
Modeling Multi�threaded Architectures in PAMELA for Real�time

High Performance Applications�

S� Balakrishnan and S� K� Nandy Arjan J� C� van Gemund

Supercomputer Education � Research Centre Faculty of Electrical Engineering

Indian Institute of Science Delft University of Technology

Bangalore� India Delft� The Netherlands

fsbalki� nandyg�serc�iisc�ernet�in a�vgemund�et�tudelft�nl

Abstract

In this paper we present a method to explore the
design space of multi�threaded architectures using the
Pamela ��� modeling language� The domain of applic�
ations we consider is digital signal processing �DSP�	
where high performance is derived by exploiting both

ne grain and coarse grain parallelism in the applic�
ation� The modeling scheme takes an uni
ed view
of both
ne grain and coarse grain parallelism in a
given application to performance meter the architec�
ture� The application � written using a high level lan�
guage	 is compiled	 and a trace generated for bench�
mark data in terms of the instruction set architecture
of the processor� The generated trace is for a single
uni�threaded	 uni�processor system� This trace is pre�
processed and retargetted to generate multi�threaded
architecture speci
c Pamela code� Using a material�
oriented approach	 the resulting Pamela code is ex�
ecuted to evaluate various architecture options over the
entire design space iteratively	 subject to implementa�
tion constraints� We demonstrate the suitability and
simplicity of the approach with an example�

� Introduction
Simultaneous multi�threading is fast evolving as an

alternative architecture for high performance applica�
tions� In such architectures multiple threads share all
available processor resources to exploit both �ne�grain
�instruction level parallelism� and coarse grain par�
allelism �task level parallelism�� While simultaneous
multi�threading for general purpose applications has
been studied ���	 and quite a few conclusions drawn
in it
s favor� there seems to be less of an e�ort to study
these architectures with special attention to real�time

�This research was supported in part by the Department
of Electronics� Government of India� under sponsored project
DE�NMC�SP����� and the TUD�IISc� collaboration project
between Technical University� Delft� The Netherlands and The
Indian Institute of Science�

Digital Signal Processing �DSP� applications� This
is precisely the motivation for our study in which we
have arrived at a modeling scheme that can capture
both coarse grain and �ne grain parallelism in the
application and provide a mechanism to performance
meter the architecture in terms of its basic computa�
tion� communication and storage resources�

In this paper we propose a method to model multi�
threaded architectures in the Pamela language �
	
that provides an e�cient simulation tool for the per�
formance modeling of parallel architectures� The
method is new in that we take an uni�ed view of both
�ne grain and coarse grain parallelism in the applica�
tion� and also in the way we explore the design space
of the architecture to maximize performance without
imposing any arti�cial restrictions� In the following
section a brief overview of Pamela is given to serve
as preliminaries for modeling multi�threaded architec�
tures described in section
� As a case study� we
demonstrate in section � how Pamela can be used to
model Symphony� a multi�threaded architecture for
media applications ���	 and provide instrumentation
data obtained by performance metering Symphony in
the proposed model� In section � we discuss how the
proposed modeling scheme can be optimized to reduce
the overall time spent exploring the design space and
summarize the contributions of the paper in section ��

� PAMELA
Pamela �PerformAnce ModEling LAnguage� is a

process�algebraic computer systems description lan�
guage aimed as a tool for the performance evaluation
of parallel algorithms on parallel von Neumann archi�
tectures �
	� Similar to simulation languages such as
Simula�Demos ��	 and Csim�� ���	 a Pamela model
of a computational system can be compiled and sim�
ulated� Unlike other simulation languages� however�
Pamela is speci�cally designed to enable analytic
techniques which allow for signi�cant optimizations in

the simulation cost� The most extreme example of
this feature is an entirely analytic compilation mode
for a subset of Pamela simulation models by which
at compile�time a closed�form analytic expression is
generated that approximates the simulated execution
time within reasonable accuracy at very low computa�
tional cost� In the following we will informally present
the subset of the language that is needed in the paper�

Pamela supports the following data types�
process� resource� channel� and numeric� The
numeric data type comes with all the usual operators
for binary� integer� and real�valued arithmetic� and is
used to express time parameters� functions� and ran�
dom distributions but is also used for indices in se�
quential and parallel loops�

The central concept in Pamela is the interaction
between processes �modeling the computations� and
resources �modeling the computation providers�� The
process type is used to model computational tasks
that entails workload �time delay� on some resource�
The most basic Pamela process is the use expression
as in use�r�t� which simulates a time delay of t units
while occupying the resource r� The resource type
inherently implements the notion of mutual exclusion
which is used to express the potential sequentializa�
tion �queuing� that may occur when multiple processes
use �or �run on�� the same processing resource� Re�
sources come in FCFS type �First Come First Served�
non�preemptive� to model� e�g�� critical S�W sections�
memories� disks� busses� and PS type �Processor Shar�
ing� preemptive�� typically used to model CPU sched�
ulers� In order to model multiservers� resources can
have a multiplicity larger than one�

In order for processes to be composed to meaning�
ful simulation models the process data type comes
with composition operators for sequential �in�x� ��
replicated pre�x� seq ������ parallel �in�x� ��� rep�
licated pre�x� par ������ and conditional �if�else�
composition� Parallel composition has a fork�join se�
mantics which implies a mutual barrier synchroniza�
tion at the �nish for each task involved� Pamela also
includes a while construct which� however� is not used
in this paper� In order to allow functional simulation
Pamela also includes �C� inlining facilities� Note that
the inlined C code does not a�ect the simulated time�

For system models that require additional� non�
fork�join�style condition synchronization patterns�
channel type condition variables are used that come
with wait and signal operators� For example� a pro�
cess executing wait�c� will block until another pro�
cess executes signal�c� where c is of type channel�

In order to allow for the application of compile�time

analytic techniques the preferred modeling paradigm
in Pamela is material�oriented ��	� In contrast to
the typically machine�oriented approach ��	� found in
other simulation languages �where each component is
modeled as a process that reacts on stimuli on which
it receives� processes� and sends data to other com�
ponents�� in Pamela processes are used to specify the
data processing in which all components that are tra�
versed by the data in the course of its processing are
modeled as resources that are temporarily used� For
instance� a parallel algorithm comprising N parallel
computation threads mapped on a P processor �multi�
threaded� machine is modeled with N processes using
either P cpu resources of one cpu	pool resource with
multiplicity of P �

� Modeling Multi�threaded Architec�

tures
A multi�threaded architecture attempts to hide

long latency operations to increase the utilization of
the functional units of a processor� exploiting both
�ne�grain and coarse�grain parallelism� Long latency
operations � taking multiple CPU cycles� occur due
to either communication between processors or due to
memory accesses� A quantitative analysis of a pro�
cessor design should therefore involve scheduling in�
structions with the computing� communicating and
storage elements as parameters� Since the aim of the
modeling process is to derive near optimal values for
each of these parameters� it is imperative that the ap�
plication be speci�ed so that all parallelism is exposed�
We propose a modeling scheme for multi�threaded ar�
chitectures with parameterized computing� communic�
ating and storage elements in an uni�ed framework
that captures both coarse grain and �ne grain paral�
lelism in the application�

For our discussion� we take the view that a process
is an actor and therefore refer to process and actor
interchangeably through the paper and will make a
distinction between the two only when necessary� An
actor is a program entity with well de�ned �ring rules�
An actor can have many threads of execution that are
scheduled dynamically� A thread is a statically ordered
sequence of instructions that realizes a function�

In DSP applications� programs operate on data
streams and at any instant in time several iterations of
program modules are simultaneously active� Instruc�
tion level parallelism exists within and across threads
in an actor� whereas coarse grain parallelism exists
across actors belonging to di�erent iterations� Lim�
iting the synchronization losses due to �ne grain and
coarse grain parallelism can contribute to the overall
performance of the architecture� Fine grain synchron�

ization losses can be minimized by overlapping exe�
cution of several threads in an actor� whereas coarse
grain synchronization losses can be minimized through
an optimal schedule of actors in a multi�threaded ar�
chitecture�

Fine grain synchronization losses can be attributed
to two reasons� viz� resource sharing within a pro�
cessor and local data dependency between threads�
The former is an artifact of the architecture� whereas
the latter is an artifact of the algorithm� A suitable
modeling of the architecture can be useful in identify�
ing such limitations and take corrective measures by
changing the parameters of the architecture�

Coarse grain synchronization is necessary to resolve
global data dependencies� Coarse grain synchroniza�
tion losses commonly arise due to non�optimal map�
ping and scheduling of actors onto the architecture�
From a system architecture perspective� it can be ar�
gued that mapping and scheduling can therefore have
a signi�cant impact on the size of shared memory ne�
cessary for realizing an application� This is because�
in DSP applications� where streams are processed� we
need e�cient mechanisms to reuse memory� A shared
memory location can be reused only when its data has
been consumed� Clearly� the schedule of an actor de�
termines the lifetime of a produced data in memory�
When the lifetime for every data item is large� we need
to provide larger memory� A suitable modeling of the
architecture can therefore facilitate evaluating altern�
ate mapping and scheduling of actors over the entire
parameter space of the architecture�

As mentioned earlier� we adopt a material ori�
ented approach to model multi�threaded architectures�
where the parallel system is modeled as viewed by the
application� In this approach the architecture is rep�
resented by a parameterized set of passive resources
that can be acquired and released in a controlled fash�
ion� The parallel program is therefore a set of active
processes with a producer�consumer relationship in a
manner that relates to the �ow of data through the
program modules�

The modeling trajectory we follow involves the fol�
lowing steps�

�� Resource De�nition� De�ne a parameter�
ized set of resources in Pamela that de�ne
all resources in the architecture� such as func�
tional units� CPUs� communication controllers�
memory� registers�

�� Code Generation� Generate a assembly code of
the application at hand in terms of the instruction
set architecture of the processor�

� Generate Traces� Generate instruction traces
for a set of �benchmark� data assuming a single
uni�threaded processor� thereby transforming the
application to that of a �attened DAG with no
control statements�

�� Re�target Trace� Run a pre�processor on the
trace to generate architecture speci�c Pamela

code that captures both �ne grain and coarse
grain parallelism in the application�

�� Evaluate� Execute the Pamela code and iterat�
ively arrive at the optimal numbers for the para�
meters associated with individual resources in the
architecture�

In the following section we provide a walk through
the modeling trajectory mentioned above using Sym�
phony ���	 as a representative multi�threaded archi�
tecture�

� SYMPHONY� A Case Study
Symphony is an architecture template suitable

for several applications within a domain� The basic
computation entity in Symphony is a thread� Sym�

phony can execute multiple threads concurrently� and
is therefore a multi�threaded architecture� By associ�
ating with each actor a closure ��	 which de�nes the
set of input tokens necessary for an actor to �re� Sym�
phony provides architectural support necessary for
data�ow process networks ��	 which is a special type
of Kahn process networks�

��� Architecture

Symphony consists of symphony processors �SPs�
in a linear array� Symphony can also serve as an
embedded system� in which case it is controlled by
a host processor as shown in �gure � and the host
processor could �in principle� be another SP or any
other processor� A set of interconnected SPs �ana�
logous to PEs� operate in a cooperative fashion to
implement a program� Program modules that have a
strong producer�consumer relationship can be mapped
into neighboring SPs hence utilizing Symphony as a
processor pipeline�

The host processor addresses each SP via the pro�
cessor control bus �PCB� �refer �gure ��� The PCB is
used by the host processor to program the SPs� The
host processor maps a part of a global memory address
space to each SP� Special instructions are then issued
by the host so that the SPs recognize the mapped ad�
dress ranges� The host processor also initializes the
program counter of each SP and then issues com�
mands to the SPs to commence operation� SPs are
laid out in a linear array and hence adjacent SPs com�
municate over links called local data bus �LDB�� Each

