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Abstract
The knowledge of the raindrop size distribution is key for characterizing precipitation. It is however still
a challenge to retrieve it with radars. Several polarimetric and spectral techniques are proposed for
cm­wavelength radars (weather radars). What about the mm­wavelength radars (cloud radars), which
have a better spatial and time resolution and can still measure light and moderate rain? Knowing that
90% of the rain volume in Europe comes from rainfall rates between 0.1 mm/h and 10 mm/h, this is
worthwhile to investigate. The goal of this thesis is to retrieve 1 of the 3 parameters of the modelled
gamma raindrop size distribution, the median volume diameter (𝐷0), during stratiform rainfall events
using a slantwise profiling dual­frequency polarimetric cloud radar. Focus is given to phase measure­
ments, which are not affected by attenuation. Simulations show that the differential backscatter phase
(𝛿𝑐𝑜) strongly depends on 𝐷0. At mm­wavelength, backscattering and propagation effects need to
be disentangled first. To achieve this, an algorithm to detect and characterize Rayleigh plateaus is
proposed and implemented. After the application of this algorithm, a methodology to estimate the dif­
ferential backscatter phase and its error is given. The 95% confidence interval of 𝛿𝑐𝑜 is estimated with
the re­sampling method bootstrapping.

Using simulation results, an attempt is made to find combinations of 𝐷0 and the raindrop size dis­
tribution shape parameter 𝜇 that match with the confidence interval of 𝛿𝑐𝑜. The confidence interval
of 𝛿𝑐𝑜 restricts 𝐷0, but not 𝜇 in most cases. This proposed technique is applied for both the 35 and
94 GHz frequency band of the new cloud radar at Cabauw (Ruisdael Observatory site near Utrecht).
The resulting 95% confidence intervals of 𝐷0 with 35 and 94 GHz and their overlap are compared with
in­situ disdrometer measurements of the mass­weighted mean diameter (𝐷𝑚) which is closely related
to 𝐷0. The median volume diameter retrieved with the 35 and 94 GHz frequency bands both shows
a normalized cross correlation coefficient of 0.845 with the measured 𝐷𝑚 of the disdrometer. There­
fore, the cloud radar seems to have the capability to provide the detailed variations of the raindrops
mean/median diameter like a local disdrometer, but at different heights. Nonetheless, the values differ.
The disdrometer provides higher values than the cloud radar. One possible explanation is the inability
of the disdrometer to measure raindrops smaller than 0.25 mm and the expected underestimation of the
number of raindrops with sizes between 0.25 and 0.375 mm. However, because 𝐷0 values retrieved
from 35 GHz data are also higher than the ones at 94 GHz, further research, which can use all the
methodologies proposed in this master thesis work, is needed to examine the quantitative values of
the median volume diameter retrieval.

These techniques can be implemented for all the single­frequency cloud radars (94 GHz) of the
national Ruisdael Observatory (cloud and precipitation profiling mobile station and Lutjewad site above
Groningen).
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1
Introduction

This master thesis was written as part of the Geoscience and Remote Sensing track of Civil Engineer­
ing at Delft University of Technology. The research work relates to rain microphysics: the raindrop size
distribution, which leads to the rainfall rate or the number of raindrops per m3. Significant research has
been carried out for retrieving the raindrop size distribution with weather radar polarimetric data. What
about polarimetric cloud radars? In this master thesis, this new topic is explored.

In this chapter, first, the relevance of the raindrop size distribution is discussed in section 1.1, then in
section 1.2 it will be discussed how the raindrop size distribution can be determined, next, in section 1.3
the research questions will be given. In section 1.4, it will be explained what approach will be used to
be able to answer the research questions. Section 1.5 will introduce some useful parameters which
are used in this research and finally, in section 1.6 the structure of this thesis will be discussed.

1.1. Why Raindrop Size Distribution?
Humans have always tried to understand the skies. Already 3000 years BC, in ancient Mesopotamia,
people recorded the skies and created calendars based on the lunar cycle [1]. Observations and con­
sequently the understanding of weather and climate have drastically improved. Because of this, people
can even predict the weather. Relatively recent, the rise of computers made it possible to use com­
puter algorithms and this led to more reliable weather predictions. A lot of different weather prediction
algorithms exist at this moment, but the same general principle is always used: Measurements of the
past are used in combination with a model to predict the future. As a result, the weather predictions
depend highly on the quality of the measurements. Moreover, weather models, as well as climate mod­
els, are build by trying to understand observations. In conclusion, improving the quality of observations
does not only directly improve the quality of weather/climate predictions, but also makes it possible to
increase our understanding of weather/climate and therefore increase the quality of the models and
consequently future predictions. The raindrop size distribution is such a parameter that is essential for
a lot of meteorological research, like quantitative precipitation estimation and numerical modeling of
micro­physical processes of rain formation and evolution [2]. Moreover, rainfall plays an important role
in the Earths water and energy cycle and the duration and intensity of this rainfall are of interest for many
Earth science applications [3]. The raindrop size distribution is an important parameter, as the liquid
water content, the rainfall rate and the number of drops per m3 are all a function of the raindrop size
distribution. Furthermore, the raindrop size distribution gives information on the type of precipitation.
A lot of small falling raindrops can for example result into the same rainfall rate as fewer bigger falling
raindrops, but this difference cannot be noticed by only measuring rainfall intensity. In conclusion, the
raindrop size distribution gives a detailed description of a rainfall event.

1.2. How to Determine the Raindrop Size Distribution?
The cheapest and easiest way to measure rainfall is using a rain gauge. However, this only results
in the rain accumulation at one local point. This device cannot be used to measure the rain drop size
distribution. A disdrometer however, which is an other in­situ measurement device, can be used for
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2 1. Introduction

this purpose. There are different type of disdrometers, varying from laser disdrometer to 2D video
disdrometers, but they all measure raindrop sizes. A disadvantage of disdrometers is that they cannot
accurately characterize the small raindrops in the raindrop size distribution [4]. Moreover, because it is
an in­situ measurement device, the measurements are only representative for a small volume and this
is usually on the surface. Polarimetric radars can also be used to retrieve the raindrop size distribution
[5][6][7][8]. These retrieval methods make use of for example the reflectivity at horizontal polarization
(𝑧ℎ), the differential reflectivity (𝑧𝑑𝑟) and the specific differential phase (𝐾𝑑𝑝) [5] to retrieve the raindrop
size distribution by using a weather radar (S­,C­,X­band). This thesis research uses a polarimetric
cloud radar to retrieve the raindrop size distribution, which is a literature gap.

1.3. Research Questions
The context of this master thesis is the retrieval of the raindrop size distribution as a function of height
and time during statiform rainfall events using a polarimetric cloud radar which is located at Cabauw.
The overall research question is therefore:

• How can the median volume diameter (𝐷0) be retrieved using a polarimetric cloud radar?

To be able to answer the research question, the following sub­questions have been formulated:

1. Are the polarimetric measurements well calibrated?

2. How to disentangle propagation and backscattering effects?

3. How can the differential backscatter phase be estimated?

4. How can the error of the differential backscatter phase be evaluated?

5. How can themedian volume diameter be retrieved from the estimate of the differential backscatter
phase?

6. How does the retrieved median volume diameter compare with disdrometer measurements?

By answering the sub­questions in order, the research question will be answered. As can be seen in
the sub­questions, the focus in this research is given to retrieve the median volume diameter, which is
one of the three parameters of the gamma­modeled rain drop size distribution, as will be discussed in
the next section.

1.4. Raindrop Size Distribution Model
Raindrop size distributions are often retrieved by first assuming a general distribution and by then
estimating the parameters of the distribution. Two often used distributions are the (two­parameter)
exponential distribution and the (three­parameter) gamma distribution. An exponential raindrop size
distribution retrieval is easier, as one less parameter needs to be estimated, but the gamma distribu­
tion can approximate the real raindrop size distribution better. Exponential distributions are generally
used if drop size distribution are averaged in space and/or time [9]. In this research, the raindrop size
distribution is retrieved by using a gamma distribution. The gamma distribution is given in equation 1.1
[9]:

𝑁(𝐷) = 𝑁𝑤𝑓(𝜇) (
𝐷
𝐷0
)
𝜇
exp [−(3.67 + 𝜇) 𝐷𝐷0

] (1.1)

with

𝑓(𝜇) = 6
(3.67)4

(3.67 + 𝜇)𝜇+4
Γ(𝜇 + 4) (1.2)

where 𝑁(𝐷) is the raindrop size distribution in mm−1m−3, 𝐷 is the raindrop diameter in mm, 𝑁𝑤 is
the intercept parameter in mm−1m−3, 𝐷0 is the median volume diameter in mm, 𝜇 is the shape param­
eter and Γ is the gamma function. When 𝜇 equals 0, the gamma distribution is equal to the exponential
distribution. In other words, the exponential distribution is a special case of the gamma distribution.
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The introduction of the third parameter 𝜇 gives more flexibility regarding the shape of the distribution.

The research goal is to estimate the parameters 𝑁𝑤, 𝐷0 and 𝜇 from radar variables to obtain a re­
alistic model of the raindrop size distribution. To do this, it is necessary to know how these variables
derived from radar measurements depend on 𝑁𝑤, 𝐷0 and 𝜇. These dependencies can be derived by
using simulations of the whole propagation and scattering process in a rainfall event.

Possibilities are power measurements like the equivalent reflectivity factor at horizontal polarization
(𝑧ℎℎ), the differential reflectivity (𝑧𝑑𝑟) and the differential attenuation (𝐴𝑑𝑝). A disadvantage of these first
two measurements is that they suffer from attenuation and this means that first the attenuation should
be determined. The total attenuation is the sum of the attenuation due to raindrops and the attenua­
tion due to gasses. As estimating this attenuation is complex and it brings an extra uncertainty to the
attenuated corrected variables, the focus in this research will be on phase measurements, which do
not suffer from attenuation. There are two phase variables which might be of interest in this research,
the differential backscatter phase (𝛿𝑐𝑜) and the specific differential phase (𝐾𝑑𝑝). The next section will
elaborate on these parameters, among others. They first need to be derived from the measurements.
Next, when the variables and simulations are combined, conclusions can be drawn about the param­
eters 𝑁𝑤, 𝐷0 and 𝜇. For example, the differential backscatter phase, mainly depends on 𝐷0, a little bit
on 𝜇 and is independent of 𝑁𝑤. Continuing with such an approach applied to different variables, the
estimation of 𝑁𝑤, 𝐷0 and 𝜇 could be obtained.

1.5. Radar Parameters
This section will focus on themeaning of some useful parameters in this research. As the use of Doppler
spectra is necessary for determining some of the useful parameters, first, it will be explained what
Doppler spectra are in subsection 1.5.1. Then in subsections 1.5.2 and 1.5.3 useful power and phase
based parameters will be discussed, respectively. This introduction is based on the radar meteorology
lectures of the master course Atmospheric Remote Sensing at Delft University of Technology.

1.5.1. Doppler Spectra
The used polarimetric cloud radar continuously measures Doppler spectra. This means that the mea­
surements, for example the differential phase, are measured for different Doppler velocities. The differ­
ential phase is thus measured as a function of time, range and Doppler velocity. The Doppler velocity
is the velocity component of the falling velocity of the raindrop in the direction of the radar. Without
horizontal wind and turbulence, this would allow to calculate the falling velocity, as the elevation angle
of the radar is known (45 deg). In practise, horizontal wind and turbulence make it challenging to do
this. However, the Doppler velocity is still helpful in this research, as will be explained later in this thesis
in section 4.1.

1.5.2. Power Based Parameters
Equivalent Reflectivity Factor
The equivalent reflectivity factor follows from the radar equation:

𝑧𝑒 =
𝑃𝑟𝑟2
𝐶𝑤𝑟

(1.3)

where 𝑧𝑒 is the equivalent reflectivity factor in mm6/m3, 𝑃𝑟 is the received power in W, 𝑟 is the range
in m and 𝐶𝑤𝑟 is a constant with the unit W m5/mm6, depending on the radar system. The equivalent
reflectivity factor is not dependent on range, but the received power is. As the received power becomes
less at higher range, the signal­to­noise ratio decreases at larger distance, whichmay lead to inaccurate
results. Moreover, absorption of gasses and particles will lead to lower 𝑃𝑟 values and when one does
not correct for this, one will see a decrease of 𝑧𝑒 as a result of this. The difference between the
reflectivity factor and the equivalent reflectivity factor is that the equivalent reflectivity factor assumes
the dielectric value of liquid water (𝐾𝑤), even while observing hail or snow, the (actual) reflectivity factor
could be calculated by using the following conversion:



4 1. Introduction

𝑧 = 𝑧𝑒
|𝐾𝑤|2
|𝐾|2 (1.4)

where 𝐾 is the dielectric factor. As the equivalent reflectivity factor varies a lot during different
precipitation intensities and types, usually a decibel scale is used. If one uses the standard definition
of the decibel, one can calculate the equivalent reflectivity factor in decibel while using 𝑧0, 1 mm6/m3,
as a reference, this is usually called decibel relative to Z, or dBZ:

𝑍𝑒 = 10 log10 (
𝑧𝑒
𝑧0
) (1.5)

Where 𝑍𝑒 and 𝑧𝑒 are the equivalent reflectivity factor in dBZ and mm6/m3, respectively. In the
literature, the following equivalent definition is also used with the same units (dBZ and mm6/m3):

𝑍𝑒 = 10 log10 (𝑧𝑒) (1.6)

The equivalent reflectivity factor is useful because plots of 𝑍𝑒 quickly show critical information of
the rainfall event. For example, one can see whether the rainfall is stratiform or convective. When the
melting layer can be identified in the plot, the rainfall is called stratiform. In this research, only stratiform
rainfall is considered. Moreover, one can see the melting layer in such a plot and thus one can estimate
the melting layer height.

Differential Reflectivity
Differential reflectivity is defined as the horizontally polarized equivalent reflectivity factor (𝑧ℎℎ) divided
by the vertically polarized one (𝑧𝑣𝑣):

𝑧𝑑𝑟 =
⟨|𝑆ℎℎ|

2⟩

⟨|𝑆𝑣𝑣|
2⟩
= 𝑧ℎℎ
𝑧𝑣𝑣

(1.7)

where 𝑧ℎℎ and 𝑧𝑣𝑣 are in mm6/m3 and the 𝑆 terms come from the scattering matrix:

[ 𝐸
𝑠
ℎ
𝐸𝑠𝑣 ] = [

𝑆ℎℎ 𝑆ℎ𝑣
𝑆𝑣ℎ 𝑆𝑣𝑣 ] [

𝐸𝑖ℎ
𝐸𝑖𝑣

] (1.8)

where 𝐸 is the electric field, 𝑠means scattered wave, 𝑖 means incident wave, ℎ stands for horizontal
polarization and 𝑣 stands for vertical polarization. Often, the differential reflectivity is expressed in dB:

𝑍𝑑𝑟 = 10 log10 (𝑧ℎℎ) − 10 log10 (𝑧𝑣𝑣) = 𝑍ℎℎ − 𝑍𝑣𝑣 (1.9)

The differential reflectivity depends on the particle shapes and permitivities. Spherical particles have
a 𝑧𝑑𝑟 of 1, so a 𝑍𝑑𝑟 of 0 dB. For rain, there is a relationship between size and shape. Small droplets are
approximately spherical and bigger droplets are oblate spheroids. The following approximation can be
used to see the relation between the shape of the raindrop and 𝑧𝑑𝑟 [9]:

𝑧𝑑𝑟 =
|𝑆ℎℎ|

2

|𝑆𝑣𝑣|
2 ≈ (

𝑏
𝑎)

− 73
(1.10)

where 𝑏 and 𝑎 are the two different radii of the oblate spheroid (raindrop) in m. When looking to the
zenith, the cross section of the droplet is a circle with radius 𝑎. This means that this relation cannot be
used when looking at the zenith and gives the best result when looking at an angle of 0 deg. It’s easy
to confirm that when the particle is spherical, so when 𝑎 = 𝑏, 𝑧𝑑𝑟 is indeed equal to 1. 𝑍𝑑𝑟 is high in
rain and low in hail, so 𝑍𝑑𝑟 is a good hail indicator. The differential reflectivity is largely weighted by the
bigger particles, so oblate droplets and spherical hailstones would lead to a 𝑍𝑑𝑟 of approximately 0 dB.

Equation 1.10 describes one raindrop in the Rayleigh scattering regime (weather radar). This equa­
tion is not valid anymore in the Mie scattering regime (cloud radar).
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1.5.3. Phase Based Parameters
Differential Propagation Phase, Specific Differential Phase and Differential Backscatter Phase
The differential phase (Ψ𝑑𝑝) can directly be calculated from the measurements, as will be explained
in more detail in section 4.2. The differential phase is the sum of the differential propagation phase
and the differential backscatter phase. The differential propagation phase Φ𝑑𝑝 is the phase shift that
occurs between vertically and horizontally polarized waves, because horizontally polarized electro­
magnetic waves slow down more in rain than vertically polarized electromagnetic waves because of
the oblate shape of raindrops (when not looking at the zenith). The differential propagation phase can
be calculated in the following way:

Φ𝑑𝑝 = 2 (Φℎℎ −Φ𝑣𝑣) (1.11)

where Φℎℎ and Φ𝑣𝑣 are the propagation phases in deg with horizontal and vertical polarization,
respectively. A well­known parameter in radar meteorology is the specific differential phase (𝐾𝑑𝑝),
which is related to the propagation differential phase in the following way:

Φ𝑑𝑝 ≡ 2𝐾𝑑𝑝𝑟 (1.12)

where 𝐾𝑑𝑝 is the specific differential phase in deg/km.

