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Abstract

This thesis is concerned with finding the asymptotic distributions of linear spectral statistics of the nonlinear
shrinkage estimator for large covariance matrices derived by Ledoit and Wolf (2012). It provides some new
inferential procedures for large-dimensional data and shed some light on the power of the new statistical
tests on the structure of the large covariance matrices. After a short review of the relevant theory, two linear
spectral statistics are proposed which are deduced from the nonlinear shrinkage estimator where for one of
these linear spectral statistics its limiting distribution is derived. This results in a ready to use sphericity test
statistic in the large-dimensional framework and is one of the main results of this thesis. The sphericity test
corresponding to this new test statistic is called the nonlinear shrinkage test (NLS-ϵ). The theoretical results
are illustrated by means of a simulation study where the new nonlinear shrinkage test is compared with al-
ready existing tests, in particular the commonly used corrected likelihood ratio test and the corrected John’s
test. It is demonstrated that the new nonlinear shrinkage test is most powerful under a non homogeneous
variance alternative where it outperforms well known sphericity tests. Moreover, it is observed that the new
nonlinear shrinkage test encounters some problems when different alternatives are combined.
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1
Introduction

Due to the rapid advancement of modern technology there is now more data available than ever before. Large
amounts of data appear in many fields, for example in finance, where online data from markets around the
word are processed on a scale that is not imaginable. Or in genetics, where in recent years it has become
possible to register the expression of several thousands of genes from a single tissue, and much more. To
handle large amounts of data one always relied on the large sample theory until very recently. The large
sample theory means that when given a sample (x1,x2, · · · ,xn) of random observations of dimensions p, the
sample size n could tend to infinity but p needed to say fixed. This led to many problems when analysing
large-dimensional data where the dimension p of the data is not as small as several tens. It has been pointed
out by numerous authors that the assumption of a fixed dimension does not yield precise distributional ap-
proximations for commonly used statistics and that better approximations can be obtained considering to
let the dimension go to infinity as well. This led to a new area in asymptotic statistics where the dimension
p is no longer fixed, as in the large sample theory, but tend to infinity together with the sample size n. This
framework is called large-dimensional asymptotic.

Many tools that used to work in large sample theory did not work properly anymore in the large-dimensional
asymptotic framework and needed to be altered. Moreover, new ones have been developed and are still being
developed. So also many multivariate statistical tests. Multivariate statistical tests are key in the analysis of
data with multiple dimensions and because of this widely used in many fields. Therefore, this thesis is con-
cerned with constructing a new multivariate statistical hypothesis test in the large-dimensional asymptotic
framework. Many random processes can be modelled using a stochastic model of the form Y = Σ1/2

n Xn . In
this stochastic model, Σn is the population or true covariance matrix and explains the variability and the rela-
tion between different variables in theoretical sense. The matrix Xn represents the randomness of the model.
For numerous application one would like to know if the variables in the observed data set can be assumed
to be independent of each other with a certain accuracy. This corresponds to testing whether the true or
population covariance matrix is equal or not the the identity matrix when only the data matrix Y is observed.
This type of multivariate statistical hypothesis test is called a sphericity test and this is the one that will be
constructed.

This new sphericity test in the large-dimensional framework will be based on the nonlinear shrinkage esti-
mator derived by Ledoit and Wolf (2012). It has been pointed out that the nonlinear shrinkage estimator is
in many cases a better estimator for the population covariance matrix than for example the linear shrinkage
estimator which is derived by Ledoit and Wolf (2004). This makes it interesting to develop a test based on the
nonlinear shrinkage estimator and investigate whether it also performs better than the test that is based on
the linear shrinkage estimator which is derived by Versteegh (2020). Furthermore, it will also be interesting to
explore how this new test behaves compared to well known and established sphericity tests in a simulation
study.
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2 1. Introduction

Outline
A central object in higher dimensional statistics is the sample covariance matrix Sn . Almost all statistical
methods in multivariate analysis rely on this sample covariance matrix: multivariate regressions, one-sample
or two-sample hypothesis testing, and much more. In the case of the one-sample or two-sample hypothe-
sis testing, many statistics are functions of the eigenvalues of the sample covariance matrix. Therefore, this
thesis starts with literature review of the sample covariance matrix and its important properties. In addition,
there will be looked at other estimators such as the linear shrinkage estimator and the nonlinear shrinkage
estimator on which the new sphericity test will be based. After the review of the estimators some of the well
established sphericity tests will discussed. These test will be used in the simulation study. Then when all
relevant literature is reviewed and discussed, the construction of the new sphericity test can be started. As
said earlier, many statistics are functions of eigenvalues of the sample covariance matrix. This will also be the
case for this new test statistic. The function that will be used in the test statistic is derived from the nonlinear
shrinkage function proposed by Ledoit and Wolf (2012). To construct a test out of this new test statistic the
limiting distribution will be calculated. This will be done using the central limit theorem for linear spectral
statistics and the found limiting distribution for this new test statistics will be one of the main results of this
thesis.

After this theoretical part there will be a simulation study to asses the performance of the new test and to
compare it with the already existing sphericity tests. The comparison will be made using the following indi-
cators: the empirical size, the empirical power and receiver operating characteristic curves or also know as
ROC curves. In the conclusion the main results of this thesis will be highlighted and in the discussion the
potential flaws will be discussed as well as some recommendations will be given for further research. Now it
is time to start with reviewing some of the important topics in random matrix theory.



2
Estimators for Large Covariance Matrices

In this chapter three estimators for large covariance matrices will be considered; the sample covariance ma-
trix, the linear shrinkage estimator and the nonlinear shrinkage estimator. In particular, there will we looked
at some of the properties as well as some of the problems occurring when using the sample covariance ma-
trix in large-dimensional statistics. Furthermore, the linear shrinkage and nonlinear shrinkage estimators
will be constructed. Before diving into this chapter the large-dimensional asymptotic framework need to be
specified: let n denote the sample size and p = p(n) the number of variables, with p

n → c ∈ (0,1) as n →∞.

2.1. Sample Covariance Matrix
A central object in higher dimensional statistics is the sample covariance matrix. Almost all statistical meth-
ods in multivariate analysis rely on this sample covariance matrix: multivariate regressions, one-sample or
two-sample hypothesis testing, and much more. The sample covariance matrix Sn is an estimator for the
true or population covariance matrix Σn of a given data set. The true covariance matrix is a matrix containing
the variance of every variable and explains the relation between different variables in theoretical sense. The
sample covariance matrix that will be used throughout this thesis is defined as follows:

Definition 2.1.1. Given a p x n data matrix Y = (y1, . . . ,yn), with each yi a data vector of dimension p, the
unbiased sample covariance matrix Sn is the matrix:

Sn = 1

n

n∑
i=1

yiyi
T = 1

n
Y Y T

In this definition there is assumed that the mean is known and equal to zero. This will also be one of the
assumptions for the data that will be used. To study some of the key properties of the sample covariance ma-
trix a few more definitions are needed, starting with the empirical spectral distribution (ESD). The empirical
spectral distribution is defined as:

Definition 2.1.2. Let S be a p x p matrix with eigenvalues {λ1, . . . ,λp }. The Empirical Spectral Distribution FS

of the matrix S is:

F S = 1

p

p∑
i=1

δλi

where δλi is denoted as the Dirac mass placed at the eigenvalue λi .

The next definition that is needed is the one of the limiting spectral distribution (LSD):

Definition 2.1.3. Let {Sn}n≥1 be a sequence of p x p matrices. If the sequence of corresponding empirical
spectral distributions {F Sn }n≥1 vaguely converges to a measure F , then F is called the limiting spectral distri-
bution (LSD) of the sequence of matrices {Sn}.

The last definition that is needed to study the properties of the sample covariance matrix is that of the
Marchenko-Pastur distribution or law. This distribution is defined as follows:

3



4 2. Estimators for Large Covariance Matrices

Definition 2.1.4. The standard Marchenko-Pastur distribution Fc (M-P law) with index c has the density
function

pc (x) =
{

1
2πcx

p
(b −x)(x −a) a ≤ x ≤ b

0 other wi se

with an additional point mass of value (1− 1
c ) at the origin if c > 1, where a = (1−p

c)2 and b = (1+
√

c)2. Here,
the constant c is the dimension to sample size ratio index. Moreover, there is assumed that the variance σ2 is
equal to 1.

Three standard M-P density functions for c ∈ { 1
8 , 1

4 , 1
2 } are displayed in Figure 2.1

Figure 2.1: Density plots of the Marcenko-Pastur distributions with indexes c = 1
8 (dashed line), c = 1

4 (dotted line) and c = 1
2 (solid line).

Note. Figure taken from the book Large Sample Covariance Matrices and High-Dimensional Data Analysis (p.11), By Yao, J., Zheng, S.,
Bai, Z. D., (2015), Cambridge University Press.

Using the above definitions one of the main properties of the sample covariance matrix in large-dimensional
statistics can be presented. This property states that the limiting spectral distribution of the eigenvalues of
the sample covariance matrix is equal to the standard Marchenko-Pastur distribution. Marchenko and Pastur
(1967) first discovered this and has been extended in several directions such as Theorem 2.9 of the book Yao
et al. (2015),Large Sample Covariance Matrices and High-Dimensional Data Analysis:

Theorem 2.1.1. Suppose that the entries {xi , j } of the matrix X are i.i.d. complex random variables with mean
zero and variance one, and p

n → c ∈ (0,∞). Then almost surely, F Sn converges to the standard M-P law Fc

It is understood that if n →∞, the sample covariance matrix converges to the population covariance matrix
which is equal to the identity matrix when all entries of the data matrix X are i.i.d with mean zero en variance
1. Therefore, since the eigenvalues are continuous functions of matrix entries, the sample eigenvalues of
Sn should converge to 1 almost surly. However, in the large-dimensional case when p →∞ as well, Theorem
2.1.1 states that the sample eigenvalues obey the M-P law. Thus that the eigenvalues of the sample covariance
matrix are spread out over the interval [a,b] = [(1−p

c)2, (1+p
c)2 and will therefore not converge to 1. So

the eigenvalues of Sn will not be a consistent estimator for the true eigenvalues of the population covariance
matrix. In conclusion, using the sample covariance matrix directly in the large-dimensional case will lead to
some serious errors. That is why there is need for different estimators in the large-dimensional case.

2.2. Linear Shrinkage Estimator
In this section the Linear Shrinkage Estimator will be presented. This is an estimator which estimates the
true covariance matrix in the large-dimensional case. This estimator is based on the work of Ledoit and Wolf
(2004) and extended by Bodnar et al. (2014). The general linear shrinkage estimator ΣGLSE is of the form:

ΣGLSE =αnSn +βnΣ0

Where Σ0 is a symmetric positive definite matrix, bounded in trace and can be seen as a prior belief of the
true covariance matrix. The parameters αn and βn are called the shrinkage intensities because they basically
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shrink the matrices which they are multiplied with. Thus the ΣGLSE is essentially a linear combination be-
tween the sample covariance matrix and the prior belief of the true covariance matrix. Using the loss function
L2

f = ||ΣGLSE −Σn ||2F , where ||.||2F is the squared Frobenius norm, the asymptotic optimal shrinkage estima-

tors α̂∗ and β̂∗ can be found. This loss function L2
f measures the "distance" between the estimator ΣGLSE

and the true covariance matrix Σn . For the estimator to be working properly, this "distance", thus the loss
function, should be as small as possible. Versteegh (2020) minimised this loss function L2

f and found that the

asymptotic optimal shrinkage estimators are equal to

α̂∗ = 1−
1
n tr (Sn)2||Σ0||2F

||Sn ||2F ||Σ0||2F − (tr (SnΣn))2

β̂∗ = tr (SnΣn)

||Σ0||2F
(1− α̂∗)

These parameters will consistently estimate the optimal asymptotic value of the general linear shrinkage
estimator in the limit p

n → c. Note that these parameters depend on a prior belief of Σ0. However, using these
values in the general linear shrinkage estimator, the true covariance matrix Σn can be estimated in the large-
dimensional case. In addition,Versteegh (2020) uses these values to construct a new sphericity test. This will
be covered in a later chapter.

2.3. Construction of the Nonlinear Shrinkage Estimator
This chapter is concerned with the construction of a new type of estimator for large-dimensional covariance
matrices derived by Ledoit and Wolf (2012); the nonlinear shrinkage estimator. This estimator is in some
way an extension of the linear shrinkage estimator. Where the linear shrinkage estimator shrinks the sample
covariance matrix in a linear way, the nonlinear shrinkage estimator does it in a nonlinear way. To build the
nonlinear shrinkage estimator some assumptions of the underlying stochastic model are needed, where the

stochastic model is given by Y =Σ 1
2 Xn .

• (A1) The population covariance matrix Σn is a non-random p-dimensional positive definite matrix.

• (A2) Let Xn be an n × p matrix of real independent and identically distributed (i.i.d.) random variables

with mean zero and unit variance. One only observes Y where Y =Σ 1
2 Xn .

• (A3) Let τn,1, . . . ,τn,p denote the eigenvalues of the population or true covariance matrix Σn . The em-
pirical spectral distribution of the population eigenvalues Hn(τ) converges almost surly (a.s.) to a non-
random limit H(τ) at every point of continuity.

• (A4) Supp(H), the support of H , is the union of a finite number of closed intervals, bounded away from
zero and infinity. Furthermore, there exists a compact interval in (0,+∞) that contains Supp(Hn) for
all n large enough.

Before the nonlinear shrinkage estimator can be constructed one last mathematical tool is needed; the Stielt-
jes transform method. As said earlier, the eigenvalues of a matrix are continuous function of entries of the
matrix. Now when the dimension of a matrix is larger than four, these functions do not have a closed form
any more. To still study their properties the Stieltje transform method can be used and that is why the Stieltjes
transform method is widely used in the literature of large-dimensional statistics. Why the Stieltjes transform
method is of importance in this particular case will be made clear in a minute. First the definition of the
Stieltjes transform is presented.

Definition 2.3.1. Let µ be a finite measure on the real line. The Stieltjes transform of the measure µ with
z ∈C+ where C+ = {z ∈C : Im(z) > 0} is defined as:

mµ(z) =
∫

1

x − z
µ(d x)

One of the main properties of the Stieltjes transform is that it characterises the vague convergence of finite
measures. This is a key tool in studying empirical spectral distributions (ESDs) of random matrices. This is
summarized in Theorem 2.7 from Yao et al. (2015) which is given by:
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Theorem 2.3.1. A sequence {µn} of probability measures on R converges vaguely to some positive measure µ if
and only if their Stieltjes transforms {mµn } converges to mµ on C+.

It can be shown that the Stieljes transform of the empirical spectral distribution of the sample covariance
matrix Sn is equal to:

mF Sn (z) = 1

p

p∑
i=1

1

λi − z
= 1

p
Tr [(Sn − zI )−1], ∀z ∈C

From Theorem 2.1.1 it is known that the ESD F Sn (λ) of the sample covariance matrix converges almost surely
to some nonrandom limit F (λ). Now by Theorem 2.3.1 also the Stieltjes transform of the ESD of the covari-
ance matrix should convergence. This one of the main results of Marchenko and Pastur (1967). The most
convenient expression for this limit is found in Silverstein and Choi (1995), which is given by:

mF (z) =
∫ +∞

−∞
1

τ[1− c − czmF (z)]− z
d H(τ) (2.1)

Moreover,Silverstein and Choi (1995) showed that:

lim
z∈C+→λ

mF (z) = m̆F (λ), ∀λ ∈R\{0} (2.2)

exist. The above two results is the main reason why the Stieltjes transform is of such importance because
equation (2.2) appears in the nonlinear shrinkage estimator and equation (2.1) is needed to investigate if it
is possible to construct statistical test from the nonlinear shrinkage estimator. Now it is possible to proceed
with the construction of the nonlinear shrinkage estimator. In the absence of specific information about the
population or true covariance matrix, it seems reasonable to only consider estimators which are invariant un-
der rotations of the observed data. In Perlman (2007) it is mentioned that every rotation-invariant estimator
for Σn is of the form:

UnDnU T
n

where Dn = Di ag (d1, . . . ,dp ) is a diagonal matrix and where Un is the matrix whose i th column is the sample
eigenvector ui. This is the class of estimators that will be considered. The objective is to find an estimator
that is closest to the population matrix. To quantify the word ’closest’ the Frobenius norm is used, which is

defined as: ||A||F =
√

tr (A AT ). Now to find the estimator that is closed to population matrix Σn the following
minimization problem needs to be solved: minDn ||UnDnU T

n −Σn ||F . Elementary matrix algebra shows that
the optimal solution is equal to:

D̃n = Di ag (d̃1, . . . , d̃p ), where ∀i ∈ {1, . . . p} d̃i = ui
TΣn ui (2.3)

the interpretation of d̃i is that it catches how the i th sample eigenvector ui relates to the population co-
variance matrix Σn . As a result, the finite sample optimal estimator is given by Σ∗

n = UnD̃nU T
n , where D̃n

is given by equation (2.3). However, it is not possible to calculate the explicit because it depends on the
non-observable population covariance matrix Σn . Therefore, it is important to get as close to Σ∗ as possible
by characterising the asymptotic behaviour of d̃i for every i ∈ {1, . . . , p}. To do this Ledoit and Peche (2011)
introduce a new object which is a non-decreasing function defined by:

∆p (x) = 1

p

p∑
i=1

d̃i1[λi ,+∞)(x) ∀x ∈R (2.4)

This function is used in their Theorem 4 which is one of the main results they present. It says that Equation
(2.4) converges almost surely to a non-random quantity. This theorem is defined as follows:

Theorem 2.3.2. Assume that conditions (A1)-(A4) hold and let ∆p be defined as in Equation (2.3). There exist
a nonrandom function ∆ defined over R such that ∆p (x) converges a.s to ∆(x) for all x ∈ R \ {0}. If in addition
c < 1, then ∆ can be expressed as: ∀x ∈R, ∆(x) = ∫ x

−∞δ(λ)dF (λ), where ∀λ> 0

δ(λ) = λ

|1− c − cλm̆F (λ)|2 (2.5)

where m̆F (λ) is given by equation (2.2).
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Using this theorem Ledoit and Peche (2011) show using that the asymptotic quantity corresponding to d̃i is
δ(λ). From which they deduce the nonlinear shrinkage estimator:

Σ̂n =UnD̂nU T
n where D̂n = Di ag (δ(λ1), . . . ,δ(λp )) (2.6)

where λi for all i ∈ {1, . . . , p} are the eigenvalues of the sample covariance matrix and where Un is the matrix
whose i th column is the sample eigenvector ui corresponding to the eigenvalue λi . Note that Σ̂n is a non-
linear shrinkage estimator because the eigenvalues of D̂n are obtained by applying the nonlinear shrinking
function δ(λ) form Equation (2.5) to every sample eigenvalue λi . The obtained nonlinear shrinkage estima-
tor is what is called a oracle estimator. That means in this case that it depends on the ’limiting’ distribution
of the sample eigenvalues and not the observed one. The nonlinear shrinkage function δ(λ) from Equation
(2.5) will later be used to construct a new statistical test based on the nonlinear shrinkage estimator.





