
Automatic Control With Human-Like
Reasoning
Exploring Language Model Embodied Air Traffic
Agents

Justas Andriuskevicius

Automatic Control With Human-Like
Reasoning

Exploring Language Model Embodied Air Traffic Agents

Thesis report 2024/11/05

by

Justas Andriuskevicius

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on November 5, 2024 at 08:30

Thesis committee:

Chair: Prof.dr.ir Jacco Hoekstra

Supervisors: Dr. Junzi Sun

External examiner: Dr. Alessandro Bombelli

Place: Faculty of Aerospace Engineering, Delft

Project Duration: December, 2023 - Novemeber, 2024

Student number: 5062632

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Aerospace Engineering · Delft University of Technology

http://repository.tudelft.nl/

Copyright © Justas Andriuskevicius, 2024

All rights reserved.

Acknowledgements

I would like to express my gratitude to everyone who supported me throughout my thesis journey. First

and foremost, I extend my thanks to my supervisor, Dr. Junzi Sun, for his encouragement and valuable

contributions. His assistance with coding, troubleshooting, and offering fresh and innovative ideas, along-

side his broader perspective on the project, was invaluable. This project’s acceptance into the SESAR

conference would not have been possible without his guidance and support.

I am also grateful to Professor Jacco Hoekstra for his insightful guidance, which significantly elevated

the quality of my thesis.

I would also like to acknowledge visionplatform.ai, where I had the opportunity to work part-time. The

projects I worked on aligned closely with my thesis, providing me with practical experience that strengthened

my theoretical understanding.

A special thanks goes to my family, who have been my support throughout this process. I am also

thankful to Xingyue for constant encouragement and for providing an additional API key, which allowed me

to carry out more experiments. Finally, I would like to thank Dequan, Luke, Jiaxuan, and all my friends for

their encouragement and support during this journey.

To all of you, thank you for your guidance, belief, and support.

ii

Abstract

Recent developments in language models have created new opportunities in air traffic control studies. The

current focus is primarily on text and language-based use cases. However,these language models may

offer a higher potential impact in the air traffic control domain, thanks to their ability to interact with air

traffic environments in an embodied agent form. They also provide a language-like reasoning capability to

explain their decisions, which has been a significant roadblock for the implementation of automatic air traffic

control. This thesis investigates the application of a language model-based agent with function-calling and

learning capabilities to resolve air traffic conflicts without human intervention. The main components of this

research are foundational large language models, tools that allow the agent to interact with the simulator,

and a new concept, the experience library. An innovative part of this research, the experience library, is a

vector database that stores synthesized knowledge that agents have learned from interactions with the

simulations and language models. To evaluate the performance of our language model-based agent, both

open-source and closed-source models were tested. The results of our study reveal significant differences

in performance across various configurations of the language model-based agents. The best-performing

configuration was able to solve almost all 120 but one imminent conflict scenario, including up to four

aircraft at the same time. Most importantly, the agents are able to provide human-level text explanations

on traffic situations and conflict resolution strategies.

iii

Contents

Acknowledgements ii

Abstract iii

I Scientific Article 1

II Appendix 35

1 Research proposal 36

1.1 Introduction . 36

1.2 Motivation and Research Proposal . 37

2 Literature Review 38

2.1 Incresed Workload and its Impact on Aviation Safety . 38

2.2 AI Integration in Air Traffic Management . 39

2.3 Large Language Models in Air Traffic Management: Current Applications and Future Poten-

tial . 43

III Closure 47

3 Conclusion 48

3.1 Closing Remarks . 48

3.2 Research Questions . 48

References 50

iv

Nomenclature

List of Abbreviations

ADS-B Automatic Dependent Surveillance-

Broadcast

AI Artificial Intelligence

ANN Approximate Nearest Neighbors

ATC Air Traffic Control

ATCOs Air Traffic Controllers

ATFCM Air Traffic Flow and Capacity Manage-

ment

ATFM Air Traffic Flow Management

ATM Air Traffic Management

BPE Byte-Pair Encoding

CAS Calibrated Airspeed

CPA Closest Point of Approach

DATIS Digital Automatic Terminal Information

Service

DCPA Distance to Closest Point of Approach

FAA Federal Aviation Administration

GDP Ground Delay Program

GPT Generative Pre-trained Transformer

GS Ground Speed

HNSW Hierarchical Navigable Small World

HRV Heart Rate Variability

JSON JavaScript Object Notation

LLM Large Language Model

METAR Meteorological Aerodrome Report

ML Machine Learning

NASA National Aeronautics and Space Adminis-

tration

nm Nautical Miles

PZ Protection Zone

RAG Retrieval-Augmented Generation

ReAct Reasoning and Acting framework

RL Reinforcement Learning

RLHF Reinforcement Learning with Human

Feedback

SESAR Single European Sky ATM Research

SI Situations of Interest

TCPA Time to Closest Point of Approach

tLOS Time to Loss of Separation

U-Space Unmanned Aircraft Systems (UAS)

Space

V/S Vertical Speed

VA Visual Analytics

XAI Explainable Artificial Intelligence

v

Part I
Scientific Article

1

Automatic Control With Human-Like Reasoning:
Exploring Language Model Embodied Air Traffic Agents

Justas Andriuškevičius, Junzi Sun∗
Faculty of Aerospace Engineering, Delft University of Technology

Delft, the Netherlands
∗thesis supervisor

Abstract—Recent developments in language models have cre-
ated new opportunities in air traffic control studies. The current
focus is primarily on text and language-based use cases. However,
these language models may offer a higher potential impact in
the air traffic control domain, thanks to their ability to interact
with air traffic environments in an embodied agent form. They
also provide a language-like reasoning capability to explain
their decisions, which has been a significant roadblock for the
implementation of automatic air traffic control.

This paper investigates the application of a language model-
based agent with function-calling and learning capabilities to
resolve air traffic conflicts without human intervention. The main
components of this research are foundational large language
models, tools that allow the agent to interact with the simulator,
and a new concept, the experience library. An innovative part
of this research, the experience library, is a vector database
that stores synthesized knowledge that agents have learned from
interactions with the simulations and language models.

To evaluate the performance of our language model-based
agent, both open-source and closed-source models were tested.
The results of our study reveal significant differences in per-
formance across various configurations of the language model-
based agents. The best-performing configuration was able to solve
almost all 120 but one imminent conflict scenarios, including up
to four aircraft at the same time. Most importantly, the agents are
able to provide human-level text explanations on traffic situations
and conflict resolution strategies.

keywords – Air traffic control, self-learning agents, large language
models, experience library, function-calling

I. INTRODUCTION

Air traffic management is a system that is critical for en-
suring global airspace safety and operational efficiency. As air
traffic volumes increase, so does the complexity of managing
numerous flights and workloads for operators simultaneously
[1], which raises the risk of incidents due to operational
misunderstandings. These factors have historically contributed
significantly to aviation accidents.

One of the main developments in air traffic management is
the introduction of artificial intelligence in air traffic control
to reduce the workload of air traffic controllers. The SESAR
AISA project [2] was an early attempt to incorporate AI
into air traffic management by creating a system for artificial
situational awareness through the use of knowledge graphs
and machine learning for traffic prediction. Another SESAR
project, ARTIMATION [3], also aims at producing a trans-
parent AI through visualization. Reinforcement learning (RL)
has shown remarkable capabilities in solving complex, sequen-

tial decision-making tasks across various domains, including
ATM. RL-based approaches are particularly well-suited for
tasks like conflict detection and resolution, where they can
optimize decisions based on a reward system. By learning
through trial and error, RL can generate efficient solutions
for handling air traffic conflicts. However, a key limitation of
RL is its lack of transparency. While RL can provide optimal
actions, it typically does so without explaining the reasoning
behind its decisions, which can hinder trust in safety-critical
environments such as ATM.

