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Incremental Nonlinear Dynamic Inversion based Control of a
Generic Hypersonic Vehicle (GHAME)

T. H. Mueller∗ and S. Theodoulis †

Delft University of Technology, Delft, 2628CD, Netherlands

I. Sarras‡

ONERA - The French Aerospace Lab, Palaiseau, 91123, France

The Generic Hypersonic Aerodynamics Model Example (GHAME) provides a practical
benchmark for evaluating advanced control strategies for hypersonic vehicles. Its nonlinear
dynamics and strong aero–propulsive coupling create challenges well suited to nonlinear
inversion methods. This work develops a hierarchical control architecture based on time–scale
separation, combining NDI for attitude and position control with Incremental Nonlinear
Dynamic Inversion (INDI) for angular–rate and velocity control. The controller is implemented
in MATLAB and Simulink and evaluated under synchronized and desynchronized sensor delays.
The results show that delay synchronization markedly increases the admissible delay margin.
The study also reveals a fundamental limitation in the lateral axis: the lateral-directional
dynamics of GHAME are too fast to satisfy the time-scale separation assumption required by
INDI, leading to unreliable linear stability predictions. In contrast, the longitudinal dynamics
do satisfy this assumption and remain well suited to inversion-based control. Overall, the
NDI–INDI structure is effective for the longitudinal motion when delays are synchronized, but
the intrinsic speed of the lateral dynamics imposes a major constraint on its applicability for
lateral control.

Nomenclature
𝛼, 𝜇, 𝛽 = AoA, bank, sideslip angles 𝐶𝐿 , 𝐶𝑌 , 𝐶𝐷 = Stability-axis force coeffs.
𝐶𝑋, 𝐶𝑌 , 𝐶𝑍 = Body-axis force coeffs. 𝐶𝑙 , 𝐶𝑚, 𝐶𝑛 = Moment coeffs.
𝑐ref , 𝑏ref = Ref. chord and span 𝜔𝑎𝑐𝑡 , 𝜁𝑎𝑐𝑡 = Act. natural freq. and damp.
𝑝, 𝑞, 𝑟 = Inertial angular rates 𝛿𝑎, 𝛿𝑒, 𝛿𝑟 = Aileron, elevator, rudder defl.
𝛿𝑣𝑙 , 𝛿𝑣𝑟 = Left/right elevon 𝑢𝑁 , 𝑢𝐸 , 𝑢𝑈 = North, East, Up velocity comp.
𝑓𝑃 = Propulsive force 𝜔𝐻 , 𝜁𝐻 = Noise filter natural freq. and damp.
𝜌 = Air density 𝑞 = Dynamic pressure
𝑀 = Mach number 𝜔𝑎 = Anti-aliasing natural freq.
𝑔0 = Standard gravity 𝑅0 = Standard radius Earth
𝛾 = Flightpath angle 𝜒 = Heading angle
𝒇 𝑔 = Grav. force 𝒇 𝑎, 𝑝 = Aero-prop. force
𝑉𝐾 = Groundspeed 𝛿𝑡 = Throttle setting
(𝒎𝑐)𝛿 = Control moment coefs. 𝑆 = Ref. surface area
𝒎𝑎 = Aero. moment coefs. Δ𝑡 = Sample time
𝒎𝐵 = External moments 𝜏𝑆𝐷 = Sensor delay
BW = Bandwidth 𝜏𝐶𝐷 = Computational delay
𝜔⊕ = Earth angular rate [𝑇]𝑉𝐺 = Geoc.-to-vel. transform
𝜔 = Inertial angular rate [𝑇]𝑉𝐵 = Body.-to-vel. transform
𝜆, 𝑙, ℎ = Lat., long., altitude 𝑰 = Moment of inertia matrix
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I. Introduction
Recent interest in applying Incremental Nonlinear Dynamic Inversion (INDI) to hypersonic vehicles is driven

by the extreme control challenges posed by these platforms. Air-breathing hypersonic vehicles exhibit strong
propulsion–airframe coupling, highly nonlinear and speed-dependent stability characteristics, and structural flexibility
arising from slender geometries and thermal loading [1, 2]. These effects produce rapid variations in aerodynamic forces
and moments that are difficult to model accurately in real time. The reduced reliance of INDI on precise aerodynamic
models therefore makes it an appealing candidate for such environments.

INDI achieves this reduced model dependence by using measurements of the controlled-variable derivatives to
construct an incremental inversion of the dynamics. In an aircraft rate-control study, Smith [3] demonstrated that the
resulting control law becomes largely insensitive to uncertainties in aerodynamic coefficients, centre-of-gravity position,
and inertial properties, since these effects are already embedded in the measured angular accelerations. The same study,
however, showed that this benefit comes at the cost of increased sensitivity to sensor delay.

To assess the applicability of INDI in the hypersonic regime, this study uses the Generic Hypersonic Aerodynamic
Model Example (GHAME), a publicly released NASA model of a single-stage-to-orbit vehicle. GHAME combines
aerodynamic and propulsive characteristics of turbojet, ramjet, and scramjet propulsion across Mach 0–24 and captures
the dominant nonlinearities governing hypersonic flight [4]. Using this model, the paper develops and evaluates a
cascaded INDI controller and examines its robustness under synchronized and desynchronized sensor delays to determine
whether the method’s inherent robustness extends to flight conditions characterized by strong nonlinearities and rapid
variations in aerodynamic behavior. The main contribution is the first systematic application and assessment of an
INDI-based architecture on a high-fidelity hypersonic model.

II. Modelling

A. GHAME Vehicle Model
The GHAME is a high-fidelity aerodynamic and geometric model developed at the NASA Ames Research Center

and extensively tested at the Dryden Flight Research Center [4]. It was conceived during the early phases of the NASP
initiative to provide accurate and physically representative aerodynamic data for hypersonic vehicle research. GHAME
was designed as a generic hypersonic configuration capable of performing a SSTO mission, involving horizontal takeoff
using air-breathing propulsion, acceleration to orbital velocity, orbital insertion, atmospheric reentry, and unpowered
gliding recovery. The aerodynamic database spans the complete mission envelope, including subsonic, transonic,
hypersonic, and reentry flight regimes [5].

The model enables high-fidelity Six-Degree-of-Freedom (6 DOF) simulations and produces a dynamic response
representative of hypersonic flight. Consequently, GHAME has become a benchmark for evaluating control architectures,
developing guidance strategies, and conducting trajectory optimization studies. Multiple versions of the model have
been implemented in Fortran by P. Zipfel, using the original NASA Ames aerodynamic dataset as documented in White
et al. [5] and detailed in his textbook [6]. More recently, Goz [7] developed a Simulink-based implementation of a
simplified GHAME model assuming a nonrotating, flat Earth, constant mass and first-order actuator dynamics.

B. Dynamics
The simulation in this work is a Simulink implementation of the full six-degree-of-freedom Hyper6 C++ flight-

dynamics model described by Zipfel [6].∗ Hyper6 is the most complete and rigorously tested version of the GHAME
model. It incorporates a rotating elliptical Earth, propellant depletion with the associated variation in mass and moment
of inertia, and the coupled translational and rotational equations of motion. The Simulink implementation used here is a
direct port of these dynamics and has been extensively verified, providing a high-fidelity environment for evaluating the
proposed control architecture.

∗Simulations can be downloaded from: https://arc.aiaa.org/doi/suppl/10.2514/4.107535

2

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

12
, 2

02
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

6-
05

48
 



Fig. 1 Schematic configuration of the GHAME vehicle model

C. Aerodynamics and Forces
The GHAME aerodynamic database was developed by combining theoretical flow models and empirical data from

multiple legacy hypersonic vehicle configurations. Longitudinal aerodynamic coefficients were constructed using
blended data from the Space Shuttle Orbiter, lifting-body vehicles, a swept double-delta wing platform, and a 60◦
half-angle cone. For lateral-directional coefficients, Space Shuttle and double-delta data were used at Mach numbers
below 8. Above this threshold, only Space Shuttle data were retained. Drag coefficients were scaled to match lift-to-drag
ratios consistent with measured Space Shuttle performance. All coefficients were normalized using a fixed aerodynamic
reference area and span. To extend the aerodynamic model into the hypersonic regime, a modified Newtonian impact
theory was applied. This combination of analytical and empirical methods yields an aerodynamic model capable of
capturing the nonlinearities, cross-coupling, and regime transitions critical for high-fidelity hypersonic flight simulation
[5].

The aerodynamic force and moment coefficients are expressed as linear combinations of the control surface
deflections, angular rates, sideslip angle 𝛽, and angle of attack 𝛼. In simulations with wind, the aerodynamic angles are
used directly, whereas in wind-free conditions the corresponding kinematic angles apply. All aerodynamic data follow
the GHAME reference model and were generated under the assumption of zero sideslip, although 𝛽 may vary during
simulation. Additionally, the coefficients 𝐶𝐿𝑞 , 𝐶𝑌0 , 𝐶𝑌𝑝 , 𝐶𝑌𝑟 , 𝐶𝑙0 , and 𝐶𝑛0 are negligible across the evaluated flight
envelope [5]. The force coefficients are defined as follows:

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼 𝛼 + 𝐶𝐿𝛿𝑒 𝛿𝑒,
𝐶𝑌 = 𝐶𝑌𝛽 𝛽 + 𝐶𝑌𝛿𝑎 𝛿𝑎 + 𝐶𝑌𝛿𝑟 𝛿𝑟 ,
𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷𝛼 𝛼,

(1)

where 𝛿𝑒 is the elevator deflection, 𝛿𝑎 the aileron deflection, and 𝛿𝑟 the rudder deflection. The moment coefficients are
calculated as follows:

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝛼 𝛼 + 𝐶𝑚𝛿𝑒 𝛿𝑒 + 𝐶𝑚𝑞
𝑞 𝑐ref
2𝑉TAS

,

𝐶𝑙 = 𝐶𝑙𝛽 𝛽 + 𝐶𝑙𝛿𝑎 𝛿𝑎 + 𝐶𝑙𝛿𝑟 𝛿𝑟 + 𝐶𝑙𝑝
𝑝 𝑏ref
2𝑉TAS

+ 𝐶𝑙𝑟
𝑟 𝑏ref
2𝑉TAS

,

𝐶𝑛 = 𝐶𝑛𝛽 𝛽 + 𝐶𝑛𝛿𝑟 𝛿𝑟 + 𝐶𝑛𝛿𝑎 𝛿𝑎 + 𝐶𝑛𝑝
𝑝 𝑏ref
2𝑉TAS

+ 𝐶𝑛𝑟
𝑟 𝑏ref
2𝑉TAS

.

(2)

3

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

12
, 2

02
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

6-
05

48
 



where 𝑝, 𝑞, and 𝑟 denote the roll, pitch, and yaw rates of the vehicle with respect to Earth in body axes, respectively.
Then 𝑐ref is the reference chord, 𝑏ref the reference span of the aircraft and𝑉TAS is the true airspeed. All partial derivatives
with respect to angles have units of 1/◦, while those with respect to angular rates have units of 1/rad.

The lift coefficient 𝐶𝐿 is defined as positive upwards and perpendicular to the velocity vector, the drag coefficient
𝐶𝐷 is positive in the direction opposite to flight and the side force coefficient 𝐶𝑌 is positive to the right (starboard).
Rolling moment 𝐶𝑙 is positive for right–wing–down roll, pitching moment 𝐶𝑚 for nose-up rotation, and yawing moment
𝐶𝑛 for nose-right yaw. Since the aerodynamic force coefficients are expressed in stability coordinates, they must be
transformed into body coordinates using 𝛼:

𝐶𝑋 = −𝐶𝐷 cos𝛼 + 𝐶𝐿 sin𝛼,
𝐶𝑍 = −𝐶𝐷 sin𝛼 − 𝐶𝐿 cos𝛼.

(3)

The total force vector [ 𝑓𝑎,𝑝]𝐵 is computed by combining the aerodynamic forces with the propulsive force. The
total force vector in body coordinates is given by:

[ 𝑓𝑎,𝑝]𝐵 ≡

𝑋

𝑌

𝑍


𝐵

=


𝑞𝑆𝐶𝑋 + 𝑓𝑃

𝑞𝑆𝐶𝑌

𝑞𝑆𝐶𝑍

 , (4)

where 𝑞 = 1
2 𝜌𝑉

2
TAS is the dynamic pressure, in which 𝜌 is the air density, 𝑆 is the wing reference area and 𝑓𝑃 is the

propulsive force. The aerodynamic moment vector in the body frame is computed as:

[𝑚𝐵]𝐵 ≡

𝐿

𝑀

𝑁


𝐵

= 𝑞𝑆


𝐶𝑙𝑏ref

𝐶𝑚𝑐ref

𝐶𝑛𝑏ref

 , (5)

The aerodynamic coefficients are tabulated over a two–dimensional grid in angle of attack and Mach number,
spanning 𝛼 ∈ [−3◦, 21◦] and 𝑀 ∈ [0.4, 24]. For simulation, most coefficients are interpolated independently on this
grid. The only exceptions are the grouped forms 𝐶𝐷 = 𝐶𝐷0 +𝐶𝐷𝛼𝛼, 𝐶𝑀 = 𝐶𝑀0 +𝐶𝑀𝛼

𝛼, and 𝐶𝐿 = 𝐶𝐿0 +𝐶𝐿𝛼𝛼, which
are combined first and then interpolated as single variables. This follows the implementation approach described in [7].

D. Actuator Model
The vehicle contains one rudder and two elevons located at the trailing edge of the wing. The elevons function

simultaneously as elevator and aileron control surfaces. Their symmetric and antisymmetric combinations define the
elevator and aileron control inputs, respectively, according to:

𝛿𝑒 =
𝛿𝑣𝑙 + 𝛿𝑣𝑟

2
, 𝛿𝑎 =

𝛿𝑣𝑙 − 𝛿𝑣𝑟
2

, (6)

where 𝛿𝑣𝑙 and 𝛿𝑣𝑟 are the left and right elevon deflections, both defined as positive in the upward direction. The rudder
deflection 𝛿𝑟 is defined to be positive for a trailing-edge right deflection. Each control surface is subject to deflection
limits of ±20◦ and rate limits of ±150◦/s. To realistically capture actuator dynamics, all surfaces are modeled using a
second-order system with rate and position limits. The actuator transfer function from commanded deflection 𝛿𝑐 to
realized deflection 𝛿 is given by:

𝐴(𝑠) = 𝛿(𝑠)
𝛿𝑐 (𝑠)

=
𝜔2
𝑎𝑐𝑡

𝑠2 + 2𝜁𝑎𝑐𝑡𝜔𝑎𝑐𝑡 𝑠 + 𝜔2
𝑎𝑐𝑡

, (7)

where 𝜔𝑎𝑐𝑡 = 50 rad/s is the natural frequency and 𝜁𝑎𝑐𝑡 = 0.707 is the damping ratio. To enforce physical constraints,
the implementation includes a saturation block limiting the input command 𝛿𝑐 to the allowable deflection range ±20◦

and a rate limiter which is calculated as 150𝜋
180

2𝜁𝑎𝑐𝑡
𝜔𝑎𝑐𝑡

applied to the difference in deflection , ensuring the actuator slew rate
does not exceed prescribed limits.
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E. Propulsion System Model
The engine models a generic combined-cycle propulsion system that switches automatically between turbojet, ramjet,

and scramjet modes based on Mach number. The inlet is represented as a variable-geometry system whose effective
capture area depends on Mach number and angle of attack, reflecting the changing shock structure on the forebody. The
thrust is computed as a product of throttle setting, specific impulse, atmospheric density, true airspeed, and the inlet
capture–area coefficient. Implementation details follow the formulation in [6]. The commanded throttle ranges from
idle at 0.05 to a maximum value of 2.

Both the capture–area coefficient and the specific impulse are stored on lookup tables in Mach–angle–of–attack and
Mach–throttle space, respectively, and are interpolated using the same method applied to the aerodynamic coefficients.
The propulsion model also includes fuel consumption. The instantaneous thrust determines the fuel mass flow rate,
which is integrated to update the remaining fuel. The total vehicle mass decreases accordingly. As fuel is depleted, the
moment of inertia matrix is updated by interpolating linearly between the full–fuel and dry–mass inertia tensors. The
simulation terminates automatically once the fuel level drops below zero.

F. Sensor Dynamics
The rate gyroscopes and accelerometers are modeled with explicit sensor dynamics. These devices are subject to two

main effects: filtering to prevent aliasing and computation delays introduced by the sensor processor. The anti–aliasing
filter is required because the Inertial Measurement Unit (IMU) signals are sampled at a fixed interval Δ𝑡 = 0.01 s. The
corresponding sampling frequency and Nyquist frequency are:

𝜔𝑠 =
2𝜋
Δ𝑡

= 628.32 rad/s, 𝜔𝑁 =
𝜔𝑠

2
= 314.16 rad/s. (8)

Any signal content above 𝜔𝑁 will fold into the lower frequency band, producing aliasing in the sampled data.
Since sensor noise is broadband and not naturally band–limited, a low–pass filter is required before sampling. To
guarantee sufficient attenuation of out–of–band noise, the cutoff is conservatively placed at half the Nyquist frequency,
𝜔𝑎 =

𝜔𝑁
2 = 157.08 rad/s. The anti–aliasing dynamics are represented as a first–order low–pass transfer function:

𝐺𝑎 (𝑠) =
𝜔𝑎

𝑠 + 𝜔𝑎
. (9)

In addition to filtering, the IMU introduces a finite computation delay. This effect can be represented exactly by a
pure time delay which is given by the nonrational transfer function:

𝐺SD (𝑠) = 𝑒−𝜏𝑆𝐷𝑠 , (10)

which is referred to as the sensor delay transfer function. The exact duration of this sensor delay 𝜏𝑆𝐷 is uncertain and
therefore not modeled as a fixed constant, but it is expected to be on the order of one to several sampling intervals. Since
its precise value cannot be specified a priori, the sensor delay is not fixed in the nominal simulation model. Instead, it is
varied parametrically in the high-fidelity nonlinear simulation studies to evaluate how well the controller can tolerate
such effects.

The overall sensor model therefore consists of a first-order low-pass filter for anti-aliasing, followed by the optional
application of the sensor delay transfer function when robustness to measurement delays is investigated.

III. Flight Control System
In this framework, the main control approach is INDI. To the author’s knowledge, INDI has not previously been

applied to hypersonic vehicle control. It is well suited to this problem because hypersonic flight is characterized by
large variations in aerodynamic coefficients, strong state coupling, and significant uncertainty in aerodynamic models.
Classical NDI relies heavily on accurate modeling, which can limit performance under such conditions. INDI, on the
other hand, updates the control effectiveness in real time using measured accelerations and angular rates, making it
more robust to modeling errors and rapid aerodynamic changes. In the proposed four–loop architecture, INDI is used in
the inner angular–rate loop, where fast and reliable response is essential for stabilizing the outer loops. For relationships
that are purely kinematics, standard NDI is applied to achieve exact inversion without relying on aerodynamic models.
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The cascaded Flight Control System (FCS) is organized into four nested loops, each operating at a distinct dynamic
level. The innermost rate loop stabilizes the angular rates, while the successive outer loops regulate attitude, velocity,
and finally position. This hierarchical structure, illustrated in Fig. 2, ensures that the fast inner–loop dynamics provide
stability for the slower outer–loop objectives, thereby achieving a natural separation of time scales and facilitating
controller design. The subscript 𝐾 is used throughout to denote quantities derived from Earth–relative velocities rather
than air–relative ones. This distinction is crucial because the onboard Inertial Navigation System (INS) provides only the
Earth–relative velocity vector without direct wind measurements, and thus, it cannot compute the air–relative velocity.
Consequently, all kinematic quantities used in the control system are expressed relative to Earth motion.

Position
Control

Velocity
Control

Attitude
Control

Rate
Control

Model
Uncertainty

Actuators

Model
Uncertainty

Fig. 2 Cascaded flight control architecture used in this work.

Model Assumptions for Control Law Development
The complete flight dynamics model captures all major physical effects relevant to the vehicle’s motion. Such

fidelity is essential for accurate simulation and reliable performance evaluation. However, formulating a control law
directly from this high-fidelity model would introduce unnecessary complexity, complicating analytical derivations,
controller tuning, and practical implementation.

A simplified dynamic model is therefore used for control law development. Only effects whose omission has
a negligible impact on the vehicle’s response are removed, resulting in a reduced-order model that preserves the
dominant control-relevant dynamics. This simplification makes the analytical derivation of the control law feasible
while maintaining sufficient accuracy within the intended flight envelope. The final control law is then validated using
the complete high-fidelity model to confirm its performance under all relevant physical effects and interactions.

1) Non-Rotating Earth
The angular rate of Earth is assumed to be zero, 𝜔⊕ = 0. The rotational velocity of the Earth introduces transport
and Coriolis accelerations in the equations of motion. For sub-orbital flight in the sensible atmosphere, the
transport acceleration is very small compared to aerodynamic and gravitational forces. Its maximum value,
occurring at the equator, is about 0.034 m/s2 (3.5 × 10−3 𝑔0), and it decreases with latitude to zero at the poles.
The Coriolis acceleration magnitude is bounded by 2𝜔⊕𝑉 ; at 𝑉 = 300 m/s it is 0.044 m/s2 ≈ 4.5 × 10−3 𝑔0, at
𝑉 = 1500 m/s it is 0.22 m/s2 ≈ 2.2 × 10−2 𝑔0, and it only becomes significant (≈ 0.116 𝑔0) at orbital velocities.
For the control loops designed here, these values are smaller than typical modeling and actuation uncertainties,
so omitting them simplifies the derivation without altering closed-loop behavior.

2) Spherical Earth Model
The high-fidelity model represents the Earth as an ellipsoid, but the reduced-order control model assumes a
spherical Earth, because the difference between an ellipsoidal and spherical representation is negligible for the
purposes of controller design. This simplification removes the distinction between geodetic and geocentric
latitude and makes the Earth’s radius constant rather than latitude dependent. Quantitatively, the WGS–84
equatorial and polar radii differ by approximately 21.4 km. At a flight altitude of 91 km, the equatorial and polar
distances from Earth’s center are 6469.137 km and 6447.752 km respectively, based on the WGS–84 radii. The
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corresponding gravitational accelerations are 𝑔eq (91 km) ≈ 9.516 m s−2 and 𝑔pol (91 km) ≈ 9.547 m s−2, so the
maximum latitude-dependent difference Δ𝑔 ≈ 0.031 m s−2 corresponds to roughly 0.33%. This variation is
small and has negligible influence on the closed-loop dynamics considered here.

A further simplification to a flat Earth would eliminate the curvature terms from the equations of motion. In
particular, omitting the term 𝑉2/(𝑔𝑅) removes the centrifugal contribution that reduces the net force which
the aerodynamic lift must balance. As the vehicle’s speed approaches the orbital condition 𝑉2 = 𝑔𝑅, this
centrifugal contribution becomes large enough to offset gravity, so the aerodynamic lift required to maintain
altitude decreases toward zero. Because induced drag depends directly on lift, it also decreases toward zero in
this regime. This reduction is a real physical effect that influences high-speed aerodynamic behavior. For this
reason, the flat-Earth assumption is not adopted and the reduced-order control model retains the curvature terms.

3) Central Gravity Field
In the reduced-order control model, the gravitational field is taken to be purely central, meaning that zonal
harmonics such as 𝐽2 are omitted. Combined with the spherical Earth assumption, which already removes
geometric latitude dependence, the only remaining variation in 𝑔 is its inverse-square dependence on the distance
from Earth’s center.

Assuming constant gravity introduces a larger error when the 1/𝑟2 decrease with altitude is ignored: evaluating
𝑔(ℎ) = 𝑔0 (𝑅0/(𝑅0 + ℎ))2 at ℎ = 91 km yields 𝑔(91 km) ≈ 9.530 m s−2, so the constant-gravity approximation
overestimates gravitational acceleration by about 0.277 m s−2, or approximately 2.83%. Although this altitude-
induced variation is comparable to the error introduced by neglecting Coriolis effects at 1500 m/s, it is retained
because it is straightforward to include and does not introduce any additional complexity into the reduced-order
model.

4) Stationary Atmosphere Model
The reduced-order control model assumes steady atmospheric conditions and ignores changes in wind over time
or location. At hypersonic speeds, the contribution of wind to the total airspeed is negligible compared to the
vehicle’s forward velocity, and its rotational influence on the body dynamics is effectively zero [8]. At subsonic
speeds, [9] have shown that INDI exhibits excellent disturbance rejection properties against constant wind and
wind gusts, further reducing the need to model wind explicitly during control synthesis. Moreover, the onboard
INS has no direct access to wind information, making it unrealistic to incorporate wind into the controller as a
measured quantity. It is therefore more appropriate to treat wind as a disturbance that must be rejected rather
than as a modeled input. This assumption simplifies the controller and allows the design process to focus on the
core vehicle dynamics. Wind and turbulence effects are, however, retained in the high-fidelity model to quantify
performance in realistic atmospheric conditions.

5) Coordinated Flight and Constant Speed
The attitude control loop regulates the sideslip angle 𝛽𝐾 to zero, so both the velocity and position control loops
are formulated under the assumption 𝛽𝐾 = 0. Similarly, the velocity control loop ensures that the commanded
speed is reached and maintained, allowing the position control loop to be formulated under the additional
assumption 𝑉𝐾 = 𝑉cmd

𝐾
. Together, these assumptions reduce the number of states that must be considered in the

outer loops and provide the additional benefit of filtering out small-scale fluctuations in the computed velocity
and sideslip angle, since both quantities are treated as constant.

6) Small-Displacements
The change in longitude 𝑙 and latitude 𝜆 is negligible over the short time scales relevant to the velocity dynamics.
As a result, ¤𝑙 and ¤𝜆 are omitted from the attitude control loop design [10]. Numerical evaluation confirms that
their effect on the velocity response is insignificant, with differences in the computed states below 10−6.

7) Accurate Control Effectiveness and Actuator Dynamics
Throughout the control-law derivation, it is assumed that the estimated control effectiveness matrix matches the
true system behavior and that the modeled actuator dynamics accurately represent the physical actuator response.
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These assumptions ensure that the nonlinear inversion remains valid and that the incremental control updates
behave as predicted by the reduced-order model.

IV. Control Law Design
This section presents the design of the dynamic inversion control laws for each loop in the cascaded architecture.

It begins with the angular–rate control loop, where both NDI and INDI formulations are developed, including the
method for reconstructing previous control inputs and the selection criteria for the low–pass filter used in the INDI
implementation. The next part addresses the attitude–control loop, describing the derivation of the nonlinear inversion
law used to track commanded attitudes. The velocity–control loop is then introduced, outlining its inversion law and its
role in regulating airspeed and flight–path dynamics. Finally, the position–control loop is discussed, including its two
functional modes for altitude and heading tracking.

A. Position Control Loop
The outermost loop governs the vehicle’s position by generating reference commands for velocity, heading, and

flight–path angle, which are tracked by the velocity–control loop. Its purpose is twofold. First, it enables trajectory
tracking, allowing the vehicle to follow prescribed references in longitude, latitude, and altitude. Second, it enables
test–case generation, where the performance of heading and altitude tracking is evaluated. The system is formulated
using the state vector, output vector, and control input shown below, where 𝜆 denotes the vehicle’s latitude, 𝑙 its longitude,
and ℎ its altitude above a spherical Earth†:

∑︁ 
𝒙4 = [𝜆 𝑙 ℎ]⊤,
𝒚4 = 𝒉4 (𝒙4) = 𝒙4,

𝒖4 = [𝑢𝑁 𝑢𝐸 𝑢𝑈]⊤.
(11)

In this context the heading angle 𝜒𝐾 is defined in the standard navigation convention: 𝜒𝐾 = 0◦ corresponds to
motion due north, 𝜒𝐾 = 90◦ to motion due east and so forth. A positive latitude rate corresponds to northward motion, a
positive longitude rate corresponds to eastward motion, and a positive altitude rate corresponds to an increase in altitude.

With this convention, the translational kinematics for a point–mass model on a spherical Earth are:

¤𝜆 =
𝑉 ref
𝐾

cos 𝜒𝐾 cos 𝛾𝐾
𝑅0 + ℎ

, ¤𝑙 =
𝑉 ref
𝐾

sin 𝜒𝐾 cos 𝛾𝐾
(𝑅0 + ℎ) cos𝜆

, ¤ℎ = 𝑉 ref
𝐾 sin 𝛾𝐾 , (12)

with 𝑅0 the mean Earth radius, 𝑉 ref
𝐾

the commanded geographic speed, 𝜒𝐾 heading, and 𝛾𝐾 the flight–path angle. Due
to the constant speed assumption 𝑉 ref

𝐾
is treated as constant.

For nonlinear dynamic inversion it is convenient to define an intermediate input vector:

𝒖 =


𝑢𝑁

𝑢𝐸

𝑢𝑈

 =


𝑉 ref
𝐾

cos 𝜒𝐾 cos 𝛾𝐾
𝑉 ref
𝐾

sin 𝜒𝐾 cos 𝛾𝐾
𝑉 ref
𝐾

sin 𝛾𝐾

 , (13)

where 𝑢𝑁 , 𝑢𝐸 , and 𝑢𝑈 denote the linear velocity components of the vehicle in the geographic North–East-Up coordinate
system. These components serve as intermediate control variables: when mapped through the spherical–dependent
matrix 𝑮4 (𝒙), they yield the correct time derivatives of (𝜆, 𝑙, ℎ). The dynamics of the output vector can then be
expressed in control–affine form as:

¤𝒚4 = 𝒇 4 (𝒙) + 𝑮4 (𝒙) 𝒖4. (14)
From the control–affine representation the output dynamics can be written explicitly as:

¤𝜆
¤𝑙
¤ℎ

 =


1

𝑅0 + ℎ
0 0

0
1

(𝑅0 + ℎ) cos𝜆
0

0 0 1



𝑢𝑁

𝑢𝐸

𝑢𝑈

 . (15)

†For a spherical Earth the distinction between geocentric and geodetic disappears, so that 𝜆 = 𝜆𝑐 = 𝜆𝑑 and ℎ = ℎ𝑐 = ℎ𝑑 .
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In nonlinear dynamic inversion, the control objective is expressed in terms of virtual controls, defined as the desired
geographic rates 𝝂4 = [ ¤𝜆 ¤𝑙 ¤ℎ]⊤cmd which are obtained from the reference trajectory 𝒚cmd

4 = [𝜆 𝑙 ℎ]⊤cmd by suitable
tracking laws. Enforcing ¤𝒚4 = 𝝂4 gives:

𝝂4 = 𝑮4 (𝒙) 𝒖4, (16)

so that the required linear velocities are:
𝒖cmd

4 = 𝑮−1
4 (𝒙) 𝝂4, (17)

which yields the explicit inversion law:
𝑢𝑁

𝑢𝐸

𝑢𝑈

cmd

=


(𝑅0 + ℎ) 0 0

0 (𝑅0 + ℎ) cos𝜆 0
0 0 1



𝜈𝜆

𝜈𝑙

𝜈ℎ

 , (18)

where 𝜈𝜆, 𝜈𝑙 , and 𝜈ℎ denote the virtual control inputs for the longitudinal, latitudinal, and vertical channels, respectively.
The commanded flight–path and heading angles are obtained directly by inverting the kinematic relations:

𝛾cmd
𝐾 = arcsin

(
𝑢𝑈

𝑉cmd
𝐾

)
, 𝜒cmd

𝐾 = atan2 (𝑢𝑁 , 𝑢𝐸) . (19)

These angles, together with the reference speed, form the commanded inputs to the velocity control loop.

For control–system testing, however, the objective is not to follow arbitrary reference trajectories, but to assess how
well the system can maintain a prescribed heading or climb at a fixed climb rate. Therefore, two additional test modes
are implemented to facilitate these specific scenarios.

1) Mode 1: Constant–rate climb to altitude:
In this mode, the vehicle is commanded to reach a target altitude ℎref while maintaining a specified vertical rate
¤ℎref . The up–velocity component is therefore imposed directly as:

𝑢cmd
𝑈 = ¤ℎref . (20)

This value is substituted into Eq. (19) to compute the commanded flight–path angle 𝛾cmd
𝐾

. Once the altitude error
is eliminated (i.e. ℎ = ℎref), the climb rate command is set to zero. This mode can be combined with Mode 2.

2) Mode 2: Heading–hold:
In this mode, when heading–hold is enabled (e.g. mheading = 1), any heading value calculated from Eq. (19)
is overridden and the commanded heading is specified directly by the reference heading:

𝜒cmd
𝐾 = 𝜒ref

𝐾 , (21)

while the commanded flight–path angle 𝛾cmd
𝐾

is still obtained from Eq. (19) to ensure that the altitude ℎ tracks its
reference ℎcmd.

This completes the design of the position–control loop. Its feasibility depends on several conditions that ensure the
inversion law is well defined and that the commanded angles remain physically meaningful. The input–gain matrix
𝑮4 (𝒙) must be invertible, which requires cos𝜆 ≠ 0 and therefore excludes the poles where the geographic formulation
is ill defined. The inner velocity loop must accurately track the commanded reference speed, and the north and east
velocity components (𝑢𝑁 , 𝑢𝐸) cannot both be zero, because the commanded heading 𝜒cmd

𝐾
is otherwise undefined.

B. Velocity Control Loop
The velocity control loop governs the translational dynamics of the vehicle and is responsible for tracking the

flight-path command 𝒖cmd
4 . It generates the throttle, 𝛿𝑇 , bank-angle, 𝜇𝐾 , and angle-of-attack, 𝛼𝐾 , commands 𝒖cmd

3
for the inner attitude control loop. As in the previous section, the controller has access only to the kinematic,
groundspeed-relative values 𝛼𝐾 and 𝜇𝐾 provided by the INS, which means that the on-board model incurs an error
when wind is present.

In contrast to the attitude and position loop, where the dynamics are purely kinematic, the translational dynamics
depend directly on uncertain aerodynamic forces. This makes INDI particularly suitable for this loop. Its distur-
bance–rejection mechanism allows the controller to compensate for modeling errors and neglected effects, which appear

9

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

12
, 2

02
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

6-
05

48
 



as disturbances on the slower time scale of the velocity dynamics [11]. The system is defined using the following state,
output, and input variables: ∑︁ 

𝒙3 = [𝑉𝐾 𝜒𝐾 𝛾𝐾 ]⊤,
𝒚3 = 𝒉3 (𝒙3) = 𝒙3,

𝒖3 = [𝛿𝑇 𝜇𝐾 𝛼𝐾 ]⊤.
(22)

Here,𝑉𝐾 denotes the groundspeed. The angle of attack 𝛼𝐾 is positive for nose–up motion relative to the groundspeed
velocity vector, and the bank angle 𝜇𝐾 is positive for a right–wing–down rotation about the groundspeed velocity vector.
The throttle command 𝛿𝑇 denotes the throttle setting and takes values in the interval [0.05, 2]. The governing dynamics
are formulated by expressing Newton’s Second Law in the air-path coordinate system. The resulting time derivatives of
the velocity states are given by [12]:

¤𝒙3 = 𝑴−1
(
[𝑇]𝑉𝐵 [ 𝑓𝑎,𝑝]𝐵 + [𝑇]𝑉𝐺 [ 𝑓𝑔]𝐺 + 𝑚𝒂corr

)
, where 𝑴 =


𝑚 0 0
0 𝑚𝑉𝐾 cos 𝛾𝐾 0
0 0 −𝑚𝑉𝐾

 . (23)

Here, [ 𝑓 ]𝐵 is the aero-propulsive force vector expressed in body coordinates, [ 𝑓𝑔]𝐺 is the gravitational force
vector in expressed in geocentric coordinates, [𝑇]𝑉𝐺 and [𝑇]𝑉𝐵 are transformation matrices from geocentric and body
coordinates to the velocity coordinates, which are given by Eq. (26) and 𝒂corr contains rotation and curvature corrections
[12]. The spherical Earth assumption implies that the Earth radius function 𝑅0 (𝜆𝑑) reduces to the constant mean
spherical Earth radius 𝑅0. In this case, the corrections are:

𝒂corr =


𝜔2

⊕𝑅0 cos𝜆 (sin 𝛾𝐾 cos𝜆 − cos 𝛾𝐾 sin𝜆 cos 𝜒𝐾 )

2𝜔⊕𝑉𝐾 (sin𝜆 cos 𝛾𝐾 − cos𝜆 sin 𝛾𝐾 cos 𝜒𝐾 ) +
𝑉2
𝐾

𝑅0
cos2 𝛾𝐾 tan𝜆 sin 𝜒𝐾 + 𝜔2

⊕𝑅0 cos𝜆 sin𝜆 sin 𝜒𝐾

−2𝜔⊕𝑉𝐾 cos𝜆 sin 𝜒𝐾 −
𝑉2
𝐾

𝑅0
cos 𝛾𝐾 − 𝜔2

⊕𝑅0 cos𝜆(cos𝜆 cos 𝛾𝐾 + sin 𝛾𝐾 sin𝜆 cos 𝜒𝐾 )


. (24)

With the non-rotating Earth assumption, all terms containing 𝜔⊕ vanish. Together, this yields the simplified
spherical-Earth form of the velocity dynamics:


¤𝑉𝐾
¤𝜒𝐾
¤𝛾𝐾

 =


𝑚 0 0
0 𝑚𝑉𝐾 cos 𝛾𝐾 0
0 0 −𝑚𝑉𝐾


−1 ©­­­­«

[𝑇]𝑉𝐵

𝑋

𝑌

𝑍


𝐵

+ 𝑚 [𝑇]𝑉𝐺


0

0
𝐺𝑀

(𝑅0+ℎ)2


𝐺

+ 𝑚


0

𝑉2
𝐾

𝑅0
cos2 𝛾𝐾 tan𝜆 sin 𝜒𝐾

−𝑉
2
𝐾

𝑅0
cos 𝛾𝐾


ª®®®®¬
. (25)

In the gravitational force term, 𝐺𝑀 denotes the Earth’s gravitational parameter. Although [𝑇]𝑉𝐵 is normally
written in its full three–angle form, the condition 𝛽𝐾 = 0 reduces it to the simplified expression shown below. The
corresponding transformation matrix [𝑇]𝑉𝐺 taken from the same reference is placed alongside it [13].

[𝑇]𝑉𝐵 =


cos𝛼𝐾 0 sin𝛼𝐾

− sin𝛼𝐾 sin 𝜇𝐾 − cos 𝜇𝐾 cos𝛼𝐾 sin 𝜇𝐾
− sin𝛼𝐾 cos 𝜇𝐾 sin 𝜇𝐾 cos𝛼𝐾 cos 𝜇𝐾

 , [𝑇]𝑉𝐺 =


cos 𝛾 cos 𝜒 cos 𝛾 sin 𝜒 − sin 𝛾
− sin 𝜒 cos 𝜒 0

sin 𝛾 cos 𝜒 sin 𝛾 sin 𝜒 cos 𝛾

 . (26)

Next, it is noted that 𝜇𝐾 , 𝛼𝐾 , and 𝛿𝑇 do not appear in an affine form in Eq. (25) because the aerodynamic forces
contain nonlinear trigonometric couplings with these inputs. The following step is to express the nonlinear dynamics in
the standard input-affine form:

¤𝒙3 = 𝒇 3 (𝒙3) + 𝑮3 (𝒙3) 𝒖3. (27)

This can be partially accomplished by separating the force contributions to isolate the effects of bank angle, angle of
attack, and thrust setting on the dynamics. The propulsive force is modeled as 𝑓𝑝 = 𝑞𝑆𝐶𝑋𝑇 𝛿𝑇 , and, using the axial
force definition in Eq. (4), the body–axis force relation becomes [𝑋]𝐵 = 𝑞𝑆

(
𝐶𝑋 + 𝐶𝑋𝑇 𝛿𝑇

)
, showing that thrust enters

the dynamics in the same nondimensional manner as the aerodynamic coefficients. Since the velocity dynamics are
formulated in the air–path coordinate system, the body–axis force vector is first transformed using [𝑇]𝑉𝐵. The resulting
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expressions contain products of cos𝛼𝐾 , sin𝛼𝐾 , and the body–axis coefficients 𝐶𝑋 and 𝐶𝑍 . To simplify these terms, the
standard relations between body–axis and stability–axis coefficients are used:

𝐶𝐷 = − (cos𝛼𝐾 𝐶𝑋 + sin𝛼𝐾 𝐶𝑍 ) , 𝐶𝐿 = sin𝛼𝐾 𝐶𝑋 − cos𝛼𝐾 𝐶𝑍 ,

allowing the trigonometric combinations in the velocity–axis forces to be replaced by the physically meaningful drag
and lift coefficients: 

𝑋

𝑌

𝑍


𝑉

= [𝑇]𝑉𝐵

𝑋

𝑌

𝑍


𝐵

= 𝑞𝑆


cos𝛼𝐾 𝐶𝑋𝑇 𝛿𝑇 − 𝐶𝐷

− sin 𝜇𝐾
(
𝐶𝑋𝑇 𝛿𝑇 sin𝛼𝐾 + 𝐶𝐿

)
− cos 𝜇𝐾 𝐶𝑌

− cos 𝜇𝐾
(
𝐶𝑋𝑇 𝛿𝑇 sin𝛼𝐾 + 𝐶𝐿

)
+ sin 𝜇𝐾 𝐶𝑌


. (28)

Finally, 𝐶𝐿 and 𝐶𝐷 are decomposed using the definitions in Eq. (1) so that the 𝛼𝐾 -dependent terms required by the
controller appear explicitly. Substituting the velocity–axis force vector from Eq. (28) into the translational dynamics of
Eq. (25), and explicitly evaluating the resulting expressions, gives the nonlinear velocity equations shown in Eq. (29):

¤𝑉𝐾 =
𝑞𝑆

𝑚

[
𝐶𝑋𝑇 𝛿𝑇 cos𝛼𝐾 − 𝐶𝐷0 − 𝐶𝐷𝛼𝛼𝐾

]
− 𝑔 sin 𝛾𝐾 ,

¤𝜒𝐾 =
𝑞𝑆

𝑚𝑉𝐾 cos 𝛾𝐾
[
− sin 𝜇𝐾

(
𝐶𝑋𝑇 𝛿𝑇 sin𝛼𝐾 + 𝐶𝐿0 + 𝐶𝐿𝛿𝑒 𝛿𝑒 + 𝐶𝐿𝛼𝛼𝐾

)
− 𝐶𝑌 cos 𝜇𝐾

]
+ 𝑉𝐾
𝑅0

cos 𝛾𝐾 tan𝜆 sin 𝜒𝐾 ,

¤𝛾𝐾 =
𝑞𝑆

𝑚𝑉𝐾

[
cos 𝜇𝐾

(
𝐶𝑋𝑇 𝛿𝑇 sin𝛼𝐾 + 𝐶𝐿0 + 𝐶𝐿𝛿𝑒 𝛿𝑒 + 𝐶𝐿𝛼𝛼𝐾

)
− 𝐶𝑌 sin 𝜇𝐾

]
+ cos 𝛾𝐾

(
𝑉𝐾

𝑅0
− 𝑔

𝑉𝐾

)
.

(29)

Wind effects are not included but could be incorporated, in which case all subscripts 𝐾 change to the wind case 𝐴.
Looking at Eq. (29), the bank angle 𝜇𝐾 enters the dynamics only through the nonlinear terms sin 𝜇𝐾 and cos 𝜇𝐾 . As a
result, the velocity subsystem is not control-affine in 𝜇𝐾 , meaning it cannot be written in the form 𝑓 (𝑥) + 𝑔𝜇 (𝑥) 𝜇𝐾 .
This violates the standard requirement for applying NDI directly with 𝜇𝐾 treated as a control input.

INDI does not have this limitation [14]. By using a first-order Taylor expansion, it can produce an inversion law that
works locally around the operating point. A standard Taylor series expansion is taken about the values at the previous
sampling instant, where 𝒙3,0 = 𝒙3 (𝑡 − Δ𝑡) and 𝒖3,0 = 𝒖3 (𝑡 − Δ𝑡). This yields:

¤𝒙3 = ¤𝒙3,0 +
𝜕 ¤𝒙3 (𝒙3, 𝒖3)

𝜕𝒙3

����
0
Δ𝒙3 +

𝜕 ¤𝒙3 (𝒙3, 𝒖3)
𝜕𝒖3

����
0
Δ𝒖3 + O(Δ𝒙2

3),

≈ ¤𝒙3,0 +
𝜕 ¤𝒙3 (𝒙3, 𝒖3)

𝜕𝒖3

����
0
Δ𝒖3,

(30)

here Δ𝒙3 = 𝒙3 − 𝒙3,0, Δ𝒖3 = 𝒖3 − 𝒖3,0, and the term O(Δ𝒙2
3) collects all higher–order contributions.

As in the standard INDI argument, a time–scale separation assumption is introduced: over one sampling step the
state increment is much smaller than the control increment, Δ𝒙3 ≪ Δ𝒖3. Attitude dynamics typically evolve on a
much faster time scale than the flight path states, so the term involving Δ𝒙3 and the higher–order contributions can
be neglected [15]. From Eq. (29) and by seeing that 𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛿𝑒 𝛿𝑒 + 𝐶𝐿𝛼𝛼𝐾 , the control effectiveness matrix is
found by taking the partial derivatives of each state rate ¤𝒙3 with respect to each control input 𝒖3, which yields:

𝜕 ¤𝒙3
𝜕𝒖3

=
𝑞𝑆

𝑚𝑉𝐾



𝐶𝑋𝑇 cos𝛼𝐾𝑉𝐾 0 −𝑉𝐾 (𝐶𝑋𝑇 𝛿𝑇 sin𝛼𝐾 + 𝐶𝐷𝛼 )

−𝐶𝑋𝑇 sin 𝜇𝐾 sin𝛼𝐾
cos 𝛾𝐾

− cos 𝜇𝐾 (𝐶𝐿 + 𝐶𝑋𝑇 𝛿𝑇 sin𝛼𝐾 ) + 𝐶𝑌 sin 𝜇𝐾
cos 𝛾𝐾

− sin 𝜇𝐾 (𝐶𝑋𝑇 𝛿𝑇 cos𝛼𝐾 + 𝐶𝐿𝛼 )
cos 𝛾𝐾

𝐶𝑋𝑇 cos 𝜇𝐾 sin𝛼𝐾 − sin 𝜇𝐾 (𝐶𝐿 + 𝐶𝑋𝑇 𝛿𝑇 sin𝛼𝐾 ) − 𝐶𝑌 cos 𝜇𝐾 cos 𝜇𝐾 (𝐶𝑋𝑇 𝛿𝑇 cos𝛼𝐾 + 𝐶𝐿𝛼 )


. (31)

To evaluate these partial derivatives, the vehicle is assumed to be in vertical force equilibrium, expressed in a form
consistent with the spherical Earth model:

𝑞𝑆 cos 𝜇𝐾 (𝐶𝐿 + 𝐶𝑋𝑇 𝛿𝑇 sin𝛼𝐾 ) = 𝑚 cos 𝛾𝐾

(
𝑔 −

𝑉2
𝐾

𝑅0

)
. (32)
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This condition makes it possible to replace the aerodynamic term on the left in Eq. (32) by the gravitational–curvature
term on the right. Additionally, the influence of thrust on lift and drag derivatives is neglected, as aerodynamic forces
dominate in magnitude:

𝐶𝐿𝛼𝑞𝑆 ≫ 𝑞𝑆𝐶𝑋𝑇 𝛿𝑇 cos𝛼𝐾 , 𝐶𝐷𝛼𝑞𝑆 ≫ 𝑞𝑆𝐶𝑋𝑇 𝛿𝑇 sin𝛼𝐾 .

The lateral coefficient 𝐶𝑌 is also neglected. With 𝛽𝐾 = 0 its magnitude is much smaller than the lift- and
thrust-related terms, making its contribution to the velocity dynamics negligible. Substituting Eq. (32) into Eq. (31) and
removing negligible terms yields the following expression for the control effectiveness matrix:

𝑮3 (𝒙3, 𝑢3) ≈
𝑞𝑆

𝑚𝑉𝐾



𝐶𝑋𝑇 cos𝛼𝐾𝑉𝐾 0 −𝐶𝐷𝛼𝑉𝐾

−
𝐶𝑋𝑇 sin 𝜇𝐾 sin𝛼𝐾

cos 𝛾𝐾
− 𝑚
𝑞𝑆

(
𝑔 −

𝑉2
𝐾

𝑅0

)
−
𝐶𝐿𝛼 sin 𝜇𝐾

cos 𝛾𝐾

𝐶𝑋𝑇 cos 𝜇𝐾 sin𝛼𝐾 −𝑚 tan 𝜇𝐾 cos 𝛾𝐾
𝑞𝑆

(
𝑔 −

𝑉2
𝐾

𝑅0

)
𝐶𝐿𝛼 cos 𝜇𝐾


. (33)

A virtual input 𝝂3 = [𝜈𝑉 𝜈𝜒 𝜈𝛾]⊤ is now defined to represent the desired rates of the velocity states. Linearizing
the dynamics around the previously measured operating point yields the incremental inversion law:

𝒖cmd
3 = 𝒖3,0 + 𝑮−1

3 (𝒙3,0, 𝒖3,0)
(
𝝂3 − ¤𝒙3,0

)
. (34)

The subscript “0” refers to measurements from the previous timestep. The matrix 𝑮3 becomes non-invertible only
in vertical flight (𝛾𝐾 = ±90◦), knife-edge flight (𝜇𝐾 = ±90◦), or in the limiting case 𝑔 = 𝑉2

𝐾
/𝑅0, where centrifugal

force cancels gravity and lift can no longer steer the velocity vector.

C. Attitude Control Loop
The objective of the attitude loop is to follow the commands 𝒖cmd

3 generated by the velocity control loop. It does
so by producing the angular-rate commands 𝒖cmd

2 for the inner rate loop. The loop regulates the aerodynamic angles
𝜇𝐾 , 𝛼𝐾 , and 𝛽𝐾 , which are used instead of Euler angles because they are directly provided by the INS and match the
commanded quantities from the velocity loop. For the control design, the attitude subsystem is written as:

∑︁ 
𝒙2 = [𝜇𝐾 𝛼𝐾 𝛽𝐾 ]⊤,
𝒚2 = 𝒉2 (𝒙2) = 𝒙2,

𝒖2 = [𝑝 𝑞 𝑟]⊤.
(35)

Here, [𝑝 𝑞 𝑟] are the inertial angular rates. For the NDI design, the attitude kinematics are written in the
control-affine form:

¤𝒙2 = 𝒇 2 (𝒙2) + 𝑮2 (𝒙2) 𝒖2. (36)

A set of dynamic attitude equations suitable for expressing this form was derived by Mooij [16]. The general
dynamics of the aerodynamic angles for a rotating, geodetic Earth are given by:

¤𝜇𝐾 = − ¤𝛼𝐾 sin 𝛽𝐾 + ¤𝜒𝐾 sin 𝛾𝐾 + ¤𝜆 sin 𝜒𝐾 cos 𝛾𝐾 − ( ¤𝑙 + 𝜔⊕) (cos𝜆 cos 𝜒𝐾 cos 𝛾𝐾 + sin𝜆 sin 𝛾𝐾 )
+ 𝑝 cos𝛼𝐾 sin 𝛽𝐾 + 𝑞 sin 𝛽𝐾 + 𝑟 sin𝛼𝐾 cos 𝛽𝐾 ,

¤𝛼𝐾 = − sin 𝜇𝐾
cos 𝛽𝐾

[
¤𝜒𝐾 cos 𝛾𝐾 − ¤𝜆 sin 𝜒𝐾 sin 𝛾𝐾 + ( ¤𝑙 + 𝜔⊕) (cos𝜆 cos 𝜒𝐾 sin 𝛾𝐾 − sin𝜆 cos 𝛾𝐾 )

]
− cos 𝜇𝐾

cos 𝛽𝐾
[
¤𝛾𝐾 − ¤𝜆 cos 𝜒𝐾 − ( ¤𝑙 + 𝜔⊕) cos𝜆 sin 𝜒𝐾

]
− 𝑝 cos𝛼𝐾 tan 𝛽𝐾 + 𝑞 − 𝑟 sin𝛼𝐾 tan 𝛽𝐾 ,

¤𝛽𝐾 = − sin 𝜇𝐾
[
¤𝛾𝐾 − ¤𝜆 cos 𝜒𝐾 − ( ¤𝑙 + 𝜔⊕) cos𝜆 sin 𝜒𝐾

]
+ cos 𝜇𝐾

[
¤𝜒𝐾 cos 𝛾𝐾 − ¤𝜆 sin 𝜒𝐾 sin 𝛾𝐾

]
+ cos 𝜇𝐾

[
( ¤𝑙 + 𝜔⊕) (cos𝜆 cos 𝜒𝐾 sin 𝛾𝐾 − sin𝜆 cos 𝛾𝐾 )

]
+ 𝑝 sin𝛼𝐾 − 𝑟 cos𝛼𝐾 ,

(37)

where 𝑙 is the longitude, 𝜆 is the geodetic latitude, ¤𝑙 and ¤𝜆 are their time derivatives, and 𝜔⊕ is Earth’s angular rate.
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The full expression in Eq. (37) contains several terms that have negligible influence on the control law. The
body–rate contributions must be retained, and the flight–path rates [ ¤𝛾𝐾 ¤𝜒𝐾 ] remain significant for maneuvering. Under
the Small-Displacement Assumption, variations in 𝑙 and 𝜆𝑑 and their rates ( ¤𝑙, ¤𝜆𝑑) are neglected [10]. Consistent with
the Non-rotating Earth Assumption, the Earth’s rotation rate is set to 𝜔⊕ = 0 for control design.

For dynamic inversion, each aerodynamic–angle derivative must be expressed explicitly in terms of measurable
quantities rather than in terms of other angle derivatives. In Mooij’s formulation, the equation for ¤𝜇𝐾 contains the term
¤𝛼𝐾 , whose value is already given by the second line of Eq. (37). Substituting this expression into the ¤𝜇𝐾 equation
removes the derivative coupling and yields a set of equations in which ¤𝜇𝐾 , ¤𝛼𝐾 , and ¤𝛽𝐾 depend only on INS–measurable
states, flight–path rates, and body angular rates. Because the resulting dynamics contain only kinematic terms, they
admit a direct nonlinear dynamic inversion without the need for an incremental control law. The resulting equations are:

¤𝜇𝐾 = ¤𝜒𝐾 (sin 𝛾𝐾 + sin 𝜇𝐾 tan 𝛽𝐾 cos 𝛾𝐾 ) + ¤𝛾𝐾 cos 𝜇𝐾 tan 𝛽𝐾 + 𝑝 cos𝛼𝐾
cos 𝛽𝐾

+ 𝑟 sin𝛼𝐾
cos 𝛽𝐾

,

¤𝛼𝐾 = − ¤𝜒𝐾
sin 𝜇𝐾 cos 𝛾𝐾

cos 𝛽𝐾
− ¤𝛾𝐾

cos 𝜇𝐾
cos 𝛽𝐾

− 𝑝 cos𝛼𝐾 tan 𝛽𝐾 + 𝑞 − 𝑟 sin𝛼𝐾 tan 𝛽𝐾 ,

¤𝛽𝐾 = ¤𝜒𝐾 cos 𝜇𝐾 cos 𝛾𝐾 − ¤𝛾𝐾 sin 𝜇𝐾 + 𝑝 sin𝛼𝐾 − 𝑟 cos𝛼𝐾 .

(38)

Equation 38 can be separated into the contribution from the body angular rates and the terms arising from the
flight–path kinematics which yields the following control-affine form from Eq. 36:

¤𝜇𝐾
¤𝛼𝐾
¤𝛽𝐾

 =


sin 𝛾𝐾 + sin 𝜇𝐾 tan 𝛽𝐾 cos 𝛾𝐾 cos 𝜇𝐾 tan 𝛽𝐾

− sin 𝜇𝐾 cos 𝛾𝐾
cos 𝛽𝐾 − cos 𝜇𝐾

cos 𝛽𝐾
cos 𝜇𝐾 cos 𝛾𝐾 − sin 𝜇𝐾


[
¤𝜒𝐾
¤𝛾𝐾

]
︸                                                                   ︷︷                                                                   ︸

𝒇2 (𝒙2 )

+


cos 𝛼𝐾
cos 𝛽𝐾 0 sin 𝛼𝐾

cos 𝛽𝐾
− cos𝛼𝐾 tan 𝛽𝐾 1 − sin𝛼𝐾 tan 𝛽𝐾

sin𝛼𝐾 0 − cos𝛼𝐾

︸                                               ︷︷                                               ︸
𝑮2 (𝒙2 )


𝑝

𝑞

𝑟

︸︷︷︸
𝒖2

. (39)

The influence of ¤𝛾𝐾 and ¤𝜒𝐾 can alternatively be expressed using the specific forces measured by the onboard
accelerometers, from which the contributions of weight, lift, and side force to the flight–path angles are reconstructed
[17].

A virtual input 𝝂2 = [𝜈𝜇 𝜈𝛼 𝜈𝛽]⊤ is defined to represent the desired attitude angle rates. By enforcing ¤𝒙2 = 𝝂2 and
inverting Eq. (36), the required body rates become:

𝒖cmd
2 = 𝑮−1

2 (𝒙2) (𝝂2 − 𝒇 2 (𝒙2)) . (40)

The matrix 𝑮2 is invertible for all 𝛼𝐾 provided cos 𝛽𝐾 ≠ 0, i.e. 𝛽𝐾 ≠ 𝜋
2 + 𝑛𝜋, 𝑛 ∈ Z. This inversion yields the

commanded body rates required to track the desired changes in attitude angles.

D. Angular Rate Control Loop
The angular rate loop forms the innermost part of the FCS. It is responsible for tracking angular rate commands 𝒖cmd

2
generated by the attitude controller. It calculates the actuator commands The system is described using the following
state, output, and input vectors: ∑︁ 

𝒙1 = [𝑝 𝑞 𝑟]⊤,
𝒚1 = 𝒉1 (𝒙1) = 𝒙1,

𝒖1 = [𝛿𝑎 𝛿𝑒 𝛿𝑟 ]⊤,
(41)

where 𝑝, 𝑞, 𝑟 are the inertial body rates, and the control inputs 𝛿𝑎, 𝛿𝑒, 𝛿𝑟 are the aileron, elevator, and rudder deflections,
respectively. The variable–mass attitude equations of motion for a symmetric aircraft, written in the body coordinate
system with superscripts omitted for clarity, are:

¤𝒙1 = 𝑰−1
(
𝒎𝐵 − ¤𝑰𝒙1 − 𝒙1 × 𝐼 𝒙1

)
. (42)

where 𝐼 are the vehicle’s moment of inertia and 𝑚𝐵 are the external moments from Eq. (5). These moments are the
sum of the aerodynamic moments 𝒎𝑎 and the control–generated moments 𝒎𝑐. Assuming linear control derivatives
(𝒎𝑐)𝛿 = 𝜕

𝜕𝛿
𝒎𝑐, the total moment becomes linear in the deflection inputs:

𝒎𝐵 = 𝒎𝑎 + (𝒎𝑐)𝛿 𝒖1. (43)
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Substituting Eq. (43) into the rotational equation of motion and solving for the input-affine form yields:

¤𝒙1 = 𝑰−1 [
− ¤𝑰𝒙1 − 𝒙1 × 𝐼 𝒙1 + 𝒎𝑎

]
+ 𝑰−1 (𝒎𝑐)𝛿 𝒖1. (44)

The control effectiveness matrix and plant dynamics are consequently:

𝑮1 = 𝑰−1 (𝒎𝑐)𝛿 , and 𝒇 1 (𝒙1) = 𝑰−1
(
− ¤𝑰 𝒙1 − 𝒙1 × 𝐼 𝒙1 + 𝒎𝑎

)
. (45)

To reduce the dependency of the control law on the full nonlinear model, the angular–rate loop also employs an
INDI formulation. The key idea here is to replace part of the model information by locally measured state–rate data,
thereby improving robustness to modeling uncertainty. Take the local Taylor series expansion on the control-affine
Eq. (44) and remove state dependent contributions by using the time scale separation assumption. This reduces Eq. (44)
to the incremental approximation:

¤𝒙1 ≈ ¤𝒙1,0 + 𝑮1 Δ𝒖1. (46)
The matrix 𝑮1 is treated as constant over the interval and is obtained from the OBM, which updates it online.

To enforce desired angular acceleration dynamics, a virtual control input 𝝂1 is introduced. Substituting this into the
approximation Eq. (46) and solving for 𝒖1 yields the INDI control law:

𝒖cmd
1 = 𝒖1,0 + 𝑮−1

1
(
𝝂1 − ¤𝒙1,0

)
. (47)

This control law preserves the input-affine structure of feedback linearization while avoiding explicit dependence on
the full nonlinear model. Provided that measurements of ¤𝒙1 (𝑡 − Δ𝑡) and 𝒖1 (𝑡 − Δ𝑡) are accurate and the delay Δ𝑡 is
sufficiently small, the INDI formulation achieves robust inner-loop angular rate tracking. All quantities are expressed in
the body-axis coordinate system:

𝑰 =


𝐼𝑥𝑥 0 𝐼𝑥𝑧

0 𝐼𝑦𝑦 0
𝐼𝑧𝑥 0 𝐼𝑧𝑧

 , (𝒎𝑐)𝛿 = 𝑞 𝑆

𝑏 𝐶𝑙𝛿𝑎 0 𝑏 𝐶𝑙𝛿𝑟

0 𝑐 𝐶𝑚𝛿𝑒 0
𝑏 𝐶𝑛𝛿𝑎 0 𝑏 𝐶𝑛𝛿𝑟

 , 𝒎𝑎 = 𝑞 𝑆


𝑏 𝐶𝑙𝑎

𝑐 𝐶𝑚𝑎

𝑏 𝐶𝑛𝑎

 .
E. State Estimation, Filtering, and Synchronization

In the SISO implementation, both the delayed control input 𝛿0 and the delayed angular acceleration ¤𝜔0 must be
reconstructed, since neither quantity is directly measurable. The delayed actuator deflection is obtained by passing the
commanded signal 𝛿cmd (𝑡) through the second–order actuator model in Eq. (7) together with the fixed delay Δ𝑡:

𝛿0 = 𝛿(𝑡 − Δ𝑡) = L−1{𝑒−Δ𝑡𝑠𝐴(𝑠) 𝛿cmd (𝑠)
}
. (48)

The same delay appears in the angular–acceleration term because the INDI control law is linearized about a
previously measured operating point. In the Discrete Time (DT) implementation, this delay coincides with the Flight
Control Computer (FCC) sampling time and is represented by a single Unit Delay (UD) block. The delayed angular
acceleration follows from differentiation of the measured angular rate:

¤𝜔0 = ¤𝜔(𝑡 − Δ𝑡) = L−1{𝑠 𝑒−Δ𝑡𝑠 𝜔(𝑠)} . (49)

Direct numerical differentiation amplifies sensor noise, so the angular–rate measurement is first passed through the
second–order low–pass filter:

𝐻 (𝑠) =
𝜔2
𝐻

𝑠2 + 2𝜁𝐻𝜔𝐻 𝑠 + 𝜔2
𝐻

, using 𝜔𝐻 = 25 rad/s, 𝜁𝐻 = 1, (50)

This filter produces the angular–acceleration estimate:

¤𝜔 𝑓0 = L−1{𝑠 𝐻 (𝑠) 𝑒−Δ𝑡𝑠 𝜔(𝑠)
}
. (51)

The filter introduces a phase lag that would desynchronize ¤𝜔 𝑓0 from the unfiltered actuator signal 𝛿0. Because INDI
relies on a first–order Taylor expansion evaluated at a common delayed operating point, both paths must experience the
same temporal shift. The actuator path is therefore filtered identically:

𝛿 𝑓0 = L−1{𝐻 (𝑠) 𝑒−Δ𝑡𝑠 𝐴(𝑠) 𝛿cmd (𝑠)
}
. (52)
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With the two signals synchronized, the filtered INDI control law becomes:

𝛿cmd = 𝛿 𝑓0 + 𝐺−1
1,0

(
𝜈1 − ¤𝜔 𝑓0

)
. (53)

The complete structure, including the filtering and reconstruction paths, is illustrated in Fig. 3. The diagram
summarizes the roles of the actuator dynamics 𝐴(𝑠), the noise–attenuating filter 𝐻 (𝑠), and the fixed delay Δ𝑡 within the
INDI formulation.

Fig. 3 Frequency-domain implementation of the INDI control loop for angular rate tracking. The loop includes
angular acceleration estimation, actuator modeling, and consistent filtering of both the feedback and control
branches.

V. Linear Controller Design
Nonlinear dynamic inversion reshapes the system into approximate chains of integrators, forming the basis for

hierarchical feedback design. A time–scale separation assumption is adopted so that the faster inner loops appear
instantaneous from the perspective of the slower outer loops, allowing each loop to be designed independently.

With the dynamics rendered integrator–like and the hierarchy established, the remaining task is to specify the
desired transient and steady–state characteristics through linear controllers placed on top of the inverted dynamics. The
hierarchical control architecture follows a set of design requirements:

1) Damping requirements: The rate loop is designed to be critically damped (𝜁𝜔 = 1) with no overshoot in the
angular rate. The outer loops are designed to be well damped, with

𝜁𝜃 = 0.9, 𝜁𝑉 = 0.7, 𝜁𝑋 = 0.9,

ensuring fast responses with minimal overshoot.
2) Rate Requirement: The rate loop bandwidth BW𝜔 is selected as high as possible subject to the critical–damping

requirement, as a faster inner loop eases the design constraints imposed on the slower outer loops.
3) Time–scale separation: Each loop is designed to be significantly slower than the loop beneath it. A practical

and commonly used choice is a bandwidth ratio of approximately four between adjacent loops, leading to:

BW𝜃 ≤ BW𝜔

4
, BW𝑉 ≤ BW𝜃

4
, BW𝑋 ≤ BW𝑉

4
.

4) Robustness margins: All loops must achieve a phase margin of at least 30◦ and a gain margin of at least 6 dB.

Rate Loop
The design of the angular–rate controller follows from the observation that, under ideal INDI and in the absence of

disturbances and sensor noise, the airframe dynamics are cancelled by the inversion, leaving only the actuator dynamics
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Fig. 4 Idealized closed–loop structure of the angular–rate control loop.

𝐴(𝑠) in the loop, and that rapid disturbance rejection together with effective noise suppression can be ensured by a
suitable choice of the noise filter 𝐻 (𝑠) [18].

Figure 4 illustrates the corresponding idealized closed–loop structure of the angular–rate controller, where the linear
controller 𝐿𝐶𝜔 (𝑠) generates the virtual input 𝜈1 from the rate error, and the integrator yields the angular rate 𝝎. Thus,
in this simplified setting the closed–loop 𝝎cmd (𝑠) to 𝝎(𝑠) is:

𝐻𝜔 (𝑠) =
𝐴(𝑠)𝐿𝐶𝜔 (𝑠)

𝑠 + 𝐴(𝑠)𝐿𝐶𝜔 (𝑠)
. (54)

The actuator dynamics are often assumed to be sufficiently fast to justify the approximation 𝐴(𝑠) ≈ 1 over the
relevant frequency range [18]. This assumption holds for systems with very high actuator bandwidths, but becomes
inaccurate when the actuator bandwidth is more moderate. In such cases, neglecting 𝐴(𝑠) leads to optimistic predictions
of loop performance, since the actuator still limits stability and achievable bandwidth. For the present aircraft, the
actuator bandwidth of approximately 50 rad/s is not high enough for 𝐴(𝑠) ≈ 1 to be a valid approximation within the
desired control bandwidth. A substantially lower rate-loop bandwidth would be required to make actuator dynamics
negligible, which is undesirable for performance. Therefore, the actuator model 𝐴(𝑠) is included explicitly in both the
controller design and the stability analysis, ensuring that achievable bandwidth and robustness are evaluated with the
true actuator limitations in mind.

The controller is designed for the third-order plant 𝑃(𝑠) = 𝐴(𝑠) 1
𝑠
, where the actuator dynamics 𝐴(𝑠) from Eq. (7)

act in series with the integrator, as shown in Fig. 4. For this plant, a proportional control strategy is adopted, using the
control law:

𝐿𝐶𝜔 (𝑠) = 𝐾𝑝 .

From the requirements it follows that the proportional gain 𝐾𝑝 must be chosen to maximize the closed–loop
bandwidth while ensuring negligible overshoot and sufficient robustness. To this end, a bisection search is employed to
determine the largest feasible gain subject to the constraints of at most 0.1% overshoot and a minimum phase margin of
30◦. The search begins with a broad interval [𝐾𝑝,min, 𝐾𝑝,max]. At each iteration, the midpoint value of 𝐾𝑝 is evaluated
by forming the closed-loop transfer function:

𝑇 (𝑠) =
𝐾𝑝𝑃(𝑠)

1 + 𝐾𝑝𝑃(𝑠)
. (55)

From this closed–loop system, the overshoot is extracted from the time–domain step response, while the phase
margin is obtained from the frequency response of the open–loop transfer function 𝐿 (𝑠) = 𝐾𝑝𝑃(𝑠). If the constraints
are satisfied, the gain is deemed feasible and the lower bound of the search interval is raised, otherwise, the upper
bound is reduced. This procedure continues until the interval width falls below the prescribed tolerance 𝜀, guaranteeing
convergence to the largest feasible proportional gain. The result is expressed as:

𝐾★𝑝 = max
{
𝐾𝑝

�� OS ≤ 0.1%, PM ≥ 30◦
}
, (56)

which yields the fastest critically damped response consistent with the actuator dynamics described in Eq. (7). The
bisection search is characterized by the iteration bound:

𝑁 =

⌈
log2

(
𝐾𝑝,max − 𝐾𝑝,min

𝜀

)⌉
, (57)
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where 𝐾𝑝,min and 𝐾𝑝,max represent the initial search interval. With 𝐾𝑝,min = 10−3, 𝐾𝑝,max = 102, and a convergence
tolerance of 𝜀 = 10−6, the method is guaranteed to converge, if a solution exists, within 𝑁 = 27 iterations. For the plant
under consideration, the optimized gain and maximum achievable bandwidth and phase margin are:

𝐿𝐶𝜔 (𝑠) = 13.5625, BW𝜔 = 24.96 rad/s PM = 67.57 deg. (58)

This yields the following closed loop relation:

𝐻𝜔 (𝑠) =
33906

(𝑠 + 24.96) (𝑠2 + 45.74𝑠 + 1358)
. (59)

Allowing a small overshoot would enable a higher crossover frequency and bandwidth at the expense of reduced
phase margin‡. It should also be noted that digital implementation effects, such as sampling and computation delays,
introduce extra phase lag. For this reason, retaining sufficient phase and gain margins is essential to ensure robustness
against these delays.

Table 1 Pole locations, natural frequencies, and damping ratios of the angular rate dynamics

Real ± Imag 𝜔𝑛, rad/s 𝜁 Type

−22.87 ± 28.90𝑖 36.85 0.62 Actuator poles
−24.96 ± 0.00𝑖 24.96 1.00 Rate pole

Attitude Loop
For the linear controller in the attitude loop, the first step is to obtain the closed–loop expression of the system,

shown schematically in Fig. 5. Here, standard NDI is used rather than the incremental form. Unlike INDI, where
additional dynamics appeared as disturbances to reject, the NDI formulation retains these explicitly. In this case it is the
term 𝒇 2, representing the flight–path dynamics given in Eq. (39):

Fig. 5 Closed-loop architecture for attitude control using model-based inversion and linear compensation.

The commands for 𝜇cmd and 𝛼cmd are supplied by the outer velocity loop, while the sideslip reference is fixed at
𝛽cmd = 0 to enforce coordinated flight. A linear controller 𝐿𝐶𝜃 (𝑠) regulates the commanded attitude error 𝜽𝑒 to produce
the virtual control vector 𝝂2 (𝑠), which defines the desired attitude rate.

The angular rate command is obtained by subtracting the estimated kinematic term 𝒇 2 (𝑠) from 𝝂2 (𝑠) and mapping
the result through the inverse of the kinematic matrix. The matrices 𝑮2 (𝑠) and 𝑮̂2 (𝑠) map angular rates to attitude
rates, and since this relation is known analytically, they are exactly equal. The resulting closed-loop relation for 𝜽 (𝑠) is:

𝜽 (𝑠) = 𝐻𝜔 (𝑠) 𝐿𝐶𝜃 (𝑠)
𝑠 + 𝐻𝜔 (𝑠) 𝐿𝐶𝜃 (𝑠)

𝜽cmd (𝑠) −
𝐻𝜔 (𝑠)

𝑠 + 𝐻𝜔 (𝑠) 𝐿𝐶𝜃 (𝑠)
𝒇 2 (𝑠) +

1
𝑠 + 𝐻𝜔 (𝑠) 𝐿𝐶𝜃 (𝑠)

𝒇 2 (𝑠). (60)

At this stage, the bandwidth separation assumption becomes relevant. Including the full inner-loop dynamics makes
the system effectively fourth order, complicating controller design. To simplify the problem, the standard approach in
the literature is to assume that the inner rate loop operates on a sufficiently faster timescale than the outer attitude loop.

‡This trade-off is intrinsic to the structure of the system and the absence of any compensatory phase lead in the proportional controller. Achieving
higher closed-loop bandwidths would require a lead or PD compensator to provide additional phase margin.
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If the inner-loop bandwidth is sufficiently higher than that of the attitude loop, it is reasonable to approximate the rate
loop as ideal, i.e. 𝜔(𝑠) ≈ 𝜔cmd (𝑠), which implies 𝐻𝜔 (𝑠) ≈ 1. With this approximation, the attitude dynamics reduce to:

𝜽 (𝑠) = 𝐿𝐶𝜃 (𝑠)
𝑠 + 𝐿𝐶𝜃 (𝑠)

𝜽cmd (𝑠) +
1

𝑠 + 𝐿𝐶𝜃 (𝑠)

(
𝒇 2 (𝑠) − 𝒇 2 (𝑠)

)
, (61)

where 𝒇 2 (𝑠) represents the true flight-path kinematics and 𝒇 2 (𝑠) denotes its model estimate used in the controller. Due
to the assumptions in the attitude control loop design, 𝒇 2 (𝑠) ≠ 𝒇 2 (𝑠), but the mismatch is extremely small in magnitude
and varies slowly with time. As a result, the induced tracking error remains bounded and does not compromise overall
system performance. The closed loop from 𝜽cmd (𝑠) to 𝜽 (𝑠) is therefore:

lim
𝐻𝜔 (𝑠)→1

𝐻𝜃 (𝑠) =
𝐿𝐶𝜃 (𝑠)

𝑠 + 𝐿𝐶𝜃 (𝑠)
. (62)

The bandwidth separation assumption effectively decouples the rotational axes in the outer loop, allowing each
attitude channel to be treated independently. While this simplification introduces a potential risk of instability, theoretical
results show that exponential stability of the outer-loop states around their commanded values is still guaranteed if the
inner-loop bandwidth is sufficiently high [19]. In practice, it is recommended that the rate loop bandwidth exceeds
the attitude loop bandwidth by at least a factor of four to ensure that the approximation remains accurate [20]. For
this single–integrator loop structure, exact second–order closed–loop dynamics with the desired natural frequency 𝜔𝜃
and damping ratio 𝜁𝜃 can be obtained through pole placement. This is achieved using a proportional–with–roll–off
controller of the form:

𝐿𝐶𝜃 (𝑠) =
𝐾𝜃

1 + 𝑠/𝜔 𝑓
=
𝐾𝜃𝜔 𝑓

𝑠 + 𝜔 𝑓
.

Substituting the controller into the attitude dynamics yields the second–order pitch response:

𝐻𝜃 (𝑠) =
𝐾𝜃𝜔 𝑓

𝑠2 + 𝜔 𝑓 𝑠 + 𝐾𝜃𝜔 𝑓
, 𝜔 𝑓 = 2𝜁𝜃𝜔𝜃 , 𝐾𝜃 =

𝜔𝜃

2𝜁𝜃
.

These expressions directly link the controller parameters to the desired dynamic characteristics. Using the design
values specified in the control requirements yields the second order closed-loop system:

𝐻𝜃 (𝑠) =
38.84

𝑠2 + 11.22𝑠 + 38.84
, using 𝐿𝐶𝜃 (𝑠) =

38.84
𝑠 + 11.22

. (63)

The corresponding pole locations are summarized in Table 2. Unlike the rate control loop, however, the desired
damping ratio is not fully achieved in the full closed loop. Increasing the time-scale separation would cause this value
to approach 0.9, but such an adjustment would also slow down the overall system response. Hence, the trade-off lies
between achieving the exact damping ratio or maintaining a faster response.

Table 2 Pole locations, natural frequency and damping for the full and the reduced attitude closed-loop system

System Real ± Imag 𝜔𝑛, rad/s 𝜁 Type

𝐻𝜃full −23.2 ± 29.4𝑖 37.5 0.619 Actuator dynamics
−28.2 ± 0.00𝑖 28.2 1.00 Rate pole
−3.66 ± 4.45𝑖 5.77 0.635 Attitude poles

𝐻𝜃red −5.61 ± 2.72𝑖 6.23 0.900 Attitude poles

Velocity Loop
The outer velocity loop regulates the geographic airspeed 𝑉𝐾 , the heading angle 𝜒𝐾 , and the flight–path angle 𝛾𝐾 .

This regulation is achieved indirectly by generating small changes in attitude and thrust, which the inner attitude and
rate loops convert into linear accelerations.
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The cascaded control structure used for velocity regulation is illustrated in Fig. 6. Commands originate from the
position control loop, and the resulting command error is processed by the linear controller 𝐿𝐶𝑉 to produce the desired
attitude and thrust setting rates. The error in the commanded derivatives is mapped through the control effectiveness
matrix from Eq. (29), generating incremental attitude commands. These increments are added to the previous values and
forwarded to the inner loops for bank angle and angle of attack, while the throttle command is sent directly to the engine.

Fig. 6 Closed-loop block diagram of the velocity loop, assuming perfect attitude and angular rate tracking.

For the linear controller design, the closed–loop expression plays a central role. Under the assumption that the
estimated control effectiveness matrix 𝑮̂3 is exact and that disturbances are rejected sufficiently fast, the closed–loop
relation is:

𝑽 (𝑠) = 𝐻𝜃 (𝑠)𝐿𝐶𝑉 (𝑠)
𝑠 + 𝐻𝜃 (𝑠)𝐿𝐶𝑉 (𝑠)

𝑽cmd (𝑠), lim
𝐻𝜃 (𝑠)→1

𝐻𝑉 (𝑠) =
𝐿𝐶𝑉 (𝑠)

𝑠 + 𝐿𝐶𝑉 (𝑠)
. (64)

This relation applies to the angle-of-attack and bank-angle channels, where the inversion-based commands pass
through inner dynamics represented by 𝐻𝜃 (𝑠). The throttle channel does not include this term, since it acts directly on
the propulsion system. When the inner loops are sufficiently fast such that 𝐻𝜃 (𝑠) ≈ 1, the closed-loop map reduces to
the expression shown on the right.

The velocity controller is obtained using the same second–order pole–matching approach applied in the attitude-loop
design together with the bandwidth-separation and damping requirements, resulting in the closed-loop relation:

𝐻𝑉 (𝑠) =
2.428

𝑠2 + 2.181𝑠 + 2.428
, using 𝐿𝐶𝑉 (𝑠) =

2.428
𝑠 + 2.181

. (65)

The poles of the reduced and complete transfer function, which includes the inner control loops, are given in Table 3:

Table 3 Pole locations, natural frequency and damping for the full and the reduced velocity closed-loop system

System Real ± Imag 𝜔𝑛 [rad/s] 𝜁 [–] Type

𝐻𝑉full −23.2 ± 29.4𝑖 37.5 0.62 Actuator poles
−28.2 + 0.00𝑖 28.2 1.00 Rate pole
−4.08 ± 4.43𝑖 6.0 0.68 Attitude poles
−0.67 ± 1.33𝑖 1.5 0.45 Velocity poles

𝐻𝑉red −1.09 ± 1.11𝑖 1.6 0.70

Position Loop
The position control loop determines the required heading 𝜒𝐾 and flight-path angle 𝛾𝐾 commands to track the

commanded waypoints in latitude, longitude, and altitude. As shown in Fig. 7, these waypoint commands originate
from the onboard guidance system, and the resulting command error is processed by the linear controller 𝐿𝐶𝑋 (𝑠) to
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produce the desired changes in heading and flight-path angle. The errors in the commanded derivatives are then mapped
through the inverse of the matrix 𝑮4 to account for spherical Earth effects, yielding intermediate commanded inputs.
These are used in the inverse of Eq. (13) to generate the corresponding commands passed to the inner loops, which
realize the actual heading and flight-path angle. The resulting control inputs are subsequently remapped through 𝑮4 to
obtain the geodetic rate derivatives, which are integrated to produce the achieved tracking vector.

Fig. 7 Closed loop block diagram of the position control loop.

Analogous to the attitude loop, and assuming the estimated mapping 𝑮̂4 is exact, the position closed–loop transfer
function is given by the expression on the left below. This formulation incorporates the inner velocity dynamics through
𝐻𝑉 (𝑠). When the velocity loop is sufficiently fast such that 𝐻𝑉 (𝑠) ≈ 1, the closed–loop map reduces to the simplified
first–order form shown on the right:

𝑿 (𝑠) = 𝐻𝑉 (𝑠) 𝐿𝐶𝑋 (𝑠)
𝑠 + 𝐻𝑉 (𝑠) 𝐿𝐶𝑋 (𝑠)

𝑿cmd (𝑠), lim
𝐻𝑉 (𝑠)→1

𝐻𝑋 (𝑠) =
𝐿𝐶𝑋 (𝑠)

𝑠 + 𝐿𝐶𝑋 (𝑠)
. (66)

As with the attitude and velocity loops, the controller is derived using the same second-order pole-matching procedure
applied to the inverted dynamics, together with the bandwidth-separation and damping requirements, producing the
second-order closed-loop system:

𝐻𝑋 (𝑠) =
0.1517

𝑠2 + 0.7012𝑠 + 0.1517
, using 𝐿𝐶𝑋 (𝑠) =

0.1517
𝑠 + 0.7012

. (67)

The poles corresponding to the reduced transfer function and the complete transfer function, which includes the
inner control loops, are given in Table 4:

Table 4 Pole locations, natural frequency and damping for the full and the reduced position closed-loop system

System Real ± Imag 𝜔𝑛, rad/s 𝜁 Type

𝐻𝑋full −23.2 ± 29.4𝑖 37.5 0.619 Actuator poles
−28.2 ± 0.00𝑖 28.2 1.000 Rate pole
−4.08 ± 4.43𝑖 6.02 0.677 Attitude poles
−0.74 ± 1.28𝑖 1.48 0.502 Velocity poles
−0.28 ± 0.27𝑖 0.39 0.716 Position poles

𝐻𝑋red −0.35 ± 0.17𝑖 0.39 0.900

The stability margins in Table 5 show that all control loops maintain sufficient gain, phase, and delay margins,
consistent with well-damped and stable behavior. As expected, the rate loop has the highest crossover frequency and
smallest delay margin, while the outer loops exhibit lower bandwidths and larger delay margins, preserving the desired
time-scale separation. Overall, the ideal Continuous Time (CT) control structure achieves zero steady-state error and
robust stability across all levels of the cascaded NDI–INDI architecture.

VI. Digital Control Design
In practice, FCSs must be implemented on digital FCCs, which operate in DT. A straightforward approach is to

design a controller in CT and then transform it into a discrete controller using, for example, the bilinear transform or the
matched pole–zero method. This approach, however, neglects the inherent properties of digital implementation: the
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controller interacts with sampled signals, Zero-Order Hold (ZOH) devices, computation delays, and on-board filtering,
none of which are captured in a purely CT design [12]. Only when the sampling interval Δ𝑡 is very small can one
argue that the discrete controller obtained from such a transformation accurately reproduces the performance of its CT
counterpart.

A more sophisticated approach is the so-called modified CT controller design. Here, the discrete effects of sampling,
holding, and computation are modeled explicitly as CT transfer functions and included in the synthesis process. The
controller is then designed in this modified CT framework, so that the delay and hold dynamics are taken into account
from the outset. Finally, the bilinear transform or a similar mapping is applied to obtain the actual digital controller for
implementation. This approach ensures that the implemented digital controller preserves the intended performance
characteristics even for practical sampling rates. Within this framework, the additional dynamics introduced by digital
implementation must be modeled explicitly, as they influence both stability margins and transient response. The
considered effects are:

1) Sensor anti-aliasing filter. Before sampling, sensor signals are band-limited to prevent aliasing, which folds
high-frequency content above the Nyquist frequency into the measured bandwidth [12]. The anti-aliasing
low-pass filter defined in Eq. (9) attenuates these components but introduces phase lag and gain reduction, both
of which must be included in the plant model 𝐺 (𝑠) for accurate analysis.

2) Sampler and ZOH. After sampling, the controller updates commands only at intervals ofΔ𝑡, while the ZOH holds
the actuator input constant between updates. This piecewise-constant reconstruction attenuates high-frequency
content and introduces an effective delay of roughly Δ𝑡/2. The corresponding CT transfer functions are:

𝐺𝑍𝑂𝐻 (𝑠) =
1 − 𝑒−Δ𝑡𝑠

𝑠
, 𝐺𝑆𝐻 (𝑠) =

1 − 𝑒−Δ𝑡𝑠
𝑠Δ𝑡

. (68)

The second expression includes the sampling action through normalization by the sampling interval.
3) Computation delay. The FCC requires finite time to read measurements, compute the control input, and send

the command to the actuator. A conservative model assumes the worst case which is a full-sample computation
delay of Δ𝑡, represented in CT as:

𝐺𝐷 (𝑠) = 𝑒−Δ𝑡𝑠 . (69)

In addition to the modeled effects, real sensors may introduce further delays, as noted in Eq. (10). Because these
delays are typically unknown at the design stage, they are not included in the modified CT controller synthesis. Instead,
potential sensor delays are introduced in the high-fidelity simulation to evaluate how much delay the controller can
tolerate.

The overall control structure, shown in Fig. 8, includes the key effects introduced by digital implementation. The
controller 𝐿𝐶 (𝑠) operates together with the sample-and-hold element 𝐺𝑆𝐻 (𝑠), computation delay 𝐺𝐷 (𝑠), and sensor
anti-aliasing filter 𝐺𝑎 (𝑠). Combined with the plant dynamics 𝐺 (𝑠), these components form a CT representation of how
the digital controller interacts with the aircraft.

Controller
to design

Sample
and hold

Computation
delay

Plant
dynamics

Anti-aliasing
filter

Fig. 8 CT control structure with digital implementation effects [12].

The transfer functions 𝐺𝑆𝐻 (𝑠) and 𝐺𝐷 (𝑠) contain exponential terms and are therefore irrational, which is
inconvenient for controller synthesis where rational transfer functions are preferred. A standard remedy is to approximate
these exponentials with Padé expansions. The (𝑚, 𝑛) Padé approximation represents a function by a ratio of two
polynomials whose Taylor series matches the first 𝑚 + 𝑛 terms of the original function [12]. Padé forms capture the key
delay behavior, including phase lag, with low-order rational models suitable for analysis and simulation. The third-order
approximations used here follow [12].
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For the sample-and-hold and the computation delay transfer function, a third-order Padé approximation of the
exponential yields:

𝐺𝑆𝐻 (𝑠) ≈
1 − 1

14 (𝑠Δ𝑡) +
23
840 (𝑠Δ𝑡)

2 − 1
840 (𝑠Δ𝑡)

3

1 + 3
7 (𝑠Δ𝑡) +

1
14 (𝑠Δ𝑡)2 + 1

120 (𝑠Δ𝑡)3
, 𝐺𝐷 (𝑠) ≈

1 − 1
2 (𝑠𝜏𝐶𝐷) +

1
10 (𝑠𝜏𝐶𝐷)

2 − 1
120 (𝑠𝜏𝐶𝐷)

3

1 + 1
2 (𝑠𝜏𝐶𝐷) +

1
10 (𝑠𝜏𝐶𝐷)2 + 1

120 (𝑠𝜏𝐶𝐷)3
.

(70)

It is important to note that the influence of digital implementation effects strongly depends on the sampling interval.
For small sampling times, the impact of sample–and–hold behavior, computation delay, and sensor filtering is minor
and can often be neglected. However, as the sampling interval increases, these effects introduce additional phase lag and
attenuation that can noticeably degrade closed–loop performance. Consequently, explicitly accounting for these effects
in the controller design is advisable to preserve the intended performance.

A representative block diagram illustrating the inclusion of discrete effects (shown in pink), as well as sensor delay
and anti-aliasing effects, is presented in Fig. 9.

Anti-
Aliasing

Sampler 

Zero-Order
Hold

Synchronized
Actuator

Discrete Derivative

Comp.
Delay

Sampler 

Unit Delay

Sensor
Delay

Noise Filter

Fig. 9 DT INDI rate control loop including actuator dynamics, sensor dynamics, sampling, and noise filtering.

The digital effects on the rate control loop are now considered. When the control structure from Fig. 8 is applied to
the angular rate loop described in Sec. V, the additional dynamics introduced by the sample-and-hold, computation
delay, and anti-aliasing filter invalidate the previously calculated open-loop gain and phase margins.

The phase effects of the digital elements can be assessed directly at the crossover frequencies. A one–sample
computational delay with Δ𝑡 = 0.01 s introduces about −7.7◦ of lag at the phase crossover frequency of 13.5 rad/s. The
anti–aliasing filter contributes roughly −4.9◦, and the ZOH adds about −3.9◦, giving a total of approximately −16.5◦.
This reduces the CT phase margin from 67.6◦ to about 51.1◦ in the digital implementation. At the gain crossover
frequency of 50 rad/s, the same mechanisms generate nearly −60◦ of lag. Although the exact gain–margin reduction
cannot be computed analytically, the additional phase clearly lowers the achievable margin. These reductions confirm
that a sampling time of Δ𝑡 = 0.01 s is not small enough for digital effects to be ignored.

Table 5 Comparison of stability margins for each control loop without and with digital effects (D)

Loop Gain margin, dB Phase margin, deg Delay margin, s Crossover, rad/s

Rate 14.3 67.6 0.0872 13.5
Rate (D) 7.67 51.2 0.0664 13.5
Attitude 13.5 59.7 0.315 3.3
Attitude (D) 10.9 57.9 0.301 3.35
Velocity 10.0 48.1 0.831 1.01
Velocity (D) 9.78 47.7 0.816 1.02
Position 12.8 62.4 5.19 0.21
Position (D) 12.7 62.4 5.19 0.21
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The impact of discretization becomes smaller as the dynamics slow down and is therefore most relevant in the rate
and attitude loops. Table 5 summarizes the resulting gain and phase margins for the continuous and digital cases. With
the nominal CT gain from Eq. (58), the digital implementation yields a gain margin of 7.67 dB, a phase margin of
51.20◦, and a delay margin of 0.066 s. The corresponding step response shows an overshoot of 5.2%, meaning the
zero–overshoot requirement is no longer met. The reduction in stability is not severe, but it is significant enough that it
should be considered when choosing controller parameters.

Table 6 Final stability margins obtained with the redesigned controllers from Eq. (71), based on the modified
CT control design

Loop Gain margin, dB Phase margin, deg Delay margin, s Crossover, rad/s

Rate 12.3 67.3 0.148 7.95
Attitude 12.9 58.7 0.52 2.0
Velocity 9.83 47.8 1.37 0.61
Position 12.8 62.4 8.64 0.125

Two design paths can now be considered. The first option is to accept the reduced stability margins and the small
overshoot as sufficient for operation, since the system remains stable with acceptable stability margin. The second
option is to redesign the linear controllers with the digital effects explicitly included, thereby recovering the intended
performance targets. This approach is adopted here to restore the zero-overshoot behavior of the rate loop and to
improve the limited delay margins observed under digital implementation. The resulting four linear controllers obtained
from this reoptimization are presented in Eq. (71), and their corresponding stability margins are summarized in Table 6:

𝐿𝐶𝜔 = 7.9663, 𝐿𝐶𝜃 (𝑠) = 13.96
𝑠+6.726 , 𝐿𝐶𝑉 (𝑠) = 0.8726

𝑠+1.308 , and 𝐿𝐶𝑋 (𝑠) = 0.05454
𝑠+0.4204 . (71)

To summarize the key characteristics of the developed cascaded controller, the control architecture consists of four
nested loops: rate, attitude, velocity, and position. Each outer loop is tuned to operate at a lower bandwidth than the
one inside it, ensuring that the inner dynamics are already attenuated within its operating range. This arrangement
minimizes coupling between loops and simplifies both tuning and analysis. The corresponding loop transfer functions
are shown in Fig. 10. The magnitude plot illustrates clear bandwidth separation among the loops. For clarity, reference
lines at 0 dB and −180◦ are added to visualize crossover frequencies and phase margins.
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-200

-150

-100

-50

0

50

M
a

g
n

it
u

d
e

 (
d

B
)

10
-1

10
0

10
1

10
2

-360

-315

-270

-225

-180

-135

-90

-45

P
h

a
s
e

 (
d

e
g

)

Rate Loop

Attitude Loop

Velocity Loop

Position Loop

Fig. 10 Open loop Bode magnitude and phase for the rate, attitude, velocity, and position loops.
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The parameters used in the modified CT control design are listed in Table 7. They include the selected bandwidths,
damping ratios, filter and actuator characteristics, and timing values that define the dynamic properties of each loop.
These parameters produce the frequency responses shown in Fig. 10.

Table 7 Design parameters used for control law development using the modified continuous control design.

Parameter Symbol Value Unit

Filter corner freq. 𝜔𝐻 25 rad/s
Filter damping 𝜁𝐻 1 -
Actuator nat. freq. 𝜔𝑎𝑐𝑡 50.0 rad/s
Actuator damping 𝜁𝑎𝑐𝑡 0.707 -
Rate bandwidth BW𝜔 15.0 rad/s
Attitude damping 𝜁𝜃 0.9 -
Attitude bandwidth BW𝜃 3.75 rad/s

Parameter Symbol Value Unit

Velocity nat. freq. BW𝑉 0.9375 rad/s
Velocity damping 𝜁𝑉 0.7 -
Position nat. freq. BW𝑋 0.234375 rad/s
Position damping 𝜁𝑋 0.9 -
Anti-aliasing freq. 𝜔𝑎 157.07 rad/s
Comp. delay 𝜏𝐶𝐷 0.01 s
Sampling time Δ𝑡 0.01 s

VII. Digital Implementation
Digital implementation is required because the FCS and the hierarchical controllers in Eq. (71) were developed in

CT, whereas the FCC operates with a finite sampling interval. The effects of sampling and delays have already been
incorporated in the digital control design of Sec. VI. The objective here is therefore to discretize the CT components
that must execute on the FCC, including the derivative blocks and the hierarchical INDI controllers. All signals entering
the FCC must be sampled accordingly. The aircraft dynamics, actuator models, sensor dynamics, and noise filters
remain in CT, requiring the FCC outputs to interface with continuous-time subsystems. Although this interaction would
nominally require a zero-order hold, Simulink manages the discrete–continuous rate transitions automatically, so no
explicit conversion blocks are needed.

The final layout of the hierarchical control system is shown in Fig. 11. The diagram presents all five main components:
the sampling of input signals into the FCC, followed by the four control loops described previously. This configuration
represents the DT Simulink implementation of the architecture shown in Fig. 2.
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Fig. 11 DT hierarchical INDI control architecture implemented in Simulink, including the sampling subsystem.

All controllers are executed with a sampling time of Δ𝑡 = 0.01 s. Simulations use a fixed-step solver to capture
discretization effects, with the step size set to Δ𝑡/25, which corresponds to 4 × 10−4 s.

Position Control
The Simulink representation of the DT position control loop is shown in Fig. 12. The function implements the

equations in Eq. (18) and Eq. (19). The green inputs represent sampled variables from the sampling subsystem, while
the blue blocks correspond to the commanded way points and the DT position controller. The blue color indicates that
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these elements operate at a defined sampling time. The pink blocks denote the outputs, which are the commanded flight
path and heading signals passed to the next control loop.
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Flight	path	and	heading	commands

1
psivd:cmd

2
thtvd:cmd

altcmd

2
latc
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1
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−+

Position	controller

lon:cmd

alt:cmd

lat:cmd

Fig. 12 Simulink implementation of the DT position control loop.

The DT position controller is obtained by discretizing the CT controller in Eq. (71). The Tustin transformation is
used for this purpose, mapping the 𝑠-domain to the 𝑧-domain while preserving stability and accurately capturing the
low-frequency dynamics. With a sampling period of Δ𝑡 = 0.01 s, the resulting DT controller is:

𝐿𝐶𝑋 (𝑧) =
4.0319 × 10−5 + 4.0319 × 10−5𝑧−1

1 − 0.99838 𝑧−1 . (72)

The DT controller maintains the dominant low-frequency behavior of the CT design, yielding comparable closed-loop
performance within the operating bandwidth. Differences appear mainly at higher frequencies due to frequency warping
and the finite sampling period.

Velocity and Flight Path Control
The DT velocity control loop is shown in Fig. 13. The inverse of Eq. (31) is computed for control allocation within

this loop. The throttle actuator is assumed to track the commanded change within one sampling period, so a UD block
provides a sufficient approximation for generating the incremental input for speed control. The remaining incremental
inputs for commanded bank angle and angle of attack are passed to the attitude loop and combined with values from the
previous sampling instant. The heading and flight-path derivatives are likewise provided to that loop for its control
law. The speed command is set by a constant block defining the trimmed velocity, and a step block introduces heading
changes when the hold-heading mode is active.
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Fig. 13 Simulink implementation of the DT tracking control loop.

A key feature of this loop is that the derivatives required for the INDI control law are computed using the backward
difference numerical differentiation method, as shown in Fig. 14.
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Fig. 14 Discrete differentiation algorithm used for computing derivatives.

Unlike the rate loop, no second–order noise filter is applied before differentiation. The INS model used here
introduces errors only in angular rate and excludes tilt, velocity, and position errors. The resulting airspeed, flight path,
and heading signals are therefore treated as noise-free, and additional filtering is not required.

The DT velocity controller is again obtained by discretizing the CT design in Eq. (71) using the Tustin transformation.
With a sampling period of Δ𝑡 = 0.01 s and normalized coefficients, the resulting discrete transfer function is:

𝐿𝐶𝑉 (𝑧) =
0.0003297 + 0.0006595 𝑧−1 + 0.0003297 𝑧−2

1 − 1.9220 𝑧−1 + 0.9249 𝑧−2 . (73)

Attitude Control:
The attitude control loop is implemented using NDI, which eliminates the need for discrete derivative approximations

and thereby simplifies implementation in Simulink. The overall structure of the loop is shown in Fig. 15. At each
integration step, the terms 𝑮2 and 𝒇 2 are computed according to Eq. (39) to perform the dynamic inversion. The attitude
command is formed by combining the incremental control inputs from the preceding velocity loop with the sampled
states provided by the INS. The sideslip command is fixed at zero to maintain coordinated flight, and the resulting rate
command is passed to the rate control loop.
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Fig. 15 Simulink implementation of the attitude control loop. The discrete controller 𝐿𝐶𝜃 (𝑧), obtained via
Tustin discretization, is located in the linear control subsystem.

The attitude controller is obtained by discretizing the CT design in Eq. (71) using the Tustin transformation. With a
sampling period of Δ𝑡 = 0.01 s and normalized coefficients, the resulting discrete transfer function is:

𝐿𝐶𝜃 (𝑧) =
0.1271 + 0.1271 𝑧−1

1 − 0.9113 𝑧−1 . (74)

Rate Control:
The rate control loop is implemented using INDI and therefore requires discrete derivatives. Unlike the velocity

control loop, noise filtering is applied in this case and sensor dynamics are present, which introduces the need for
actuator synchronization. The DT block diagram of the INDI rate controller, including sensor, noise, and actuator
dynamics, is shown in Fig. 16 it is essentially the Simulink implementation of Fig. 9.
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In the upper path, the control effectiveness matrix 𝑮1 is computed according to Eq. (45). The lower path contains
the CT implementation of the sensor dynamics, representing anti-aliasing effects plus an unknown delay. The INS state
is subsequently processed through a CT noise filter before being sampled to obtain the discrete derivatives. The angular
rate state that is not differentiated bypasses the noise filter and is directly sampled. Another important aspect is the
worst-case computational delay in the simulation, this effect is modeled using a UD block placed immediately before the
control signal is sent to the actuators. For the rate control loop, the controller reduces to a constant linear gain, which
requires no translation into DT.
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Fig. 16 Simulink implementation of the INDI subsystem for angular rate control, including sensor, noise, and
actuator dynamics.

The key aspect here is the discretization of the actuator path, which includes the synchronization transfer functions.
The corresponding discrete formulation for implementation within the digital control loop is presented next.

Discrete Synchronized Actuators:
The physical actuators operate in CT, but their representation within the FCC must be discrete. The CT formulation

of the combined actuator, synchronization dynamics, and filtering is based on the sensor synchronization method defined
in [21] and is expressed as:

𝐴̂(𝑠) = 𝐴(𝑠) 𝐻sync (𝑠) 𝐻fil (𝑠) 𝑒−Δ𝑡𝑠 , (75)

where 𝐴(𝑠) denotes the actuator dynamics, 𝐻fil (𝑠) represents the noise filter from Eq. (50), and 𝑒−Δ𝑡𝑠 models a
one–sample delay aligning the actuator output with the previous control step. The term 𝐻sync (𝑠) represents the
synchronization dynamics, capturing all phase and timing mismatches between the actuator and measurement paths. In
this system, these correspond to 𝐺𝑎 (𝑠) and 𝐺𝑆𝐷 (𝑠) from Eqs. (9) and (10), respectively. The synchronized simulation
includes both. In the unsynchronized case, only 𝐺𝑎 (𝑠) is applied, and the sensor delay is modeled as an uncertainty.

All components except the delay are combined in the CT domain prior to discretization, because the transformation
from the 𝑠–domain to the 𝑧–domain is nonlinear and must, in general, be applied to the complete transfer function [22]:

𝑧{𝑆(𝑠)𝐺 (𝑠)} ≠ 𝑧{𝑆(𝑠)} 𝑧{𝐺 (𝑠)}. (76)

Here, 𝑧{·} denotes the 𝑧–transform, and discretization is performed using the ZOH method rather than the Tustin
method, since it reproduces the sampled-data behavior of actuators with constant input during each sampling period.

By separating the non delayed portion of Eq. (75), obtain 𝐴(𝑠) 𝐻sync (𝑠) 𝐻fil (𝑠). Using this expression directly inside
the ZOH discretization gives:

𝐻𝑐 (𝑧) = 𝑧
{

1 − 𝑒−Δ𝑡𝑠
𝑠

𝐴(𝑠) 𝐻sync (𝑠) 𝐻fil (𝑠)
}
. (77)

The exponential term 𝑒−Δ𝑡𝑠 corresponds directly to a UD in the 𝑧–domain, i.e. multiplication by 𝑧−1. The final DT
synchronized actuator is therefore:

𝐴̂(𝑧) = 𝐻𝑐 (𝑧) 𝑧−1. (78)
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The resulting discretized synchronized actuator dynamics can be expressed as follows:

𝐴̂(𝑧) =
𝑧−2 (

1.3389 · 10−4 + 0.0023𝑧−1 + 0.0039𝑧−2 + 9.7198 · 10−4𝑧−3 + 2.3291 · 10−5𝑧−4)
1 − 3.1777𝑧−1 + 3.9921𝑧−2 − 2.4448𝑧−3 + 0.7099𝑧−4 − 0.0722𝑧−5 . (79)

The final step is the initialization of the discrete synchronized actuator. To avoid spurious transients at 𝑡 = 0, the
actuator must start at the calculated trim input; otherwise, a mismatch between the trim condition and the actuator state
would occur. In a DT transfer function block in Simulink, however, the trim deflection cannot be assigned directly as
the initial output. The parameter Initial states instead specifies the contents of the internal delay registers of the filter.
Consequently, the internal states must be computed such that the filter output equals the trim deflection 𝑢trim at the start
of the simulation.

Simulink realizes a DT transfer function in state-space form as:

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩 𝒖𝑘 , (80)
𝑦𝑘 = 𝑪𝒙𝑘 + 𝐷 𝒖𝑘 ,

where 𝒙𝑘 ∈ R𝑛 are the filter states, 𝒖𝑘 is the vector of control inputs, and 𝑦𝑘 is the output. The matrices (𝑨, 𝑩,𝑪, 𝐷)
are obtained from the actuator numerator and denominator coefficients using the MATLAB command tf2ss. At trim,
the input is constant, 𝒖𝑘 = 𝒖trim. Requiring the state to remain constant, 𝒙𝑘+1 = 𝒙𝑘 , leads to the steady-state condition:

𝒙0 =
(
𝑰 − 𝑨

)−1
𝑩 𝒖trim, (81)

with 𝑰 the identity matrix of the same size as 𝑨. Assigning the vector 𝒙0 to the actuator block as its initial state
ensures that, at 𝑡 = 0, the actuator outputs match the trimmed control deflections 𝒖trim. The corresponding initial states
associated with the trimmed states are summarized in Table 8.

Table 8 Initial condition for discrete actuators

Condition Initial state 𝒙0 𝛿trim, deg 𝛼trim, rad 𝜃trim, rad

Mach 3, 60,000 ft [0, -12.21, 0] [0.0, -5.1039, 0.0] 0.0602 0.0602

VIII. Simulation Results

Effect of Sensor Delay:
The effect of unsynchronized sensor delay is analyzed by progressively increasing the measurement delay while

keeping the actuator dynamics and filters unchanged. The sensor delay is increased by 0.01 s for each simulation run.
The corresponding altitude, flight path, and heading responses are shown in Figs. 17, 18, and 19. The effect of sensor
delay is twofold. First, it causes a desynchronization between the angular acceleration and actuator paths, which directly
disturbs the incremental feedback mechanism. Second, it introduces a pure delay in the angular rate feedback loop,
reducing both the gain and phase margins. While proper synchronization can mitigate the first issue by aligning the
actuator and measurement paths, it cannot eliminate the second effect.
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Fig. 17 Effect of increasing sensor delay on altitude tracking without sensor delay synchronization.
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Fig. 18 Effect of increasing sensor delay on flight-path angle without sensor delay synchronization.

The controller maintains accurate tracking up to a sensor delay of approximately 0.04 s. Beyond this point, the
response begins to deteriorate, as evident from Fig. 17. Although the altitude error remains moderate, the inner control
loops exhibit growing oscillations that indicate the onset of instability, as shown in Fig. 18. Once the delay exceeds
0.04 s, the closed-loop dynamics degrade rapidly and eventually the simulation automatically terminates at a delay of
0.08 s when the angle of attack reaches 21◦, which lies outside the aerodynamic data set. A similar trend appears in the
heading and bank angle responses shown in Fig. 19 and Fig. 20. Oscillations develop once the sensor delay exceeds
approximately 0.04 s, matching the onset observed in the altitude and flight path responses. However, the simulation
remains stable for a longer duration and only terminates at 0.12 s. This delayed onset of instability is likely caused by
the nonlinear effect introduced by the bank angle limitation, which constrains the commanded bank to within ±30◦.
Simulations performed without this constraint diverge earlier, at a delay of approximately 0.07 s.
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Fig. 19 Effect of increasing sensor delay on heading response without sensor delay synchronization.
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Fig. 20 Effect of increasing sensor delay on bank angle response without sensor delay synchronization.

Synchronized Time Delay
When sensor delay synchronization is not applied, the effective delay margin is only 0.04 s, far below the values in

Table 6. Practical implementations therefore require sensor delay synchronization to compensate for timing offsets
between the measurement and actuation paths. The idea is to introduce an equivalent delay in the actuator or reference
signal so that both signals are aligned when processed by the controller, ensuring consistent information despite sensor
latency. The following analysis presents results obtained with synchronized delays.

The synchronized altitude-response results are shown in Fig. 21 and Fig. 22. With synchronization enabled, the
controller tolerates delays up to approximately 0.13 s before degradation occurs, more than twice the unsynchronized
limit. At 0.14 s, sustained oscillations drive the angle of attack outside its valid aerodynamic range, causing the
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simulation to terminate; the system is close to divergence. This follows from the continued erosion of gain and phase
margins in the rate loop as the pure delay increases. The critical delay of 0.14 s matches the rate-loop delay margin in
Table 6, showing that synchronization extends the stable delay range to the theoretical limit for the longitudinal case.
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Fig. 21 Effect of increasing sensor delay on altitude tracking with sensor delay synchronization.
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Fig. 22 Effect of increasing sensor delay on flight-path angle tracking with sensor delay synchronization.

For the heading command case shown in Fig. 23 and Fig. 24, the response differs notably from the longitudinal case.
Oscillations appear at a sensor delay of about 0.08 s, much earlier than predicted by the calculated delay margin. This
indicates that the lateral–directional loop is considerably more sensitive to delay. Beyond this point, the system still
tracks the heading command but with large oscillations. The apparent stability up to around 0.16 s results mainly from
nonlinear effects, particularly the roll command limit of ±30◦, which prevents full divergence. Without this limit, the
simulation would fail at smaller delays.

The early onset of oscillations indicates that a core assumption of the INDI formulation may not be fully satisfied
for the lateral–directional dynamics of the GHAME vehicle. Examination of the airframe provides some clues. The
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GHAME’s slender body, low–aspect–ratio wings, and tight wing–body integration yield an unusually low roll moment
of inertia, producing exceptionally fast roll dynamics. As a result, the lateral states evolve on time scales close to those of
the control inputs rather than being clearly separated as assumed in the incremental formulation. Under these conditions,
the system departs from the ideal chain–of–integrators behavior on which INDI relies. The measured acceleration
increment is then affected not only by the control input but also by the natural evolution of the states, reducing the
validity of the quasi–static mapping between input and acceleration. This coupling introduces additional phase lag in
the feedback path and plausibly explains the premature oscillations observed in simulation.

Fig. 23 Effect of increasing sensor delay on heading response with sensor delay synchronization.

Fig. 24 Effect of increasing sensor delay on bank angle response with sensor delay synchronization.

If that is the case, the linear model used for design no longer provides an accurate representation of the system.
Consequently, gain and phase margins derived from the linearized model are not predictive of the actual closed–loop
behavior. Retuning the controller gains can slow the response and give the impression of increased robustness, yet
instability still occurs at delay values inconsistent with linear predictions. The discrepancy is therefore structural rather
than tuning related.
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Conclusion
The analysis demonstrates that the NDI–INDI control architecture performs well for GHAME when no sensor delay

is present. Introducing unsynchronized delay causes the system to fail rapidly, confirming that misaligned measurement
and actuation paths severely degrades the incremental control law formulation. Synchronizing the delay substantially
increases the admissible delay margin and is therefore essential for reliable performance.

The delay study also exposed a deeper structural limitation in the lateral–directional axis. Even with synchronized
delays, the lateral subsystem remains far more sensitive than the longitudinal subsystem. This arises from the intrinsic
characteristics of GHAME: low roll inertia and very fast lateral dynamics leave insufficient separation between the
control input and the airframe response. As a result, the system cannot approximate the chain of integrators required by
INDI. Incremental inversion becomes only approximate, and linear stability margins lose predictive value. In contrast,
the longitudinal axis exhibits adequate separation between control and dynamics, satisfies the INDI assumptions, and
supports accurate inversion and stable control. Overall, the study shows that while NDI–INDI performs effectively for

the longitudinal motion, particularly when sensor delays are synchronized and the lateral axis suffers from a fundamental
structural limitation. In its current form, INDI should only be applied to GHAME’s lateral–directional dynamics with
caution. Only physical or implementation-level modifications, such as higher actuator bandwidth, faster sampling, or
increased roll inertia, could establish the conditions required for reliable inversion-based control.

Appendix

Table 9 GHAME Geometric, Mass Properties, and WGS-84 Physical Constants (SI Units)

Parameter Symbol Constant Takeoff Fuel Burnout Unit

Reference area 𝑆 557.42 – – m2

Reference chord 𝑐 22.86 – – m
Reference span 𝑏 24.38 – – m

Mass 𝑚 – 136,080 54,432 kg
Moment of inertia 𝐼𝑥𝑥 – 1.573 × 106 1.180 × 106 kg·m2

Moment of inertia 𝐼𝑦𝑦 – 31.60 × 106 19.25 × 106 kg·m2

Moment of inertia 𝐼𝑧𝑧 – 32.54 × 106 20.20 × 106 kg·m2

Product of inertia 𝐼𝑥𝑧 – 0.380 × 106 0.240 × 106 kg·m2

Earth gravitational const. 𝐺𝑀 3.986005 × 1014 – – m3/s2

Mean Earth radius 𝑅0 6.370987308 × 106 – – m
Earth rotation rate 𝜔⊕ 7.292115 × 10−5 – – rad/s
Stand. gravity at sea level 𝑔0 9.80675445 – – m/s2
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