3
Sphericity Tests in Large-dimensional

Asymptotics

One of the main goals of this thesis is to construct a sphericity test from the nonlinear shrinkage estimator.
Before constructing this sphericity test three other sphericity tests are introduced;, The corrected likelihood
ratio test (CLRT), the corrected John’s test (CJ) and the linear shrinkage test (LS). A sphericity test is a statistical
hypothesis test which test the following hypothesis:

H0 :Σn =σ2I

H1 :Σn ̸=σ2I

In words, a sphericity test, tests the null hypothesis whether the true covariance matrix is a multiple of the
identity matrix. This corresponds with testing if the variables of the data are independent and have variance
σ2. The test that will be considered are independent of the variance and therefore without loss of generality it
is possible to assume thatσ2 = 1. When performing a hypothesis test a test statistic is needed. In multivariate
statistics many statistics are function of eigenvalues {λi } of the sample covariance matrix Sn . Such a statistic
is called a linear spectral statistic (LSS) and is defined by:

Tn =
p∑

i=1
ϕ(λi ) =

∫
ϕ(λi )dF Sn (x) =: F Sn (ϕ)

for a specific function ϕ. In the end of this chapter the three sphericity tests will be compered based on the
findings of Versteegh (2020) who did an extensive comparison between the three.

3.1. Corrected Likelihood Ratio Test (CLRT)
The likelihood ratio test is denoted in the literature as one of the three classical test in finite dimensional
statistics. Moreover, by the Neyman-Pearson lemma from the paper Neyman and Pearson (1933) it is also
the most powerful one. The likelihood ratio test statistic from the the book An Introduction in Multivariate
Statistics, Anderson (1984) is given by:

Ln =
[

(λ1 · · ·λp )
1
p

1
p (λ1 +·· ·+λp )

] pn
2

(3.1)

Where λ1, · · · ,λp are the eigenvalues of the sample covariance matrix Sn . This is the test statistic which is
used in the finite dimensional case. For the test also to work in the the large-dimensional case the test statistic
needed to be altered and the limiting distribution needed to be derived again. This is done by Wang and Yao
(2013) and summarized in the following theorem:

Theorem 3.1.1. Let Λn = − 2
n Log(Ln) be the test statistic, with Ln equal to Equation (3.1). Assume that the

realisations {xi , j } are independent and identically distributed, satisfying E[xi , j ] = 0,E[|xi , j |2] = 1,E[|xi , j |4] <
∞. Then under H0 :Σn = I

Λn + (p −n)Log(1− p

n
)−p → N

(
− κ−1

2
Log(1− c)+ 1

2
βc,−κLog(1− c)−κc

)
9
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in distribution and where κ= 2 if the data is real and κ= 1 if the data is complex. Furthermore, β=E[|xi , j |4]−
1−κ
This is the corrected likelihood ratio test statistics and its limiting distribution in the large-dimensional case
under the null hypothesis H0 : Σn = I . The test associated with this test statistics is the corrected likelihood
ratio test (CLRT). One should notice that this test is indeed independent of σ but depends on the Log(1− c),
in both the expectations as well as in the variance. This means that when c is close to 1, thus p close to n, the
logarithm will go to minus infinity and the variance will blow out proportion. Therefore it is expected that the
CLRT will break down when p is close to n, and that the test will not work when p is greater than n.

3.2. Corrected John’s Test (CJ)
The second test that will be considered is the corrected John’s Test (CJ). The original test was proposed in the
paper of John (1971) and has been modified by Wang and Yao (2013) to work in the large-dimensional case.
This test is a rotation invariant test and considered as one of the most powerful ones. That means that if the
matrix X is rotated by some orthogonal matrix Q, the test still works. The test is then computed from a new
sample covariance matrix given by:

Sn = 1

n
Y Y T = 1

n
Σ

1
2 QX (Σ

1
2 QX )T

The data in this thesis will not be rotated, this means that Q can be taken equal to the identity matrix. The
test statistic that originally was proposed in John (1971) is of the form:

T = p2n

2
tr {Sn(tr (Sn))−1 − I p−1}2 (3.2)

When p is fixed and n →∞, under the null hypothesis, is holds that T → χ2
f in distribution, a Chi-squared

distribution with f = 1
2 p(p +1)−1 degrees of freedom. This is referred as the John’s test. For the John’s test

to work in the large-dimensional case Wang and Yao (2013) proposed a new test statistic U = 2
pn T . Using this

new test statistic they proved the following theorem:

Theorem 3.2.1. Assume that the entries {xi , j } are i.i.d. , satisfyingE[xi , j ] = 0,E[|xi , j |2] = 1,E[|xi , j |4] <∞, and
let U = 2

pn T be the test statistic with T equal to Equation (3.2) . Then under H0 and when p →∞,n →∞, p
n →

c ∈ (0,∞),
nU −p → N (κ−1+β,2κ)

in distribution and where κ= 2 if the data is real and κ= 1 if the data is complex and where β=E[|xi , j |4]−1κ

It is important to note, that the limiting distribution is independent from c unlike the CLRT.

3.3. Linear Shrinkage Test (LS)
The third test that will be considered is the test resulting from the central limit theorem of the linear shrinkage
estimator, which will be stated in a later section. This test is proposed by Versteegh (2020) and it depends on
the limiting distribution of the optimal shrinkage intensity α̂∗. One of the main results of Versteegh (2020) is
his Theorem 3.3.1

Theorem 3.3.1. Let X be a p x n data matrix consisting of i.i.d random variables with mean zero and variance

1, and let Y =Σ
1
2
n X . Let Sn = 1

n Y Y T be its sample covariance matrix with eigenvaluesλ1, · · · ,λp . Let (p,n) →∞
and p

n → c > 0. Then under H0

pα̂∗ → N (κ−1+β,2κ)

in distribution. Where α̂∗ is the optimal consistent estimator of the form:

α̂∗ = 1−
1
n tr (Sn)2||Σ0||2F

||Sn ||2F ||Σ0||2F − (tr (SnΣn))2

This means that pα̂∗ is a ready to use statistic for a sphericity test in the large-dimensional case. It should be
noted that the limiting distributions of the LS test and the CJ test are the same. This means that in the limit
they should perform equally but it could be, since the test statistics are not the same, that the one of the test
outperforms the other in a earlier stage.
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3.4. Comparison
It is not only interesting to know what kind of sphericity test there exist in large-dimensional statistics but
also how well they perform compared to each other. Therefore, the performance of the three sphericity test
mentioned earlier in this chapter will be compared; the corrected likelihood ratio test (CLRT), the corrected
John’s test (CJ) and the test based on the linear shrinkage estimator (LS). One way to quantify the performance
of a test is to use its power. The power of a test is defined as:

Power = P (reject H0|H1 is true)

that is, the probability that the null hypothesis is rejected correctly. So the more powerful a test is, the quicker
it rejects a false hypothesis. An other way to quantify the performance of a test is to look at the size of a test.
The size of a test is defined as:

Size = P (reject H0|H0 is true)

that is, the probability that the null hypothesis is rejected falsely . If a statistic is close to its limiting distribu-
tion, then the size of a test should be close to a rejection level α under H0.Versteegh (2020) did an extensive
comparison between these three test using three different methods; empirical size comparison, empirical
power comparison and a comparison using ROC curves. ROC curves or receiver operating characteristic
curves are curves that compare how the true positive rate changes when the false positive rate is varied. It
can also been seen as a plot of the power as function of the size of a test.

Since Versteegh (2020) already did an extensive comparison, only his observations and conclusions will be
presented in this section. He observed that CLRT test performs worse or sometimes equal to the CJ and LS
test and that the CJ test slightly outperforms the LS test, especially when the alternative hypothesis is close to
the null hypothesis. Moreover, he observed that the CJ test has a small head start in power compared to the
LS test and that the size of the LS test is small. He argues these two observations have one explanation that is
that the LS test need the large-dimensional aspect more than the CLRT and the CJ test. He concludes that the
CJ test performs best for the reason that the LS never really catches up because of the difference in power in
starts with. Moreover, he concludes that the LS test still mostly outperforms the CLRT test and that CLRT test
performs decent in a low dimension, but disappoints when p increases.

In a later chapter the new constructed sphericity test from the nonlinear shrinkage estimator will be evaluated
in a simulation study in the same manner as Versteegh (2020) did. In addition, the new constructed test will
be compared with the the already established sphericity tests, mentioned in this chapter.





4
CLT for Nonlinear Shrinkage Estimator

As have been pointed out in the previous chapter, one of the main goals of this thesis is to construct a new
sphericity test from the nonlinear shrinkage estimator constructed in section 2.3. Recall that in multivariate
statistics many statistics are function of eigenvalues {λi } of the sample covariance matrix Sn . Such a statistic
is called a linear spectral statistic (LSS) and is defined by

Tn =
p∑

i=1
ϕ(λi ) =

∫
ϕ(λi )dF Sn (x) =: F Sn (ϕ)

for a specific functionϕ. One of the goals of is chapter is to deduce this specific functionϕ from the nonlinear
shrinkage estimator such that it can be used for sphericity testing. Remember that by Theorem 2.1.1 the linear
spectral statistic F Sn (ϕ) converges to

∫
ϕ(λ)dFc (λ), where Fc is the standard M-P law with index c. To actually

construct a sphericity test from this particular LSS it is necessary to investigate the fluctuations around its
limit under the null hypothesis. That is,

p
{ 1

p

p∑
i=1

ϕ(λi )−
∫
ϕ(x)dFc (x)

}
= p

{∫
ϕ(x)dF sn (x)−

∫
ϕ(x)dFc (x)

}
= p

∫
ϕ(x)(dF sn (x)−dFc (x))

To investigate these fluctuations the central limit theorem for linear spectral statistics comes in handy, which
is Theorem 3.4 from the book of Yao et al. (2015). This theorem says that the fluctuations of the LSS around
its limit are normally distributed.

4.1. Preliminary Results
Before moving on, some machinery is needed, such as Theorem 3.4, Proposition 3.6 and Proposition 2.10
from the book of Yao et al. (2015). Theorem 3.4 is the central limit theorem (CLT) for linear spectral statistics,
Proposition 3.6 helps reducing the difficulty of the calculations and Proposition 2.10 gives a way to calculate
the limit of the linear spectral statistic. The three results are given below.

Theorem 4.1.1. (CLT for Linear Spectral Statistics) Assume that the variables {xi , j } of the data matrix X =
(x1, . . . ,xn) are independent and identically distributed satisfyingE[xi , j ] = 0,E[|xi , j |2] = 1,E[|xi , j |4] = β+1+
κ <∞, where κ = 2 in case of real variables and κ = 1 in case of complex variables, also E[x2

i , j ] = 0 in case of

complex variables. Assume, moreover,

p →∞, n →∞,
p

n
→ c > 0

Let f1, . . . , fk be functions analytic on an open region containing the support of Fc . The random vector {Xn( f1), . . . , Xn( fk )}
where

Xn( f ) = p{F Sn ( f )−Fcn ( f )}

13
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converges weakly to a Gaussian vector X f1 , . . . , X fk
with mean function and covariance function:

E[X f ] = (κ−1)I1( f )+βI2( f )

cov(X f , Xg ) = κJ1( f , g )+βJ2( f , g )

where

I1( f ) = 1

2πi

∮
c{s/(1+ s)}3(z) f (z)

[1− c{s/(1+ s)}2]2 d z

I2( f ) = 1

2πi

∮
c{s/(1+ s)}3(z) f (z)

1− c{s/(1+ s)}2 d z

J1( f , g ) = 1

4π2

∮ ∮
f (z1)g (z2)

(m(z1)−m(z2))2 m′(z1)m′(z2)d z1d z2

J2( f , g ) = −1

4π2

∮
f (z1)

∂

∂z1

{ s

1+ s
(z1)

}
d z1 ·

∮
g (z2)

∂

∂z2

{ s

1+ s
(z2)

}
d z2

where the integrals are along contours (non-overlapping in J1) enclosing the support of Fc

As can be seen above, calculations of difficult line integrals is needed in the CLT. Fortunately, these calculation
can significantly be simplified using the following proposition.

Proposition 4.1.1. The limiting parameters in Theorem 4.1.1 can be expressed as follows:

I1( f ) = lim
r↓1

I1( f ,r )

I2( f ) = 1

2πi

∮
|ξ|=1

f (|1+hξ|2)
1

ξ3 dξ

J1( f , g ) = lim
r↓1

J1( f , g ,r )

J2( f , g ) =− 1

4π2

∮
|ξ|=1

f (|1+hξ1|2)

ξ2
1

dξ1 ·
∮
|ξ|=1

g (|1+hξ2|2)

ξ2
2

dξ2

with

I1( f ,r ) = 1

2πi

∮
|ξ|=1

f (|1+hξ|2)

[
ξ

ξ2 − r−2 − 1

ξ

]
dξ

J1( f , g ,r ) =− 1

4π2

∮
|ξ1|=1

∮
|ξ2|=1

f (|1+hξ1|2)g (|1+hξ2|2)

(ξ1 − rξ2)2 dξ1dξ2

To calculate the limit of a linear spectral statistic the following proposition is useful:

Proposition 4.1.2. For the standard Marchenko-Pastur distribution Fc with index c > 0 and σ2 = 1, it holds
for all functions f analytic on a domain containing the support interval [a,b] = [(1−p

c)2, (1+p
c)2],∫

f (x)dFc (x) =− 1

4πi

∮
|z|=1

f (|1+p
cz|2)(1− z2)2

z2(1+p
cz)(z +p

c)
d z

4.2. Findingϕ for the Linear Spectral Statistic
Now having acquired all knowledge and tools necessary, it is possible to investigate which function ϕ to use
in a LSS. Since the goal of this thesis is to construct a sphericity test from the nonlinear shrinkage estimator
the function ϕ should be derived from Equation (2.5) from Theorem 2.3.2. So lets investigate what would
happen to Equation (2.5) under the null hypothesis H0 :Σn = I . Remember that Equation (2.5) is given by

δ(λ) = λ

|1− c − cλm̆F (λ)|2 , with lim
z→λ

mF (z) = m̆F (λ)

Computing Equation (2.5) under the null hypothesis requires the computation of m̆F (λ) = limz→λmF (z) un-
der the null hypothesis. Recall from Equation (2.1) that mF (z) satisfies:

mF (z) =
∫ +∞

−∞
1

τ[1− c − czmF (z)]− z
d H(τ)
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Under the the null hypothesis H0 : Σn = I , all eigenvalues are equal to 1 with multiplicity p. Therefore the
underlying distribution of the true eigenvalues H(τ) jumps to 1 at τ = 1. Hence under the null hypothesis
mF (z) satisfies:

mF (z) =
∫ +∞

−∞
1

τ[1− c − czmF (z)]− z
d H(τ) = 1

1− c − czmF (z)− z

Rewriting the above expression gives a quadratic equation in mF (z):

mF (z)2cz +mF (z)(c + z −1)+1 = 0

Applying the quadratic formula gives the following solutions for mF (z):

mF (z) = 1− c − z ±p
(b − z)(a − z)

2cz

where a = (1−p
c)2 and b = (1+p

c)2 are the boundaries of the support of the eigenvalues. Now since z ∈C+ is
a complex number, a branch cut for the square root has to be chosen. It is possible without loss of generality
to chose the principal branch. Then since the eigenvalues are strictly positive (c < 1) the expression under
the square root can not equal 0. Hence the square root is continuous and it is possible to take the limit z →λ:

m̆F (λ) = lim
z→λ

mF (z)

= lim
z→λ

1− c − z ±p
(b − z)(a − z)

2cz

= 1− c −λ±p
(b −λ)(a −λ)

2cλ

= 1− c −λ±
√

(λ−1− c)2 −4c

2cλ

Substituting the above expression for m̆F (λ) into Equation (2.5), the following function is obtained:

ϕ(λ) = 4λ

|c −1−λ±
√

(λ−1− c)2 −4c|2
(4.1)

This is Equation (2.5) under the null hypothesis and could be used in a LSS. However, Versteegh (2020) shows
in his Theorem 5.2.1 that this is not convenient. This result is stated in the following theorem:

Theorem 4.2.1. Let δ(λi ) be the transformed eigenvalues as in Theorem 2.3.2, with λi ∈ (a,b) = ((1−p
c)2, (1+p

c)2), the support of the Marchenko-Pastur distribution. Then under H0 :Σn = I , δ(λi ) =ϕ(λi ) = 1

This theorem says essentially that under H0 the eigenvalues are mapped into non-random quantities (ϕ(λi ) =
1, ∀i ∈ [1, p]). So when using this function in a LSS, say T = 1

p

∑p
i=1ϕ(λi ), then under H0, T = 1

p ·p ·1 = 1. This
is a degenerate statistic, and using this would always result in power 0 or 1 and size 0 or 1. Therefore, the
function ϕ(λ) need to be adjusted to be non degenerate under H0.

There are now multiple ways to proceed. The first option is to simply add an ϵ > 0 to the denominator of
Equation (4.1). This could be interesting to explore because by adding an ϵ > 0 to the denominator it is
possible that some of the key properties of this function will remain. First the equation has to be rewritten:

ϕ1(λ) = 4λ

|c −1−λ±
√

(λ−1− c)2 −4c|2

= λ

| 1
2 (c −1−λ)± 1

2

√
(λ−1− c)2 −4c|2

Then adding ϵ> 0 to the denominator and using that | 1
2 (c−1−λ)± 1

2

√
(λ−1− c)2 −4c|2 =λ for all λ ∈ (a,b) =

((1−p
c)2, (1+p

c)2, which is a result from the proof of Theorem 5.2.1 of Versteegh (2020), results in the fol-
lowing function:

ϕ1(λ) = λ

| 1
2 (c −1−λ)± 1

2

√
(λ−1− c)2 −4c|2 +ϵ

= λ

λ+ϵ
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This function can now be used in the following LSS:

T1 =
p∑

i=1
ϕ1(λi ) =

p∑
i=1

λi

λi +ϵ
(4.2)

This is a non-degenerate linear spectral statistic and sinceϕ1(λ) only has one signularity for λ=−ϵ, the func-
tion is analytic on the support of the Marchenko-Pastur distribution of λ. Therefore, it is possible to apply
the CLT for linear spectral statistics to T1. It should be noted that for ϵ = 1 this LSS is similar to the Bartlett-
Nanda-Pillai (BNP) trace test statistic originally proposed by Pillai (1955). Where many year later its CLT for
Fisher matrices is derived by Bodnar et al. (2019). So the linear spectral statistic of Equation (4.2) is actually a
more general version of the BNP trace test statistic.