LDB (Local data Bus) MAB(Memory Access Bus)CAB(Cache Access Bus)

D
 C

ache

D
 C

ache

D
 C

ache

Memory Memory Memory Memory

SP SP SP SP
Host

Processor
1 2 n-1 n

M
A

B
D

 C
ache

M
A

B

M
A

B

M
A

B

C
A

B

C
A

B

C
A

B

C
A

B

LDB LDB LDB

I C
ache

I C
ache

I C
ache

I C
ache

Processor Control Bus

Figure �� SYMPHONY� Organization of the Machine

SP has a communication controller �CC� and on�chip
instruction and data caches and one or more func�
tional units �FUs�� The CC also houses the memory
controller� �See �gure ��� All cache accesses take place
under the supervision of the memory controller on the
cache access bus �CAB�� All memory accesses to an
SP take place under the control of the CC� An SP can
also optionally house on�chip shared single assignment
memory�

Each SP can have one or more register �les con�
sisting of eight
��bit registers� Each register �le has
� read ports and � write port� A set of small register
�les that can be managed with the help of compiler
techniques is much easier to implement than a large re�
gister �le with multiple read and write ports ��	� This
has been the main motivation behind having a set of
small register �les in Symphony� Data communic�
ated between neighboring SPs are written onto a set
of communication registers� Each SP can have one or
more of such communication register �les called trans�
fer registers� The speci�c number of transfer registers
required for a closure is programmable� depending on
the requirements of the application� Every transfer
register T has a corresponding shadow register SH
as shown in the �gure � �The SH set of registers are
named so to indicate that they are the �shadows
 of
the corresponding T registers�� Fine�grained commu�
nication mentioned above is achieved using these re�
gisters�

During an actor execution the T set of registers is
assigned a red color to indicate that these registers
are currently in use by the FUs of the SP� The SH re�
gisters are assigned a color black to indicate that they

Controller
Memory

Controller

Communication

General

Purpose

Registers

UnitsRegisters

Transfer FunctionalShadow

Registers

Control

Unit

Figure �� Inside a Symphony Processor

are currently being written into by the neighboring
SPs with values that might be used subsequently� The
CC can be programmed with a set of con�guration in�
structions to partition the SH set of registers such that
subsets Tleft and Tright correspond to communication
from the left and right neighbors respectively�

An explicit switch instruction has to be executed
when the values that have been written into the SH
registers are to be used� When such an instruction is
executed the current SH registers become their corres�
ponding T counterparts and vice�versa i�e the red and
black register sets are swapped� Thus it is implicit
that the SH set of registers cannot be accessed by the
programmer directly�

One issue here� is that� when does the SP know
that it can execute a switch instruction without losing
data� To alleviate this problem the program should
initially set a mask using a setmask instruction in�
dicating the set of T registers whose values will be
needed in the next actor that is going to be scheduled
onto a particular SP �this is further elucidated below��
When there is a write to one of these registers a bit is
updated indicating that a value has been written into
it� On a subsequent switch instruction the processor
will block if some of the values have not been updated
as yet� Thus the switch instruction can be used for
synchronization between actors�

A point to be noted here is that� communication
is �ne�grained and takes place implicitly as opposed
to explicit communication that takes place in conven�
tional architectures� By implicit communication we
mean that no extra instructions are necessary for post�
ing values between processors�

��� Performance metering synchroniza�
tion losses

Symphony operates on multiple data streams sim�
ultaneously� The various data streams can pertain to
audio� video� text and image for instance� Input to the
system are samples� and these samples have an average
input arrival rate� If the rate is R� then tr � �

R
is the

time interval between the arrival of two consecutive
samples�

Program modules are composed of a collection of
actors with a data�ow relationship between them�
These actors act on streams of data� Only a win�
dow of a stream is used at any instant of time� The
window slides on the stream every tr cycles when new
input to the system arrives� The window of reference�
is this part of the stream of data being used by the
actors in the system� Coarse grain parallelism is ex�
ploited across iterations within the window� whereas
�ne grain parallelism is exploited within an iteration�
In order to performance meter synchronization losses
in Symphony we will de�ne the following terms�

�� Let I denote the input stream to the system
and I�j� denote the jth set of input tokens�
Iteration�j� is then an instance of a program
for which the input is I�j�� Iteration�j� may
derive data dependent control from other Itera�
tions� Iteration�i� and Iteration�k�� where
i � p � j and j � q � k� where i� j� k � Z�

�� O�j� is the output corresponding to I�j� and is
produced in Iteration�j��

� tmax is the maximum latency that an iteration
can incur after exploiting �ne grain parallelism in
the architecture assuming no overheads for coarse
grain synchronization�

�� Let � denote the average �ne grain parallelism ex�
ploited by the architecture in the presence of �ne
grain synchronization losses� The average work
associated with an iteration can therefore be ex�
pressed as � � tmax�

�� During tmax cycles� we de�ne W as the total work
that must be performed to produce O�j�� If W
is the maximum work that the architecture can
perform per cycle� called the work capacity of the

architecture per cycle� then it is necessary to as�
sume an architecture that satisfy�

tr �
W

W
���

Equation � ensures that the system is stable and
doesn
t accumulate tokens�

A thread in an actor may block because of the non�
availability of data at any instant� An actor is said
to block when all the threads constituting the actor
are rendered ineligible to execute due to the same
reason� An iteration derives data dependent control
from other iterations� Iteration�j� may block on
data produced by other iterations within the window
of reference� When Iteration�j� is blocked� the re�
linquished computing resources are used by other it�
erations�

If we assume interleaved computation across itera�
tions� the latency of an iteration will stretch beyond
tmax because of data dependent control across itera�
tions� It can be argued that for real�time applications�
the e�ective work capacity of the architecture is there�
fore W � �� where � is the work capacity lost due to
coarse grain synchronization�

We can therefore rewrite equation � as

tr �
� � tmax

W � �
���

Thus� by performance metering the architecture
model for di�erent work capacities W � it is possible
to determine the actual values of � and � and hence
derive a lower bound for real�time constraints in the
application�

��� Modeling

From an architecture perspective� we need to put
together the various components of the architecture
comprising three types of resources� viz� computa�
tion resources� communication resources and storage
resources�

Each SP in Symphony can comprise one or more
FUs as shown in �gure �� Since the number of such
units is parameterized� and shared by di�erent threads
in execution� the FU
s naturally qualify as resource in
Pamela where all FUs are pooled into one resource
with parameterized multiplicity� This facilitates op�
timal utilization of FUs by assuming dynamic assign�
ment�

Transfer registers are declared as resources in
Pamela� A single �le contains �� T registers and
�� SH registers� The number of such register �les is
a parameter of the architecture and hence pooled into
one resource with parameterized multiplicity�

It may also be noted that all data exchanged
through transfer registers are known in advance from
the static data dependencies between actors and there�
fore are a part of the coarse grain static data depend�
encies� On the other hand all dynamic data depend�
encies are resolved at runtime and this is achieved
through a single assignment memory� This single as�
signment memory which can be reused after a lifetime
L contributes to coarse grain synchronization losses
in the architecture� The single assignment memory is
modeled as channel in Pamela� The size of the single
assignment memory depends on the application�

Table �� Representative actor code� The instruction
format is identical to that of the DLX instruction
set ��	�

�x����	�f�
 lhi r�� �
�x����	�f�
 addui r�� r��
����
�x����	�fc
 add r�� r�� r

�x����		��
 addi r�	� r�� �
�x����		��
 add r�� r�� r�
�x����		��
 add r�� r�� r�
�x����		�c
 addi r
� r�� �
�x����			�
 lw r	� ��r�� � �x�����c��
�x����			�
 add r	� r
� r	
�x����			�
 ld f
� ��r�� � �x��������
�x����			c
 ld f�� ��r	� � �x��������
�x����		
�
 multd f
� f
� f�
�x����		
�
 ld f�� ��r�� � �x�����a��
�x����		
�
 addd f�� f�� f