The SESAR TAPAS project [4] explored RL within ATM,
aiming to offer actionable solutions to human operators. RL
was used to develop AI-generated solutions for air traffic flow
and capacity management (ATFCM) and conflict detection and
resolution. While TAPAS advanced the field by integrating
explainable AI (XAI) and visual analytics (VA) to make these
solutions accessible to operators, the system still relied heavily
on visual explanations. The RL models themselves did not
provide any inherent reasoning, offering solutions without
accompanying explanations. Operators had to rely on VA
tools to interpret these solutions, but even then, the reasoning
behind the decisions remained largely opaque. Especially
when the system resolved multiple conflicts simultaneously,
created challenges for operators who often preferred to address
conflicts one by one.

Moreover, while RL can generate valid resolutions, its
inability to convey human-like reasoning limits its integra-
tion into human-operated air traffic control systems. This is
especially critical in real-time operations, where air traffic
controllers need to understand the rationale behind decisions
to ensure safety and maintain control.

Overall, the human-in-the-loop simulations revealed a gap
between artificial and human situational awareness, highlight-
ing room for improvement in AI’s complex decision-making
processes. This gap requires AI to offer more nuanced and
human-like reasoning capabilities in air traffic management.

Since 2023, researchers have experimented with the in-
tegration of large language models (LLM) into air traffic
management. Large language models are advanced AI sys-
tems capable of understanding and generating human-like
text. Their proficiency in real-time decision-making has the
potential to improve operational efficiency and automate labor-
intensive tasks. Most of the data used to train state-of-the-
art large language models, such as the latest Common Crawl

dataset [5] comprises over 250 billion web pages, sources
information from publicly accessible internet sites.

This extensive training equips large language models with
a broad understanding of air traffic management standards,
including guidelines from the International Civil Aviation
Organisation, Federal Aviation Administration regulations, and
other global and local aviation protocols. Consequently, large
language models can interpret these contents effectively.

Several recent studies have explored use cases for aviation
applications. For example, [6] employs language models to
understand ground delay program text data. [7] fine-tunes
the open-source language models to better understand the
aviation context. A recent study [8] uses a language model
for text classification and clustering based on air traffic flow
management regulations and weather reports.

However, these use cases are primarily focused on natural
language processing; they have not utilized the full potential of
language models in managing air traffic operations nor looked
into how AI can provide human-like reasoning.

A new concept, the language model embodied agent, Voy-
ager [9], was introduced last year, which represents an inno-
vative step in leveraging the language model’s reasoning capa-
bility. It is designed for open interactions within the Minecraft
game environment, where Voyager agents can explore the
virtual world autonomously and, most importantly, acquire
skills by experience and then apply skills.

In a similar context, we also hypothesize that large language
models may act as intelligent assistants for air traffic control
operators, helping to manage routine tasks. More critically,
these agents can play a decisive role in conflict resolution
strategies—identifying potential conflicts and suggesting opti-
mal maneuvering strategies. By leveraging the function-calling
capability of the language model, they can also interact with
the air traffic simulator and start learning air traffic control
experiences like a new air traffic controller in training.

An exciting avenue for enhancing LLM-based approaches
is integrating reinforcement learning with human feedback
(RLHF), though it is outside the scope of this paper. RLHF al-
lows LLMs to learn not only from data but also from feedback
provided by human operators. This integration holds promise
for improving conflict resolution in ATM by maximizing the
overall "return" in terms of both efficiency and human trust.

In real-life operations, we envision a 24/7 monitoring sys-
tem where the large language model agent constantly checks
for potential conflicts, resolves them, and communicates rea-
soning and commands to both operators and pilots using
radiotelephony phraseology. However, in the current project,
we test our agent in a simulation environment. Instead of
continuous monitoring, we load pre-defined conflict scenarios,
and the agent resolves each conflict before moving on to the
next. Our goal is to ultimately develop a virtual air traffic
assistant that can reason and explain its decisions like a human,
automating conflict resolution directly within the simulation
environment.

This paper explores a novel application of the large language
model embodied agents in air traffic control. Our agent is

able to interact with air traffic scenarios, monitor traffic, build
up experiences, and resolve conflicts, all the while providing
reasons for its behavior like an air traffic controller. The study
assesses how effectively large language model agents can
resolve air traffic conflicts and discusses in detail the limita-
tions and potential for adopting our approach with human-like
reasoning capabilities to assist air traffic controllers.

The structure of the paper is as follows. section II explains
the main concept of language model embodied air traffic con-
trol agents and how they gain experiences and communicate
with the BlueSky simulator. section III explains the details of
our experiments in using different types of agent architectures
to solve aircraft conflicts and presents the results. We then
provide in-depth discussion in section IV before concluding
our work in section V.

II. METHODOLOGY

In this section, we discuss our efforts to develop two differ-
ent large language model embodied agent frameworks, which
are capable of interacting with the BlueSky simulator [10],
monitoring and interpreting traffic situations automatically,
and producing instructions to solve air traffic conflicts au-
tonomously and in real-time.

A. Understanding Large Language Models

Large Language Models (LLMs) are sophisticated AI
systems that understand and generate human-like text by
analysing and predicting language patterns. At their core,
LLMs operate on a text-to-text basis, meaning they take a
sequence of text as input and produce a sequence of text as
output. This text processing capability is enabled by a series
of steps, primarily involving tokenization, embedding, and the
use of neural network architectures called Transformers.

Tokenization is the first step in processing text. Tokenization
involves breaking down text into smaller, manageable units
called tokens, which can be individual words, subwords, or
even single characters, depending on the model’s design. For
example, the word "aircraft" is tokenized into two subwords,
air craft [11]. This process is essential because it converts

the raw text into a format that the LLM can interpret and
manipulate later on.

GPT-4o and Llama3-70B models use a tokenization
method based on Byte-Pair Encoding (BPE) [12], implemented
with the tiktoken library [13], [11]. Tiktoken is an effi-
cient tokenization library designed to handle various language
modelling tasks, including handling large texts and diverse
vocabularies. BPE is a tokenization method that starts with
a base vocabulary consisting of individual characters and
iteratively merges the most frequent pairs of characters or
subwords to form longer tokens. This approach allows the
model to create a compact vocabulary that can efficiently
represent both common and rare words, including those not
seen during training. The tiktoken library, which both GPT-4o
and Llama3-70B use for tokenization, implements BPE in a
way that is optimized for performance and flexibility. Tiktoken
uses a precomputed vocabulary and merges rules to tokenize

2

Figure 1. High-Dimensional Embeddings Vector Space

input text quickly. It is designed to handle a wide range of text
data, from natural language sentences to code and domain-
specific terminologies.

After tokenization, each token is converted into a numerical
representation, known as an embedding. An embedding is a
high-dimensional vector that captures the semantic meaning of
a token in the context of its surrounding words. These vectors
are designed so that semantically similar words (like "planes"
and "aircraft") have embeddings that are close together in this
high-dimensional space, while dissimilar words (like "aircraft"
and "constitution") are far apart (Figure 1).

The LLM uses these embeddings as inputs to its neural net-
work architecture. The most common architecture for LLMs
is the Transformer [14], which is designed to handle large
sequences of data and understand complex language patterns.
The Transformer model comprises multiple layers, each con-
taining two key components: the self-attention mechanism and
feed-forward neural networks. The self-attention mechanism
is a critical component that allows the model to focus on
different parts of the input text at each step. Instead of treating
each word in isolation, self-attention assigns a weight to each
token in relation to every other token in the input sequence.
This means that the model can learn which words are most
important to predicting the next word, taking into account the
entire context of the sentence. For example, in the sentence
"The aircraft is on a collision course," the model learns to
associate "collision" strongly with "course" and "aircraft" with
"is," which helps it understand the overall meaning more
accurately.