The second option is to first transform the eigenvalues with a linear function f (λ) and then apply equation
(4.1) to the transformed eigenvalues, that is (ϕ◦ f )(λ) = ϕ( f (λ)). Functions f (λ) that intuitively make sense
to use are, fϵ(λ) =λ+ϵ for ϵ> 0 or fα(λ) =αλ+(1−α) for α ∈ (0,1). The second example is essentially a linear
shrinkage function. However, by the following theorem proceeding in this way will not always be helpful:

Theorem 4.2.2. Let ϕ(x) be as in equation (4.1) and f (λi ) a linear function, with λi ∈ (a,b) = ((1−p
c)2, (1+p

c)2), the support of the Marchenko-Pastur distribution. Then under H0 :Σn = I ,

ϕ( f (λi )) =
1 f (λi ) ∈ (a,b)

4 f (λi )

(c−1− f (λi )±
p

( f (λi )−1−c)2−4c)2
el se

Proof. let f (λi ) a linear function with, λi ∈ (a,b) = ((1−p
c)2, (1+p

c)2) and also f (λi ) ∈ (a,b). Recall that
equation (4.1) can also be written as

ϕ(λi ) = 4λi

|c −1−λi ±
√

(λi −1− c)2 −4c|2
= 4λi

|c −1−λi ±
√

(a −λi )(b −λi )|2

where (a,b) = ((1−p
c)2, (1+p

c)2), the support of the Marchenko-Pastur distribution. then

(ϕ◦ f )(λi ) =ϕ( f (λi )) = 4 f (λi )

|c −1− f (λi )±√
(a − f (λi ))(b − f (λi ))|2

Now since a < f (λi ) < b, the expression in the square root is negative and real. Therefore, it is possible to
write this as √

(b − f (λi )(a − f (λi ) =
√

(−1)(b − f (λi )( f (λi )−a) = i
√

(b − f (λi )( f (λi )−a)

Again the principal branch for the square root is used. Inserting this gives

ϕ( f (λi )) = 4 f (λi )

|c −1− f (λi )± i
√

(b − f (λi )( f (λi )−a)|2

For any complex number z it holds that |z|2 = Re(z)2 + Im(z)2. Where in this case Re(z) = c −1− f (λi ) and
Im(z) =√

(b − f (λi )( f (λi −a). Working this out gives

Re(z)2 = (c −1− f (λi ))2

= c2 −2c f (λi )+ f (λi )2 −2c +2 f (λi )2 +1

Im(z)2 =
(√

(b − f (λi )( f (λi −a)
)2

=
(√

(−1)(( f (λi )−1− c)2 −4c)

)2

= ((−1)(( f (λi )−1− c)2 −4c))2

=−c2 +2c f (λi )− f (λi )2 +2c +2 f (λi )−1
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Taking these together gives then

|z|2 = Re(z)2 + Im(z)2

= (c2 −2c f (λi )+ f (λi )2 −2c +2 f (λi )2 +1)

+ (−c2 +2c f (λi )− f (λi )2 +2c +2 f (λi )−1)

= 4 f (λi )

Hence

ϕ( f (λi )) = 4 f (λi )

|c −1− f (λi )±
√

( f (λi )−1− c)2 −4c|2
= 4 f (λi )

4 f (λi )
= 1

Now let f (λi ) a linear function with, λi ∈ (a,b) = ((1−p
c)2, (1+p

c)2) but f (λi ) ∉ (a,b). That means that
f (λi ) < a or f (λi ) > b. Then again

(ϕ◦ f )(λi ) =ϕ( f (λi )) = 4 f (λi )

|c −1− f (λi )±√
(a − f (λi ))(b − f (λi ))|2

Now since f (λi ) < a or f (λi ) > b, the expression in the square root is always positive. Therefore the expression
inside the absolute value is real and it is possible to make use of the definition of absolute value for real values,
|x| =

p
x2. Hence

ϕ( f (λi )) = 4 f (λi )

(c −1− f (λi )±√
(b − f (λi )( f (λi )−a))2

Combining the previous results gives the required equation.

When investigating fϵ(λ) more closely it can be found that, for allλi ∈ (a,b) = ((1−pc)2, (1+pc)2) and ϵ> 4
p

c,
fϵ(λ) ∉ (a,b). This means that when using fϵ(λ) with ϵ > 4

p
c to transform the eigenvalues and then using

ϕ( f (λϵ)) in a LSS, the resulting statistic will be non degenerate. Therefore the second LSS that is proposed is

T2 =
p∑

i=1
ϕ2( fϵ(λi )) =

p∑
i=1

4(λi +ϵ)

(c −1− (λi +ϵ)+
√

((λi +ϵ)−1− c)2 −4c)2

The function ϕ( fϵ(λ)) only has one singularity in λ= 0 when c ∈ (0,1) and is therefore analytic on the support
of the Marchenko-Pastur distribution of λ. So it is possible to apply the CLT for linear spectral statistics to T2.

On the other hand, when investigating fα(λ) more closely. It can be found that for all λi ∈ (a,b) = ((1 −p
c)2, (1+p

c)2), there exist no α ∈ (0,1) such that fα(λ) ∉ (a,b). This means that is it not possible to find a
α ∈ (0,1) such that the resulting statistic is non degenerate. Therefore, it does not make sense to use fα(λ) in
a LSS.

In conclusion, there are two LSS to which the CLT can be applied to. These are

T1 =
p∑

i=1

λi

λi +ϵ
ϵ> 0 (4.3)

T2 =
p∑

i=1

4(λi +ϵ)

(c −1− (λi +ϵ)+
√

((λi +ϵ)−1− c)2 −4c)2
ϵ> 4

p
c (4.4)

The CLT from Theorem 4.1.1 will only be applied to LSS T1. The second LSS T2 can be used in further research
because it requires to calculate the poles of the function ϕ2( fϵ(|1+p

cz|2)), which are non trivial to find.

4.3. CLT for Linear Spectral Statistics
In this section the main result of this chapter will be presented; the central limit theorem for the linear spectral
statistics T1, which is Equation (4.3) found in the previous section. To calculate the CLT for this LSS, Theorem
4.1.1, Proposition 4.1.1 and Proposition 4.1.2 are used.
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Theorem 4.3.1. let X be a p x n data matrix consisting of independent identically distributed random variables

with mean 0 and variance 1, and let Y =Σ 1
2 X . Let Sn = 1

n Y Y T be its sample covariance matrix with eigenvalues
λ1, · · · ,λp . Let (p,n) →∞, p

n → c ∈ (0,1) and ϵ> 0. Then under H0;Σn = I

p∑
i=1

λi

λi +ϵ
+p · A2B 2 −2B 2 +1

2
p

c(A−B)B 2
→ N (µ,σ2)

in distribution, where

µ= (κ−1)

[
(
p

c +B)(B
p

c +1)p
c(A−B)(B 2 −1)B

]
+β

[
(
p

c +B)(B
p

c +1)

B 3
p

c(A−B)

]
(4.5)

σ2 = κ
[

(B +p
c)(B

p
c +1)(

p
c + A)(A

p
c +1)

(A−B)4c

]
+β

[
(
p

c + A)(A
p

c +1)p
c A2(A−B)

− ϵp
c

]2

(4.6)

and

A = −c −ϵ−1+
√

(c +ϵ+1)2 −4c

2
p

c
, B = −c −ϵ−1−

√
(c +ϵ+1)2 −4c

2
p

c

The proof of this theorem can be found in the Appendix A.1. To demonstrate the limiting behaviour of the
fluctuations of Equation 4.3 around its limit, define the random variable W

W =
p∑

i=1

λi

λi +ϵ
+p · A2B 2 −2B 2 +1p

c2(A−B)B 2
(4.7)

then by theorem 4.3.1, W → N (µ,σ2) in distribution with µ and σ2 defined by Equations (4.5) and (4.6). Now
when W is properly centralized, that is

Z = W −µp
σ2

then Z → N (0,1) in distribution. This means that the random variable Z converges to a standard normal
in distribution. To visualize this, in Figure 4.1(a) the empirical distribution function of the random variable
Z is calculated with p = 128, n = 256, ϵ = 1 and with standard normal distributed data. In Figure4.1(b) the
empirical distribution with p = 128, n = 256, ϵ = 1 but now with Gamma(4,2)− 2 data is calculated. For
the second figure a Gamma(4,2)− 2 distribution for the data is chosen because this gives β = 3/2 instead
of β = 0 (for standard normal data) but has still zero mean and unit variance. To obtain a proper empirical
distribution function, 100.000 replications are used.

(a) n = 256, p = 128 and ϵ= 1 (b) n = 256, p = 128 and ϵ= 1

Figure 4.1: Empirical distribution functions for centralized random variable W given by Equation (4.7)

Note that the empirical distribution functions in Figure 4.1(a) and 4.1(b) are approximately standard normal
distributions. Therefore it is save to conclude that the calculated limiting distribution in Theorem 4.3.1 is cor-
rect. More importantly, the random variable W of Equation (4.7) is a ready to use spericity test statistic in the
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large-dimensional case that is based on the nonlinear shrinkage estimator. The new sphericity test that uses
this new test statistic W is called the nonlinear shirnkage test or for short the NLS-ϵ test. In the next chapter
this new spericity test will be compared with already existing tests in a simulation study

In Figure 4.1 ϵ= 1 was chosen arbitrarily. However in the general case ϵ need to be chosen such that the power
of the test statistic is maximal. This will be done in the next section.

4.4. Maximizing Power of the New NLS-ϵ Test
In this section, the optimal test statistic W from Equation (4.7) is calculated. This will be done by calculat-
ing ϵ > 0 such that the power of the NLS-ϵ test is maximal. Recall that the power of the test is defined by
P (reject H0|H1 is true). That is the probability that H0 is rejected given that H1 is true or just the probability
that H0 is rejected correctly. So to find the optimal value for ϵ of the new NLS-ϵ test, there need to be con-
ditioned on the alternative hypothesis H1 . Given this new assumption the following function needs to be
maximized over ϵ> 0.

Power = P (reject H0|H1 is true)

= P (|T1| > t |H1)

= P (T1 > t |H1)+P (T1 <−t |H1)

Define gϵ(t ) = P (T1 > t |H1)+P (T1 <−t |H1). Then maximizing the function gϵ(t ) with respect to ϵ is not pos-
sible because it does not have the same distribution as derived in Theorem 4.3.1. This is because Theorem
4.3.1 holds under H0 and it was just mentioned that to find the ϵ for which te power is maximum, there need
to be conditioned on a alternative hypothesis H1. Therefore before maximizing gϵ(t ) with respect to ϵ the
distribution of gϵ(t ) need to be found under H1. Unfortunately, this can not be done with the CLT of Theorem
4.1.1. However, it can be done with Theorem 3.9 of Yao et al. (2015). This theorem gives the CLT for linear
spectral statistics of random Fisher matrices but this theorem is based on a different kind of stochastic model
and it is not as general as one would like it to be. Because one of the assumptions is thatE[x4

i , j ] = 3. In other

words, this means that the data need to come from a standard normal distribution. This is a quid restrictive
assumption. To find a more general CLT the paper of Najim and Yao (2016) need to be consulted. Najim and
Yao (2016) derived a general CLT which is far more general then the ones discussed before can therefore be
used to find this optimal ϵ. The downside is that this CLT is very tough to work with and it outside the scope
of a bachelor thesis. So it will not be included in this work.

An other approach to this problem is to find the optimal value for ϵ numerically. This will be done in the next
chapter simultaneously with comparing the new NLS-ϵ test with other sphericity test for large-dimensional
statistics.





5
Simulation Study

In this section the optimal value(s) for ϵ will be found for which the new nonlinear shrinkage sphericity test
(NLS-ϵ), derived in Theorem 4.3.1, has the highest power. Furthermore, the NLS-ϵ test will be compered with
other already existing test mentioned earlier in chapter 3. Finding the optimal value for ϵ and comparing the
different test will actually be done simultaneously. How this will work will be discussed in a minute. First the
setting of the simulations study will be specified.

5.1. Setting of the Simulations
Before diving into the simulations, the setting need to be specified. Remember that all the results of this thesis
are based on the large-dimensional asymptotic framework or also known as the large-dimensional statistics
framework. That is, n denotes the sample size and p the number of variables, with p

n → c ∈ (0,1) as (p,n) →∞.

Moreover, some assumptions for the data are needed. The data comes from the stochastic model Y = Σ 1
2 Xn

with the following assumptions

• (B1) The population covariance matrix Σn is a non-random p-dimensional positive definite matrix.

• (B2) Let Xn be an n × p matrix of real independent and identically distributed (i.i.d.) random variables

with mean zero and unit variance. One only observes Y where Y =Σ 1
2 Xn .

• (B3) Let τn,1, . . . ,τn,p denote the eigenvalues of the population matrix Σn . The empirical spectral dis-
tribution (ESD) of the population eigenvalues Hn(τ) converges a.s. to a nonrandom limit H(τ) at every
point of continuity.

Then the tests with corresponding test statistics that will be compared are:

• Corrected Likelihood Ratio Test (CLRT)
For c ∈ (0,1)

T1 =− 2

n
·Log


 (λ1 · · ·λp )

1
p

1
p (λ1 +·· ·+λp )
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pn
2

+(p−n)Log(1−p

n
)−p → N

(
−κ−1

2
Log(1−c)+1

2
βc,−κLog(1−c)−κc

)

• Corrected John’s Test (CJ)

T2 = 2

p

(
p2n

2
tr {Sn(tr (Sn))−1 − I p−1}2

)
−p → N (κ−1+β,2κ)

• Linear Shrinkage Test (LS)

T3 = p

(
1−

1
n tr (Sn)2||Σ0||2F

||Sn ||2F ||Σ0||2F − (tr (SnΣn))2

)
→ N (κ−1+β,2κ)
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• Nonlinear Shrinkage Test (NLS-ϵ)
For c ∈ (0,1) and ϵ> 0

T4,ϵ =
p∑

i=1
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λi +ϵ
+p · A2B 2 −2B 2 +1

2
p
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In the above test statistics the κ stands for whether the data is real or not. In this simulation study the data will
always be real and therefore κ= 2. The β in the test statistics is equal to β=E[|xi , j |4]−κ−1 and will therefore
vary because the data will be taken from a standard normal distribution and a Gamma(4,2)−2 distribution.
This will result in a β of repressively β= 0 and β= 1,5.

It should be noted that the CLRT, CJ and LS tests are all one-tailed tests, because for the parameters that are
used in this simulation the test statistics will always be positive. However, the NLS-ϵ test is a two-tailed test,
this is because for the parameters that are used in this simulation the test statistic will give positive as well
as negative values. It is known that one-tailed tests can be transformed to two-tailed tests without changing
anything. This will also be done is this simulation to compare all the test equally. Moreover, it should be noted
that the CJ and the LS test statistics have the same limiting distribution and that the limiting distributions of
CLRT and the NLS-ϵ test statistics depend on c. In particular, the CLRT depends on the log(1− c), so it is
expected that this test will breakdown when c increases to 1 and will not work when c > 1.

The null-hypothesis that will be tested is as always H0 :Σn = I , where I is the identity matrix. During the com-
parison between the four different test, there will also be looked at for which ϵ, the NLS-ϵ test has the highest
power. So comparing the different tests and finding the optimal ϵ will be done simultaneously. To compare
the different test, there will be made use of the following indicators: the empirical size, the empirical power
and ROC curves.

The calculation of the empirical size and empirical power go in similar manner. Recall that the size of a test
is equal to P (reject H0|H0 is true) and the power of a test is equal to P (reject H0|H1 is true). For a general
two-tailed test statistic T with known distribution T ∼ N (µ,σ2), the null hypothesis is rejected whenever the

centralized statistic Z = T−µ
σ <−w(α/2) or Z = T−µ

σ > w(α/2). The value w(α/2) is the value the test statistic
would need to to exceed and depend on the distribution of the test statistic and the required accuracy. Then
proceeding in the following manner:

1. Calculating the sample covariance matrix Sn from the generated data

2. Calculating the test statistics

3. Check whether the centralized test statistics exceed a prespecified w(α/2).

gives a Bernoulli experiment. Depending on which hypothesis one conditions, this experiment either has
success probability p0 = P (reject H0|H0 is true) or p1 = P (reject H0|H1 is true). By definitions of the size and
power of a statistical test, p0 = Size and p1= Power. Then by the weak law of large numbers, when the number
of trails is large enough and assuming H0 is true, one has:

Number of times H0 is rejected

n
→ p0 = Size (In probability)

In the same way, assuming a particular H1 is true, one has:

Number of times H0 is rejected

n
→ p1 = Power (In probability)
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This is how the empirical size and empirical power is calculated. The next section starts with the calculation
of the empirical size.

5.2. Empirical Size Comparison
Before the tests will be compared using their powers, the empirical sizes will be compared. For a statistic
to be close to its limiting distribution, the empirical size should be close to a particular rejection level α.
Therefore, the closer the size is to a fixed rejection level α, the better it is. Also to make a fair comparison
later on with the empirical powers, the tests should all be close to the rejection level. Now if Z is standard
normally distributed random variable and the significance level is equal to α, then the null hypothesis is
rejected whenever Z <−w(α/2) or Z > w(α/2). Without loss of generality it is possible to choose the rejection
level equal toα= 0.05. This will lead to the rejection of the null hypothesis whenever Z <−w(0.025) =−1.960
or Z > w(0.025) = 1.960. This is a commonly chosen rejected level because for a two-tailed test it represents
the 0.250 and the 0.975 percentile of the standard normal distribution. Simulating the previous described
Bernoulli experiment for the sizes 10000 times, give the sizes in the tables below. The sizes in table 5.1 are
based on real standard normal data and the sizes in table 5.2 are based on real Gamma(4,2)−2 data.

