss:

)‘* = argmin Etraining‘(fA (X)) (439)
A

where f) is the model configured with hyperparameters A, and X is the data used to train each model.

Optuna employs Tree-structured Parzen Estimators (TPE) to efficiently explore the hyperparameter space
[60]. The TPE algorithm models the conditional probability of hyperparameters given the observed objective
value y:

L) ify <yt

g(\) ify >y (4.40)

p(Aly) = {

where y* is a threshold value that is automatically computed from the samples taken, ¢()) is the probability
density of hyperparameters that yield good performance, and g(\) is the density of hyperparameters that
yield poor performance. For each trial, Optuna selects the hyperparameters that maximize the expected
improvement given the TPE:

o)

Anext = argmax —— 4.41
’ A g(N) ( )

Thus, it is expected that as the number of times that the objective value is probed increases, the better the
models are of the probability densities [(A) and g(\).
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4.8.2. Functional Analysis of Variance (FANOVA)

Functional ANOVA (fANOVA) is a variance decomposition technique that quantifies the importance of hy-
perparameters by analysing their contribution to the variance of the objective function. Unlike traditional
ANOVA, fANOVA leverages Random Forests to handle both continuous and categorical variables while cap-
turing non-linear relationships and interactions, while ANOVA can only capture linear dependencies with
variables [23].

Random Forests in fANOVA

Random Forests are ensemble learning methods that construct multiple decision trees and aggregate their
predictions. Each tree T}, in the forest is trained on a random sample of the data, and at each split in the
decision trees, only a random subset of features is considered, which in this case are the hyperparameters. At
the output level, the predictions of all trees are averaged and the Random Forest is trained to minimize the
MSE loss from the observed data, which in this case is the objective value. Essentially, it is building a function
estimator through the use of Random Forests, but the beauty lies in that it can exclude hyperparameters once
the model is trained, allowing interactions to be assessed and the individual variance contribution of a certain
parameter to be ascertained. This approach provides several advantages for fANOVA:

e Non-linearity: Trees naturally capture non-linear relationships through their hierarchical splitting
structure.

e Mixed variables: Can handle both continuous and categorical hyperparameters without preprocessing.
o Interactions: Automatically model hyperparameter interactions through the tree structure.

+ Robustness: Ensemble averaging reduces overfitting, crucial for small sample sizes.

The Random Forest approximates the objective function as:

(4.42)

—
)
I
&)~
M=
5
®

b=1

where B is the number of trees and T}, (x) is the prediction of the b-th tree for hyperparameter configuration
X.

Mathematical Formulation

Given the hyperparameter space X = A; x -+ x X; and the Random Forest approximation f, fANOVA
performs a functional decomposition:

d
F) = fo+ > filw) + Y fij(miay) + -+ fro a(x1,. .., 7a) (4.43)
i=1

i<j
where:
« fo=E[f(x)] is the mean prediction.
e fi(z;) = E[f(x)|zi] — fo is the main effect of hyperparameter i.
o fij(zix;) = E[f(%)|xs,x;] — fi(x:) — fj(x;) — fo is the interaction effect.
Efficient Computation via Tree Structure

The key insight is that these expectations can be computed efficiently using the tree structure. For a single
tree T', the marginal prediction for a subset S of hyperparameters is:

E[T(x)[xs] = Y v~ P(x€{|xs) (4.44)

Leleaves(T')

where vy is the prediction value at leaf ¢, and P(x € f|xg) is the probability of reaching leaf ¢ given the values
of hyperparameters in subset S. This essentially means that we can quickly compute the marginalization of a
certain hyperparameter and see its contribution to the objective value.
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Variance Decomposition and Importance
The total variance is decomposed as:

Var(f)= Y Var(fs) (4.45)

SC{1,....d}

The importance of hyperparameter 4, including all its interaction effects, is achieved by averaging over the
effect of all other variables (using the efficient marginalization described previously) and computing the variance
associated to that variable. Thus, it can be written as:

1, = Yar(Elfilzi]) (4.46)
Var(f)

This quantifies the fraction of the objective function’s variance that can be attributed to hyperparameter i
and its interactions, which tell us how important its value is.

Practical Considerations

For hyperparameter optimization with limited trials (e.g., n < 20), the Random Forest parameters should be
adjusted to reduce the number of trees (B = 16 — 32) to prevent overfitting, limit the tree depths (depth =
2-3) for better generalization and to use multiple random seeds to assess stability of importance estimates.
Furthermore, this can be coupled with other estimates such as the Mean Decrease in Impurity (MDI) impor-
tance estimator to confirm the results of the analysis. MDI is not explained as it is out of the scope, but it
uses a similar approach as fANOVA, just a different objective function to optimize the random forests.

The Random Forest-based approach makes fANOVA particularly suitable for hyperparameter analysis as it
naturally handles the mixed continuous-categorical nature of hyperparameter spaces and captures the complex,
non-linear relationships between hyperparameters and model performance.

4.9. Summary

This chapter has presented a comprehensive analysis of three ML frameworks suitable for accelerator param-
eter optimisation: CNN with attention mechanisms, TD3 reinforcement learning, and memory-augmented
LSTM-TD3. Each approach addresses different aspects of the optimisation challenge, with a clear progres-
sion from static pattern recognition to dynamic policy learning with historical context. The dataset creation
methodology, constrained by practical limitations of accelerator operations, fundamentally shaped the choice
for these ML approaches. The adoption of static profile datasets eliminates temporal methods while enabling
the development of robust optimisation policies through simulation-based training.

The progression from CNN to TD3 to LSTM-TD3 represents a natural evolution driven by the requirements of
RF system optimisation presented in Chapter 3. The frameworks presented in this chapter form the foundation
for addressing both the 1D phase optimisation problem in double-harmonic operation and the more complex 5D
parameter space control required for triple-harmonic systems. The theoretical understanding developed here
enables the analysis, evaluation and comparison of these approaches in the context of their training, simulated
PSB cycles and experiments in the PSB itself, as detailed in the verification and validation procedures in
Table 3.2.
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Double-Harmonic Operation: 9 Optimisation

This chapter presents the development and evaluation of three distinct machine learning approaches to au-
tomate the second harmonic phase correction: a Convolutional Neural Network with attention mechanisms
(CBAM) and a memory-augmented reinforcement learning agent (LSTM-TD3). Each approach offers unique
advantages and faces specific challenges in learning the complex relationship between beam profiles and opti-
mal phase settings, as detailed in Chapter 4. The CNN-based approach leverages spatial pattern recognition
to directly map beam profiles to phase corrections, while the RL agents learn through interaction with the
accelerator environment, potentially discovering better and more robust optimisation strategies.

We begin by examining the CNN with CBAM architecture, focusing on critical training considerations such
as data normalisation strategies. Subsequently, we analyse the performance of the RL agents, comparing their
ability to adapt to varying beam conditions and their robustness to operational uncertainties. Additionally, we
apply the verification and validation principles outlined in Section 3.3.1 in order to evaluate the ML frameworks
and their applicability.

5.1. CNN with Attention Mechanisms

5.1.1. Training Considerations

The training of convolutional neural networks for beam profile analysis presents unique challenges due to the
nature of the longitudinal beam profiles and their temporal dependency which is not immediately modelled.
This section examines critical aspects of the training procedure that significantly impact model performance.

Normalisation Strategy: Sum versus Maximum

A fundamental preprocessing decision involves the normalisation strategy for bunch profiles. Initially, sum
normalisation appears attractive, as it preserves information about charge concentration. This is a key indicator
of whether the system is phased in Bunch Shortening Mode (BSM) or Bunch Lengthening Mode (BLM), since
the main goal here is to minimise the maximum longitudinal charge density. As illustrated in Figure 2.26,
sum-normalised profiles reveal how charge clustering varies with different second harmonic phases, providing
clear visual cues that ideally should guide the model toward homogenising the distribution. Proceeding with
max normalisation eliminates this information when it is most critical, as seen in Figure 5.1, where the profiles
matched at different phases show practically the same bunch profile with minor differences. This will make it
difficult for the model to distinguish them.
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Figure 5.1: Comparison of beam profiles with different no normalisation (left) and max normalisation (right) at low total
voltages, voltage ratios and emittances
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Figure 5.2: Aggregated cosine loss error for the reduced dataset using the CBAM model, comparing maximum and sum
normalisation strategies across different beam parameters.

However, results using a reduced dataset without augmentation (no noise and no baseline droop) revealed
a counter-intuitive outcome when training the CNN with CBAM attention mechanisms: sum normalisation
consistently yielded higher prediction errors compared to maximum normalisation. Figure 5.2 demonstrates

this performance gap by showing the aggregated cosine loss error across various parameters Vioiqr, 72, B and
FF. The aggregated cosine loss shows approximately 20 to 40% higher errors when using sum normalisation

across all parameters. It is even more interesting to see that when there is no acceleration (5 = 0), there are
practically no errors for the max normalised model, while there is considerable error for the sum normalised
model.

This unexpected behaviour stems from a fundamental characteristic of the CNN architecture. The convolu-
tional layers naturally extract spatial features through their kernels, making them sensitive to relative patterns
rather than absolute magnitudes. When sum normalization is applied, the varying charge density across differ-
ent beam conditions introduces a scaling factor that interferes with pattern recognition. The model becomes
confused between changes due to charge density variations and changes due to phase relationships. This inter-
feres with updates to the network parameters as this additional factor negatively affects feature recognition.

Additionally, the approximate synchronous phase @s ., in the profile location becomes more dominant with
sum normalization. Since the beam’s temporal position within the RF bucket correlates strongly with the
optimal second harmonic phase as seen in Figure 2.23 where the higher ¢, the larger the deviation from w
required for optimal BLM phasing. As a result, the CNN learns to rely heavily on this positional information
rather than on the distribution shape. This creates a fragile predictor that fails in the simplest of cases for

B =0 as ¢sqppror = 0. This theory is supported by the plots seen in Figure 5.2.

The CNN'’s susceptibility to this issue relates to its hierarchical feature extraction process. Early convolutional
layers detect edges and peaks in the profile, while deeper layers combine these into higher-level features. Under
sum normalisation, the varying baseline levels caused by different heights of the profile create inconsistent edge
responses as the kernels are learning parameters that are not generalisable across different heights, disrupting
the feature hierarchy. Meanwhile, max normalisation effectively removes this confounding factor by ensuring
that all profiles have the same peak height, forcing the model to focus on shape characteristics. Although this
sacrifices some information about charge concentration, it creates a more robust feature space in which the
CNN can reliably learn the relationship between the bunch shape and the optimal phase settings. This trade-off
proves worthwhile in practice, as the normalised shape contains sufficient information for phase optimisation
while avoiding the pitfalls of intensity-dependent features.

Furthermore, in anticipation of the MLP network structure of the RL agents, it becomes important to consider
whether the sum normalisation can aid there, as it is incompatible with the convolutional layers but perhaps
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not with MLP. However, since this test is performed before the stratified dataset split was incorporated, instead
of only looking at the validation loss, it is more indicative of performance to take a weighted average of the
training and validation losses, in the percentages they represent in the dataset, with a training/validation split
of 85:15 in this case. This is done because the validation set could contain entire groups that are not seen by
the model, so it could yield varying validation losses that indicate that a certain model is better, when it is
entirely up to chance due to the randomised split of data.

The weighted loss is shown in Table 5.1 when training for 200 epochs (sufficient for both losses to have
plateaued) on the reduced problem for the CNN with CBAM (now referred to as CBAM to distinguish it
from no attention mechanisms), the CNN without attention mechanisms, and only the MLP-based phase
computation head shown in Figure 4.9. The max normalized MLP model still performs better on both the
validation and training dataset, and there is a higher percentage increase in the loss in this case compared
to the others. This process was repeated in order to observe whether the results were consistent, and also
repeated once the hyperparameter optimisation was performed. As will be discussed in the following sections,
the results were consistent, and the same conclusion was reached.

As such, only max normalization is considered as reasoning and empirical data seem to support it as being the
normalization technique yielding the highest performance. On a final note, even though it might seem that
Table 5.1 is performing an ablation study, this is not the case because this is reliant on unoptimised network
parameters, a reduced dataset as indicated in the horizontal axis labels in Figure 5.2, and a random split in
the dataset (compare with Figure 4.4). For example, if we were to use this as the ablation study, it would
indicate that because the validation loss is higher for the CNN than the MLP model, that there is no benefit
to having convolutional layers, when this is not the case.

Table 5.1: Weighted average of training and validation cosine loss comparison for different models and normalization strategies
(85/15 Train/Val Split, 200 Epochs)

Model Norm. Train Loss Val Loss  Weighted A (%)
Average

CBAM Max 1.03x107% 4.72x 1072 7.95x 1073 -
Sum 7.84 x107% 5.09x 1072 830x 1073  +4.40

CNN Max 211 x 1073 873 x 1072 1.49x 1072 -
Sum 1.96 x 1073 8.92x 1072 1.51x1072 +1.34

MLP  Max 5.62x 1072 7.14x107? 1.55x 1072 -
Sum 6.72 x 1072  7.39x 1072 1.68 x 1072  +8.39

Effect of Stratified Sampling and Data Augmentation

The performance of neural networks critically depends on the quality and distribution of the training data.
To investigate this dependency, we compare models trained on randomly split datasets against those using
stratified sampling combined with data augmentation, implying a more difficult learning task to be invariant to
the augmentation. The stratified approach ensures balanced representation across all operational parameters
while the augmentation introduces realistic measurement artifacts. Figure 5.3 reveals this because all three
architectures show significantly better validation losses when trained on the stratified dataset, despite the added
difficulty from augmentation. This improvement manifests itself differently across architectures, providing
insight into their learning characteristics.

The CBAM model (Figure 5.3a) demonstrates the most pronounced benefit from stratified sampling. Although
the non-stratified training achieves a lower final training loss (approximately 10~%), this apparent advantage
masks severe overfitting and is only due to the simpler task due to lack of augmentation. The validation loss
remains stubbornly high around 5 x 1072, creating a generalization gap of nearly two orders of magnitude.
In contrast, the stratified dataset yields more balanced learning curves, with the validation loss stabilizing
near 1.6 x 1073, representing an improvement of over 90%. The higher training loss in the stratified case
(2.8 x 1073) actually indicates better learning, as the model must generalize across augmented profiles with
noise and baseline variations rather than memorizing clean examples.

The standard CNN (Figure 5.3b) exhibits similar behavior. The non-stratified validation loss plateaus around
8.9 x 102, while stratified sampling reduces this to approximately 2.5 x 1073, Interestingly, the CNN shows
more stable training dynamics than CBAM, with fewer oscillations in the loss curves. This stability suggests
that the simpler architecture is less prone to overfitting, although it still benefits substantially from proper
dataset preparation, and achieves a validation loss roughly 50% larger than that of the CBAM model.

The MLP results (Figure 5.3c) provide an important baseline, showing that even without convolutional struc-
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Figure 5.3: Training and validation loss evolution comparing non-stratified (NS) without augmentation (NA) versus stratified
(S) with augmentation (A) datasets. All models use maximum normalization and were trained for 200 epochs with identical
hyperparameters.

ture, stratified sampling improves generalization. The improvement in validation loss from 7.1 x 1072 to
4.8 x 1073 demonstrates that the benefits extend beyond spatial feature extraction. What is also interesting
to see is that for the MLP model, the stratified dataset and the augmentation lead to quicker learning than
without it, and a lower training loss even when considering the noise and baseline droop. This is an important
result, as it indicates that by augmenting the dataset the model focuses on the more important aspects of the
profiles, rather than “cheating” by using ideal profiles and using less relevant features that lead to the same
correction. This result indicates that when training the RL models, the profiles should be augmented to lead
to better performance.

Furthermore, when comparing the accuracy of each model, the loss must not be compared at face value because
the proportionality between losses changes when the cosine is applied in the cosine loss. The difference in
accuracy (in degrees) is lower than the difference implied by the losses of each model:

Lopay =1.6 x 1073 = Ady,,,,, = 3.24°
Lony =2.8 x 1073 = A®y,,p0r = 3.97°
Lyrp =48 x 1072 = Ady,,.,,, = 5.61°

A
ol o
[N
S~—  ~—r

In summary, the superior performance of stratified sampling stems from its systematic approach to dataset
construction. By ensuring equal representation across the five-dimensional parameter space (total voltage,
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voltage ratio, magnetic field gradient, filling factor, and augmentation type), stratified sampling eliminates
accidental biases that arise in random splits. For instance, a random split might place most high-voltage or
low-filling-factor examples in either training or validation, creating distribution mismatches that impair gener-
alization. This robustness is particularly important for the CBAM architecture, whose attention mechanisms
might otherwise focus on noise-free features that do not exist in reality.

These results carry important implications for deployment. Models trained on non-stratified data may per-
form well on beam conditions similar to their training set but fail catastrophically when encountering under-
represented parameter combinations. The stratified approach, despite requiring more careful dataset prepara-
tion, ensures consistent performance across the full operational envelope of the PSB and also results in more
reproducible training results as well. The additional computational cost of augmentation during training is
negligible compared to the operational benefits of robust phase correction.

5.1.2. Autoencoder Analysis for Feature Extraction
Training and Auxiliary Phase Head

To explore alternative representations of bunch profiles for phase correction, we investigated a convolutional
autoencoder (CAE) architecture with VICReg regularization. As mentioned previously, the approach aims to
learn a compressed latent representation that captures the essential features determining optimal phase correc-
tions or enabling data augmentation such that the RL can train on more consistent data from reconstructions
rather than the raw profiles. Applying this to the PSB would technically have the benefit of converting the
WCM-acquired bunch profiles into something that the RL has seen.
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Figure 5.4: Training and validation loss evolution for the CAE with 64-dimensional latent space

Figure 5.4 shows the training progression of the CAE. With a 64-dimensional latent space, both training and
validation losses plateau after approximately 40 epochs at a relatively high value of 0.26. This early saturation
suggests the model struggles to compress the “1000-dimensional” beam profiles effectively into such a compact
representation while maintaining reconstruction fidelity (as the loss is dominated by the reconstruction error).

The introduction of an auxiliary phase prediction head at epoch 100 marks change in the training. This
additional component predicts the optimal phase correction directly from the latent representation, adding a
supervised signal to the otherwise unsupervised learning process. The combined loss function then becomes
(whereas before Appgse = 0):

Etotal = (‘Creconstruction + )\VICReg»CVICReg + )\phaseﬁphase)/(]- + AVICReg + )‘phase) (54)

where L,hqse measures the cosine distance between predicted and true phase corrections. This multi-tasking
learning approach provides dual benefits: it directly optimises the latent space for phase prediction relevance,
and it helps overcome the clustering constraints imposed by VICReg regularization that may not align naturally
with the phase correction task. The resumed decrease in loss after epoch 100 validates this hypothesis, especially
since the loss is divided by the weighting of the individual loss components, suggesting the phase supervision
guides the latent space toward more meaningful phase-correction representations. Also, since the losses did
not plateau, it would have been ideal to keep training the CAE, but by this time it was already training for a
week on a NVIDIA H100 GPU (80 GB of VRAM, and high transfer speeds), one of the most capable GPUs
in the market. Thus, due to time and computational constraints, the training ended at this point.

To validate that the learned representations capture phase-relevant information, we employed t-distributed
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Stochastic Neighbours Embedding (t-SNE) to visualise the 64-dimensional latent space. t-SNE is a non-
linear dimensionality reduction technique that preserves local neighbourhood structures by minimising the
KL divergence between probability distributions in high and low-dimensional spaces (for exact details see [59],
here only the visualisation component of the technique is relevant). The algorithm constructs probability
distributions over pairs of samples, where similar samples have high probability of being picked as neighbours,
then finds a low-dimensional embedding that preserves these relationships (in this case compressing the 64
dimensions into 2 to show clustering).

t-SNE of latent space colored by correction t-SNE of latent space colored by correction magnitude

100 100

50 50
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Figure 5.5: t-SNE visualisation of the CAE’s latent space for 50,000 bunch profiles before and after auxiliary phase
conditioning.

Figure 5.5 shows the structure in the learned representations. The learnt clustering improves considerably
under the auxiliary phase conditioning, which is evident when comparing the t-SNE distribution before and
after conditioning in Figure 5.5a and Figure 5.5b, respectively. The latent space exhibits clear clustering based
on optimal phase corrections, with smooth colour gradients indicating continuous transitions between different
correction values. Particularly noteworthy is the sharp boundary between 7 and —m corrections (the yellow-
to-purple transition in Figure 5.5b). This discontinuity is not an artifact but rather physically meaningful:
corrections of +7 and —7 are equivalent, as they both represent a 180° phase shift. The CAE correctly learns
this periodicity without explicit instruction, providing strong evidence that convolutional architectures can
extract phase-relevant features from beam profiles.

Reconstruction Quality and Implications

Despite the encouraging latent space organization, the CAE’s reconstruction capability proves severely limited,
as was suggested by the stagnated training and validation loss in the reconstruction-dominated portion of the
training. Figure 5.6 shows representative examples across different profile types, revealing reconstruction
failures.

10 —— original 10 — original 10 —— original
—— Decoded —— Decoded —— Decoded

Normalized Amount of Particles [-]
Normalized Amount of Particles [-]
Normalized Amount of Particles [-]

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Normalized Trey [-] Normalized Trey [-] Normalized Trey [-]

(a) Double-peaked profile (b) Separate Charge Concentrations (c) Single-peaked, asymmetric profile

Figure 5.6: CAE reconstruction quality across different beam profile types. Blue: original profiles, Orange: reconstructions.
The reconstruction lacks in multiple aspects:

e Discontinuities: Profiles with separate charge concentrations like in Figure 5.6b are the worst recon-
structions overall, not only having an incorrect reconstruction, but also introducing discontinuities in
the profile that are completely unphysical.
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e Profile Shifts: The reconstruction introduces a shift to the double-peaked profiles secondary peaks
(Figure 5.6b), potentially disrupting the RL actor’s capabilities, given that it does not have convolutional
layers and, thus, does not have translational invariance.

e Adding Non-Existent Features: Besides the shift in the horizontal axis, the profile’s smaller peaks
are made larger, which could incorrectly indicate that there are smaller corrections to be made than
what is actually required.

These limitations likely arise from the combination of parameters that the CAE has to map to the same
phase correction, a task on which it focuses more after the introduction of the auxiliary phase head. The
reconstructed profiles in Figure 5.6a and 5.6b look similar to ro > 1 profiles that are offset in ®5 by the same
amount, which likely means that the CAE is understanding that because they map to the same correction, their
reconstructions should be similar. This is desired for the feature extraction and reducing the dimensionality
for the RL input, but not for augmenting the raw profiles and providing more robustness when deploying the
RL agent.

Training an RL agent on such corrupted data would teach it to respond to impossible scenarios, potentially
leading to degraded performance when deployed on real beam profiles. The agent might learn to exploit these
non-physical artifacts rather than understanding genuine beam dynamics. As a result, this analysis forces
neglecting the data augmentation approach and, rather than using the CAE for profile augmentation, two
approaches arise for the RL agent:

1. Direct latent space input: Feed the 64-dimensional latent vectors directly to the RL agent, leveraging
the phase-relevant clustering shown in the t-SNE analysis and avoid reconstruction entirely.

2. Traditional augmentation: Apply physics-preserving augmentations (noise, baseline droop) directly
to original profiles, maintaining data fidelity while increasing training diversity.

The comparative training results presented later will determine which approach yields superior phase correc-
tion performance. However, the autoencoder analysis already provides valuable insights: it confirms that
beam profiles contain learnable phase information (partially validating the CBAM and CNN approach) while
highlighting the challenges of dimensionality reduction in this domain.

5.1.3. Hyperparameter Optimisation

Initial Optimisation

In the first phase, all hyperparameters were optimised jointly in a single Optuna study comprising 190 trials.
The learning rate was sampled once per trial and then reduced with a quadratic schedule for the entire training
run of that trial. As the learning rate directly controls the magnitude of the weight updates, it dominates the
loss and consequently explains its large contribution of the variance in the results. This is reflected in Table 5.2,
where fANOVA attributes 93.64% of the total variance to the learning rate, while MDI assigns it 73.16%. Note
that because we are working with stochastic regressors (Random Forests are inherently stochastic, as explained
in Section 4.8), the importances were averaged over 1000 runs with randomized seeds.

Despite the dominance of the learning rate, the remaining parameters still receive non-negligible importance
scores, indicating that they influence the model when the learning rate is fixed. For instance, the convolution
kernel size, the widths of the two fully-connected layers, and the number of training epochs each explain
between 1.41%, 1.29% and 1.36% of the variance. This makes sense as the how much information from the
profile is considered in each convolution is determined by the size of these kernels (besides the parameters
that define the kernel itself), and the fully-connected layers combine all the feature maps’ information into the
predicted correction A®s. Meanwhile, the training epochs influence the final validation loss as it defines how
many gradient updates are performed. These small but important contributions are meaningful because they
reveal which architectural choices are robust to variations in the learning rate.

The insight gained from this first analysis motivated a change of focus. The overwhelming influence of the
learning rate suggested that a more sophisticated learning-rate schedule could reduce its apparent importance
and allow finer control over other factors such as kernel size and network depth. Consequently, we introduced
a scheduler that reduces the learning rate on plateau and expanded the search to include a third convolutional
layer and a broader range of kernel sizes.

Table 5.2: Parameter importance (% variance) for the Attention CNN Optuna study (averaged over 1000 runs)

Parameter fANOVA (%) MDI (%)
Learning rate 93.64 73.16
Convy /o kernel size 1.41 2.60

Continued on next page
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Table 5.2 — continued from previous page

Parameter fANOVA (%) MDI (%)
FC layer 1 width 1.03 1.50
Training epochs 1.36 3.86
Batch size 0.93 1.44
Conv2 channels 0.70 1.50
FC layer 2 width 0.26 2.14
Conv; channels 0.45 1.50
Channel-attention reduction ratio 0.12 1.01
Weight decay (L2) 0.09 11.28

Final Optimisation

In the second phase, we replaced the constant learning rate with the scheduler described in the methodology:
reducing the learning rate when validation loss stagnated. The scheduler automatically decays the learning
rate when the validation loss stops improving, thereby diminishing the role of the initial learning rate in
overall performance. To give every configuration enough time to converge despite the initial learning rate,
the maximum number of epochs per trial was fixed at 700. Because the scheduler adjusts the learning rate
dynamically, the epochs and initial learning rate hyperparameters became far less decisive; they now serve
only as upper bounds rather than as dominant factors.

The search space was also enriched:

o Kernel sizes for both convolutional layers were expanded to {3,5,7,9,11,13,15} and {21,23,25,27,29
,31,51}, respectively.

o A third convolutional layer (optional) was introduced, with its own kernel size and channel count.

e Dropout rates for the fully-connected part of the network were added to reduce overfitting.

A total of 66 trials were completed, limited by the computational budget. The additional convolutional layer
did not yield a reduction in validation loss; consequently, the best configurations omitted this extra layer. The
optimisation was therefore concentrated on kernel size tuning and dropout regularisation, with those yielding
the highest contributions to the variance: 26% and 20%, respectively.

The initial and final set of hyperparameters that emerged from this stage is listed in Table 5.3. Compared with
the initial optimisation, the kernel sizes for both Conv; and Convs increased substantially: from 7 to 15 and
from 7 to 31, respectively. Also, the number of filters grew from 16 to 24 for Convy; and 32 to 48 for Convs,
and the channel-attention reduction ratio was relaxed from 4 to 6. The learning rate was reduced by roughly
a factor of four, indicating that it did not need to be as high as it was before with a different scheduler. These
changes reflect the shifted emphasis toward expressive convolutional kernels and stronger regularisation, now
that the learning rate no longer dominates the loss landscape.

Table 5.3: Best hyperparameters shared between initial and final optimisations, with descriptive names. Conv2 kernel size is
included for completeness (not tuned in initial).