The self-attention mechanism calculates a weighted sum
of the token embeddings, where the weights are determined
by how relevant each token is to every other token. These
weights are computed using dot products of the embeddings,
followed by a normalization step using the softmax func-
tion, which converts the scores into probabilities. The self-

How to predict

token embed

~

layer norm

multi-head, causal
self-attention

+

layer norm

feed forward

layer norm

linear

softmax

text
tokens
words

LLM

2437 284 4331

pos embed

+

2420
16326
2456

transformer

+

Figure 2. Transformer Predicting The Next Token [15]

attention mechanism allows the model to learn relationships
between distant words in the input sequence, capturing long-
range dependencies that are crucial for understanding complex
sentences.

The outputs of the self-attention layers are then fed into
feed-forward neural networks that further refine the embed-
dings by applying a series of transformations. Each layer in
the Transformer architecture learns progressively more abstract
and complex features of the language, from basic syntax
to intricate semantic relationships. As the model processes
the input sequence through multiple layers, it generates a
probability distribution over the possible next tokens. The
token with the highest probability is selected as the next word
in the generated text. This process is repeated iteratively to
produce coherent and contextually relevant text output.

While LLMs are powerful in generating human-like re-
sponses, their initial design is limited to static text output.
They cannot interact with external environments or systems
dynamically. This is where function calling comes into play,

3

significantly extending the capabilities of LLMs beyond text
generation.

B. Function Calling

Function calling is a powerful feature that extends the
capabilities of Large Language Models (LLMs) beyond static
text generation, enabling them to interact dynamically with
external systems, tools, or environments. Unlike traditional
LLMs that only generate text-based responses, function calling
allows these models to execute specific actions or functions,
retrieve external data, and perform tasks that require real-time
interaction with other software or systems. Function calling
involves instructing an LLM to trigger a predefined function
based on its understanding of the input prompt. Certain LLMs
are trained to recognise when to call functions using a combi-
nation of supervised fine-tuning and reinforcement learning.
During the fine-tuning phase, the models are exposed to
datasets containing examples where function calls are required.
These examples include both the natural language input and
the corresponding structured function call outputs. By learning
from these examples, the model develops the capability to
determine when and how to call functions in various contexts.
In our system, Python functions are referred to as tools, and
the LLM has the capability to determine when and which tools
to call, along with the appropriate arguments.

There are quite a few frameworks for function calling, but
The OpenAI Tools and ReAct (Synergizing Reasoning and
Acting in Language Models) framework are the main popular
choices. OpenAI tools framework is not only for OpenAI
models, but other models, including open-sourced can use
the framework. It is built to handle multiple tools with a
JSON-based function calling mechanism, allowing structured
input directly passed to functions. This framework is highly
modular and capable of interacting with tools through pre-
defined function signatures. The agent uses JSON-formatted
inputs, making it easier to handle multiple arguments and
various data types like strings, numbers, and arrays. This
structured approach ensures higher reliability when interacting
with tools. Each step is well-defined, and the function returns
are processed without the need for complex string parsing.
On the other hand, the ReAct Agent employs a string-based
reasoning framework, where the language model dynamically
generates both reasoning traces and task-specific actions in an
intertwined manner. The string-based interaction means that
the model processes textual instructions and requires parsing
of each action step. This comes at the cost of requiring more
complex parsing of string inputs and outputs, which is less
efficient compared to JSON-based function handling.

The primary difference between these two frameworks lies
in how they handle input and output. OpenAI Tools framework
uses structured, machine-friendly JSON format, which enables
it to handle complex, multi-argument function calls with
minimal parsing. This is ideal for scenarios where precise tool
interactions are essential. In contrast, the ReAct framework
interprets and processes text-based reasoning traces, but re-
quiring constant string parsing.

In the example below, the tool CONTINUEMONITORING
that monitors the airspace requires a single numeric input,
which is the duration in seconds, but the model’s output,
"60 (monitor for 1 minute)," combines an explanation with
the number, leading to a validation error because the tool
cannot interpret the mixed format. This issue arises due to
the non-deterministic nature of LLMs, making string parsing
challenging across various scenarios.

Thought: I need to monitor the airspace for conflicts
and resolve them by changing the heading of aircraft.
Action: CONTINUEMONITORING
Action Input: 60 (monitor for 1 minute)

error: 1 validation error for CONTINUEMONITORING schema

In contrast, the OpenAI Tools framework utilizes a JSON-
based function-calling mechanism that specifies arguments
and their corresponding values more explicitly. For example,
when invoking the ‘CONTINUEMONITORING‘ tool within
the OpenAI Tools framework, the function call would look
like this:

Invoking: CONTINUEMONITORING with {’duration’: 10}

Here, the argument ’duration’ is clearly defined with a
numeric value of 10 (LLM selected to monitor for 10 seconds),
avoiding any ambiguity or need for additional parsing. This
structured approach not only ensures higher reliability when
executing tool calls but also allows for the seamless handling
of complex inputs with multiple arguments and data types. As
a result, we found the OpenAI Tools framework to be far more
suitable as it has better precision and error-free execution.

With the OpenAI Tool framework the LLM can gen-
erate a response not only in the content section, provid-
ing a descriptive answer, but also includes additional key-
value pairs specifying the tool information. The function
SendCommand(command) is a tool that sends commands di-

rectly to the BlueSky simulator. This information indicates
which tool the LLM intends to use, along with the generated
arguments required for that specific tool.

AIMessage(
content="There is a conflict between FLIGHT1 and FLIGHT2. The

current heading of FLIGHT1 is 000 degrees, and the
heading of FLIGHT2 is 300 degrees. To resolve the
conflict by changing headings, I will adjust the
heading of FLIGHT1 to create a greater separation.\n\
nLet’s change the heading of FLIGHT1 to 030 degrees to
increase the horizontal separation.",

additional_kwargs={
’tool_calls’: [

{
’id’: ’call_y1HiHWG2KvUxmnzaQAP0l488’,
’function’: {

’arguments’: ’{"command":"HDG FLIGHT1 030"}’,
’name’: ’SENDCOMMAND’

},
’type’: ’function’

}
]

},
tool_calls=[

4

{
’name’: ’SENDCOMMAND’,
’args’: {’command’: ’HDG FLIGHT1 030’},
’id’: ’call_y1HiHWG2KvUxmnzaQAP0l488’

}
]

)

C. Data Communication with BlueSky

The communication between the BlueSky simulator is de-
signed to enable real-time interaction, allowing commands to
be sent to the simulator and output to be received efficiently.
This communication is facilitated through a BlueSky client
that connects to the BlueSky simulator and handles data
exchange.

The BlueSky Client object is used to establish a connection
to the simulator at a specific IP address and port. The client
is responsible for managing all communication between the
simulation tools and BlueSky.

To send commands to the BlueSky simulator, the client uses
the send_event method. This method allows the client to
send specific commands formatted as strings to the simulator:

client.send_event(b"STACK", command)

The output from the BlueSky simulator is captured and
processed using a function that continuously checks for new
output. This function repeatedly calls the client to update its
state and captures any new output that the simulator produces.
The captured output is stored in memory and processed until
the function determines that the simulator has completed
processing the current command.

To achieve this, a context manager is employed to tem-
porarily redirect and capture output from the standard output
(stdout), where BlueSky typically prints its outputs. The client
method is called repeatedly to check for new outputs, and the
captured information is processed accordingly.