(p,n) CLRT CJ LS NLS-10 NLS-1.5 NLS-1 NLS-0.5 NLS-0.1

(8,128) 0.0565 0.0581 0.0661 0.0480 0.0487 0.0495 0.0496 0.0523
(16,128) 0.0539 0.0552 0.0479 0.0451 0.0460 0.0463 0.0452 0.0475
(32,128) 0.0518 0.0525 0.0432 0.0458 0.0460 0.0469 0.0484 0.0512
(64,128) 0.0536 0.0538 0.0479 0.0503 0.0491 0.0483 0.0504 0.0520
(96,128) 0.0547 0.0540 0.0484 0.0440 0.0502 0.0500 0.0513 0.0527

(112,128) 0.0538 0.0553 0.0516 0.0556 0.0539 0.0531 0.0514 0.0499
(120,128) 0.0522 0.0524 0.0485 0.0477 0.0484 0.0479 0.0482 0.0478
(16,256) 0.0544 0.0531 0.0473 0.0449 0.0452 0.0458 0.0463 0.0477
(32,256) 0.0519 0.0502 0.0433 0.0512 0.0516 0.0517 0.0496 0.0492
(64,256) 0.0499 0.0499 0.0437 0.0500 0.0502 0.0492 0.0499 0.0498

(128,256) 0.0516 0.0541 0.0504 0.0514 0.0517 0.0509 0.0511 0.0498
(192,256) 0.0542 0.0503 0.0488 0.0535 0.0519 0.0505 0.0509 0.0496
(224,256) 0.0505 0.0512 0.0495 0.0503 0.0495 0.0502 0.0519 0.0511
(240,256) 0.0517 0.0513 0.0480 0.0460 0.0469 0.0472 0.0488 0.0499

Table 5.1: Empirical sizes at 5% significance level based on 10000 independent realisations of real N (0,1) random variables

(p,n) CLRT CJ LS NLS-10 NLS-1.5 NLS-1 NLS-0.5 NLS-0.1

(8,128) 0.2518 0.1178 0.0808 0.0480 0.0463 0.0460 0.0456 0.0479
(16,128) 0.2619 0.0911 0.0513 0.0469 0.0438 0.0436 0.0440 0.0485
(32,128) 0.2588 0.0750 0.0468 0.0498 0.0472 0.0460 0.0466 0.0496
(64,128) 0.2197 0.0645 0.0460 0.0485 0.0458 0.0470 0.0459 0.0492
(96,128) 0.1643 0.0537 0.0423 0.0489 0.0474 0.0459 0.0456 0.0464

(112,128) 0.1329 0.0601 0.0514 0.0511 0.0451 0.0444 0.0454 0.0452
(120,128) 0.1105 0.0598 0.0515 0.0482 0.0462 0.0462 0.0466 0.0489
(16,256) 0.2777 0.0861 0.0531 0.0495 0.0468 0.0470 0.0472 0.0488
(32,256) 0.2849 0.0723 0.0471 0.0485 0.0471 0.0471 0.0479 0.0499
(64,256) 0.2654 0.0625 0.0467 0.0488 0.0489 0.0499 0.0511 0.0514

(128,256) 0.2252 0.0591 0.0513 0.0532 0.0509 0.0521 0.0519 0.0511
(192,256) 0.1695 0.0572 0.0513 0.0508 0.0489 0.0485 0.0477 0.0500
(224,256) 0.1384 0.0554 0.0510 0.0519 0.0510 0.0503 0.0532 0.0537
(240,256) 0.1164 0.0547 0.0490 0.0505 0.0503 0.0489 0.0499 0.0502

Table 5.2: Empirical sizes at 5% significance level based on 10000 independent realisations of real Gamma(4,2)−2 random variables

It can be seen in Table 5.1 that all the empirical sizes based on standard normal data are close to the rejection
level α = 0.05. This means that all test statistics are close to their limiting distribution. Moreover, since all
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empirical sizes are close to the rejection level α, it does not really matter which combination of (p,n) to take
in the empirical power comparison. This is because the starting point will approximate be the same and a fair
comparison can be made. Unfortunately this is not the case for the empirical sizes based on Gamma(4,2)−2
data. It can be seen in Table 5.2 that the empirical sizes of the NLS-ϵ and LS tests behave quite well. For lower
combinations of (p,n) the empirical sizes of the NLS-ϵ test seem a little low but overall they are close to the
rejection level α. So it can be concluded that for these combinations of (p,n), the NLS-ϵ test and the LS test
are close to their limiting distributions when the data is based on a Gamma(4,2)−2 distribution. However
for the CJ test this only holds for higher combinations of (p,n). It looks like that the empirical sizes of the
CJ test approaches α from above. This means that when (p,n) is low, the empirical distribution has bigger
tails than it should be but when (p,n) is increasing the empirical distribution is getting closer to its limiting
distribution. Thus in this case the CJ test relies more on the limiting aspect. The empirical sizes for the CLRT
test are behaving quite pore for every combination of (p,n). They are approximately half of what its should
be and its getting worse when (p,n) is increasing. From this observation it can be concluded that when the
data is based on a Gamma(4,2)−2 distribution the CLRT test is not close to its limiting distribution at all.
Therefore, it will be difficult to make a fair empirical power comparison when the data is taken from the
Gamma(4,2)−2 distribution because not all test will have the same starting point. So the empirical power
comparison will only be based on standard normal data.

5.3. Empirical Power Comparison
In this section the empirical powers for all test will be compared, including the NLS-ϵ test for different val-
ues of ϵ. The comparison will only be based on standard normal data because the empirical sizes based on
Gamma(4,2)− 2 data are not all close to the rejection level α and will lead to unfair comparisons. In this
simulation study the empirical power will be based on the increasing distance between the null hypothesis
H0 : Σn = I and a particular alternative hypothesis H1 : Σ1 ̸= I . To actually calculate the empirical powers the
Bernoulli experiment from Section 5.1 will be used again. Only this time there will be conditioned on a par-
ticular alternative hypotheses. The three alternative hypothesis, or in other words, the three ways to increase
the distance, are

1. H1: Equicorrelation relation

2. H1: Autoregressive relation

3. H1: Fixed ratio of variables have variance ̸= 1

The dimensions that will be used in the comparison are (p,n) = (32,128), (p,n) = (64,128), (p,n) = (96,128)
and (p,n) = (120,128). This results in repressively c = 1/4, c = 1/2, c = 3/4 and c = 15/16. n = 256 will not
be used and all comparisons are based on 1000 repetitions because of computational reasons. For demon-
strating purposes, we assume these parameters to be large enough such that the limiting distributions of the
statistics are present.

5.3.1. Equicorrelation Relation
The first alternative hypothesis that will be used to make a power comparison is an equicorrelation relation.
Equicorrelation means that every variable of the underlying data has variance equal to 1 and covariance equal
to Cov(yi , y j ) = ρ for every i ̸= j . This means that for ρ ̸= 0 the underlying variables of the data are correlated
and thus dependent. The equicorrelation alternative can be represented as a linear combination of the iden-
tity matrix and a matrix of all ones. So for ρ ∈ (0,1), the equicorrelation alternative hypotheses is defined
as

Σn,ρ = (1−ρ)I +ρ ·ones(p, p)

Σn,ρ = (1−ρ)


1 0 · · · 0

0 1
...

...
. . .

0 · · · 1

+ρ
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1 1 · · · 1

1 1
...

...
. . .

1 · · · 1

=
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1 ρ · · · ρ

ρ 1
...

...
. . .

ρ · · · 1


In the simulation ρ runs from 0 to 1. So as ρ increases, the alternative hypothesis Σn,ρ becomes less like the
identity matrix I or the null hypothesis. This is also meant by increasing the distance from the null hypothesis



5.3. Empirical Power Comparison 25

to the alternative hypothesis. To compare the different empirical powers for each test a power plot is used.
The power plot will be constructed as follows: The Bernoulli experiment form Section 5.1 will be executed
for each ρ separately, and because each ρ gives a different alternative hypothesis, different empirical powers
are obtained for each ρ. Plotting ρ against the obtained power gives the required power plot. The quicker a
test reached a power of 1 the better the test is because remember, the power is the probability that a falls null
hypothesis is correctly rejected. So the quicker the better. After some investigations it seems like the most
interesting ϵ’s under the equicorrelation alternative for the NLS-ϵ test are ϵ= 1.5,ϵ= 1 and ϵ= 0.5. Doing the
simulation gives the following power plots.

(a) p = 32 (b) p = 64

(c) p = 96 (d) p = 120

Figure 5.1: Empirical powers under alternative hypothesis 1 with 1000 replications and ρ ∈ (0,1)

In Figure 5.1 it can be seen how the tests perform in terms of power for different combinations of p
n = c. For

ρ < 0.15 all test have power 1 and as expected the CJ and the LS test behave nearly the same. This is due to the
fact that they have the same limiting distribution. Most noticeable in Figure 5.1 is that when p increases, the
NLS-ϵ performs better and the CLRT performs worse. For (p,n) = (120,128) the NLS-ϵ test even outperforms
the CLRT test. The reason why the performs of both tests changes when c changes is that, as said earlier,
the limiting distributions of these test depend on c. Also the CLRT test breaks down when p is getting closer
to n. Overall, the CJ and the LS tests perform best because they are the first to reach a power of 1 for every
combination of (p,n).

Now focusing only on the NLS-ϵ test, it can be seen in Figure 5.1 that when p increases the performance of the
NLS-ϵ test changes as well. For small p it seems that the NLS-0.5 performs best but when p = 96 and p = 120
the NLS-1 test performs best with minimum difference. The increase of the optimal ϵ could be to compensate
for some numerical issues when p increases to n. So for the equicorrelation alternative the optimal ϵ for the
NLS-ϵ test depend on the combination of (p,n).
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5.3.2. Autoregressive Relation
The second alternative hypothesis is the autoregressive relation. This autoregressive relation is based on a
autoregressive model, which is a type of random process that is used to describe time-varying processes.
The autoregressive model specifies that the output variable depends linearly on its own previous values and
on a stochastic term. In the autoregressive alternative hypothesis the entries of the matrix Σn,δ also depend
recursive on each other. For δ ∈R, define the entry on the i − th row and the j − th column of the alternative
hypothesis matrix as δ|i− j |. The autoregressive alternative hypothesis is then defined as

Σn,δ =



1 δ δ2 · · · δp−1

δ 1 δ · · · δp−2

δ2 δ
. . .

...
...

. . . δ

δp−1 δp−2 · · · δ 1


Any δ ∈ R could be picked but in this simulation δ ∈ (−1,1) is chosen, because this corresponds with a sta-
tionary autoregressive model. The simulation goes in similar way as in the previous section. δ runs from −1
to 1. As δ goes away from 0 in both directions, this could be seen as moving away form the null hypothesis
H0 : Σn = I because the alternative hypothesis matrix becomes less like the true covariance matrix. Then for
every delta the Bernoulli experiment form Section 5.1 is carried out. Varying δ will give different empirical
powers for each δ. Plotting δ against the obtained empirical powers will then give the required power plot to
compare the different tests. The faster a test has power 1 the better the test is performing, as already explained
in the previous subsection. Again after some inspection the most interesting ϵ’s to consider for NLS-ϵ test are
ϵ= 1, ϵ= 0.5 and ϵ= 0.1. Note that not all of these ϵ’s are the same as in the simulation for the first alternative
hypothesis. Doing the simulations give the following power plots:

(a) p = 32 (b) p = 64

(c) p = 96 (d) p = 120

Figure 5.2: Empirical powers under alternative hypothesis 2 with 1000 replications and δ ∈ (−1,1)
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In can be seen in Figure 5.2 that for p = 32 and p = 64 the CJ, LS and CLRT perform quite the same. Still the
CJ test performs best but the other two are not far behind. The NLS-ϵ test performs the worst for p small.
Then when p gets bigger the CJ and LS test are still performing best but the CLRT test is performing worse
and worse. For p = 120 the NLS-ϵ test even outperforms the CLRT test when ϵ = 0.5. This is in line with the
observations from the previous simulation for the equicorrelation alternative, only now with different ϵ.

Then specifically focusing on the NLS-ϵ test, it can be seen in Figure 5.2 that for p = 32 and p = 64 the NLS-0.1
test performs best. While when p gets bigger, the NLS-0.5 test takes the lead. Again the the optimal ϵ varies
with different values of p compared with n and is in line with the observations from the simulation under the
equicorrelation alternative.

5.3.3. Fixed ratio with variance other than one
The third and last alternative hypothesis that will be considered is the alternative hypothesis where a fixed
ratio r of the variables have a variance not equal to 1, but equal to 1+γ. For any r ∈ (0,1) and γ ∈R, the third
alternative hypotheses is defined as

Σn,r,γ =



1 0 · · · 0

0
. . .

...
1+γ

...
. . .

0 · · · 1+γ


Suppose r = 1/2, this means that half of the variables p have variance equal to 1+γ. If it happens that r ·p is
not a whole number, it will be rounded down. In the same way as in the previous simulation γ will run form
−1 to 1. This can again be seen as departing from the null hypotheses H0 :Σn = I when γ goes away from 0 in
both directions. Because the alternative hypohtesis matrix Σn,r,γ becomes less like the true covariance matrix
Σn . Then for every γ the Bernoulli experiment form Section 5.1 is executed. This will give different empirical
powers for each γ. Plotting γ against the obtained empirical powers will then give the required power plot to
compare the tests. For demonstrating purposes only the power plots for r = 1/2 will be extensively analysed.
The power plots for r = 1/4 and r = 3/4 can be found in Appendix B.1. After some pre-analysis of the NLS-ϵ
test under this alternative hypothesis the most interesting ϵ’s to consider are ϵ= 10, ϵ= 1 and ϵ= 0.1. Doing
the simulation with 1000 repetitions gives the power plots for r = 1/2.

It can be seen in Figure 5.3 on the next page that the NLS-ϵ test performs by far the best. The NLS-ϵ test
reaches a power of 1 much faster than the other tests. For low c the CJ, LS and CLRT test are again quite
comparable. However, when p increases the CLRT is getting worse and worse for the same reason as in the
previous simulations. So it can be concluded that the NLS-ϵ tests performs best under the fixed ratio with
variance other than 1 alternative. Furthermore, it can be seen that the NLS-ϵ tests are symmetric around zero
but the other test not because the power of the other tests increase must faster for negative values of γ than
for positive values.

It was mentioned that only the power plots of r = 1/2 would be analysed extensively but there are some thing
that should be noted. In Figures B.1 and B.2 it can be seen that the NLS-ϵ test works better when r increases
form 0 to 1. While the other tests only perform better when r increases to 1/2 because when r > 1/2 the power
decreases again, specially when γ is positive. This behaviour can be explained because the null hypothesis
that is actually tested is whether the true covariance matrix is equal to a multiple of the identity matrix. This
means that for r = 1/2 the alternative hypothesis is furthest away from the alternative hypothesis and should
give the highest powers. Therefore, it can be concluded that the CJ, LS and CLRT tests are invariant under
multiples of the identity matrix what already was expected. The NLS-ϵ is not invariant under multiples of the
identity matrix because when r increases form 0 to 1, thus moving away from the null hypothesis when no
multiples of the identity matrix are allowed, the test gets only more powerful.

Now diving deeper into the NLS-ϵ test, it can be seen in Figure 5.3 that for all p’s the NLS-10 test performs
best and NLS-0.1 the worst. This is not in line with the findings from the previous alternative hypotheses.
Because for the previous alternative hypotheses the optimal ϵwas depended on p while in for fixed ratio with
variance other than 1 alternative, its seems the bigger ϵ is the better.
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(a) p = 32 (b) p = 64

(c) p = 96 (d) p = 120

Figure 5.3: Empirical powers under alternative hypothesis 3 with 1000 replications, γ ∈ (−1,1) and r = 1/2

5.4. ROC Curves
In the previous section it is observed that the powers of the NLS-ϵ test are close to together for different ϵ’s as
well as the powers of the LS and CJ tests. When the powers are close it is more difficult to compare them and
come to a well considered conclusion which test is better. Therefore to compare different tests and assess
there quality when their powers are close to each other, receiver operating characteristic (ROC) curves are
used. ROC curves are plots that compare how the true positive rate, or in other words the power, changes
as the desired false positive rate is varied. It is a type of power plot, but instead of varying the underlying
distance variable as in the previous section, the significance level is varied for which one rejects the null hy-
pothesis. Since the CJ and the LS test perform much better or much worse than the NLS-ϵ test, it is much
more interesting to have a closer look at the NLS-ϵ test for different ϵ’s. Furthermore, because the NLS-ϵ test
performs sometimes the same or even better than the CLRT test, it is interesting to include this test as well.
Therefore, only the the CLRT and the NLS-ϵ test for different ϵ’s will be compared using the ROC curves in this
section.

To assess the quality of the tests using ROC curves, there will again be conditioned on one of the three al-
ternative hypothesis used in the previous section. However, as said earlier, not the distance variable will be
varied but the significance level α for which one rejects the alternative hypothesis. This means that, depend-
ing on which alternative hypothesis there will be conditioned, a value of either ρ, δ and γ need to be chosen
for which the powers are close. However, it is also necessary to choose these values for the distance variables
such that they are as far way as possible from the null hypothesis because otherwise the tests has not gained
any power yet. So the distance values need to be chosen such that the powers of the tests are close but in the
same time are far away enough from the null hypothesis.
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In the empirical power plots of the previous section the significance level α was fixed. Now it will run from 0
to 1. Since the significance level is changing, the value w(α/2) the centralized test statistic need to exceed to
reject the null hypothesis changes as well. The value w(α/2) can be computed using the following relation:
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d t and its inverse erfinv(x) are used because they can easily be com-

puted numerically. If α = 0.05 is inserted into Equation (5.1), one would find w(0.025) = 1.960. Now if α = 0
is inserted into Equation (5.1), one would find w(0) =∞. If α= 0, it is possible to think of this as no outcome
is significant because the test statistic can never be greater than infinity and the null hypothesis is never re-
jected no matter what hypothesis is true. Therefore for α= 0, the power is equal to 0 as well. Now if α grows
to one, depending on the test, there will be different but increasing powers. Then when α = 1, which corre-
sponds to the belief that every outcome of the test is significant, there will always be rejected. This is because
w(1) =−∞ and the test statistic is always greater than minus infinity. This will give a power of 1.

The comparison using ROC curves work in the following way: α runs from 0 to 1 and using Equation (5.1)
the value w(α/2) which the test statistic need to exceed to reject the null hypothesis will be calculated. Then
for every rejection level w(α/2) the empirical power is calculated. The test which gains more power for the
same significance level can be considered as a more powerfully test. There is also a straight line included in
the ROC plots. This line will be referred to as the standard line and the better the test is, the further away it
is from this line. The dimensions that will be used in the comparison are (p,n) = (32,128), (p,n) = (64,128),
(p,n) = (96,128) and (p,n) = (120,128). This results in repressively c = 1/4, c = 1/2, c = 3/4 and c = 15/16. n =
256 will not be used and all comparisons are based on 1000 repetitions because of computational reasons. As
in the previous section there will be started with comparing the ROC curves for the equicorrelation alternative
hypothesis.

5.4.1. ROC Curves for Equicorrelation
Before the comparison of the ROC curves for the equicorrelation can be made, a suitable value for the dis-
tance variable ρ need to be chosen. In Figure 5.1 it can be seen that for ρ = 0.03 the empirical powers are
relatively close for all combinations of (p,n). Therefore the ROC curves will be calculated using ρ = 0.03 but
other values for ρ may suffice as well. The ϵ’s that will be used are the same as used in the power plots for the
equicorrelation alternative, these are ϵ= 1.5, ϵ= 1 and ϵ= 0.5.

The calculated ROC curves can be found in Figure 5.4. In this figure it can be seen that for every value of ϵ, the
ROC curves of the NLS-ϵ tests are still close together. However for small p, ϵ= 0.5 seems to be optimal because
the ROC curve for the NLS-0.5 is furthest away from the standard line compared to the other NLS-ϵ tests, but
for p = 120 ϵ= 1 seems to work better. Still the margins are very small. An other thing that should be noted in
Figure 5.4 is that the NLS-ϵ test is performing way better when p increases and that the performance of the
CLRT is not really changing when p changes. That the NLS-ϵ performs better when p increases compared
to n is in line with the observations made from Figure 5.1, which are the power plots of the equicorrelation
alternative.
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(a) p = 32 (b) p = 64

(c) p = 96 (d) p = 120

Figure 5.4: ROC plots under alternative hypothesis 1 with 1000 replications and ρ = 0.03

5.4.2. ROC Curves for Autoregressive Relation
The second alternative hypothesis for which the ROC curves will be calculated is the autoregressive alterna-
tive. In the same way as in the previous subsection a suitable value for δ ̸= 0 need to be chosen. In Figure 5.2 it
can be seen that for δ= 0.12 the empirical powers are relatively close for all combinations of (p,n). Therefore,
the simulation will be done with δ= 0.12. The same ϵ’s that were used in the power plots for this alternative
hypothesis will be used again. These are, ϵ = 1, ϵ = 0.5 and ϵ = 0.1. The ROC curves with δ = 0.12 with 1000
receptions can be found in Figure 5.5.

In Figure 5.5 something different is happening from the equicorrelation alternative. The CRLT is for small
p already quite power full but decreases in power when p increases. The NLS-ϵ tests behave in opposite
direction, these tests again increase in power when p increases compared to n. An other thing that stands out
is that when p increases, the NLS-ϵ tests seem to move toward each other. Overall, for small p the NLS-0.1
test is the second most power full test after the CLRT test, but for p = 120 the NLS-0.5 test performs best in
terms of power.
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(a) p = 32 (b) p = 64

(c) p = 96 (d) p = 120

Figure 5.5: ROC plots under alternative hypothesis 2 with 1000 replications and δ= 0.12

5.4.3. ROC Curves for Fixed Ratio With Variance Other Than One
Now it is time to have a look at the ROC curves under the last alternative hypothesis: the fixed ratio with vari-
ance other than 1 alternative. In the same way as with the two previous alternative hypotheses, a suitable γ
needs to be chosen. In Figure 5.3 it can be seen that for γ= 0.05 the empirical powers are relatively close for
all combinations of (p,n). Therefore, the simulation will be done with γ= 0.05. The same ϵ’s that were used
in the power plots for this alternative hypothesis will be chosen again. These are: ϵ = 10, ϵ = 1 and ϵ = 0.1.
In this subsection only the ROC plots for r = 1/2 will be examined. The ROC curves for r = 1/4 and r = 3/4
can be found in the Appendix B.2. The ROC curves with = 0.05, r = 1/2 and 1000 receptions can be found in
Figure 5.6.

It can be seen in Figure 5.6 that the NLS-ϵ tests already have high powers in the beginning and that the CLRT
does not leave the standard line for this particular γ. This is also what is expected when looking at Figure 5.3
from Section 5.3.3 because it takes a while before the CLRT test gains some power. What is different from ob-
servations made for the first and second alternative hypothesis, is that the performance of the NLS-ϵ tests do
not depend on p. It can be seen that the NLS-10 test is the best performing test for every p. This is inline with
the observation made in Figure 5.3 in section 5.3.3 where the power plots of this alternative where examined.

The ROC curves for r = 1/4 and r = 3/4 can be found in Figures B.3 and B.4 in Appendix B.2. These ROC
curves are similar with the ones found in Figure 5.6. The only thing that is different is that when r increases
the NLS-ϵ are more curved outwards. This is again inline with the observations made in Figure 5.3 in section
5.3.3, where the power plots for this alternative are analysed. Furthermore, for the chosen γ the CLRT has not
gained any power yet therefore it is close to the standard line.
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(a) p = 32 (b) p = 64

(c) p = 96 (d) p = 120

Figure 5.6: ROC plots under alternative hypothesis 3 with 1000 replications, γ= 0.05 and r = 1/2

5.5. Combining Equicorrelation and Variance Other Than One
It is observed in the previous sections that the CJ and LS tests where the best performing test under the
equicorrelation alternative but under the fixed ratio other than 1 alternative, the NLS-ϵ test was outperform-
ing the others. This makes it interesting to combine the two alternative hypothesis and examine which com-
binations of the distance variables (ρ,γ) will lead to the best test. It is expected that the performance of the
tests depend on a trade of between the two distance variables since for (ρ,0) the CJ and LS test are better
performing and for (0,γ) the NLS-ϵ test is better performing. For any r ∈ (0,1), ρ ∈ (0,1) and γ ∈ R, the fourth
alternative hypotheses is defined as
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This fourth alternative hypothesis means that for ρ ̸= 0 there is correlation between the variables in the data
and a fixed ratio r of these variables have variance other than one, namely 1 + γ. This fourth alternative
depends now on three parameters: ρ, r and γ. Therefore, just as in the previous simulations, ρ will run
from 0 to 1, γ from -1 to 1 and r ∈ (0,1) is taken arbitrarily. This can again be seen as departing from the
null hypothesis when ρ increases from 0 and γ moving away from 0 in both directions. This is because the
alternative hypothesis Σn,ρ,γ,r becomes less like the true covariance matrix which is just the identity matrix.
Then for every combination of ρ and γ the Bernoulli experiment form Section 5.1 is executed. This will give
different empirical powers for each combination of (ρ,γ). Plotting ρ and γ against the obtained empirical
powers will then give a 3D power plot to compare the tests. The empirical power will only be calculated for
one NLS-ϵ test otherwise the plots will be too full and not useful for analysis. The NLS-ϵ test that will be
chosen is the NLS-1 test because this test performed over both alternative hypotheses on average the best.
Different from the previous simulations, this simulation will only be done for p = 64 and with 100 repetitions
because of computational reasons. Furthermore, for demonstrating purposes only the power plots for r = 1/2
will be extensively analysed. The power plots for r = 1/4, r = 3/4 and r = 1 can be found in Appendix B.3.

Figure 5.7: 3D power plot under alternative hypothesis 4 with 100 replications, p = 64, ρ ∈ (0,1), γ ∈ (−1,1) and r = 1/2

In Figure 5.7 the empirical powers for the fourth alternative hypothesis are plotted. One thing that immedi-
ately stands out is that the NLS-1 test does not seem to gain any power when γ is close the zero and ρ runs
form 0 to 1. Moreover, from this figure is is not immediately clear whether the empirical powers behave just
as in Figure 5.1(c) in Subsection 5.3.1 and Figure 5.3(c) in Subsection 5.3.3: the empirical powers when one
of the distance variables ρ or γ is equal to zero. Therefore in Figure 5.8(a) the empirical power is plotted for
γ ∈ (0,0.01) and in Figure 5.8(b) for ρ ∈ (0,0.01), thus for ρ and γ small. In can be seen in these figures that the
tests behave just as expected. The only difference is that the lines are changed for planes.
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(a) γ ∈ (0,0.01)

(b) ρ ∈ (0,0.01)

Figure 5.8: 3D power plot under alternative hypothesis 4 with 100 replications, p = 64 and r = 1/2

Now lets investigate what happens when the distance variables ρ and γ are not close to zero. Thus when
the distance from the null hypothesis increases in both directions. For the CJ, LS and CLRT tests no strange
things are happening there. The empirical powers of these test increase just as one would expected based on
the observations made in in Figure 5.1(c) of Subsection 5.3.1 and Figure 5.3(c) of Subsection 5.3.3. However,
the NLS-1 test behaves strange. The power does not increase in the ρ direction when γ moves a way from
zero. Therefore, lets focus now only on the NLS-1 test. In Figure 5.9(a) the empirical power of the NLS-1 test
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is plotted for both ρ and γ small. From this figure it can be seen again that when ρ or γ is equal to zero the test
behaves normal but when ρ and γ are lying in a particular region, the empirical power stays very low. This
"no power phenomenon" is better displayed in Figure 5.9(b), where the empirical power is plotted between
0.1 and 0.9. From this figure it can be deduced that if γ is approximately equal to 3

2 ·ρ, the NLS-1 test will not
increase in power.

(a) ρ ∈ (0,0.1) and γ ∈ (0,0.1)

(b) ρ ∈ (0,0.1), γ ∈ (−0.1,0.2) and empirical power ∈ (0.1,0.9)

Figure 5.9: 3D power plot of the NLS-1 test under alternative hypothesis 4 with 100 replications, p = 64 and r = 1/2

To find out why this no power phenomenon for the NLS-1 test is happening it is useful to examine the eigen-
values of the sample covariance matrix calculated from the stochastic model Y = Σ1/2

ρ,r,γX of this simulation.
This is because the eigenvalues of a sample covariance matrix contain a lot of information, so when they be-
have out of ordinary, this could be fatal for a test. For example, when there are a lot of eigenvalues very close
to zero then no information is left and this could cause problems. Or on the other hand, some test might have
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problems when there are eigenvalues which are very large. These very large eigenvalues are called spikes. As
mentioned earlier, when looking at 5.9(b) the no power phenomenon for the NLS-1 test only occurs when γ

is approximately equal to 3
2 ·ρ this line will be referred to as the no power line. A 3D histogram of the eigen-

values is made in the ρ direction with γ= 0 and 3D histogram in the γ direction for ρ = 0. This, to investigate
how the "normal" situation looks like. These 3D histograms can be found in Figures 5.10(a) and 5.10(b). In
addition, to investigate the "no power phenomenon", a 3D histogram is made in the ρ direction with γ= 0.1
and a 3D histogram in the γ direction with ρ = 0.05. These ρ and γ are chosen such that the plots cross the
no power line. These last two 3D histograms can be found in repressively Figures 5.11(a) and 5.11(b). All the
3D histograms of the eigenvalues of the sample covariance matrix are plotted using 1000 replications of the
stochastic model Y =Σ1/2

ρ,r,γX for the parameters mentioned earlier.

(a) In ρ direction with γ= 0

(b) In γ direction with ρ = 0

Figure 5.10: 3D histogram plot of the eigenvalues of the sample covariance matrix with 1000 replications
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In Figure 5.10(a) it can be seen that when ρ increases from 0 to 1, from ρ = 0.02 onwards, there are starting to
arise eigenvalues which are much larger than they used to be. Moreover, right from the beginning the number
of small eigenvalues increases as well, only this increase is very small. Then in Figure 5.10(b), which is the
histogram in the γ direction for ρ = 0, it can be seen that when γ decreases there becoming more and more
small eigenvalues. It looks like the eigenvalues are all shifted towards zero in a rapid tempo. The eigenvalues
in Figures 5.10(a) and 5.10(b) are calculated in the "normal" situation. From this normal situation it is known
that all the tests behave properly. Now lets have a look if there is a change when the distance variables ρ and
γ cross the no power line.

(a) In ρ direction with γ= 0.1

(b) In γ direction with ρ = 0.05

Figure 5.11: 3D histogram plot of the eigenvalues of the sample covariance matrix with 1000 replications
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In Figure 5.11(a) and 5.11(b) the eigenvalues are calculated when the distance variables ρ and γ cross the no
power line. This happens when γ= 0.1 and ρ increases from 0 to 1 and for ρ = 0.05 and γ increases from −0.4
to 0.8. These 3D histograms look very similar to the ones in the normal situation. The only difference that
can be detected is that in Figure 5.11(b) there is a small line with spiked eigenvalues. This line with spiked
eigenvalues is very small but it is there. Unfortunately, from these observations it is hard to conclude what
exactly causes the no power phenomenon. This means there are still some unanswered questions left: could
spiked eigenvalues cause the no power phenomenon? or is it due to some very small eigenvalues after all? or
maybe because of something else what is not discussed yet?

5.6. Concluding The Simulation Study
In this section the simulation study will be reviewed and some conclusions will be made about the perfor-
mance of different tests. The simulation study started with the empirical size comparison. In this section it is
observed that the empirical sizes for all the tests are close to the rejection level α when the data is based on
standard normal realisation. This means that in can be concluded that the statistics are close tho their lim-
iting distributions for the given parameters. Unfortunately, when the data is based on the Gamma(4,2)−2
distribution this is not the case. This is because the empirical sizes for CLRT are way too small compared to
the rejection level α. For the CJ test this is the other way around. They start way above the rejection level α
but come closer when p increases. The NLS-ϵ and LS tests do the best job in terms of empirical sizes. Also
for data based on the Gamma(4,2)−2 distribution they are close to the rejection level α. So from this ob-
servations it is concluded that the the statistics of the NLS-ϵ, LS tests are close to their limiting distributions
for all combinations of p and n and the CJ test only when p gets closer to n when the data is based on the
Gamma(4,2)−2 distribution.

The second indicator that is used to compare the tests’ performance is their power. This is done using power
plots and ROC curves based on three different alternative hypothesis: the equicorrelation alternative, the au-
toregressive relation alternative and the fixed ratio with variance other than 1 alternative. It is observed that
for the first two alternative hypothesis the LS and CJ tests performed the best and that the NLS-ϵ test performs
the worse. Only when p is sufficiently large to compared to n it outperforms the CLRT. This is because of two
reasons: the first is that the CLRT test breaks down when c increases to 1, the second reason is that the NLS-ϵ
test performs just better when p increases to n. Now zooming in on the NLS-ϵ test: ϵ= 0.5 works best for the
equicorrelation alternative and ϵ= 0.1 works best for the autoregressive relation alternative. However, when
p gets close to n the the optimal ϵ increases a little. This could to compensate for some numerical issues
when p gets close to n. For the third alternative something different is happening. For this alternative the
roles have been reversed and the NLS-ϵ test performs by far the best. The power of the NLS-ϵ test increases
even more when a larger ϵ is chosen. This is different than for the first two alternatives where the optimal ϵ is
dependent on p. Moreover, when the ratio r increases the NLS-ϵ tests also increase in power. The CJ, LS and
CLRT behave very different. First of all, these test are not symmetric around γ= 0, where the NLS-ϵ tests are.
They increase much faster in power for negative values of γ than for positive. secondly, the CJ, LS and CLRT
test only increase in power when r increases to 1/2 but when r > 1/2 they decrease again. This is due to the
fact that the CJ, LS and CLRT tests are invariant under multiples of the identity matrix where the NLS-ϵ test is
not.

The simulation study is closed with a power comparison of the the first and third alternative hypotheses
combined. This is interesting because the for the first alternative the LS and CJ test are performing best and
for the third alternative the NLS-ϵ test is performing best. The empirical powers of CJ, LS and CLRT tests
are performing as one would expect when considering the empirical powers of the alternative hypotheses
separate but the NLS-ϵ test not. This test does not gain power in the ρ direction when γ= 3

2ρ, which is referred
to as the no power line. To investigate what causes this no power phenomenon the eigenvalues of the sample
covariance matrix are examined for different combinations of the distance variables ρ and γ. Some spiked
eigenvalues as well as some very small eigenvalues are detected. Unfortunately, from these observations
nothing could be concluded yet. Further research should be conducted to provide an answer for what causes
the no power phenomenon.
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Conclusion

In this thesis a new sphericity test in the large-dimensional framework is constructed which is based on the
nonlinear shrinkage estimator derived by Ledoit and Wolf (2012). It has been pointed out by Ledoit and Wolf
(2012) that the nonlinear shrinkage estimator is in many cases a better estimator for the true covariance ma-
trix than for example the linear shrinkage estimator. Now since a sphericity test, in fact tests whether the true
covariance matrix is equal or not to the identity matrix, the nonlinear shrinkage estimator it is a good start-
ing point to construct a sphericity test from. The nonlinear shrinkage function which defines the nonlinear
shrinkage estimator could not be used directly in a linear spectral statistic. Its form under the null hypothesis
H0 : Σn = I had to be found and it needed to be altered such that it gives a non degenerate statistic. This has
resulted in two linear spectral statistics, which are Equation (4.3) and (4.4), for which the central limit theo-
rem for linear spectral statistics could be applied to.

For only the linear spectral statistics from Equation (4.3) the limiting distribution is derived. This led to one of
the main results of this thesis, which is Theorem 4.3.1. This theorem states that the fluctuations of the linear
spectral statistic from Equation (4.3) are normally distributed. This theorem led to the introduction of a new
sphericity test: the NLS-ϵ test. The test statistic corresponding to this new test is Equation (4.7). The NLS-ϵ
test is actually the more general version of the Bartlett-Nanda-Pillai (BNP) trace test originally proposed by
Pillai (1955). This is because instead of only using ϵ= 1 in case of the BNP trace test, every ϵ> 0 could be used
in the NLS-ϵ test. The construction of the NLS-ϵ test concluded the theoretical part of this thesis because
unfortunately optimising the NLS-ϵ test with respect to ϵ under a general alternative hypotheses is outside
the scoop a bachelor thesis.

In the last chapter a simulation study is carried out to compare the corrected John’s test (CJ), the linear shrink-
age test (LS), the corrected likelihood ratio test (CLRT) and the the nonlinear shrinkage test for different ϵ> 0
(NLS-ϵ) in terms of size and power. Moreover, the simulation study is used to find the optimal values for ϵ for
which the NLS-ϵ test has the highest power. To asses the different tests the empirical size, empirical power
and receiver operating characteristic (ROC) curves are used. From the comparison made using the empirical
size it is concluded that for standard normal data the statistics are all close to their limiting distribution but
for data taken from the Gamma(4,2)−2 distribution the empirical sizes of the CLRT and the CJ test are re-
pressively too small and too big compared to the prespecified rejection level α= 0.05.

To compare the powers, 3 alternative hypothesis are used. These are: the equicorrelation alternative, the
autoregressive alternative and the fixed ratio variance other than one. From the power comparison it is con-
cluded that the CJ and LS tests are performing the best for the equicorrelation and autoregrssive alternative
but that the NLS-ϵ performs best for the fixed ratio variance other than one alternative for every ratio r . For
this third alternative the power of the NLS-ϵ test could be increased even more when one increases ϵ from
one onwards. In conclusion, the new NLS-ϵ is most appropriate for testing a fixed ratio variance is other than
one alternative or an all variance are other than one alternative. For these alternatives the NLS-ϵ has by far
the highest power compared to other test considered in this thesis.

39
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The simulation study has ended with a power comparison of the equicorrelation and fixed ratio variance
other than one alternatives combined. Comparing the powers for this fourth and last alternative is interesting
because for each alternative an other test comes out best. The CJ, LS and CLRT behave as one would expect
considering their behaviour for each alternative separate. However, this is not the case for the NLS-ϵ test.
It is observed that for when the distance variable γ is close but not equal to zero, the NLS-ϵ test does not
gain any power in the ρ direction. This phenomenon is referred to as the no power phenomenon and is still
inexplicable.
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Discussion

During the theoretical part as well as during the simulations study some assumptions has been simplified
and some research questions could not be answered. These will be discussed in this section. First the sim-
plifications will be considered where after the unanswered research questions will be discussed and some
recommendations for further research will be given. The first simplification that has been made is in the case
of ratio between the sample size n and the dimension p in the large-dimensional asymptotic framework. This
is because the case when the dimension p is larger than the sample size n, that is when p

n = c > 1, has not
been considered during the derivations. The reason for this was to simplify certain mathematical results as
well for computational reasons during the simulation study. As a result also for the the construction of the
nonlinear shrinkage test (NLS-ϵ), because this test is initially constructed for c ∈ (0,1). However, during the
simulation study it turned out that the NLS-ϵ also holds whenever c ≥ 1. The reason for this is that the central
limit theorem from Theorem 4.1.1, that was used to find the limiting distribution of the NLS-ϵ test statistic,
holds for all c > 0. Moreover, for c ≥ 1 the poles in the proof of Theorem 4.3.1 have stayed the same and did
not switched. As a result, the NLS-ϵ also works for all c > 0.