�x����		
c
 sd ��r��� f� � �x�����a��

The other components of the SP� viz� general pur�
pose registers �GPRs�� buses �both internal and ex�
ternal�� caches and local memory are modeled as re�
sources in Pamela�

In order to performance meter the application we
start with an initial assignment of actors to the SPs
in Symphony� Recall each actor represents multi�
threaded code� and the schedule of instructions in the
actor is determined dynamically� This is easily cap�
tured in Pamela�

In order to keep the discussion tractable� we will
restrict the application to that of performing over�
lapped transform coding of a image data ��	� Without
delving into the details of the application� we will fo�
cus on a representative actor code written in terms of
the instruction set architecture of an SP as listed in
table �� The trace corresponding to the code above
would translate to an equivalent Pamela code shown
in table ��

Each of the machine instructions is modeled in
terms of the above�mentioned resources as in the

process equality add�r
�r��r��
 use�FU�k�clock�

where the resource FU models the pool of functional
units and k denotes the addition latency in clock
cycles� When this trace is retargetted into a program
model� Pamela de�nes a dynamic schedule for all in�
structions in the actor� based on the availability of
resources� This is a very good abstraction for multi�
threaded execution of the threads in an actor� wherein
threads that block on data relinquish resources making
it available for other threads� Fine grain synchroniza�
tion losses are accounted in Pamela only when there
are free resources� but not ready to run threads�

Table �� Pamela code corresponding to actor in
table �
�
f ��
f

 lhi �r�� �� ��
 wait�sema r� 	���
�
 signal�sema r�
� ��
 ld �f
� �� r���
�
g k ��
 signal�sema f
 	
�
�
f ��
g k
�
 wait�sema r�
�� ��
f
�
 addui �r�� r��
������ ��
 wait�sema r	 		��
�
 signal�sema r� �� �	
 ld �f�� �� r	��
�
g k �

 signal�sema f� 	
�
	�
f ��
g k
		
 add �r�� r�� r
�� ��
f
	

 signal�sema r� ��� ��
 wait�sema f
 	
��
	�
 signal�sema r
 � �� ��
 wait�sema f� 	
��
	�
g k ��
 multd �f
� f
� f���
	�
f ��
 signal�sema f� 	� ���
	�
 addi �r�	� r�� �� ��
 signal�sema f
 	��
	�
g k ��
g k
	�
f �	
f
	�
 wait�sema r� ��� �

 wait�sema f� 	� ���

�
 add �r�� r�� r��� ��
 wait�sema r� 	���

	
 signal�sema r� 	��� ��
 ld �f�� �� r���

 signal�sema r� 	�� ��
 signal�sema f� 	���

�
g k ��
 signal�sema �����a�� 	� ��

�
f ��
�� Signal on the release of

�
 wait�sema r� ��� ��
 � a memory location

�
 add �r�� r�� r��� ��
 � �x�����a�� ��

�
 signal�sema r� 	�� ��
g k

�
g k �	
f

�
f �

 wait�sema f� 	���
��
 wait�sema r
 � ��� ��
 wait�sema f
 	���
�	
 addi �r
� r�� ��� ��
 addd �f�� f�� f
��
�

 signal�sema r
 �� ��
 signal�sema f� 	��
��
g k ��
g k
��
f ��
f
��
 lw �r	� �� r��� ��
�� Wait for the release of
��
 signal�sema r	 �� ��
 � the memory location
��
g k ��
 � �x�����a�� ��
��
f �	
 wait�sema �����a�� 	� ���
��
 wait�sema r	 ��� �

 wait�sema r� 	���
��
 wait�sema r
 ��� ��
 wait�sema f� 	���
�	
 add �r	� r
� r	�� ��
 sd ��� r�� f��
�

 signal�sema r	 		� ��
g
��
g k

Similarly� when all threads in an actor block on
data� threads from a new actor are scheduled in
Pamela� When threads from all actors block on
data� the synchronization losses accounted in Pamela
are those due to global dependencies� and are usually
dynamic in nature and in�uence the exploitation of
coarse grain parallelism� The various factors that can
contribute to such synchronization losses can be at�
tributed to�

�� Sharing of communication resources local

to an SP� This is the case when multiple memory
accesses are sequentialized over the processor�
memory bus�

�� Sharing of communication resources betw�

een two SPs� This is due to communication
latency between two SPs� when the data produced
in SP�i� is consumed by a thread in SP�j��

� Sharing of storage resources� In DSP applic�
ations that operate on data streams� memory can
be re�used in a cyclo�static fashion� This however
depends on the lifetime L of the data produced�
In particular� when coarse grain parallelism is ex�
ploited in actors across iterations� the lifetime of
a data value can directly restrict the extent to
which coarse grain parallelism can be exploited
in the application�

Now the synchronization losses as accounted in
Pamela can be used to evaluate various architectural
options over the entire design space and hence arrive at
numbers for the parameters in the architecture� The
various architectural options for overlapped transform
coding of a image is given in table
� Table
 gives a
summary of the various architecture options for per�
forming an example application� the overlapped trans�
fer coding of images� in the Symphony framework�
The table shown is for the execution of a ���� trans�
form� The total number of FU operations in the ap�
plication for � iteration is
��� cycles� The number
of load�store operations performed is ���� cycles� For
accounting we attribute � cycle latency for add and
logical operations� The multiply operations takes �
cycles� However a multiply instruction can be issued
every cycle �multiplier is pipelined�� The results in�
dicate that in this particular type of application which
predominantly operates on vectors� performance scales
with an increase in the number of FUs to a cross�
over point where in the load�store bottle neck sur�
faces� This also indicates that in order to achieve a
high throughput fast memory can be considered� Also�
in the case of an embedded system one can consider

special memory for interfacing with the master pro�
cessor which pumps input to the system�

� Discussions
Modeling an architecture� and performance meter�

ing it can serve two purposes� One� it can enhance
the utilization of resources in the architecture two�
it can o�er a platform to optimize applications with
real�time performance constraints� From the previous
discussions it is clear that minimizing synchronization
losses leads to overall performance gains�

From equation �� it is evident that �ne grain
synchronization loss � can be reduced signi�cantly
through optimal schedule of threads in the actor�
Since the threads have a dynamic schedule� it is ap�
propriate to assume an architecture that has mech�
anisms to provide hardware and software support for
scheduling threads without a�ecting the work capacity
W of the architecture� It may be worth noting that
in the application discussed in the previous section�
every machine instruction is a Pamela process and
all contend for resources� The �ne grain schedule is
in�uenced only by condition synchronization and mu�
tual exclusion� and are artifacts of the application and
architecture respectively� As mentioned previously�
this approach does not inhibit any dynamic parallel�
ism that is present in the application� and this can be
done without the aid of a compiler�

Table
� Exploring the Design Space
No� of No� FUs Latency with 	 Latency with

SPs per SP Load�Store Unit Load�Store Units
	 	 ���� cycles ���� cycles

 	��	 cycles 	��	 cycles
� 	
�
 cycles ��	 cycles
� 	
�
 cycles ��
 cycles
	� 	
�
 cycles ��
 cycles

 	 	��� cycles 	��� cycles

 ��� cycles ��� cycles
� ��� cycles ��� cycles
� ��� cycles ��� cycles
	� ��� cycles ��� cycles

� 	 �	� cycles �	� cycles

 ��� cycles ��� cycles
� ��� cycles
�� cycles
� ��� cycles 	�� cycles
	� ��� cycles 	�� cycles

Coarse grain synchronization on the other hand are
concentrated at the actor entry�exit level� Synchron�
ization losses � can therefore lead to loss of work ca�
pacity and hence a�ect performance� Also� it is reas�
onable to assume that coarse grain synchronization
losses do not directly in�uence �ne grain synchroniz�

ation losses� Therefore an e�cient way to explore the
design space is to adopt a hierarchical decomposition
of the application �problem� into actors� and further
each actor into threads� Since coarse grain synchron�
ization is concentrated at the actor boundaries� it is
appropriate that the problem at hand be �rst decom�
posed into actor and mappings of such actors onto the
processors be explored in the modeling scheme �pro�
posed earlier� with minimal coarse grain synchroniz�
ation loss� Following this� each actor can in turn be
performance metered for minimizing �ne grain syn�
chronization losses�

� Conclusions

In this paper we set out to provide a method to
model multi�threaded architectures using the Pamela
modeling language� The method facilitates explor�
ing the design space of multi�threaded architectures
for high performance applications with real�time con�
straints� We take an uni�ed view of both �ne grain
and coarse grain parallelism in the application and
performance meter the architecture for the applic�
ation� We use the Pamela modeling language to
model multi�threaded architectures in a material�
oriented fashion instead of a machine�oriented ap�
proach� Material�oriented modeling in Pamela has
the added advantage that compile�time analytical
techniques can be applied to evaluate performance of
algorithms in the architecture�

In this approach we start with a high level language
description viz� C� C�� or Matlab� This description
is then compiled� and a trace generated for a set of
benchmark data in terms of the instruction set archi�
tecture of the processor� The trace generated is for a
single uni�threaded� uni�processor system� This trace
is pre�processed and retargetted to generate multi�
threaded architecture speci�c Pamela code� The res�
ulting Pamela code is executed to evaluate various
architecture options over the entire design space iter�
atively�

This approach is new in that we simultaneously
evaluate architecture and algorithm to satisfy real�
time constraints� Further� the modeling scheme is
identical for applications in which both �ne grain and
coarse grain parallelism must be exploited to meet the
performance constraints�

We have demonstrated the suitability and simpli�
city of our approach in modeling multi�threaded ar�
chitectures through a walk through example�

References

��	 G�M� Birtwhistle� Demos � Discrete Event Mod�
elling on Simula� London� Macmillan� �����

��	 Henk Corporaal� Transport Triggered Architec�
tures� Design and Evaluation� Ph�D thesis� TU�
Delft� The Netherlands� Sept� �����

�
	 A�J�C� van Gemund� �Performance prediction of
parallel processing systems� The Pamela meth�
odology�� in Proc� �th ACM Int�l Conf� on Super�
computing� Tokyo� July ���
� pp�
���
���

��	 Michael Halbherr� Yuli Zhou and Chris Joerg�
�MIMD Style Parallel Programming Based on
Continuation Passing Threads�� Computation
Structures Group Memo
��� Laboratory for
Computer Science� MIT� April �� �����

��	 J�L� Hennessy and D�A� Patterson� Computer Ar�
chitecture� A Quantitative Approach� Morgan
Kaufmann� �����

��	 Richard Huesdens� Overlapped Transform Cod�
ing of Images� Theory� Application and Realiza�
tion� Ph�D thesis� Delft� The Netherlands� March
�����

��	 G� Kahn� �A semantics of a simple language for
parallel processing�� proceedings of IFIP Con�
gress ����� pp� �������� Amsterdam� ����� El�
sevier North Holland�

��	 W� Kreutzer� System simulation	 programming
styles and languages� Addison�Wesley� �����

��	 Edward A� Lee and T� M� Parks� �Data�ow Pro�
cess Networks�� Proceedings of the IEEE� Vol �
�
No� �� May �����

���	 S� K� Nandy� S� Balakrishnan� and Ed Deprettere�
�SYMPHONY� A Scalable High Performance Ar�
chitecture Framework for Media Applications��
Technical Report� Dec� ���� CAD laboratory� Su�
percomputer Education and Research Centre� In�
dian Institute of Science�

���	 Jack L� Lo� Susan J� Eggers et al� �Convert�
ing Thread�Level Parallelism to Instruction�Level
Parallelism via Simultaneous Multithreading��
ACM Transactions on Computer Systems� �����

���	 H� Schwetman� �Object�oriented simulation mod�
eling with C���CSIM���� in Proc� ���� Winter
Simulation Conference� �����

