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Abstract

Unit tests are generally acknowledged as an important
aid to produce high quality code, as they provide quick
feedback to developers on the correctness of their code.
In order to achieve high quality, well-maintained tests are
needed. Ideally, tests co-evolve with the production code to
test changes as soon as possible. In this paper, we explore
an approach to determine whether production and test code
co-evolve synchronously. Our approach is based on apply-
ing association rule mining to the change history of product
and test code classes. Based on these co-evolution rules, we
introduce a number of measures to assess the co-evolution
of product and test code classes. Through two case studies,
one with an open source and another one with an industrial
software system, we show that association rule mining and
our set of measures allows one to assess the co-evolution of
product and test code in a software project and, moreover,
to uncover the distribution of programmer effort over pure
coding, pure testing, or a more test-driven-like practice.

1 Introduction

The development of high quality software systems is a
complex process; maintaining an existing system is often
no less challenging, an insight which Lehman formulated
in his Laws of Software Evolution [11]. Runeson on the
other hand notes that automated unit testing1 can be an ef-
fective countermeasure for difficulties encountered during
software maintenance [14]. Also Test-Driven Development
(TDD) [3] and test-driven refactoring [13] can play an im-
portant role here.

The quality of the tests — and by consequence the added
value for maintenance activities — greatly depends on the
effort that the developers put into writing and maintaining
tests. Typically, the quality of a test suite is expressed by

?This work is described in more detail in the MSc thesis of Zeeger
Lubsen [12].

1xUnit Testing Frameworks: http://www.xunit.org

code coverage: the percentage of the code that is exercised
by the test suite that is executed [4]. Code coverage, how-
ever, is a shallow measure of test quality as it expresses that
code is executed, but not how (well) something is tested. In
this context, one should think of (1) different input values —
boundary values — and (2) the number of assertions [4, 19].
Furthermore, code coverage does not provide a good indica-
tor for the long term quality or “test health” of a test suite.
As such, we have no insight into (1) how well test code was
adapted to previous changes in the production code, (2) the
current structure of the test code, and (3) how easy it will be
to perform maintenance on both the production and the test
code in the future.

This missing insight has motivated us to investigate the
co-evolution of production and test code. In our previous
work, we introduced the Change History View [19] to ob-
serve and perform a qualitative analysis of the co-evolution
of production and test code by mining version control data.
While change history views provide sufficient insights into
the co-evolution of production of test code they require a
fair amount of human effort to understand and interpret.
The user might be overwhelmed by the amount of infor-
mation represented by a single change history view.

In this paper, we address this shortcoming by adding
a quantitative analysis approach to study the co-evolution
of production and test code. In particular, we investigate
whether association rule mining can be applied to study the
co-evolution of test and production code and provide an-
swers to the following research questions:

RQ1: Can association rule mining be used to find evidence
of co-evolution of production and test code?

RQ2: Following RQ1, can we find measures to assess the
extent to which product and test code co-evolves?

RQ3: Can different patterns of co-evolution be observed
in distinct settings, for example, open source versus
industrial software systems?

We address these research questions by means of two
case studies. The first case study is on Checkstyle, an open
source system that checks whether code adheres to a coding
standard. The second case study is on an industrial software
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system from the Software Improvement Group (SIG).2

The structure of this paper is as follows: in Section 2
we introduce association rule mining and explain our spe-
cific approach. Sections 3.1 and 3.2 deal with our two case
studies, respectively Checkstyle and the industrial system
provided by SIG. Section 4 deals with threats to validity.
Section 5 relates our work to other work in the field and we
present our conclusions and future work in Section 6.

2 Production and test class co-evolution

The application of data mining techniques in software
engineering research has become popular [17]. This can
partly be explained by the fact that software engineers are
looking at studying large sets of data for which efficient
analysis methods are required. Within the realm of data
mining, we have chosen to use association rule mining, be-
cause this technique allows us to identify instances of log-
ical coupling between classes [20], in particular between
production and test classes. For this paper, production
code/classes refer to Java classes and test code/classes to
jUnit test classes.

The basic idea of our approach is to use association rule
mining to study the co-evolution of test and production
code. The change history of test and production classes,
in particular commit transactions, form the input to our
approach. Information about commit transactions are ob-
tained from versioning repositories, such as, the concurrent
versions systems (CVS) or Subversion (SVN). In the fol-
lowing, we provide background information of association
rule mining and the set of metrics that we use to study co-
evolution of production and test classes.

2.1 Association rule mining

Formally, an association rule is a statistical description
of the co-occurrence of elements in the change history that
constitute the rule in the change history. Agrawal et al. de-
fine it as [1]:

Definition 1 Given a set of items I = I1, I2, ..., Im and
a database of transactions D = t1, t2, ..., tn where ti =
Ii1, Ii2, ..., Iik and Ijk ∈ I , an association rule is an impli-
cation of the form A⇒ B where A, B ⊂ I are sets of items
called itemsets and A ∩B = ∅.

The left-hand side of the implication is called the an-
tecedent, and the right-hand side is called the consequent
of the rule. An association rule expresses that the occur-
rence of A in a transaction statistically implies the presence
of B in the same transaction with some probability. It is

2Software Improvement Group, Amsterdam, The Netherlands.
http://www.sig.nl

important to note that an association rule does not express
a causal relation, but rather a spurious one, as the rule does
not describe a proven cause-effect relation.

In our approach, we consider association rules that
express a binary relation between classes, as we
are looking for relations between individual produc-
tion classes (PC) and test classes (TC). For example,
consider the SVN transaction {TC1, PC1, PC2} com-
mitting changes to the test class TC1, and the two
production classes PC1 and PC2. Computing all
pairs we get the following binary association rules:
{TC1 → PC1}, {PC1 → TC1}, {PC2 → TC1},
{TC1 → PC2}, {PC1 → PC2}, {PC2 → PC1},

Formally, for a transaction involving n classes we obtain
n ∗ (n − 1) binary association rules. We take into account
inverse association rules, because the inverse rules can have
a different probability, as we explain below.

2.2 Co-evolution rules

In order to analyze the testing practices for an entire sys-
tem, we need a high-level overview of the development and
testing activities of the software system. For that, we clas-
sify binary association rules according to rules that deal (1)
solely with production code, (2) solely with test code, and
(3) that deal with both production and test code. Table 1
shows this classification in detail.

Class Association rule
TOTAL The collection of all found association rules.
PROD {ProductionClass ⇒ ProductionClass}

Rules that only associate production classes.
TEST {TestClass ⇒ TestClass}

Rules that only associate test classes.
PT Rules that associate production-test pairs, which we can

subdivide into:
P2T {TestClass ⇒ ProductionClass}. These rules express

that a change in production class implies a change in
test class with some probability.

T2P {ProductionClass ⇒ TestClass}. These rules express
that a change in test class implies a change in produc-
tion class with some probability.

MP2T Matching production to test rules; P2T rules where the
antecedent and the consequent can be matched to be-
long together as unit test and class-under-test. These
rules express that a change in production code implies
a change in test code with some probability.

MT2P The counterpart of MP2T.

Table 1. Classification of association rules.

While PT comprises association rules between product
and test code the sub-classes refine this set by taking the di-
rection of rules into account. The direction of rules comes
into play when calculating the interestingness of an as-
sociation rule. Furthermore, we introduce two categories
containing rules that denote commit transactions in which
a test class has been matched to a production class. For
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Metric Probability Implementation Interpretation
support(A ⇒ B) P (A, B)n count The fraction of commits in which the itemset {A, B} appears in the change

history. Abbreviated as: s(A ⇒ B).
confidence(A ⇒ B) P (B|A)

s(A,B)
s(A)

The ratio of the number of transactions that contain classes {A ∪ B} to the
number of transactions that contain class A. This measure is not symmetrical.

interest(A ⇒ B) P (A,B)
P (A)P (B)

s(A,B)n
s(A)s(B)

Measures the correlation between the two classes A and B, i.e., how many times
more often class A and B are contained in a commit transaction then expected
if they were statistically independent. This measure is symmetrical.

conviction(A ⇒ B) P (A)P (¬B)
P (A,¬B)

s(A)n− s(A)s(B)
n

s(A)−s(A,B)
Is a measure of the implication that whenever class A is committed class B is
also committed. This measure is not symmetrical.

Table 2. Metrics for individual association rules.

each commit transaction these rules are obtained by com-
paring the file names of product and test classes. For the
comparison we rely on naming convention for test classes
and use straightforward string matching. For example, a
production class Class.java is matched with the test class
ClassTest.java.

2.3 Co-evolution metrics

Typically, association rule mining is used to search for
rules that are “interesting” or “surprising”. In our case,
we seek to find a global view on the entire change history
of source files (i.e., top-level Java classes) of a software
project. As such, we are mainly interested in the total num-
ber of rules that associate production and test classes and
how “interesting”, i.e., how strong the statistical certainty
of these rules is. In the following we explore a number
of standard rule significance and interest measurements to
measure co-evolution between production and test classes
in a software system.

The metrics presented in Table 2 allow us to reason about
the significance and interest of single association rules. To
get an overall understanding of how production and test
code co-evolves in a software system we use straight for-
ward descriptive statistics with boxplots. Boxplots provide
a five-number summary of the distribution of significance
and interest metric values. The sample minimum and maxi-
mum define the range of the values, while the median desig-
nates the central tendency of the distribution. The lower and
upper quartile allow reasoning about the standard deviation
and together with the median about the skewness of metric
values.

These metric-values help us in interpreting the interest-
ingness of the association rule classes that we have defined
in Section 2.2. If a rule appears in almost all commits, its
support is close to 100%. While this is unlikely to hap-
pen for all commits, finding outliers that exhibit a support
close to 100% is interesting, e.g., as they indicate a pos-
sible bad design choice if two classes have been changed
together that often. The confidence-metric is tightly related
to the concept of co-evolution. It represents the certainty

with which one can expect, for example, when the product
class is changed that also the test class is changed. Con-
fidence values higher than 0.5 give a clear indication of
co-evolution between classes. The interest becomes higher
when the rule frequently holds. As for conviction, high-
quality rules (those that hold 100% of the time) have a value
of∞, while the less interesting rules have a value that ap-
proaches 1 (rules from completely unrelated items have a
metric-value of 1) [5].

Co-evolution of production and test classes is indicated
by rules in PT and its subclasses with significant support,
high confidence, interest, and conviction. Separate evo-
lution of product and test classes is indicated by rules in
PROD and TEST with significant support, high confidence,
interest, and conviction. If the majority of PROD, TEST,
and PT rules has low support, we conclude that there is no
structural co-evolution between classes.

In addition to the association rule interest measures, we
introduce several metrics to measure the extent to which
product classes are covered by test classes. The set of met-
rics is described in Table 3.

Metric Description
PCC Production class coverage. The average number

of test classes that are changed per changed pro-
duction code class. This number is calculated by

|P2T |
#productionclasses

.
MPCC Matching production class coverage. The percent-

age of production classes that co-evolve with their
matched unit test class. This number is calculated by

|mP2T |
#productionclasses

.
TCC Test class coverage. The average number of produc-

tion code classes that are changed per changed unit test
class. This number is calculated by |T2P |

#testclasses
.

MTCC Matching test class coverage. The percentage of
test classes that co-evolve with its matched produc-
tion class-under-test. This number is calculated by
|mT2P |

#testclasses
.

Table 3. Product-test class coverage metrics.

These coverage metrics allow us to get an insight into
the testing strategy. More precisely, a high ratio of PCC
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and TCC indicates that many production class and test class
pairs are changed together. On the other hand, high ratios of
mPCC and mTCC indicate that the co-change is structural.

3 Experiments

The main goal of our experiments is to evaluate the ap-
plicability of proposed co-evolution metrics to answer the
research question stated in the Section 1. For the evalu-
ation, we performed two case-studies, one with the open
source system Checkstyle3 and another one with the indus-
trial software analysis tool from the Software Improvement
Group (SIG). For each system we compute the association
rule classes and the set of co-evolution metrics. We evalu-
ate and validate our metrics by comparing it with the results
obtained by our previous experiments in which we used the
Change History View technique and the feedback from de-
velopers to reason about co-evolution of production and test
classes [19]. In short, the Change History View depicts the
evolution of the production code and the test code through-
out time (for example see, Figure 1). The X-axis represents
time and the Y-axis shows the Java classes. Furthermore,
we make a distinction between the creation/change of pro-
duction code (red/blue dot) and the creation/change of test
code (green/yellow dot). A unit test that can be associated
to a production code class through naming conventions is
placed on the same horizontal line. The usefulness of the
Change History View has been demonstrated and validated
in previous research [16, 19]. Together with the feedback
from the developers (in the case of the SIG case study) it
provides the basis for the evaluation and validation of our
co-evolution metrics.

In the following, we first present the results from the
Change History View analysis that then are compared and
discussed with the co-evolution metrics. A summary of the
results is given at the end of this section.

3.1 Case study 1: Checkstyle

Checkstyle is an open source coding standard checker
for Java source code. Between June 2001 and March 2007,
2259 commits resulted in a total of 1160 Java classes, of
which 797 refer to product code, and 363 are identified as a
test class.

Change History View Figure 1 depicts the Change His-
tory View computed from Checkstyle’s change log data.
The view shows that initially little testing has been per-
formed. After that, the system started to grow and tests have
been added along with new production code. Around revi-
sions 690 and 780, two phases of pure test effort can be

3http://checkstyle.sourceforge.net/

distinguished, and after revision 850 tests for most classes
existing at that point in time have been added. After these
additions, we observe a significant period of pure coding
with hardly any maintenance to the tests being performed.
The view highlights few recurring test phases around revi-
sions 1380 and 2100. For the larger part of the history, tests
appear to receive only minor attention from developers, as
only few additions and changes to production code are ac-
companied or closely followed by the addition or change
in a related test classes. An exception to this behavior can
be witnessed between commits 1350 and 1600, where for a
small period of time new production code classes are ac-
companied by new unit tests. More striking are regular
commits comprising a large number of files as indicated by
blue vertical bars. Most of these commits were due to code
cleanups or copyright notice changes.

Figure 1. Change History View of Checkstyle.

Co-evolution rule mining The results of the classifica-
tion of the association rules obtained from the 2259 commit
transactions of Checkstyle are depicted in Table 4.

ALL(N) 58566 P2T 0.33%
PROD 98.86% T2P 0.33%
TEST 0.48% mP2T 0.09%
PT 0.67% mT2P 0.09%

Table 4. Rule ratios for Checkstyle.

The ratio of PROD rules shows that 98, 86% of the
58566 rules express an association between two production
classes. We can explain this through the fact that the de-
velopers initially hardly used unit tests, even though they
adopted a more test-driven development strategy over time,
e.g., between commits 1350 and 1600. The first period
of development thus practically only involved production
code, but the several phases of pure testing effort that were
observed in the Change History View (the vertical green and
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Figure 2. Checkstyle rule strengths distribu-
tions.

yellow lines in Figure 1) should have created a fair amount
of TEST rules. Closer inspection however, reveals that the
testing phases that we have identified involve commits with
only a few tests per commit, while many other commits con-
tain a large amount of production classes. As the change
history of Checkstyle contains several recurring very large
commits, there are many rules being generated from those
commits.

Because of the large commits we expect many PROD
rules to have a low interest and strength. The boxplots in
Figure 2 show that over all association rule classes the sup-
port of rules is low, with the PROD rules having several out-
liers (shown as crosses). This indicates that most of the pos-
sible production and test class combinations occurred only
in few commit transcations.

The ratios of TEST and PT (sub-)classes are low (see
Table 4), even though the Checkstyle developers appear to
have adopted a decent testing practice over time; we identi-
fied a phased testing approach in the first half of the change
history (green and yellow vertical bars in the Change His-
tory View), but we also saw a more test-driven approach in
the latter part (red dots being covered by green dots, e.g.,
between commits 1350 and 1600).

Looking at the interest values, the correlation among
matching production and test classes (mP2T, mT2P and

mPT) is stronger than for more unrelated classes. The cor-
relation among TEST rules is even stronger. This observa-
tion also holds for the confidence and conviction distribu-
tions, e.g., the confidence of mT2P rules shows that 75% of
those rules express a conditional probability of over 50%.
Note that that number alone is not enough to conclude syn-
chronous co-evolution between production and test classes,
as we do not yet know how many tests are actively main-
tained.

The boxplots show significantly lower values of mP2T
rules for confidence and conviction. This is because (1)
mP2T and mT2P rules are not symmetric for confidence and
conviction, and (2) the often changing nature of production
code makes the presence of a production class in a commit
so trivial that no interesting statement can be made based
on its presence. The values for interest of mP2T and mT2P
rules are identical, because of the symmetry of the interest
metric.

In contrast to confidence and conviction, the interest-
values for matching production and test classes mT2P are
not evidently higher than for mP2T using the interest met-
ric. This is because highly correlated (m)T2P rules are av-
eraged out against the lowly correlated (m)P2T rules. From
these results we can make the two following observations:

Observation 1 High (median) values for TEST and rela-
tively low (support) values for (m)PT rules originates from
the co-change of test classes and indicate that testing is per-
formed as a separate activity.

Observation 2 Interest averages the measurements for
matching rules in different directions. This causes the dif-
ferences to even out, and makes interest a less specific met-
ric.

Summarizing, we can see that most of the co-changed
Checkstyle classes belong to the production code. These
co-changes are mostly unintentional and caused by code
cleanup activities, e.g., running Checkstyle on the Check-
style source code. Looking at the statistics, we mainly see
a large class of PROD rules, originating from some very
large commits. These commits perturb our analysis some-
what. Still, going by the PT and TEST rule classes, we see
some evidence both for a phased and a test-driven approach
to testing. The Change History View confirms this, as there
are periods where commits consists mainly out of unit tests,
while there are also periods in time (e.g., between commits
1350 and 1600), where we see test-driven development tak-
ing place. To see these phases in more detail, we aim to
investigate a sliding-window-based approach of our analy-
sis to investigate the change history of a software system in
more detail.
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Co-evolution coverage in Checkstyle We computed the
number of co-evolution coverage measures introduced be-
fore to quantify the co-evolution of product and test code of
Checkstyle. The resulting coverage measures are listed in
Table 5.

Coverage metric Value
Production class coverage (PCC) 0.42
Matching production class coverage (mPCC) 0.11
Test class coverage (TCC) 0.38
Matching test class coverage (mTCC) 0.09

Table 5. Co-evolution coverage metrics for
Checkstyle.

For Checkstyle, we see a low value for both PCC
and TCC, indicating that for each production class that is
changed (on average) only 0.42 test classes are changed
(PCC). The other way around, we see that for each test class
that is changed, 0.38 production classes are changed. This
indicates that co-change does not happen very frequently. If
we zoom in a little bit more and look at how structural the
co-changes are applied, we see that for 0.11 of the produc-
tion code classes, the test counterpart that matches based
on naming conventions is (potentially) also changed. Vice
versa, for 0.09 of the test classes, the matching production
class is also (potentially) changed.

These figures should be considered low and as such do
not provide any indication that co-evolution of production
and test code takes place in the case of Checkstyle.

Discussion For Checkstyle we saw that actual software
development and testing are mainly two separate activities,
which is mainly evidenced through the rule ratios that we
saw in Table 4. However, a possible complication that we
came across when interpreting the results was the fact that
there are some large commits of (mainly) production code,
which dominate the rule ratios to a large extent, thereby per-
turbing the interpretation. These very large commits orig-
inate from automated code beautification operations (using
Checkstyle). As such, a possible avenue for further research
is to eliminate these large commits and see how this influ-
ences the results.

During our interpretation, we also observed large differ-
ences between mT2P and mP2T rules when studying the
confidence and conviction rules. In particular, we saw that
the statistical evidence for mT2P rules was stronger than
for mP2T rules. Closer inspection revealed this to be due
to commits containing a larger number of production code
classes than test code classes, thereby influencing the prob-
abilities behind confidence and conviction.

Considering the average number of production and test
classes that are changed together, we can say that in gen-

Figure 3. Change History View of the SIG soft-
ware system.

eral not many production and test classes are co-evolved as
evidenced by the very low PCC and TCC values. This is
further underlined by the low mPCC and mTCC values.

3.2 Case study 2: Sofware Improvement Group

The industrial case study that we performed pertains to
a software project from the Software Improvement Group
(SIG). The SIG is a tool-based consultancy firm that is spe-
cialized in the area of quality improvement, complexity re-
duction and software renovation. The SIG performs static
source code analysis to analyze software portfolios and to
derive hard facts from software to assess the quality and
complexity of a system.

For our study we investigate the development history of
one of the SIG tools between April 2004 and January 2008.
Over time 20 developers worked on this software project,
which after about 2200 commits resulted in around 4000
classes.

Change History View The Change History View for the
industrial case is shown in Figure 3 (also see [16] for more
details). From the view we see that the software project
shows a steady growth curve and we also observe that code
and test writing efforts are overlapping for pretty much the
entire change history. Red and blue dots, indicating re-
spectively the addition and change of production classes,
are frequently followed by green or yellow dots, indicating
the addition and change of unit tests respectively. We in-
vestigated the code changes and log messages behind larger
commits. We found out that most of these changes cor-
respond to refactorings involving also the test classes, and
code cleanups, which did not always involve the test classes.

Co-evolution rule mining The classification of the asso-
ciation rules obtained from the 2200 commit transaction of
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the SIG tool resulted in the following ratios listed in Table 6.

ALL(N) 101896 P2T 19.37%
PROD 35.15% T2P 19.37%
TEST 26.11% mP2T 0.78%
PT 38.75% mT2P 0.78%

Table 6. Rule ratios for the SIG tool.

Compared to Checkstyle, the rule classification of the
SIG software system results in more evenly partitioned rule
classes. In particular, the ratios of PROD (35.15%) and PT
(38.75%) are very close to each other. Furthermore, there
is a high ratio of TEST rules (26.11%). The high ratio of
PT is in line with the observations from the Change History
View (Figure 3), where we observe a strong synchronous
co-evolution of production and test code for the SIG soft-
ware system. Not only are the rule class ratios evenly par-
titioned over pure coding and test-driven development, also
the support distribution presents a uniform picture (see Fig-
ure 3): PROD, TEST and PT rules show similar measure-
ments, and so do the matching classes mPT, mP2T, and
mT2P. The distributions are more uniform (resembling the
normal distribution), and show less skewness than for the
Checkstyle case.

Of interest to note is the surprisingly large set of TEST
rules, which we attribute to commits that contain multiple
pairs of production and test code. Such a big set of TEST
rules can occur when some combinations of test classes oc-
cur often in the history. This can be the result of develop-
ment cycles including a significant amount of testing.

Continuing on the fact that the number of TEST rules is
high, we also see that the support for association rules of
this rule class is low. The high confidence and conviction
values for the rules must be the result from not many, but
from structural co-occurrences. That is, specific combina-
tions of test classes frequently occur together in commits,
but these test classes do not occur frequently in other com-
binations. This indicates that developers focus on writing
tests for specific parts of the system. Talking to the devel-
opers of the SIG we learned that the software system is ac-
tually a collection of analysis tools that grows and changes
over time. Developers are assigned to different customers,
so their work on the tools is cross-cutting throughout the
entire system; this causes more combinations of classes to
occur and brings down the correlation between classes, and
thus the support for PROD rules. Following the same rea-
soning, we expect tests to focus on specific parts of the code,
as the correlation among tests is high, i.e., high confidence
and interest. We shared our findings with the SIG develop-
ers who confirmed our insights. The results led us to the
following observation:

Observation 3 High confidence and interest of only pro-

Interests for rule classes

In
te

re
st

Rule Classes

Figure 4. SIG rule strengths distributions.

duction classes (or only test classes) indicate that program-
mers focus on specific parts of the system (or the test suite).

Co-evolution coverage in SIG Table 7 lists the values ob-
tained for the co-evolution rule coverage metrics.

Coverage metric Value
Production class coverage (PCC) 7.96
Matching production class coverage (mPCC) 0.32
Test class coverage (TCC) 11.79
Matching test class coverage (mTCC) 0.48

Table 7. Co-evolution coverage metrics for
SIG.

We see that for every production class that is being
changed, there are also on average 7.96 test classes be-
ing changed. The other way around, we see that on av-
erage 11.79 production classes are being changed for each
test class that is changed. For a more structural view, we
look at the mPCC and mTCC values, which indicate how
many association rules linking matching production and test
code exist, we find that for 32.22% of the production code
classes, the associated test class was changed together at
least once. Vice versa, 47.70% of the test classes were
changed together with their production-code-counterpart at
least once.
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These coverage metrics indicate that the SIG software
development process does indeed follow a more test-driven
development strategy, because we have indications that
many of the test/production class pairs co-evolve.

Discussion In our industrial case study we observed that
the SIG developers are following a development and test-
ing strategy that resembles that of a test-driven development
strategy. The first indication is given by the fact that the rule
class ratios are fairly evenly distributed over PROD, TEST
and PT. Another important indicator for test-driven devel-
opment are the rule coverage ratios for the SIG software
system. Here we saw that for each production class that has
been changed, also a significant number of test classes has
been changed (and vice versa). This phenomenon is also
structural, as also matched production and test class pairs
have been changed together.

3.3 Answers to research questions

Based on the results obtained from the two cases studies
we can provide the answers to the research questions stated
in the introduction of the paper.

RQ1 Can association rule mining be used to find evi-
dence of co-evolution of production and test code? The re-
sults of our two case studies clearly showed that association
rule mining is an adequate technique to investigate the co-
evolution in software systems. For the SIG case study we
found evidence of co-evolution by looking at the PT rule
class, which contained 38.75% of all rules, indicating many
co-changes of production and test classes. Furthermore,
high support and confidence values for the PT class (and its
subclasses) provide further evidence for this co-evolution.
For the Checkstyle case study, we did not get a clear in-
dication of intentional co-evolution. This can be attributed
to two factors, namely: (1) the co-evolution is only taking
place during short periods of time, while our technique is
mainly aimed towards providing an overview of longer pe-
riods of time, and (2) due to a number of large commits of
superficial changes to the production code. This led to an
explosion of the number of PROD rules biasing the results.

RQ2 Can we find measures to assess the extent to which
product and test code co-evolve? Through our case studies
we found out that the extent of co-evolution can be mea-
sured by the PCC, TCC, and respectively the mPCC and
mTCC metrics in combination with the confidence of as-
sociation rules. In the case of SIG high values for these
metrics clearly indicated co-evolution of product and test
classes. This result is validated by the Change History View

(see Figure 3) and the SIG developers. In case of Check-
style the values for these metrics are significantly lower in-
dicating little co-evolution. This finding is underlined by
the Change History View depicted by Figure 1.

RQ3 Can different patterns of co-evolution be observed in
distinct settings, for example, open source versus industrial
software systems? Our two case studies, of which one was
an open source and one was an industrial software system,
have shown two different development practices, which af-
firm a ‘yes’ to this question. Our metrics indicate test-driven
development in the SIG software system while this is not the
case for the Checkstyle. Note, that our findings have been
validated for these two systems, but, must not be general-
ized for other open source and industrial software systems.

4 Threats to validity

We have identified a number of threats to validity, which
we have classified into threats towards the (i) internal valid-
ity, (ii) external validity and (iii) construct validity.

Internal validity The case studies are subjective in the
sense that they were performed by the developers of the
tools. As a countermeasure we involve external sources of
information in our evaluation. More specifically, we used
(i) log messages from the developers to confirm or reject
our observations — in particular for the observations from
the Change History View [16, 19] — and (ii) we used the
insights that we have previously obtained when researching
the same software projects. These insights were confirmed
by the developers of the software projects [16].

Our tool-chain might contain faults which explain the re-
sults of the case studies. As a countermeasure, we thor-
oughly tested our tool-chain.

External validity While we have chosen two case studies
that are very different from each other — in terms of prob-
lem domain, in terms of closed/open source development,
etc. —, they might not be representative. For example, dur-
ing our case studies we have observed a test-driven-like de-
velopment process, but at this point we are not sure whether
our approach is also capable of detecting other development
processes. We are currently planning other case studies in
order to widen the scope further.

We use a simple heuristic that matches the class-
name of the unit of production code to the classname
of the unit test, e.g., we matched String.java to
StringTest.java. Our approach is purely based upon
naming conventions and might not be generizable, yet our
2 case studies adhered to it. This convention is also pro-
moted in literature and tutorials [8, 6]. In order to analyze
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case studies that do not follow such a naming convention,
a call graph based approach that associates test cases with
production classes can be used.

Construct validity For the evaluation we use the version-
ing system’s log messages to confirm or reject our observa-
tions (also see [16, 19]). As no strict conventions are in
place for what should be specified in such messages, there
are large differences in the content and quality of log mes-
sages across projects, tasks and developers. The external
evaluation, i.e., checking our conclusions with the original
developers, complements the internal evaluation as an addi-
tional source of validation.

We also identify two variation factors of the develop-
ment process with regard to the use of the version control
system. Firstly, the individual commit style — short cy-
cles, one commit per day, ... — of developers can influence
the results. A countermeasure in this area is using inter-
transactional association rule mining [15], which we see
as future research. Secondly, developers can use branch-
ing and as we are only studying the main branch, this might
interfere with our results. In the case of Checkstyle and
the SIG case, however, branching is not a common practice.
If a large part of a project’s development effort happens in
branches, it can be useful to specifically apply the approach
to these branches.