The second simplification that has been made is that the empirical power comparison in the simulation study
is only based on standard normal distributed data. The case when the data is coming from a Gamma(4,2)−2
distribution has not been considered. The reason for this is that the empirical sizes, in case the data comes
from a Gamma(4,2)−2 distribution, are not all close together. Therefore, it is difficult to make a fair com-
parison. However, for the power comparison using receiver operating characteristic (ROC) curves this does
not matter. Since not the distance variable but the rejection level α varies in these curves, all the powers start
at zero. This means that a fair comparison can be made using ROC curves. An other thing that should be
noted is that the empirical sizes of the linear shrinkage test (LS) based on standard normal data, and the cor-
rected likelihood ratio test (CLRT), the corrected John’s test (CJ) and the linear shrinkage test (LS) based on
Gamma(4,2)−2 data, deviate from the once found by Versteegh (2020). The reason for this is not really clear
but it could be lying in the fact that all one-tailed hypothesis test are transformed into two-tailed test and the
CJ and LS test are one of them.

Recommendations for Further Research
The simulation study closes with the general question: what causes the no power phenomenon of the NLS-ϵ
test under the equicorrelation and fixed ratio variance other than one alternative? Multiple suggestion have
been given such as, because of spiked eigenvalues or because of a large number of very small eigenvalues
of the sample covariance matrix. Unfortunately, based on the observations made in section 5.6 no answer
could be given. The no power phenomenon was initially not expected because the NLS-ϵ test works fine for
the equicorrelation alternative. Therefore, because this phenomenon so unexpected, finding the reason why
could be an interesting for further research. Not only because it provides an answer to the unsolved problem
but also because it sheds some light on the structure of large-dimensional covariance matrices, which are very
important in multivariate analysis. Moreover, it could give inside in what kind of structures of a linear spectral
statistic one should avoid in constructing a multivariate statistical test in the large-dimensional framework.
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42 7. Discussion

The final question that has not been answered is why the NLS-ϵ test has so much power under the fixed
variance other than one alternative. This question has not been posed during the simulation study but is
very interesting for two reasons. The first reason is that the NLS-ϵ test outperforms the CJ test, which is a
well established and powerful test. The second reason is that it will provide some deep understanding in
the structures of linear spectral statistics and again give more inside in the structures of large-dimensional
covariance matrices.



A
Appendix A: Proofs

A.1. Proof Limiting Distribution T1
In this appendix Theorem 4.3.1 will be proved. That is the limiting distribution of the linear spectral statistic

T1 =∑p
i=1

λi
λi+ϵ for ϵ> 0. Before starting this proof, a handy remark is presented:

Remark. let z ∈C run over the unit circle counterclockwise once, with complex conjugate z̄ = 1
z . Then

|1+hz|2 = (1+hz)(1+hz)

= (1+hz)(1+ h

z
)

= 1+ h

z
+hz +h2

= (z +h)(
1

z
+h)

= 1

z
(z +h)(1+ zh)

Now it is possible to start the proof of theorem 4.3.1.

Proof. Consider the linear spectral statistic T1 = ∑p
i=1

λi
λi+ϵ for ϵ > 0 and with ϕ(λ) = λ

λ+ϵ . We will derive its
limiting distribution. Assume that the variables {xi , j } of the matrix X = (x1, . . . ,xn) are independent and iden-
tically distributed satisfyingE[xi , j ] = 0, E[|xi , j |2] = 1, E[|xi , j |4] = β+1+κ<∞, and in case of complex vari-
ables,E[x2

i , j ] = 0. Assume, moreover,

p →∞, n →∞,
p

n
→ c ∈ (0,1)

By theorem 4.1.1, which is the central limit theorem for linear spectral statistics, we know that under H0 :Σn =
I ,

p{F Sn (ϕ)−Fcn (ϕ)}

converges weakly to a Gaussian distribution with mean and variance given by

µ= (κ−1)I1(ϕ)+βI2(ϕ) (A.1)

σ2 = κJ1(ϕ,ϕ)+βJ2(ϕ,ϕ) (A.2)

using proposition 4.1.1 we can derive the limiting parameters.
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Mean: µ

First of all we start by calculating the limiting parameters I1(ϕ) and I2(ϕ) in the mean. Let γ := |z| = 1 and
ξ= z. By Proposition 4.1.1 we have that

I1(ϕ) = lim
r↓1

I1(ϕ,r ) = lim
r↓1

1

2πi

∮
γ

f (|1+hz|2)

[
z

z2 − r−2 − 1

z

]
d z

= lim
r↓1

1

2πi

∮
γ

|1+hz|2
|1+hz|2 +ϵ

[
z

z2 − r−2 − 1

z

]
d z

= lim
r↓1

1

2πi

∮
γ

|1+hz|2
|1+hz|2 +ϵ

z

z2 − r−2 d z − lim
r↓1

1

2πi

∮
γ

|1+hz|2
|1+hz|2 +ϵ

1

z
d z

=W −F

Then

W = lim
r↓1

1

2πi

∮
γ

|1+hz|2
|1+hz|2 +ϵ

z

z2 − r−2 d z = lim
r↓1

1

2πi

∮
γ

1
z (z +h)(1+ zh)

1
z (z +h)(1+ zh)+ϵ

z

z2 − r−2 d z

= lim
r↓1

1

2πi

∮
γ

(z +h)(1+ zh)

( 1
z (z +h)(1+ zh)+ϵ)(z2 − r−2)

d z = lim
r↓1

1

2πi

∮
γ

z(z +h)(1+ zh)

((z +h)(1+ zh)+ zϵ)(z2 − r−2)
d z

= lim
r↓1

1

2πi

∮
γ

z(z +h)(1+ zh)

h(z − A)(z −B)(z − 1
r )(z + 1

r )
d z

where

A = −h2 −ϵ−1+
√

(h2 +ϵ+1)2 −4h2

2h
, B = −h2 −ϵ−1−

√
(h2 +ϵ+1)2 −4h2

2h

For notation reasons the above defined A and B will be used trough out this proof. For c ∈ (0,1) and for ϵ> 0
we find that A lies inside γ and B outside γ also since r > 1 we have that z = ± 1

r lie inside γ. Therefore, the

function inside the contour integral has 3 simple poles inside γ, z = A, z = 1
r and − 1

r . To calculate this contour
integral we need to calculate the residues of these poles.

Res(A) = lim
z→A

(z − A)
z(z +h)(1+ zh)

h(z − A)(z −B)(z − 1
r )(z + 1

r )
= lim

z→A

z(z +h)(1+ zh)

h(z −B)(z − 1
r )(z + 1

r )

= A(A+h)(1+ Ah)

h(A−B)(A− 1
r )(A+ 1

r )

Res(1/r ) = lim
z→ 1

r

(z − 1

r
)

z(z +h)(1+ zh)

h(z − A)(z −B)(z − 1
r )(z + 1

r )
= lim

z→ 1
r

z(z +h)(1+ zh)

h(z − A)(z −B)(z + 1
r )

= (hr +1)(r +h)

2h(Ar −1)(Br −1)

Res(−1/r ) = lim
z→− 1

r

(z + 1

r
)

z(z +h)(1+ zh)

h(z − A)(z −B)(z − 1
r )(z + 1

r )
= lim

z→− 1
r

z(z +h)(1+ zh)

h(z − A)(z −B)(z − 1
r )

=− (hr −1)(−r +h)

2h(Ar +1)(Br +1)

Then by Cauchy’s Residue Theorem we find that

W = lim
r↓1

1

2πi

[
2πi (Res(A)+Res(1/r )+Res(−1/r ))

]
= lim

r↓1

[
A(A+h)(1+ Ah)

h(A−B)(A− 1
r )(A+ 1

r )
+ (hr +1)(r +h)

2h(Ar −1)(Br −1)
− (hr −1)(−r +h)

2h(Ar +1)(Br +1)

]
= (Ah +h2 +1)B 2 +2Bh − Ah

h(A−B)(B 2 −1)
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Now lets continue with the second integral F

F = lim
r↓1

1

2πi

∮
γ

|1+hz|2
|1+hz|2 +ϵ

1

z
d z = lim

r↓1

1

2πi

∮
γ

1
z (z +h)(1+ zh)

1
z (z +h)(1+ zh)+ϵ

1

z
d z

= lim
r↓1

1

2πi

∮
γ

(z +h)(1+ zh)

((z +h)(1+ zh)+ zϵ)z
d z = lim

r↓1

1

2πi

∮
γ

(z +h)(1+ zh)

h(z − A)(z −B)z
d z

The function inside the above contour integral has two simple poles, z = A and z = 0. To calculate F, we need
to calculate the residues.

Res(A) = lim
z→A

(z − A)
(z +h)(1+ zh)

h(z − A)(z −B)z
= lim

z→A

(z +h)(1+ zh)

h(z − A)(z −B)z

= (A+h)(1+ Ah)

h(A−B)A

Res(0) = lim
z→0

(z −0)
(z +h)(1+ zh)

h(z − A)(z −B)z
= lim

z→0

(z +h)(1+ zh)

h(z − A)(z −B)

= 1

AB

Then by Cauchy’s Residue Theorem we find that

F = lim
r↓1

1

2πi

[
2πi (Res(A)+Res(0))

]
= (A+h)(1+ Ah)

h(A−B)A
+ 1

AB

Then combining the above results gives I1(ϕ)

I1(ϕ) =W −F = (Ah +h2 +1)B 2 +2Bh − Ah

h(A−B)(B 2 −1)
− (A+h)(1+ Ah)

h(A−B)A
−+ 1

AB

= (h +B)(Bh +1)

h(A−B)(B 2 −1)B

Now we will calculate the second limiting parameter I2(ϕ). By proposition 4.1.1 this is given by

I2(ϕ) = 1

2πi

∮
γ

f (|1+hz|2)
1

z3 d z = 1

2πi

∮
γ

|1+hz|2
|1+hz|2 +ϵ

1

z3 d z

= 1

2πi

∮
γ

1
z (z +h)(1+ zh)

1
z (z +h)(1+ zh)+ϵ

1

z3 d z = 1

2πi

∮
γ

(z +h)(1+ zh)

((z +h)(1+ zh)+ zϵ)z3 d z

= 1

2πi

∮
γ

(z +h)(1+ zh)

h(z − A)(z −B)z3 d z

The function inside the contour integral has one simple pole z = A and one pole z = 0 of order 3. To calculate
the this contour integral we need to calculate the residues of these poles.

Res(A) = lim
z→A

(z − A)
(z +h)(1+ zh)

h(z − A)(z −B)z3 = lim
z→A

(z +h)(1+ zh)

h(z − A)(z −B)z3

= (A+h)(1+ Ah)

h(A−B)A3

Res(0) = 1

2
lim
z→0

d 2

d z2 (z −0)3 (z +h)(1+ zh)

h(z − A)(z −B)z3 = 1

2
lim
z→0

d 2

d z2

(z +h)(1+ zh)

h(z − A)(z −B)

= (h +B)(Bh +1)A2 + ((h2 +1)B +h)B A+B 2h

A3B 3h
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Therefore by Cauchy’s Residue Theorem we find that

I2(ϕ) = 1

2πi

[
2πi (Res(A)+Res(0))

]
= (A+h)(1+ Ah)

h(A−B)A3 + (h +B)(Bh +1)A2 + ((h2 +1)B +h)B A+B 2h

A3B 3h

= (h +B)(Bh +1)

B 3h(A−B)

Combining I1(ϕ) and I2(ϕ) and letting h =p
c, we find the mean

µ= (κ−1)I1(ϕ)+βI2(ϕ)

= (κ−1)

[
(
p

c +B)(B
p

c +1)p
c(A−B)(B 2 −1)B

]
+β

[
(
p

c +B)(B
p

c +1)

B 3
p

c(A−B)

]

Variance: σ2

Secondly we compute the limiting parameters J1(ϕ,ϕ) and J2(ϕ,ϕ) in the variance. Let ξ = z, γ1 := |z1| = 1,
γ2 := |z2| = 1 and ϕ1 = ϕ2 (because are computing the variance not the covariance). Moreover, to compute
J1(ϕ,ϕ) we assume that we can change the order of integration. Then by Proposition 4.1.1 we have that

J1(ϕ1,ϕ2) = J1(ϕ,ϕ) = lim
r↓1

J1(ϕ,ϕ,r ) = lim
r↓1

− 1

4π2

∮
γ1

∮
γ2

ϕ(|1+hz1|2)ϕ(|1+hz2|2)

(z1 − r z2)2 d z1d z2

= lim
r↓1

J1(ϕ,ϕ,r ) = lim
r↓1

− 1

4π2

∮
γ1

∮
γ2

ϕ(|1+hz1|2)ϕ(|1+hz2|2)

(z1 − r z2)2 d z2d z1

= lim
r↓1

1

2πi

∮
γ1

ϕ(|1+hz1|2)
1

2πi

∮
γ2

ϕ(|1+hz2|2)

(z1 − r z2)2 d z2d z1

= lim
r↓1

1

2πi

∮
γ1

ϕ(|1+hz1|2)
1

2πi

∮
γ2

|1+hz2|2
|1+h2|2 +ϵ

1

(z1 − r z2)2 d z2d z1

= lim
r↓1

1

2πi

∮
γ1

ϕ(|1+hz1|2)
1

2πi

∮
γ2

1
z2

(z2 +h)(1+ z2h)
1
z2

(z2 +h)(1+ z2h)+ϵ
1

(z1 − r z2)2 d z2d z1

= lim
r↓1

1

2πi

∮
γ1

ϕ(|1+hz1|2)
1

2πi

∮
γ2

(z2 +h)(1+ z2h)

((z2 +h)(1+ z2h)+ z2ϵ)(z1 − r z2)2 d z2d z1

= lim
r↓1

1

2πi

∮
γ1

ϕ(|1+hz1|2)
1

2πi

∮
γ2

(z2 +h)(1+ z2h)

h(z2 − A)(z2 −B)(z1 − r z2)2 d z2d z1

The inner contour integral has two poles inside γ2, a simple pole z2 = A and a pole z2 = z1
r of order 2. Because

for fixed |z1| = 1 and r > 1, z1
r lies inside γ2. To calculate the inner contour integral, we need to calculate the

residues of the poles.

Res(A) = lim
z2→A

(z2 − A)
(z2 +h)(1+ z2h)

h(z2 − A)(z2 −B)(z1 − r z2)2 = (A+h)(1+ Ah)

h(A−B)(z1 − r A)2

Res(z1/r ) = lim
z2→ z1

r

d

d2
(z1 − r z2)2 (z2 +h)(1+ z2h)

h(z2 − A)(z2 −B)(z1 − r z2)2 = lim
z2→ z1

r

d

d2

(z2 +h)(1+ z2h)

h(z2 − A)(z2 −B)

= lim
z2→ z1

r

(z2 − A)(z2 −B)(h2 +1+2hz2)− (z2 +h)(1+ z2h)(2z2 − A−B)

h(z2 − A)2(z2 −B)2

= r (z1 − Ar )(z1 −Br )(h2r + r +2hz1)− r (hr + z1)(r +hz1)(2z1 −Br − Ar )

h(z1 − r A)2(z1 − r B)2

= r (z1 − Ar )(z1 −Br )(h2r + r +2hz1)

h(z1 − r A)2(z1 − r B)2 − r (hr + z1)(r +hz1)(2z1 −Br − Ar )

h(z1 − r A)2(z1 − r B)2

= r (h2r + r +2hz1)

h(z1 − r A)(z1 − r B)
− r (hr + z1)(r +hz1)(2z1 −Br − Ar )

h(z1 − r A)2(z1 − r B)2
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By Cauchy’s Residue Theorem we find that

J1(ϕ,ϕ) = lim
r↓1

1

2πi

∮
γ1

ϕ(|1+hz1|2)
1

2πi
[2πi · (Res(A)+Res(z1/r )]d z1

= lim
r↓1

1

2πi

∮
γ1

ϕ(|1+hz1|2)

[
(A+h)(1+ Ah)

h(A−B)(z1 − r A)2 + r (h2r + r +2hz1)

h(z1 − r A)(z1 − r B)
− r (hr + z1)(r +hz1)(2z1 −Br − Ar )

h(z1 − r A)2(z1 − r B)2

]
d z1

= lim
r↓1

1

2πi

∮
γ1

(z1 +h)(1+ z1h)

h(z1 − A)(z1 −B)

[
(A+h)(1+ Ah)

h(A−B)(z1 − r A)2 + r (h2r + r +2hz1)

h(z1 − r A)(z1 − r B)
− r (hr + z1)(r +hz1)(2z1 −Br − Ar )

h(z1 − r A)2(z1 − r B)2

]
d z1

= lim
r↓1

1

2πi

∮
γ1

[
(z1 +h)(1+ z1h)(A+h)(1+ Ah)

h2(z1 − A)(z1 −B)(A−B)(z1 − r A)2 + r (z1 +h)(1+ z1h)(h2r + r +2hz1)

h2(z1 − A)(z1 −B)(z1 − r A)(z1 − r B)

− r (z1 +h)(1+ z1h)(hr + z1)(r +hz1)(2z1 −Br − Ar )

h2(z1 − A)(z1 −B)(z1 − r A)2(z1 − r B)2

]
d z1

= lim
r↓1

[
1

2πi

∮
γ1

(z1 +h)(1+ z1h)(A+h)(1+ Ah)

h2(z1 − A)(z1 −B)(A−B)(z1 − r A)2 d z1 + 1

2πi

∮
γ1

r (z1 +h)(1+ z1h)(h2r + r +2hz1)

h2(z1 − A)(z1 −B)(z1 − r A)(z1 − r B)
d z1

− 1

2πi

∮
γ1

r (z1 +h)(1+ z1h)(hr + z1)(r +hz1)(2z1 −Br − Ar )

h2(z1 − A)(z1 −B)(z1 − r A)2(z1 − r B)2 d z1

]
= lim

r↓1
[F +W −G]

We will calculate the three contour integrals separately. Lets calculate the first integral F.

F = 1

2πi

∮
γ1

(z1 +h)(1+ z1h)(A+h)(1+ Ah)

h2(z1 − A)(z1 −B)(A−B)(z1 − r A)2 d z1

= (A+h)(1+ Ah)

h2(A−B)

1

2πi

∮
γ1

(z1 +h)(1+ z1h)

(z1 − A)(z1 −B)(z1 − r A)2 d z1

The function inside the contour integral has 2 poles inside |z1| = 1, a simple pole z1 = A and a pole of order 2,
z1 = r A. To calculate the integral we need to calculate the residues of these poles.

Res(A) = lim
z1→A

(z1 − A)
(z1 +h)(1+ z1h)

(z1 − A)(z1 −B)(z1 − r A)2 = lim
z1→A

(z1 +h)(1+ z1h)

(z1 −B)(z1 − r A)2

= (A+h)(1+ Ah)

(A−B)(A− r A)2

Res(r A) = lim
z1→r A

d

d z1
(z1 − r A)2 = lim

z1→r A

d

d z1

(z1 +h)(1+ z1h)

(z1 − A)(z1 −B)

= lim
z1→r A

(z1 − A)(z1 −B)(h2 +1+2hz1)− (z1 +h)(1+ z1h)(2z1 − A−B)

(z1 − A)2(z1 −B)2

= (r A− A)(r A−B)(h2 +1+2hr A)− r A+h)(1+ r Ah)(2r A− A−B)

(r A− A)2(r A−B)2

Then by Cauchy’s residue theorem we have that the first integral is equal to

F = (A+h)(1+ Ah)

h2(A−B)

1

2πi
[2πi (Res(A)+Res(Ar ))]

=
(

(A+h)(1+ Ah)

h(A−B)(A− r A)

)2

+ (A+h)(1+ Ah)

h2(A−B)
· (r A− A)(r A−B)(h2 +1+2hr A)− r A+h)(1+ r Ah)(2r A− A−B)

(r A− A)2(r A−B)2

= (h +B)(Bh +1)(h + A)(Ah +1)

(Ar −B)2(A−B)2h2

Now lets continue with the second integral W.

W = 1

2πi

∮
γ1

r (z1 +h)(1+ z1h)(h2r + r +2hz1)

h2(z1 − A)(z1 −B)(z1 − r A)(z1 − r B)
d z1
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We find that the function inside the integral has two poles inside |z1| = 1, a simple pole z1 = A and a simple
pole z1 = r A. To calculate the integral we need to calculate the residues of these poles.

Res(A) = lim
z1→A

(z1 − A)
r (z1 +h)(1+ z1h)(h2r + r +2hz1)

h2(z1 − A)(z1 −B)(z1 − r A)(z1 − r B)

= r (A+h)(1+ Ah)(h2r + r +2h A)

h2(A−B)(A− r A)(A− r B)

Res(r A) = lim
z1→r A

(z1 − r A)
r (z1 +h)(1+ z1h)(h2r + r +2hz1)

h2(z1 − A)(z1 −B)(z1 − r A)(z1 − r B)

= r (r A+h)(1+ r Ah)(h2r + r +2hr A)

h2(r A− A)(r A−B)(r A− r B)

Then by Cauchy’s residue theorem the second integral is equal to

W = 1

2πi
[2πi (Res(A)+Res(Ar ))]

= r (A+h)(1+ Ah)(h2r + r +2h A)

h2(A−B)(A− r A)(A− r B)
+ r (r A+h)(1+ r Ah)(h2r + r +2hr A)

h2(r A− A)(r A−B)(r A− r B)

Now lets calculate the last integral G.

G = 1

2πi

∮
γ1

r (z1 +h)(1+ z1h)(hr + z1)(r +hz1)(2z1 −Br − Ar )

h2(z1 − A)(z1 −B)(z1 − r A)2(z1 − r B)2 d z1

The function inside the integral has two poles inside |z1 = 1. A simple pole z1 = A and a pole z1 = r A of order
2. To calculate the integral we need to calculate the residues of these poles.

Res(A) = lim
z1→A

(z1 − A)
r (z1 +h)(1+ z1h)(hr + z1)(r +hz1)(2z1 −Br − Ar )

h2(z1 − A)(z1 −B)(z1 − r A)2(z1 − r B)2

= r (A+h)(1+ Ah)(hr + A)(r +h A)(2A−Br − Ar )

h2(A−B)(A− r A)2(A− r B)2

Res(r A) = lim
z1→r A

d

d z1
(z1 − r A)2 r (z1 +h)(1+ z1h)(hr + z1)(r +hz1)(2z1 −Br − Ar )

h2(z1 − A)(z1 −B)(z1 − r A)2(z1 − r B)2

= lim
z1→r A

d

d z1

r (z1 +h)(1+ z1h)(hr + z1)(r +hz1)(2z1 −Br − Ar )

h2(z1 − A)(z1 −B)(z1 − r B)2

= For full expression use Maple

Then by Cauchy’s residue theorem we find

G = 1

2i
[2πi (Res(A)+Res(r A))] = For full expression use Maple

Now combining the three integrals we find

J1(ϕ,ϕ) = lim
r↓1

J1(ϕ,ϕ,r ) = lim
r↓1

[F +W −G]

= lim
r↓1

F + lim
r↓1

W − lim
r↓1

G (since the limits are bounded)

= (h +B)(Bh +1)(h + A)(Ah +1)

(Ar −B)2(A−B)2h2

+ (−A−B)h2 + (−6AB −2)h2 + (2A3 −6A2B −4A−4B)h2 + (−6AB −2)h − A−B

(A−B)3h2

− (−A−B)h2 + (−6AB −2)h2 + (2A3 −6A2B −4A−4B)h2 + (−6AB −2)h − A−B

(A−B)3h2

= (h +B)(Bh +1)(h + A)(Ah +1)

(Ar −B)2(A−B)2h2
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Now we will calculate the last limiting parameter J2(ε1,ε2). Again since we are calculating the variance we
have that ϕ1 =ϕ2. By proposition 4.1.1, with ξ= z, γ1 := |z1| = 1 and γ2 := |z2| = 1, we have

J2(ϕ1,ϕ2) = J2(ϕ,ϕ) = 1

2πi

∮
γ1

f (|1+hz1|2)

z2
1

d z1 · 1

2πi

∮
γ2

g (|1+hz2|2)

z2
2

d z2

= 1

2πi

∮
γ1

|1+hz1|2
|1+ zh1|2 +ϵ

1

z2
1

d z1 · 1

2πi

∮
γ2

|1+hz2|2
|1+ zh2|2 +ϵ

1

z2
2

d z2

= 1

2πi

∮
γ1

1
z1

(z1 +h)(1+ z1h)
1
z1

((z1 +h)(1+ z1h)+ϵ)z2
1

d z1 · 1

2πi

∮
γ2

1
z2

(z2 +h)(1+ z2h)
1
z2

((z2 +h)(1+ z2h)+ϵ)z2
2

d z2

= 1

2πi

∮
γ1

(z1 +h)(1+ z1h)

((z1 +h)(1+ z1h)+ z1ϵ)z2
1

d z1 · 1

2πi

∮
γ2

(z2 +h)(1+ z2h)

((z2 +h)(1+ z2h)+ z2ϵ)z2
2

d z2

=W ·F

Note that solving the first integral is equivalent to solving the second. We will first solve the first one.

W = 1

2πi

∮
γ1

(z1 +h)(1+ z1h)

((z1 +h)(1+ z1h)+ z1ϵ)z2
1

d z1 = 1

2πi

∮
γ1

(z1 +h)(1+ z1h)

h(z1 − A)(z1 −B)z2
1

d z1

The function inside the contour integral has two poles inside γ1, one simple pole z1 = A and one pole z1 = 0
of order 2. To calculate the integral we need to calculate the the residues of the poles.

Res(A) = lim
z1→A

(z1 − A)
(z1 +h)(1+ z1h)

h(z1 − A)(z1 −B)z2
1

= lim
z1→A

(z1 +h)(1+ z1h)

h(z1 −B)z2
1

= (A+h)(1+ Ah)

h(A−B)A2

Res(0) = lim
z1→0

d

d z1
(z1 −0)2 (z1 +h)(1+ z1h)

h(z1 − A)(z1 −B)z2
1

= lim
z1→0

d

d z1

(z1 +h)(1+ z1h)

(h + z1)(1+hz1)+ϵz

= lim
z1→0

ϵh(z2
1 −1)

(h2z1 +hz2
1 +h + z)2

=− ϵ

h

By Cauchy’s Residue Theorem we find that

W = 1

2πi

[
2πi (Res(A)+Res(0))

]
= (A+h)(1+ Ah)

h(A−B)A2 + ABh2 + AB +h A+Bh

h A2B 2

= (h +B)(Bh +1)

hB 2(A−B)

Hence

J2(ϕ1,ϕ2) = J2(ϕ,ϕ) =W ·F =W ·W

=
[

(h + A)(Ah +1)

h A2(A−B)
−− ϵ

h

]2

Combining the limiting parameters J1(ϕ,ϕ) and J2(ϕ,ϕ) and letting h =p
c, we find the variance

σ2 = κJ1(ϕ,ϕ)+βJ2(ϕ,ϕ)

= κ
[

(
p

c +B)(B
p

c +1)(
p

c + A)(A
p

c +1)

(Ar −B)2(A−B)2c

]
+β

[
(
p

c + A)(A
p

c +1)p
c A2(A−B)

−− ϵp
c

]2
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Centering factor Fc (ϕ)

It rest us to compute the centering factor Fc (ϕ). To calculate this centering factor Proposition 4.1.2 is used.
That is, ∫

ϕ(x)dFc (x) =− 1

4πi

∮
γ

ϕ(|1+hz|2)(1− z2)2

z2(1+hz)(z +h)
d z =− 1

4πi

∮
γ
ϕ(|1+hz|2)

(1− z2)2

z2(1+hz)(z +h)
d z

=− 1

4πi

∮
γ

( |1+hz|2
|1+hz|2 +ϵ

)
(1− z2)2

z2(1+hz)(z +h)
d z

=− 1

4πi

∮
γ

(
1
z (z +h)(1+ zh)

1
z (z +h)(1+ zh)+ϵ

)
(1− z2)2

z2(1+hz)(z +h)
d z

=− 1

4πi

∮
γ

(z +h)(1+ zh)(1− z2)

((z +h)(1+ zh)+ zϵ)z2(1+hz)(z +h)
d z

=− 1

4πi

∮
γ

(1− z2)

((z +h)(1+ zh)+ zϵ)z2 d z

=− 1

4πi

∮
γ

(1− z2)

h(z − A)(z −B)z2 d z

The function inside the contour integral has two poles inside γ := |z| = 1, a simple pole z = A and a pole z = 0
of order 2. To calculate the integral we need to calculate the residues of these poles.

Res(A) = lim
z→A

(z − A)
(1− z2)

h(z − A)(z −B)z2 = lim
z→A

(1− z2)

h(z −B)z2

= (1− A2)

h(A−B)A2

Res = lim
z→0

d

d z
(z2 −0)

(1− z2)

h(z − A)(z −B)z2 = lim
z→0

d

d z

(1− z2)

h(z − A)(z −B)

= lim
z→0

(z2 −1)(4AB z −3Az2 −3B z2 +2z3 − A−B + z)

h(A− z)2(B − z)2

= A+B

h A2B 2

Then by Cauchy’s Residue Theorem and letting h =p
c, we find that∫

ϕ(x)dFc (x) =− 1

4πi
[2πi (Res(A)+Res(0))]

=−1

2

[
(1− A2)

h(A−B)A2 + A+B

h A2B 2

]
=− A2B 2 −2B 2 +1

2
p

c(A−B)B 2

This concludes the full proof of theorem 4.3.1.
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Appendix B: Additional Figures

B.1. Additional Power Plots: Alternative Hypothesis 3

(a) p = 32 (b) p = 64

(c) p = 96 (d) p = 120

Figure B.1: Empirical powers under alternative hypothesis 3 with 1000 replications, γ ∈ (−1,1) and r = 1/4
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52 B. Appendix B: Additional Figures

(a) p = 32 (b) p = 64

(c) p = 96 (d) p = 120

Figure B.2: Empirical powers under alternative hypothesis 3 with 1000 replications, γ ∈ (−1,1) and r = 3/4
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B.2. Additional ROC Curves: Alternative Hypothesis 3

(a) (b)

(c) (d)

Figure B.3: ROC curves under alternative hypothesis 3 with 1000 replications, γ= 0.05 and r = 1/4



54 B. Appendix B: Additional Figures

(a) p = 32 (b) p = 64

(c) p = 96 (d) p = 120

Figure B.4: ROC curves under alternative hypothesis 3 with 1000 replications, γ= 0.05 and r = 3/4
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B.3. Additional 3D Power Plots: Alternative Hypothesis 4

Figure B.5: 3D power plot under alternative hypothesis 4 with 100 replications, p = 64, ρ ∈ (0,1), γ ∈ (−1,1) and r = 1/4

Figure B.6: 3D power plot under alternative hypothesis 4 with 100 replications, p = 64, ρ ∈ (0,1), γ ∈ (−1,1) and r = 3/4
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Figure B.7: 3D power plot under alternative hypothesis 4 with 100 replications, p = 64, ρ ∈ (0,1), γ ∈ (−1,1) and r = 1



C
Appendix C: Matlab Codes

1 clearvars;
2

3 M = 10000;
4

5

6 n = 256;
7 p = 180;
8 c = p/n;
9 e = 1;

10 h = sqrt(c);
11

12 fourth_moment = 3; %4.5 for gamma (2,4) -2 data
13 kappa = 2;
14 beta = fourth_moment -1-kappa;
15

16 A = ((-c-e-1)+sqrt((c+e+1)^2-4*c))/(2* sqrt(c));
17 B = ((-c-e-1)-sqrt((c+e+1)^2-4*c))/(2* sqrt(c));
18 mu = (kappa -1) *(((h+B)*(B*h+1))/(h*(A-B)*(B*B-1)*B))+beta*(h+B)*(B*h+1)/(B^3*h*(A-B));
19 sigma = kappa *((h+B)*(h*B+1)*(h+A)*(h*A+1))/((A-B)^4*h^2)+beta *((h+A)*(A*h+1)/(A^2*h*(A

-B))-e/h)^2;
20 limiting_distribution = -((A*A*B*B-2*B*B+1)/(h*2*(A-B)*B*B));
21

22 Y = zeros(M,1);
23

24 tic
25 for j = 1:M
26 Z = randn(p,n);
27 %Z = gamrnd (4,1/2,p,n) -2;
28 S = 1/n*(Z*transpose(Z));
29 X = trace(S*(S+e*eye(p))^(-1));
30

31 Y(j) = ((X-p*limiting_distribution)-mu)/sqrt(sigma);
32 end
33 toc
34

35 nbins = 92;
36 hist = histogram(Y,nbins , ’Normalization ’,’pdf’,’DisplayName ’, "Z")
37 hold on
38 y = -4:0.1:4;
39 mu = 0;
40 sigma = 1;
41 f = exp(-(y-mu).^2./(2* sigma ^2))./( sigma*sqrt (2*pi));
42 plot(y,f,’LineWidth ’ ,1.5,’DisplayName ’, "N(0,1)")
43 ylabel (" Relative Frequency ")
44 lgd = legend;
45 title (" Empirical Distribution - N(0,1) data")
46 xlim([-4 4])
47 ylim ([0 0.45])
48

49 disp(mean(Y))

57
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50 disp(var(Y))

Listing C.1: Empirical distribution functions

1 clearvars;
2

3 M = 10000;
4

5 n = 128; %256
6 p_totaal = [8, 16, 32, 64, 96, 112, 120]; %128
7 %p_totaal = [16, 32, 64, 128, 192, 224, 240]; %256
8 e = [10, 1.5, 1, 0.5, 0.1];
9

10 fouth_moment = 4.5; %4.5 for gamma (2,4) -2
11 kappa = 2 ;
12 beta = fouth_moment - 1 - kappa;
13

14

15 CLRT = zeros(length(p_totaal) ,1);
16 CJ = zeros(length(p_totaal) ,1);
17 LS = zeros(length(p_totaal) ,1);
18 NLS = zeros(length(p_totaal),length(e));
19

20

21 tic
22 for j = 1 : length(p_totaal)
23 p = p_totaal(j);
24 c= p/n ;
25 h = sqrt(c);
26 Sigma_0 = eye(p);
27 countLS = 0;
28 countCLRT = 0;
29 countCJ = 0;
30 countNLS = zeros(length(e) ,1);
31 for i = 1 :M
32 Z = randn(p,n);
33 %Z = gamrnd (4,1/2,p,n) -2;
34 S = 1/n*(Z*transpose(Z));
35

36 %%statistics
37

38 %CLRT
39 T_1 = -p*(1/p*log(det(S))-log(trace(S)/p));
40 if ((T_1+(p-n)*log(1-c)-p)-(-kappa +1)/2*log(1-c)+1/2* beta*c)/sqrt(-kappa*log(1-

c)-kappa*c) > 1.960 || ((T_1+(p-n)*log(1-c)-p)-(-kappa +1)/2*log(1-c)+1/2* beta*c)/
sqrt(-kappa*log(1-c)-kappa*c) < -1.960

41 countCLRT = countCLRT +1;
42 end
43 %CJ TEST
44 T2 =(p^2*n/2)*trace ((S/trace(S)-eye(p)/p)^2);
45 U = (2/(n*p))*T2;
46 if ((n*U-p)-(kappa -1+ beta))/sqrt (2* kappa) > 1.960 || ((n*U-p)-(kappa -1+ beta))/

sqrt (2* kappa) < -1.960
47 countCJ = countCJ + 1 ;
48 end
49 %LS
50 T_3 = 1-(1/n*trace(S)^2* Frob(Sigma_0)^2)/(Frob(S)^2* Frob(Sigma_0)^2-trace(S*

Sigma_0)^2);
51 if (p*T_3 -(kappa -1+ beta))/sqrt (2* kappa) > 1.960 || (p*T_3 -(kappa -1+ beta))/sqrt

(2* kappa)< -1.960
52 countLS = countLS +1;
53 end
54 %NLS
55 for k = 1 : length(e)
56 e_fun = e(k);
57 A = ((-c-e_fun -1)+sqrt((c+e_fun +1)^2-4*c))/(2* sqrt(c));
58 B = ((-c-e_fun -1)-sqrt((c+e_fun +1)^2-4*c))/(2* sqrt(c));
59 mu = (kappa -1) *(((h+B)*(B*h+1))/(h*(A-B)*(B*B-1)*B))+beta*(h+B)*(B*h+1)/(B

^3*h*(A-B));
60 sigma = kappa *((h+B)*(h*B+1)*(h+A)*(h*A+1))/((A-B)^4*h^2)+beta *((h+A)*(A*h

+1)/(A^2*h*(A-B))-e_fun/h)^2;



59

61 limiting_distribution = -((A*A*B*B-2*B*B+1)/(h*2*(A-B)*B*B));
62 T_NLS = trace(S*(S+e_fun*eye(p))^(-1)) - p*limiting_distribution;
63 if (T_NLS -mu)/sqrt(sigma) > 1.960 || (T_NLS -mu)/sqrt(sigma) < -1.960
64 countNLS(k) = countNLS(k) + 1;
65 end
66 end
67 end
68 CLRT(j) = round(countCLRT/M,4);
69 CJ(j) = round(countCJ/M,4);
70 LS(j) = round(countLS/M,4);
71 NLS(j,:) = round(countNLS/M,4);
72 end
73 toc
74

75 c_table = transpose (["(8 ,128)", "(16 ,128)", "(32 ,128)", "(64 ,128)", "(96 ,128)",
"(112 ,128)", "(120 ,128) "]); %128

76 %c_table = transpose (["(16 ,256)", "(32 ,256)", "(64 ,256)", "(128 ,256)", "(192 ,256)",
"(224 ,256)", "(240 ,256) "]);

77 T = table(c_table , CLRT , CJ, LS, NLS(:,1), NLS(:,2), NLS(:,3),NLS(:,4), NLS(:,5));

Listing C.2: Empirical sizes

1 clearvars;
2

3 M = 1000;
4

5 n = 128;
6 p = 64;
7 c= p/n ;
8 h = sqrt(c);
9 e = [1.5, 1, 0.5]; %H1

10 %e = [1, 0.5, 0.1]; %H2
11 %e = [10, 1, 1/2]; %H3
12

13 rho = 0: 0.001 :0.1;
14 w = 1.6449;
15

16 fouth_moment = 3; %4.5 for gamma (2,4) -2
17 kappa = 2 ;
18 beta = fouth_moment - 1 - kappa;
19 Sigma_0 = eye(p);
20

21 CLRT = zeros(length(rho) ,1);
22 CJ = zeros(length(rho) ,1);
23 LS = zeros(length(rho) ,1);
24 NLS = zeros(length(rho),length(e));
25

26 tic
27 for j = 1 : length(rho)
28 rh = rho(j);
29 %Alternative 1
30 Sigma = (1-rh)*eye(p)+rh*ones(p);
31

32 %Alternative 2
33 %Sigma = zeros(p);
34 %d=rh;
35 %for a = 1:p
36 %for b = 1:p
37 %Sigma(a,b) = d^(abs(a-b));
38 %end
39 %end
40

41 %gamma = rh;
42 %r = 1/2;
43 %lendiag = floor(r*p);
44 %Sigma = diag([ones(1,p-lendiag) ,(1+ gamma)*ones(1,lendiag )]);
45

46 countLS = 0;
47 countCLRT = 0;
48 countCJ = 0;
49 countNLS = zeros(length(e) ,1);
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50 for i = 1 :M
51 X = randn(p,n);
52 %X = gamrnd (4,1/2,p,n) -2;
53 Y = Sigma ^(1/2)*X;
54 S = 1/n*(Y*transpose(Y));
55

56 %%statistics
57

58 %CLRT
59 T_1 = -p*(1/p*log(det(S))-log(trace(S)/p));
60 if ((T_1+(p-n)*log(1-c)-p)-(-kappa +1)/2*log(1-c)+1/2* beta*c)/sqrt(-kappa*log(1-

c)-kappa*c) > 1.960 || ((T_1+(p-n)*log(1-c)-p)-(-kappa +1)/2*log(1-c)+1/2* beta*c)/
sqrt(-kappa*log(1-c)-kappa*c) < -1.960

61 countCLRT = countCLRT +1;
62 end
63

64 %CJ TEST
65 T2 =(p^2*n/2)*trace ((S/trace(S)-eye(p)/p)^2);
66 U = (2/(n*p))*T2;
67 if ((n*U-p)-(kappa -1+ beta))/sqrt (2* kappa) > 1.960 || ((n*U-p)-(kappa -1+ beta))/

sqrt (2* kappa) < -1.960
68 countCJ = countCJ + 1 ;
69 end
70 %LS
71 T_3 = 1-(1/n*trace(S)^2* Frob(Sigma_0)^2)/(Frob(S)^2* Frob(Sigma_0)^2-trace(S*

Sigma_0)^2);
72 if (p*T_3 -(kappa -1+ beta))/sqrt (2* kappa) > 1.960 || (p*T_3 -(kappa -1+ beta))/sqrt

(2* kappa)< -1.960
73 countLS = countLS +1;
74 end
75

76 %NLS
77 for k = 1 : length(e)
78 e_fun = e(k);
79 A = ((-c-e_fun -1)+sqrt((c+e_fun +1)^2-4*c))/(2* sqrt(c));
80 B = ((-c-e_fun -1)-sqrt((c+e_fun +1)^2-4*c))/(2* sqrt(c));
81 mu = (kappa -1) *(((h+B)*(B*h+1))/(h*(A-B)*(B*B-1)*B))+beta*(h+B)*(B*h+1)/(B

^3*h*(A-B));
82 sigma = kappa *((h+B)*(h*B+1)*(h+A)*(h*A+1))/((A-B)^4*h^2)+beta *((h+A)*(A*h

+1)/(A^2*h*(A-B))-e_fun/h)^2;
83 limiting_distribution = -((A*A*B*B-2*B*B+1)/(h*2*(A-B)*B*B));
84 T_NLS = trace(S*(S+e_fun*eye(p))^(-1)) - p*limiting_distribution;
85 if (T_NLS -mu)/sqrt(sigma) > 1.960 || (T_NLS -mu)/sqrt(sigma) < -1.960
86 countNLS(k) = countNLS(k) + 1;
87 end
88 end
89 end
90 CLRT(j) = countCLRT/M;
91 CJ(j) = countCJ/M;
92 LS(j) = countLS/M;
93 NLS(j,:) = countNLS/M;
94 end
95 toc
96

97 plot(rho ,CLRT ,’DisplayName ’, "CLRT")
98 hold on
99 plot(rho ,CJ ,’DisplayName ’, "CJ")

100 plot(rho ,LS ,’DisplayName ’, "LS")
101 for t = 1 : length(e)
102 plot(rho , NLS(:,t),’DisplayName ’, "NLS -"+ num2str(e(t)))
103 end
104 hold off
105 xlabel ("Rho")
106 ylabel ("Power")
107 title (" Power plot alternative hypothesis 1: (p,n) = ("+ num2str(p)+","+ num2str(n)+")")
108 lgd = legend;

Listing C.3: Empirical Power Plots

1 clearvars;
2



61

3 M = 1000;
4

5 n = 128;
6 p = 120;
7 c= p/n ;
8 h = sqrt(c);
9 %e = [1.5, 1, 0.5]; %H1

10 %e = [1, 0.5, 0.1]; %H2
11 e = [10, 1, 1/2]; %H3
12

13 rho = 0.03;
14 delta = 0.12;
15 gamma = 0.05;
16 %w = 1.960; %1.645
17

18 alpha = 0: 0.01 :1;
19 x = sqrt (2)*erfinv(1-alpha);
20

21 fouth_moment = 3; %4.5 for gamma (2,4) -2
22 kappa = 2 ;
23 beta = fouth_moment - 1 - kappa;
24 Sigma_0 = eye(p);
25

26 CLRT = zeros(length(x) ,1);
27 CJ = zeros(length(x) ,1);
28 LS = zeros(length(x) ,1);
29 NLS = zeros(length(x),length(e));
30

31 %Alternative 1
32 %Sigma = (1-rho)*eye(p)+rho*ones(p);
33

34 %Alternative 2
35 %Sigma = zeros(p);
36 %d=delta;
37 %for a = 1:p
38 %for b = 1:p
39 %Sigma(a,b) = d^(abs(a-b));
40 %end
41 %end
42

43 %Alternative 3
44 r = 1/2;
45 lendiag = floor(r*p);
46 Sigma = diag([ones(1,p-lendiag) ,(1+gamma)*ones(1,lendiag )]);
47

48

49 tic
50 for j = 1 : length(x)
51

52 w = x(j);
53

54 countLS = 0;
55 countCLRT = 0;
56 countCJ = 0;
57 countNLS = zeros(length(e) ,1);
58 for i = 1 :M
59 X = randn(p,n);
60 Y = Sigma ^(1/2)*X;
61 S = 1/n*(Y*transpose(Y));
62

63 %%statistics
64

65 %CLRT
66 T_1 = -p*(1/p*log(det(S))-log(trace(S)/p));
67 if ((T_1+(p-n)*log(1-c)-p)-(-kappa +1)/2*log(1-c)+1/2* beta*c)/sqrt(-kappa*log(1-

c)-kappa*c) > w || ((T_1+(p-n)*log(1-c)-p)-(-kappa +1)/2*log(1-c)+1/2* beta*c)/sqrt(-
kappa*log(1-c)-kappa*c) < -w

68 countCLRT = countCLRT +1;
69 end
70

71 %CJ TEST
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72 %T2 =(p^2*n/2)*trace ((S/trace(S)-eye(p)/p)^2);
73 %U = (2/(n*p))*T2;
74 %if (n*U-p) > w*sqrt (2* kappa)+(kappa -1+ beta)
75 %if ((n*U-p)-(kappa -1+ beta))/sqrt (2* kappa) > w || ((n*U-p)-(kappa -1+ beta))/sqrt

(2* kappa) < -w
76 %countCJ = countCJ + 1 ;
77 %end
78

79 %LS
80 %T_3 = 1-(1/n*trace(S)^2* Frob(Sigma_0)^2)/(Frob(S)^2* Frob(Sigma_0)^2-trace(S*

Sigma_0)^2);
81 %if p*T_3 > w*sqrt (2* kappa)+(kappa -1+ beta)
82 %if (p*T_3 -(kappa -1+ beta))/sqrt (2* kappa) > w || (p*T_3 -(kappa -1+ beta))/sqrt (2*

kappa)< -w
83 %countLS = countLS +1;
84 %end
85

86 %NLS
87 for k = 1 : length(e)
88 e_fun = e(k);
89 A = ((-c-e_fun -1)+sqrt((c+e_fun +1)^2-4*c))/(2* sqrt(c));
90 B = ((-c-e_fun -1)-sqrt((c+e_fun +1)^2-4*c))/(2* sqrt(c));
91 mu = (kappa -1) *(((h+B)*(B*h+1))/(h*(A-B)*(B*B-1)*B))+beta*(h+B)*(B*h+1)/(B

^3*h*(A-B));
92 sigma = kappa *((h+B)*(h*B+1)*(h+A)*(h*A+1))/((A-B)^4*h^2)+beta *((h+A)*(A*h

+1)/(A^2*h*(A-B))-e_fun/h)^2;
93 limiting_distribution = -((A*A*B*B-2*B*B+1)/(h*2*(A-B)*B*B));
94 T_NLS = trace(S*(S+e_fun*eye(p))^(-1)) - p*limiting_distribution;
95 if (T_NLS -mu)/sqrt(sigma) > w || (T_NLS -mu)/sqrt(sigma) < -w
96 countNLS(k) = countNLS(k) + 1;
97 end
98 end
99 end

100 CLRT(j) = countCLRT/M;
101 CJ(j) = countCJ/M;
102 LS(j) = countLS/M;
103 NLS(j,:) = countNLS/M;
104 end
105 toc
106

107 plot(alpha ,alpha ,’DisplayName ’, "Standard ")
108 hold on
109 plot(alpha ,CLRT ,’DisplayName ’, "CLRT")
110 %plot(alpha ,CJ,’DisplayName ’, "CJ")
111 %plot(alpha ,LS,’DisplayName ’, "LS")
112 for t = 1 : length(e)
113 plot(alpha , NLS(:,t),’DisplayName ’, "NLS -"+ num2str(e(t)))
114 end
115 hold off
116 xlabel ("False postitive rate alpha ")
117 ylabel ("True positive rate")
118 title ("ROC curve alternative hypothesis 3: (p,n) = ("+ num2str(p)+","+ num2str(n)+")")
119 lgd = legend;

Listing C.4: ROC Curves

1 clearvars;
2

3 M = 100;
4

5 n = 128;
6 p = 64;
7 c = p/n;
8 h = sqrt(c);
9 %e = [1.5, 1, 0.5]; %H1

10 %e = [1, 0.5, 0.1]; %H2
11 %e = [10, 1, 1/2]; %H3
12 e = 1;
13

14 rho = 0: 0.0001 :001;
15 gamma = -0.8: 0.01 :0.6;
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16 w = 1.6449;
17

18 fouth_moment = 3; %4.5 for gamma (2,4) -2
19 kappa = 2 ;
20 beta = fouth_moment - 1 - kappa;
21 Sigma_0 = eye(p);
22

23 CLRT = zeros(length(rho),length(gamma));
24 CJ = zeros(length(rho),length(gamma));
25 LS = zeros(length(rho),length(gamma));
26 NLS = zeros(length(rho),length(gamma));
27

28 tic
29 for j = 1 : length(rho)
30 for i = 1 : length(gamma)
31 rh = rho(j);
32 %Alternative 1
33 Sigma_1 = (1-rh)*eye(p)+rh*ones(p);
34

35 %Alternative 3
36 ga = gamma(i);
37 r = 1/2;
38 lendiag = floor(r*p);
39 Sigma_3 = diag([ones(1,p-lendiag) ,(1+ga)*ones(1,lendiag)]);
40

41

42 %Alternative 4
43 Sigma = Sigma_3 ^(1/2)*Sigma_1*Sigma_3 ^(1/2);
44

45 countLS = 0;
46 countCLRT = 0;
47 countCJ = 0;
48 countNLS = 0;
49 for k = 1 :M
50 X = randn(p,n);
51 %X = gamrnd (4,1/2,p,n) -2;
52 Y = Sigma ^(1/2)*X;
53 S = 1/n*(Y*transpose(Y));
54

55 %%statistics
56

57 %CLRT
58 T_1 = -p*(1/p*log(det(S))-log(trace(S)/p));
59 if ((T_1+(p-n)*log(1-c)-p)-(-kappa +1)/2*log(1-c)+1/2* beta*c)/sqrt(-kappa*

log(1-c)-kappa*c) > 1.960 || ((T_1+(p-n)*log(1-c)-p)-(-kappa +1)/2* log(1-c)+1/2* beta
*c)/sqrt(-kappa*log(1-c)-kappa*c) < -1.960

60 countCLRT = countCLRT +1;
61 end
62 %CJ TEST
63 T2 =(p^2*n/2)*trace ((S/trace(S)-eye(p)/p)^2);
64 U = (2/(n*p))*T2;
65 if ((n*U-p)-(kappa -1+ beta))/sqrt (2* kappa) > 1.960 || ((n*U-p)-(kappa -1+ beta

))/sqrt (2* kappa) < -1.960
66 countCJ = countCJ + 1 ;
67 end
68 %LS
69 T_3 = 1-(1/n*trace(S)^2* Frob(Sigma_0)^2)/(Frob(S)^2* Frob(Sigma_0)^2-trace(S

*Sigma_0)^2);
70 if (p*T_3 -(kappa -1+ beta))/sqrt (2* kappa) > 1.960 || (p*T_3 -(kappa -1+ beta))/

sqrt (2* kappa)< -1.960
71 countLS = countLS +1;
72 end
73 %NLS
74 e_fun = e;
75 A = ((-c-e_fun -1)+sqrt((c+e_fun +1)^2-4*c))/(2* sqrt(c));
76 B = ((-c-e_fun -1)-sqrt((c+e_fun +1)^2-4*c))/(2* sqrt(c));
77 mu = (kappa -1) *(((h+B)*(B*h+1))/(h*(A-B)*(B*B-1)*B))+beta*(h+B)*(B*h+1)/(B

^3*h*(A-B));
78 sigma = kappa *((h+B)*(h*B+1)*(h+A)*(h*A+1))/((A-B)^4*h^2)+beta *((h+A)*(A*h

+1)/(A^2*h*(A-B))-e_fun/h)^2;
79 limiting_distribution = -((A*A*B*B-2*B*B+1)/(h*2*(A-B)*B*B));
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80 T_NLS = trace(S*(S+e_fun*eye(p))^(-1)) - p*limiting_distribution;
81 if (T_NLS -mu)/sqrt(sigma) > 1.960 || (T_NLS -mu)/sqrt(sigma) < -1.960
82 countNLS = countNLS + 1;
83 end
84 end
85 CLRT(j,i) = countCLRT/M;
86 CJ(j,i) = countCJ/M;
87 LS(j,i) = countLS/M;
88 NLS(j,i) = countNLS/M;
89 end
90 end
91 toc
92

93 surf(gamma ,rho ,CLRT ,’DisplayName ’, "CLRT",’FaceColor ’, ’r’, ’FaceAlpha ’ ,0.5)
94 hold on
95 surf(gamma ,rho , CJ ,’DisplayName ’, "CJ", ’FaceColor ’, ’b’, ’FaceAlpha ’ ,0.5)
96 surf(gamma ,rho , LS ,’DisplayName ’, "LS", ’FaceColor ’, ’y’, ’FaceAlpha ’ ,0.5)
97 surf(gamma ,rho , NLS ,’DisplayName ’, "NLS -"+ num2str(e), ’FaceColor ’, ’g’, ’FaceAlpha ’

,0.5)
98 hold off
99 ylabel ("Rho")

100 xlabel ("gamma")
101 zlabel ("Power")
102 zlim ([0 0.99])
103 %xlim ([0 0.01])
104 %ylim ([0 0.01])
105 title (" Power plot alternative hypothesis 4: (p,n) = ("+ num2str(p)+","+ num2str(n)+")")
106 lgd = legend;

Listing C.5: 3D Empirical Power Plots

1 clearvars;
2

3 M = 1000;
4

5 n = 128;
6 p = 64;
7 c = p/n;
8

9

10 rho = 0: 0.001 :0.1;
11 %gamma = 0.1; %0.135
12 %rho = 0;% 0.07
13

14 eigv = 0:0.1:11.9;
15 K = zeros(length(eigv),length(rho));
16 tic
17 for j = 1 : length(rho)
18 %Alternative 1
19 rh = rho(j);
20 Sigma_1 = (1-rh)*eye(p)+rh*ones(p);
21

22 %Alternative 3
23 ga = 0; %rho(j);
24 r = 1/2;
25 lendiag = floor(r*p);
26 Sigma_3 = diag([ones(1,p-lendiag) ,(1+ga)*ones(1,lendiag)]);
27

28 %Alternative 4
29 Sigma = Sigma_3 ^(1/2)*Sigma_1*Sigma_3 ^(1/2);
30

31 Z = zeros(M,p);
32 for i = 1:M
33 X = randn(p,n);
34 Y = Sigma ^(1/2)*X;
35 S = 1/n*(Y*transpose(Y));
36 l = eig(S);
37 Z(i,:) = l;
38 end
39 eigenvalues = Z(:);
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40 histog = histogram(eigenvalues , ’binWidth ’ ,0.1,’BinLimits ’, [0 12], ’normalization ’
, ’pdf’).Values;

41 K(:,j) = histog;
42 end
43 toc
44

45

46 surf(rho ,eigv ,K,’DisplayName ’, "Eigenvalues",’FaceAlpha ’ ,0.8)
47 ylabel ("Value of eigenvalues ")
48 xlabel ("rho")
49 zlabel (" Relative Frequency ")
50 title (" Histogram of eigenvalues in rho direction ")

Listing C.6: 3D Histogram Eigenvalues
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