Co­polar Correlation Coefficient
The co­polar correlation coefficient (𝜌𝑐𝑜) is a statistical parameter that is between 0 and 1 which gives
an indication of how uniform the sky is in terms of shape and relative permittivity of the medium with
hydrometeors. A higher value means more uniformity. In rainfall, one can expect a value close to 1,
while in hail, a mixture of rain and hail or wet aggregates, a lower value than 0.95 is expected. Moreover,
clutter like birds will also lead to lower values of 𝜌𝑐𝑜. Because of the melting process, the melting layer
is a non­uniform medium. Therefore, the co­polar correlation coefficient can also be used for melting
layer detection. The mathematical definition of 𝜌𝑐𝑜 is given in the following equation:

|𝜌𝑐𝑜| = ||
⟨𝑆∗ℎℎ𝑆𝑣𝑣⟩

√⟨|𝑆ℎℎ|
2⟩ ⟨|𝑆𝑣𝑣|

2⟩
|| (1.13)

1.6. Outline of the Report
In chapter 2, a literature review on the topic is given, followed by chapter 3 which explains what data
the cloud radar provides, how the errors are estimated in this research and how an extra polarimetric
calibration is applied. After this, in chapter 4, it is explained how propagation and scattering effects
are disentangled and how this is used for an estimation of the differential backscatter phase and the
specific differential phase. In chapter 5 it is explained how the median volume diameter is estimated
and how the results compare with the measurements from a disdrometer. Thereafter, in chapter 6, a
conclusion of this master thesis will be given, followed by the bibliography and the appendix.





2
Literature Review

In this chapter, related literature to this research is reviewed and the used simulations for this research
are briefly discussed. First, in section 2.1, general information about cloud radars is discussed by first
briefly explaining how cloud radars work in subsection 2.1.1, then in subsection 2.1.2 explaining where
cloud radars are used for and finally in subsection 2.1.3 explaining what the limitations are of using
cloud radars. After this, in section 2.2 it will be discussed what research is done on using cloud radars
for rain observations by first focusing on the literature about vertically profiling and then focusing on
literature about slantwise profiling in subsections 2.2.1 and 2.2.2, respectively. Finally, in section 2.3,
the used simulations in this research will be discussed briefly.

2.1. Cloud Radar
2.1.1. How Cloud Radar Works
This section will explain the basics of how cloud radars work. Cloud radars work very similar as weather
radars. The radar emits electromagnetic radiation with a certain frequency and measures the backscat­
ter. A part of the emitted radiation backscatters, because of the interaction with particles in the atmo­
sphere, like precipitation particles or cloud particles. The power and phase of the emitted radiation is
known and the power and phase of the backscatter is measured. For weather radars, most scatters will
be inside the Rayleigh regime. An advantage of the Rayleigh regime is that the backscattering cross
section is well defined and is proportional to the diameter of the particle to the sixth power as can be
seen in equation 2.1 [10].

𝜎𝑏 =
𝜋5|𝐾|2
𝜆4 𝐷6 (2.1)

Where 𝐾 is the Dielectric factor, 𝜆 is the wavelength of the radiation in m and 𝐷 is the diameter of
the (spherical) particle in m. For the cloud radar, the scattering is not only in the Rayleigh regime any
more. Small particles will lead to Rayleigh scattering, while bigger particles will lead to Mie scattering.
Mie scattering doesn’t have a backscattering cross section which keeps increasing as a function of
diameter, but it will oscillate as the particle diameter increases, as can be seen in Figure 2.1. This
means that even when one would know the backscattering cross section without uncertainty, that one
cannot tell what diameter the particles has, as there are multiple possibilities. Moreover, with the higher
frequencies at the cloud radar compared to the weather radars, power measurements are influenced
more by attenuation. Precipitation, but also the gasses in the atmosphere lead to attenuation, which
makes it more difficult to interpret power measurements. Furthermore, in the Mie regime, the phase of
the radiation shifts differently versus polarization during the backscatter, which leads to the differential
backscattering phase.

2.1.2. Where are Cloud Radars Used for?
Cloud radars can be used for multiple purposes. In the U.S., the Atmospheric Radiation Measurement
(ARM) user facility uses cloud radars (Ka­W SACR) to investigate for example the cloud life cycle for

7
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climate studies [11]. The radars do not stand still, but scan the atmosphere. Recently, also second­
generation radars (Ka­W SACR2) are in use and these use two frequencies and dual polarization. An
example of the application of these new radars is determining the liquid water content of clouds [11].
Moreover, this dual polarization is interesting for studying non spherical hydrometeors [11]. Clothiaux
et al. states that cloud radars can be used for determining the water vapor path, liquid water content,
ice water content, ice water path and cloud particle number density distributions [12]. Liao and Sassen
determined empirical relationships for ice water content and liquid water content in clouds [13]. They
also found an empirical relationship for the ice water content of precipitating ice crystals. This research
is done by using airborne data. Liao and Sassen also state that an advantage of cloud radar is that it
can be used to determine cloud boundaries for multiple cloud layers. Marinou et al. combined data from
a 35 GHz radar called Mira­35 and the WALES (Water Vapor Lidar Experiment in Space) instrument
to classify aerosols and clouds [14]. Moreover, Lhermitte pointed out that the small size of the cloud
radars relative to lower frequency radars is convenient, especially for spaceborn operations [15].

2.1.3. Limitations
Some limitations of these radars are that the radar return power is strongly weighted by the larger par­
ticles and the relationship between radar reflectively factor and particle size are much more complex
for frozen particles [11]. A consequence is that the uncertainty in particle size distribution and water
content is high. On the other hand, cloud radars have higher frequencies than normal S­band and
X­band weather radars. Because of this, cloud radars are more sensitive to small diameter particles,
as the intensity of the echo is dependent on the inverse fourth power of the wavelength when in the
Rayleigh regime, as can be seen in Equation 2.1. However, the big disadvantage is that this higher
frequency also leads to more attenuation, which means that the maximum range that can be observed
is significantly lower during rainfall. An other limitation of cloud radars, as well as all type of radars is
that they have a minimum detection range. Take for example the radar Mira­35. Mira­35 is a 35 GHz
cloud radar and operates on the Polarstern research boat. It is vertically pointed and has a minimum
detection height of 165 meters above sea height [16].

When the sky is clear, one might expect no echos. However, also in clear skies some echos will
occur. This can for example be because of insects in the sky. Yang et al. made an automatic identifi­
cation system which detects clear sky echos [17]. In order to do this, they use a millimeter­wave cloud
radar in combination with a laser­ceilometer, an L­band radiosonde and an all sky camera.

2.2. Cloud Radar for Rain Observations
Cloud radar is mostly used for observing clouds. However, a cloud radar can also be used to measure
precipitation. When doing this, it is important to understand how the emitted radiation interacts with
the precipitating particles. How the radiation interacts strongly depends on the size of the particle.
There are three scattering regimes: Rayleigh scattering, Mie scattering and optical scattering. Rayleigh
scattering occurs when the particle is much smaller than the wavelength of the radiation. When using S­
band or C­band for measuring precipitation, Rayleigh scattering will occur for most of the precipitation.
However, for W band and Ka band of the cloud radar, a large part of the precipitation backscattering
is inside the Mie scattering regime. This can also be seen when looking at the backscattering cross
sections. Figure 2.1 [10] shows that the backscattering cross section is only the same as the Rayleigh
scattering particles that are smaller than approximately 1 mm for the 94 GHz frequency band at a
temperature of 20∘C.
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Figure 2.1: Backscattering cross sections of water and ice spheres as a function of their diameter for different radar frequency
bands and water temperatures. This figure is taken from [10].

2.2.1. Vertically Profiling
Cloud radars can be used to retrieve the rainfall rate. Matrosov, for example, suggested an attenuation­
based approach which could retrieve low­resolution rainfall rate profiles by using a Ka band radar which
is vertically oriented [18]. Chandra et al. made an automated algorithm for determining rainfall rates
with a Ka band radar [19]. They use a different retrieval method for heavy and light rain. For heavy
rain, they use the amount of attenuation to determine the rainfall rate by using an 𝐴 − 𝑅 relation, while
for light rain, a 𝑍 − 𝑅 or an 𝐴 − 𝑅 relationship is used, depending on the Doppler velocity.

Cloud radars can also be used to retrieve the raindrop size distribution. Kollias, for example, showed
the potential of a vertically profiling 94 GHz radar for precipitation studies [20]. He retrieves the vertical
air motion and the raindrop size distribution. Kollias also demonstrated this in an other article [21] and
showed an example Doppler velocity graph which can be used to retrieve the vertical air motion, as
can be seen in Figure 2.2 [21].
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Figure 2.2: An example Doppler sample recording at 94 GHz. The shift in the Mie minimum related to the presence of the vertical
wind is shown. This figure is taken from [21].

The Mie minimum is shifted and this shift can be used to estimate the vertical air motion. The esti­
mate is simply the difference between the raindrop terminal fall velocity corresponding to the diameter,
D=1.7 mm, and the first resonant minimum in the graph. In this way, the Mie scattering is used as an
advantage, while it is often seen as a disadvantage compared to Rayleigh scattering, which is easier
to use in terms of analytical mathematics. The big disadvantage of the 94 GHz radar is the severe
problems of attenuation. Kollias states that during rainfall rates under 3 mm/h, the retrieval technique
can be used from the ground up to the melting layer. At higher rainfall rates (from 10­20 mm/h), due to
attenuation, the antenna will only penetrate to a height of 2 km of convective precipitation. Kollias says
that together with a lower frequency radar, 94 GHz radars can overcome to a great extent the uncer­
tainties related to the retrievals of vertical air motion and drop size distributions [21]. He also states in
an other article that the high resolution measurements can be used for modeling studies of stratiform
rain [22]. The latter retrieval technique of Kollias is based on the technique that Lhermitte used in his
paper in 1988 [23]. Lhermitte says that his technique is applicable to measurements of downdrafts or
microbursts in rainshafts and dropsize distribution in all types of rain.

Tridon uses, still at zenith­looking, beam­matched Ka andW band radar observations from the ARM
program in order to disentangle Mie and attenuation effects in rain [24]. Tridon mentions that the dual
wavelength ratio is commonly used in dual wavelength retrieval techniques [24]. The dual wavelength
ratio is defined as in Equation 2.2.

DWR(𝑟) ≡ 𝑍𝑚,𝜆1(𝑟) − 𝑍𝑚,𝜆2(𝑟)

= 𝑍𝑒,𝜆1(𝑟) − 𝑍𝑒,𝜆2(𝑟)⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝
Mie effect

+2∫
𝑟

0
(𝛼𝜆2(𝑠) − 𝛼𝜆1(𝑠))d𝑠⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
Attenuation effect

(2.2)

Tridon explains that it’s difficult to distinguish the Mie effect from the attenuation effect. In order to
make this distinction, the author proposes the use of Doppler spectral measurements. Small raindrops
scatter in the Rayleigh regime and this small raindrop scattering corresponds to a certain Doppler ve­
locity regime. If one can find this Doppler velocity regime for both the 35 GHz and 94 GHz band, one
can calculate the part of the dual wavelength ratio that only corresponds to the attenuation of the dual
wavelength ratio and not from the Mie effects, as these scatters were inside the Rayleigh plateau, thus
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have not been affected by Mie effects. This technique was applied to light stratiform rain between a
height of 1 and 3.2 km, but might also be suitable for higher rainfall rates or for drizzling stratocumulus,
as long as the signal to noise ratio is high enough.

2 of the 3 authors of the last mentioned article continued research in 2015 and made a Ka­W band
technique for simultaneous retrievals of the binned raindrop size distribution and air state parameters
like vertical wind [25]. The method is applicable to rain rates that are roughly between 1 and 30 mm/h.

An other article also uses the combination of Ka and W band radar [26]. They retrieve the drop size
distribution and the vertical air motion in rain. The vertical air motion is mainly determined by using the
W band radar data and the raindrop size distribution is estimated by combining the data of both bands
and using an iterative procedure. The results are best for rainfall rates exceeding 1 mm/h.

Matrosov also combined Ka and W band radar observation [27] from an ARM radar. He used it
to retrieve the mean mass­weighted drop diameters. His method was insensitive to calibration errors,
vertical air motion and attenuation effects. He derived a relation between the mean mass­weighted
drop diameters and the drop size distribution from long term measurements. Matrosov states that this
method is less susceptible to Doppler spectrum broadening compared to Doppler spectrum–based
methods.

2.2.2. Slantwise Profiling
Almost all literature focuses on research performed with a cloud radar aimed at the zenith. Using an
elevation angle smaller than 90 deg, does, however, also has advantages. Polarimetric parameters
can be used in this case. For example, the differential reflectivity can be used. A small raindrop is
in general spherical and the bigger the raindrop gets, the more oblate the raindrop becomes. When
looking to the zenith and the raindrop falls exactly vertically, the frontal view will be a circle, even if
the raindrop is oblate and this will result in the same differential reflectivity value for all different sized
particles. When the elevation angle is lower than 90 deg, for example 30 or 45 deg, the frontal view
will be an ellipse. In this case, the differential reflectivity will be higher if the raindrop size increases.
However, the downside of a lower elevation angle is that the measured Doppler velocity component in
the falling direction is lower and it is not easy to retrieve the vertical wind with this non zenith looking
set­up because of the presence of the horizontal wind component.

Myagkov explained that without Mie scattering effects, the differential reflectivity is a good variable
to relate to the median volume diameter (𝐷0) [28]. However, at W band, Mie scattering effects are
present and one needs a different parameter to relate to 𝐷0. The differential backscatter phase (𝛿𝑐𝑜)
turns out to be an appropriate parameter at X band [29][28], because it is related to 𝐷0 and independent
on the intercept parameter (𝑁𝑤).

To be able to find 𝛿𝑐𝑜, propagation and (Mie) backscattering effects need to be disentangled. This
can be done by using the Doppler spectra. Myagkov proposes a method to separate propagation and
backscattering effects using the fact that small raindrops fall slower than larger raindrops in the absence
of strong turbulence [28]. The idea is that the small raindrop Doppler spectra can relate to propagation
effect only, while larger raindrop Doppler spectra are also affected by Mie scattering effects. The key
concepts of this method are used in this thesis research.

2.3. Simulations
For the raindrop size distribution retrieval, different variables could be useful. Because there is little
known about the polarimetric measurements of cloud radars, next to literature studies, simulation work
is necessary. This simulation work in development is discussed in an internal report [30]. Simulation
results will be used in this master thesis research, where emphasis is given to obtain an extra polari­
metric variable for the cloud radar. This variable is the differential backscatter phase, 𝛿𝑐𝑜, which shows
a good potentiality for estimating 𝐷0.
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Citing [30], the numerical values of the backward (S) and forward (F) scattering amplitudes for rain­
drops are obtained using the Fredholm integral method. T­matrix method could be used as well. The
Liebe model for the complex refractive index of water, which depends on frequency and temperature,
is implemented. The temperature (T) may vary between 1 and 40 ∘C and the radar elevation angle
can be selected from 0 to 90∘. The raindrop size distribution is modeled by the gamma distribution with
equi­volume spherical diameters (D) ranging from 0.1 to 8 mm. The raindrops are modeled as oblate
spheroids.



3
Data, Error and Preprocessing

This chapter focuses on the data used for this research and the error analysis. First, in section 3.1
the used cloud radar is introduced, then in section 3.2 it will be explained what measurement files are
obtained. After that, it will be explained why and how a table is created to select hours of interest for this
research in section 3.3. In section 3.4, examples of plots of the measurements will be given and how
these can be used to determine if an hour is interesting for this research or not. Then, in section 3.5 it
is discussed what disdrometer will be used to compare the retrieved median volume diameter with (in
section 5.4). Section 3.6 focuses on how the errors are calculated in this research. At last, in section 3.7
there will be explained how an extra calibration correction will be determined.

3.1. Used Cloud Radar
The used cloud radar in this research is a dual­frequency polarimetric cloud radar, which can be seen
in Figure 3.1. It emits (and measures) two frequency bands: 35 GHz (Ka band) and 94 GHz (W band),
because these frequencies have a high relative transmission in the Earth’s atmosphere. Two large
and two small spherical antennas are used to emit and receive the 35 and 94 GHz frequency band
radiation, respectively. The radar was oriented with an elevation angle of 45 deg for all measurements
that are used in this research. The advantage of this elevation angle is that one can make use at the
same time of polarimetric measurements and Doppler spectra related to raindrop fall velocities. The
radar is located next to a 213 m high KNMI­mast, which is used for meteorological measurements. It is
convenient that also other meteorological instruments are present, because this gives the opportunity to
use this as extra data or as comparison. The rainfall rate at the surface, which is used in this research,
is measured by a weather station on the cloud radar.

3.2. Measurement Files
The cloud radar provides binary files which are converted into NetCDF files, which are easy to read by
programming languages like for instance MATLAB. There are two NetCDF files per hour. One contains
the raw measured data of this hour, while the other contains some processed data of this hour. This
research mainly uses the raw data, but uses the processed data to check whether the hour is interesting
by looking at the rainfall rate, the equivalent reflectivity factor and the copolar correlation coefficient. In
section 3.4 it will be explained how these variables are used to check if an hour is interesting for this
research. The most important variables that the (raw data) NetCDF files contain are given here with a
short explanation:

• A time vector, containing all time bins of the measurements

• A range vector, containing all range bins of the measurements

• A velocity vector containing all Doppler velocity bins of the measurements

• A 3­dimensional matrix containing the Doppler spectrum at horizontal polarization at different
range and time bins

13
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• A 3­dimensional matrix containing the Doppler spectrum at vertical polarization at different range
and time bins

• A 3­dimensional matrix containing the real part of the cross spectrum at different range and time
bins

• A 3­dimensional matrix containing the imaginary part of the cross spectrum at different range and
time bins

• A 2­dimensional matrix containing the integrated noise power at horizontal polarization at different
range and time bins

• A rainfall rate vector, containing the rainfall rate at the surface corresponding to all time bins
measured from a weather station next to the cloud radar

Figure 3.1: The used polarimetric dual­frequency cloud radar located at Cabauw, a small town in the Netherlands.
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3.3. Rainfall Event Selection
In this research, not all hours of data that the radar collects is of interest. More specific, this research
focuses on hours with rainfall (without hail or fog with it). Furthermore, there should be available data
for the 35 and 94 GHz radar, the radar’s elevation angle should be 45 deg, the radar’s azimuth angle
should be 247 deg and there must be a clear melting layer which is not extremely low. The elevation
angle has changed some times from 45 deg to 30 deg and back. Since data with different elevation
angles are not easily comparable and the majority of the data is with a 45 deg elevation, only data
with a 45 deg elevation angle is used. During the research, the radars orientation has also changed
to upside down, because some water accumulated on top of the radar and changing the orientation to
upside down helped to reduce this effect. As a consequence of this, the 45 deg elevation angle is now
detected as an elevation angle of 135 deg (180­45 deg).

To be able to find the hours of interest, it was convenient to write a MATLAB script that loops
through all NetCDF files and also through a publicly available file from the KNMI website that contains
information about the precipitation type at Cabauw as a function of time and adds this information to a
table. This table contains the following information for every hour:

• The date (including the starting hour of the day)

• The elevation angle [deg]

• The azimuth angle [deg]

• The mean rainfall rate of the hour measured at the surface with a weather station [mm/h]

• The maximum rainfall rate of the hour from weather station [mm/h]

• The availability at 35 GHz [0/1]

• The availability at 94 GHz [0/1]

• Rainfall (precipitation type) [0/1]

• Snow (precipitation type) [0/1]

• Thunder (precipitation type) [0/1]

• Ice (precipitation type) [0/1]

• Fog (precipitation type) [0/1]

At the end of theMATLAB script, the table is saved as a ’.mat’ and ’.txt’ file. Moreover, it is convenient
to import the text file into excel and use it as a table inside excel, as it is very easy to use filters in different
columns there. As an example, the following filters are applied to find interesting hours for this research:

• Elevation angle = 45 or 135 [deg]

• Azimuth angle = 247 or 102 [deg]

• Mean rainfall rate > 0.1 [mm/h]

• Available 35 GHz = 1

• Available 94 GHz = 1

• Rainfall = 1

• Snow = 0

• Thunder = 0

• Ice = 0

• Fog = 0
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Moreover, the table is sorted from high mean rainfall rates to low mean rainfall rates. This results
into Table 3.1.

Table 3.1: Table created for finding hours of interest with filters applied to find interesting hours for this research.

3.4. Plotting Cloud Radar Variables
The previous section explained that a table was made to find interesting hours. This table, however,
does not tell how the rainfall rate at the surface is distributed over the hour. Moreover, it does not tell if
there is a clear melting layer visible and if so, how high this is. To be able to quickly get this information,
one can use the processed NetCDF files. As an example, the third of February 2021 will be used from
10 am to 11 am, which can also be found in the 11th row of Table 3.1. First, the rainfall rate can be
plotted versus time. This is done in Figure 3.2. As can be seen, this hour is particularly interesting,
because there was a rainfall rate at the surface of more than 0.1 mm/h during almost the whole hour.
Thereafter, the equivalent reflectivity factor can be plotted, like is done in Figure 3.3. One can clearly
see that precipitation is falling to the surface the whole hour, as the precipitation results in a relatively
high equivalent reflectivity factor and this is clearly visible close to the ground. In this research, the focus
is on rainfall events and this means that one must find the heights and times where and when there is
rainfall. When there is rainfall can be determined by the rainfall rate which is measured by the weather
station. Until what height there is rainfall, in other words, at what height is the bottom of the melting
layer, can be found by looking at the copolar correlation coefficient. The copolar correlation coefficient
can also be found in the processed NetCDF file and this can be plotted versus time and height, as can
be seen in Figure 3.4. One can clearly see the melting layer in these plots, as the copolar correlation
coefficient is significantly lower in the melting layer than in rain and clouds. The lowest height of the
bottom of the melting layer during this hour is approximately at a height of 1080 m.
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Figure 3.2: Rainfall rate at the third of February 2021 measured from a weather station at Cabauw from a (processed) NetCDF
file.

(a) 35 GHz (b) 94 GHz

Figure 3.3: Equivalent reflectivity factor at the third of February 2021 from a processed NetCDF file.

(a) 35 GHz (b) 94 GHz

Figure 3.4: Copolar correlation coefficient at the third of February 2021 from a processed NetCDF file.
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3.5. Disdrometer
In section 5.4, the retrieved median volume diameter with the cloud radar will be compared to dis­
drometer measurements. A Particle Size and Velocity (Parsivel) optical disdrometer is used [31]. This
disdrometer is located at the surface at a horizontal distance of about 150 m from the used cloud radar.
Further, the cloud radar is not looking in the direction of the disdrometer. A Parsivel disdrometer trans­
mits a laser beam and measures the received voltage of the laser beam which has propagated through
air and falling raindrops. When there is a raindrop in the laser beam, the decrease in voltage can be
used to estimate the equi­volume spherical diameter of the raindrop. The minimal detectable raindrop
size is approximately 0.25 mm. The Parsivel disdrometrer uses 22 diameter classes when observing
raindrops where the smallest used class is [0.25, 0.375] mm and the highest class is [6,7] mm. The
measurements of the disdrometer are used to retrieve the mass­weighted mean diameter (𝐷𝑚) and this
𝐷𝑚 will be compared to the 𝐷0 retrieved with the cloud radar.

3.6. Error Calculation
It is important to select a methodology for assessing the quality of results. In this research, this will ,
among other things, be done by using error/uncertainty calculations using statistical methods. In most
one dimensional graphs in this thesis (95%) confidence intervals will be given in the form of error bars.
During this thesis, confidence intervals will be calculated for differential reflectivity corrections, differen­
tial (propagation) phase corrections and for the differential backscatter phase. The next subsection will
explain how confidence intervals of a mean can be calculated, which is applicable for the confidence
intervals of the differential reflectivity corrections and the differential (propagation) phase corrections.
The section after that will explain how the confidence interval of the difference of two dependent vari­
ables can be estimated, which is applicable for the confidence interval of the differential backscatter
phase. Moreover, this section will explain why the re­sampling method bootstrapping will be used.

3.6.1. Confidence Interval of the Mean
To calculate the confidence interval of a mean when only the sample mean and sample standard de­
viation are known, one can assume that the sample mean follows a t­distribution and has a standard
deviation of 𝑠𝑥/√𝑛 if the population is normally distributed [32][33]. When there are more than 30
samples, one can also use the t­distribution when the population is not normally distributed. For the
differential reflectivity corrections and differential (propagation) phase polarimetric corrections (see sec­
tion 3.7), there are more than 30 samples at every height, as can be seen in Figure 3.6. This means
that it is not necessary to check if these variables are normally distributed. The confidence interval can
consequently be calculated in the following way:

𝐶𝐼 = �̄� ± 𝑡∗ ⋅ 𝑠𝑥
√𝑛

(3.1)

where 𝐶𝐼 is the confidence interval, �̄� is the sample mean, 𝑛 is the amount of samples, 𝑡∗ is a
confidence multiplier that is a function of the amount of degrees of freedom (which is in this case equal
to 𝑛 − 1) and the confidence level that one chooses (in this case 95%). The value of 𝑡∗ can be found
in a 𝑡 distribution table. At last, 𝑠𝑥 is the sample standard deviation, which can be calculated in the
following way:

𝑠𝑥 = √
∑(𝑥𝑖 − �̄�)2
𝑛 − 1 (3.2)

where 𝑥𝑖 is a single sample, �̄� is the sample mean and 𝑛 is again the amount of samples. The term
in Equation 3.1 starting with the ± sign is also called the margin of error.

3.6.2. Confidence Interval of the Difference of Two Dependent Variables
In the case of the differential backscatter phase, things get more complex. 𝛿𝑐𝑜 is calculated by taking
the difference of two variables which are not independent, namely the differential phase and the dif­
ferential propagation phase. Moreover, the differential phase is not calculated by directly estimating a
mean. However, one can still make a rough estimation of the 95% confidence interval by making some
assumptions. First, one can find the confidence interval of the differential propagation phase, by using
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the re­sampling method bootstrapping. An advantage of bootstrapping is that one does not have to
assume that the differential propagation phase is normally distributed. Moreover, it is a relatively sim­
plistic method to get the confidence interval. The MATLAB function ’bootci’ wil be used to calculate the
95% confidence interval using bootstrapping with a number of bootstrapping samples of 1000. Finally
getting the confidence interval of the differential backscatter phase is not trivial. In this research, it will
be assumed that the margin of error of the differential backscatter phase is about equal to the margin of
error of the differential propagation phase. The underlying assumption of this is that the random error
of the differential phase is much smaller than the random error of the differential propagation phase,
which seems like a reasonable assumption, as the differential phase is calculated by including a lot
more measurements than the differential propagation phase. Note that this assumption may lead to an
underestimation of the margin of error of the differential backscatter phase.

3.7. Polarimetric Calibration Correction
While investigating the polarimetric variables, in particular the differential phase, this phase did not
show the expected trend of the simulation and exhibited significant discrepancies in values comparing
both frequency bands. Therefore, it became necessary to enter in contact with the senior scientist of
the RPG company (manufacturer of the dual­frequency cloud radar).

A part of the provided data will need an extra calibration correction before the data can be used for
research. In particular, the differential reflectivity and the differential phase. This section will explain
how the corrections are made and will show plots of the corrections. In section 4.4, the impact of the
calibration results will be shown by comparing plots of the spectral differential reflectivity, spectral dif­
ferential phase, differential backscatter phase and specific differential phase with and without using the
extra calibration corrections.

3.7.1. Principle
To be able to find a calibration correction, one must have a measurement and a reference to compare
with. In practise, sometimes other calibrated instruments are used to compare with. In this case, there
is another possibility proposed by Dr. A. Myagkov via mail communication. One can make use of the
fact that one knows the theoretical values of the differential reflectivity and the differential phase in
drizzle. The differential reflectivity is namely 1 (linear) or 0 dB and the differential phase is equal to 0
deg in drizzle. This can be explained by the fact that the raindrops are small in drizzle and in rain there
is a size shape relation which tells us that small raindrops will be close to spherical. This spherical
symmetry of the raindrops will lead to these theoretical differential reflectivity and the differential phase
values of 1 (linear) and 0 deg, respectively. Consequently, one can assume that if one would apply
a calibration correction, the resulting differential reflectivity should be 1 and the resulting differential
phase should be 0 deg. Using Equation 3.3 in the case of drizzle, this will result in Equation 3.5. Like­
wise, using equation 3.4 in the case of drizzle will lead to Equation 3.6. In conclusion, one needs to
use observations of drizzle to find a correction for 𝑧𝑑𝑟 and 𝜙𝑑𝑝.

𝑧𝑑𝑟,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑧𝑑𝑟,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 + 𝑧𝑑𝑟,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (3.3)

𝜙𝑑𝑝,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝜙𝑑𝑝,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 + 𝜙𝑑𝑝,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (3.4)

𝑧𝑑𝑟,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 1 − 𝑧𝑑𝑟,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑑𝑟𝑖𝑧𝑧𝑙𝑒 (3.5)

𝜙𝑑𝑝,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = −𝜙𝑑𝑝,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑑𝑟𝑖𝑧𝑧𝑙𝑒 (3.6)

3.7.2. Drizzle File Selection
To determine these corrections, first drizzle measurements need to be chosen. The created table in
section 3.3 can be used for this. There are some criteria for these drizzle measurements. First of all, the
rainfall rate must be very low, otherwise, it is not drizzle. A maximum rainfall rate of 0.3 mm/h is used,
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but most of the time, the rainfall rate was lower than 0.1 mm/h, which means that no rain was detected
by the weather station. However, when looking at the equivalent reflectivity factor and at the copolar
correlation coefficient, one can still be certain that it was raining. When the reflectivity factor is above 0
dBZ and the copolar correlation coefficient is close to 1, one can be certain that one is observing rain.
The reflectivity factor namely shows that one is observing liquid or solid objects in the sky and the only
objects below the melting layer that can be observed in the sky with a reflectivity factor close to 1 is
rain. The base of the melting layer can easily be found with the copolar correlation coefficient, because
the copolar correlation coefficient is lower in the melting layer than in rain. The copolar correlation
coefficient in the melting layer is often between 0.85 and 0.95. All values mentioned in this paragraph
are valid for both the 35 GHz band as the 94 GHz band. An extra check is applied to be certain that
one is observing rain. A publicly available file from the KNMI website that contains information about
the precipitation type at Cabauw as a function of time is used to check if there was indeed rain during
these hours. This resulted into the following parts of hours that are used for the calibration correction:

• 2021 February 1st 00:00­0:52

• 2021 February 3rd 18:32­18:59

• 2021 February 3rd 19:22­19:59

The melting layer heights during these periods are estimated separately for the 35 GHz and 94 GHz
frequency bands. For the 35 GHz frequency band, this leads to the heights 900 m, 950 m and 1000 m,
respectively and for the 94 GHz frequency band, this leads to 940 m, 950 m and 1000 m, respectively.
Note that the height of the melting layer is not a function of the frequency. The different melting layer
height estimation results for both frequencies at the first used (part of) hour show that the method is not
exact. Therefore, an extra 100 m margin is taken, so the measurements are certainly not from inside
the melting layer.

3.7.3. Requirement in SNR
To get a reliable correction, one needs to use measurements with a good signal­to­noise ratio (SNR),
however, one also needs enough usedmeasurements for getting reliable averages. AlexanderMyagkov
advised to only use measurements with a signal to noise ratio of 30 dB or higher. However, this cor­
rection is especially important close to the boundaries of the first chirp, so at approximately 100 meters
height and 850 meters height. At about 850 meters height, this 30 dB threshold seemed to filter out so
many measurements, that I chose to change the threshold into 25 dB in order to keep enough mea­
surements to average over. When the signal to noise ratio for the reflectivity with horizontal polarization
𝑧ℎℎ or with vertical horizontal 𝑧𝑣𝑣 is larger than 25 dB, the corresponding 𝑧𝑑𝑟 and 𝜙𝑑𝑝 values are saved
into a vector. Then the mean 𝑧𝑑𝑟 value is taken and Equation 3.5 is used to calculate the correction
of the differential reflectivity. The method explained in section 3.6 is used to get the 95% confidence
interval and they are plotted as error bars.

3.7.4. Polarimetric Calibration Corrections
The resulting differential reflectivity correction can be seen in Figure 3.5(a) and (b) for 35 and 94 GHz,
respectively. Moreover, the values of the calibration corrections and margins of errors can be found in
in Appendix B in Table B.1. One can see that the correction for the 35 GHz is between 0.03 and 0.04 for
most heights and between ­0.025 and ­0.1 for most heights at 94GHz. When one looks at the error bars,
which represent the 95% confidence interval, as explained in section 3.6, one can see that these drizzle
measurements result in consistent calibration values. Remember that this calibration correction is
based on data of two different days. It is plausible that this correction still shows a consistent correction.
It is also important to check if enough samples where used to determine these correction values. The
amount of samples that were used for the differential reflectivity and differential phase can be seen
in Figure 3.6 for both 35 and 94 GHz. This figure shows that more observations could be used at
lower altitudes than at higher altitudes, because the signal­to­noise ratio at higher altitudes was often
less than 25 dB. The differential phase correction is plotted in Figure 3.5 (c) and (d) for 35 and 94
GHz, respectively. The values of these corrections show the importance of the correction. The 94



3.7. Polarimetric Calibration Correction 21

GHz band was better calibrated polarimetrically than the 35 GHz band. In this research, the differential
phase is used to calculate the specific differential phase, which is the range derivative of the differential
phase. The 35 GHz correction is so different per height/range, that this extra calibration correction is
extremely essential to be able to use the specific differential phase. What is also notable, is that the
differential phase corrections are very different at the second chirp than at the first chirp of the frequency
modulated continuous wave radar. The second chirp starts at a height of 864.4 m. This means that this
extra calibration is extra important at these locations. Moreover, one needs to be careful with drawing
conclusions at this transitioning region between different chirps. Results of the differential reflectivity,
the differential propagation phase, the specific differential phase and the differential backscatter phase
with and without these calibration corrections will be compared in section 4.4.

(a) Differential reflectivity correction at 35 GHz (b) Differential reflectivity correction at 94 GHz

(c) Differential phase correction at 35 GHz (d) Differential phase correction at 94 GHz

Figure 3.5: Differential reflectivity correction and differential phase correction at 35 GHz and 94 GHz. The error bars represent a
95% confidence interval, which are calculated as explained in section 3.6. The plotted values can also be found in Appendix B
in Table B.1.
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Figure 3.6: The number of observation used to calculate the correction values for the differential reflectivity (𝑧𝑑𝑟) and the differ­
ential phase (𝜙𝑑𝑝) at 35 GHz (in blue) and 94 GHz (in red).



4
Estimating 𝛿𝑐𝑜 and 𝐾𝑑𝑝 after

Disentangling Propagation and
Backscattering

In this chapter, the focus is given to separate in the Doppler spectra, what belongs to backscattering
and propagation. For this purpose, an algorithm is developed, namely the Rayleigh plateau detection
algorithm. This algorithm is explained in section 4.1. This algorithm allows to make a first estimation of
the differential backscatter phase (𝛿𝑐𝑜) as is done in section 4.2 and the specific differential phase (𝐾𝑑𝑝)
as is done in section 4.3. In section 4.4, the impact of the polarimetric calibration on these variables
will be investigated in section 4.4. At last, in section 4.5, this chapter will be summarized.

4.1. Rayleigh Plateau Detection
The specific differential phase (𝐾𝑑𝑝) and the differential backscatter phase (𝛿𝑐𝑜) are both potentially
useful parameters for a raindrop size distribution retrieval. The cloud radarmeasures these parameters,
however, not directly. The cloud radar measures the differential phase (Ψ𝑑𝑝), which is the sum of the
two­way differential propagation phase (Φ𝑑𝑝) and the differential backscatter phase, as can be seen in
Equation 4.1. The specific differential phase can be calculated from the differential propagation phase
by using Equation 4.2.

Ψ𝑑𝑝(𝑟) = Φ𝑑𝑝(𝑟) + 𝛿𝑐𝑜(𝑟) (4.1)

where Ψ𝑑𝑝 is the differential phase in deg, Φ𝑑𝑝 is the two­way differential propagation phase in deg
and 𝛿𝑐𝑜 is the differential backscatter phase in deg.

𝐾𝑑𝑝 =
1
2
𝑑Φ𝑑𝑝
𝑑𝑟 ≈ 1

2
Φ𝑑𝑝(𝑟2) − Φ𝑑𝑝(𝑟1)

𝑟2 − 𝑟1
(4.2)

where 𝐾𝑑𝑝 is the specific differential phase in deg/km and 𝑟 is the range in km. The factor a half orig­
inates from the fact that the electromagnetic radiation travels back and forth before the radar measures
the backscatter. This makes 𝐾𝑑𝑝 a one­way contribution at the range 𝑟 to the differential propaga­
tion phase. To be able to disentangle the propagation and scattering effect, one can make use of the
spectral differential reflectivity and spectral differential phase measurements [28]. Figure 4.1 shows
an example of spectral reflectivity (𝑠𝑧ℎℎ) measurements (a), spectral differential reflectivity (𝑠𝑧𝑑𝑟) mea­
surements (b) and spectral differential phase (𝑠Ψ𝑑𝑝) measurements (c) all at the same moment in time
and at three different heights.

Small raindrops scatter in the Rayleigh regime and thus, have 𝛿𝑐𝑜 equals 0 deg. This property can
help to estimate Φ𝑑𝑝 and consequently 𝐾𝑑𝑝, because Ψ𝑑𝑝 is simply equal to Φ𝑑𝑝 when 𝛿𝑐𝑜 equals 0
deg, as can be seen in Equation 4.1. The goal is to find a Doppler velocity range, which corresponds
only to scatters of small raindrops so that property holds. In that case, 𝜓𝑑𝑝 and then 𝛿𝑐𝑜 and 𝐾𝑑𝑝, can

23
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be estimated. An important insight is that the electromagnetic wave that scatters from small droplets at
the range 𝑟 has propagated through raindrops with all sizes in the range [0,𝑟−Δ𝑟], and that, depending
on the radar wavelength, leads to the increase or decrease of the differential propagation phase. Φ𝑑𝑝
is thus a cumulative variable of which 𝐾𝑑𝑝 is the range derivative.

(a) Spectral reflectivity (b) Spectral differential reflectivity

(c) Spectral differential phase

Figure 4.1: Spectral measurements from a 94 GHz cloud radar at Cabauw at heights 200 m, 450 m and 700 m on the third of
February 2021 at 03:23:25.

At this moment, one needs to find this Doppler velocity range. The terminal velocity of small rain­
drops is in general smaller than the terminal velocity of bigger raindrops, if there is no strong turbulence
[28]. In practise, however, wind and aliasing complicates the situation, and this property will not be suf­
ficient to find the Doppler velocity range. Fortunately, more properties can be used to find the Doppler
velocity range. The first property is that the spectral differential reflectivity is close to 1 (or 0 dB) for
spherical raindrops. Small raindrops are in general very close to spherical and in general bigger rain­
drops are more oblate spheroids [34]. Moreover, the spectral differential reflectivity will be relatively
constant during this Doppler velocity range relative to the rest of the Doppler spectrum of the differ­
ential reflectivity. The spectral differential phase is also relatively constant during this Doppler velocity
range. Because of this relatively constant behaviour of the scattering of the small raindrops and the
fact that this part of the Doppler spectrum is inside the Rayleigh regime, this Doppler velocity range will
be referred to as the Rayleigh plateau.

By eye, the approximate Rayleigh plateau can be found reasonably easy. In Figure 4.1 for exam­
ple, the Rayleigh plateau at 450 m (the red line) is approximately from 1.9 m/s until 4.8 m/s. There
are, however, a lot of measurements done per hour of data, so an automated detection algorithm is
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required. The rest of this section explains step­wise and in detail how this automated detection algo­
rithm works and how one can validate if the results are desirable. These steps are also visualized in
Figure 4.2. Keep in mind that during this research, in order to get consistent and reliable results, only
rain is studied with a rainfall rate above 0.1 mm/h.

Figure 4.2: Diagram showing the inputs, the 4 steps and the output of the Rayleigh plateau detection algorithm.

4.1.1. Step 1: Filtering out Data
At one moment in time and one height, one has the spectral differential reflectivity and the spectral
differential phase, like for example in Figure 4.1. As some parts are noisy, parts with signal to noise
ratios below 15 dB are filtered out (turned into NaN values). To find the Rayleigh plateau, first, more
data is filtered out which is clearly not inside the Rayleigh plateau. A spectral differential reflectivity
value of about 1 (linear) is expected at the Rayleigh plateau, as small raindrops are about spherical
and because of this values above 1.1 and below 0.9 are filtered out. This implies a correct polarimetric
calibration.

Moreover, as the Rayleigh plateau is relatively constant, the moving standard deviation of the spec­
tral differential reflectivity as a function of Doppler velocity should be low at the Rayleigh plateau. When
determining the moving standard deviation, one must note that aliasing is taking place. This means that
it is also possible that the Rayleigh plateau is for example starting at ­15 m/s, goes to the left, is then
aliased, thus jumps from ­19.74 m/s to +19.74 m/s and then continues to the left until +15 m/s. 19.74
m/s is hereby the Nyquist Doppler velocity (at 35 GHz). To also consider possible Rayleigh plateaus
that are aliased, a trick is applied before calculating the moving standard deviation. This trick is visu­
alized in Figure 4.3. A copy of the second half of the data is placed in front of the first half of the data
and a copy of the first half of the data is placed after the second half of the data. In this case, data
refers to a spectral differential reflectivity vector. This vector contains the spectral differential reflec­
tivity values that correspond to Doppler velocities that can be found in a Doppler velocity vector. The
idea of this trick is that this new vector, with twice the length as the original data, can be processed
and in the end, the copied parts of the vector will be removed again. The first part of this processing
is calculating the moving standard deviation of the spectral differential reflectivity. For calculating this
moving standard deviation, a 𝑘 value of 5 is used, which means that the local standard deviation is cal­
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culated by considering the current value, the 2 values before the current value and the 2 values after
the current value. Now, Doppler velocities where the moving standard deviation with 𝑘 = 5 is higher
than 6 ⋅ 10−3 are filtered out to remove the Doppler velocities that are not inside the Rayleigh plateau,
because the spectral differential reflectivity is not constant enough there. All chosen numbers, like the
spectral differential reflectivity thresholds of 0.9 and 1.1 and the moving standard deviation threshold
of 6 ⋅ 10−3 with 𝑘 = 5, are chosen empirically, which means that different numbers are tried until the
result seemed to be optimal.

Figure 4.3: Aliasing trick. A copy of the second half of the data is placed in front of the first half of the data and a copy of the first
half of the data is placed after the second half of the data.

4.1.2. Step 2: Look for Possible Rayleigh Plateaus
At this moment, a vector is obtained with values of the moving standard deviation of the spectral dif­
ferential reflectivity and NaN values in it, because a part was already filtered out. The correspond­
ing Doppler velocities are also known. In principle, the Rayleigh plateau can be the corresponding
Doppler velocities of any adjacent series of non­NaN values in this obtained vector. An estimation of
the Rayleigh plateau Doppler velocities can be found by looking at all possible Rayleigh plateaus and
by calculating a cost function for all these possibilities. The possible Rayleigh plateau with the highest
value of the cost function is then an estimation of the Rayleigh plateau. There are, however, still some
challenges to overcome. Firstly, the amount of possible Rayleigh plateaus can be extremely high, as
will be demonstrated later, so first some more possibilities need to be filtered out. Secondly, this cost
function still needs to be defined.

To demonstrate the large amount of possibilities that might still be present, a simple example will be
used. Assume that the standard deviation vector has 70 adjacent non­NaN values and all other values
are NaN values. How many possibilities will there be in this case? Let’s first determine the amount
of possibilities with short series of adjacent non­NaN values to be able to formulate a general formula
that’s also applicable in the case of 70 adjacent non­NaN values. As can be seen in Figure 4.4, 2
adjacent non­NaN values lead to 1 possibility, 3 adjacent non­NaN values lead to 1+2=3 possibilities
and 3 adjacent non­NaN values lead to 1+2+3=6 possibilities. One can conclude that the amount of
possible series with a length of at least 2 can be calculated like in Equation 4.3.

𝑚 = 𝑛(𝑛 − 1)
2 (4.3)

where𝑚 is the amount of adjacent series with a minimum length of 2 and 𝑛 is the amount of adjacent
non­NaN values. This corresponds to the binomial coefficient that is shown in Equation 4.4, where
2 items are selected from a collection of n items such that the order of selection does not matter.
This means that in the case of 70 adjacent non­NaN values, there are 𝑚 = 70 ∗ (70 − 1)/2 = 2415
possibilities. These are still a lot of possibilities, keeping in mind that the cost function needs to be
calculated for all these possibilities and this will only result in the Rayleigh plateau in one moment in
time at one height. To reduce the amount of possibilities, possibilities with a Rayleigh plateau length
smaller than 10 values, which is a Doppler velocity spectrum width of 1.54 m/s for the 35 GHz band and
0.57 m/s for the 94 GHz band, are filtered out. At this moment, the script can still be slow and because
of this, more possibilities must be filtered out. All possibilities are filtered out that do not start at the first
non­NaN value and do not end at the last non­NaN value. An example of this is shown in Figure 4.5. In
this example, only 1 value is filtered out, but when 𝑛 gets bigger than 4, a lot of values will be filtered out
because of this. This improves the speed drastically, but will exclude Rayleigh plateau possibilities that
might be good estimates of the Rayleigh plateau. However, the Rayleigh plateau detection algorithm
still gives good results.
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Figure 4.4: An example of the amount of possible adjacent series when there are 2,3 or 4 adjacent non­NaN values. The green
squares represent the non­NaN values and the black lines represent the possible series (with a length of 2 or more).

(𝑛2) =
𝑛!

2!(𝑛 − 2)! (4.4)

Figure 4.5: An example of the amount of possible adjacent series when there are 4 adjacent non­NaN values. The green
squares represent the non­NaN values and the black lines represent the possible series (with a length of 2 or more). The red
cross represents the value that is filtered out because it does not start at the first value and does not end at the last value.

4.1.3. Step 3: Calculate Cost Function of all Possible Plateaus
At this moment, there are often still lots of possible plateaus. To find the best estimate of the Rayleigh
plateau, an own made cost function is used. The cost function is given in Equation 4.5.

𝐶𝐹 = 𝑙
𝑙𝑚𝑎𝑥

− 0.5 𝑠𝑧𝑑𝑟,𝑠𝑡𝑑
𝑠𝑧𝑑𝑟,𝑠𝑡𝑑,𝑚𝑎𝑥

− 0.5
𝑠𝜙𝑑𝑝,𝑠𝑡𝑑

𝑠𝜙𝑑𝑝,𝑠𝑡𝑑,𝑚𝑎𝑥
(4.5)

where 𝐶𝐹 stands for cost function, where a higher value means a better Rayleigh plateau candidate.
𝑙 stands for the length of the plateau in m/s and 𝑙𝑚𝑎𝑥 is the highest 𝑙 value of all possibilities in m/s. A
broader plateau is generally better, as this will lead to a more reliable average of the spectral differential
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reflectivity and spectral differential phase and because of this, the first term has a positive sign. 𝑧𝑑𝑟,𝑠𝑡𝑑
is the standard deviation of all the spectral differential reflectivity values inside the Rayleigh plateau
possibility [linear] and 𝑧𝑑𝑟,𝑠𝑡𝑑,𝑚𝑎𝑥 is the highest 𝑧𝑑𝑟,𝑠𝑡𝑑 value of all possibilities (linear). The lower the
standard deviation, the better the candidate is, because the Rayleigh plateau is relatively constant and
therefore, this second term has a negative sign. 𝜙𝑑𝑝,𝑠𝑡𝑑 is the standard deviation of all the spectral
differential phase values inside the Rayleigh plateau possibility in deg and 𝜙𝑑𝑝,𝑠𝑡𝑑,𝑚𝑎𝑥 is the highest
𝜙𝑑𝑝,𝑠𝑡𝑑 value of all possibilities in deg. As this third term is very similar to the second term, again the
following holds, the lower the standard deviation, the better the candidate is, because the Rayleigh
plateau is relatively constant and therefore, also the third term has a negative sign. The constants
before the three different terms can be tuned so the performance of the algorithm works best. The +1,
­0.5 and ­0.5 seem to give good results.

As mentioned before, the Rayleigh plateau possibility with the highest cost function is the resulting
estimate of the Rayleigh plateau. Now the Rayleigh plateau Doppler velocity range is known, useful
information can be used for the estimation of 𝛿𝑐𝑜 and 𝐾𝑑𝑝, namely the mean spectral differential reflec­
tivity, the Rayleigh plateau width and the mean spectral differential phase of the Rayleigh plateau, the
latter being the differential propagation phase, 𝜙𝑑𝑝.

4.1.4. Step 4: Repeat Steps 1­3 for other Heights and Times
Step 1­3 explain how to find the Rayleigh plateau Doppler velocity range at one moment in time and
at one height using one frequency band. The cloud radar at Cabauw meausures 993 times per hour
and has 344 range bins. For this research, however, only the range bins below the melting layer are
used, which are typically 30­40 range bins during January, February and March. The cloud radar is
a dual band radar, so this method can be applied for both frequency bands. This means that for one
hour of study data, steps 1­3 needs to be applied for approximately 993 ⋅ 35 ⋅ 2 = 69, 510 times. Note
that, these 69,510 computations can in principle be done simultaneously, because the computations
are independent of each other. At the moment, for loops are used to do steps 1­3 for all height bins
and time bins. In MATLAB, the parfor function could be used in the future, to increase the computation
speed. This, however, requires changes to the script and starting and closing a parpool also takes
a considerable amount of time. An other possibility to improve the computation speed would be to
vectorize the whole script, although this might result in memory issues. Table 4.1 shows an example
of the computation time of the Rayleigh plateau detection algorithm. As can be seen, the 94 GHz band
takes considerably more time than the 35 GHz. The reason for this is the higher spectral resolution of
the 94 GHz, as this higher resolution leads to more possible plateaus that will be found and it takes
more time, because the cost function needs to be calculated for more possible plateaus.

Table 4.1: Table showing an example of the computation time of the Rayleigh plateau detection algorithm.

4.1.5. Check Performance
At this stage, the automatic Rayleigh plateau detection algorithm is complete and working, but there is
not yet a good way way to verify if the performance is good. To be able to do this, it’s good to create plots
and check if the found Rayleigh plateau corresponds to the Rayleigh plateau that one would find by eye.
As only one hour of data can already lead to 69,510 Rayleigh plateaus, checking all Rayleigh plateaus
is simply not an option. Therefore, I made a small script that creates plots of the spectral reflectivity,
spectral differential reflectivity and spectral differential phase, together with the found Rayleigh plateau
Doppler velocity boundaries at onemoment in time at all height bins and puts these plots in three videos,
one for every type of spectral measurement. The results are three videos with for example 35 frames
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that are all shown for 1.67 seconds. The time needs to be chosen and every height bin leads to a frame
in the video. There is one video for the spectral reflectivity, one video for the spectral differential reflec­
tivity and at last, one video for the spectral differential phase. In this way, one can quickly check the
quality of the detection algorithm. This is also useful when one finds unexpected results and one want
to check if the detection algorithm is not the cause of this. Figure 4.6 shows an example of a spectral re­
flectivity frame (a), a spectral differential reflectivity frame (b) and a spectral differential phase frame (c)
for the 35 GHz band. One can see that the detected Rayleigh plateau looks relatively constant for the
spectral differential reflectivity and the spectral differential phase, as the Rayleigh plateau should be.
Moreover, the spectral differential reflectivity is close to 1 (linear), as expected for the Rayleigh plateau.

Figure 4.7 shows the same example as Figure 4.6, but now for the 94 GHz band. Figure 4.7 (a) is
a good example where one can see a side lobe that is caused by Mie scattering. One can see that the
detection algorithm finds a Rayleigh plateau which does not include this side lobe. This is exactly what
one would expect, as Mie scattering should not be present inside the Rayleigh regime. Figure 4.7 (b)
shows that the spectral differential reflectivity is almost constant at the Rayleigh plateau. Figure 4.7
(c) shows that the spectral differential phase is varying more at the Rayleigh plateau than the spectral
differential reflectivity does.

(a) Spectral reflectivity (𝑠𝑧ℎℎ) (b) Spectral differential reflectivity

(c) Spectral differential phase

Figure 4.6: Spectral measurements from a 35 GHz cloud radar at Cabauw at a height of 379.51 m on the third of February 2021
at 03:23:36. The boundaries of the detected Rayleigh plateau are also shown. An extra polarimetric calibration correction was
applied.
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(a) Spectral reflectivity (𝑧ℎℎ) (b) Spectral differential reflectivity

(c) Spectral differential phase

Figure 4.7: Spectral measurements from a 94 GHz cloud radar at Cabauw at a height of 379.51 m on the third of February 2021
at 03:23:36. The boundaries of the detected Rayleigh plateau are also shown. An extra polarimetric calibration correction was
applied.

Some examples of Rayleigh plateau detection have been shown in section 4.1. To be able to check
the performance of the Rayleigh plateau detection algorithm for more heights, a table has been made
for both the 35 GHz band, Table 4.2, and the 94 GHz band, Table 4.3, including the most important
details of the detected plateaus. The Doppler width is defined as the difference in Doppler velocities
between the left and right Rayleigh plateau boundary. As can bee seen in Table 4.2, at 379.5 m, 400.6
m and 421.7 m, the Doppler width is equal to 1.54 m/s. This is equal to the minimum Doppler width
threshold of 10 indices for the 35 GHz band. When lowering this threshold to 9 indices, which is equal
to 1.39 m/s for the 35 GHz, the Doppler width from the 379.5 m changes to 1.39 m/s and the Doppler
width at 400.6 m and 421.7 m stay at 1.54 m/s. This illustrates that this threshold prevents that the
detected Rayleigh plateau gets too small. The downside is, however, that sometimes no Rayleigh
plateau can be detected, because the only possible plateaus left after step 1 of the Rayleigh plateau
detection algorithm have a length that is lower than in this case 1.54 m/s. This is what happens at
695.8 m. Only after lowering the minimum Doppler width threshold at least all the way down to 6 in­
dices, there is found a Rayleigh plateau. This solution is shown in Figure 4.8. The Rayleigh plateau
found seems to be to narrow. More specific, the right boundary should be shifted to the right to about
­12.7 m/s, which is the location where the spectral differential reflectivity starts with a sudden increase.
One can see that the plateau was difficult to find for the algorithm because of the unusually high spread
in the spectral differential reflectivity at the Rayleigh plateau. Moreover, the spectral reflectivity shows
an unusual shape. One can see two small side lobes at a Doppler velocity of about ­14.3 m/s and at
­12.9 m/s. Side lobes can be caused by Mie scattering effects. However, this should not be present
inside the Rayleigh plateau, as this plateau is in the Rayleigh scattering regime. This unusual shape
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in the spectral reflectivity, however, does not lead to a different detection, as it is not used, excepted
for the SNR threshold. In conclusion, the detection algorithm works well in most cases, but can have
difficulties to find a plateau when the spectral differential reflectivity versus Doppler velocity is atypical.
Nonetheless, these atypical cases should be discarded for a first estimation of 𝛿𝑐𝑜 and 𝐾𝑑𝑝.

The detected Rayleigh plateau Doppler velocity width of the 94 GHz band is in this case a bit broader
than for the 35 GHz band, as can be seen when comparing Table 4.2 and Table 4.3. This is what one
would expect, as the spectral resolution is higher for the 94 GHz band and this makes it possible to find
a Rayleigh plateau boundary that is closer to the ’real’ Rayleigh plateau boundary. However, with the
spectral resolution of the 35 GHz band and the 94 GHz band that are 0.15 m/s and 0.06 m/s, respec­
tively, one cannot explain that the Doppler width is so much broader at 94 GHz than at 35 GHz when
comparing Table 4.2 and Table 4.3. When also looking at other times than the time used in the given
tables, this mentioned change in Doppler width between the 35 GHz and 94 GHz frequency bands
seemed to be coincidental.

The third column of the shown tables show the mean spectral differential reflectivity of the detected
Rayleigh plateaus. For both the 35 GHz and 94 GHz band, one can clearly see a descending trend
over height. This is probably due to differential attenuation.

The fourth column of the tables show the mean spectral differential phase shift of the detected
Rayleigh plateaus. One can clearly see an increasing trend in the mean spectral differential phase
shift over height for the 35 GHz band and a decreasing trend for the 94 GHz band. This is due to the
differential propagation phase. This will be discussed in more detail in section 4.3.

The fifth column shows the standard deviation of the spectral differential reflectivity of the detected
Rayleigh plateaus. This column is especially interesting, because a (maximum) threshold of 6 ⋅ 10−3 is
used for the detection method. This threshold was chosen empirically and one can see that this 6⋅10−3
is only a bit bigger than some of the numbers in the fifth columns of Table 4.2 and Table 4.3, but only 1
time, no detection could be found because of this threshold, which is at 695.8 m at the 35 GHz band.
Moreover, this number is used in the cost function, because a lower standard deviation means a flatter
plateau and a flat Rayleigh plateau is what one would expect theoretically.

The sixth and last column shows the standard deviation of the spectral differential phase shift of
the detected Rayleigh plateaus. This number is used in the cost function, because also this standard
deviation is expected to be low for the Rayleigh plateau.

4.1.6. Summary of Rayleigh Plateau Detection Method
To be able to estimate two potentially useful parameters for retrieving the raindrop size distribution, the
specific differential phase and the differential backscatter phase, one has to disentangle propagation
and scattering effects. To do this, one has to find a part of the spectral domain that only scatters
in the Rayleigh regime, because this part of the spectral domain is not influenced by Mie scattering.
Without Mie scattering, the propagation effects are isolated and the propagation parameter the specific
differential phase can be calculated. The differential backscatter phase can consequently be calculated,
because the propagation effect is now disentangled from the scattering effects and the sum of the
propagation and scattering effects is measured. The part of the spectral domain that only scatters in
the Rayleigh regime is referred to as the Rayleigh plateau in this research. It is detected by an own
made algorithm which uses 4 steps. In step 1, parts of the spectral domain are filtered out that have
properties that do not match with the Rayleigh plateau. In step 2, the plateaus that are still possible are
gathered. In step 3, a cost function is used to find the one plateau with the properties that look the most
like what one would expect for the Rayleigh plateau. Finally, in step 4, one repeats steps 1­3 for other
heights and other moments in time. The results seem to be good in general, however, sometimes no
plateau can be detected, as the shape of the spectral differential reflectivity is not always exactly as one
would expect. After detecting theRayleigh plateaus, one can estimate the differential backscatter phase
and the specific differential phase, which is demonstrated in section 4.2 and section 4.3, respectively.
The differential backscatter phase will finally help to estimate the median volume diameter, as will be
shown in chapter 5.
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Table 4.2: Rayleigh plateau detections from a calibration corrected 35 GHz cloud radar at Cabauw on the third of February 2021
at 03:23:36.



4.1. Rayleigh Plateau Detection 33

Table 4.3: Rayleigh plateau detections from a calibration corrected 94 GHz cloud radar at Cabauw on the third of February 2021
at 03:23:36.
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(a) Spectral reflectivity (𝑧ℎℎ) (b) Spectral differential reflectivity

(c) Spectral differential phase

Figure 4.8: Spectral measurements from a 35 GHz cloud radar at Cabauw at a height of 695.8 m on the third of February 2021
at 03:23:36. The boundaries of the detected Rayleigh plateau are also shown. The minimum Doppler width threshold in the
detection algorithm is lowered to 6 in order to get a (narrow) solution for the Rayleigh plateau. An extra polarimetric calibration
correction was applied.

4.2. Estimating the Differential Backscatter Phase
The differential backscatter phase can be calculated easily, because the Rayleigh plateaus are already
detected. The spectral differential phase at the Rayleigh plateau is only a consequence of propagation
effects, because the differential backscattering phase is equal to 0 deg there, as the raindrops are small
and thus spherical at the Rayleigh plateau. Although the backscattering is in the Rayleigh regime at
the range bin 𝑟, the propagation term (forward scattering) accounts for all the sizes of raindrops (whole
raindrop size distribution) present in the range bins before 𝑟. The differential propagation phase can
consequently be calculated like in the following equation:

Φ𝑑𝑝(𝑟) =
1
𝑛𝐷

𝑛𝐷
∑
1
𝑠Φ𝑑𝑝(𝑟, 𝑣) (4.6)

where 𝑛𝐷 is the number of Doppler bins in the Rayleigh plateau. Note that this equation is simply
calculating the average spectral differential phase value at the Rayleigh plateau. When considering
the full Doppler spectrum, one can calculate the differential phase (Ψ𝑑𝑝) in deg at one moment in time
with the following equation:

Ψ𝑑𝑝(𝑟) = arctan(
∑𝑣𝑚𝑎𝑥𝑣=𝑣𝑚𝑖𝑛 −ℑ(𝑉𝐻𝑆𝑝𝑒𝑐(𝑟, 𝑣))
∑𝑣𝑚𝑎𝑥𝑣=𝑣𝑚𝑖𝑛 ℜ(𝑉𝐻𝑆𝑝𝑒𝑐(𝑟, 𝑣))

) (4.7)
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where 𝑉𝐻𝑆𝑝𝑒𝑐(𝑟,𝑣) is the cross spectrum (the conjugate of the Doppler spectrum at horizontal polar­
ization multiplied by the Doppler spectrum at vertical polarization). The summations are over the whole
Doppler range. Note that there is a weighting by the modulus of 𝑉𝐻𝑆𝑝𝑒𝑐 in the summation, which is
a standard procedure for the moment calculations from Doppler spectra. The differential backscatter
phase can subsequently be calculated by using Equation 4.1.

where Ψ𝑑𝑝(𝑟) is the differential phase in deg, Φ𝑑𝑝(𝑟) is the two­way differential propagation phase
in deg and 𝛿𝑐𝑜(𝑟) is the differential backscatter phase in deg. The calibration correction for the differ­
ential phase will be applied for both Ψ𝑑𝑝(𝑟) and Φ𝑑𝑝(𝑟) and because of this, 𝛿𝑐𝑜(𝑟) will not be affected
by the calibration correction, as these two equal corrections cancel each other out. This is a strong
property of the differential backscatter phase, as the calibration of a frequency modulated continuous
wave radar is not easy and brings uncertainties with it. The uncertainty of the differential backscatter
phase can be estimated by using the uncertainty estimates of the differential propagation phase and
the differential phase. The uncertainty of the differential propagation phase is estimated by calculating
the standard deviation of the differential propagation phase at the Rayleigh plateau. The uncertainty
of the differential phase is, however, more difficult to estimate. Because of physical processes, one
does not expect this to be constant over all Doppler velocities. Calculating the standard deviation is
therefore not a good way to estimate the uncertainty of the measurement, as one is not looking at vari­
ation because of only noise, but also because of physical phenomena, such as Mie oscillations. To be
able to still get an estimate of the uncertainty of the differential phase and consequently, obtaining the
uncertainty of the differential backscatter phase, the following hypothesis is suggested: the uncertainty
of the differential phase is much smaller than the uncertainty of the differential propagation phase. The
margin of error of the differential backscatter phase is in this case equal to the margin of error of the
differential propagation phase. This was discussed in more detail in subsection 3.6.2.

An example of a differential backscatter phase profile is given in Figure 4.9 together with the corre­
sponding differential phase and differential propagation phase profiles. One can see that the differential
backscatter phase is varying a bit over height, which could be because of changes in the raindrop size
distribution, but could also be because of the noise in the measurements. Further, the differential prop­
agation phase shows a slight increase versus height at 35 GHz and a slight decrease at 94 GHz, which
is in accordance with simulations (Figure 4.13).

(a) Differential phases at 35 GHz (b) Differential phases at 94 GHz

Figure 4.9: Differential phase, differential propagation phase and differential backscatter phase with applied polarimetric calibra­
tion at 35 GHz and 94 GHz on the third of February 2021 at 10:57:24. The error bars represent a 95% confidence interval, which
are estimated as explained in section 3.6
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A two­dimensional example of the resulting differential backscatter phase is given in Figure 4.10.
One can see that there are some white parts inside the plot. This is because the differential backscatter
phase is only calculated when the rainfall rate was above 0.1 mm/h. When comparing Figure 4.10 (a)
and (b), so both used frequency bands, one can see that both plots show a similar shape, both relatively
high values between 10:50 and 11:00 compared to the rest of the hour. When looking at the rainfall rate
during this hour again in Figure 3.2, one can see that these last 10 minutes have a higher rainfall rate.
If the rainfall rate increased, because the median volume diameter 𝐷0 increased in the raindrop size
distribution, then this observed increasing differential backscatter is expected. Notable is that the 35
GHz also shows values below 0 deg, which is not expected to be possible by simulations (Figure 4.11).
This could be a result of the uncertainty of the estimation. Moreover, the lowest 100 m seem to give
odd results, for the 35 GHz there are most of the negative differential backscatter phase values and
for the 94 GHz there seem to be higher differential backscatter phase values than just above this. A
possible reason for this could be that the far­field approximation for polarimetric measurements or the
polarimetric calibration is not valid at these heights. For the raindrop size distribution retrieval, only
heights above 150 m will be considered.

(a) Differential backscatter phase at 35 GHz (b) Differential backscatter phase at 94 GHz

Figure 4.10: Differential backscatter phase with an extra calibration correction applied at 35 GHz and 94 GHz on the third of
February 2021 from 10:00 to 11:00.

(a) 35 GHz (b) 94 GHz

Figure 4.11: Simulated differential backscatter phase as a function of the the median volume diameter (𝐷0) for different values
of the shape parameter (𝜇) for the 35 GHz and 94 GHz band. The simulations were provided by C.M.H. Unal [30].
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4.3. Estimating the Specific Differential Phase
Just like with the differential backscatter phase, the most difficult part has already been done in the
Rayleigh plateau detection algorithm in section 4.1 to calculate the specific differential phase. This
algorithm already gives the differential propagation phase. The specific differential phase can be cal­
culated from this by applying Equation 4.2. The derivative in this equation is approximated by dividing
the difference in differential propagation phase between two range bins by the difference in range
between two range bins. This will result in a specific differential phase value between between two
consecutive range bins. The resulting profiles for the 35 GHz and 94 GHz can be seen in Figure 4.12.

(a) Specific differential phase at 35 GHz (b) Specific differential phase at 94 GHz

Figure 4.12: Specific differential phase with an extra calibration correction applied at 35 GHz and 94 GHz on the third of February
2021 at 10:57:24.

Unfortunately, it looks like noise is dominating the specific differential phase, because there is a lot
of variation in the specific differential phase over height, while this is not expected in the signal, as the
raindrop size distribution is usually fairly constant over height. This means that the noise level of the
specific differential phase is probably too high and therefore, the specific differential phase cannot be
used for a raindrop size distribution retrieval, or at least not directly. Possibly, smoothing the differential
propagation phase over height and/or over time would help to reduce the noise level. Because of the
noise, it is difficult to say what the real specific differential phase is. However, it seems like the average
of these profiles are close to 0 deg/km, which means that the specific differential phase might also not
be sensitive enough for small values of 𝐷0. To check if 𝐾𝑑𝑝 can indeed be close to 0 mm/km during
a rainfall event, one can look at a simulation plot for 𝐾𝑑𝑝 in Figure 4.13. One can indeed see that the
1­way specific differential phase is close to 0 deg/km at 35 and 94 GHz when 𝐷0 is smaller than 0.7 deg.
This means that specific differential phase will only be useful for rain drop size distribution retrievals
when 𝐷0 (and 𝑁𝑤) are sufficiently large. In this research, the focus was given to find 𝐷0 with 𝛿𝑐𝑜 and
𝐾𝑑𝑝 was not used for the rain drop size distribution retrieval.

4.4. Polarimetric Calibration Results
This section will look back at the extra polarimetric calibration corrections that are explained in sec­
tion 3.7. This time, one can compare the results of the following variables with and without this extra
calibration correction applied: Spectral differential reflectivity, spectral differential phase, differential
backscatter phase, differential propagation phase and specific differential phase.

4.4.1. Spectral Differential Reflectivity and Spectral Differential Phase
The Rayleigh plateaus have been detected in section 4.1. To check the performance of these detec­
tions, plots were made of the spectral reflectivity, spectral differential reflectivity and spectral differential
phase. The same spectral differential reflectivity and spectral differential phase plots are shown in Fig­
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ure 4.14 and Figure 4.15, but this time, the same results are also shown when one decides not to apply
the extra calibration correction.

(a) 35 GHz (b) 94 GHz

Figure 4.13: Simulated specific differential phase as a function of the the median volume diameter (𝐷0) for different values of
the intercept parameter (𝑁𝑤) with the shape parameter (𝜇) equal to 1, the temperature equal to 10∘C, the elevation angle equal
to 45 deg and the rainfall rate lower than 30 mm/h for the 35 GHz band and the rainfall rate lower than 20 mm/h for the 94 GHz
band. The simulations were provided by C.M.H. Unal [30].

(a) Uncorrected spectral differential reflectivity at 35 GHz (b) Corrected spectral differential reflectivity at 35 GHz

(c) Uncorrected spectral differential reflectivity at 94 GHz (d) Corrected spectral differential reflectivity at 94 GHz

Figure 4.14: Spectral differential reflectivity from a 35 GHz and 94 GHz cloud radar at Cabauw at a height of 379.51 m on the
third of February 2021 at 03:23:36. The boundaries of the detected Rayleigh plateau are also shown.
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When comparing Figure 4.14 (a) and (b), and Figure 4.14 (c) and (d), it is interesting that the
Rayleigh plateau boundaries are not influenced by the corrections. The extra calibration corrections
are the same for all Doppler velocities and because the Rayleigh plateau detection method is mostly
based on the (moving) standard deviation, which are not influenced if one adds the same correction
value to the spectral differential reflectivity and spectral differential phase at all Doppler velocities. Note
that it is possible that a different plateau is detected by the detection method, as for example spectral
differential reflectivity values below 0.9 (linear) and above 1.1 (linear) are filtered out (not considered
as a possibility of the Rayleigh plateau). What is also notable, is that the average spectral differential
reflectivity at the Rayleigh plateau clearly gets closer to the value 1 (linear). The value 1 (linear) is the
expected value for the Rayleigh plateau when there would be no differential attenuation. Given the
fact that the rainfall rate is quite high, namely 15 mm/h, one might expect some differential attenuation
effect to be visible. Differential attenuation is, however, a propagation effect and Figure 4.14 shows
the plots for a height of just 379.5 m, which explains why no clear differential attenuation is visible at
both the 35 GHz and 94 GHz.

(a) Uncorrected spectral differential phase at 35 GHz (b) Corrected spectral differential phase at 35 GHz

(c) Uncorrected spectral differential phase at 94 GHz (d) Corrected spectral differential phase at 94 GHz

Figure 4.15: Spectral differential phase from a 35 GHz and 94 GHz cloud radar at Cabauw at a height of 379.51 m on the third
of February 2021 at 03:23:36. The boundaries of the detected Rayleigh plateau are also shown.

Comparing Figure 4.15 (a) and (b) and Figure 4.15 (c) and (d), one can see that the Rayleigh
plateau boundaries are of course again the same with and without the extra corrections, as these plots
correspond to the same Rayleigh plateau detections as Figure 4.14. The average value of the spectral
differential phase at the Rayleigh plateau gets closer to the value 0 deg because of the extra calibration
correction. The value of 0 deg is expected if there are only spherical and thus small raindrops in the
Rayleigh plateau at low heights before propagation effect shows off. As the rainfall rate is equal to 15
mm/h, it is not unexpected that there are also bigger raindrops which lead to a deviation to the value
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of 0 deg.

4.4.2. Differential Backscatter Phase
Because the same differential phase correction is added to the differential phase and the differen­
tial propagation phase and the differential backscatter phase is the difference between the differential
phase and the differential propagation phase, these corrections cancel each other out. This wouldmean
that the differential backscatter phase is independent on the calibration correction. This is, however,
not entirely true, as the calibration correction can in principle also lead to different Rayleigh plateau
detection boundaries. In practise, however, this turns out to be hardly ever the case. The differential
backscatter phase is really almost independent of the extra calibration correction. This is pleasant, as
this means that the extra applied calibration correction will not add extra uncertainty to the differential
backscatter phase.

4.4.3. Specific Differential Phase and Differential Propagation Phase
When comparing Figure 4.16 (a) and (b), one can see that the influence of the calibration correction is
very large. Especially at the very bottom of the first chirp (first range bins) and the top of the first chirp
(last range bins) of the frequency modulated continuous wave radar, the influence is very large. The
correction seems to do a good job, as these unexpected extreme values of the specific differential phase
are not present any more with the correction. In Figure 4.16 (c) and (d), one can see that correction
did not have a large influence on the specific differential phase. This is because the differential phase
correction was about the same for all height bins at the first chirp. The correction, unfortunately, does
not solve the fact that the specific differential phase is noisy.

It is also interesting to plot the differential propagation phase for the calibration corrected and un­
corrected data as a function of height and time. The result can be seen in Figure 4.17. It is clearly
visible in Figure 4.17 (a) and (b) that the extra applied calibration correction has a large influence on
the differential propagation phase at 35 GHz. One can clearly see that plot (b) is much more uniform
over height, which means that the specific differential phase will be closer to 0. In Figure 4.17 (c) and
(d), one can see that the calibration correction has a smaller influence than at 35 GHz. Because the
extra calibration correction is about the same for every height, the shape of Figure 4.17 (c) and (d) are
very similar. The specific differential phase can be seen in Figure 4.18. The extra calibration correction
changes the specific differential phase a lot at the 35 GHz band, while the 94 GHz almost does not
change. One can also see that the specific differential phase still has extreme values of for example ­4
[deg/km], which are not expected when looking at simulations. This indicates the high uncertainty and
more processing needs to be done if one wishes to use the specific differential phase.

4.5. Summary
This goal of this chapter was to estimate the differential backscatter phase and the specific differential
phase. To achieve this, first, the Doppler bins must be found that only correspond to propagation effects
and not to backscatter effects. These consecutive Doppler bins are called the Rayleigh Plateau. The
Rayleigh Plateau is found by using an algorithm that first filters out Doppler bins that are certainly not in
the Rayleigh plateau, then the best remaining plateau option is determined by comparing the remaining
plateau options by using a cost function. This procedure is being executed for all combinations of
height and time bins. Now the Rayleigh Plateau is found, the differential propagation phase can be
calculated and this makes it also possible to calculate the differential backscatter phase by applying
Equation 4.1. Moreover, the specific differential phase can be calculated by using Equation 4.2. The
differential backscatter phase seems to give realistic results at the height bins above 150 m. The first
estimation of the specific differential phase turns out to be too noisy to use for a raindrop size distribution
retrieval. The differential backscatter phase turns out to be almost fully independent on the applied
polarimetric calibration correction, which is a strong property, since no extra error will be introduced by
the polarimetric calibration correction. The specific differential phase is, however, is highly dependent
on the polarimetric calibration correction.
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(a) Specific differential phase at 35 GHz without correction (b) Specific differential phase at 35 GHz with correction

(c) Specific differential phase at 94 GHz without correction (d) Specific differential phase at 94 GHz with correction

Figure 4.16: Specific differential phase with and without an extra polarimetric calibration correction applied at 35 GHz and 94
GHz on the third of February 2021 at 10:57:24.
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(a) Differential propagation phase at 35 GHz without
correction

(b) Differential propagation phase at 35 GHz with correction

(c) Differential propagation phase at 94 GHz without
correction

(d) Differential propagation phase at 94 GHz with correction

Figure 4.17: Differential propagation phase with and without an extra applied polarimetric calibration correction at 35 GHz and
94 GHz on the third of February 2021 from 10:00 to 11:00.
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(a) Specific differential phase at 35 GHz without correction (b) Specific differential phase at 35 GHz with correction

(c) Specific differential phase at 94 GHz without correction (d) Specific differential phase at 94 GHz with correction

Figure 4.18: Specific differential phase with and without an extra applied polarimetric calibration correction at 35 GHz and 94
GHz on the third of February 2021 from 10:00 to 11:00.





5
Retrieving the Median Volume Diameter

This chapter focuses on the final goal of this research, which is retrieving the raindrop size distribution.
Because the raindrop size distribution is assumed to follow a gamma distribution, only 3 parameters
needs to be estimated, which are the median diameter 𝐷0, the shape parameter 𝜇 and the intercept
parameter 𝑁𝑤. Due to the limited time of a Master Thesis Project, the focus in this research was given
to estimating 𝐷0 and the remaining parameters 𝜇 and 𝑁𝑤 were therefore not estimated. However, a
parameter was found that might be of use to retrieve 𝑁𝑤, 𝐷0, 𝜇 or the rainfall rate. This parameter can
be found in Appendix C. The differential backscatter phase (𝛿𝑐𝑜) will be used to estimate 𝐷0. Therefore,
first the consistency of 𝛿𝑐𝑜 will be checked in section 5.1. After this, 𝐷0 will be retrieved by using the
estimation of 𝛿𝑐𝑜 in section 5.2. Thereafter, in section 5.3 the consistency of 𝐷0 will be checked. Finally,
in section 5.4 the estimated 𝐷0 will be compared with measurements from a disdrometer.

5.1. Consistency of the 𝛿𝑐𝑜 Estimation
In section 4.2, there was discussed how 𝛿𝑐𝑜 is estimated. What, however, is not checked yet, is how
consistent this estimation of 𝛿𝑐𝑜 is. To verify this, some example plots will be given. As the real 𝛿𝑐𝑜 is
not known, one has to check for expected and unexpected properties of these plots. For example, one
can expect that 𝛿𝑐𝑜 does not vary a lot over small heights differences or small time differences. The
first plot to verify the consistency of 𝛿𝑐𝑜 is shown in Figure 5.1. The first notable thing when looking at
the 35 GHz plot is that the size of the differential backscatter phase is sometimes lower than 0 deg,
which is not expected to be possible by simulations (Figure 4.11). Even the mean 𝛿𝑐𝑜 over height is
often approximately equal to zero. To check if these negative values of 𝛿𝑐𝑜 are mainly present because
of the uncertainty of the measurement, the same plots are made again, but this time highest value of
the confidence interval of the differential backscatter phase is plotted, which is equal to the differential
backscatter phase plus the margin of error of the differential backscatter phase. These plots can be
seen in Figure 5.2. As can be seen, the mean is now always well above 0 deg. There are however, still
height bins that show negative values at certain times. A possible explanation could be that the real
𝛿𝑐𝑜 value is indeed very close to 0 and that the uncertainty of 𝛿𝑐𝑜 leads to the negative values. An other
possibility is that there is a bias in 𝛿𝑐𝑜 for an unknown reason. When looking at Figure 5.1 again, one
can see that the spread in 𝛿𝑐𝑜 over height is significant, but the mean shows a clear upward trend during
between 10:45 and 11:00 for the 35 and 94 GHz band. This means that the raindrop size distribution
changes during this last quarter, which is confirmed by the increase in rainfall rate in Figure 3.2, and
that both frequency bands give consistent results.

45
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(a) 35 GHz (b) 94 GHz

Figure 5.1: The differential backscatter phase as a function of time for the 35 GHz band and 94 GHz band. Every height bin is
represented with a different colored graph. The bold blue line represents the mean of 𝛿𝑐𝑜 of all height bins as a function over
time.

(a) 35 GHz (b) 94 GHz

Figure 5.2: The differential backscatter phase plus the margin of error of the differential backscatter phase as a function of time
for the 35 GHz band and 94 GHz band. Every height bin is represented with a different colored graph. The bold blue line
represents the mean of 𝛿𝑐𝑜 plus the margin of error of 𝛿𝑐𝑜 of all height bins as a function over time.

Another way to verify the consistency of 𝛿𝑐𝑜 is to create similar plots like in Figures 5.1­5.2, but this
time, take the mean over time and plot 𝛿𝑐𝑜 as a function of height. One can see the result in Figure 5.3.
Again, at 35 GHz, one can see a lot of cases where 𝛿𝑐𝑜 is negative. Again, to test if this is possibly
a result of the uncertainty of 𝛿𝑐𝑜, the same plot is made again, but this time the upper boundary of
the confidence interval of 𝛿𝑐𝑜 is plotted instead of just 𝛿𝑐𝑜, as can be seen in Figure 5.4. Again, still
negative 𝛿𝑐𝑜 values are present and this could be because of the same reasons as mentioned before.
When comparing the mean 𝛿𝑐𝑜 over time as a function over height (bold blue lines) of Figure 5.3 (a)
and (b), one can see a similar shape: the means are about constant up to the height 450 m, then the
means decrease and become nearly constant from the height 520 m. These very similar trends of
the two different used frequency bands show that the estimates of 𝛿𝑐𝑜 at 35 and 94 GHz seem to be
consistent.
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(a) 35 GHz (b) 94 GHz

Figure 5.3: The differential backscatter phase as a function of height for the 35 GHz band and 94 GHz band. Every time bin
is represented with a different colored graph. The bold blue line represents the mean of 𝛿𝑐𝑜 of all time bins as a function over
height.

(a) 35 GHz (b) 94 GHz

Figure 5.4: The differential backscatter phase plus the margin of error of the differential backscatter phase as a function of height
for the 35 GHz band and 94 GHz band. Every time bin is represented with a different colored graph. The bold blue line represents
the mean of 𝛿𝑐𝑜 plus the margin of error of 𝛿𝑐𝑜 of all time bins as a function over height.

5.2. Estimating 𝐷0
Having the differential backscatter phase, which has been estimated at 35 and 94 GHz, consistent in
time and height, the median diameter (𝐷0), which is one of the three parameters of the gamma­modeled
raindrop size distribution, can be retrieved. To go from 𝛿𝑐𝑜 to 𝐷0, simulations need to be used to know
how they are related at 35 GHz and 94 GHz. The simulations shown in Figure 5.5 from [30] will be used.
It will be assumed that 𝐷0 has a value between 0.1 and 2.5 mm and that 𝜇 has a value between ­2 and 8.
These limits are based on a research in Australia, where the rain drop size distribution parameters are
estimated with a disdrometer during almost a full season of rainfall and are plotted in a histrogram, as
can be seen in Figure 5.6 [9]. The lower limit of 𝐷0 is chosen smaller than 0.5, even though these values
cannot be found in the Figure 5.6 (a), because commercial disdrometers generally fail to measure small
raindrops [4] and because of the difference between the Australian and Dutch climate. The upper limit
of 𝐷0 is chosen to be equal to 2.5 mm, based on the very small tail above 2.5 mm in the histogram of
𝐷0. The lower limit for 𝜇 is chosen to be ­2, as the histogram shows nearly no occurrence of 𝜇 lower
than ­2. The upper limit is chosen to be 8, based on the histrogram, but also because Bringi mentions
in his book [9] that the long tail end (𝜇 > 8) is caused by an artifact. Moreover, on page 538 of the book,
simulations made for polarimetric weather radars with the following ranges: 𝐷0 from 0.5 to 2.5 mm and
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𝜇 from ­1 to 5. These ranges are narrower than the ranges used in this thesis research. However,
using a too narrow range in this thesis research may lead to the inability of finding the correct raindrop
size distributions for some cases.

(a) 35 GHz (b) 94 GHz

Figure 5.5: Simulated differential backscatter phase as a function of the the median diameter 𝐷0 and the shape parameter 𝜇 for
the 35 GHz and 94 GHz. The simulation data were provided by C.M.H. Unal [30]

(a) 𝐷0 (b) 𝜇

Figure 5.6: A histogram of 𝐷0 and 𝜇 made by using a disdrometer in Australia during almost a full season of rainfall. These
figures were taken from page 413 and 414 from [9].

To get an estimate of 𝐷0, the confidence interval of 𝛿𝑐𝑜 will be used. How the simulation can help
to get an estimate of 𝐷0 will be explained by using a simple example. Assume that the confidence
interval of 𝛿𝑐𝑜 is equal to 0.6∘­0.8∘ at 35 GHz. The simulations from Unal (Figure 5.5(a)) can be used to
get the possible corresponding values of 𝐷0 and 𝜇 when 𝛿𝑐𝑜 is 0.6∘­0.8∘. A visualization of this can be
seen in Figure 5.7(a). As can be seen, 𝛿𝑐𝑜 leads to restrictions for 𝐷0, only values of 𝐷0 between 0.46
and 1.26 mm are possible. The sensitivity of 𝜇 is clearly lower, as all considered values of 𝜇 are still
possible. Exactly the same strategy can be applied to the 94 GHz. This results into Figure 5.7(b) when
the confidence interval of 𝛿𝑐𝑜 is again 0.6∘­0.8∘. Note that this is just an example and the confidence
intervals of 𝛿𝑐𝑜 at 35 and 94 GHz are usually not equal when observing the same volume. At 94 GHz,
the plot shows that again, 𝐷0 gets restricted because of the confidence interval of 𝛿𝑐𝑜. This time, possi­
ble values of 𝐷0 are 1.09­1.62 mm and again, 𝜇 is not restricted by the confidence interval of 𝛿𝑐𝑜. Note
that it is important that the resolution of the simulations is high enough to exclude the possibility that no
solution will be found. This can be the case if the resolution of the simulations is low and the confidence
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interval of 𝛿𝑐𝑜 is narrow. In for example, the very extreme case when the confidence interval of 𝛿𝑐𝑜 at
94 GHz would be 0.60005­0.60006, then no solution is found, while there would certainly be a solution
when the resolution of the simulations is extremely high. The resolution of the simulations is 0.01 mm
for 𝐷0 and 0.1 for 𝜇 for both the 35 and 94 GHz band and this turns out to be high enough so these
artifacts will not occur.

(a) 35 GHz (b) 94 GHz

Figure 5.7: Simulated differential backscatter phase as a function of the the median diameter 𝐷0 and the shape parameter 𝜇 for
the 35 GHz and 94 GHz. Only values of 𝛿𝑐𝑜 between 0.6 and 0.8 are shown due to the choice of the color bar. The simulations
were provided by C.M.H. Unal [30].

Summarizing, 𝛿𝑐𝑜 shows a good potentiality to determine an interval for 𝐷0.

At this moment, possible combinations of 𝐷0 and 𝜇 can be found by using the confidence interval of
𝛿𝑐𝑜 at 35 GHz and 94 GHz. This method will now be applied again, but this time on a real case. This
example case is on the 3th of February 2021 at 10:59:58 at a height of 169 m. The result can be seen
in Figure 5.8. Figure 5.8(a) shows the 35 GHz possibilities of 𝐷0 and 𝜇, Figure 5.8(b) shows the 94
GHz possibilities and Figure 5.8(c) shows the overlap between Figure 5.8(a) and Figure 5.8(b).

As can be seen, unfortunately, in this case, there is no overlap between the two frequency results,
while they observe (largely) the same volume. That is the worst­case scenario indicating that the
confidence interval may be too narrow or there is an error in the estimation of 𝛿𝑐𝑜 for one frequency
band. This of course means that at least not both frequencies give the correct result. In a perfect
scenario, the 35 GHz and 94 GHz solution do overlap and this can even give restrictions for 𝜇. This
can for example be seen in Figure 5.9. Unfortunately, this turns out to be a rare scenario. Generally,
when there is overlapping of the solutions, a 𝐷0 interval can be found but the 𝜇 interval stays too large
due to the lack of sensitivity of 𝛿𝑐𝑜 for changes in 𝜇, especially at 94 GHz for intermediate values of 𝐷0
(see Figure 5.10).
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(a) 35 GHz (b) 94 GHz

(c) Combined 35 and 94 GHz

Figure 5.8: Possible 𝐷0 and 𝜇 values found by using an estimate of 𝛿𝑐𝑜 and combining this with simulations at 35 GHz, 94 GHz
and the combined possibilities (overlap). This example case is on the 3th of February 2021 at 10:59:58 at a height of 169 m.

(a) 35 GHz (b) 94 GHz

(c) Combined 35 and 94 GHz

Figure 5.9: Possible 𝐷0 and 𝜇 values found by using an estimate of 𝛿𝑐𝑜 and combining this with simulations at 35 GHz, 94 GHz
and the combined possibilities (overlap). This example case is on the 21st of January 2021 at 03:13:07 at a height of 169 m.
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(a) 35 GHz (b) 94 GHz

(c) Combined 35 and 94 GHz

Figure 5.10: Possible 𝐷0 and 𝜇 values found by using an estimate of 𝛿𝑐𝑜 and combining this with simulations at 35 GHz, 94 GHz
and the combined possibilities (overlap). This example case is on the 3th of February 2021 at 10:23:55 at a height of 169 m.

5.3. Consistency of the 𝐷0 Estimation
In the previous section, it was explained how 𝐷0 is estimated in three different ways, one way by using
the confidence interval of 𝛿𝑐𝑜 at 35 GHz, one way by doing the same at 94 GHz and one way where
both methods are combined. In this section, the focus will be on verifying whether the results of 𝛿𝑐𝑜 of
these three methods show consistent results. To check the average results of these methods, some
plots will be made. First, the mean of the minimum and maximum found possible 𝐷0 values over all
height bins is obtained to get a plot of the mean confidence interval for the retrieval of 𝐷0 as a function
of time. Note that 𝐷0 is not necessarily constant over height, but this plot will be made to verify whether
the right trends can be seen. The results are shown in Figure 5.11. As can be seen, the maximums of
the 35 and 94 GHz show a similar upward trend during the last quarter of the hour, just like the rain­
fall rate during this hour (Figure 3.2). This means that it is likely that the rainfall rate increased in this
last quarter, because of an increase of 𝐷0, possibly in combination with a change of 𝜇 and 𝑁𝑤. When
comparing the values of the average maximums, one can see that the 35 GHz also finds solutions with
higher 𝐷0 values than the 94 GHz. The minimums of both frequencies are often close to the minimum
considered one of 0.1 mm.

These 3 different methods do not always find a possible solution. First of all, the methods are only
applied if the rainfall rate is above 0 mm/h. Secondly, if can be that the Rayleigh plateau cannot be
found and thirdly, no 𝐷0 solution can be found that corresponds to the found confidence interval of 𝛿𝑐𝑜.
At last, the combined method of 35 and 94 GHz can also lead to no solution when no overlap is found
between the 𝐷0/𝜇 solutions, like in Figure 5.8. For this hour under study, there was no solution for the
35 GHz band in 18.1% of the cases when the rainfall rate was higher than 0 mm/h. For the 94 GHz
band, this percentage was only 0.1% and for the combined method, it reached 44.3%. This means that
the 94 GHz method is the most consistent in finding results. It was not unexpected that the 35 GHz
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method would have more problems with finding a solution, as there are clearly cases where the full
confidence interval of 𝛿𝑐𝑜 is estimated to be below 0 deg in Figure 5.2(a), while simulations show that
this should not be possible (Figure 5.5).

(a) 35 GHz (b) 94 GHz

(c) Combined 35 and 94 GHz

Figure 5.11: Mean possible 𝐷0 minimum and maximum solution over height as a function of time found by using an estimate of
𝛿𝑐𝑜 and combining this with simulations at 35 GHz, 94 GHz and the combined possibilities (overlap).

It is also interesting to check the mean behaviour of 𝐷0 over height. To do this, the mean minimum
and maximum 𝐷0 values are taken over time and are plotted as a function of height, as can be seen
in Figure 5.12. One can see that there is a similar trend for the maximum possible solution for all 3
methods. Especially the downward trend around 500 m is clearly present at all 3 methods.

Summarizing, both frequency results show consistent trends. To be able to further analyze these
confidence intervals for the 𝐷0 retrieval, ground truth using disdrometer measurements is considered
next.

5.4. Comparing 𝐷0 Estimates with Disdrometer Measurements
In the last section, the consistency was checked for the 3 estimation methods of 𝐷0. In this section,
the estimates of 𝐷0 will be compared with the measurements of a disdrometer. The disdrometer, which
was introduced in section 3.5, is located on the surface, 150 m away from the cloud radar. Because
the cloud radar does not observe the surface, only relatively low height bins will be considered for this
comparison. More specifically, the average of the 5th until the 7th height bin will be used. This is from
169 m to 211 m. This average was taken of 3 height bins to decrease the effects of random errors.
It was assumed that the rain drop size distribution is constant during these 3 height bins. The lowest
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4 height bins are not used, as the lowest height bins show unreliable estimates of 𝛿𝑐𝑜 as mentioned
before in section 4.2. The retrieved mass­weighted mean diameter (𝐷𝑚) as a function of time from the
disdrometer was provided by Christos Gatidis using the methodology of [31].

5.4.1. Comparing 𝐷0 with 𝐷𝑚
Fortunately, the mass­weighted mean diameter, which is obtained with the disdrometer, is closely re­
lated to the median volume diameter. Bringi gave equations in his book to calculate both parameters
in the case of a gamma distribution [9]:

𝜆𝐷𝑚 = 4 + 𝜇 (5.1)

𝜆𝐷0 = 3.67 + 𝜇 (5.2)

where 𝜆 is the slope parameter [­]. Dividing Equation 5.1 by Equation 5.2 leads to the relation
between 𝐷𝑚 and 𝐷0:

𝐷𝑚
𝐷0

= 4 + 𝜇
3.67 + 𝜇 (5.3)

(a) 35 GHz (b) 94 GHz

(c) Combined 35 and 94 GHz

Figure 5.12: Mean possible 𝐷0 minimum and maximum solution over time as a function of height found by using an estimate
of 𝛿𝑐𝑜 and combining this with simulations at 35 GHz, 94 GHz and the combined possibilities (overlap). The used data is from
February 03 2021, from 10:00­11:00.
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Unfortunately, the shape parameter of the raindrop size distribution (𝜇) is not known. However, to
see howmuch 𝐷𝑚 and 𝐷0 can differ for different values of 𝜇, a plot of the ratio of 𝐷𝑚 and 𝐷0 is made as a
function of 𝜇 in Figure 5.13. In this research the assumption was made that 𝜇 is always between ­2 and
8. This implies that the highest difference between 𝐷𝑚 and 𝐷0 is when 𝜇 is equal to ­2 and 𝐷𝑚 is then
20% larger than 𝐷0. Note that also for all other values for 𝜇, 𝐷𝑚 is bigger than 𝐷0. This means that when
comparing 𝐷𝑚 found by the disdrometer with 𝐷0 found with the cloud radar, it is expected that 𝐷𝑚 from
the disdrometer is always bigger. For completeness, two estimates of 𝜇 using the disdrometer data
and different estimation models, are given in Figure 5.14. As can be seen in these estimates, 𝜇 seems
to vary a lot in time. Moreover, the two different models show significant different results. Because of
the uncertainty of the estimates in 𝜇, these estimates will not be used to convert the estimate of 𝐷𝑚 of
the disdrometer to 𝐷0. This means that the estimate of 𝐷𝑚 of the disdrometer will be compared with the
𝐷0 estimates of the cloud radar, knowing that𝐷𝑚 is expected to be between 3% and 20% higher than𝐷0.

Figure 5.13: The relation between 𝐷𝑚 and 𝐷0 as a function of 𝜇 when assuming a gamma distribution.

Figure 5.14: Retrieval of the shape parameter of the gamma distribution obtained from the disdrometer data using two different
estimation techniques. These results are provided by Christos Gatidis based on [31]

5.4.2. Time Lag Correction
The result for the 35 GHz, 94 GHz and combined estimate of 𝐷0 can be seen in Figure 5.15. Fig­
ure 5.15(a) shows that the 35 GHz 𝐷0 estimate and the disdrometer 𝐷𝑚 estimate show the same
trends during most of the time. Especially between 13:45 and 14:45 one can see that the radar and
disdrometer show peaks at about the same moments. A time lag correction is applied of 2 minutes
to the retrieved 𝐷0 with the cloud radar. This is done, because the peaks of the radar were slightly
earlier than the ones of the disdrometer. First, it will be explained how this time lag is determined and
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after that, it will be explained why it is expected that such a time lag correction is needed. The time
lag correction was determined by finding the time lag with the maximum cross correlation between the
mean possible 𝐷0 and 𝐷𝑚 found by the disdrometer. To calculate this, first, the time resolution of the
retrieved 𝐷0 was lowered to 1 minute by using the retime function of MATLAB, to match the time res­
olution of 𝐷𝑚 found by the disdrometer. This method is applied by using the mean 𝐷0 at 35 GHz and
94 GHz and both resulted in a time lag of 2 minutes. To illustrate that this time lag indeed improves
the matching of the retrieved 𝐷0 with 𝐷𝑚 of the disdrometer, Figure 5.16 shows again Figure 5.15(b),
but without the applied time lag correction of 2 minutes. It is clearly visible when comparing these two
figures that local peaks of 𝐷0 from the cloud radar and 𝐷𝑚 from the disdrometer are matching better
with the applied time lag correction of 2 minutes.

But why was the need for this time lag correction expected? It was expected, as the raindrops are
first measured by the radar at heights from 169 m to 211 m and these rain drops then still need to fall
to the surface, which will create a small time difference. To get a sense of what time lag to expect, a
simple fall velocity model will be used to calculate how much time it approximately takes for a drop to
fall from 190 m to the surface. The following exponential fall velocity model is given in Bringi [9]:

𝑣(𝐷) = 𝛼𝐷𝛽 (5.4)

where v is the fall velocity in m/s, 𝛼 is a coefficient often taken as 3.78, 𝐷 is the drop size in mm
and 𝛽 is a coefficient often taken as 0.67. Applying this equation results in fall velocities of 2.38 m/s,
3.78 m/s and 4.96 m/s for raindrop diameters of 0.5 mm ,1.0 mm and 1.5 mm, respectively. This cor­
responds to time lags of 80 s, 50 s and 38 s when the drops fall vertically from 190 m to the surface,
respectively. In practise, these time lags can be different for multiple reasons, like non vertical rainfall
due to horizontal wind and the uncertainty of the fall velocity model. Moreover, the time resolution for
the disdrometer is one minute, while the time resolution of the cloud radar is 3.6 seconds. This can
also lead to an earlier peak of 𝐷0 of the cloud radar.

This effect may be amplified with the distance between the cloud radar and disdrometer, and the
looking direction of the cloud radar at 45∘ elevation at an azimuth not in the direction of the disdrometer.
In conclusion, the time lag correction of 2 minutes is in line with what one could expect.

5.4.3. Cross Correlation Between 𝐷0 and 𝐷𝑚
Figure 5.15(b) shows the result of the found 𝐷0 for the cloud radar at 94 GHz. One can clearly see that
the minimum and maximum possible 𝐷0 that was found with the cloud radar is highly correlated with the
estimated 𝐷𝑚 of the disdrometer. More specific, the normalized cross correlation between the mean
𝐷0 and 𝐷𝑚 was 0.845 at 94 GHz and also 0.845 at 35 GHz. Almost during the full 5 hour dataset, even
small peaks of 𝐷𝑚 of the disdrometer correspond to small peaks of 𝐷0 of the cloud radar. The peaks
of 𝐷0 of the cloud radar looks to be a bit sharper than the peaks of 𝐷𝑚 of the disdrometer. This can
be due to the different time resolution of the two devices. If, for example, 𝐷0 and 𝐷𝑚 would suddenly
increase for 20 seconds and then suddenly decrease to the old 𝐷0 value again, the cloud radar will be
able to show this easily, because the time resolution is 3.6 seconds. The disdrometer will also show a
peak, because the mean 𝐷𝑚 of this minute will be higher due to these 20 seconds with a higher value
of 𝐷𝑚, however, the peak will be lower, because these 20 seconds will be averaged together with 40
seconds where 𝐷𝑚 is lower.

5.4.4. Observed Bias
What is also noticeable, is that 𝐷𝑚 of the disdrometer is (almost) always bigger than the maximum
possible 𝐷0 found with the cloud radar. As discussed before, it is expected that 𝐷𝑚 is 2 to 20% larger
than 𝐷0, but the differences are clearly larger in Figure 5.15(b). This means that there is a bias related
to the estimation. Does it come from the cloud radar retrieval and/or disdrometer data? To show that
the total bias between 𝐷0 of the cloud radar and 𝐷𝑚 of the disdrometer is fairly constant at 94 GHz,
the mean difference between the mean possible 𝐷0 from the cloud radar and 𝐷𝑚 from the disdrometer
(0.79 mm) is added to the minimum and maximum possible 𝐷0 from the cloud radar and this is shown
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in Figure 5.17. One can see that adding a constant value already leads to a good agreement between
the cloud radar and the disdrometer. The goal of this plot was to show that there is a fairly constant
bias in this time series and it must be emphasized that this is not a proof that this is generally the case.
Furthermore, this offset of 0.79 mm is overestimated because 𝐷𝑚 should be larger than 𝐷0.

To verify whether the bias is systematically present, it is advised to investigate more time series. A
possible reason for a bias is that the disdrometer is not able to measure small raindrops, which results
in an overestimation of 𝐷𝑚. To check this, Figure 5.18 will be analyzed. It shows a plot where one can
see the amount of drops that were measured with a certain drop size versus time. One can see that
no drops can be measured lower than 0.25 mm. Moreover, when closely watching at the lowest drop
diameter bin, it seems to be underestimated as this bin shows really low values, while only one bin
above it also shows really high values. Thus, no drops smaller than 0.25 mm are measured and the
number of raindrops with diameters between 0.25 and 0.375 mm is underestimated. Another possible
reason for the bias could be the influence of the chosen axis ratio size model for the simulations. One
could check whether the bias is still present when a different model is used.

(a) 35 GHz

(b) 94 GHz

(c) Combined 35 and 94 GHz

Figure 5.15: Estimates of the minimum and maximum possible median diameter from cloud radar measurements from a height
of 169 m until 211 m with an applied time lag correction of 2 minutes and the estimated mass­weighted mean diameter from
disdrometer measurements on the surface located 150 m away from the cloud radar. 𝐷𝑚 found by the disdrometer (black line)
was provided Christos Gatidis based on [31].
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(a) 94 GHz

Figure 5.16: Estimate of the minimum and maximum possible median diameter from cloud radar measurements at 94 GHz from
a height of 169 m until 211 m and the estimated mass­weighted mean diameter from disdrometer measurements on the surface
located 150 m away from the cloud radar. 𝐷𝑚 obtained from the disdrometer data (black line) was provided by Christos Gatidis
[31].

Figure 5.17: Estimates of the minimum and maximum possible median diameter from cloud radar measurements from a height
of 169 m until 211 m with an applied time lag correction of 2 minutes and with an added bias on top of it of 0.79 mm and the
estimated mass­weighted mean diameter from disdrometer measurements on the surface located 150 m away from the cloud
radar. 𝐷𝑚 obtained from the disdrometer data (black line) was provided by Christos Gatidis [31].

5.4.5. Recommendations
Are the D0 values retrieved from the 94 GHz frequency underestimated? To investigate this, a few
recommendations are provided:

• Check whether a bias of 𝐷0 is also present during other time series

• Check whether the bias of 𝐷0 is caused by the choice of the axis ratio­size model in the simulation

• Investigate if one can find an estimate of the bias on 𝐷𝑚 given by the disdrometer knowing that
the raindrops having a size below 0.375 mm cannot be well measured.

• For the cloud radar, the simulation should provide 𝛿𝑐𝑜 versus 𝐷𝑚 and 𝜇.

• Considering the time resolution, the cloud radar data/retrievals could be averaged to have the
same time resolution as the disdrometer one. However, this procedure will increase the cloud
radar resolution volumewithmaybe a detrimental effect in the comparison cloud radar­disdrometer.
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Figure 5.18: Raindrop sizes measured by a disdrometer at Cabauw. This plot is provided by Christos Gatidis based on [31].

5.4.6. Width of the Confidence Interval at 94 GHz
What is also notable is that the difference between the minimum and maximum found 𝐷0 solution with
the cloud radar at 94 GHz seems to decrease when 𝐷0 increases. This means that the method to
find 𝐷0 with the cloud radar at 94 GHz shows the most potential for estimating 𝐷0 when 𝐷0 is large.
To investigate this further, a scatter plot is made in Figure 5.19 to find the mean 𝐷0 value where the
method will give the most narrow solution. It is important to emphasize that the plot is only based on
one time series of 5 hours of data. One can see in the plot that, in the considered time series, when
the mean 𝐷0 solution was between 1.3 and 1.65 mm, a narrower interval solution is found compared
to the one with a mean 𝐷0 higher or lower. However, also narrow interval solutions are found when
the mean 𝐷0 is very small. That can be explained by the fact that the minimum found solution cannot
be lower than 0.1 mm, since this is the lower bound for 𝐷0 in this retrieval technique. Of course, also
if smaller 𝐷0 possibilities would be taken into account, the minimum solution would be always limited
by the fundamental minimum of 0 mm. In the considered time series, the maximum found solution is
never limited by the maximum considered possible 𝐷0 value of 2.5 mm. If this would be the case, then
it is advised to increase this limit of 2.5 mm.

5.4.7. Combined Method
Finally, Figure 5.15(c) shows the result of the 𝐷0 estimation of the strategy where both 35 and 94 GHz
frequency bands are used. Unfortunately, this technique has not found a solution for a large amount of
time bins. However, when there is a found solution, then this solution is close to the 94 GHz one but
with a narrower interval. This combined method should be further investigated. It reveals the issue to
be explored: why can’t we match these two results (35 and 94 GHz) most of the time? This also shows
the importance to use a dual­frequency system to get more understanding in the measurements, the
retrieval technique and the simulation.
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Figure 5.19: The width of the solution of 𝐷0 of the cloud radar at 94 GHz (difference between the maximum and minimum found
cloud radar) versus the mean solution of 𝐷0 of the cloud radar at 94 GHz. The considered solutions are the solutions from the
time series of Figure 5.15(b).





6
Conclusions and Recommendations

Conclusions about this research will be drawn by first answering the 6 research sub­questions and
finally answering the main research question. After this, some recommendations will be given.

6.1. Answers to the Research Sub­questions
6.1.1. Are the polarimetric measurements well calibrated?
While investigating the polarimetric variables, in particular the differential phase, this phase did not
show the expected trend of the simulation and exhibited significant discrepancies in values comparing
both frequency bands. Therefore, it became necessary to enter in contact with the senior scientist
of the RPG company (manufacturer of the dual­frequency cloud radar). A. Myagkov explained that an
extra polarimetric calibration was necessary. Drizzle measurements were used to calculate polarimetric
calibration correction values since the expected differential phase and differential reflectivity are known
and equal to 0 deg and 1, respectively. The 94 GHz polarimetric calibration correction is relatively
small, while the correction of the 35 GHz measurements is fairly large. This means that the 94 GHz was
already calibrated well polarimetrically, while the extra polarimetric calibration correction was essential
at 35 GHz.

6.1.2. How to disentangle propagation and backscattering effects?
The Doppler spectra are used to disentangle propagation and backscattering effects. Smaller raindrops
fall slower than larger raindrops and this results in a difference in Doppler velocities between relatively
small and larger raindrops. The presence of wind, turbulence and Doppler aliasing complicates the
situation. However, as small raindrops fall with different velocities than larger drops, they can still be
found in a different part of the Doppler spectrum. Small raindrops scatter in the Rayleigh regime and
because of this, the spectral differential backscatter phase is equal to 0 deg. Therefore, the spectral
differential phasemeasurements are only caused by propagation. The specific Doppler velocities which
correspond to Rayleigh scattering can be found by the proposed Rayleigh plateau detection algorithm in
this thesis. This algorithm first filters out Doppler velocities with properties differing from expectations,
like a spectral differential reflectivity higher than 1.1. Another important property that is used to find the
Rayleigh plateau is the little variation of the spectral differential reflectivity and spectral differential phase
over Doppler velocity at the Rayleigh plateau. Using these properties, a cost function is defined to find
the best Rayleigh plateau option. This algorithm is applied on all height and time bins. In conclusion,
this algorithm extracts propagation only effects in the spectral differential phase.

6.1.3. How can the differential backscatter phase be estimated?
The differential backscatter phase is equal to the differential phase minus the differential propagation
phase. The differential phase is measured by the cloud radar. The differential propagation phase can
be calculated by using the detected Rayleigh plateau. This is simply done by taking the mean spectral
differential phase value at the Rayleigh plateau. A strong property is the independence of polarimetric
calibrations.
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6.1.4. How can the error of the differential backscatter phase be evaluated?
The differential backscatter phase is calculated as the difference of the differential phase and the dif­
ferential propagation phase. In this research, the random error of the differential backscatter phase is
assumed to be equal to the error of the differential propagation phase. This assumption is considered
because the random error of the differential phase is much smaller than the random error of the differ­
ential propagation phase, as the differential phase is calculated by including a lot more measurements
than the differential propagation phase. The random error of the differential propagation phase is es­
timated by using the re­sampling method bootstrapping. This is done as the differential propagation
phase can be calculated as the mean of less than 30 measurements and moreover, one does not have
to assume that the differential propagation phase is normally distributed when using bootstrapping.
Bootstrapping leads to the (95%) confidence interval of 𝛿𝑐𝑜.

6.1.5. How can the median volume diameter be retrieved from the estimate of
the differential backscatter phase?

Simulations show what value of 𝛿𝑐𝑜 corresponds to combinations of possible values of 𝐷0 and 𝜇. 𝛿𝑐𝑜 is
independent of 𝑁𝑤. It is assumed in this research that 𝐷0 is between 0.1 and 2.5 mm and 𝜇 is between
­2 and 8. It is checked which combinations of 𝐷0 and 𝜇 correspond to values inside the confidence
interval of 𝛿𝑐𝑜. In this way, possible combinations of 𝐷0 and 𝜇 are found for all time and height bins.
This method is applied for both the 35 and 94 GHz frequency band of the cloud radar. Moreover, the
overlap of the possible 𝐷0/𝜇 combinations of 35 and 94 GHz is estimated, which narrows down the
possible solutions. However, no overlap is found in 44.3% of the cases for a time series of one hour,
which indicates that more research needs to be done to find the reason for this. The combinations of
𝐷0/𝜇 for the 35 GHz, 94 GHz and the overlap of them contain all possible values of 𝜇 in most cases,
which means that 𝜇 is not restricted by the confidence interval of 𝛿𝑐𝑜. 𝐷0 is however, always restricted
by the confidence interval of 𝛿𝑐𝑜. The 94 GHz frequency band restricts 𝐷0 more than the 35 GHz
frequency band. The overlap between the possible 𝐷0/𝜇 values at 35 and 94 GHz restricts 𝐷0 even
more and in rare occasions even restricts 𝜇.

6.1.6. How does the retrieved median volume diameter compare with disdrom­
eter measurements?

The confidence interval of𝐷0 obtained with the 35GHz frequency band, 94GHz frequency band and the
overlap of the two frequency bands were all compared to the mass­weighted mean diameter (𝐷𝑚) found
by a disdrometer which is located on the surface 150 m away from the cloud radar. This comparison is
done for 5 consecutive hours of rain. The median volume diameter retrieved with the 35 and 94 GHz
frequency bands shows a normalized cross correlation coefficient of 0.845 with the measured 𝐷𝑚 of
the disdrometer. 𝐷𝑚 is expected to be between 2 and 20% larger than 𝐷0. However, 𝐷𝑚 found by the
disdrometer is on average 0.79 mm higher than 𝐷0 estimated at 94 GHz, which is more than this 20%.
This can partially be explained by the fact that the disdrometer overestimates 𝐷𝑚, as it is not able to
measure raindrops smaller than 0.25 mm and seems to underestimate the amount of raindrops with a
diameter between 0.25 and 0.375 mm. However, because 𝐷0 values retrieved from 35 GHz data are
also higher than the ones at 94 GHz, further research, which can use all the methodologies proposed
in this master thesis work, is needed to examine the quantitative values of the median volume diameter
retrieval.
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6.2. Answer to the Main Research Question
”How can the median volume diameter be retrieved using a polarimetric cloud radar?”

The gamma model parameterized by (𝐷0, 𝜇, 𝑁𝑤) is assumed for the raindrop size distribution. For
the retrieval of the median volume diameter (𝐷0), radar variables independent of 𝑁𝑤, should be consid­
ered. There are two candidates, the differential reflectivity (𝑍𝑑𝑟) and the differential backscatter phase
(𝛿𝑐𝑜). 𝑍𝑑𝑟 values are very small at 94 GHz, and depend on polarimetric calibration (two disadvan­
tages). Therefore, the choice goes to 𝛿𝑐𝑜. However, to obtain 𝛿𝑐𝑜, first propagation and backscattering
effects need to be disentangled. This is done by finding the Rayleigh plateau, which is a part of the
Doppler spectrum that corresponds to small raindrops and consequently to propagation effects only,
as 𝛿𝑐𝑜 is zero for Rayleigh scattering. An algorithm, which automatically detects the Rayleigh plateau
is proposed. This results in the estimation of the differential propagation phase. With the calculated
differential propagation phase and the measured differential phase, the differential backscatter phase
can be estimated. The uncertainty of the retrieved differential backscatter phase is obtained by using
the re­sampling method bootstrapping, which provides the 95% confidence interval of 𝛿𝑐𝑜. Simulations
show what value of 𝛿𝑐𝑜 corresponds to combinations of possible values of 𝐷0 and 𝜇. The confidence
interval of 𝛿𝑐𝑜 of both frequency bands restrict the value of 𝐷0, while 𝜇 is often not restricted. The over­
lap between the possible combinations of 𝐷0 and 𝜇 at 35 and 94 GHz can restrict 𝐷0 even more and
can even restrict 𝜇 in some cases. However, often, no overlap is found. The median volume diameter
retrieved with only 35 and 94 GHz frequency bands shows a good correlation with the measured 𝐷𝑚 of
the disdrometer. Therefore, the cloud radar seems to have the capability to provide the detailed varia­
tions of the raindrops mean/median diameter like a local disdrometer, but at different heights. However,
the 𝐷𝑚 of the disdrometer is significantly larger than 𝐷0. Partial explanations are: by definition, 𝐷𝑚 is
slightly larger than 𝐷0 and the disdrometer overestimates 𝐷𝑚, as it cannot measure well the small rain­
drops. Consequently, the next research questions should address the quantitative values of the 𝐷0
retrieval and the non­overlapping between the solutions at 94 and 35 GHz. At last, by investigating
other cloud radar variables, similar approaches could be followed to retrieve the other two variables of
the gamma­modeled raindrop size distribution: 𝜇 and 𝑁𝑤.

6.3. Recommendations
Since the used polarimetric cloud radar was a new cloud radar and since there is no literature available
where the rain drop size distribution is retrieved with a polarimetric cloud radar, this was a challenging
research. This section will give suggestions for what is recommended to do in further research in this
topic:

• Investigate why the retrieved 𝐷0 at 35 and 94 GHz are significantly lower than 𝐷𝑚 calculated
with disdrometer measurements. To do this, one can use the recommendations listed in subsec­
tion 5.4.5.

• Use simulations of 𝛿𝑐𝑜 versus 𝐷𝑚 and 𝜇 to provide 𝐷𝑚 instead of 𝐷0 to be able to compare the
results better with disdrometer measurements.

• Investigate how accurate the estimated error of 𝛿𝑐𝑜 and 𝐷0 is and find a more accurate way of
estimating the errors if needed.

• Improve the estimation of the specific differential phase, as the specific different phase might be
useful for a raindrop size distribution retrieval. Using the extra polarimetric calibration correction
is highly recommended.

• Explore more variables which might be effective to retrieve 𝜇 or 𝑁𝑤. For power measurements,
the differential attenuation might help to retrieve 𝑁𝑤, especially when 𝐷0 is already retrieved.
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Appendix A ­ Non Used Parameters

A.1. Power Based Parameters
A.1.1. Linear Depolarization Ratio
Very similar to the differential reflectivity, there is the linear depolarization ratio. The linear depolariza­
tion ratio is defined as the measured reflected vertically polarized electromagnetic wave after transmit­
ting a horizontally polarized electromagnetic wave (which scatters) divided by the vertically polarized
transmitted and measured electromagnetic wave:

𝑙𝑑𝑟 =
⟨|𝑆𝑣ℎ|

2⟩

⟨|𝑆𝑣𝑣|
2⟩
= 𝑧𝑣ℎ
𝑧𝑣𝑣

(A.1)

and often used in dB:

𝐿𝑑𝑟 = 10 log10 (𝑧𝑣ℎ) − 10 log10 (𝑧𝑣𝑣) = 𝑍𝑣ℎ − 𝑍𝑣𝑣 (A.2)

The linear depolarization ratio depends on the particle shape, orientation and relative permittivity.
When one takes a constant shape ratio (𝑏/𝑎), 𝐿𝑑𝑟 strongly depends on the relative permittivity. For rain,
𝐿𝑑𝑟< ­27 dB, which is difficult to measure. The melting layer is between ­20 dB and ­10 dB, therefore,
it is a good melting layer detector. Hail stone will lead to 𝐿𝑑𝑟> ­20 dB. Figure A.1 shows the slanted
linear depolarization ratio of the 35 GHz and 94 GHz radar.

(a) 35 GHz (b) 94 GHz

Figure A.1: Slanted linear depolarization ratio of the 35 GHz and 94 GHz radar.
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A.2. Phase Based Parameters
A.2.1. Mean Doppler Velocity and Spectrum Width
The Doppler effect can be used to determine the velocity component of an object in the radial direction
from the radar. When an object is moving towards the radar, the frequency of the reflection will be
higher than the incoming frequency, this is called blueshifting. When an object is moving away from
the radar, the frequency of the reflection will be lower than the incoming frequency, this is called red­
shifting. In practise, we do not measure the frequency directly, but we measure the phase over time
and can derive the frequency from this and thus also the frequency shift. With this frequency shift, one
can calculate the velocity component of an object in the radial direction from the radar.

In practise, however, one does not measure the reflection of one target, but of a lot of targets at the
same time. This means that a statistical approach is required to obtain velocity information. Usually,
a wide sense stationary random process is assumed. There are two possible approaches, the first is
taking the fast Fourier transform of the measured signal and then taking the modules squared. The
second option is to use the autocorrelation function of the measured signal and then taking the fast
Fourier transform. The obtained result is called a periodogram, also P(f). From this periodogram,
some other statistical parameters can be obtained. The easiest one to obtain is the total power:

𝑃 = ∫𝑃(𝑓)𝑑𝑓 (A.3)

The next statistical parameter is the mean Doppler frequency:

𝑓𝐷 =
1
𝑃 ∫𝑓𝑃(𝑓)𝑑𝑓 (A.4)

and the last one is the Doppler spectrum width:

𝜎𝑓𝐷 = √
1
𝑃 ∫(𝑓 − 𝑓𝐷)

2 𝑃(𝑓)𝑑𝑓 (A.5)

(a) 35 GHz (b) 94 GHz

Figure A.2: Mean Doppler Velocity of the 35 GHz and 94 GHz radar.
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(a) 35 GHz (b) 94 GHz

Figure A.3: Spectrum width of the 35 GHz and 94 GHz radar.

A.3. Remaining Parameters without Explanation

(a) 35 GHz (b) 94 GHz

Figure A.4: Skewness of the 35 GHz and 94 GHz radar.
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Appendix B ­ Polarimetric Calibration

Correction Table

Table B.1: Polarimetric calibration corrections for the differential reflectivity 𝑧𝑑𝑟 and the differential (propagation) phase for the
35 GHz and the 94 GHz frequency bands and their corresponding margin of error (95% confidence) calculated as explained in
section 3.6
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Appendix C ­ Specific Differential

Reflectivity
The previous chapter focused on estimating 𝛿𝑐𝑜, which can be used to estimate 𝐷0. The first estimate of
𝐾𝑑𝑝 turned out to be unusable for the retrieval of 𝐷0, 𝜇 or 𝑁𝑤 as the estimate of 𝐾𝑑𝑝 was highly affected
by noise. The way of estimating 𝐾𝑑𝑝 should thus be improved. Further, 𝐾𝑑𝑝 has little sensitivity to 𝜇
and lacks in sensitivity to 𝐷0 and 𝑁𝑤 for small 𝐷0 and 𝑁𝑤 values. Thus, other variables need to be
found to be able to estimate 𝑁𝑤 and 𝜇, which cannot be determined by 𝛿𝑐𝑜. In this chapter, a self­
invented variable will be introduced and it will be discussed whether this variable has the potentiality
to be useful for a raindrop size distribution retrieval. This variable will be referred to as the specific
differential reflectivity (𝐾𝑑𝑟) and is defined in the following way:

𝐾𝑑𝑟 =
1
2(
𝑑𝑧ℎℎ
𝑑𝑟 − 𝑑𝑧𝑣𝑣𝑑𝑟 ) =

1
2
𝑑Ρ𝑑𝑟
𝑑𝑟 ≈ 1

2
Ρ𝑑𝑟(𝑟2) − Ρ𝑑𝑟(𝑟1)

𝑟2 − 𝑟1
(C.1)

where

Ρ𝑑𝑟 = 𝑧ℎℎ − 𝑧𝑣𝑣 (C.2)

where 𝐾𝑑𝑟 is the specific differential reflectivity in mm6/m4 and Ρ𝑑𝑟 is the difference in equivalent
reflectivity between the horizontal and vertical polarization in mm6/m3, which is not equal to the differ­
ential reflectivity, as that is calculated by taking the ratio and not by taking the difference (when using
linear values). In Figure C.1, one can see an example plot of the specific differential reflectivity as a
function of height and time for the 35 GHz and 94 GHz frequency band. One can clearly see that the
height bins that correspond to the lowest 150 meters show different behaviour than the higher height
bins, like also happened for the differential backscatter phase in section 4.2. These first height bins
of 𝐾𝑑𝑟 especially show more extreme values. Again, a possible explanation is that the far­field ap­
proximation for polarimetric measurements is not valid. In section 4.2, an other mentioned possible
explanation was that the polarimetric calibration is not valid at these heights. For 𝐾𝑑𝑝, this explanation
is not possible, as no extra polarimetric calibration correction was applied for it. However, it might be
good to apply an extra polarimetric calibration. The same polarimetric calibration procedure as applied
to 𝑧𝑑𝑟 and Ψ𝑑𝑝 is also possible for 𝑃𝑑𝑟. 𝑃𝑑𝑟, which is equal to 𝑧ℎℎ −𝑧𝑣𝑣, is expected to be 0 mm6/m3 for
drizzle measurements, as 𝑧ℎℎ is expected to be the same as 𝑧𝑣𝑣 in drizzle, as all rain drops are close
to spherically shaped in drizzle. In this research, this calibration correction was not applied, because
the focus was given to estimating 𝛿𝑐𝑜 to be able to estimate 𝐷0 and the limited time of the master thesis
research.

When exploring the new variable (𝐾𝑑𝑟), it was notable that this variable might be related to the
rainfall rate. To investigate this, the mean over height of the specific differential reflectivity is plotted
as a function of time. The mean is taken to reduce noise effects and calculating this mean implies the
assumption that the rainfall rate is about constant with height. The lowest 4 height bins are not used
for this averaging, as these show unexpected behaviour, as mentioned before. The resulting plots
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can be seen in Figure C.2. One can see that 𝐾𝑑𝑟 at 35 GHz seem to be correlated to the rainfall rate
(Figure C.3), as local peaks at Figure C.2(a) often correspond to local peaks at Figure C.3. Moreover,
the up­ and downward small time trends seem to be the same in these figures. The trend over the
whole hour, however, is not the same, as the rainfall rate clearly increases over time during this hour,
while this is not clear for 𝐾𝑑𝑟 at 35 GHz. More research on 𝐾𝑑𝑟 has to be done to find out if this variable
might be useful for a raindrop size distribution retrieval or a rainfall rate retrieval. Creating simulations
is advised to get a better understanding of this rather complex variable.
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(a) 35 GHz (b) 94 GHz

Figure C.1: The specific differential reflectivity as a function of height and time for the 35 GHz band and 94 GHz band.

(a) 35 GHz (b) 94 GHz

Figure C.2: The mean specific differential reflectivity between 179 m height and 833 m height as a function of time for the 35
GHz band and 94 GHz frequency band.

Figure C.3: Rainfall rate at the third of February 2021 measured from the weather station on the cloud radar.
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