Parameter Description Initial Final

Learning rate Step size for gradient-based optimisation  8.15 x 10* 2.0 x 10*
(optimiser LR).

Conv; filters Number of output channels in the 1st con- 16 24
volutional layer.

Conv,, filters Number of output channels in the 2nd con- 32 48
volutional layer.

Conv; kernel size Kernel size for the 1st convolution. 7 15

Convy kernel size Kernel size for the 2nd convolution. - 31

FC1 width 1st hidden layer size in the dense layer after 192 512
feature extraction.

FC2 width 2nd hidden layer size in the dense layer af- 128 64

ter feature extraction.

Continued on next page
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Table 5.3 — continued from previous page

Parameter Description Initial Final

Channel-attention reduction  Squeeze ratio in channel attention (smaller 4 6
means stronger compression).

Weight decay (L2) L2 regularization coefficient applied to 2.3824 x 10° 1.3276 x 10°
weights for the AdamW optimiser.

Batch size Samples per optimisation step (mini-batch 64 64
size).

Validation Loss Comparison

The ultimate metric of interest is the validation loss achieved by each model after the respective optimisation
phases. Table 5.4 reports the loss for three architectures: the Convolutional Block Attention Module (CBAM),
a plain CNN, and a multilayer perceptron (MLP). The CBAM benefits most from the refined hyperparameter
search, showing a relative improvement of +6.33% (i.e., a lower absolute loss) compared with the initial opti-
misation. The CNN and MLP exhibit only marginal changes, which is expected because the hyperparameter
optimisation was performed for the CBAM model knowing that it would probably have better performance
due to the initial results presented. This highlights that while the optimisation does improve performance for
the individual parts of the model, it is catering much more to the collective improvement of the model and
the interactions between its parameters, which is exactly what is desired.

Table 5.4: Validation loss for initial and final optimisations

Model [Initial Validation Loss Final Validation Loss A Improvement (%)

CBAM 1.4804 x 1073 1.5740 x 103 +6.33
CNN 2.4387 x 1073 2.4606 x 10~3 +0.90
MLP 4.3544 x 1073 4.4097 x 1073 +1.27

Statistical Reliability of the Importance Measures

The importance percentages reported in Table 5.2 are derived from a small Monte-Carlo estimate (using 1000
random runs) of the variance decomposition. This repeated analysis is fundamental given that the Random
Forests used in either estimate are stochastic in nature, so using different seeds and repeating the estimate.
Both estimators are unbiased under the assumption that the sampled hyperparameter space is representative of
the true underlying distribution, which in turn depends on the amount of area covered in the hyperparameter
space (so the number of trials performed). However, by repeating the importance calculation 1000 times and
reporting the mean, we reduce the variance of the estimator by a factor of 1000, and we use shallow decision
trees to avoid overfitting to the data. Furthermore, the resulting standard deviations (not shown to keep the
table concise) were all below 0.5%, indicating that the reported percentages are stable.

Furthermore, the TPE sampler used in Optuna guarantees that the distribution of sampled points asymptoti-
cally converges to regions of high expected improvement, which aligns with the goals of both exploration (wide
coverage) and exploitation (focus on promising configurations). This property ensures that the importance
analysis is not biased towards a narrow subset of the space, but rather reflects the behaviour of the model
across the most relevant hyperparameter configurations. In summary, the combination of a representative
sampling strategy for the data, the repeated importance estimation, and a clear reduction in validation loss
gives us confidence that the hyperparameter configuration identified in the final optimisation is statistically
robust. Nevertheless, more trials could be performed to lower the loss even further and increase performance.

5.1.4. Model Analysis

This section presents a comprehensive analysis of the CBAM model performance for correcting ®s in a sim-
ulated environment with BLonD. We begin with an ablation study to evaluate the contribution of different
architectural components, followed by an in-depth analysis of the attention mechanisms to understand how the
model identifies relevant features in the input data. Finally, we present a verification analysis that examines
the model’s performance across all operational beam configurations.

Ablation Analysis

Following hyperparameter optimisation, another comparative training was performed using the exact same
dataset with the same stratified split to conduct an ablation study to assess the contribution of each archi-
tectural component to the model’s overall performance. Figure 5.7 presents the training and validation loss
evolution for the three model variants: the complete CBAM architecture, the CNN without attention modules,
and the baseline MLP model.
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Figure 5.7: Training and validation loss evolution for the CBAM, CNN and MLP models after hyperparameter optimisation
with the same training and validation datasets

The results demonstrate a clear performance hierarchy among the three architectures. The complete CNN-
CBAM model achieves the lowest validation loss, converging to approximately 1.5 x 1073 after 700 epochs.
The CNN without attention modules shows intermediate performance with a validation loss around 2.5 x 1073,
while the baseline MLP exhibits the highest validation loss at roughly 4.5 x 1073.

This progressive degradation in performance when removing architectural components validates the design
choices. The superior performance of the CNN over the MLP can be attributed to the convolutional layers’
ability to capture local patterns and dependencies in the bunch profiles through their inherent signal processing
capabilities. The further improvement achieved by incorporating CBAM modules demonstrates the value of
the attention mechanism in selectively focusing on the most informative features for phase correction. This
also benefits understanding the model as will be shown in later discussions.

The consistent gap between model performances throughout the training process and also the different points
at which they plateau with the adaptive scheduler chosen indicates that these architectural advantages are
fundamental rather than just affecting convergence speed. The attention mechanisms appear to play a crucial
role in identifying and prioritizing the most relevant spatial and channel-wise features for accurate phase
prediction, as will be further demonstrated in the following section through detailed attention map analysis.

Attention Mechanisms

To understand how the CBAM model learns to predict the optimal second harmonic phase for bunch length-
ening in the PSB, we analysed the attention weights generated by both channel and spatial attention modules.
This analysis provides crucial insights into the features that the model prioritizes for different types of bunches
and beams.

The channel attention mechanism, applied after the first convolutional layer, exhibits relatively subtle modula-
tion of feature importance. As shown in Figure 5.8, the channel attention weights p/ remain remarkably close
to a uniform baseline of 0.5 across all 24 channels, with only minor variations depending on the characteristics
of the input profile. This near-uniform weighting suggests that the initial convolutional features extracted from
the longitudinal bunch profile and its derivative all contribute approximately equally to the phase prediction
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Figure 5.8: Channel attention weights p/ applied after Convy, visualised through coloured features for 8 randomly selected
features.

The subtle variations in channel weights (ranging from approximately 0.52 to 0.85) indicate that while certain
features may be slightly more informative for specific profile types, the model benefits from maintaining access
to the full spectrum of learned features coming from the 1st convolution. This behaviour aligns with what is
expected, as the features from the 1st convolution will then be processed again into more complex features
after passing through the 2nd convolutional filter.

Meanwhile, the spatial attention mechanism demonstrates far more discriminative behaviour, particularly
when analysed separately for different emittances. For high emittance beams, the spatial attention weights a;
exhibit a pronounced focusing effect on specific spatial locations within the bunch profile.

As illustrated in Figure 5.9, the spatial attention effectively acts as a soft gating mechanism, applying weights
as low as 0.0005 to suppress less relevant spatial locations while emphasizing critical regions with weights up
to 0.004. This represents nearly an order of magnitude difference in importance attribution. Furthermore,
the attention consistently highlights the edges of the bunch profile when looking at high emittance bunches,
precisely the regions that determine the bunch length and are most affected by the ®5 adjustment.

This edge-focusing behaviour is particularly significant given that the primary objective of the phase correction
is bunch lengthening and that the bunch lengthening is most noticeable at high emittances. The model has
autonomously learned to prioritize the spatial locations that directly correlate with the control objective,
demonstrating that the attention mechanism successfully captures the underlying physics of the beam dynamics
problem.

The spatial attention mechanism exhibits different behaviour when processing low emittance beam profiles,
showing an adaptive strategy that accounts for the limitations of max-normalization discussed in Figure 5.1.

For low emittance cases, where the normalised profile width becomes less representative of the actual bucket
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Figure 5.9: Spatial attention weights o; applied after Conva, for high emittance visualised through coloured markers for 8
randomly selected features.

length and of how well phased ®5 is, the spatial attention shifts its focus from the edges to the peak regions
and asymmetries in the centre of the profile. As shown in Figure 5.10, the attention weights now emphasise
the central peak and any asymmetric features in the profile shape, with attention values ranging from 0.002
to 0.010,notably higher than in the high emittance case.

This adaptive behaviour is particularly encouraging as it mirrors the exact approach used during dataset
generation, where asymmetries in the bunch profile were key indicators for determining the optimal phase
correction when at low emittances (this was the fine” mode in the dataset generator). The model’s ability to
independently discover and utilize these same features validates both the architecture design and the physical
relevance of the learned representations.

Furthermore, the visualisation of these attention mechanisms reveals insights into the model’s learning process
and its alignment with beam phasing principles. The model demonstrates remarkable physical consistency
by focusing its attention on bunch edges for length control in high emittance beams while shifting to profile
asymmetries for low emittance beams, mirroring the strategies used during dataset generation described in
Section 4.1. This adaptive capability, where the spatial attention mechanism automatically adjusts its fo-
cus based on the emittance regime without explicit programming nor knowing the emittance, significantly
enhances trust in the model’s predictions. Rather than merely fitting statistical patterns in the data, the
CBAM-enhanced CNN has demonstrably learned physically meaningful representations that correspond to
our theoretical understanding of the bunch lengthening process.

5.1.5. Verification Analysis

To comprehensively evaluate the performance of the trained CBAM model, we conduct an extensive verification
analysis across all operational beam types in the PSB. Although complete verification plots for all operational
beams are provided in Appendix B, and errors are presented for all beam types, this section focuses on four
representative beam cycles: BCMS, ISOLDE, TOF, and MTE. The analysis demonstrates the model’s ability
to generalize across different operational conditions, which is particularly important given that verification in
simulation can be performed inexpensively compared to machine time.

Phase solutions are computed only where the harmonic-voltage ratio is physically meaningful for shaping
0.2 < r9 < 4, since outside this window the second harmonic either has negligible leverage on flattening the
potential well (low r3) or dominates bucket shape and changing it just shifts the bucket making the phase
change irrelevant (high 7).

Global Error Summary
The aggregate metrics in Figure 5.11 should be interpreted as indicative rather than absolute for two reasons:

91



N 2
5 Double-Harmonic Operation: &5 Optimisation 5.1 CNN with Attention Mechanisms @ TUDelft

Feature 18 Feature 29 Feature 27
0.0 20 ¢ 025
-0:2 15 0.00
—0.4 -0.25
_0.6 1.0
-0.50 § 1
-0.8 H .
0.5 ~0.75 H
-1.0
. ¢ 00 -1.00 °
_1.2 L] L[]
-10 =05 00 05 1.0 -1.0 -05 00 05 1.0 -10 -05 00 05 10 (o1
Feature 30 Original Profile Feature 10
1.0 2 . 5
03 : . 5
0.8 1 $ ! 0.008 5
: £
0.2 H =
g 0.6 £
2 ]
301 : 0.4 0 =
& j 0.006 §
Q
0.0 ., . 0.2 -1 %
1 0.0 e L ‘E
-10 -05 00 05 1.0 -10 -05 00 05 1.0 -1.0 —05 00 05 1.0 0.004 %
Feature 23 Feature 12 Feature 1
1.0 0.8
-2.5 ! !
0.8 06 al } { 0.002
0.6 —-3.0 . E .
0.4 0.4 } i I 1
-3.5 o H
0.2 H ! 02 1\
. t 40 i §
0.0 - :
. 0.0 , !
_0'2—1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0

Normalized Position

Figure 5.10: Spatial attention weights «; applied after Convs, for low emittance visualised through coloured markers for 8
randomly selected features.

1. They are computed in BLonD using a model of the PSB impedance that differs from the actual machine
impedance and, as shown later in Section 5.1.7, the operational profiles in the machine are not perfectly
phased either. Hence, numerical error bars are useful for relative comparison but not as definitive
performance bounds.

2. For programs such as AD (Ring 3) and MTE;, the late part of the cycle exhibits very high 79 in order to
produce two bunches. In that regime V5 takes over and due to how the solution is computed by matching,
and not tracking particles, the maximum error increases for these cycles. The matching process is not
considering the temporal aspect of the splitting where the distribution of particles as the profiles are
being split is important to determine how many particles will lie in each bunch, and it will be shown in
detail for MTE.

Viewed through the operational intent of each program, the trends are consistent. For programs seeking
compact bunches at extraction (which is basically all cycles extracted to the PS, which excludes ISOLDE-type
beams) show comparable mean and variance across models. The practically relevant metric is whether bunch
lengthening is correctly applied during the acceleration phase and if the model can cope with the big jumps
in V4 (as is done for TOF). Interestingly, the lowest errors are achieved for the ISOLDE cycle, which is the
only cycle that extracts at a low energy (1.4 GeV) and where V5 is sufficiently high at extraction such that
the bunch is still flattened in the correct phasing.

To show this analysis in a more detailed way, the following presents a profile-based verification for each program,
emphasizing bunch-length evolution and symmetry rather than looking solely at the absolute phase error. We
employ a decaying correction sequence (10 steps linearly weighted from 1.0 to 0.1) to emulate convergence,
given that the model inherently lacks this due to its regressive nature. Additionally, all initial conditions start
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Figure 5.11: Summary of phase-error metrics for CBAM, CNN, and MLP models across all operational PSB cycles

from a constant phase throughout the cycle of —90°.

BCMS

The corrections applied at each C-Time for 10 iterations and the final ®5 solution are shown in Figure 5.12.
The phase set in the machine is also shown and the difference between them is highlighted for the relevant ®o
computation points. Meanwhile, the initial and final longitudinal profile evolutions are compared in Figure 5.13.
It should also be noted that the voltage programs for the 2025 BCMS beam were used, which uses triple-
harmonic operation at injection, which is why the profiles are split at injection (as V3 is missing), which would
be significantly detrimental to space charge mitigation. Regardless, it is still relevant to see if the system can
phase it correctly as the computation of ®3 is independent of the second harmonic (but the correct flattening
depends on the combination of Vi, Vo and V3) so this serves to verify that it can still be used to aid even in
triple harmonic optimisation. Also, the fact that the bunches are split implies a higher charge density, which
should shift the phase through the space charge impedance, and it will be fundamental to the performance in
the PSB if the model can cope with it in simulation.

The correct bunch lengthening is achieved throughout the cycle, with the peaks being matched in the cases
that it is required (up to C-700). After that, the phase remains constant at —90° as V5 is too low to have an
effect, and even though the phase at C-700 is not set at —90°, it still achieves the correct flattened profile. This
shows that the phase set in the machine is not necessarily the most optimised one in simulation, so as long as
a similar shape is achieved in the final ®5 program and the correct final waterfall is achieved, the model can
be considered to meet the verification requirement. This could be due to slight differences in the impedance
model or in the way that the servoloop behaviour is modelled by simply dividing the impedances by a factor
of 50. Additionally, it is important that no abrupt changes are performed in the phase program as it would
imply that the bucket shifts quickly and unwanted oscillations would appear in the profile.
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Figure 5.12: BCMS (2025) phase-correction evolution over 10 decaying-weight steps (top) and final CBAM @3 solution versus
machine set phase (bottom).
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Figure 5.13: BCMS (2025) normalised longitudinal profile evolution: initial (left) and final after CBAM corrections (right).

ISOLDE

The corrections applied at each C-Time for 10 iterations and the final ®5 solution are shown in Figure 5.14
with the initial and final waterfall plots in Figure 5.15. In this cycle the extraction energy is lower, so V5
remains comparatively high up to extraction since microwave instabilities at extraction are not an issue at
these energies, as analysed in Chapter 3. The phase therefore maintains relevance in the profile throughout
the entire ramp, allowing full-cycle optimisation.

The desired bunch lengthening is consistently achieved throughout the cycle. The final ®5 program remains
in a BLM configuration with smooth variations and no abrupt changes, maintaining a flat, widened profile.
Where the model departs from the machine set phase, the corrected profiles still exhibit the intended flattened
shape, confirming that the learned solution is physically consistent as long as the final ®5 program yields the
profiles throughout the cycle. Furthermore, lengthening is the operative goal at all C-Times and ry remains
within the actionable range until extraction, the corrections are effective everywhere. This is also why ISOLDE
attains the smallest error bars among the programs, as the highest errors are usually attained near extraction
for the higher energy cycles (see Appendix B to confirm this over the full range of operational cycles) where
79 is reduced in order to increase the synchrotron frequency spread, increase the energy spread and reduce the
chance of microwave instabilities occurring. This makes the phase less determined than for high ro values.
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Figure 5.14: ISOLDE phase-correction evolution over 10 decaying-weight steps (top) and final CBAM @3 solution versus
machine set phase (bottom).
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Figure 5.15: ISOLDE normalised longitudinal profile evolution: initial (left) and final after CBAM corrections (right).

MTE

As before, the corrections and solution for @ are shown in Figure 5.16 with the initial and final waterfall plots
in Figure 5.17. In this cycle the main objective is the controlled splitting; consequently ®5 remains relevant
throughout the cycle.

The waterfalls confirm that the splitting is performed correctly, with two buckets with a balanced charge
distribution after the splitting is performed. Near extraction, when ro becomes large and Vo dominates, ®o
diverges considerably from the value manually optimised in the machine because at this point in the cycle
V1 << Va, then changes in ®5 are mainly shifting the bucket position, and not affecting the charge distribution
as much. This explains the large late-cycle errors in Figure 5.11b despite the profiles being correct, and it is
also visible in Figure 5.16 since the first correction performed is the dominant one. Furthermore, it is also
visible in the left panel of Figure 5.17 for the initial waterfall, since the splitting there is almost optimal, yet
the correction performed completely evens out the amount of charge in both bunches. This suggests that
because we are merely matching the distributions and not tracking the particles as they are getting split into
the different bunches, that the way the particles lie on either potential well is dictated by the splitting process
and not the potential well depth as this is what is considered when they are being matched (see Figure 2.24
and 2.25).

In addition, since we are using the same computation points as in the manually phased solution in the PSB, a
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Figure 5.16: MTE phase-correction evolution over 10 decaying-weight steps (top) and final CBAM @ solution versus machine
set phase (bottom).

higher density of ®5 computation points is used near extraction to ensure equal partitioning of charge between
the two buckets, which is required by the splitting process and is reflected in the solution granularity in
Figure 5.17 from C-720 to C-770. However, unlike previously, abrupt phase jumps are not entirely avoided,
especially at the last computation point, so it is yet to be seen if this will cause issues in the actual machine
implementation. As a result, the model is verified only tentatively for MTE beams until the machine solution
confirms it.
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Figure 5.17: MTE normalised longitudinal profile evolution: initial (left) and final after CBAM corrections (right).

TOF

Finally, the corrections and ®5 solution for the TOF cycle are shown in Figure 5.18 with the initial and final
waterfall plots in Figure 5.19. For this high-intensity cycle, bunch lengthening is required in order to mitigate
the transversal tune spread induced by space charge. However, because of the combination of this high intensity
and high extraction energy the cycle is particularly susceptible to instabilities, unlike the ISOLDE cycle. Thus,
in order to mitigate this and increase the synchrotron frequency spread, a large increase in V; is applied at
C-720 in the voltage programs, and the ®5 solution is only computed up to this point.

Despite a pronounced difference between the computed solution and the phase set in the machine, the final
profiles remain symmetric and lengthened as required. This discrepancy likely reflects a larger mismatch for
this particular cycle between the PSB impedance used in simulation and the actual machine impedance. It
could be due to a combination of the control loops used, or due to the amount of manipulations involved, but
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Figure 5.18: TOF phase-correction evolution over 10 decaying-weight steps (top) and final CBAM @5 solution versus machine
set phase (bottom).

@, is practically changing in the opposite direction in the model-computed solution. The increase in V; near
C-720 also reduces the importance of ®5 exactly where the largest deviations are observed. Nevertheless, the
corrected waterfalls satisfy the operational objective: sustained bunch lengthening with stable symmetry up
to the computation limit of C-720. Whether the machine will follow the same ®5 trajectory remains to be
established; if not, the origin of the discrepancy must be understood (e.g., impedance modelling, profile errors
in the machine itself, or servoloop behaviour). As with the other cycles, abrupt changes in the phase program
are avoided to prevent bucket translation and profile oscillations.
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Figure 5.19: TOF normalised longitudinal profile evolution: initial (left) and final after CBAM corrections (right).

In conclusion, all cycles achieve the desired behaviour in terms of the profiles produced, yet there are consider-
able discrepancies with the solutions set in the PSB and those of the model. This difference is also maintained
for the other models, with them also achieving the desired profiles, which is shown in Figure 5.11a with the
different models having almost the same mean error. This is something that will need to be analysed when
implemented in the PSB itself to determine whether it is an error in the impedance model or if it is because the
profiles in the machine are not optimal. Furthermore, it is also important to determine the behaviour of the
decaying corrections in the presence of an increased impedance to characterize its generalization properties.

Effect of Initial Phasing & Varying Impedance

We study the sensitivity of the solution to the starting ®s for the optimisation when the PSB Finemet longitudi-
nal impedance is increased by a factor of two in both its real and imaginary parts. However, the considerations
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on the starting point for the solution are still relevant in general, not only to higher impedances, only that
this case was found to show large sensitivity to the starting conditions. The ISOLDE cycle will be analysed,
as this is the case where the CBAM solution is the closest to the machine set solution, so that the effect of
the increased impedance can be discerned and evaluated in the solution.

Two cases are considered: (i) initialization at ®3 = 90° and (ii) initialization at &3 = —90°. The corresponding
correction evolutions and final phase programs are shown in Figure 5.20 and Figure 5.21, with associated
waterfalls in Figure 5.22 and Figure 5.23.
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Figure 5.20: CBAM solution for ISOLDE cycle under twice the PSB impedance: correction evolution and final ®2 when
initialized at 90° (CBAM solution in red as before)
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Figure 5.21: CBAM solution for ISOLDE cycle under twice the PSB impedance: correction evolution and final 3 when
initialized at —90° (CBAM solution in red as before)

When starting at 90°, the CNN interprets the profiles near the middle of the cycle as a low-emittance bunch
that is already in or close to BLM. As a result, the proposed corrections remain very small and the solution
stays near the initial trajectory. The waterfalls confirm limited shaping change and a tendency to preserve
shorter, more peaked bunches in the middle of the cycle. In contrast, initializing at —90° seeds the optimisation
in the correct ®, region for BLM and the model then converges to the BLM phase. The final waterfalls show
the expected broadened, symmetric bunches across the cycle achieving the desired shape throughout the cycle
even in the presence of this higher impedance. These results highlight a key limitation: the current CNN lacks
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Figure 5.22: CBAM initial and final waterfalls for ISOLDE cycle under twice the PSB impedance when initialized at 90°.
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Figure 5.23: CBAM initial and final waterfalls for ISOLDE cycle under twice the PSB impedance when initialized at —90°.

exploratory capability and relies on a reasonable first estimate to deliver effective corrections. With a poor
initial estimates for ®, the model can fail to transition to BLM.

This is also due to the fact that the model has less information on the correct phase corrections to make when
faced with a symmetric profile in BSM, as it has no asymmetry information to tell the model to increase or
decrease ®5. A very simple, yet practical mitigation for this is to set the initial phase to the approximate
synchronous phase defined in Chapter 4:

Psapprox(t) ~ arcsin(A‘f(st()t)), where V() = max(V;(t), Va(t)) (5.5)

This seeds the optimiser close to the optimal phase with the correct relative shape. As a result, this is
the technique used when implementing both the CBAM and LSTM-RL model in the PSB. However, before
discussing the results, it is important to first discuss how the profiles are acquired and processed into the
format that the CBAM model expects: centred profiles interpolated to one RF period.

5.1.6. Data Acquisition & Preprocessing

This section describes the acquisition code developed to provide robust, cycle-wide input data for the double
and triple-harmonic models in the form of centred longitudinal bunch profiles that are interpolated to one
RF period Ty.e,. The pipeline optimises the computation points (meaning the points in C-Time where the
RF parameters are computed), the acquisition timing, centres the bunch in the acquisition window across the
cycle, and delivers normalised, single-bucket bunch profiles that match the model’s training data.

Computation Point Selection & Acquisition optimisation

The choice of where computation points are placed is of utmost importance, as operators select this depending
on how accurate the second harmonic phase must be over the cycle. Thus, to place computation points where
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corrections are most impactful, we combine a uniform time grid with inserted computation points at sudden
changes of the approximate synchronous phase:

1. Base grid. Construct a uniform array of candidate times

Rase = {tk}i{:()
from tmin t0 tmax (defining the optimisation interval) with step A¢ (usually 20 to 30 ms).

2. Approximate synchronous phase. Again using the magnetic field program and the machine param-
eters to compute the energy gain of the synchronous particle per turn AFE;(t). This energy as a function
of time F,(t) is computed and interpolated on a turn-by-turn basis using the magnetic field ramp B(t)
and machine geometry using Equation 2.8, the parameters in Table 2.1 and the rest energy of a proton.
Furthermore, combining this with the RF voltages from the machine, we get ¢, (t) and take the

magnitude of its time derivative [d¢s 0, /dt|-

3. Peak insertion. Detect peaks of |d¢s,,,.q./dt| above a threshold. These times mark sudden bucket

shifts where the second harmonic phase is expected to change significantly. Let T,caks be the set of these
peak times.

4. Merge, de-duplicate, and sort. Finally, we form the complete set of computation points
T = 7T)ause U %eaks-
and cluster any times closer than a small window €; (¢; = 5ms) and replace each cluster by its mean

time. Sort the result to obtain the final, well-spaced set of computation points 7*, and also store the
values of ¢, (t) for the initial estimates of the solution for ®a(t).

This strategy ensures baseline temporal coverage via Tpase While adaptively increasing resolution where ¢g(t)
exhibits large variations, leading to more effective and meaningful ®; updates in the same way that an operator
would add computation points. An example of additional computation points is shown in Figure 5.24 for the
TOF cycle, where the red dashed lines indicate automatically detected sampling points.
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Figure 5.24: Automatic additional sampling using the gradient of (red dashed lines indicate additional computation points)

Furthermore, each burst is defined by a starting time cgq,t, a certain amount of traces (meaning the amount of
acquisitions) acquired nyrqces and a given amount of turns between each trace Ayypns. The starting times for
each of the 4 bursts are set with logarithmic spacing from tmyin t0 tmax (without including ¢,.x) to be consistent
with the fact that any more turns are performed per millisecond near extraction (this can be seen with the
curve elongated on the right panel of Figure 5.26 in comparison to the curve on the left panel). Then, the for
the fixed amount of 400 traces per burst (maximum allowed by the cards), the Asy,ns are iteratively optimised
such that the distance of the traces to the computation points in 7* is minimized. Using this procedure, the
bursts are defined to acquire longitudinal bunch profiles over the entire cycle.

Trigger Delay Compensation

During acceleration, the revolution period shrinks since the particles are both accelerating and not yet ultra-
relativistic, so particles gain more velocity per increase in energy in comparison to accelerators further down
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the chain (i.e. %(PSB) > c(l%(PS) > %(LHC))' This is shown in the left panel of Figure 5.26. So, a triggering
system to acquire the profiles set at a fixed frequency would acquire profiles with a certain delay that would
increase as the cycle time (C-Time) does. This produces a “tilt” in the waterfall plot and does not centre the
bunch with respect to the acquisition window, possibly not capturing the entire profile at later points in the
cycle. The acquisition pipeline first compensates this effect at injection and then propagates a per-trace delay
schedule up to extraction to maintain centring.

In order to do so, we first define Ti.., (t) as the revolution period as a function of the cycle time computed by
knowing the velocity of the particle with its E(¢) defined previously, and the circumference of the accelerator.
Then, we consider a conservative initial delay (in ns) to begin the delay compensation:

Atmin = ksafoty (Trcv(tinj) - Trcv(tcxt)) X 109, (56)

with Esagety = 1.5 being a safety factor used in operation. This initial delay is used because the delay has to
be positive throughout the cycle in the parameters that we are feeding to the digital acquisition cards (that
manage this triggering and acquisition process). As a result, the initial minimum delay has to be larger than
the expected change in revolution period because otherwise the delay might become negative at some point in
the cycle, which would give off errors in the pipeline.

Then, a single burst acquisition (in the PSB one can have up to 4 burst acquisitions), the calibration burst, is
acquired at injection to capture around 100 traces over the first 3000 turns after injection using the delay Atyiy.
From the mean profile p of those 100 traces (we use the mean in order to average out injection transients), a
Region of Interest (ROI) containing the bunch is extracted using the gradient of a smoothed trace:

1. Smooth p using a smoothing spline with the regularization selected via generalized cross-validation (GCV,
see [smooth__spline| for more information), yielding p.

2. Compute g = Vp and a normalised gradient g, (scale positive and negative part of g to [0, 1] indepen-
dently, so g, has the range [—1, 1]).

3. Define ROI bounds as the first index above a positive threshold and the last index below a negative
threshold (the threshold was set to avoid gradients introduced by baseline noise):

i, =min{i | gn(¢) > 7}, ir =max{i|g.(?) < -7}, 7x0.7-0.8.

where iy, /g are the left and right bounds of the ROL.

As for centering algorithm, let N be the number of acquisition points (usually 1000) and ic = (i, + ir)/2 the
ROI center (the approximated center of the bunch). The centering error in samples is

e = 50— (N—ir), -7

which converts to a nanosecond trigger update by multiplying with the sampling interval (ns per point, which
is usually 1 ns). The delays for the calibration burst are shifted by e (with safeguards to perform +500 half-
window shifts when the ROI is wrapped), and acquisition is repeated until |e] is small (typically < 10 samples).
The beauty and robustness of gradient-based ROI detection is that it localizes the bunch edges even when the
internal shape changes (e.g., when we use triple-harmonic operation), so re-centring via e consistently centres
the bucket in the window. The process, as it occurs in the script, is shown in Figure 5.25 where the left and
right ROI bounds can be seen, and the algorithm converges from Figure 5.25a to 5.25b in a single iteration.

Consequently, once the profiles at injection are centred with their initial delay Atg, per-trace delays for the
entire cycle are propagated by compensating the local change of T, between traces:

Atz = AtO - kcompensation (Trev(tinj) - Trev(ti)) X 109a (58)

where ¢; is the C-Time of the i-th acquired trace within its burst and Ecompensation 15 & factor which changes
depending on the ring that is acquired. For some reason that has not been identified in the CCC, the delays
have to be scaled by a factor in order to properly remove the tilt in the waterfall plots. This could potentially
be due to different path lengths for the acquisition signals for different cards that are somehow corrected by
using an empirical factor. Also, if the sampling interval must change to keep a full bucket in view, the initial
delay for the next trace is shifted by half the window difference to preserve centring. Finally, the acquisition
delays for each trace are shown in the right panel of Figure 5.26, where they approximately follow the inverse of
the shape of the revolution frequency wg due to the relationship T}, 10. An example of the delay corrected

wo
acquisition for a full cycle is shown in Figure 5.27
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Figure 5.25: Initial bucket centring process to compute the required initial delay Atg
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Figure 5.26: Revolution frequency wp as a function of cycle time (left) and the trigger delays per trace (right). Each burst is
shown in a different colour.

Profile Selection Around Computation Points

After acquiring the centred bunch profiles throughout the cycle, it is important to consider how the data will
be selected for each computation point, and if it will be averaged or not.

Now onto the final selection and preprocessing of the traces acquired. Let ¢ € T* be the computation points,
for the selection of traces to include in the inference of the RF parameters at each computation point:

o Injection mitigation: for the first computation point(s), if they are near injection, average all traces
in a short window (e.g. t} to t}+2 ms) to suppress injection transients that make the profiles have
high-frequency features.

o For subsequent C-Times, select the single trace with acquisition timestamp closest to each ¢} (“best”
profile).

This is done such that averaging (and, thus mixing information) is only done where transients dominate and
therefore it improves stability, while nearest-neighbour selection elsewhere preserves temporal fidelity to the
computation points. Then, for the smoothing and reinterpolation:

1. We apply a smoothing spline (GCV-chosen smoothing) on the selected profiles to obtain p.

2. Using the ROI bounds, we compute the centre of the bucket and select a symmetric window of one RD
period T, (t5)/2 around the centre.

3. Then we reinterpolate onto a uniform grid of N=1000 points spanning one RF period.

4. Finally, we shift the minimum to 0 and max-normalise so that the final profile has the range [0, 1].
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Figure 5.27: Waterfall plot showing the entire ramp acquired and delay corrected such that the acquisition window is centred.
An example of two views of the reinterpolated waterfall plot are shown in Figure 5.28. Figure 5.28a shows the

waterfall plot of the centred and normalised profiles, while Figure 5.28b shows a view which is more indicative
of how the model sees each C-Time.
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Figure 5.28: Complementary views of reinterpolated profiles after profile selection/averaging

A final point to mention is the fact that the blow-up voltage Vig must be set to 0 during optimisation. This
is because the blow-up voltage is used to generate high-frequency modulations in the bunch profile, and
therefore increase the emittance € and enhance Landau damping and stability. While useful and necessary for
some beam types, these modulations in the bunch profile completely distort and deteriorate the quality of the
profiles before and after smoothing. This effect is seen in Figure 5.29.

5.1.7. Validation Procedure: PSB Results

This section validates the proposed CBAM phase correction tool using raw longitudinal bunch profile measure-
ments from the Proton Synchrotron Booster (PSB). The data acquisition and preprocessing procedure and
the preprocessing required to match the training domain were presented previously; here we apply the trained
model directly to measured longitudinal profiles and assess the outcome in the machine.

In line with the V&V methodology defined in Chapter 3, we restrict the validation to four representative
operational programs: BCMS, ISOLDE, MTE, and TOF. Together, these cover the range of longitudinal
manipulations achievable under double-harmonic operation in the PSB: sustained bunch lengthening (ISOLDE,
TOF, BCMS), and splitting (MTE). Our evaluation emphasizes correctly phasing for bunch lengthening, the
absence of oscillations, and the comparison with the manually phased solution. However, since the manually
phased ®5 which could be affected by the intensity used, the correct phasing of the profiles was also verified
for the operational beams using operational intensity to make sure the analysis presented here is still valid.

A specific point for the BCMS cycle is that two variants are in use: (i) BCMS 2024, operated with double har-
monic throughout, and (ii) BCMS 2025, which employs triple-harmonic operation at injection before reverting
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Figure 5.29: Modulations introduced in bunch profile due to blow-up voltage (hig)

to double harmonic later in the cycle. Both variants are validated for three reasons:

1. Operational relevance. BCMS is a key production beam; validating both program years ensures
robustness to program updates that could occur later on. An example would be the possibility of adding
triple harmonic to other cycles like TOF, and since the correct ®5 for BLM is independent of the addition
of V3, it can still be used to optimise ®5 once r5 is roughly known.

2. Generalization across harmonic configurations. Comparing BCMS 2024 (pure double harmonic)
with BCMS 2025 (triple at injection, double thereafter) probes the model’s sensitivity to the higher
voltage ratio ro which is required for the correct triple harmonic operation.

3. Completeness with respect to verification. The verification study considered only the 2025 variant;
validating both cycles in the machine closes this gap and isolates any differences that could arise.

The timing requirements proposed in Chapter 3 were met by the CBAM model, as it was able to take less
than 30 seconds to acquire, preprocess, infer and correct the profile. The largest proportion of the time was
spent on the reinterpolation and smoothing process, which took roughly 1 second per computation point, while
the inference took less than a second to perform and send the phase setting to the PSB. However, the more
computation points used, the more time the process takes. This could be improved by using a more efficient
smoothing (such as is done with the convolutional kernels instead of B-spline smoothing) and reinterpolation
mechanism to be able to do this in a tensorized manner for computational efficiency. Regardless, since the
timing requirements were met for all programs and varied At (ranging from 10 to 30 ms), the requirements
are considered to be met. As for the methodology, for each program we follow a consistent procedure:

1. Inject protons with an intensity of 80 x 10'° ppb.
2. Acquire a reference waterfall under the current machine phasing.

3. Compute the model’s @, updates only where the voltage ratio is actionable. Thus, we optimise from
C-275 to C-750, except for MTE which is optimised until extraction (C-805).

4. Apply iterative corrections multiplied by a decaying weight to emulate convergence.

5. Compare initial and final waterfalls and profiles at selected C-Times against the manually optimised
phase for that program.

BCMS 2025 (Triple-Harmonic at Injection)

For the BCMS 2025 validation we disable the blow-up voltage and the third harmonic voltage, so that the
measured profiles are driven only by Vi and V5 during the test. The initial waterfall corresponding to the
machine set solution is shown in Figure 5.30. In this figure, slight oscillations are visible as thin lines riding
on top of the main bunch density. These features are consistent with the longitudinal shaving (and additional
transverse shaving with beam stoppers) used to trim emittance. Under current phasing an asymmetry is
present between C-600 and C-700, with higher density in the right lobe than in the left lobe, even though by
this point V3 is already off in the original cycle (so it is not being influenced by the fact that we disabled V3).
This region provides a clear target for correction.

Starting from the initial acquisition, we apply the first CBAM correction computed from the measured waterfall.
The initial and post-correction waterfalls are compared in Figure 5.31, and the phase program after the first
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Figure 5.30: CBAM BCMS 2025: measured waterfall under manually optimised phasing

correction is in Figure 5.32. As expected (given impedance differences used in training and in the PSB), the
solution does not converge after a single step, but it already moves towards reducing the asymmetry.
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Figure 5.31: CBAM BCMS 2025: initial estimate waterfall (left) and after-first-correction waterfall (right)
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Figure 5.32: CBAM BCMS 2025: ®5 program after the first Figure 5.33: CBAM BCMS 2025: final ®3 program with the
correction compared to the manually phased ®5 program solution compared to the manually phased ®2 program

After a few iterations, the solution converges to a trajectory that differs from the machine set phase (Figure 5.33)
but yields the desired profile evolution. In particular, the phase becomes larger between C-600 and C-700,
consistent with compensating the observed asymmetry in the manually phased waterfall plot. The final
waterfall (Figure 5.34) confirms that the left/right particle density is balanced in that region.
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Figure 5.34: CBAM BCMS 2025: final measured waterfall
after applying the CBAM solution
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Figure 5.35: CBAM BCMS 2025: approximate synchronous
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Figure 5.36: CBAM BCMS 2025: select profile comparison at certain C-Times for the manually phased and CBAM solution
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Around C-680 a small charge shift to the right lobe remains visible in the final waterfall. This coincides with
the location of a kink in the manual set phase and in the approximate synchronous phase shown in Figure 5.35,
which was not captured precisely by the automatic computation point selection. This suggests that the current
computation point pipeline should be replaced by a more robust selector. Elsewhere, the solution is well set;
small deviations around C-460 and C-660 may have the same origin, or might simply be the limit of the
CBAM’s accuracy with respect to phasing.

Nevertheless, to quantify the improvement, we compare acquisitions at discrete C-Times in Figure 5.36. The
manually phased profiles are shown in Figure 5.36a and the CBAM-corrected profiles in Figure 5.36b. From
C-500 onward the CBAM result is visibly closer to the desired shape, with better symmetry and length control
across the selected time slices.

Finally, the per-iteration corrections over C-Time are shown in Figure 5.37. Distinctive oscillations appear
after C-700, likely due to the combination of very low V5 and the relatively low emittance there, which occurs
due to adiabatic damping. This occurs when at higher energies the oscillations in phase become smaller and
smaller due to the denominator in Equation 2.37 increasing, hence causing lower emittances. Furthermore, low
emittances are already known to be harder to optimise for given that low emittances do not provide sufficient
information on the potential well shape (see the error at low filling factors Figure 5.2). In that region, BLM is
not required operationally, and the apparent convergence is only ensured by the decay weighting in the iterative
scheme, which sheds light on why a fully optimised LSTM-RL agent is expected to have better performance.
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Figure 5.37: CBAM BCMS 2025: correction amplitude A®s per iteration across C-Time (yellow indicates corrections later in
the cycle)

BCMS 2024 (Double-Harmonic)

For the BCMS 2024 validation, the blow-up voltage is disabled as in the BCMS 2025 case. The resulting phase
program is notably similar to TOF, which is expected: this cycle predates triple-harmonic operation and aims
at space-charge mitigation using only the second harmonic, much like TOF but at lower intensity and reduced
transverse emittance, which is reduced even further with triple-harmonic operation in the 2025 variant. This

is not so much of an issue for TOF as the beam is extracted after the PS and the transverse emittance doesn’t
grow considerably, hence why triple harmonic operation is not of primary importance there.

The optimisation performs well, and the final solution is shown in Figure 5.38. The previously mentioned sam-
pling issue still persists: the automatic computation point selection skips C-680 even though the approximate
synchronous phase changes there, so the optimiser cannot act exactly at that location. This is a preprocessing
limitation rather than a shortcoming of the model and motivates replacing the current selector with a more
robust scheme.

The initial and final waterfalls are shown side-by-side in Figure 5.39, where the effect of not computing at C-
680 is seen again in the asymmetric profiles at that location. As in BCMS 2025, the CBAM solution improves
symmetry and length control after mid-cycle. From C-540 onwards, the profiles are consistently better aligned
to the target shape.

Interestingly, a faulty acquisition occurred in correction number 9, which led the optimiser to adjust the phase
around C-550 away from its previously stabilized value. The issue is visible in Figure 5.40 and by comparing
the two consecutive ®5 solutions in Figure 5.41. In the discrete profile comparison, the manually phased peaks
appear to be better matched than the CBAM result at C-550. However, this is mainly attributable to the bad
input in correction 9, as by correction 8 the solution had already stabilized at the same value as the manually
phased solution as shown in the left panel of Figure 5.41. This underlines the sensitivity to acquisition quality,
especially early in the iterative sequence: in correction 8 only 30% of the regressed value has been applied, yet
the step at C-550 is still about 8°.
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Figure 5.38: CBAM BCMS 2024: final ®5 program with the CBAM solution compared to the manually phased ®» program
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Figure 5.39: CBAM BCMS 2024: manually phased solution and CBAM solution measured waterfalls shown side by side
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Figure 5.40: CBAM BCMS 2024: faulty acquisition displayed in waterfall plot at correction number 9
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Figure 5.41: CBAM BCMS 2024: side-by-side comparison of ®2 solution after correction 8 and 9

Representative manually phased profiles and CBAM-corrected profiles at selected C-Times are shown in Fig-
ure 5.42a and Figure 5.42b. Despite the faulty acquisition, the CBAM result after C-540 remains superior
overall, with improved symmetry, albeit with the issue of the large change in C-680, which is bypassed by the
model. Nevertheless, from injection to C-540 the manually phased profiles are slightly more symmetric than
that of the CBAM model, but the model still achieves almost the perfect phasing. This could be attributed
to its attempt to generalize for all emittances and its regressive behaviour.

Manually Phased Profiles CBAM Model Profiles
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Figure 5.42: CBAM BCMS 2024: select profile comparison at certain C-Times for the manually phased and CBAM solution

Finally, Figure 5.43 shows the per-iteration corrections versus C-Time. As with BCMS 2025, oscillations
appear beyond C-700 and convergence there is only guaranteed by the decay weighting. This effect reoccurs
in all cycles, so it will not be shown again. It is still to be investigated why this occurs after C-700, but as
mentioned previously, it is likely a mixture of the voltage ratio not being high enough and low emittances near
extraction.

ISOLDE

For ISOLDE, the blow-up voltage and V3 are disabled; operationally this only affects the cycle up to C-400,
after which the program runs purely in double-harmonic mode. The optimisation was carried out up to C-750.
The CBAM and manually phased waterfalls are shown side by side in Figure 5.44, and the final ®5 program
used to obtain the CBAM result is shown in Figure 5.45. Note that the machine set phase is different from that
used in the verification, as the one in verification was the 2024 variant, which did not yet use triple-harmonic
operation, but the one discussed here does. It is more important that the CBAM model is able to cater to this
program as well given its relevance in current operations. Meanwhile, the approximate synchronous phase for
this cycle is given in Figure 5.46.

Near injection, the CBAM waterfall shows a small shift in bucket location relative to the manual case. This
coincides with a kink in the approximate synchronous phase, as shown in Figure 5.46, that lies just below the
detection threshold of the current computation point selector and is therefore not sampled. The same under-
sampling occurs around C-400, where a change in the balance between energy gain and dominant voltages
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Figure 5.47: CBAM ISOLDE: select profile comparison at certain C-Times for the manually phased and CBAM solution

alters the synchronous phase, shifting the bucket again. Missing that point leads to a temporary charge
imbalance as the left lobe becomes denser, and it could again be avoided with a more robust selector.

However, from C-400 to C-660, in Figure 5.44a the manually optimised case exhibits asymmetries with greater
density in the right lobe. This does not occur for the CBAM solution in Figure 5.44b and is a clear improvement
in the reduction of the line density. Furthermore, the discrete profile comparisons between Figure 5.47a and
Figure 5.47b show that at injection (C-275) the CBAM profile is correctly phased with the peaks having the
same height. However, between C-275 and approximately C-340 the CBAM result is not optimal, as shown
in Figure 5.44b, and this is mainly due to the under-sampling at the critical computation points which are
identified in the manually phased solution. This causes the model to basically interpolate at these critical
points and not phase the profiles correctly. For the remaining C-Times, notably from C-635 onward, the
CBAM profiles are more symmetric with the desired bunch lengthening.

Overall, the only region where the CBAM solution is lacking is the short interval after injection up to about
C-400. The most plausible causes are a combination of injection transients (whose spectral content is at
frequencies lower than the noise augmentation used during training) and a slight offset between the compu-
tation points used in the manually phased solution and those used by the CBAM model. Both observations
further motivate replacing the current computation-point selection by a method that is responsive to small
but operationally relevant changes in synchronous phase.

MTE

For MTE we remove the blow-up voltage and validate the model during the splitting, which demands very
precise second harmonic control. This case makes the impact of computation point selection most visible:
although the correct phasing is achieved in a broad sense, the sampling does not align exactly with the true
onset of the split, so the final two buckets do not carry identical charge. The initial (manual) and final (CBAM)
waterfalls are shown side by side in Figure 5.48, and the final ®5 solution is reported in Figure 5.49. In this
program the second harmonic phase is manually set with high precision, which is not surprising given that
splitting requires the most precise control of ®@,.

It is interesting to note that the model already interprets that a split is being formed after the first correction,
as after the first correction the reinterpolated profiles show a small charge concentration consistent with the
two-bucket structure, as shown in the late-cycle (yellow) reinterpolated profiles in Figure 5.50. This early
recognition is helpful, but precise balance ultimately depends on sampling the onset of the split. Additionally,
two noisy acquisitions (corrections 5 and 8) introduced solution oscillations up to about C-500. This degraded
performance precisely where balance is most sensitive. At correction 4 the solution was already satisfactory,
the ®5 programmes for corrections 4 and 5 are compared in Figure 5.51, and the corresponding reinterpolated
profile stacks are shown in Figure 5.52. The latter makes clear that equal charge in both bunches at correction
4 becomes unbalanced at correction 5 mainly because of the faulty input. In the final waterfall in Figure 5.48b
this manifests between C-300 and C-500 as a higher density in the left lobe.

A final comparison of discrete profiles indicates that the two bunches reach a similar peak density at extraction,
but likely at the expense of some intensity. In the manually phased case the peak at C-800 remains higher than
the peaks in C-750, whereas for the CBAM solution this is not observed. The CBAM profile at C-700 (the
approximate onset of splitting) is also more asymmetric than the manual one, consistent with the presence of
an additional computation point at C-710 in the manual phasing, which matches the kink in the approximate
synchronous phase. The discrete profile sets are provided in Figure 5.53.
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Figure 5.48: CBAM MTE: manually phased solution and CBAM solution measured waterfalls shown side by side

1.0 D
_>0 ™ Model Phase o ~ 700
== Manual Set Phase -
208 \
— - 0 ‘ —_
S 40 % ¢ 600 »n
g 2 0s \ E
~ —60 = ‘ )
S Lo} 500 £
B s 5% =
a- [ 200"
100 % 02
= 7 A\ [\ _
0.0 = ——— 300
300 400 50.0 600 700 800 0 200 400 600 800 1000
C-Time [ms] RF Phase [rad]
Figure ;'49: CBAM MTE: final @3 program with the Figure 5.50: MTE: reinterpolated profiles after the first
CBAM solution compared to the manually phased ®5 program .
correction
0
=== Model Phase == Model Phase
0 = Manual Set Phase o0 T Manual Set Phase
— =20 —
o
8 & -40
— —40 '—'N
%]
o 2 -60
m —60 m
20 &
O _go -80
-100 -100
300 400 500 600 700 800 300 400 500 600 700 800
C-Time [ms] C-Time [ms]
(a) @2 at correction 4 (b) @2 at correction 5 (bad acquisition)
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acquisition) compared to the manually phased ®2 program
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Figure 5.53: CBAM MTE: select profile comparison at certain C-Times for the manually phased and CBAM solution
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In summary, even with two bad acquisitions out of ten, the model performs adequately for MTE splitting.
The dominant limitation is not the phase precision, but the alignment of the computation points to the true
onset of the split, together with robustness to faulty acquisitions. The latter can be mitigated with testing
and ensuring that the acquisition hardware is performing as expected, while the computation point issues can
be mitigated with a more resilient sampling algorithm. Nevertheless, the performance is acceptable given that
splitting is the most demanding operation in terms of phase accuracy.

TOF

For TOF, the blow-up voltage is disabled. The manually phased solution is well aligned primarily up to C-500,
where space-charge reduction is most critical; beyond this point the manual corrections begin to lose precision.
This behaviour is visible in the side-by-side waterfalls of Figure 5.54 for the manually phased ®5 in the left
panel and in the CBAM solution waterfall in the right panel. The final ®5 program used for the CBAM

solution is provided in Figure 5.55.
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Figure 5.54: CBAM TOF: manually phased solution and CBAM solution measured waterfalls shown side by side
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Figure 5.55: CBAM TOF: final &> program with the CBAM solution compared to the manually phased ®2 program

A plausible explanation for the reduced precision of the manual phasing after C-500 is that short, high-intensity
bunches induce sufficient beam loading to shift the optimal bunch-lengthening phase towards higher absolute
values. This interpretation is specific to TOF and is supported by acquisitions taken at operational intensities
(approximately ten times higher than those used here), for which the same profiles appear correctly phased.
However, it is important to note this marked intensity dependence was not observed for the other cycles, likely
due to the lower intensities being used in those cases operationally and the cycles not being optimised with
the utmost precision that is capable with an automated solution.

Furthermore, the CBAM solution deviates slightly from the manual phasing between C-300 and C-390, and at
injection it sets ®o roughly 20° lower. As shown by the discrete profile comparisons in Figure 5.56a and 5.56b,
the impact of these differences on the profile shape is minimal in that region due to the low acceleration rates,
but it still means slightly higher peak differences and not total symmetry.

Later in the cycle, the CBAM-corrected profiles show clear improvements, with sustained bunch lengthening
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Figure 5.56: CBAM TOF: select profile comparison at certain C-Times for the manually phased and CBAM solution

and good symmetry. The localized underperformance from C-300 to C-390 is consistent with the regressive
nature of the model, which lacks explicit convergence behaviour and correction consistency. This likely also
contributes to the mild overestimation observed in BCMS 2024 where the manually set phases are similar.
Overall, TOF still achieves BLM across the cycle with small peak differences early on, and the model provides
roughly correct phases in some regions and fully correct phases in others. Further gains are expected from the
improved convergence logic of the LSTM-TD3 RL agent.

Concluding Remarks

In conclusion, the CBAM model is able to improve upon the manually set phase in general at computation
points later in the cycle, but it still suffers from the fact that it is regressive in nature and does not consider
the actions that it is taking and their effect on the observed bunch profiles. The adaptation from a 1 shot
correction in the training of the model, to a decaying-corrections scheme, has helped to improve the performance
of the model, but it is still not able to converge to the optimal phase in all the cycles. This is mainly
due to the disconnect between the training and usage objectives of the model, which make it difficult to
optimise the network to reach the desired phase in every circumstance. Additionally, the lack of generality
and robustness of the computation point selection strategy causes important points where the bucket shape is
shifting considerably to not be sampled, which ultimately causes the model to interpolate in this region which
can cause an incorrect phase to be used at a critical point as occurred in all the cycles. This was most critical
for the bunch splitting operations in MTE, but even then a satisfactory level of phasing is still achieved when
observing the final waterfall plots even in the presence of disturbances caused by the acquisition hardware.
This performance is expected to improve for the memory-augmented RL agent, whose training and results will
now be discussed.

5.2. LSTM-TD3 RL Agent

This section introduces the recurrent RL agent based on TD3 with LSTM policies to give the controller with
short-term memory of the profiles it is correcting and of the actions it has taken. The motivation for this
architecture was extensively discussed during Chapter 4, which is to facilitate convergence and decouple the
agent from the regressive nature of the CBAM model into a more adaptive data-driven approach that does
not require correction decay as was implemented in Section 5.1.7. Recurrent policies can integrate information
across successive acquisitions and actions to form a more robust interpretation of the system state and use it
to act in a more precise fashion.

We therefore follow the same structure as for the supervised models: we describe the training procedure
and hyperparameter optimisation, then present verification in simulation followed by validation in the PSB.
The data acquisition and preprocessing is not discussed since it uses the same framework as for the CBAM
model, as there was not enough time between tests to implement the more robust computation point selector.
Throughout, we compare the recurrent TD3 (LSTM-TD3) against the previously established baselines and
emphasize profile bunch-length control, symmetry, and stability of successive corrections. Furthermore, we
begin by briefly discussing the TD3 agent without memory augmentation and mention its limitations which
are to be solved by its successor.

5.2.1. TD3 RL Agent Performance

A non-recurrent TD3 agent (feed-forward actor/critic) was first implemented as a reference. In practice, this
agent achieved the same performance as the MLP variant of the supervised network presented previously, but
of course with slower convergence to the solution as actions are bounded to a restricted ®4 range for the TD3
agent. The policy repeatedly learned to produce corrections of similar magnitude and sign to the MLP solution,
differing only by the specific MLP architecture used in the TD3 actor, which was the standard architecture
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given by Stable-Baselines3 (the framework in which this was tested) and is also the one recommended by the
original TD3 paper: a network with 2 hidden layers of sizes 400 and 300 [52, 22]. Although still providing
more expressiveness by having more parameters than that of the optimised CBAM model (MLP only uses FC1
and FC2 widths), it offered no tangible gain in profile quality or convergence. It should be noted that each
training episode is comprised of 30 steps, meaning 30 actions being taken before the parameters that define
the optimal phase (Viotar, 72, B) : ®o(BLM) are reshuffled from those available in the dataset. This is general
for all the RL agents that are trained for the ®5 optimisation task, but this will change in the triple-harmonic
optimisation.

In addition to the lack of performance gain, this feed-forward TD3 was substantially more expensive than
supervised learning and required multiple restarts due to RL instabilities. In particular, the critics tended
to overestimate @Q-values in regions of sparse or noisy reward, leading to policy drift and the need for heavy
target smoothing and conservative exploration. This also set the stage for what was likely to happen with
the LSTM-TD3 architecture given that these instabilities are more related to the architecture itself rather
than the reward function implemented, which is shown in Algorithm 7 (it will be explained in more detail
in subsequent subsections). Even with careful tuning, the learned corrections often oscillated around certain
C-Times, especially when the impedance was increased. This behaviour mirrors the MLP-with-decay baseline:
once the bounded actions saturate, the agent alternates updates rather than converging smoothly.

The lack of memory also prevented the feed-forward agent from generalizing to modified impedance conditions
at high energy-gain regions (roughly C-500 to C-650). When evaluated with a doubled Finemet impedance (real
and imaginary parts), the solution begins to oscillate and fails to stabilize. The waterfall plots in Figure 5.57
illustrate this: at nominal impedance the profiles remain lengthened and smoothly transition even at high
energy gain regions, whereas at 2x impedance asymmetric profiles start to occur, and the agent’s actions
oscillate leading to a @5 that is above and below the ideal phasing. This is very dangerous considering this is
the idealized simulation environment, which makes the agent unfit for safe implementation in the PSB.
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Figure 5.57: Feed-forward TD3 at iteration 30: nominal versus doubled-impedance behaviour for the ISOLDE cycle

Thus, because the TD3 agent matches the MLP baseline in accuracy, requires much longer training, is sensitive
to @-value overestimation and training instability, and does not generalize under impedance shifts or at high
energy gains, we do not discuss it further in the remainder of this chapter. The focus is instead on the recurrent
LSTM-TD3 agent, which explicitly incorporates memory to mitigate these limitations and leverage temporal
correlations across successive acquisitions and actions.

5.2.2. Training

General Considerations

For all the training procedures in the 1D ®5 optimisation, the produced when finding the optimal phases
(Viotais T2, B) : ®o(BLM) is used. Thanks to the parallelization that was implemented and the individual
RNGs for each process, it is possible to shuffle the order of this mapping to randomly select the parameters
that define the optimal phase. This allows for domain randomization such that at each step the RL agent
is gaining sufficiently varied information across each asynchronous, parallel interaction with environment and
from different parameter combinations.

The missing parameter here is the filling factor F'F', and the way it is incorporated is by using the same discrete
filling factors as in the dataset generation (see Table 4.1). However, each time the parameter combination is
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chosen, a random filling factor is selected from a list that keeps track of the remaining filling factors available
for this parameter combination. Once the episode is finished, this filling factor is removed from the list for this
parameter combination, so that all filling factors can be sampled in a randomized way. Additionally, during
one training episode for each parallelized environment, the profiles are enhanced or not with the baseline
droop shown in Figure 4.7 randomly. As a result of this, the RL agent is getting and storing transitions in
the most varied form possible, such that the sample efficiency is improved and the epoch reward curves are as
indicative as possible of true performance across sufficient parameter combinations. This is important for the
hyperparameter combination because, as explained in Section 4.8, the mean epoch return and the standard
deviation of the epoch return is used as the objective value. For reference, when the epoch return is mentioned,
it is referring to the return (meaning the reward of each step summed over the entire episode) averaged out
across the n.,, environments that are parallelized and interacted with at each training epoch.

Aside from these general behaviours of the training procedure, the main component that will influence the
behaviour that is learned by the LSTM-RL agent (under ideal learning conditions, as we will see) is the reward
function that is used for the agent to understand what is a good or bad action. As a result, it is important
to define the convergence criteria that one would want through positive reinforcement when this is achieved.
However, during the training iterations, two reward functions were used, an initial one and a simplified one.
First, the initial reward function is presented.

Initial Reward Function
The initial reward function that was devised is shown algorithmically in Algorithm 7.

Algorithm 7 Reward for Double Harmonic RL Step (A®3 is the amount of degrees to the optimal phase and
s is the step number)

1: function 2HREWARD(®§Urent &P 4 ction, actionP™™, A®P™Y, Ad3, failed, s)
2: R<+0
> Phase 1: Smart adjustment bonus (before phase update)

3: if |A®S|< 5° and |action + A®3|< |AP]| and |action + AP%|> 0.5 - |ADS| then
. Csmart 5

4: R+ R+ (A5 - jaction])-(s+1) > Decrease the reward with the step number

5: end if

6: DLV +— PhaseWrap (PS5 ™ + action)

7. AP35  CyclicDistance(®5P™! uew)

8: > Phase 2: Simulation penalty if matching fails

9: R < R — 10 - ¥[failed]

10: > Phase 3: Base Penalty to minimize A®3

A(I’*HCW

11: R+ R— Cdist . ?1-

12: > Phase 4: Progress reward
xprev, «new

13: progress ¢— A%, Jr/iA% l

14: R < R + Chrog - Progress
> Phase 5: Convergence bonus
15: if |A®E"*V|< 0.5° then

16: if steps_in_ convergence > 0 then
17: R < R + Ceony - €xp(—|ADZV]) > Full bonus for staying
18: else
19: R+ R+ ch‘“’ - exp(—|AP5V]) > Reduced bonus for arriving
20: end if
21: end if

> Phase 6: Oscillation penalty if the action is oscillating for no reason
22: if action®™¥ # None and sign(action) # sign(action®*") and sign(action) # sign(A®;**") then
23: > Only relevant if far away from the optimum and large actions
24: R ¢ R — Cosc - [AD5"Y]. laCtion_f /itionprevl
25: end if
26: return R

27: end function

The initial reward function R consists of six distinct phases, each addressing specific aspects of the optimisation
problem:
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R = 7?/smart + Rsim + Rdist + Rprog + Rconv + 7?/osc (59)

1. Smart Adjustment Incentive:

Csmart 3 i1
Roi = {(1+A<I>§action||-(s+1)) if conditions met (5.10)
otherwise
Encourages appropriately-sized actions (less than the distance to the optimum but more than 50% of
it) when close to convergence (JA®3|< 5). The step-dependent denominator (s + 1) creates diminishing
returns, promoting faster convergence and preventing the exploitation of this bonus by staying close to
convergence and not converging.

2. Simulation Robustness: Ry, = —10 - W¥[failed] provides strong negative feedback when physics simu-
lations fail, ensuring the agent avoids corrections that lead to not having a bucket area (meaning loss of
all particles).

[AD;]

3. Distance Minimization: Rgist = —Cajst - provides continuous guidance toward the optimal phase.
Normalization by 7 keeps the penalty bounded, while allowing coefficient tuning for relative importance
in the total step reward.

. . . APV | —|A®L| . . .
4. Progress Reinforcement: R0 = Cprog - 2ﬂ—/4 directly rewards improvements in phase

accuracy, providing immediate feedback on action quality to distinguish beneficial from detrimental
actions even when far from the target.

5. Adaptive Convergence Bonus:

Ceonv - exp(—|A®S|) if staying in convergence
Reonv = @ -exp(—|A®}|) if newly arriving (5.11)
0 if not converged
Differentiates between reaching and maintaining convergence. The exponential decay ensures that more

precise convergence receives proportionally higher rewards, essential for the sub-degree precision required
for low emittance beams.

: ;. prev
6. Oscillation Prevention: Ros. = —Cose - |ADS|- \actlon—j/c;mon | penalizes oscillatory behaviour when
the agent changes the direction of action without justification based on phase error. Multiplication by

|A®3| ensures oscillations far from the target are penalized more heavily than minor adjustments near
convergence.

This reward structure promotes convergence through several mechanisms: gradient consistency from combined
distance penalty and progress reward, stability near convergence through smart adjustment and adaptive
bonuses, and oscillation suppression targeting the common RL control instability such that faster learning is
achieved. The design is also suitable for ®5 phasing because it respects physical constraints through simulation
penalties, addresses precision requirements via the exponential convergence bonuses, and provides robustness
to baseline droop through the random augmentation procedure.

Under adequate exploration and function approximation, the reward function satisfies convergence conditions
for policy gradient methods: bounded rewards for stable gradients, consistent directional information, and
sufficient discrimination between policies even when near optimum phasing. These properties, combined with
oscillation prevention and precision mechanisms, make it particularly effective for second harmonic phase
optimisation in particle accelerators.

However, because Rgmart and Reony is dependent on previous behaviours and the amount of steps that have
been completed, it could lead to difficulties in modelling the Q-values, regardless of the fact that the critic
networks also have memory. This, combined with the fact that Q-networks are famous for over-estimating the
discounted return, and that this directly affects the loss of the policy, could lead to instabilities in the training
process. As a result, a more simplified and equally as bounded reward function was also considered.

Simplified Reward Function

To address the potential training instabilities caused by the history-dependent components in the advanced
reward function, a simplified approach was developed that maintains the essential guidance properties while
eliminating problematic dependencies on previous states, step counts, and relative importance coefficients.
This reward function is shown in Algorithm 8
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Algorithm 8 Simple Reward for Double Harmonic RL Step (A®3 is the amount of degrees to the optimal
phase)

1: function 2HSIMPLEREWARD (Mt P! action, AGZP™ failed)

2 R<+0

3 P4V < PhaseWrap(P§ ™ + action)

4 APV « CyclicDistance(®P"™ poew)

5: > Phase 1: Simulation penalty if matching fails
6

7

8

9

R < R — 10 - ¥[failed]
> Phase 2: Base penalty to minimize A®3
‘A(b;new‘

R+ R- > Direct distance penalty [-1, 0]

> Phase 3: Progress reward

. |ARIPTV | —|ADz OV
10: progress < ey

11: R < R + 2.0 - progress > Fixed coefficient progress reward
> Phase 4: Near-convergence bonus

122 if [A®3™V|< 0.5° then

13: R+ R+30 > Fixed convergence bonus
14: end if

15: ) > Phase 5: Action cost to prevent oscillation
16: R+ R-01- %}fnl > Simple action penalty
17: return R > Total reward [-13.1, 5]

18: end function

The simplified reward function consists of five core components:
Rsimple = Rsim + Rdist + Rprog + Rconv + Raction (512)

1. Simulation Robustness: Ry, = —10 - ¥|failed] remains unchanged, providing essential feedback to
avoid complete particle loss.

2. Direct Distance Penalty: Rgist = —lAﬂﬂ now uses a fixed coefficient of 1.0, eliminating the need for
hyperparameter tuning while maintaining bounded penalties in the range [—1, 0].
APV || AD]| . . . . . .
3. Progress Reward: Ry = 2.0- 27r—/42 provides immediate feedback on action quality without
scaling, using only the current and previous phase errors which are part of the observable state.

4. Binary Convergence Bonus:

. (5.13)
0 otherwise

3.0 if |[Ad®3|< 0.5
Rconv = { | 2|
Eliminates the exponential decay and step-counting mechanism, providing a simple binary signal to
inform the Q-networks when a step is taken that leads to near-optimal performance.

01 laction|

5. Action Regularization: R.ction = T applies a gentle penalty proportional to action

magnitude, discouraging unnecessary large adjustments without the complex oscillation detection logic.
Advantages for Q-Learning Stability:
The simplified reward function addresses several key issues that can destabilize actor-critic training:

Markovian Property: By eliminating dependencies on step counts and convergence history, the reward
function becomes truly Markovian, depending only on the current state, action, and immediate next state.
This ensures that Q-value estimates are based solely on observable information, reducing the complexity of
the value function approximation task, and also allowing the Q-networks to focus more on the evolution of the
rewards as a consequence of the actions taken, rather than using the history to calculate the current reward.
This last element is fundamental, as will be shown later.

Reduced Overestimation Bias: The removal of exponentially scaled bonuses and step-dependent rewards
reduces the magnitude of Q-value targets, mitigating the well-known overestimation bias in Q-learning algo-
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rithms. The bounded reward range [—13.1,5.0] provides predictable target values for the critic networks.

Consistent Gradient Signals: Fixed coefficients eliminate the need for tuning the reward function, and
they are defined based on the desired behaviour: focus on converging quick convergence, and high rewards for
staying there.

Simplified Credit Assignment: The binary convergence bonus and direct action penalties create unam-
biguous signals about desirable behaviour, simplifying the temporal credit assignment problem that can cause
ambiguities in the assignment of Q-values.

Despite its simplicity, this reward function maintains the essential properties required for ®, phase optimisa-
tion: it provides continuous guidance toward the optimal phase, rewards progress, penalizes simulation failures,
and includes mechanisms to prevent excessive actions. The trade-off between sophisticated behavioural shap-
ing and training stability makes this simplified approach particularly suitable for applications where reliable
convergence is prioritized over optimal sample efficiency.

Furthermore, a key aspect of the current training using Prioritized Experience Replay (PER) buffers, is that
while it allows for faster training, it is incredibly susceptible to overestimations in the Q-values with feedback
mechanisms that deteriorate performance. This is because the priority assignment to each transition is based
on the temporal difference (TD) error,which can explode when the Q-network assigns large values that differ
substantially from the rewards that are stored in the PER buffer. As a result, the transitions that cause the
large overestimation in QQ-values, are now given a high priority and are sampled more often in the updates,
when it could be simply due to an instability in the Q-value assignment and not because that transition is
particularly informative. Then the TD error is squared on top of this, so the loss of the Q-network spikes
leading to a huge gradient update in a direction that perhaps was not the optimal one.

This behaviour was observed in early trainings with the initial reward function of Algorithm 7, as shown
in Figure 5.58 for a high (r; = 107%) and low (r; = 107%) learning rate (using nen.s = 46) and it led to
complete training degeneracy after having already settled on a policy that either performed well (for the low
learning rate) or was learning to do so (for the high learning rate). It also makes sense that a higher learning
rate would lead to an earlier onset of learning degeneracy, since the Q-networks are applying larger gradient
updates, which makes the training inherently more unstable. However, L¢ is much larger for the low learning
rate case than for the high one. This is because it was already settling on a well performing policy, and the
instability completely shifted the perception that the Q-network had on good ®5 corrections, which is also
why the performance decreased in a dramatic fashion (over a lower amount of epochs) in comparison to the
high learning rate case. Also note that the training was terminated early for the low learning rate case as the
performance plummeted.

Mean Reward Q Loss Mean

=== MSE Loss Case - High
= MSE Loss Case - Low

=== MSE Loss Case - High
= MSE Loss Case - Low

Episode Reward [-]
Mean Epoch Q-Loss [-]

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Epoch Epoch

(a) Mean Epoch Reward (b) Mean Q-loss Lg

Figure 5.58: Initial training statistics before applying fixes to Q-value over-estimation for high (r; = 10~%) and low
(r; = 1075) learning rates using the initial reward function in Algorithm 7 using 46 parallel environments in training

Thus, a strategy was devised to mitigate this which is not used in any of the available LSTM-TD3 implemen-
tation: replace the MSE loss for the Huber loss, which linearizes the error and makes it more similar to the
Mean Absolute Error (MAE), after a certain deviation from 0. This is exemplified in Figure 5.59, where using
this loss function will lead to less sensitivity to outliers while still giving smooth loss gradients near a TD
error of 0, which combines the best of both worlds. This loss was shown to improve performance and stability
in regular TD3, so applying it to LSTM-TD3 seems natural [14]. Additionally, an auxiliary loss is added to
the complete loss function to regularize the Q-values coming from both networks. This makes the final loss
function now be (modified from Equation 4.21):

B
=3 Z [Huber(Qg, (s,a;) — ;) + Qg.(55,a;)? x 0.001] (5.14)
J

120



Y &
5 Double-Harmonic Operation: ®5 Optimisation 5.2 LSTM-TD3 RL Agent @ TUDelft

Comparison of Loss Functions
—— MSE Loss
MAE Loss
8 —— Huber Loss (6=1)

Loss Value

-3 -2 -1 0 1 2 3
Error (Prediction - Target)

Figure 5.59: Huber loss compared to Mean Squared Error (MSE) and Mean Absolute Error (MAE) loss

Finally, as a last resort, to avoid the feedback loop between the PER buffer and any possible overestimation,
priority values are clipped at a value of 100. This value was chosen empirically based on the current training
rewards and the observed Q-loss during multiple trial runs when learning was still stable, and it is done such
that some values cannot achieve higher priority and be over-sampled in updates due to any instabilities in the
Q-network updates. This allows us to move on to hyperparameter optimisation using the Optuna framework.

5.2.3. Hyperparameter Optimisation & Analysis

Initial Considerations

Contrary to the case for the CBAM model, each trial is now much more expensive as training the model is
done by interacting with the environment and it takes considerably longer than training using a pre-made
dataset. Thus, only one coarse hyperparameter optimisation is performed with a low amount of trials due
to the limitation of computing resources at CERN’s High Performance Computing (HPC) cluster (and also
only being able to run code for a max runtime of a week) and more analysis is required using knowledge on
the TD3 algorithm to determine which parameters are the most relevant. This is because, as mentioned in
the previous hyperparameter optimisation, the accuracy of the Gaussian Process in modelling the objective
value as a function of the hyperparameters, and hence the confidence of the TPE sampler in selecting the most
promising hyperparameters, relies on the amount of times that the objective function is sampled. Since we
are crucially limited in this case with the number of trials we can perform, the reliability of the model will be
lower, and it will need to be confirmed with the aforementioned analysis.

Regardless of these limitations, it is crucial to consider how long we will be training for since it is useless to keep
training after the agent has already converged to a good solution as it limits even further the amount of trials
we can perform. Using the plots shown in Figure 5.58, other similar initial trainings performed (not shown),
considering the fact that the PER buffer used had a capacity of 1,000,000 transitions, and that ne,,s = 46 in the
plots shown, it was possible to determine a fixed amount of epochs to use for the hyperparameter optimisation.
The loss would be expected to converge (under good training conditions without learning degeneracy) after
about 700 epochs, which corresponds to 1,000,000 steps being performed. This, coincidentally, is the size of the
replay buffer, which could only be this large because of the large amount of memory available in nodes used in
the HPC cluster, in practice it need not be this large for good training since we are weeding out uninformative
transitions anyway.

Thus, because we do not care how long we take to train in the optimised model that will come from this
optimisation, we want to make sure that we are getting indicative performance of the model when we prove
the final mean epoch reward and standard deviation. As a result, we use nen, = 190 (the maximum amount
of threads available for a node in the entire HPC cluster) to get the most out of the max runtime available,

and limit the number of epochs to the amount of mappings that there are in the (Viotar, 72, 8) : ®2(BLM)
dataset, which is 365. Like this, we are also certain that there will be enough epochs to have trained on all of
the parameter combinations and all filling factors as a result of the 190 environments, each with their random
order of parameters. This corresponds to roughly 2,000,000 steps being performed, allowing for a full refresh
of the PER buffer.

The optimisation is performed using the initial reward function detailed in Algorithm 7 with a high base
penalty (meaning a large Cyis;) in order to foment the algorithm to not have a high steady-state error, as
the primary concern of the optimisation is the accuracy that can be achieved. As a result, the mean epoch
returns are expected to be low, and perhaps negative. Finally, it is important to define the architectures

121



Y &
5 Double-Harmonic Operation: ®5 Optimisation 5.2 LSTM-TD3 RL Agent @ TUDelft

that are evaluated. Anticipating that the network architectures will not be the most significant aspect of the
training given the literature (besides the amount of parameters that will need to be optimised), a simplified
approach is taken [53]. To not have to optimise each individual modules as was done for the CBAM model,
three architectures are defined with varying levels of complexity, with a large, medium or small amount of
parameters. These parameters are summarized in Table 5.5 including a description of what each component
or module is performing in the actor or critic networks. This is a more detailed view of what was presented in
Figure 4.10.

Table 5.5: LSTM-TD3 network architecture details for Optuna optimisation (see Figure 4.10 for depiction). If two values are
placed for a given module, it means there are 2 hidden layers

Component Small Medium  Large Purpose & Information Pro-
cessing

Critic Network (Q-Value Estimation)

Pre-LSTM MLP 64 128 256 — 128 Preprocesses history (obs+act):
extracts temporal patterns from
beam profile sequences

LSTM Core 128 256 512 Sequential memory: captures
long-term dependencies in phase
adjustment effects

Post-LSTM MLP 64 128 256 Memory encoding: distills
LSTM output into control-
relevant temporal features

Current Feature 128 — 64 256 — 128 512 — 256 — 128 Instantaneous processing: cur-
rent observation + action value

assessment

Post-Combination 64 128 256 — 128 Feature fusion: combines tempo-
ral memory with current state for
Q-value

Output Layer 1 1 1 Final Q-value: scalar reward pre-

diction for state-action pairs

Actor Network (Policy)

Pre-LSTM MLP 64 128 256 — 128 History preprocessing: beam pro-
file sequence feature extraction

LSTM Core 128 256 512 Temporal memory: learns phase
adjustment strategies from his-
tory

Post-LSTM MLP 64 128 256 Memory distillation: extracts ac-
tionable insights from temporal
patterns

Current Feature 128 — 64 256 — 128 512 — 256 — 128 Current state processing: beam
profile analysis for immediate ac-

tion

Post-Combination 64 128 256 — 128 Policy integration: fuses memory
with current state for action se-
lection

Output Layer 1 (Tanh) 1 (Tanh) 1 (Tanh) Phase adjustment: A®, action

bounded to [—m/4, /4]

Input Specifications

Observation Dim 1001 1001 1001 Beam profile (1000 slices) + syn-
chronous phase ¢,

Continued on next page
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Table 5.5 — continued from previous page

Component Small Medium  Large Purpose & Information Pro-
cessing

Action Dim 1 1 1 Second harmonic phase adjust-
ment AP,

History Length Variable  Variable Variable Past observations/actions for
temporal context (episode
boundaries)

Architecture Characteristics

Total Parameters  ~180K ~520K ~1.8M Parameter count scales with net-
work complexity

Training Speed Fast Medium Slow Smaller networks train faster,
and are less prone to overfitting

Optimisation Results

As was the case for the CBAM optimisation, we average the importances over 1000 runs, which is especially
important in this case since there are only 18 trials performed. The results for the parameter importances
are shown in Table 5.6, while the optimal parameters are listed and described in Table 5.7, which corresponds
to 2 and a half weeks of runtime to get these results (since every trial basically took an entire day to perform).
Meanwhile, contour plots are shown in Figure 5.60 showing the evaluation points for the top 3 hyperparameters
and the respective objective values that are obtained.

Table 5.6: Parameter importance (% variance) for the LSTM-TD3 Optuna study (averaged over 1000 runs, renormalised
excluding history-action flags)

Parameter fANOVA (%) MDI (%)
Critic learning rate 26.90 32.35
Exploration noise (std) 21.14 21.27
Actor learning rate 11.40 9.76
Batch size 10.18 9.32
LSTM history length 8.08 6.58
Target network Polyak factor 7.64 8.00
Replay ratio 4.65 3.95
Target smoothing noise clip 2.99 2.74
Target smoothing noise (std) 2.66 2.08
Discount factor v 2.44 2.63
Policy update delay 1.00 0.77
Network complexity scaling 0.88 0.55

The most important parameters were the learning rates, the exploration noise, and the batch size. This is
consistent with the TD3 architecture knowledge. For the learning rate, given that they are defining how
quickly we are learning and making use of the estimates of the critic networks, if they are too high (especially
for the actor) then the performance deteriorates since we are updating our actor based on an estimate, but
if they are too low (especially for the critic) then the network learns too slowly, making the agent even more
sample inefficient. Consequently, as evidenced in the lower middle plot of Figure 5.60, a critic learning rate
one order of magnitude higher than the actor learning rate seems to be the most ideal combination, and it
can be appreciated that because the axes are logarithmic, any exponential relationship now becomes linear in
this plot, and there appears to be an optimal line where the highest returns are found (up to a certain extent
when the actor learning rate becomes too high). This indicates that if this line is followed further to the left
(meaning lower actor learning rates) then there is potential for even further increased rewards as the actor will
now be updating in a more precise manner when close to the optimum. Since in the complete training, there
will not be the limitation of the reduced epochs that we had to use here in order to have enough trials, then
this can be done to basically make the actor learn slower, but converge to a better performing model. Thus,
the learning rates in Table 5.7 will be reduced in the final training to 0.7 x 107° and 7 x 10~ for the actor
and critic, respectively. For the rest of the parameters, everything is maintained the same.
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Meanwhile, the action noise can also be seen to have a large effect in Figure 5.60, where there seems to be
a sweet spot for the exploration noise added to every action given by the actor. This makes perfect sense
as too low noise and then there could be reduced exploration causing the actor to never be able to learn the
best possible transitions. This is most important when close to convergence and wanting to stay there, as the
profiles can sometimes not be very informative of what action to take, especially at high filling factors F'F
and low voltage ratios ro where one could change the phasing 5° and the profile would look practically the
same. So being able to learn how to reach very precise convergence in these cases requires small actions to be
performed in an explorative fashion such that the critic can start to learn to look for the smallest of features
in these cases that lead to the correct actions which could be added to the buffer as a consequence of the small
exploration noise, but sufficiently high. Luckily, when this happens, we reward the agent handsomely, so then
the TD error can be high once the critic encounters these transitions.

As for the batch size, it is not important in the sense that the gradient updates are more smoothed out due
to more transitions being included inside of the loss estimate, but it has more to do with how many gradient
updates we are performing with the constant amount of parallelized environments (n,, = 190). Remember,
the amount of gradient updates performed in a given step was given in Equation 4.37, in which a lower batch
size B indicates more gradient steps to be performed. Thus, given that the optimal number for the batch size
was 128, and this was the lowest value available in the allowed values (128,256,512 and 1024), it indicates that
more updates are more beneficial for this current training task. This probably improves the sample efficiency,
while the usage of small batch sizes implies more high priority transitions are being used in the updates (due
to the sampling probability of the PER buffer), which clearly benefits faster learning as this was the entire
reason the PER buffer was invented and implemented in many RL trainings [33, 32].

Finally, the suspicions on the network architecture were confirmed, showing that it did not account for con-
siderable variance in the objective value. However, the best trial used a small network architecture, and using
a larger amount of parameters does correlate with decreased final returns, which makes sense given that the
training will take considerably longer for 1.8 million parameters than it does for 180 thousand. This decision
is also supported by the findings of studies that indicate that simpler RL actor architectures with a high
compression of input information, perform better than overcomplicated and “too” expressive architectures.
This could also be due to similar reasons as for why the research that was performed on the compatibility
the convolutional layers with the dense layers in MLP: dormant neurons beginning to appear that do not
contribute to the learning and are unnecessarily bloating the actor and critic networks [57].

Table 5.7: Best hyperparameters for LSTM-TD3 (single study), with descriptions

Parameter Description Value
Actor learning rate Step size for the actor optimiser. 1.29 x 107°
Critic learning rate Step size for the critic optimiser. 9.93 x 1075
Discount factor One-step return discount. 0.971
Target Polyak factor Update coeflicient for target net- 0.994

works.
Exploration noise (o) Standard deviation of action 0.0266 rad or 1.524°

noise during data collection.
Target policy smoothing noise (o) Standard deviation of noise 0.0257 rad or 1.473°
added to target policy actions.

Batch size Samples per gradient update. 128

Policy update delay Q-function updates per policy 3
update.

Replay ratio Amount of times a transition 37.77
should be used in the update on
average.

LSTM history length Number of past steps provided to 5
the LSTM.

Network complexity preset Preset for network complexity il- Small

lustrated in Table 5.5.

In conclusion, while the results produced by the hyperparameter optimisation are done with a very limited
number of evaluations, the results are consistent with the TD3 theory, and more importantly, they generated an
improvement of halving the negative returns that were produced by the initial, unoptimised model. As a result,
thanks to the analysis, the improvements produced, and the empirical confirmation of the understanding of the
importance of TD3 hyperparameters, there can be confidence in the results of the hyperparameter optimisation.
Of course, it would still be beneficial to repeat this optimisation for a reduced amount of parameters and smaller
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Figure 5.60: Contour plots for the 3 most influential hyperparameters: the learning rate r; of the critic and actor, and the
action noise used to explore the domain.

parameter bounds as was done with the CBAM model (including lower learning rates than what was allowed
by the parameter ranges), and also using the simple reward function for more consistent rewards and returns.

5.2.4. Simulation Results

Before starting to discuss the verification analysis for the LSTM-TD3 model, it is important to first consider one
change to the actor and critic networks that is catering directly to the current task at hand. This change was
considered after having tested the RL training using the optimised hyperparameters, and using the CAE latent
space as input as it was seen to have meaningful phase correction information encoded within it. However, after
2 million steps in training, there were absolutely no improvements, with the rewards being completely stagnant
with a small oscillation due to the added action noise of the TD3 architecture. This was also confirmed by the
diagnostic animations which showed that no action was being taken (or very small random ones of 0.5°), as
the RL agent could not understand at all what the encoding meant. It is unclear whether this is because the
CAE was not trained together with the RL agent, or because of the issues with the CAE training itself.

Considering the fact that one of the main strengths of the CBAM model was that through the spatial attention,
it was able to bypass completely the baseline droop through proper bin weighting where the important features
lied, but this is not something that could be implemented in the RL actor network due to the convolutional
layer incompatibility. As a result, an efficient solution was devised that only requires one additional parameter
to be trained, and improved the performance considerably: an adaptive threshold that masks the input in a
differentiable manner before entering the MLP actor structure

Thresholding: Solution to Baseline Droop

The SoftThreshold module implements a learnable gating mechanism for bunch profile “de-noising” in the
LSTM-TD3 actor network. The module can be described mathematically in the following manner:

N
1
Teff =T-D whereﬁ:ﬁzpi (5.15)
i=1
M;=o0(s- (pi — Tesy)) (5.16)
Pfiltered,i = Pi * M (5.17)

where p € R19% is the bunch profile, 7 is the learnable threshold parameter (initially it is 0.1), s = 50 is the

sigmoid scaling (high values mean a more pronounced gradient in the mask), o(+) is the sigmoid function, and
M; is the learned mask. By using the mean value of the profile, we are making it adaptive to the profile, and
ideally making it adapt to different emittances in the PSB. Smaller emittances, and therefore shorter bunches,
would have lower mean values (less bins that are to 1) and cause larger induced voltages that induce more
baseline droop, and since we want to maximize the profile information for the shorter bunches (to capture
statistics like overall width), it is good to have a lower effective threshold in these cases.
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This masking mechanism is applied at two stages in the actor:

o History buffer profiles: pp;: < SoftThreshold(phist, Prist)

e Current profile: p.,, + SoftThreshold(pey:, Dewr)

The synchronous phase ¢, is preserved unchanged and is not gated, which also gives a much clearer signal to
the network that this parameter is different from the 0’s (or very small numbers) that are next to it in the
majority of cases: [pfittered, @s|-

Furthermore, the key properties of this method are that it is adaptive by scaling with the mean of the profile,
it is differentiable by using the sigmoid instead of jagged binary masks, easily learnable (as only one additional
parameter is introduced), and it suppresses the low-signal artifacts induced by baseline droop and any noise in
the signal. This enables robust ®5 phase control by filtering measurement artifacts that can appear randomly
as shown in Section 5.1.7 and focusing the agent on relevant bunch profile features.

Comparison to Baseline Model

Now we compare the two models based on the epoch returns they attain and the phase errors that are achieved
throughout training using the simplified reward function as depicted in Algorithm 8. These are shown in
Figure 5.61a and Figure 5.62. respectively. Additionally, the stabilization capabilities of the simplified reward
function combined with the Huber loss and @Q network regularization are demonstrated through the mean
Q-loss shown in Figure 5.61b, which (if TD errors are contained within the parabolic region of the Huber loss)
should be slightly larger under ideal learning conditions due to the added regularization loss terms.

However, the important comparison to be made is where the training reward starts to plateau with each model
and how the learning progresses. The models were trained with a maximum action of £7 radians or +45°

to bound the behaviour of the model and speed up the learning process[51]. In Figure 5.61a, the learning
kicks off from a considerably higher value in the case of the thresholded model. This is primarily because of
the fact that the threshold allows the agent to start discerning the relevant from the non-relevant regions of
the profile early on, and acting only based on the important parts. This is especially significant when the
profiles are augmented with droop, as the non-thresholded model has to learn this through many episodes.
Additionally, the non-thresholded model plateaus at a lower episode reward, which might be because of the
lack of specialization that the modules have towards identifying relevant phase correction features, as they
also have to be robust to the added baseline droop and the high frequency noise that is inherent to the low
number of macroparticles used in the profile generation (N, = 10°). It should also be noted that the training
of the model without thresholding was interrupted once it was seen that it was performing worse in terms of
the final phase error and the rewards (aside from the diagnostic animations that are produced).

All of these hypotheses are supported by the performance of the model when considering the final (smoothed)
episode phase error shown in Figure 5.62. This error shows that the phase error stagnates at a higher value
for the non-thresholded model which is in line with the stagnated episode reward in Figure 5.61a. As a result,
moving forward, only the thresholded model is considered, except in validation for reasons that will be given
later on in Section 5.2.5. Also note that the learnt threshold value 7 was roughly 0.3, meaning that when
multiplied with the mean of each profile, that can be assumed to range from 0.3 to 0.6 for the normalised
profiles, the effective threshold value ranges roughly from 10% to 20% of the profile maximum, which means
that the baseline droop (which has a maximum value of 4% as described in Section 4.1) is completely bypassed

by the model, as desired, and enabling more meaningful learned parameters for the rest of the LSTM and
MLP modules.
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Figure 5.61: Training statistic after applying stabilization fixes for Q-value over-estimation for MSE error cases with high
(r; = 107%) and low (r; = 107°) learning rates simplified reward function in Algorithm 8 using 46 parallel environments in
training
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Figure 5.62: Smoothed phase error (in degrees) comparison between thresholded and non-thresholded model

Effect of Initial Phasing & Varying Impedance

Now the same analysis will be performed as for the CBAM model to assess its robustness to the increased
impedance and varying initial phase estimates. The same procedure is followed with analysing two initial
conditions: one at —90° for all C-Times and another with 90°, with the —90° initialization being closer to
the optimal value, and the 90° case being seeded in BSM. The final results after 10 corrections (with no need
for decay like the CBAM model) are shown in Figure 5.63 and 5.64 for 90° and —90°, respectively, where the
ideal phasing is achieved for both cases. The LSTM-TD3 agent is far more robust to initialization in BSM,
as it can escape it when slightly perturbed from the most symmetric BSM phasing, unlike what happens to
the CBAM model. Additionally, the bounded nature of the action can clearly be seen in Figure 5.63, where
several corrections are required to reach the optimum, with the fourth correction essentially achieving the
correct phasing.
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Figure 5.63: CBAM solution for ISOLDE cycle under twice the PSB impedance: correction evolution and final ®3 when
initialized at 90° (CBAM solution in red as before)

5.2.5. Verification Analysis

Global Error Summary

Here the global errors are presented and compared between the optimised model using the soft thresholding
method, and an initial unoptimised model, but both trained on the same simplified reward function. These
two models are compared because in the validation practices, there was not sufficient time to wait for the
training of the optimised model to be completed before the last possible access to the CERN Control Center
(CCC) where the optimisation scripts are run. As a result, only the unoptimised, non-thresholded model could
be tested in practice, which is why the comparison in simulation is fundamental as it gives an indication as
to the possible performance of the model if implemented in the PSB. Therefore, the results are presented in
Figure 5.66a and Figure 5.66b for the mean and maximum errors acquired in each cycle.

As can be expected, the unoptimised model performs considerably worse than the optimised model in the mean

error, with it being from 100 to 900% higher than for the optimised model. However, for the maximum error,
this is not the case for the cycles where splittings are performed (AD Ring 3 and MTE), but this is mainly due
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Figure 5.64: LSTM-TD3 agent’s solution for ISOLDE cycle under twice the PSB impedance: correction evolution and final ®2
when initialized at —90° (CBAM solution in red as before)
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Figure 5.65: LSTM-TD3 agent’s initial and final waterfalls for ISOLDE cycle under twice the PSB impedance when initialized
at £90° (both have the same solution)
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Figure 5.66: Summary of phase-error metrics for optimised and unoptimised LSTM-TD3 agents across the all operational PSB
cycles
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to the reasons presented in the previous verification analysis of the CBAM model. As the matching simulation
is not considering the evolution of the particle distribution as it is being split, this results in apparent large
errors at the end of the cycle, which are required in order to have matched peaks. Furthermore, the reason why
the unoptimised LSTM-TD3 agent is having lower errors is because it is not matching the peaks correctly as
will be shown in the verification plots. This comparison will be performed for only the BCMS and MTE beams
as it gives a sufficiently detailed view of where the unoptimised model is lacking and it partially explains the
results obtained in the validation procedures. If the unoptimised LSTM-TD3 agent’s solutions to the ISOLDE
and TOF cycles want to be seen, then one can find them in Section B.2.

Comparison with CBAM Model

In order to validate the reasoning behind the development of this model, it is also imperative to compare
the errors that are incurred by the CBAM model and LSTM-TD3 agent during verification. As a result,
Figure 5.67 shows this in a comparative bar chart plot for the optimised LSTM-TD3 agent and the optimised
CBAM model. The mean errors for the LSTM-TD3 agent are reduced for almost all cycles, with the exception
of MTE and practically the same behaviour for TOF and AD Ring 3. This coincides with the cycles in

which the behaviour of the simulation deviates the most from the behaviour in the machine due to the static
matching simulation which is performed at each C-Time without tracking the particle distribution splitting,

as explained previously. Meanwhile, for TOF, it seems like the machine set solution is catering to PSB-specific
effects which are not captured in simulation. As a result, for these cycles, the comparison should only be
considered tentatively, and what mainly should be compared are the profiles that are produced.
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Figure 5.67: Summary of phase-error metrics for optimised CBAM model and LSTM-TD3 agent across the all operational
PSB cycles

To probe where the differences between the solutions are most significant, and neglecting the splitting cycles
and TOF, we will compare select profiles for the EAST Ring 3 cycle. The profiles selected are those where
the differences in the solution are the greatest (see Figure B.7 and Figure B.15) which were at C-Times C-277,
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C-300, C-500 and C-700. The results are shown for all the profiles in Figure 5.68a and a detailed view for the
profiles at injection in Figure 5.68b. The performance is most distinguishable at C-500 and C-700 where the
profiles for the CBAM model are slightly asymmetric with more charge on the left lobe at C-500 and slightly
curved to the right at C-700, while the LSTM-TD3 agent achieved perfect symmetry in both cases.

Additionally, at injection the difference can barely be discerned, which is why the zoomed in insets were

included. Here, the B is very close to 0 at either of these points, so while the solutions deviate by a couple of
degrees, there is almost no visible difference even in the normalized density plots, but it can slightly be seen
that the peaks are better matched in the LSTM-TD3 case as here both lobes are at the same height with no
tilt in the profile, while there exists a slight tilt towards higher charge in the right lobe for the CBAM model
as shown in the zoomed inset plots. This performance increase is entirely due to the memory component that
is integrated into the agent which allows it to achieve much better convergence behaviour than for a regressive
model based on only one profile. Nevertheless, it is still impressive that the CBAM model can keep up with
the LSTM-TD3 agent when the agent has more information to work with: 6 times as many profiles to decide
on an action and actions which the CBAM did not have.
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Figure 5.68: Comparison of LSTM-TD3 and CBAM produced profiles at the optimal solution for the EAST (Ring 3) cycle
after 10 corrections for the points where the solutions deviated the most

Now that the LSTM model’s capabilities have been demonstrated with respect to the CBAM model, since the

optimised model has the same performance as the CBAM model, but slightly lower max and mean errors on
average implying a better performance, the plots will not be discussed in as much detail as for the CBAM
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model. More emphasis will be made in the differences between the CBAM and LSTM-TD3 solutions and,
where pertinent, profiles will be shown to indicate which model is coming out on top at given computation
points.

On a final note, it is interesting that the LSTM-TD3 model achieves lower error with respect to the machine
set solution, as it indicates that the machine set solution is valid in simulation (except perhaps in splitting
operations) it is fine-tuning to a degree in which it is more capable than that of the CBAM model. This
is consistent with the training results presented in Figure 5.61a, as the LSTM-TD3 agent had its rewards
maximized at a deviation of 0.5°, while a deviation of 0.5° from the optimum meant a loss of 3.8 x 1072,
which is achieved only for very few parameter combinations in the CBAM model, while it is being achieved
consistently for the LSTM-TD3 agent. This performance comparison also confirms why the CBAM model does
not achieve exactly the right phasing at different points in the cycle in the validation study in Section 5.1.7,
as the model does get close to the correct solution, but does not converge to the optimal profile.

BCMS

As mentioned previously, for BCMS both the optimised and unoptimised LSTM-TD3 agents will be analyzed.
The 10 iterative and bounded corrections and final solutions for the optimised and unoptimised model are
shown in Figure 5.69 and 5.70, respectively, while their corresponding waterfall plots are shown in Figure 5.71
and 5.72. The solutions differ, but since the initial estimate is —90° for all C-Times, optimal phase is reached
in one correction for the optimised model, while the unoptimised is appearing to overestimate the phase at
injection. This also shows in the waterfall of the unoptimised model where the first profile appears to have
higher density in the left lobe than in the right one. So there is a certain drift in the corrections towards
asymmetry for the unoptimised model, which should be expected when implemented in the PSB. Additionally,
this drift is not only present at injection, but also at the highest acceleration rate between C-450 and C-650
and a large asymmetry to the left at C-750 corresponding again with the overestimation of ®5. It seems to
be particularly worse when the double-lobe feature is not available, but it does still provide decent estimates
in the idealized simulation environment. However, in simulation the results should ideally be optimal, if not
very close to being so.
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Figure 5.69: BCMS (2025) phase-correction evolution over 10 corrections (top) and final LSTM-TD3 &3 solution versus
machine set phase (bottom).

Nevertheless, for the optimised case, the desired profile shape is maintained and there are no immediately
worrying asymmetries in any of the profiles in the waterfall. Particularly promising is that the solution avoids
kinks at injection and extraction which the CBAM model had in its verification and follows the manually
phased solution closer (compare with Figure 5.12), especially at the kinks in the solution and notably at C-680
where CBAM underestimates @, causing a higher charge density in the right lobe.

ISOLDE

For ISOLDE, only the optimised model is analyzed, with its 10 corrections and solutions shown in Figure 5.73,
while the resulting waterfall depicting the initial and final profiles throughout the cycle are shown in Figure 5.74.
In contrast to the CBAM model in Figure 5.14, the LSTM-TD3 agent follows the manually phased solution
almost exactly after C-575, but has a larger deviation around C-430 by +2°, but lower deviation practically
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Figure 5.70: BCMS (2025) phase-correction evolution over 10 corrections (top) and final LSTM-TD3 ®3 solution versus
machine set phase (bottom) for unoptimised model tested in the PSB.
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Figure 5.71: BCMS (2025) normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections

(right).
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Figure 5.72: BCMS (2025) normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections
(right) for unoptimised model tested in the PSB.
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everywhere else. When this deviation occurs, as evidenced in the comparison profiles in Figure 5.75, this is
working to correct a slight higher density in the right lobe at C-440, but the difference is almost negligible for
all profiles as they all show good lengthening with the peaks practically matched for all C-Times.
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Figure 5.73: ISOLDE phase-correction evolution over 10 corrections (top) and final LSTM-TD3 ®3 solution versus machine
set phase (bottom).
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Figure 5.74: ISOLDE normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections (right).

MTE

For MTE the comparison between the optimised and unoptimised LSTM-TD3 agents returns, with the correc-
tions and solutions shown in Figure 5.76 and 5.77, for each respective model. These solutions correspond to
the waterfall plots shown in Figure 5.78 for the optimised model and Figure 5.79 for the unoptimised model.
In this case, the overestimation of ®5 at injection that was present at injection for BCMS, is now exaggerated
to a difference of 20° and maintained throughout the cycle with proper phasing only from C-680 to C-710.
This is also evident in the final waterfall plot where the charge density is evidently higher on the left lobe than
on the right one.

Furthermore, with regards to the optimized model, in the final waterfall plot in Figure 5.78 ®5 is always
well phased. The only point where the solution differs by roughly 2° from the CBAM model (compare with
Figure 5.16) is at C-450 and and C-760, with the latter leading to the higher maximum error in Figure 5.67b.
As a result, the final profiles at these points are compared in Figure 5.80, and almost no difference can be
discerned at first glance, but in the zoomed insets, the CBAM solution has a tilt towards the right in the C-450
case, and practically no differences in the C-760 case. As mentioned before, the ®; value at the end of the
cycle has little to no effect other than shifting the bucket. Thus, the optimised LSTM-TD3 agent’s solution is
verified as well for MTE.
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Figure 5.75: ISOLDE CBAM vs LSTM-TD3 model solution comparison at selected C-Times (C-400,C-440 and C-770)
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Figure 5.76: MTE phase-correction evolution over 10 corrections (top) and final LSTM-TD3 ®3 solution versus machine set
phase (bottom).
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LSTM Model (unoptimized) Solution Evolution
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Figure 5.77: MTE phase-correction evolution over 10 corrections (top) and final LSTM-TD3 @ solution versus machine set
phase (bottom) for unoptimized model tested in the PSB.
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Figure 5.78: MTE normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections (right).
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Figure 5.79: MTE normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections (right) for
unoptimised model tested in the PSB.
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Figure 5.80: MTE CBAM vs LSTM-TD3 model solution comparison at selected C-Times with zoomed insets (C-450 and
C-760)

TOF

Finally, for the TOF cycle the corrections and solutions are shown in Figure 5.81, while the corresponding
waterfall plot is shown in Figure 5.82. Here there is practically no difference from the CBAM solution, except
that there is a slightly higher (1° or less) phase in the from C-300 to C-400, and that the solution at C-
700 is 2° higher and closer to the manually phased solution. Aside from this, all the profiles are symmetric
and lengthened, and the difference in the profiles at these points is so small that it is not worth mentioning.
Meanwhile, the unoptimised LSTM-TD3 agent heavily overestimates the ®5 value again, meaning that the
profiles are skewed to the left, consistently drifting with positive corrections up to correction number 7 (see
Figure B.19), which is becoming the predictable behaviour of the unoptimised agent. This tells us that the
same behaviour should be expected in the PSB, which is the next and final discussion of this chapter.
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Figure 5.81: TOF phase-correction evolution over 10 corrections (top) and final LSTM-TD3 &2 solution versus machine set
phase (bottom).
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Figure 5.82: TOF normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections (right).

5.2.6. Validation Procedure: PSB Results

As mentioned previously, given the time constraints related to access to the CCC, there was no time to test the
optimised network which is trained with baseline droop augmented profiles. As a result, an unoptimised model,
which was not trained with augmented profiles, as this caused even worse performance, is tested in the PSB.
Consequently, the results presented here are merely indicative and the analysis is catered towards how much
the model’s behaviour (which is already assumed to be sub-optimal) is replicated by the verification analysis.
This is because if the same trends that occur in simulation are repeated for the validation results, then that
gives us more confidence that the optimised LSTM-TD3 agent will be able to perform well in the PSB when
implemented or tested in the near future. Additionally, the effects of not choosing the correct computation
point are not discussed as they were analysed extensively for the CBAM model which had better performance
than the unoptimised agent. However, the same effects still persist and cause slices in the waterfall plot
where the profiles are considerably skewed. Finally, the model also achieved the sub-cycle latency target for
the correction, taking roughly 20 seconds to acquire, preprocess, infer and correct the profile, as mentioned
before, this can be improved with a better smoothing and reinterpolation mechanism. Again, by far the largest
bottleneck is the reinterpolation and smoothing process, which takes roughly 1 second per computation point,
while the inference takes less than a second to perform and send the phase setting to the PSB.

Thus, we will first analyse the results in the same order as in Section 5.1.7, starting with the 2025 BCMS
variant.

BCMS 2025

For the 2025 BCMS variant, the performance was only acceptable for 1 of the 3 attempts, so it is the only
attempt that will be shown here. This is consistent with lack of robustness with regards to initial conditions
and erroneous corrections, as will be shown. The final waterfall plot produced under the ®5 program indicated
in Figure 5.84b is shown in Figure 5.83. It can be appreciated in the final waterfall plot that asymmetries are
present throughout the cycle, which is expected given the behaviour it had in simulation without any type of
perturbations.

At injection, the unoptimised LSTM-TD3 agent constantly corrects positively and continues to do so until the
end of the 10 corrections, thinking that the optimum lies at higher ®5 values. This is shown in the corrections
made in Figure 5.84a. This is likely aggravated by the fact that the unoptimised model was not trained with
profiles augmented with baseline droop. So, with the appearance of this droop in the PSB profiles, which
was much more apparent for the profiles later in the cycle (at C-700), likely caused correction issues. In the
first correction, the model goes the complete opposite direction, which is similar to what it does in the first
correction in simulation (without any baseline droop) in Figure 5.70 at C-780. This effect does not occur for
the optimised model, so this behaviour is not expected. After 9 corrections, the agent luckily manages to enter
a region in ®5 in which BLM features are visible and that allows slight convergence, but this is not consistent
behaviour as demonstrated by the fact that only 1 out of the 3 optimisations converged (with one of them
having used 15 corrections instead of 10).

Additionally, this unoptimised agent was also expecting profiles that were not smoothed, so it could have also
played an effect on this cycle and others, decreasing performance even more. This could be because it might
have depended on the slight noisy features to be able to perform corrections. In an attempt to prove this
effect, the model is tested for the BCMS cycle in simulation with profiles with droop and that are smoothed
to see how the agent interacts with these corrections. The simulated profiles are shown in Figure 5.86 while
the real reinterpolated profiles are shown in Figure 5.85, and it can be seen that they look similar.
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Figure 5.83: LSTM-TD3 BCMS 2025: final measured waterfall after applying the LSTM-TD3 solution
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Figure 5.84: LSTM-TD3 BCMS 2025: agent corrections (left) and final solution (right)
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Figure 5.85: LSTM-TD3 BCMS 2025: Reinterpolated profiles at 4th correction
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Figure 5.86: LSTM-TD3 BCMS 2025: Simulated droop for BCMS cycle
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Using this simulated droop, it is possible to evaluate the unoptimised LSTM-TD3 agent on the simulated
BCMS cycle. The results are shown in Figure 5.87 for two different starting phases ®5 = £90° for all C-Times.
As can be appreciated in the comparison of the solutions, while the solution converges some values that are
closer to the optimal solution (like &5 = —90°), it does not for those that start further away. This effect is also
evident when starting from ®5 = 0° and behaves as it does in the PSB: lack of convergence at injection and at
C-700. The important takeaway here is that because it lacks robustness to converge while being independent
of the starting point, it is the main driving reason behind the bad performance. Note that this effect of lack
of convergence is not only due to the appearance of droop, it occurs in general for this unoptimised agent and
it does not have the characteristics shown by the optimised agent in Figure 5.63 and 5.64, but it is aggravated
by the appearance of droop in simulation.
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Figure 5.87: LSTM-TD3 BCMS 2025: agent final solution in simulation augmented with baseline droop for starting at
Py = —90° (left) and P2 = 90° (right) for all C-Times

Nevertheless, roughly correct phasing was achieved for the profiles from C-500 to C-650 in 2 out of the 3
attempts. This again underlines the lack of convergence of the agent. However, suboptimal profiles were
obtained from injection up to C-500 for both attempts which can be appreciated in the comparison of the
profiles between the manually phased solution and the LSTM-TD3 solution Figure 5.88. All these profiles were
also skewed to the left, much like the profiles in verification, which gives promise to the optimised model for
which this does not happen in simulation. Thus, it can be said that the unoptimised model has an inherent bias
towards positive corrections, which is only made worse and less stable by the appearance of baseline droop.
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Figure 5.88: LSTM-TD3 BCMS 2025: select profile comparison at certain C-Times for the manually phased and LSTM-TD3
solution

Furthermore, in the third attempt the phase was changing so drastically near C-700 with big changes in phase
that caused particle losses of up to 20%. This was enough cause to terminate the optimisation immediately
and make a switch towards the BCMS 2024 cycle. In addition, given the analysis presented and the simulation
results for the optimised LSTM-TD3 agent and its performance relative to that of the CBAM model, it can
be expected that it will perform better than the CBAM model in this phasing task.

BCMS 2024

As for the 2024 BCMS cycle, the results were considerably more stable. Nevertheless, in order to maintain
safety and knowing that large oscillations were likely in the solution for the higher extraction energy cycles, the
agent was only allowed to act from injection (C-275) to C-625, while at the rest of the points, the approximate
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synchronous phase was used. Therefore, the final solution achieved and its corresponding measured waterfall
plot are shown in Figure 5.89 and Figure 5.90, respectively.
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Figure 5.89: LSTM-TD3 BCMS 2024: final ®2 program with the solution compared to the manually phased $5 program
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Figure 5.90: LSTM-TD3 BCMS 2024: final measured waterfall after applying the LSTM-TD3 solution

The same tendency to over-correct is persistent in this case, with overestimations throughout the cycle while
also going the opposite direction at injection. Again, in Figure 5.91 iterative corrections were underestimated at
injection and overestimated in the middle of the cycle. This is evident in the waterfall plot in Figure 5.90 where
there is consistently a higher charge density on the left lobe, except at injection where the under-estimation
of @5 causes higher densities on the right. Furthermore, the effect of its rapid change from —110° to —60°
can also be appreciated as in the waterfall plot, the bulk of the charge quickly shifts to the left. This can be
clearly discerned when comparing the manually phased profiles to those of the agent in Figure 5.92, where
now the profiles have only been shown in the range in which the optimisation has been performed. Although
the agent gets closer, it still does not reach the optimum, as is expected. Furthermore, the same behaviour as
in the simulated environment persists with over, and under corrections, and the incapability to converge with
consistency. For example, in another attempt that was done for this cycle, the actionable range was extended
to C-700, where now the model was incapable of converging at C-650, when it was able to do so previously for
the BCMS 2025 case, which has the same acceleration rate and voltages at this C-Time. This again gives us
more confidence in the correct functionality of the optimised LSTM-TD3 agent given that it does not display
these behaviours in simulation, and is much more robust to these changes.

ISOLDE

Moving on to the ISOLDE results, these represent the case in which the performance was the best for the
unoptimised agent, and the optimisation could be run up to C-750 like it was done for the CBAM model. Two
different attempts were made in order to study the effect of smoothing as here the agent had some consistency
in its results which allowed this comparison to be valid. As a result, in one of the attempts the smoothing is
removed completely, while in the other it is maintained. An example of the profiles that the model is taking
as input is shown in Figure 5.93 where the left panel shows the case where the reinterpolated profiles are
smoothed and the right panel shows this without smoothing at the second iteration (so after one correction is
applied).
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Figure 5.91: LSTM-TD3 BCMS 2024: correction amplitude A®z per iteration across C-Time (yellow indicates corrections
later in the cycle)
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Figure 5.93: LSTM-TD3 ISOLDE: reinterpolated profiles at the second iteration with smoothing (left) and without smoothing
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Figure 5.94: LSTM-TD3 ISOLDE: final waterfall plots with smoothing (left) and without smoothing (right)

Meanwhile, the final waterfall plots for both cases are shown in Figure 5.94 in the same way. Note that it
was possible to do this with an acceptable signal-to-noise ratio (SNR) because of the relatively high intensity

used (80 x 101 ppb). The @5 programs that produced the waterfall plots are shown in Figure 5.95 where
it can be seen that they are practically the same, but that the injection transients that are not smoothed
out are causing a greater over-estimation of ®5 at injection and a larger under-estimation of ®5 at C-750.
Nevertheless, an important point to make is that in the non-smoothed solution, ®, is about 3° closer to the
optimal solution in the kink formed at C-370. However, the difference is almost negligible, with the only one
that truly matters being the larger overestimation at injection which clearly affects the injection process as
demonstrated in Figure 5.94b where there seems to be a shift at the bottom of the plot.
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Figure 5.95: LSTM-TD3 ISOLDE: final $5 program with the solution compared to the manually phased ®2 program for
smoothing (left) and no smoothing (case)

Furthermore, when comparing the profiles that are produced with either method shown in Figure 5.96 (note
the spurious reduction in SNR for the smoothing case at injection), with the manually phased profiles shown
in Figure 5.97, it can be seen that both methods produce profiles of better phasing at the end of the cycle.
However, at injection, the manually phased profiles are more symmetric. Furthermore, at extraction the
smoothed method produces more lengthened and symmetric bunches, but this could simply be due to luck as
both methods diverged in similar ways after C-700, and perhaps if more iterations were performed we could
see the methods converge to a more reasonable value. What is also interesting to note is that the same type
of pattern is achieved here as in the verification plot for the unoptimised model in Figure B.17. There is
an overestimation of ®5 over the majority of the cycle, and an underestimation at extraction, which further
validates our comparison between the two models.

MTE

For the splitting case with the MTE beam, the optimisation is run until C-750 as this is minimum required
in order to be able to split the beam, while still avoiding the large oscillations which are known to occur at
points where ®5 has minimal or no effect. Furthermore, given the precision that is needed for this particular
beam type, 15 corrections are performed instead of 10. The final resulting ®5 program is shown in Figure 5.98
while the corresponding waterfall plot is in Figure 5.99. Note that it was not possible to normalize the profile
due to noisy acquisitions that completely hinder visualization, but the final reinterpolated profiles are shown
in Figure 5.100 to aid visualization.
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Figure 5.96: LSTM-TD3 ISOLDE: select profile comparison at certain C-Times for the LSTM-TD3 solution with (left) and
without smoothing (right)
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Figure 5.97: LSTM-TD3 ISOLDE: select profile comparison at certain C-Times for the manually phased solution
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Figure 5.98: LSTM-TD3 MTE: final ®3 program with the solution compared to the manually phased ®> program
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Figure 5.99: LSTM-TD3 MTE: final measured waterfall after applying the LSTM-TD3 solution
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Figure 5.100: LSTM-TD3 MTE: final measured reinterpolated profiles after applying the LSTM-TD3 solution
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Interestingly, the model performs almost exactly like in simulation, albeit with the issue that now the profiles
are not automatically re-centred as they are in simulation at every individual C-Time. So the ®5 value at
extraction has considerable repercussions on the bucket location since at this point Vo >> Vi, making it
dominate where the bucket will lie as now we also don’t have any acceleration after about C-790. This effect
can be visualized in the reinterpolated profiles shown for the fourth correction in Figure 5.101. Regardless, it
can be seen through Figure 5.100 that the profiles, look similar to the profiles that are produced in simulation
with the same overestimation of ®5 which causes the profiles to be skewed towards the left (i.e. a higher density
of particles on the left). Surprisingly, looking at the simulated solution in Figure 5.77, the same overestimation
occurs, but only from C-275 to C-500, and not until C-680 like in simulation. This means that the model
is actually performing better with the machine data than it does with simulated data, for this particular
beam type. This again outlines the lack of robustness of the unoptimised agent, since it is sensitive to small
variations in the profiles and initial conditions. A plausible reason as to why it is able to get better profiles
when tested in the PSB is solution seeding with a good initial guess provided by the approximate synchronous
phase @s4pprors and the fact that this unoptimised agent is notoriously sensitive to initial guesses. However, it
could simply be due to the baseline droop shifting the corrections towards the negative direction and slightly
correcting this, but the lack of consistency in the agent’s corrections make discerning the reason difficult.
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Figure 5.101: LSTM-TD3 MTE: reinterpolated profiles showing the bucket shift issue when large changes are made to ®2
when Vo >> V;

In summary, the agent was able to approach the correct phasing for the splitting procedure, but was not able
to optimise it entirely. This is mainly determined by the particle density in either bunch, and as can be seen
in Figure 5.100, the heights are different, which would be detrimental to the fixed target experiments down
the line. Nevertheless, the predictable erroneous behaviour of the model on the basis of the simulation results,
indicates that the optimised agent would perform the task much better, likely rivalling the performance of the
CBAM model.

TOF

Finally, given that the TOF cycle is similar to that of the 2024 BCMS variant, it was already expected that it
would not perform well up to C-750 or even C-700. Indeed, this was the case, with large change in ®5 at C-700
as shown in the final solution in Figure 5.102, which caused beam oscillations as seen in the corresponding
measured waterfall plot in Figure 5.103. Although it has an overall negative result, this was the perfect scenario
to test the safety measures introduced to mitigate the potential beam loss that this type of ®5 program can
induce.

The safety measure detected a change in phase that was larger than 70° over a At interval, which meant
that it was very likely to induce oscillations and instabilities. This procedure alerts the user, showing them
the points where large phase changes are induced, and then sanitizes the solution by reverting to the initial
estimate of @s,ppm0,- The entire procedure is shown in Figure 5.104, where the large phase change A®; is
detected in Figure 5.104a and the sanitized solution is given in Figure 5.104b. Note that the sanitized ®o
program contains the point (0,0) as this point is required when setting the phase in the machine.

Consequently, the optimiser was run again, but now bounding the optimisation interval from C-275 to C-650,
which is slightly larger optimisation interval than for the 2024 BCMS case. The fact that it could converge
for this interval for the TOF cycle and not for 2024 BCMS one, which is almost the same beam but with a
different intensity, showcases the lack of robustness of the unoptimised agent. The final solution is shown in
Figure 5.105 and the corresponding waterfall is given in Figure 5.106. The solution follows the same behaviour
as in the previous cases with an overestimation from injection up to C-500, which coincides with what happens
in simulation (see Figure B.19). This again coincides with a larger charge density on the left side of the
profiles, which is visible in the measured and simulated waterfall plot (see Figure B.20). This is also seen
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Figure 5.102: LSTM-TD3 TOF: final (incorrect) ®o program with the solution compared to the manually phased ®2 program
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Figure 5.103: LSTM-TD3 TOF: final measured waterfall after applying the LSTM-TD3 (incorrect) solution with profile
longitudinal beam oscillations visible after C-700
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in the individual profiles at selected C-Times shown in Figure 5.107, where it can be seen that while the
profile is well phased for the later points in the cycle (C-635), it is clearly asymmetric from injection up to
C-500. However, this was expected from the simulated results, so it is good to validate those results, which
again provides more confidence in the optimised LSTM-TD3 model in being able to correctly phase profiles
throughout the cycle.
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Figure 5.105: LSTM-TD3 TOF: final &3 program with the solution compared to the manually phased ®2 program
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Figure 5.106: LSTM-TD3 TOF: final measured waterfall after applying the LSTM-TD3 solution
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Figure 5.107: LSTM-TD3 TOF: select profile comparison at certain C-Times for the LSTM-TD3 solution

Concluding Remarks

In conclusion, the analysis presented showcases the limited performance of the unoptimised LSTM-TD3 agent
without data augmentation when implemented in the PSB. Its behaviour in simulation and its behaviour
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in experiments were analysed and the main reason behind this unsatisfactory performance is likely the lack
of robustness of the agent to different initialization conditions (that exposes lack of correction consistency),
different impedances not matching what is has been trained on, and its own corrections producing shortened
profiles and longitudinal oscillations which it seems it cannot cope with. Additionally, this is aggravated by
the fact that it has no thresholding capabilities to discern the important features in the profile, and is therefore
susceptible to changes in the baseline droop of the profiles with it likely altering the correction produced.

Given these limitations, and the good correspondence of the simulation results to the behaviours witnessed
in the PSB implementation, the optimised LSTM-TD3 agent, trained on augmented data with baseline droop
and with thresholding capabilities, is expected to perform significantly better. Also, given the performance
comparison presented in Section 5.2.5 and the enhanced robustness and convergence capabilities that the
optimised LSTM-TD3 agent has over the CBAM model, it is expected that it will perform even better when
tested in the PSB and other accelerators.
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Triple-Harmonic Operation: 5D Optimisation

As explained in Chapter 2, in triple-harmonic operation the beam profile is shaped by five coupled control
variables: the total RF voltage Viotai, its second and third harmonic ratios ro and r3, together with the relative
phases of the second and third harmonics ¢ and ®3. This yields a 5D optimisation problem whose objective is
to obtain a flat-topped, lengthened bunch while respecting longitudinal stability constraints. Building on the
insights and tooling established in the 1D study (see Section 5.2), we extend the same RL-based approach to this
higher-dimensional setting, reusing the agent design and many of the diagnostics while avoiding re-introducing
already covered background.

This chapter presents: (i) the training setup used to learn a robust control policy for triple-harmonic optimi-
sation; (ii) the shaped reward functions that enforce stability first and profile quality second; (iii) simulation
results and verification; and (iv) a roadmap for deployment in the PSB. Where concepts have already been
introduced, we point back to earlier sections and only state what is specific to the 5D case.

6.1. LSTM-TD3 RL Agent
6.1.1. Training

Training Setup & Considerations

We now revisit training of the LSTM-TD3 agent in light of the updated 5D optimisation problem. The
recurrent off-policy agent from Section 5.2 is retained, but its role is gentler than the one imposed by the
1D case with all the variants: it learns to make small, informed adjustments in a space that is more complex
but is still guided by clear physics objectives. Crucially, the Bayesian-optimiser study in Section 2.4 showed
that the parameter mismatch can be summarised effectively by the KL divergence which is computed using
the deviation of the selected, central portion of the profile where ~ 94% of the charge is concentrated and the
mean of the selected profile itself. This value is then divided by the length of the region of the profile where
~94% of the charge is concentrated so as to encourage wider profiles. This lets us use Lk, as the primary

learning signal and removes the need for the supervised optimal (Vitar, 72, B) : ®2(BLM) mapping that was
necessary in the 1D case due to the amount of emittances that had to be considered. In this case, emittance
is usually high when one wants to mitigate space charge, and this high emittance is practically assured by the
injection mechanism of the PSB: longitudinal phase painting to fill the RF bucket as evenly as possible. As a
result, we remove the filling factor from the equation and consider only filling factors (70 to 100% of the RF
bucket). The agent therefore can directly optimise for flatter, more uniform profiles while exploration remains
confined to simulation instead of having to explore the parameter space in the PSB.

This approach also makes more sense since at low emittances it is impossible to reach the desired flatness
to reduce space charge, so it is something that would not be done in practice. Furthermore, this approach
is also valid for attempting new types of beam production methods that make use of the triple harmonic
operation like a triple splitting. This would be possible to do with the bunch lengthening approach, and then
adiabatically ramping down the 1st and 2nd harmonic voltages to 0 such that the particles are driven to the
centre of each triple harmonic bucket. This is of course contingent on if such a beam type would be beneficial
or even desirable for the experiments or the LHC, but one application that comes to mind is the use of three
bunches for the SFTPRO beam as the PS wants to have as constant as possible bunch intensity and a stable
proton beam for continuous production of by-products. Injecting with three bunches into the PS would allow
capture to be done with hys instead of the hg which is currently used for the SFTPRO beam. Nevertheless,
the beam is split again in the PS with the current setup, so it would have to be seen if it is even beneficial to
do so.

Returning to the training setup, the observations used as input to the policy concatenate three elements:
(i) the normalised longitudinal profile (it could be augmented with baseline droop or not); (ii) the current
triple-harmonic parameters (Viotal, 2,73, P2, P3) expressed as normalised parameters; and (iii) a normalised
magnetic field ramp rate B, which gives information on the acceleration rate for the particles. We include
only normalised parameters so that the learned policy can, in principle, transfer across accelerators or survive
parameter-range changes (e.g., PSB voltage upgrades) without architectural changes. As a result, parameter
and action ranges become a generalised feature and not a fixed feature of the policy, so as not to limit to a
specific accelerator.
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Actions are bounded, incremental updates to the five parameters with the parameter ranges and action ranges
defined in Table 6.1. On the learning side, we keep prioritised replay with a single unified priority structure
over parallel environments to speed up the training, together with a gentle annealing of importance weights
along the training process for the PER buffers. Given how well it performed in the 1D case as shown in
Section 5.2, a learnable soft-threshold gate attenuates low-importance regions of the bunch profile in both
actor and critic before any neural network operations, stabilising value estimation under low signal-to-noise
and baseline droop. Additionally, as for the optimised 1D LSTM-TD3 agent, the simulator augments profiles
with controlled distortions (e.g., droop) and computes the RF bucket area at every step using the Solfege
module, which is then woven into the reward function described next [29].

Table 6.1: Parameter domains and per-step action bounds for triple-harmonic optimisation

Parameter Symbol Range Action per step
Total voltage Viotal [6, 20] kV AV € [-2, 2]kV
2nd-harmonic ratio 9 [0, 5] Arg € [-0.4, 0.4]
3rd-harmonic ratio T3 [0, 5] Arg € [-0.4, 0.4]
2nd-harmonic phase Dy [0, 27r]rad A, € [—I, E] rad
3rd-harmonic phase s [0, 27r]rad  A®3 € [_Z’ Z] rad

Also, phases are applied additively as in the 1D case and wrapped modulo 27 while voltage-like parameters
(meaning the total voltage and the voltage ratios) are clipped to their domains after each action. However, the
phases ®; and ®3 in simulation are defined in an absolute manner, meaning that ®,.;y = 0 as in Equation 2.34,
not as how they are defined in the PSB with ®,.; = ®;. Nevertheless, the following transformations can be
applied to the phases in the simulation to make them relative to ®; as in the PSB, where there is also a sign
inversion due to the definition of the phases in the PSB, and it is shown in Equation 6.1 and Equation 6.2:

Dy (PSB) = ((90° — @2 (simulation)) + 180°) mod 360° — 180° (6.1)

O3(PSB) = ((—P3(simulation)) + 180°) mod 360° — 180° (6.2)

These transformations were determined empirically and Equation 6.1 was used throughout validation in Sec-
tion 5.1.7 and Section 5.2.6 to convert the model correction phases to the PSB phases, where the correction
A, was added to the ®o(simulation) value and then converted. Furthermore, the magnetic field ramp rate is
normalised to be between 0 and 1, where 0 is no ramping and 1 is the maximum ramping rate encountered in
the PSB operational magnetic cycles: 3.7 T/s. This could have possibly been increased to the highest value in
the recently developed magnetic cycles for space-charge mitigation (~4.37 T/s) but it was kept at the current
value to be more conservative with the operational cycles and ideally the model would be able to extrapolate to
the higher ramping rates through the normalisation technique, or with proper training augmentation at these
higher ramping rates (simply retraining the model with the higher ramping rates or using the current model
and adding the higher ramping rates to the environment). Also, the number of different magnetic-field ramp
rates that are considered is increased to 20 (in comparison to the 7 that were considered in the 1D case), to give
the agent more sampling points on the magnetic-field ramp (see Figure 4.1) and be able to interpolate better
between different acceleration rates. Furthermore, since the acceleration rate and the boolean on whether we
augment the profile with droop or not are the only parameters that change every episode, it is also natural to
increase the number of sampling points.

Reward Functions

Reward shaping follows a two-phase approach to target different optimisation objectives: first enforce longitu-
dinal stability via an RF bucket-area constraint that is inversely proportional to the acceleration rate (since
accelerating reduces the bucket area), then optimise the bunch shape using a KL divergence as the learning
signal. We use two closely related variants during development: a simplified form that proved robust early
on, and a modified form that adds an explicit peak-equalisation term to encourage wider, flatter tops. Both
start with feasibility checks that discourage degenerate solutions (failed simulations and setting ro or r3 to 0)
before entering the other phases. The implementation is defined in Algorithm 9 for the simplified form and
Algorithm 10 for the modified form.

The simplified reward focuses on robustness and learning speed:

Rsimple = Rfail + RV + RA + RKL + Rprog + Ract + Rpeaks- (63)
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. Simulation robustness: Rg,; = —10#[failed] penalises when the simulation fails because matching
the particle distribution fails, usually if there is no potential well for the particles to be in.

. Voltage sanity: Ry = —10K[r; < 1073 V r3 < 1073] prevents collapsing higher-harmonic content,
as otherwise we either revert to single or double harmonic operation, and usually the way that the RL
agent learns to have sufficient bucket area is to increase V; as the other voltages reduce it due to them
being in counter-phase (see Figure 2.23).

. Sufficient bucket area: when we have less than the minimum required bucket area (A < Amin),

Amin *A ) d 1

———|) and also
Amin

give a reward for increasing the bucket area if we do not have sufficient bucket area: Rp = —5d4 +

__ Aprev
max (0, min (1, 10 AAA>) .

. Profile quality (KL): when we have sufficient bucket area (A > Ani,), we use the KL divergence as
the learning signal (we use 8 because Lxy, = 1078 is basically impossible to achieve and to keep the

we give a negative reward proportional to the normalised deficit (64 = min(l,

1
reward in a range that can be used to understand how the agent is doing): Rky, = _5(108510 Lk, + 8).

. Progress bonus (bounded): we also reward progressing to lower KL divergence values in comparison
to the previous step: A =logq LY; " —logio Lk, Rprog = 2 tanh(A). The hyperbolic tangent is used
to prevent gradient explosions from rare large improvements.

. Action regularisation: R,.; = —0.1||a||; discourages large, oscillatory changes. This is a simple action
penalty to prevent the agent from oscillating for no reason.

Meanwhile, the modified reward augments the shape phase by trying to equalise the peaks of the profile. In
addition to R, Ry, and R4 as above, its shaping includes a peak equalisation bonus:

Rpeaks = exp(—10006) if |Q>0, else 0 (6.4)

where Q = {2 : Pnorm () > 0.8} is the domain of the profile that is above 80% of the maximum value of the
profile, and & = std(pnorm (£2))/(]€2|/1000) is the standard deviation of the "flat” part of the profile divided by
the normalised length of the flat part. This is a peak equalisation bonus to encourage wide, equalised plateaus.
As a result, using these reward functions it is possible to start training the agent to reach the flattest possible
profile.

Algorithm 9 Simplified Reward for Triple Harmonic RL step

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

function REWARD(Lky,, A, AP™V, A, failed, s, h)

R+ 0
R + R — Chay - W|failed] > Phase 0: simulation didn’t fail
R+ R—-Cy -H¥ra=0Vr;=0] > Phase 0: didn’t set either voltage ratio to 0
if A< A, then > Phase 1: satisfy bucket area
R4 R—Cy Azn=a
if AP'®V exists then
R+ R+ Ca,,,, max (07 Azi:ev) > Phase 1: reward going in the right direction
end if
else > Phase 2: shape profile via Lgy,
R+ R—Cy(logyo(Lkr) +8) > Phase 2: direct KL loss
A «logyo(Lyy,') — logy(LxwL)
R < R+ Cprog tanh(A) > Phase 2: reward progress
end if
return R

end function
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Algorithm 10 Modified Reward for Triple Harmonic RL step

1: function REWARD( Pnorm, LkL, A, AP™V, Anin, failed, s, h)

2 R+ 0

3 R+ R — Chyy - W|failed] > Phase 0: simulation didn’t fail
4: R+~ R—-Cy - H¥ra=0Vr;=0] > Phase 0: didn’t set either voltage ratio to 0
5: if A< A, then > Phase 1: satisfy bucket area
6 R« R—Cy A4

7 if APV exists then

8 R+ R+C,,,,, max (0, A;i:ev) > Phase 1: reward going in the right direction
9: end if
10: else > Phase 2: shape profile via Lk,
11: R+ R—Cy(logyg(Lky) +8) > Phase 2: direct KL loss
12: A «logyo(Lyy, ') — logy(LxwL)
13: R < R+ Cprog tanh(A) > Phase 2: reward progress
14: if Q # 0 where Q = {z : Pnorm(z) > 0.8} then > Phase 3: peak equalisation
15: R < R+ Cpeaks €xp (—std(Pnorm (£2)) - 100/(]€2]/1000)) > Phase 3: direct deviation of flat part
16: end if
17: end if
18: return R

19: end function

Modified Training Parameters

We retain the same architecture from the 1D study (Small network complexity preset) and extrapolate the
training hyperparameters to the 5D problem. The replay ratio ry.cpiqy is increased to 66 to allow more updates
per transition given the fact that the transitions are more complicated due to the 5D action space and to provide
more data usage. Exploration and target-smoothing noises are doubled with respect to the 1D optimum
to accommodate the larger action space. This means that because the exploration noise was 1.524° then
1.524 x 2/360 =~ 0.75%, while the target smoothing noise was increased slightly to 1% of the total parameter
range to be be more conservative in the target policy. Additionally, the LSTM history length is increased to 10
to allow the agent to see more of the past actions and states to make more informed decisions given the more
complex transitions and interdependencies between the parameters. Finally, the amount of steps per episode
is increased to 100 to give the agent more time to learn and explore the action space, which is still quite high
for how fast we would like the agent to be in correcting the beam profile. However, this high number of steps
per episode is also consistent with the fact that we would like the agent to be able to act in an online fashion,
meaning that it should worry about long term stability in the profile, which can only be trained and assured
if the agent acts for a certain acceleration rate for a long time. Nevertheless, given that these parameters
are extrapolated from the 1D study, they should be subject to hyperparameter optimisation in the future to
improve performance, as surely these are not the optimal parameters for the 5D problem. All the relevant
training parameters are reported in Table 6.2.

Table 6.2: Extrapolated training parameters for 5D LSTM-TD3

Parameter Value

Actor learning rate 0.7 x 107°

Critic learning rate 7x 1075
Discount factor ~y 0.971

Target Polyak factor 0.994
Exploration noise (o) 0.75% of the action space
Target policy smoothing noise (o)  1.0% of the action space
Batch size 128

Policy update delay 3

Replay ratio 65

LSTM history length 10

Network complexity preset Small

Training Results

We trained two agents in the 5D setting, one with the simplified reward and one with the modified reward that
adds a peak-equalisation term. After quickly learning to satisfy the bucket-area constraint, the modified-reward
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agent degraded: it frequently collapsed to o — 0 or r3 — 0 that defeat the purpose of using triple-harmonic
operation and accrued large negative returns per episode due to this. Thus, the reason for its quick learning
to satisfy the bucket-area constraint was apparent: it was defaulting to single-harmonic operation with a large
total voltage. Furthermore, warm-starting the modified-reward agent from the simplified-reward policy when
already plateaued in its rewards, meaning starting from an already functional model (but not perfect), did not
help. The peak-equalisation term increased the rewards for early updates (since the reward is only positive)
and steered learning away from reducing Lkp, to try to improve this reward component instead.

To be concise and considering the lacking performance of the complete training for the modified reward function,
it is not shown (it is simply a stagnant reward), but these effects for the warm-started modified-reward agent
are visible in Figure 6.1, where the simple-reward agent shows a consistent improvement trend, while the
modified-reward curve rises initially (due to the extra peak bonus) and then decays. Note the x-axis is relative
wall time (hours), not steps, to account for two external training interruptions which also explains the reset in
the modified-reward curve (starts from a higher value due to the warm-start). The sensitivity of the training
to the peak-equalisation reward shows that it can have competing effects with the KL divergence reward and
bias exploration toward profiles that are not in the flattest triple-harmonic configuration (as was indicated by
the Bayesian Optimisation studies performed shown in Section 2.4).

Mean Reward
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Figure 6.1: Reward curves for the 5D LSTM-TD3 agent with the simple and (warm-started) modified reward functions
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Figure 6.2: KL divergence curves for the 5D LSTM-TD3 agent with the simple and (warm-started) modified reward functions

The trend in Figure 6.2 reinforces this interpretation: the KL divergence for the warm-started, modified reward
agent increases in standard deviation within a few updates to the network relative to the simplified baseline
which already plateaued, indicating worse profiles. A plausible mechanism is reward leaking into the episode
reward from the peak-equalisation term Rpeaks in regimes where only a wrongly set BLM operation in triple
harmonic yields a flatter portion of the profile while the other portion is significantly less flat. Given the
amount of versatility of triple-harmonic operation, this can occur with relative ease and the agent can collect
peak rewards without improving the global flatness.

Beyond scalar training curves, the exploration strategies of each agent differ. The modified-reward agent
basically lacks effective exploration capabilities due to how much the peak-equalisation term deteriorates the
learning process. Under the simplified reward, early exploration proceeds with coordinated, oscillatory probing
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of multiple parameters within a bounded envelope as can be seen in the parameter history in Figure 6.3. This
figure is a frame in the animation that is used to verify the training progress of the agent (aside from the curves
logged into a TensorBoard file), and it shows the profile, the parameter history for Vi, Va, V3, ®5, and @3
after each correction, the KL divergence and its history and the current and cumulative rewards. Additionally,
it also indicates the acceleration rate through the “B__dot” value in the title and the current epoch when
the diagnostic animation was rendered. Back to the analysis, the pattern showed in the parameter history
suggests that the agent is learning the coupled sensitivities between Viptar, 72, 73, ®2, and ®3 by varying them
simultaneously but at different rates (different frequencies in the oscillations) as can be seen in the figure.
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Figure 6.3: Early training of the 5D LSTM-TD3 agent with the simplified reward function (shown for 50/100 steps only)

As learning progresses (around epoch 250), the agent begins to stabilize near a useful region but still oscillates
as it calibrates step sizes as is shown in the more jagged oscillations in Figure 6.4. By roughly epoch 500,
adjustments become fine-grained and consistent, and after quickly reaching the optimum (within about 10 to
20 steps) and then stabilizing, parameters remain near their operational optima for the remainder of training
as is shown in Figure 6.5. It can be seen that while the KL divergence measure does not equalize the peaks
exactly as one desires in BLM, it gets very close to doing so, with only slight variations required to reach the
optimum (mainly to the phasing ®5 and ®3).

Taken together, the results indicate that several aspects of the training that need to be considered:

1. KL-centric reward shaping is sufficient to get almost all the way to the optimum and much more robust
when bucket-area feasibility is enforced first, confirming what was indicated by the Bayesian Optimisation
studies performed shown in Section 2.4. However, it could be argued that the current methodology of
computing the KL divergence is not the most optimal way to get the peaks to match. Instead of using
the mean of the selected, central profile, one could use the maximum of the selected profile as the point
to measure the deviations from. This would simultaneously ensure that the valleys in the profile are
minimized and symmetric (since the outliers in the profile would have larger deviations), and also that
the peaks are matched to ensure that they do not deviate too much from the target height.

2. Using plateau metrics and reward shaping should be introduced cautiously and, ideally, conditionally
(e.g., apply peak equalisation only when the profile exhibits three peaks and ry,r3 are non-negligible).
Of course this would imply more computational effort and needing robust peak finding algorithms im-
plemented in the training procedure, which is why the modification of the KL divergence to use the
maximum of the selected profile is a good compromise.
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RL Agent Training Progress - Epoch 218
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Figure 6.4: Improvement stages of the 5D LSTM-TD3 agent with the simplified reward function (shown for 54/100 steps only)

3. Curriculum elements, such as gradually tightening the bucket-area threshold when needed or introducing
the peak term only after a KL target is reached, may further stabilize learning.

4. Adding the KL divergence to the state of the agent could help to stabilize learning and improve the
performance of the agent as it has direct access to what it is trying to achieve. It would also be beneficial
in an operational point of view as the agent would be able to see how the profiles changes in PSB and
adjust its parameters accordingly.

With training concluded, we proceed to evaluate the agent on operational magnetic-field programmes for 1.4
GeV (ISOLDE) and 2.0 GeV beams (BCMS, TOF, SFTPRO, etc.), and on recently proposed exotic cycles for

space-charge mitigation. These cases are characterised by their B(¢) and B(t) profiles, which the policy will
attempt to exploit via the normalised B feature.

6.1.2. Verification Analysis

Due to the relatively short time that was available to train the agent, it was not possible to test it in the PSB,
but the foundations presented here in the verification analysis are laying the groundwork for future testing.
For all the cases that will be shown here, the parameters Viotar, 72, 73, ®2, and ®3 are initialized to random
values within their acceptable ranges (see Table 6.1). This is why in some cases there is no existing bucket
area initially to match the profile, as the initial parameters are random. Additionally, the triple-harmonic
operation is maintained for the entire cycle (from injection to extraction) for all the cases, even though this
is not necessary in practice, but it is done to give an indication of the capability of the model to handle the
entire cycle.

The plots that are analysed for each case are:

e The initial and final waterfall plots, similar to those presented in Section 5.1.5 and Section 5.2.5, to show
how the profile evolves throughout the cycle.

e The evolution of the voltages V7, V5 and V3 throughout the cycle to show how the agent is able to control
the voltages to achieve sufficient bucket area and the desired profile shape.

e The evolution of the phases ®5 and ®3 throughout the cycle to show how the agent is able to control
the phases to achieve the BLM operation.
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RL Agent Training Progress - Epoch 1,414
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Figure 6.5: Late training stages of the 5D LSTM-TD3 agent with the simplified reward function (shown for 89/100 steps only)

e The parameters ranges that are explored by the agent throughout the 40 corrections performed and the
initial and final parameter values to show how the agent is able to reach the optimal parameters by
approaching them from randomized initial conditions. This allows us to analyse the dynamic behaviour
of the agent in learning the interdependencies between the parameters and if it is able to progressively
move in the right direction towards the optimal parameters and how.

Operational Cycles

We start by showing the results for a 1.4 GeV and 2 GeV extraction energy beam, as these are the ones that
use triple-harmonic operationally, and seeing how it performs with these magnetic field programmes is the
most pressing concern for the applicability of the model in the PSB. Thus, the magnetic fields are shown
in Figure 6.6a, while the ramp rates are shown in Figure 6.6b. It can be seen that the magnetic fields are
monotonically increasing, while the ramp rates have a bit more structure to them, with the 2 GeV cycle having
a kink at C-720 which leads to changes in the acceleration rate of the bunch and demands more careful control
of the triple-harmonic parameters.

For the 1.4 GeV beam the profile evolution displayed through the waterfall plots is shown in Figure 6.7. It
can be seen that the agent is able to achieve the desired profile shape and the bunch lengthening is achieved
throughout the cycle. The phases and voltages are shown in Figure 6.8, where it can be seen that they
progress smoothly throughout the cycle, indicating that they are consistent with the change in the magnetic
field without any abrupt jumps. The parameters ranges explored by the agent are shown in Figure 6.9. It
took only 10 iterations to converge to the optimal parameters for the 1.4 GeV beam, which is a testament
to the effectiveness of the agent in learning the interdependencies between the parameters and being able to
progressively move in the right direction towards the optimal parameters, which would mean roughly 5 minutes
of optimisation when using only 1 slot in the super-cycle.

It can be seen that the agent is able to achieve the desired profiles without diverging considerably from the final
optimal results in its corrections and progressively move in the right direction towards the optimal parameters.
This is demonstrated by the fact that the initial parameters are usually on the bounds of the explored parameter
ranges, and the parameter bounds are considerably closer to the optimal values on the bounds opposite to the
initial parameters as observed in Figure 6.9. This is especially important for the voltages, since it starts at a
point that is lower from the optimal values for V7, which indicates that the bucket area is not sufficient since
V1 is the voltage that drives the increase of the bucket area.
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Nevertheless, it can be seen as well in the Figure 6.7 that the agent is not able to achieve the fully optimal,
symmetric and flat-topped profile shape in all the corrections. This can be identified in its majority as a higher
density in the left and right lobes (mostly more in the right) throughout the waterfall plot. Furthermore, we
can see at C-725 and C-750 that there is the highest discrepancy from the optimal profile shape (but it is
not significant), and it coincides with the reduction to 0 T/s of the ramp rate. In general, this discrepancy
could be for a couple of reasons: either the agent is not exploring the parameter space enough (which could
be fixed by increasing the exploration ¢ of the parameters), or the KL divergence alone is not enough to drive
the profile towards having matched and symmetric peaks (which could be fixed by adding additional reward
shaping terms as mentioned in the outcome of Section 6.1.1). However, the space charge mitigation is still
successful since the majority of the bunch density (except at the ends of the bucket of course) does not deviate
by more than 30% of the maximum charge density at every point in the cycle.
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Figure 6.8: Initial and final phases ®3 and ®3 and voltages V1, V2 and V3 for the 1.4 GeV operational beam
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Figure 6.9: Parameters ranges explored by the agent for the 1.4 GeV operational beam

Meanwhile, for the 2.0 GeV beam the profile evolution displayed through the waterfall plots is shown in Fig-
ure 6.10. Again, the agent achieves the desired profile shape and the bunch lengthening is achieved throughout
the cycle. The phases and voltages are shown in Figure 6.11, where again they progress smoothly with no
jumps. The parameters ranges explored by the agent are shown in Figure 6.12 where again the agent is con-
verging to the optimal parameters without going the direction opposite to where the optimal parameters lie.
Convergence was reached within 20 corrections for the 2.0 GeV beam, but within 10 corrections almost the
entirety of the cycle was converged, but 10 additional corrections were needed solely to cater to the portion of
the cycle where the ramp rate is at its highest (C-625 to C-680).

A very interesting feature is that the agent does overcorrect by a larger extent for V; beyond the optimal
correction when the bucket area is small due to the higher initial V5 and V3 and a high ramp rate. This is
showing that the agent has learnt that higher voltages in counter-phase decrease the bucket area and that this

effect is aggravated at a high B(t), which is correct. This occurs for both the 1.4 and the 2.0 GeV beams,
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indicating that the agent is likely overcorrecting at these points for V; since this is when the bucket area
is at its lowest, so it is being conservative and increasing V7, which is a desirable “safe operation” strategy
which it learnt by itself (solely by requiring sufficient bucket area). Furthermore, this safety strategy is also
enhanced by the fact that when V5 and V3 are seeded at values lower than the optimal values, the agent is
able to achieve the optimal correction without overcorrecting at all practically as can be seen in the V5 and V3
plots in Figure 6.9 and Figure 6.12, as this would cause the bucket area to be reduced due to them primarily
being in counter-phase with V; (or at least this is the attempt). This is one of the most beneficial features
of reinforcement learning as it is learning safety strategies (in this particular problem) by itself without any
explicit guidance other than the reward function.
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Figure 6.10: Initial and final waterfalls for the 2.0 GeV operational beam

However, it can be seen that the agent is again slightly struggling to make the profiles completely flat-topped at
the optimal parameters. Primarily, for both cycles, it seems that V5 is slightly too high to have the central peak
be more prominent, despite the ®5 appearing to be optimal. Additionally, to consistently have the higher peak
density on the right lobe of the profile, it would seem that ®3 (or the combination of both ®5 and ®3) should
be slightly higher than the value that is being identified by the agent. This is likely due to the KL divergence
measure and the way it is implemented as mentioned previously in the training results. Furthermore, retraining
the agent with the modified KL divergence measure would not imply a significant redesign of the reward
function, while likely improving the performance of the agent. If paired with a hyperparameter optimisation,
the performance is sure to be improved.

Another behaviour that is consistent with not having the ideal profile shape is that whenever the B(t) increases,
the agent increases V] to compensate for the smaller bucket area, and also lowers V3 to allow for a larger bucket
area, but V5 is kept practically constant for both cycles. This basically leads to the effect seen at the high
B(t) portion of the cycle where the waterfall plot loses its central peak, because the smaller V3 while keeping
V5 just as high, will lead to the disappearance of the central loop in the inner separatrix while maintaining
the two loops on the side. A more ideal behaviour would be to decrease both Vo and V3 (probably in different
proportions, and assuming they are phased correctly in BLM) while increasing V7 to whatever is required for

sufficient bucket area. This could also be a feature related to the the reward combination of sufficient bucket
area and the KL divergence method used, as there could be a local minima of the KL divergence with these

types of profiles.

Operational Cycles Under Different Impedance Conditions

Doubling the PSB impedance significantly increases the induced voltages seen by the beam. Thus, it becomes
important to analyse the robustness of the agent to these conditions. It was already seen that the agent learns
to be robust to initialization conditions given by the fact that the initial guess is chosen at random in the range
of the parameters and that this also happens in training. It can even progress when there is no profile, meaning
no accelerating bucket, being formed by the matching process. Despite this shift, the agent remains robust
and generalizes well across operating conditions. This behaviour is largely enabled by its recurrent memory in
the same way as in the 1D case, as it conditions actions on recent profile evolution and the ramp-rate context
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Figure 6.11: Initial and final phases ®2 and ®3 and voltages V1, Vo and V3 for the 2.0 GeV operational beam
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Figure 6.12: Parameters ranges explored by the agent for the 2.0 GeV operational beam
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rather than on single-shot observations. As a result, the controller adapts coherently over the cycle instead of
chasing instantaneous noise.
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Figure 6.13: Initial and final waterfalls for the 1.4 GeV operational beam under double the PSB impedance (with servoloops)

For the 1.4 GeV beam, the dominant response is a phase adaptation for hs in order to compensate for the phase
shift caused by the increased impedance rather than a change in bucket area. The waterfalls in Figure 6.13
remain close to the desired shape, and the phases and voltages in Figure 6.14 show a systematically lower &3
across the cycle, with a minimum roughly 10° lower at the highest B. The voltage trajectories, including Vi,
do not indicate a compensatory increase in bucket area other than a more jagged change in V3 at the highest
B. The agent instead resolves the impedance-induced distortion through a phase shift. This confirms that the
learned policy leverages temporal context to make minimal, targeted adjustments.
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Figure 6.14: Initial and final phases ®2 and ®3 and voltages V1, Vo and V3 for the 1.4 GeV operational beam under double the
PSB impedance (with servoloops)

That said, the same mild profile asymmetries observed earlier persist here: the KL-divergence-based term
still biases the solution toward slight left/right imbalances, visible in the waterfalls and consistent with the
discussion in the operational-case results. This points to the KL, computation as the primary source of residual
asymmetry, rather than a limitation in the controller’s ability to generalize under higher impedance. Never-
hteless, the agent converges again within 10 corrections for the 1.4 GeV beam.

For the 2.0 GeV beam, the higher and differently structured B(t) segments pose a tougher challenge. In the
window from approximately C-600 to C-680, Figure 6.17 shows oscillations in V5 and V3 that are mirrored by
fluctuations in ®5 and ®3. These modulations manifest as non-optimal profiles in Figure 6.16. While space-
charge constraints are less stringent in this portion of the cycle, maintaining stable control is still desirable. The
behavior suggests that, under large ramp-rate transients unique to the 2.0 GeV programme, the KL-driven
objective and observation design can encourage small corrective oscillations. Even so, outside this narrow
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Figure 6.15: Parameters ranges explored by the agent for the 1.4 GeV operational beam under double the PSB impedance
(with servoloops)

window the controller remains stable and effective, indicating that the recurrent policy continues to generalise
across the doubled-impedance regime.
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Figure 6.16: Initial and final waterfalls for the 2.0 GeV operational beam under double the PSB impedance (with servoloops)

Exotic Cycles

Finally we move on to the last test, the exotic cycles. They are trying to minimize the amount of time that the
beam spends at low energies, while simultaneously satisfying the requirements on the RMS current that the
dipole magnets can handle. As such the 1.4 GeV Fast Cycle given its very high ramp rate, requires a cycles
with low ramp rates before and after it to be used in the supercycle to let the magnets cool down and to avoid
saturating the magnets. Meanwhile, for the 2.0 GeV Intermediate Flat Top cycle, the ramp rate is lower than
the peak 4.37 T/s encountered for the 1.4 GeV Fast Cycle, but still requires an intermediate flat top to avoid
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Figure 6.17: Initial and final phases ®2 and ®3 and voltages V1, Vo and V3 for the 2.0 GeV operational beam under double the
PSB impedance (with servoloops)

saturating the magnets, which is why the ramp rate temporarily drops to 0 T/s to allow the magnets to cool
down. The magnetic field programmes and ramp rates for the two cycles are shown in Figure 6.18.
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Figure 6.18: Magnetic field programmes B(t) and ramp rate B(t) for the 1.4 GeV Fast and 2.0 GeV Intermediate Flat Top
cycles

It can be seen in Figure 6.19 that the agent has failed to properly set the optimal parameters for triple-harmonic
bunch lengthening when in the presence of a very large acceleration rate. This is mainly because of the range
of B(t) that is not seen during training and the agent cannot extrapolate to such high ramp rates. Besides the
failure of the agent in achieving the triple-peaked bunch profile, or a fully flattened double-harmonic profile

at that, an instructive safety mechanism emerges at the very high B(t) of the 1.4 GeV Fast Cycle. When
the agent cannot extrapolate to such high ramp rates, it drives V3 — 0 already anticipating a smaller bucket
area over the affected interval, prioritizing sufficient V7 to maintain the accelerating bucket area rather than
risking instability. It is also using all the Vi,:q; at its disposal, but refuses to reduce V5 to increase bucket area
further, which not what we want given that the system is also badly phased in double-harmonic operation now,
exhibiting peaked profiles. Perhaps by training at higher acceleration rates it would be possible to learn more
optimal behaviour here, but that is only speculation. Regardless, after the acceleration, it is able to maintain
the constant triple peaked structure that is desired, but at this point there is no acceleration, so there is no
real difficulty.

This behavior is visible in the waterfalls of Figure 6.19 and the trajectories in Figure 6.20. As also indicated
by the exploration plot in Figure 6.21, V; overshoots in the highest-B(¢) region and ®5 does not follow the
correct nominal trend. Attempts to normalize the ramp rate by the maximum gradient (4.37 T/s) did not
yield convergence at these points, consistent with the fact that such ramp rates were out of distribution during
training. This is acceptable in practice since the 1.4 GeV Fast Cycle is a research case characterized by a very
small bucket area rather than an operational cycle, and as mentioned before it requires cycles before and after
it to compensate for the large ramp rates to let the magnets cool down|[3].

Meanwhile, for the 2.0 GeV Fast Cycle with an intermediate flat top, the agent achieves the desired bunch
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Figure 6.19: Initial and final waterfalls for the 1.4 GeV Fast Cycle
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Figure 6.20: Initial and final phases ®2 and ®3 and voltages V1, Vo and V3 for the 1.4 GeV Fast Cycle
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Figure 6.21: Parameters ranges explored by the agent for the 1.4 GeV Fast Cycle

shape across the cycle because the peak B(t) remains within the envelope seen during training. The waterfalls
in Figure 6.22 show good agreement with the target profiles; the phase and voltage trajectories in Figure 6.23
are smooth and consistent with the flat-top structure; and the exploration plot in Figure 6.24 indicates efficient
progression toward the operating region without unnecessary excursions, with the same overshoot of V7 seen
previously in all cycles where V5 or V3 were initialized at a high value.

Aside from this, we can see the effect of the intermittent flat top on the bunch profiles, as the waterfall plot
shows that the bunch length grows again at this point, consistent with the lack of acceleration during this
plateau. Following this, the agent is able to maintain the desired bunch shape across most of the cycle, with
the phases and voltages following the correct nominal trend. It still can be seen how at the second acceleration
portion of the cycle, the bunch density in the middle of the bunch fades away due to the decrease in V.
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Figure 6.22: Initial and final waterfalls for the 2.0 GeV Fast Cycle with intermediate flat top
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Figure 6.24: Parameters ranges explored by the agent for the 2.0 GeV Fast Cycle with intermediate flat top
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Overall, these results show that the agent can cater to magnetic-field programmes with substantially more

structure, given that the B(t) is contained within the training regimen of the model. The recurrent memory
enables it to contextualise corrections over time and handle flat tops and rapid ramps, with only the most
extreme, out-of-distribution ramp rates causing performance to degrade into conservative, safety-preserving
behaviour, but with high charge concentrations in some cases. As a result of this analysis, it would be beneficial
to perform a hyperparameter optimisation to improve the performance of the agent under all conditions, but
before, to also modify the KL divergence method to better account for the peak equalisation without requiring
the standard deviation method.

6.1.3. PSB Implementation Roadmap

The transition from simulation-based training to operational deployment in the PSB requires a structured
approach that bridges the gap between the controlled training environment and the complex realities of accel-
erator operation. Given that there was not enough time to test the triple-harmonic optimiser in the PSB, this
roadmap outlines the practical steps and possibilities for implementing both the triple-harmonic corrector and
the online training capabilities that tie into it, drawing on the developed infrastructure and lessons learned
during validation for the 1D case.

Triple-Harmonic Corrector Implementation

The corrector implementation represents the most immediate deployment pathway, designed for operational
reliability and operator confidence. The core architecture leverages the established LSTM-TD3 framework
with adaptations for real-time PSB integration through the PyDA control system interface, as was the case
for the double-harmonic ®5 corrector.

The preliminary triple-harmonic corrector operates through a similar multi-stage pipeline that begins with the
computation point selection. Here it was already identified that there is potential for improvement given that
the code does not correctly capture the peaks in the approximate synchronous phase. Nevertheless, given that
now we have full parameter control over the longitudinal dynamics of the beam in the PSB, we can set the At
to our liking and perform the optimisation with arbitrary precision. In practice this would likely cause issues
due to how much the solution could vary over a short timescale, inducing oscillations and unwanted effects, so
this should be limited to a reasonable number.

Furthermore, the profile acquisition follows the same procedure as listed in Section 5.1.6, and we use the same
MultiHistoryBuffer class manages this complexity, tracking observations and actions over the maximum
history length, which in this case is 10 previous states and actions. During each correction iteration, the
system performs batch inference across all computation points, generating normalised parameter adjustments
that are then converted back to physical voltage and phase settings. A critical component is the KL-divergence
tracking system that monitors profile quality at each computation point throughout the correction process.
Rather than simply applying the final parameter set and finishing the optimisation, the corrector maintains a
record of the best-performing parameters for each C-time based on achieved KL values. After 20 correction
iterations, it applies this optimised parameter combination, effectively performing a form of online optimisation
that adapts to the specific conditions of each cycle.

The parameter conversion system handles the translation between the normalised action space used by the
neural networks and the physical machine settings. Two mirrored functions apply transformations to convert
the internal representation to the voltage amplitudes and phase settings required by the RF systems and
likewise for introducing the current voltages and phases into the state. This architecture,together with the
bounded action space, ensures that corrections remain within safe operational bounds while providing sufficient
flexibility for optimisation.

Safety mechanisms are embedded throughout the corrector implementation. Parameter bounds are enforced
at multiple levels, from the action clipping in the neural networks to final validation before machine setting.
The system can revert to synchronous-phase estimates if optimisation fails, and operators retain full manual
override capability through the standard PSB control interfaces.

Online Training Framework

Meanwhile, it is also possible to perform online training and it represents the ultimate evolution of the system,
enabling continuous learning and adaptation directly from operational data. This approach transforms the
PSB itself into a distributed training environment where each C-time becomes an independent learning context,
in the same way that previously we parallelized environments to speed up training. The only difference is that
now the model is pretrained and ensured to work at least to a certain extent before being put to train online.

The training architecture mirrors the parallel environment structure used in simulation, but with real beam
profiles replacing the synthetic data. Each ”environment” corresponds to a specific time window in the mag-
netic cycle, allowing the agent to build up its understanding for different acceleration phases. The temporal
resolution can be adjusted from the standard 20 ms intervals down to 5 ms or even 2 ms for fine-grained control,
limited primarily by the acquisition system capabilities and how much variability there is in the actions taken
by the agent and whether it is safe.
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The online learning loop follows a structured episode-based approach. Each episode begins with parameter
initialization based on the current machine state, followed by a sequence of profile acquisitions, neural network
inferences, and parameter updates. The system waits for beam response between corrections, building up tem-
poral context through the LSTM memory mechanisms. Episode termination can be triggered by convergence
criteria, maximum correction limits, or operator intervention, but in this case there is no desire to “converge ”
in a terminal sense. Instead, a certain amount of steps is used so the agent always has an optimisation horizon
in mind. Furthermore, to cater to the online learning approach, the Prioritized Experience Replay buffer would
now be implemented in a way that it automatically accumulates transitions from all C-times and magnetic field
programmes (when they are used). Unlike simulation training where environments can be reset arbitrarily,
online training must respect the operational schedule and beam availability. The system therefore can save
time by saving the experience buffers between episodes and updating the actor and critic networks with the
latest experiences, enabling learning to continue across different beam types and operational conditions.

The reward structure adapts the simulation-based approach to real operational constraints. Bucket area cal-
culations use real-time magnetic field measurements and RF settings (but still using the Solfege module to do
so quickly), while profile quality metrics are computed from actual beam measurements. The system can in-
corporate operational preferences, such as prioritizing stability over perfect flattening, or adapting to different
beam intensities and emittances by modifying the reward functions used. Additionally, a key advantage of
online training is the ability to learn from rare operational conditions that are difficult to simulate accurately.
Injection transients, noisy acquisitions, and unusual instabilities all become part of the training data, poten-
tially improving the system’s robustness beyond what is achievable through simulation alone. The continuous
learning also enables adaptation to slow drifts in machine behaviour (if there are any). Ideally one would
have an implementation that includes a mechanism for safe exploration during initial online learning such as
low intensities at first and requiring extensive monitoring to ensure beam stability until it could be trusted.
Naturally this would only be done after the corrector is proven to work, at least partially.

In conclusion, both the corrector and online training implementations benefit from the verification work per-
formed in simulation and it should be repeated again once the model is optimised even further through reward
function tweaks or hyperparameter optimisation. The parameter normalization, safety bounds, and conver-
gence criteria developed during the simulation phase transfer directly to the operational environment.
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7

Conclusions & Recommendations

This chapter synthesises the outcomes of the work and highlights their implications for operational longitudinal
control in the PSB. It first assesses how the research questions and project goals were addressed and how
the stated requirements were satisfied. It then outlines practical recommendations for future development
and concludes by highlighting the main contributions and the outlook for deploying and generalising the
methodology.

7.1. Evaluation of the Project

This section evaluates how well the research questions were answered, whether the project goals were achieved,
and the extent to which the requirements in Chapter 3 were met by the CBAM and LSTM-TD3 agents.

7.1.1. Research Questions

Question R.Q.1 and Question R.Q.2 were addressed by developing the CAE, the CBAM model, and the
LSTM-TD3 agent, and by benchmarking them against manually phased programmes. The automated methods
consistently provided strong approximations to the optimal phase in the PSB. Whereas in some cases they
exceeded manual performance, in others they were slightly inferior, but still within acceptable tolerances and
seeding the system in the correct neighbourhood of the optimal ®5(BLM) phase when not providing optimal
profile. The performance in the CBAM model was higher than that of the unoptimised LSTM-TD3 agent
and demonstrated certain robustness with the decaying corrections method in the PSB. For triple-harmonic
operation in particular, the methods identified effective phases and amplitudes for all control parameters,
albeit slightly deviated from the optimal ones, but this might be due to the KL divergence measure and
the way it is implemented. The profile analysis in Section 2.4 and the validation studies confirmed that the
performance targets defined in the requirements can be achieved relative to manual baselines. In double-
harmonic optimisation, better performance was shown to be very likely for the optimised LSTM-TD3 agent
by comparing the simulated behaviours of the unoptimised agent with its performance in the PSB, yet this
still remains to be proven true.

Question R.Q.3 concerned identifying the maximal latency which was determined to be less than 30 seconds
in Chapter 3 to achieve sub-super-cycle latency to be able to be efficient with at least 1 slot inside of the
super-cycle. In the introductions of Section 5.1.7 and Section 5.2.6 it was mentioned that preprocessing, not
inference, dominates runtime in the form of B-spline smoothing and re-interpolation to an RF period, taking
roughly 1 second per profile. However, model inference is sub-second, and end-to-end acquisition, preprocessing,
inference, and correction still remain below one super-cycle (< 30s). Further latency reductions are feasible
by adopting more efficient, tensorized smoothing using kernels and re-interpolation techniques. This would
allow using 2 slots in the cycle to optimize, and reduce the time taken by a factor of 2.

Question R.Q.4 and Question R.Q.6 examined performance breadth and convergence under representative
operating conditions. Validation spanned multiple cycles covering the operational range. While full cycle
optimisation and safety constraints were not tested at full operational intensities (especially for the unoptimised
LSTM-TD3 agent), comparisons to manual programmes showed that the automated methods perform well and
sometimes improve upon manual settings currently used in the PSB. Notably, the 5D agent rapidly converges
toward effective phases and amplitudes in simulation, which is a process that would take considerably longer
using manual optimisation.

Question R.Q.5 focused on generalisation. Combining verification and validation, the optimised LSTM-TD3
agent extrapolated across impedances and initialisation conditions and across injection transients which are
practically random. As for the initialisation conditions and impedances, the CBAM model was particularly
sensitive to being seeded in BSM as this caused the false belief of being in BLM at low emittances. This was
also the case for the unoptimised LSTM-TD3 agent. However, the CBAM model handled injection transients
more reliably in the tests performed than the unoptimised LSTM-TD3 agent, which over-corrected in such
cases much like it did in simulation, highlighting the value of the optimised and threshold-using variant which
showcases a high degree of robustness and generalisation capabilities.

Safety-related Question R.Q.7 through to Question R.Q.9 were investigated through verification for all models
and, in part, through validation incidents with the unoptimised LSTM-TD3 agent. Robustness varied: the
optimised double- and triple-harmonic LSTM-TD3 agents were robust to impedance and initialisation changes,
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whereas the unoptimised LSTM-TD3 agent and the CBAM model were less so. Safety mechanisms were
exercised during a failed TOF-cycle optimisation near C-700 led by the unoptimised LSTM-TD3 agent, where
sanitisation reverted to the synchronous phase estimate ¢s,,,,.,, to avoid beam loss and longitudinal oscillations
at extraction. Additionally, random, noisy acquisitions from the digital cards were identified as a risk needing
fixes and tests to be performed on the cards themselves, but also highlight the need for thresholding to
remove noisy profile components, though a full testing was not possible due to time constraints. The triple-
harmonic LSTM-TD3 agent also exhibited conservative, self-taught behaviour, increasing bucket area when

higher-harmonic voltages risked reducing it and when high B(t) were encountered, it would set V3 = 0 to avoid
not having enough V; to accelerate the bunch and achieve the desired bucket area.

Question R.Q.10 was addressed by specifying how parameters are applied in the PSB via device control and the
Python APT (Section 3.1) and by documenting the data acquisition and preprocessing pipeline (Section 5.1.6).
This was fundamental to be able to implement any type of model in the PSB for profile-based parameter
control of any type. Meanwhile, Question R.Q.11 was explored by using normalised parameters to generalise
to other accelerators and beam types. The approach is promising and partially validated in simulation; scripts
for double-harmonic bunch lengthening in LEIR were prepared but could not be tested due to a mixture of
incompatible acquisition hardware and time constraints.

Furthermore, Question R.Q.12 was answered by a validation methodology discussed in Section 3.3.1 as a
consequence of the requirement analysis performed that selects representative beam types spanning the op-
erational range of the PSB and compares model performance against manually phased ®5 programs. Also,
Question R.Q.13 was demonstrated by proving that the LSTM-TD3 methodology extends to triple-harmonic
operation allowing for memory-augmented control of RF parameters. This approach was initially validated
through Bayesian optimization (Section 2.4) and then reframed as an RL optimization problem. Through this
method, it proved that the agent can learn meaningful and safe behaviour that meets performance objectives
while simultaneously introducing self-taught safety practices not available with traditional methods.

Finally, Question R.Q.14 remains an open question: cross-accelerator testing was not possible within the time
and hardware constraints at LEIR, nor was the optimised LSTM-TD3 model developed to be able to do so
at the time that LEIR stopped its run. Nonetheless, the methodology scales across impedances and initial
conditions. Scripts for LEIR are ready and can be exercised once acquisition cards are upgraded.

7.1.2. Project Goals

Having analysed the research questions, now it is important to assess which goals were completed in this project
as a result of the investigation and testing performed. The development of the optimised LSTM-TD3 agent
achieved Goal P.G.1 through Goal P.G.4 by improving upon CBAM with more accurate phasing (®2, ®3) and
voltage settings (V7, Vo, V3), as evidenced in Section 5.1.7 and Section 5.2.6. These goals are, however, only
partially realized operationally because the optimised agent could not be tested on the real machine within
the available time, despite showing the best simulated performance, convergence under varying impedances
and initial conditions, and learned safety behaviour for triple-harmonic operation.

The verification and validation-related goals enabled progress on Goal P.G.5, Goal P.G.6 and Goal P.G.7.
Verification across impedances and initial conditions supported Goal P.G.5 and Goal P.G.7, while validation
advanced Goal P.G.6. As with earlier goals, the absence of on-machine testing for the final optimised solu-
tion and the triple-harmonic optimizer limits these to partial completion. Furthermore, safety mechanisms
were validated during the failed TOF cycle case with the unoptimised LSTM-TD3 agent, where sanitization
prevented beam loss and oscillations at extraction, contributing to Goal P.G.8 and Goal P.G.10. The CBAM
model showed some robustness to noisy acquisitions by returning toward optimal settings after erroneous
corrections, but its decayed-correction scheme restricted full recovery if noise recurred or struck mid-run due
to corrections not being large enough. Thresholding and bounded corrections in the LSTM-TD3 agent are
expected to mitigate this, though not yet tested. Consequently, Goal P.G.7, Goal P.G.8, and Goal P.G.10 are
partially achieved.

Goal P.G.9 was met by integrating device control via the Python API and embedding the models in operational
scripts. These scripts produce the monitoring plots used throughout Section 5.1.7 and Section 5.2.6, improving
visibility and interpretability, and enabling Goal P.G.11. A preliminary triple-harmonic control script was also
prepared, but without PSB tests, this counts as partial progress for the 5D case. Training and integration
procedures for CBAM, LSTM-TD3, and the 5D agent were documented (Chapter 4) and with the code released
in public repositories, fulfilling Goal P.G.12 [46, 44, 45, 48].

Goal P.G.13 could not be tested due to time and LEIR hardware constraints, though the methodology was
shown to scale across impedances and initial conditions, so high hopes were had for the LEIR implementation.
Finally, Goal P.G.14 was achieved in design by relying on normalized parameters to facilitate generalization
across accelerators and RF system capabilities, with performance validated in simulation but not yet across
machines. Profile evaluation for double- and triple-harmonic operation in Section 2.4 completed Goal P.G.15
for the 5D problem, and benchmarking against manual programs was provided for the double-harmonic phasing
task.
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In summary, most goals were achieved fully or partially. The principal exception is Goal P.G.13, which
awaits hardware availability at LEIR. Evidence indicates the methodology scales across impedances and initial
conditions and is ready for broader validation.

7.1.3. Requirement Completion

The requirements completion is assessed in the traceability matrix in Table 7.1, where the requirements are
matched to whether or not their verification criteria outlined in Table 3.2 were met. Additionally, each
verification criteria is discussed below with a discussion on why it was achieved, partially achieved or not
achieved. This helps guide future developments in the automatization process.

Table 7.1: Verification Criteria Completion: v'= met, X = not met, = partially met

Ver. ID Verification Description Status (model)
Functional Requirements Verification Completion
VER-F-001 Demonstration of BLM achievement for all supported beam {CBAM)

types within +3 degrees of optimal phase, or at least visual
comparison with existing operational phase setting to com-
pare performance.

VER-F-002 Verification of being able to perform only profile-based opti- v (CBAM & LSTM-TD3 agent)
misation without requiring specific machine parameters.

VER-F-003 Confirmation of triple-harmonic peak matching within 5% v (LSTM-TD3 agent)
tolerance for all three peaks.

VER-F-004 Characterisation of the performance of the achieved solution =~ {CBAM & LSTM-TD3 agent)

with validation beam types and intensities across the full
operational range.

VER-F-005 Validation of fallback mechanisms when convergence is not x (LSTM-TD3 agent)
achieved, ensuring system defaults to flattest achieved pro-
file.
Performance Requirements Verification
VER-P-001 Confirming super-cycle response time with full optimisation v’ (CBAM & LSTM-TD3 agent)
cycle completed within 30 seconds.
VER-P-002 Convergence testing demonstrating BLM achievement {CBAM)
within 30 cycles for double-harmonic optimisation.
VER-P-003 Convergence testing demonstrating profile flattening within x (LSTM-TD3 agent)
50 cycles for triple-harmonic optimisation.
VER-P-004 Long-term stability verification over 30 cycles after initial x (LSTM-TD3 agent)
convergence (this necessitates convergence to be achieved
first).
Safety Requirements Verification
VER-S-001 Beam loss monitoring confirming losses remain below 20 X {CBAM)
10*° ppb limit during optimisation.
VER-S-002 Testing of automatic reversion to synchronous phase for = {CBAM & LSTM-TD3 agent)

double-harmonic optimisation and returning to safe settings
for triple-harmonic optimisation.

VER-S-003 Validation of parameter bounds enforcement when correc- v (CBAM & LSTM-TD3 agent)
tions indicate exceeding predefined operational limits.

VER-S-004 Verification of operator override capabilities with successful v (CBAM & LSTM-TD3 agent)
manual parameter control.

VER-S-005 Reporting tool performance for all operational beams in sim- v (CBAM & LSTM-TD3 agent)

ulation with impedance models included.
Integration Requirements Verification
VER-I-001 End-to-end testing with setting parameters and checking suc- vV (N/A)
cessful parameter application through the Java front-end.

VER-I-002 Data flow validation from measurement systems to param- v (N/A)
eter settings with graphical demonstration of the complete
data pipeline.

VER-I-003 Performance testing under realistic operational conditions {CBAM & LSTM-TD3 agent)
including typical machine variations.

Continued on next page
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Table 7.1 — continued from previous page
Ver. ID Verification Description Status (model)

VER-I-004 Performance testing using noisier data coming from the Wall ~ {CBAM & LSTM-TD3 agent)
Current Monitor (WCM) to verify robustness.

VER-I-005 Recovery testing demonstrating automatic recovery from  {CBAM & LSTM-TD3 agent)
transient faults within two super-cycles.
Operational Requirements Verification
VER-0-001 User interface validation covering autonomy monitoring, di- x (N/A)
agnostics, logging, and manual override: UI displays con-
vergence, parameters, and metrics; logs captured and ex-
portable; operator takeover and hand-back succeed.

VER-0-002 Documentation review checklist completed covering training vV (N/A)
framework, parameters, and PSB integration procedures.

1. Functional Requirements Verification Completion:

e VER-F-001: Partial. Good approximation of the optimal phase for the PSB was achieved by
the CBAM model, but the LSTM-TD3 agent was able to achieve better results in simulation, while
its fully realized performance is yet to be tested. The CBAM model lacked complete convergence
BLM phasing, but did improve upon the manually phased programs or achieved almost the same
performance, but did lack perfect performance in splittings.

e VER-F-002: Met. The models were able to perform only profile-based optimisation without
requiring specific machine parameters and only used normalised parameters.

¢« VER-F-003: Partial: The LSTM-TD3 agent was able to achieve good performance in simulation
for the operational and exotic magnetic fields, but it was not able to be tested in the PSB due to time
constraints. Additionally, the peak variations are a little higher than that what was indicated in
ACC-002, but this could be remedied with a slight modification of the KL divergence methodology.
As such, the criterion is only partially fulfilled.

e VER-F-004: Partial. The models were able to achieve good performance in simulation for the
validation beam types, but the performance was not entirely optimal in the PSB for the CBAM, but
it was not able to be tested for the full range of intensities due to time constraints. Meanwhile, the
LSTM-TD3 agent was able to achieve better performance than the CBAM model in simulation, but
its fully realized performance is yet to be tested in the PSB for both the double and triple-harmonic
optimisation.

¢ VER-F-005: Not Met. This was not able to be performed as it is referring to looking through
the buffer and then providing the parameters that yielded the lowest KL divergence. However, this
was not possible due to lack of time.

¢ VER-F-006: Partial. The models were able to perform simultaneous 5D optimisation with all of
V1, Vo, V3, @9, &3 adjusted and correctly applied. However, this was not performed in the PSB due
to time constraints, but it is known to work in simulation.

2. Performance Requirements Verification:

e VER-P-001: Met. The models were able to achieve super-cycle response time with full opti-
misation cycle completed within 20 seconds for a time-step of 20 and 25 ms for both models in
double-harmonic optimisation.

« VER-P-002: Partial. This was partially fulfilled by the CBAM model in double-harmonic op-
timisation with the decaying solution method, but it lacked true convergence that is likely to be
achieved by the optimised LSTM-TD3 agent.

« VER-P-003: Not Met. Since the triple-harmonic optimisation was not performed in the PSB,
this requirement was not met. However, simulation results show that it is able to converge within
20 cycles for several magnetic field ramps (but not the 1.4 GeV Fast cycle) and impedances.

« VER-P-004: Not Met. This was not able to be tested with the optimised LSTM-TD3 agent for

double- and triple-harmonic optimisation due to time constraints, but the unoptimised agent was
unable to achieve consistent long-term stability.
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3. Safety Requirements Verification:

e VER-S-001: Partial. This criterion was met by the CBAM model when tested with an injection
intensity of 80 x 10'° ppb, but it was not able to be tested with the optimised LSTM-TD3 agent
for double and triple-harmonic optimisation due to time constraints. Furthermore, the unoptimised
LSTM-TD3 agent was unable to achieve this criterion since it did lose 20 x 10° ppb for the 2025
BCMS cycle.

¢ VER-S-002: Met. The unoptimised LSTM-TD3 agent led to a solution for the TOF cycle with
large phase changes over one At (20 ms), and the sanitization procedure was able to revert to the
initial estimate of @50, 10 NOt cause beam loss and longitudinal bunch oscillations at extraction,

this requirement was met for double-harmonic optimisation. However, it was not able to be tested
with the optimised LSTM-TD3 agent for triple-harmonic.

¢ VER-S-003: Met. The models and corrections were designed in such a way that they could never
exceed the operational limits.

¢ VER-S-004: Met. The operator of the tool can always simply interrupt the script and run the
sanitization procedure to revert to the initial estimate of ¢s,,,,.0,- Furthermore, there are already

mechanisms in place to remove intensity from a cycle if it is causing too much beam loss. However,

¢ VER-S-005: Met. The extensive verification practices for all models were performed in Sec-
tion B.1 and B.2 to characterize the performance and know what to expect in the PSB. Furthermore,
this also allowed the tentative extrapolation of the optimised LSTM-TD3 performance to the PSB
by comparing the simulation results of the unoptimised agent with its performance in the PSB.

4. Integration Requirements Verification:

e VER-I-001: Met. The tool was able to be integrated into the PSB through Python scripts making
use of PyDA to set parameters. However, this was not performed for the in validation procedures
for the triple-harmonic optimisation due to time constraints, but it is known to work.

e VER-I-002: Met. The data flow was validated from the measurement systems, to the profile
selection, reinterpolation and smoothing, and finally to the inference and parameter setting with
graphical demonstration of the complete data pipeline.

¢« VER-I-003: Partial. The models were able to achieve approximations of BLM phasing in the PSB
for the CBAM model, but since the point of this criterion is to ensure reliability, it is only partially
met since it was susceptible to extraordinary, noisy acquisitions from the digital cards. However, this
is expected to be mitigated by the use of the thresholding mechanism in the optimised LSTM-TD3
agent.

e VER-I-004: Partial. The models were able to partially recover from transient faults caused by
the noisier acquisitions from the digital cards that produced erroneous corrections. However, the
CBAM model was not able to completely recover due to the decayed corrections and the unoptimised
LSTM-TD3 agent was able to “recover”, but to the wrong phasing due to its lack of performance.
This is expected to be fixed with the optimised LSTM-TD3 agent.

e VER-I-005: Partial. Again, like the previous criterion, it is only partially met due to the same
reasons.

5. Operational Requirements Verification:

¢ VER-0O-001: Not Met. This was not able to be developed into a UCAP node with a GUI due to
time constraints. However, the scripts do provide a good interface for the operator to monitor the
optimization process, to revert to the initial estimate of ¢s,,,,.0,, and if manual override is needed,
it can be done by simply interrupting the script, manually setting the parameters using the existing
Java front-end, and then resuming the script from where it was interrupted.

¢« VER-0-002: Met. The documentation was completed (partially through this work) covering the
training framework, parameters, and PSB integration procedures [46, 44, 45, 48].

This completes the traceability matrix for the verification and validation criteria, where it can be seen that
9 of the 22 criteria were met, while 9 were partially met and awaiting final testing, and 4 were not met.
The ones that were not met relate mostly to the lack of time to perform the final testing for the 5D, triple-
harmonic optimizer, while the remaining one discusses more the development of a GUI to aid visualization
and interaction with the models rather than a script. As a result, there are still tasks to be performed until
the agent can become operational, but the simulation results are promising.
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7.2. Recommendations

This section outlines prioritized directions for future work across three areas: the CAE, the data acquisition and
preprocessing pipeline, and the LSTM-TD3 optimization. CBAM-specific improvements are not emphasized
because it already provides a good approximation to the optimal phase in the PSB and is surpassed in
simulation by the optimised LSTM-TD3 agent, whose full operational performance remains to be tested. This
is also not discussed since the CBAM model is inherently trying to make a regression network fit all different

parameter combinations of Viotq1, 72, B, F'F and ¢ by looking solely at their profile and minimizing its loss based
on a single correction, which is not realistic in practice. In the presence of the aforementioned limitations,
it is better to continue with the development of better LSTM-TD3 agents rather than trying to improve the
CBAM model.

7.2.1. Future Directions for CAE Development

The current limitations stem more from excessive compression than from architectural constraints. Increasing
the latent dimensionality (for example to 128, 256, or 512) is likely to preserve more information and improve
reconstruction fidelity, at the cost of less compression. Hierarchical or progressive variants that learn multiple
compression scales could better capture both global shape and local features, while physics-informed regular-
ization terms that encode beam-dynamics constraints may steer reconstructions toward physically plausible
profiles. This would make the CAE kind of an enhanced downsampling black-box to aid training. Mean-
while, adding attention mechanisms could preserve long-range correlations that standard convolutional layers
under-represent. Until reconstruction quality reaches operational standards, the CAE remains most valuable
academic analysis tool to see that profiles can be mapped to correction.

7.2.2. Data acquisition and preprocessing

Selecting better computation points is a critical point to enable better solutions for all the optimization
methodologies and the double and triple-harmonic problems. This could potentially be made more principled

by moving from approximate synchronous-phase heuristics to an energy-gain or magnetic field ramp rate B
criterion, which would also allow generalization to the triple-harmonic case. A smoothed estimate of energy

gain per turn (which would basically be a scaled B) would allow defining points based on any peaks or
discontinuities located in this curve. However, this could cause missing points in double-harmonic operation
as in the case of ISOLDE, as the voltages have to be considered to understand how this estimate changes. So
maybe the solution is to use the same methodology, but simply smooth the approximate synchronous phase
in a more robust manner or not use the approximate synchronous phase, but a more sophisticated estimate.

Regardless, this is not possible for triple-harmonic operation, so a compromise must be made to select points
based solely on the energy gain. This strategy is expected to be more robust, but might lack performance in
double-harmonic around splittings where computation points improve performance. In parallel, a fast separa-
trix estimator can replace approximate phase in both training and initialization. Estimating the synchronous
phase under double-harmonic operation (and using the central stable fixed point for triple-harmonic) would
yield better initial conditions and more reliable early corrections.

7.2.3. LSTM-TD3 Optimization

For the double-harmonic, optimised LSTM-TD3 agent, operational testing is the most immediate priority.
Running the optimised LSTM-TD3 agent on the real system will validate the simulation-based analysis made
in Section 5.2.6 and extrapolated to the optimised and thresholded model, while also allowing to establish the
performance relative to CBAM. Additionally, it is important to perform initial tests with the 5D model to
surface any architectural adjustments needed to account for behaviors not captured in simulation. Ideally this
is done before any type of hyperparameter optimization is done, which certainly should be done to improve
performance further while also implementing a different and better performant KL divergence measure.

Subsequently, narrowing parameter ranges and removing low-impact hyperparameters can concentrate the
optimization on the most influential factors and extract the remaining performance margin for the double-
harmonic agent, as was done for the CBAM model. Also, a sensitivity study (e.g., ANOVA with Taguchi
designs) would quantify hyperparameter effects and provide statistical confidence in configuration choices, but
in any case we can always perform tests to verify and validate the training outcomes.

Finally, it is fundamental that triple-harmonic optimization undergoes a dedicated hyperparameter optimiza-
tion (either 1 or 2) rather than inheriting settings from the double-harmonic case. This is mainly because if
the objectives and important features differ, tailored hyperparameters are expected to improve performance,
eliminate the slight profile tilt observed during verification, and increase reliability for broader deployment.
It is also very important that once a trained and validated model is developed, that it is put to train in the
PSB including potential online training such that the RL model adapts to the real system and increases PSB
performance. This is only possible due to the objective value that can be extracted directly from the profile.

7.3. Conclusions

In conclusion, this work introduced and optimised an open-source reinforcement learning framework tailored
to longitudinal beam control. In particular, the integration and acceleration of prioritized experience replay for
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LSTM-TD3, the use of Huber loss to stabilize training under Q-network overestimation, and multi-environment
parallelization substantially improved data throughput and learning stability. This makes it a very strong RL
framework for generalized problem solving that would be enhanced by memory. The fact that it has been
improved from the original open source code in terms of computational efficiency, capabilities, learning speed
and stability make it a valuable contribution to the ML community, and also to the ML for particle accelerators.

A generalized, profile-centric framework was developed for double-harmonic BLM phasing that relies solely
on beam-profile geometry and general RF parameters rather than machine-specific settings. The approach
met the stated performance targets and generalized across impedances, initialization conditions, and beam
types in simulation. The steps remaining are the pending validation in the PSB, for both the double-harmonic

and triple-harmonic cases, while the same methodology is positioned for transfer to other accelerators such as
LEIR.

For triple-harmonic space-charge mitigation, we established a training framework in which the agent learned
safety strategies from the reward structure alone and extrapolated this to more complex behaviours. This is in
contrast to the double-harmonic optimizer and is only possible due to the higher complexity and dimensionality
and control of the action space and its effect on beam profiles. Furthermore, the normalized RF parameters in
the state provided essential context, enabling the agent to capture the interdependencies between parameters
in a quicker manner and profile geometry without binding the solution to a specific accelerator.

Finally, we implemented a profile acquisition and correction pipeline for the PSB that aligns center-profile
acquisitions throughout the cycle. This infrastructure not only underpins the deployed controllers but also
enables future model development and diagnostic analyses. Together, all these contributions provide both
enablers and methodologies for autonomous longitudinal control in accelerators, with clear paths to operational
deployment and cross-accelerator generalization.
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A Theory of Bayesian Optimization TUDelft

A

Theory of Bayesian Optimization

Bayesian Optimization (BO) is a powerful strategy for the global optimization of expensive-to-evaluate black-
box functions. It is particularly well-suited for problems where the objective function lacks an analytical
form, is non-convex, and each evaluation is computationally costly, such as the tuning of the multi-component
objective (or loss) function £(w) for the BLM phasing problem described in Section 2.4. The concept of BO
revolves around building a probabilistic surrogate model of the objective function we are evaluating and to use
this model to intelligently select the most promising points to evaluate next, thereby finding the optimum in
as few iterations as possible.

A.1. Optimizing Weights for Loss Function

In the context of the problem defined for double harmonic operation in Section 2.4, it attempted to minimize
the errors between the “true” ®, phase deviations, AP’ ¢ normalized by 7 (such that the function was
bounded between 0 and 1) and the losses approximated by £(w). The errors were broken into 2 parts: the
deviation of the prediction of the minimum of £(w) and that of the true function A®* (A; = |ming, (£L(w))—
ming, (A®SP")|, and the correct prediction of the sign of the gradient at all points such that £(w) could leverage
gradient information when close to the optimum (Ay = |sign(££(w)) - sign(d%i)QA@gpt)\.

The algorithm proceeds iteratively, following two main steps [21]:

1. Surrogate Modeling with Gaussian Processes

The unknown objective function £(w), which maps the 6-dimensional weight vector w to a scalar loss value,
is modeled by a Gaussian Process (GP). A GP is a collection of random variables, any finite number of which
have a joint Gaussian distribution. It is completely specified by its mean function m(w) and covariance (kernel)
function k(w,w’):

L(w) ~ GP(m(w), k(w,w")) (A1)

Given a set of t observations (the “training data”) Dy = {w;, L;}, the GP provides a posterior predictive
distribution for the function value at any new candidate point w,. This posterior is also Gaussian, characterized
by a mean p(w,|Di.¢) and variance o2(w,|D1.t), which quantify the model’s prediction and its uncertainty,
respectively.

In this work, the kernel function was chosen as a combination of a Matern Kernel(v = 2.5) and a Spectral
Mixture Kernel to effectively capture both smooth (as the metrics were expected to be somewhat smooth,
without the kink located at ming,(A®S")) and periodic trends in the objective landscape as can be seen
in the true functions in Figure 2.28 and 2.29. These are further defined below since the behaviour and
assumptions of a Gaussian Process are governed by its covariance function, or kernel, k(w, w’). This kernel
essentially defines the similarity between two data points w and w’.

Kernel Functions
Matern Kernel

The Matern kernel is a stationary kernel well-suited for modelling functions that are smooth but not necessarily

infinitely differentiable. It is parameterised by a smoothness parameter v, which controls the differentiability
of the resulting function. The general form of the Matern kernel is:

21—v 2ur Y 2ur
n 2
kMatern(W7W ) =0 F(l/) ( 7 ) K, ( 7 ) (A2)

where:
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r = ||[w — w'|| is the Euclidean distance between the inputs,
o T'(+) is the Gamma function,

o K,(-) is the modified Bessel function of the second kind,

£ is the lengthscale parameter, which determines how quickly the correlation decays with distance,

o2 is the output variance (signal amplitude) parameter.

Common choices for v are v = 3/2 or v = 5/2, which yield once- and twice-differentiable functions, respectively.
The code in this work used v = 5/2.

Spectral Mixture Kernel

The Spectral Mixture (SM) kernel is a flexible kernel designed to model complex, periodic patterns by approxi-
mating its spectral density with a mixture of @) Gaussians [21]. This allows it to capture multiple periodicities
and their harmonics. The kernel is derived by taking the inverse Fourier transform of a Gaussian mixture on
the frequency spectrum:

ksm (w, w') Z g exp (—2m27? ) cos(2mTpq) (A.3)

where:
o 7 =|w — w/| is the distance between inputs,
e For each component g:
— @y is the mixture weight (the magnitude),
— W is the mean of the Gaussian in the frequency domain (defining the central periodicity),

— 04 is the variance of the Gaussian (defining the lengthscale or “width” of the periodicity).

The SM kernel is highly expressive and is particularly effective for signals that are a superposition of multiple
quasi-periodic components, making it a good choice given the periodicity of the ®, domain and A®J",

2. Selection of Next Query Point via Acquisition Function

The acquisition function «(w; D), which leverages the GP posterior, balances the exploration of uncertain
regions with the exploitation of known promising areas to propose the next point w41 to evaluate:

Wil = arg max a(w;D1.4) (A.4)
we

The Upper Confidence Bound (UCB) acquisition function was employed:
avcs(W; D1t) = —pu(W[D1:t) + Bro(wW|D1:) (A.5)

where the negative mean —u(w) promotes exploitation (minimization) and the term +pB;0(w) encourages
exploration. The parameter §; controls this trade-off and was scheduled to decay over iterations, favoring
more exploitation as the model becomes more certain.

The selected candidate w;y1 is then evaluated on the true, expensive objective function (in this case, by
calculating the meta-loss A = A; + Ay over a batch of beam profiles), the dataset is updated D41 =
Di1.: U{wii1, Li41}, and the GP surrogate is retrained. This loop continues until a convergence criterion or a
maximum number of iterations Njie, is reached, yielding an optimized weight vector w*.

A.2. Optimizing KL Divergence

In the case for the triple harmonic optimization of the profile itself, a similar technique is employed, but now
via the Optuna framework to optimize the five-dimensional parameter space governing the triple harmonic RF
system of the PSB in simulation [1]. The objective is to minimize the Kullback-Leibler (KL) Divergence Lkr,
of the resulting longitudinal bunch profile A;(¢), which serves as a sole metric for potential well flatness. The
parameters optimized are:
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o wy: Total RF voltage, Viotal € [6, 20] kV

e ws: Second harmonic voltage ratio, 1o = Vo/V; € (0.0, 5.0]
o wj: Third harmonic voltage ratio, r3 = V3/V; € [0.0, 5.0]
e wy: Second harmonic phase, ¢2 € [0, 27] rad

e ws: Third harmonic phase, ¢35 € [0, 2] rad

Sampling and Optimization Strategy

Optuna’s default TPESampler (Tree-structured Parzen Estimator) was used. This sampler models the prob-
ability distributions I(w) and g(w) of the parameters w that yield losses below and above a given quantile
threshold, respectively. It then proposes new candidate points by maximizing the ratio I(w)/g(w), effectively

focusing the search on the most promising regions of the parameter space. This is defined mathematically in
Section 4.8.

Objective Function and Constraint Handling

The objective function £(w) = Lkr,(\:) is evaluated by running a full BLonD simulation for a given parameter
set w. To ensure physical feasibility, a hard constraint based on the calculated RF bucket area is imposed
before the simulation is run. If the bucket area is insufficient for stable capture, the trial is pruned and a high
penalty is returned, significantly accelerating the optimization process by avoiding futile simulations.
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Figure B.1: AD Ring 2 phase-correction evolution over 10 decaying-weight steps (top) and final CBAM @5 solution versus
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Figure B.2: AD Ring 2 normalized longitudinal profile evolution: initial (left) and final after CBAM corrections (right).

B.2. LSTM-TD3 Agent
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Figure B.3: AD Ring 3 phase-correction evolution over 10 decaying-weight steps (top) and final CBAM &3 solution versus
machine set phase (bottom).
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Figure B.4: AD Ring 3 normalized longitudinal profile evolution: initial (left) and final after CBAM corrections (right).
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Figure B.5: EAST Ring 2 phase-correction evolution over 10 decaying-weight steps (top) and final CBAM ®3 solution versus
machine set phase (bottom).
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Figure B.6: EAST Ring 2 normalized longitudinal profile evolution: initial (left) and final after CBAM corrections (right).
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Figure B.7: EAST Ring 3 phase-correction evolution over 10 decaying-weight steps (top) and final CBAM ®3 solution versus
machine set phase (bottom).
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Figure B.8: EAST Ring 3 normalized longitudinal profile evolution: initial (left) and final after CBAM corrections (right).
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Figure B.9: AD (Ring 2) phase-correction evolution over 10 corrections (top) and final LSTM-TD3 @5 solution versus machine
set phase (bottom).
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Figure B.10: AD (Ring 2) normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections (right).
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Figure B.11: AD (Ring 3) phase-correction evolution over 10 corrections (top) and final LSTM-TD3 ®2 solution versus
machine set phase (bottom).
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Figure B.12: AD (Ring 3) normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections (right).
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Figure B.13: EAST (Ring 2) phase-correction evolution over 10 corrections (top) and final LSTM-TD3 ®2 solution versus
machine set phase (bottom).
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Figure B.14: EAST (Ring 2) normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections
(right).
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Figure B.15: EAST (Ring 3) phase-correction evolution over 10 corrections (top) and final LSTM-TD3 ®2 solution versus
machine set phase (bottom).
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Figure B.16: EAST (Ring 3) normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections
(right).
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LSTM Model (unoptimized) Solution Evolution
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Figure B.17: ISOLDE phase-correction evolution over 10 corrections (top) and final LSTM-TD3 ®2 solution versus machine
set phase (bottom) for unoptimized model tested in the PSB.
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Figure B.18: ISOLDE normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections (right) for
unoptimized model tested in the PSB.
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LSTM Model (unoptimized) Solution Evolution
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Figure B.19: TOF phase-correction evolution over 10 corrections (top) and final LSTM-TD3 @5 solution versus machine set
phase (bottom) for unoptimized model tested in the PSB.
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Figure B.20: TOF normalized longitudinal profile evolution: initial (left) and final after LSTM-TD3 corrections (right) for
unoptimized model tested in the PSB.
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