Finally, a remark on the limitations of studying the test-
ing process by analyzing the contents of a version control
system. The focus of our approach is on testing activities
that are performed by the developers themselves, i.e., unit
testing and integration testing, as these tests are typically
codified and stored alongside the production code. We ac-
knowledge that the testing process is much more than only
unit and integration testing, e.g., acceptance testing, yet, as
these acceptance tests are typically not stored in the version
control system, we have no means of involving these tests
in our approach.

5 Related work

The idea to analyze the change history of software sys-
tems was first coined by Ball et al. in 1997 [2]. In this
section we will give an overview of some of the advances in
this area that are particularly close to our own research.

Fluri et al. investigate whether code comments are up-
dated when production code changes [7]. They use code
metrics and charts to study these changes. A major differ-
ence between our own approach and Fluri’s approach is that
they analyze the changes at the code level, while we remain
at the file level.

Both Hindle et al. [10] and German [9] look into multi-
ple dimensions of co-evolution of software artifacts. Hin-
dle et al. study whether release patterns can be detected in

software projects. That is, behavioral patterns in the revi-
sion frequency of four different artifacts: source code, test
code, build files and documentation. They observe repeat-
ing patterns around releases for distinct systems, but the
data shows large differences between the systems. Ger-
man meanwhile combines information from many different
sources, like mailing lists, version control logs, web sites,
software releases, documentation and source code, the so-
called software trails [9]. He correlates these trails to each
other in order to recover information such as: the growth of
the software system, the interaction between the contribu-
tors, the frequency and size of contributions, and important
milestones in the development.

We found two uses of association rule mining in liter-
ature. Zimmermann et al. [20] attempt to guide the work
of developers based on dependencies found in the change
history. For each change a developer makes, his support
tool guides the programmer along related changes in order
to suggest and predict likely changes, prevent errors due to
incomplete changes and identify couplings that are unde-
tectable by program analysis. Their approach derives asso-
ciation rules in real time while the programmer is writing
code. As such, their approach does not build a descrip-
tive model of the data, but rather a predictive model. Xing
and Stroulia use association rule mining to detect class co-
evolution [18]. They apply the mining at the class level,
and are able to detect several class co-evolution instances.
They also intend to give advice to developers on what ac-
tion to take for modification requests, based on experiences
learned from past evolution activities.

6 Conclusion and future work

In this paper we have used association rule mining to
study the co-evolution between production code and test
code. In this context, we make the following contributions:
• An approach using association rule mining to study the

co-evolution of production and test code in a system.
Co-evolution rules are computed from commit transac-
tions obtained from version control data of production
and test classes.
• A set of co-evolution metrics including standard in-

terest and strength association rule mining metrics to
asses the extent to which product and test classes
evolve.
• An evaluation with two case studies, one performed

with the open source software project Checkstyle, and
another one performed with an industrial software sys-
tem provided by the Software Improvement Group. In
both case studies, the findings have been evaluated and
validated with the findings of our previous research
and the original developers/maintainers of the software
systems under study.
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The two case studies that we performed have shown a
greatly differing testing approach. In the case of Check-
style, we saw a very mixed picture at first, since we ob-
served that most of the commits are dominated by changes
to production code. This is (1) due to the development
style, where testing is mainly done in phases outside of
regular development (this is true during the early develop-
ment of Checkstyle), but also (2) due to a small number
of large commits of production code that perturbs the rule
classification (these large commits are due to code beauti-
fication). Our industrial case study, on the other hand, has
shown a test-driven development approach to testing, evi-
denced by a large number of commits that contained both
additions/changes to production and test code.

The analysis techniques that we have explored in this
work prove to be useful for (retrospective) assessment of
the unit test suite. A weak point of our approach, however,
is the fact that changes to the testing practices over small
periods of time will not yield noticeable differences in the
results, as our technique summarizes the entire history.

Future work. We have identified a number of ideas to
build upon this research.
• The use of an inter-transactional association rule min-

ing algorithm, which allows to widen our analysis from
a single commit to a window of commits that were
made in a short amount of time [15].
• The automatic identification and removal of very large

commits that are often the result of an automated code-
beautification operation. Removing these commits
will sharpen the results from our analysis.
• Traversing the change history with a sliding window,

so that time-intervals can be studied more in depth, de-
tails become more clear and trends can be identified.
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