The use of the context manager for capturing standard
output is essential for two main reasons: firstly, it ensures
that the output captured by the client matches exactly what
is displayed in the BlueSky GUI (graphical user interface)
terminal, allowing both the LLM agent and human users to
see the same information. This alignment facilitates better
debugging and understanding of the LLM agent’s actions in
controlling the airspace. Secondly, the client does not have a
built-in method to return an output after executing a command
— nothing is returned. By redirecting the standard output to
a temporary buffer, the client can capture, process, and utilize
the output programmatically. This approach enables real-time
monitoring and interaction with the simulation environment
while maintaining consistency between the outputs seen by
the LLM agent and those displayed on the GUI.

To extend the BlueSky simulation functionality and enable
more advanced operations for the LLM agent, several custom
plugins were developed. These plugins are used in the tools
(subsection II-F which the LLM agent has control over it.

Algorithm 1: Receive Output from BlueSky

1 Initialize empty output buffer
2 Set counter for consecutive empty outputs to 0
3 while True do
4 Use capture_stdout to redirect output
5 Call Client update method to check for new output
6 Retrieve captured output from buffer
7 if captured output is empty then
8 Increment empty output counter
9 else

10 Reset empty output counter
11 Append captured output to buffer
12 end
13 if empty output counter exceeds threshold then
14 break loop
15 end
16 end
17 Call Client update method one last time
18 return complete output buffer

The first plugin, GETACIDS , is designed to extract detailed
information about all aircraft currently in the simulation.
By sending GETACIDS command to BlueSky, each aircraft’s
position (latitude and longitude), heading, altitude, speed and
Mach number is returned by the simulator. At the start of the
conflict, there is no way for the LLM agent to know which
aircraft are currently in the airspace. The ability to access
the aircraft details simplifies the process of monitoring air
traffic and provides the agent with real-time data to make more
informed decisions.

Algorithm 2: Get All Aircraft Information Plugin

1 Initialise empty list ac_ids_lst

2 Set ac_ids_lst to list of all aircraft IDs from
traf.id

3 Echo list of aircraft call signs
4 foreach aircraft ac in ac_ids_lst do
5 Echo ac ;
6 end
7

The second plugin, SHOWTCPA , focuses on conflict de-
tection by showing aircraft pairs that are in conflict and
essential conflict information. BlueSky’s built-in conflict de-
tection method (enabled via the ASAS system) is used to
detect potential conflicts between aircraft. The plugin provides
detailed information on the conflict pairs, including the TCPA,
heading differences, horizontal, vertical and total separations,
and the remaining distance and time until the closest point
of approach. This plugin is essential for the LLM agent to
monitor airspace safety. By retrieving details about aircraft
conflicts, the agent can analyse the conflicts in terms of time
and distance, enabling it to take precautionary actions to

5

resolve these conflicts.

Algorithm 3: Get Conflict Information Plugin

1 if no conflict pairs are detected from traf.cd then
2 Echo "No conflicts detected"
3 return
4 end
5 Echo "Aircraft Pairs in Conflict and their TCPA (sec):"
6 Initialise empty set processed_pairs

7 Initialise empty set involved_aircraft

8 Convert traf.cd.confpairs_unique to sorted list of
conflict pairs

9 foreach conflict pair pair in sorted conflict pairs do
10 Retrieve tcpa_value , qdr_value , dcpa_value ,

tLOS_value

11 Retrieve index_0 and index_1 of aircraft from
traf.id

12 Calculate heading difference d_hdg
13 Calculate horizontal distance in meters using

haversine
14 Add the aircraft in pair to involved_aircraft
15 Prepare conflict information including TCPA,

heading difference, horizontal distance, vertical
separation, DCPA, and tLOS

16 Echo conflict information
17 end
18 Echo the number of conflict pairs
19 Echo aircraft altitude information

The Haversine function that is used in algorithm 3 is a
mathematical formula used to calculate the shortest distance
between two points on the surface of a sphere, based on
their latitude and longitude. It accounts for the curvature
of the Earth, making it ideal for measuring distances on
the Earth’s surface. One of the advantages of the Haversine
function is its relatively simple mathematical formulation,
which provides sufficient accuracy for most practical purposes
while being computationally efficient. Although the Earth isn’t
a perfect sphere in reality, we assume it is for the purpose of
our simulator experiments, where the Haversine formula is
acceptable.

We use the BlueSky built in state-base conflict detection
method to detect conflicts. State-based conflict detection is
a method used in air traffic management to predict poten-
tial conflicts between aircraft by extrapolating their current
states—positions and velocities—into the future. This tech-
nique assumes that each aircraft will maintain its present
trajectory and speed over a specified look-ahead time interval.
By analysing these projected paths, the system identifies if
and when aircraft might breach predefined safety zones, both
horizontally and vertically. In this approach, the initial step
involves collecting the current positions and velocities of all
aircraft within a certain airspace. Using these data, the system
calculates the relative positions and velocities between pairs

of aircraft. It determines the bearing and distance from one
aircraft (ownship) to another (intruder) and computes the
components of their velocities in the eastward and northward
directions. The core of state-based conflict detection lies in
calculating the time to the closest point of approach (CPA)
and the minimum separation distance at that point. The time
to CPA, denoted as tCPA, is found by analysing the relative
motion of the aircraft and identifying the moment when they
are closest to each other if they continue on their current paths.
The minimum distance at CPA, dCPA, is then compared against
predefined horizontal and vertical protection zones—typically
represented by a radius rPZ for horizontal separation and a
height hPZ for vertical separation. A conflict is predicted if
the calculated dCPA is less than the horizontal protection zone
(dCPA < rPZ) and if, at that time, the vertical separation is also
less than the vertical protection zone. The system computes
the times when aircraft enter and exit these protection zones,
considering both horizontal and vertical dimensions. By com-
paring these times, it identifies intervals during which both
separation criteria are violated simultaneously. This method
efficiently provides predictions of potential conflicts without
requiring knowledge of the aircraft’s future intent. However,
it operates under the assumption that all aircraft will maintain
their current velocities, which may not account for upcoming
changes in flight paths. Despite this limitation, state-based con-
flict detection remains a necessary tool for detecting conflicts
due to its simplicity and computational efficiency.

The third plugin, CRASHDETECTION , is responsible for mon-
itoring and detecting crashes or close calls between aircraft.
BlueSky does not automatically inform the user when a crash
or near miss occurs, so this plugin is needed for tracking safety
violations. The plugin calculates the distance between aircraft
in the simulation, and if the distance between any two aircraft
falls below 300 meters, it logs the event as a crash or close
call. This allows to evaluate LLM agent’s performance. The
crash detection process is based on the Haversine formula. By
combining horizontal and vertical distances between aircraft,
the plugin determines the total distance between aircraft pairs
and logs any instances where the separation falls below the
safety threshold.

The 300-metre threshold ensures reliable crash detection in
the simulation. Using smaller values like 200 metres led to
cases where aircraft passed the threshold between updates.
Lowering the time step (currently 0.1 seconds) introduced
small delays in communication between BlueSky and the LLM
agent, especially with an increasing number of conflicting
aircraft pairs.

D. Large language model embodied Agent

The main concept behind agents is utilising a language
model to decide the order and selection of actions to perform.
The language model functions as a reasoning engine, dynam-
ically determining which actions to take and their execution
sequence. By providing a proper application programming in-
terface, LLMs can be integrated with various tools and virtual
or real environments, transforming them into embodied agents.

6

Algorithm 4: Crash Detection Algorithm

1 calculate_distance(aircraft_list) : foreach conflict pair
of aircraft (i, j) do

2 Calculate horizontal distance using haversine
3 Calculate altitude difference
4 Compute total distance using the Pythagorean

theorem
5 if total distance < 300 meters then
6 Log crash with aircraft IDs
7 Print crash information to console
8 end
9 end

10 while simulation is running do
11 Every 0.1 seconds, get the list of all aircraft

positions and altitudes
12 Call calculate_distance to check for conflicts
13 end

An embodied agent can either utilize specific tools, such as
Python functions with arguments or operate independently to
generate responses.

In our research, we designed such agents that can interact
with the air traffic control interface - the BlueSky simulator.
By providing the proper objective in a text (called prompt),
the agent is set to solve conflict scenarios.

Figure 3 shows the overview of the process, beginning with
the construction of a prompt that integrates the system prompt,
user prompt, and tools descriptions. The large language model
then evaluates whether a tool is needed for the task at hand.
If a tool is required, the agent executes the selected tool with
the specified arguments. For example, to change an aircraft’s
altitude, the agent would use a SendCommand() tool with
a generated altitude command. This command is sent to the
simulator, and the output from the simulator is then integrated
back into the prompt for further processing. This cycle repeats
until the large language model determines that no additional
tools are needed.

In the end, the agent can also provide a summary of the
situation and reasons for the conflict-solving strategies. An
experience document (subsection II-G) is then created and
subsequently uploaded to an experience library, which can
be retried to further enhance the agent’s knowledge base and
capabilities for more complex tasks.

To demonstrate this process, Figure 4 presents a sce-
nario where a single agent effectively resolves a converging
three-aircraft conflict. The resolution process begins with
the agent querying all relevant aircraft data through the
GetAllAircraftInfo() tool. The agent automatically as-

sesses the conflict dynamics between each pair of aircraft
using GetConflictInfo() . Based on the results, the agent
then strategically issues a heading change to aircraft AB112,
directing it to alter its course to 225 degrees. This directive is
executed via the SendCommand() tool, utilising the command
HDG AB112 225 .

User input

LLM selects a
tool and args

LLMPrompt

LLM decides
whether to use tools

System message

Creates and adds
experience document

LLM provides
final summary

Tools:
GetAllAircraftInfo()

SendCommand()

ContinueMonitoring()

GetConflictInformation()

SearchExperienceLibrary()

API / Plugin

Yes
No

BlueSky

agent

Monitor

Conflict .scn

1

2

3

5

4

guidance

Execute

Figure 3. The language model embodied single agent setup

After this initial conflict mitigation, the agent re-evaluates
the aircraft and conflict information. It then proceeds to issue
another command - this time decreasing the altitude of aircraft
AB426 by 2000 feet, further solving the remaining conflict.
After re-assessing the situation and confirming the resolution
of all potential conflicts, the agent concludes its task, having
successfully ensured a safe outcome.

We have also developed a multi-agent system capable of
handling an unrestricted number of LLM embodied agents and
facilitating increasingly complex challenges. This system is
illustrated in Figure 5.

In this multi-agent system, we designed three types of
agents: the planner, the executor, and the verifier. The planner
agent is responsible for generating a conflict resolution plan. It
begins this process by monitoring the airspace and analysing
detected conflicts.

Once a plan is formulated, it is passed onto the executor
agent. The sole function of this agent is to issue appropriate
commands to BlueSky. The inclusion of the executor agent
serves a critical functional purpose beyond transparency and
exposition. While it might appear that its tasks could be
integrated into the planner or verifier agents, the executor
plays a distinct role in our system architecture. Research
has shown that requiring LLMs to produce their answers in
strict, structured formats can negatively impact their reasoning
performance. For instance, the paper "Let Me Speak Freely? A
Study on the Impact of Format Restrictions on Performance of
Large Language Models" [16] highlights that imposing rigid
output constraints can degrade an LLM’s ability to reason
effectively. While function calling does involve structured
output, it is specifically designed to facilitate the integration of
LLMs with software functions. The model is guided to produce

7

outputs that match the expected parameters of predefined
functions. LLMs that have ability to do function calling are
designed already in such way during training and fine tuning
process. In our system, the planner agent generates conflict
resolution plans in natural language to leverage its full reason-
ing capabilities without the constraints of a structured format.
The executor agent then interprets these natural language
instructions and translates them into executable commands
for the simulation environment. Moreover, because LLM
outputs can vary due to their non-deterministic nature and
differences across models, designing a traditional parser to
handle all possible variations in the planner’s output would
be challenging. The executor agent, powered by an LLM, acts
as an advanced interpreter that can consistently process the
planner’s diverse outputs. Integrating this functionality into the
planner or verifier could complicate their primary functions
and potentially reduce overall system effectiveness. Thus, the
executor agent is essential for ensuring accurate and reliable
executions of the resolution plan.

After the execution of the plan, the verifier agent plays a
critical role in ensuring the efficacy of the conflict resolution.

This agent continues to monitor the airspace to confirm
whether any conflicts remain unresolved. If conflicts persist,
the verifier agent devises a new resolution plan, which is once
again forwarded to the executor agent for implementation.
Conversely, if no further conflicts are detected, the conflict-
solving task is concluded. Additionally, when the experience
library is activated, both the planner and verifier agents can
search in this library to retrieve insights from previously
encountered conflicts.

E. Prompt

The prompt serves as a critical link between the objectives,
agent actions, and the underlying language model. We have
designed a prompt template to ensure the clarity and relevance
of the information processed by the LLM, containing four
different components:

system_prompt: pre-crafted text on role and objectives
user_input: instructions from human
chat_history: memories about llm inputs and outputs
agent_scratchpad: memories about environment interactions

Invoking: `GETCONFLICTINFO` with
`{'command': 'SHOWTCPA'}`

No conflicts detected.

There are no more conflicts. The
conflicts have been successfully
resolved.

AB454
FL300
304

AB426
FL287
344

AB112
FL300
333

Invoking: 'SENDCOMMAND' with '{'command':
'ALT AB426 28000'}'

Command executed successfully.
Invoking: 'GETALLAIRCRAFTINFO' with
'{'command': 'GETACIDS'}'

Aircraft idx: ['AB112', 'AB426', 'AB454']
Info on AB112 A330 index = 0
Pos: N00°17'11.0" W000°08'42.0"
Hdg: 225 Trk: 225
Alt: 30000 ft V/S: 0 fpm
CAS/TAS/GS: 33/513/513 kts M: 0.870

Info on AB426 A330 index = 1
Pos: S00°00'00.0" E000°13'53.0"
Hdg: 270 Trk: 270
Alt: 29327 ft V/S: -1500 fpm
CAS/TAS/GS: 340/517/517 kts M: 0.875

Info on AB454 A320 index = 2
Pos: S00°14'54.0" E000°00'00.0"
Hdg: 000 Trk: 000
Alt: 30000 ft V/S: 0 fpm
CAS/TAS/GS: 304/471/471 kts M: 0.800

Invoking: 'GETALLAIRCRAFTINFO' with '{'command':
'GETACIDS'}'

Aircraft idx: ['AB112', 'AB426', 'AB454']
Info on AB112 A330 index = 0
Pos: N00°25'55.0" W000°00'43.0"
Hdg: 204 Trk: 204
Alt: 30000 ft V/S: 0 fpm
CAS/TAS/GS: 333/513/513 kts M: 0.870

Info on AB426 A330 index = 1
Pos: S00°00'00.0" E000°25'49.0"
Hdg: 270 Trk: 270
Alt: 30000 ft V/S: 0 fpm
CAS/TAS/GS: 333/513/513 kts M: 0.870

Info on AB454 A320 index = 2
Pos: S00°25'54.0" E000°00'00.0"
Hdg: 000 Trk: 000
Alt: 30000 ft V/S: 0 fpm
CAS/TAS/GS: 318/492/492 kts M: 0.835

Invoking: 'GETCONFLICTINFO' with '{'command':
'SHOWTCPA'}'

Aircraft Pairs in Conflict and their TCPA (sec):
AB426 - AB454 | TCPA: 162.86 sec | Heading
Difference: 270.00 deg | Distance: 36.59
Nautical miles | Vertical Separation: 0.0 ft |
Horizontal Distance: 36.59 Nautical miles |
DCPA: 1.54 Nautical miles | tLOS: 138.27 sec
Number of aircraft in conflict: 2

AB112
FL300
333

AB454
FL300
311

AB426
FL300
333

Invoking: 'GETCONFLICTINFO' with '{'command':
'SHOWTCPA'}'

Aircraft Pairs in Conflict and their TCPA (sec):
AB112 - AB426 | TCPA: 218.36 sec | Heading
Difference: 90.00 deg | Distance: 50.38 Nautical
miles | Vertical Separation: 0.0 ft | Horizontal
Distance: 50.38 Nautical miles | DCPA: 0.00
Nautical miles | tLOS: 194.71 sec

AB112 - AB454 | TCPA: 218.48 sec | Heading
Difference: 180.00 deg | Distance: 71.26 Nautical
miles | Vertical Separation: 0.0 ft | Horizontal
Distance: 71.26 Nautical miles | DCPA: 0.00
Nautical miles | tLOS: 201.74 sec

AB426 - AB454 | TCPA: 218.36 sec | Heading
Difference: 270.00 deg | Distance: 50.39 Nautical
miles | Vertical Separation: 0.0 ft | Horizontal
Distance: 50.39 Nautical miles | DCPA: 0.00
Nautical miles | tLOS: 194.71 sec
Number of aircraft in conflict: 3

Invoking: 'SENDCOMMAND' with '{'command': 'HDG
AB112 225'}'

Command executed successfully.

> Entering new AgentExecutor chain...

Invoking: 'GETALLAIRCRAFTINFO' with
'{'command': 'GETACIDS'}'

Aircraft idx: ['AB112', 'AB426',
'AB454']
Info on AB112 A330 index = 0
Pos: N00°35'36.0" E000°00'00.0"
Hdg: 180 Trk: 180
Alt: 30000 ft V/S: 0 fpm
CAS/TAS/GS: 366/557/557 kts M: 0.946

Info on AB426 A330 index = 1
Pos: S00°00'00.0" E000°35'36.0"
Hdg: 270 Trk: 270
Alt: 30000 ft V/S: 0 fpm
CAS/TAS/GS: 366/557/557 kts M: 0.946

Info on AB454 A330 index = 2
Pos: S00°35'37.0" E000°00'00.0"
Hdg: 000 Trk: 000
Alt: 30000 ft V/S: 0 fpm
CAS/TAS/GS: 366/557/557 kts M:0.95

AB112
FL300
354

AB454
FL300
353

AB426
FL300
354

Figure 4. Single Agent solving 3 aircraft conflicts without experience library. The LLM embodied agent automatically decides when and
what commands (in green text) are to be invoked at all stages.

8

Tools

GetAllAircraftInfo()
ContinueMonitoring()
SearchExperienceLibrary()

Tools

GetAllAircraftInfo()
ContinueMonitoring()
SearchExperienceLibrary()

Tool:

SendCommand()

Planner Agent

Executor Agent

Verifier Agent

1. Gather aircraft and conflict
information with tools
2. Search and retrieve experiences
3. Create an actionable plan

1. Monitor, create new plans if
there are more conflicts
2. Retrieve from experience library
3. Determine when to finish

Execution Plans

Finish

Figure 5. The structure of the multiple language model embodied
agent, containing planner, verifier, and executor agents.

System Prompt: This component is crafted to provide
both context and explicit instructions to the agent. Each agent
receives tailored directives specific to their role. For instance,
the planner agent is instructed to gather aircraft information,
monitor airspace, and provide an actionable plan according to
the separation requirements that would also avoid introducing
new conflicts.

User Input: A brief instruction on tasks and preferences
that can enhance agent performance. For instance, the planner
agent may be asked to check for conflicts and create a plan
based on preferences, such as changing heading, altitude, or
both. These instructions are less detailed than the system
prompt.

Chat History: Acting as a memory block, which stores the
inputs and the output with the language model, it maintains a
continuous record of interactions.

Agent Scratchpad: This component memorises descrip-
tions of the tools used, logs all intermediate steps, and records
results from the tools. It is vital for tracking the agent’s
operational processes and the adaptations made during task
execution.

Tools are also converted into a prompt and appended to
the final prompt. In order for LLMs to interact with tools
through function calling, these tools need to be converted
into a structured format. An example below, shows the
process of converting a Python function (representing a tool)
into a JSON format that can be understood by the LLM.
This transformation ensures that the LLM can reference the
available tools and their corresponding functionalities during
interaction.

GetAllAircraftInfo() tool retrieves aircraft information
from the BlueSky:

@langchain_tool("GETALLAIRCRAFTINFO")
def GetAllAircraftInfo(command: str = "GETACIDS"):

"""
Get each aircraft information at current time: Position [

Pos] (lat, lon), Heading [Hdg] (deg),
Track [Trk](deg), Altitude [Alt](ft), Vertical speed [V/S](

feet per mintute. Negative V/S - flying down,
Positive V/S - flying up, 0 - stays at same altitude)
, Speed [CAS/TAS/GS] (calibrated/true/ground air
speed, knots per second) and mach number.

Parameters:
- command: str (default ’GETACIDS’)
Example usage:
- GetAllAircraftInfo(’GETACIDS’)
Returns:
- str: all aircraft information
"""
client.send_event(b"STACK", "OP")
client.send_event(b"STACK", "GETACIDS")
time.sleep(0.8)
sim_output = receive_bluesky_output()
return sim_output

The tool is transformed into a structured JSON format.
The key elements of the tool—such as its name, description,
parameters, and expected output—are encoded in this format.
The JSON format for the above tool looks like:

{
"name": "GETALLAIRCRAFTINFO",
"description": "Get each aircraft information at current

time: Position [Pos] (lat, lon), Heading [Hdg] (deg)
,\nTrack [Trk](deg), Altitude [Alt](ft), Vertical
speed [V/S] (feet per minute. Negative V/S - flying
down, Positive V/S - flying up, 0 - stays at same
altitude), Speed [CAS/TAS/GS] (calibrated/true/ground
air speed, knots per second) and mach number.\n\
nParameters:\n- command: str (default ’GETACIDS’)\n\
nExample usage:\n- GetAllAircraftInfo(’GETACIDS’)\n\
nReturns:\n- str: all aircraft information",

"parameters": {
"type": "object",
"properties": {

"command": {
"default": "GETACIDS",
"type": "string"

}
}

}
}

• Name: The unique identifier for the tool, which is used to
invoke the tool in the LLM’s function-calling mechanism.

• Description: A detailed explanation of what the tool
does, including the expected input and output. This
description helps the LLM understand how to use the
tool effectively.

• Parameters: The input parameters required for the tool.
In this case, the tool accepts a command string, with a
default value of ’GETACIDS’ .

9

F. Tools

Our system integrates several specialized tools (functions
in Python programming language) to facilitate interactions
between the large language model and the BlueSky simulator.
These tools are crucial for the effective execution of tasks and
data retrieval:

• GetAllAircraftInfo() : This tool sends a command to
BlueSky and retrieves a comprehensive list of aircraft,
detailing their position, heading, track, altitude, vertical
speed, calibrated, true airspeed, and ground speed, as well
as Mach number.

• GetConflictInfo() : This tool sends a command to
BlueSky and retrieves information about aircraft pairs
in conflict. It provides details such as Time to Closest
Point of Approach (TCPA), heading differences, separa-
tion distances (total, vertical, and horizontal), distance to
Closest Point of Approach distance (DCPA), time to Loss
of Separation (tLOS), and altitude information.

• ContinueMonitoring(duration) : This tool commands
BlueSky to retrieve changes in conflict status over a
specified duration, enabling ongoing monitoring of the
airspace. It retrieves conflict information at the beginning
and at the end of the duration.

• SendCommand(command) : This tool sends a traffic com-
mand to BlueSky and retrieves the resulting output from
the simulator, allowing for dynamic interaction with the
simulation environment.

• SearchExperienceLibrary(args) : This tool queries the
experience library and returns the most relevant experi-
ence document based on different arguments, including
conflict description, number of aircraft involved, and the
formation of the conflict.

It is important to emphasize that the large language model
decides when to utilize a tool, and it is also responsible for
generating proper functional arguments that enable precise and
context-appropriate responses. This function-calling capability
enhances the agent’s ability to interact with and manipulate the
environment effectively and freely.

As shown in Figure 6, the process of calling a tool by an
LLM involves several key steps. It begins with the initiation
of the LLM, which receives the entire input prompt. This
input prompt comprises the system prompt, the user input,
the chat history, and the agent’s scratchpad (subsection II-E).
Upon receiving the full prompt, the LLM can either generate
a normal text response, denoted as content , and (or) it
may decide to perform a function call, which is represented
as tool_calls . In this instance, rather than generating any
textual response, the LLM opts to call a function. The function
to be invoked is specified by its name , and any necessary
input arguments are provided through args . In this example
when the function is called, a command is sent to the BlueSky
simulator, which processes the request and returns the output
about all aircraft information. The entire message generated
by the LLM encapsulated in AIMessage , is subsequently
appended to the prompt, specifically within the agent’s scratch-

System Prompt

User Input

Chat History

Agent Scratchpad

AIMessage(
content="",
tool_calls=[
 {
 'name': 'GETALLAIRCRAFTINFO',
 'args': '{'command': 'GETACIDS'}
 }
]
)

@langchain_tool("GETALLAIRCRAFTINFO")
def GetAllAircraftInfo(command:str="GETACIDS"):
client.send_event(b"STACK","OP")
client.send_event(b"STACK",command)
time.sleep(0.8)
sim_output =receive_bluesky_output()
return sim_output

BlueSky Simulator

Aircraft idx: ['FLIGHT1', 'FLIGHT2',
'FLIGHT3']
Info on FLIGHT1 B747 index = 0
Pos: N45'18'37.0" E122'21'40.0"
Hdg: 141 Trk: 141
Alt: 29600 ft V/S: 0 fpm
CAS/TAS/GS: 283/439/439 kts M: 0.744

Info on FLIGHT2 A330 index = 1
Pos: N44'57'17.0" E122'46'15.0"
Hdg: 321 Trk: 321
Alt: 29600 ft V/S: 0 fpm
CAS/TAS/GS: 169/269/269 kts M: 0.456

Info on FLIGHT3 B777 index = 2
Pos: N44'55'9.0" E122'48'42.0"
Hdg: 321 Trk: 321
Alt: 29600 ft V/S: 0 fpm
CAS/TAS/GS: 231/363/363 kts M: 0.615

Entire prompt is input to LLM. LLM
then generates a function call

①

A function is called
with specified arguments

②

Sending command and
receiving output from
the Bluesky simulator

③

Returned value from
GetAllAircraftInfo tool is
appended to the Agent
Scratchpad

⑤

AIMessage is
appended to the
Agent
Scratchpad

④

Figure 6. LLM deciding to call a tool

pad. Additionally, the returned function output is appended as
well. This process is cyclical in nature, allowing the LLM to
continue generating additional function calls as necessary. If
no further function call is generated, it is assumed that the
LLM intends to conclude its current turn.

In principle, it is also possible for the agent to write its own
tools, considering that sufficiently large language models are
also capable of code generation. However, this was not tested
in our experiments.

G. Experience Library

The Experience Library is a crucial component that enables
our LLM embodied agent to recall stored memories about past
conflict solution experiences. We use an open vector database,
Chroma [17], to store and retrieve past conflict resolutions

effectively.
A vector database is a specialised type of database designed

to store, manage, and retrieve vector embeddings, which are
high-dimensional numerical representations of data. These
embeddings contain semantic information crucial for tasks like
similarity search or memory recall. Vector databases excel at
comparing these embeddings, making them ideal for applica-
tions that need to handle complex data relationships, such as
recalling past experiences. Unlike traditional databases, which
store and query exact matches of scalar data (like text or num-
bers), vector databases are optimised for storing and searching

10

> Entering new AgentExecutor chain...

Invoking: 'GETALLAIRCRAFTINFO' with
'{'command': 'GETACIDS'}'

[Aircraft Information OF FLIGHT1 and
FLIGHT2....]

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

Conflict Information FLIGHT1 and FLIGHT2

Invoking: 'SENDCOMMAND' with '{'command':
'HDG FLIGHT1 180'}'

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

Conflict Information FLIGHT1 and FLIGHT2

Invoking: 'SENDCOMMAND' with '{'command':
'ALT FLIGHT2 18000'}'

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

No conflicts detected.

Number of Aircraft: 2 (FLIGHT1,
FLIGHT2)

Conflict Type: Converging

Conflict Description:
FLIGHT1 and FLIGHT2 are positioned
relatively close to each other,
both maintaining the same altitude,
indicating they are flying at the
same flight level. FLIGHT1 is
heading southwest, while FLIGHT2 is
heading southeast, suggesting they
are on converging paths. Both
aircraft are maintaining level
flight with no vertical speed,
indicating neither is ascending nor
descending. The aircraft are on a
collision course due to their
converging headings and identical
altitudes.

Current heading of FLIGHT1 is 150 deg
HDG FLIGHT1 180
-> New heading of FLIGHT1 is 180 deg | Don't

Current altitute of FLIGHT2 is 20000 ft
ALT FLIGHT2 18000
->New altitute of FLIGHT2 is 18000 ft | Do

1. | HDG FLIGHT1 180 | Don't
2. | ALT FLIGHT2 18000 | Do.

1. | Increase heading of FLIGHT1 by 30 deg | Don't
2. | Decrease altitude of FLIGHT2 by 2000 ft | Do

1. | Increase heading of FLIGHT1 by 30 deg |
Don't | This command did not help to resolve
the conflict as it did not change the
converging trajectory enough of FLIGHT1 with
FLIGHT2

2. | Decrease altitude of FLIGHT2 by 2000 ft |
Do | This command helped to resolve the
conflict by ensuring FLIGHT2 descended below
the flight path of FLIGHT1, preventing a
convergence.

⦿ Combine conflict description
 and command lists text.

⦿ Anonymise the call signs
 (e.g FLIGHT1 -> AIRCRAFT_A)

⦿ Extract number of aircraft
 and conflict type as metadata

⑥

 Categorize commnads into "Do" if
solved at least 1 conflict,
otherwise into "Don't"

②

Creat a short and
concise conflict
description

①

Extract aircraft state
before and after command

③

Transform absolute values in
commands into relative values④

Add insights and
reasoning for each
commands

⑤

⦿ Embed text in 3072
 diemension vector

⦿ Saving embeddings, text,
 and metadata to vector database

text-embedding-3-large

Vector DB
(Experience Library)

Figure 7. Creating the experience document from the operation logs of the agent

vectors—dense, multi-dimensional arrays of numbers. These
vectors are compared using similarity measures rather than
exact matching, enabling tasks like finding the closest match
to a given query or retrieving semantically similar results. The
core mechanism behind a vector database involves three main
stages:

1) Indexing: When data (such as text or images) is fed
into an embedding model, the model creates a vector
embedding that captures its meaning. This embedding
is stored in the database.

2) Querying: When a user searches or queries the system,
the query is converted into a vector embedding using
the same model. The vector database then compares
this embedding to those already stored, identifying the
closest or most similar vectors.

3) Retrieving: The most similar vectors are returned, typ-
ically linked to the original data they represent, such as
text or past experiences.

This structure makes vector databases ideal for recalling
experiences, as they can quickly find and retrieve relevant
memories based on semantic similarity rather than exact
keyword matches.

G.1 Creation of Experience Documents

After an LLM agent is done with a conflict (can be resolved
or unresolved), it processes the entire conflict resolution log
to create an experience document. The conflict resolution log
provides a detailed record of the agent’s interactions and
decisions throughout the conflict resolution process. It tracks
each tool invocation by the agent, capturing the data returned
from these tools, such as updated status information or conflict

metrics. A concise conflict description is generated with the
language model based on the initial states of the aircraft
and the conflict information. It then categorises the executed
commands into whether they are helpful or not helpful.

Commands that have eliminated at least one conflict pair are
deemed helpful, while others are not. The absolute values (like
altitudes and headings) of these commands are converted into
relative values to ensure the applicability of past experiences
to new situations. Using absolute values, such as specific
altitudes (e.g., 20,000 feet), would limit the reuse of conflict
resolution strategies to identical scenarios. For example, a
command to climb to 22,000 feet might have been effective
in resolving a conflict at a certain altitude but would not
be relevant if the new conflict occurs at 15,000 feet. By
converting these absolute commands into relative values, such
as a climb of 2,000 feet, the solution becomes adaptable to
any similar conflict, regardless of the initial conditions. This
transformation ensures that the experience document can guide
the LLM agent in resolving conflicts across varying contexts,
promoting flexibility and more generalised learning.

The conflict description and categorized list of commands
are then combined into a single experience document. Finally,
the language model enhances the document by generating
insights and reasoning for each command, tailored to the
specific conflict.

These insights are concise explanations that provide context
for why certain commands were effective or ineffective. For in-
stance, after categorising a command as helpful, the language
model might generate reasoning like: "This command was
beneficial because it moved AIRCRAFT_D to an even higher

11

altitude, ensuring it was well clear of AIRCRAFT_A and
AIRCRAFT_B, thereby resolving the conflict by maximising
vertical separation."

The language model first reviews the conflict description
to understand the scenario, including factors such as the
number of aircraft involved, their positions, and how the
conflict unfolded. It then analyses the sequence of commands,
considering the order in which they were executed. This allows
the LLM to tailor its reasoning to the specific dynamics of the
conflict, ensuring that the insights it generates are relevant
and context-aware. The insights are designed to be brief but
informative, highlighting why a particular action was effective
and offering clear guidance for future similar scenarios.

Additionally, aircraft callsigns are anonymised in the final
steps of creating the experience document. This ensures that
when an agent retrieves the document later, it won’t be
confused by the presence of the same callsigns in both the
current conflict and the experience document.

The conflict description is encoded into a 3072-dimensional
vector embedding using the text-embedding-3-large model
from OpenAI1. The text-embedding-3-large model was
chosen due to its robustness and simplicity to use. It provides
a pre-trained model that does not require self-hosting. This
model is also well-suited for generating high-quality embed-
dings across a variety of text types, making it versatile for
different domains, including conflict analysis.

The embeddings of the experience, along with text and
metadata on conflict type and the number of aircraft, are then
uploaded to the vector database.

The entire experience generation process is illustrated in
Figure 7. It is worth noting that we only need to encode the
conflict description. This is because when an agent searches
the experience library, it can describe the current conflict.
Matching conflict descriptions directly yields higher similarity
and the most relevant results than when comparing the full
document with commands, suggestions, and insights.

G.2 Experience Library Search

When an agent wants to retrieve the closest memory from
past experiences before solving the conflicts, it invokes the
SearchExperienceLibrary() tool (shown in Figure 9). The

agent first generates a concise description of the current
conflict, including the number of aircraft involved and the type
of conflict. The initial metadata filtering reduces the search
space in terms of aircraft formation and number of aircraft.
The conflict description is also encoded as a 3072-dimensional
vector with the embedding model.

The search process employs the Hierarchical Navigable
Small World (HNSW) [18] algorithm alongside Cosine Sim-
ilarity to perform the vector search. The system returns the
experience document that exhibits the highest textual similar-
ity.

The choice of the HNSW algorithm is motivated by its
efficiency and scalability, making it particularly suited for

1Many other embedding models can be used, for example, https://
huggingface.co/models?other=text-embeddings-inference

the task of vector search in large databases. HNSW is an
approximate nearest-neighbor search algorithm that builds on
the concept of navigable small-world networks. It is designed
to handle the challenges of searching in high-dimensional
spaces, where brute-force methods become computationally
impractical. In a vector database, each document or experience
is represented by a high-dimensional vector, and the goal of the
search process is to find the top K vectors that are most similar
to a given query vector. A naive approach would involve
comparing the query vector with every vector in the database.
However, this brute-force method has a time complexity of
O(n), where n is the number of vectors in the database.
As the size of the database grows, this approach becomes
prohibitively slow.

HNSW addresses this issue by creating a graph-based index,
where each node represents a vector, and edges connect nodes
to their most similar neighbours. The graph is built iteratively,
starting with a small subset of vectors and gradually adding
more, connecting each new vector to its closest existing nodes
in the graph. This results in a multi-layered structure where
nodes are connected at various levels of granularity, allowing
the search to be both broad and deep. The top level of the
graph is the most sparse, while the bottom level is the most
dense. This design is intentional because the sparse top level
allows the search to cover a broad area of the vector space
quickly, providing a coarse but efficient starting point. As the
search progresses to lower levels, which are denser, it allows
for finer and more precise navigation among similar vectors,
ultimately leading to the most accurate results (Figure 82). The
sparsity at the top reduces the number of nodes the algorithm
needs to evaluate initially, while the density at the bottom
ensures thorough exploration of the most promising areas of
the vector space. When performing a search, HNSW begins
at a random node and navigates through the graph by moving
to the neighbouring node that is closest to the query vector.
This process is repeated until no closer neighbours are found.
Due to the hierarchical nature of the graph, HNSW efficiently
narrows down the search space, skipping large portions of
the database that are unlikely to contain similar vectors.
This results in a time complexity of O(logn), representing a
substantial reduction in search time as compared to the brute-
force method.

HNSW Space Configuration: In the context of the Chroma
vector database, several parameters configure the HNSW al-
gorithm:

• hnsw:space: cosine
– Controls the distance metric used in the HNSW

index.
• hnsw:construction_ef: 100

– Controls the number of neighbours explored when
adding new vectors to the HNSW graph.

• hnsw:M: 16

2Image source: https://github.com/vearch/vearch/wiki/Hnsw-Real-time-
Index-Detailed-Design

12

Figure 8. Searching in HNSW

– Determines the maximum number of connections
(neighbours) for each node in the graph.

• hnsw:search_ef: 10
– Controls the number of neighbours explored during

the search process.
Cosine similarity is preferred over l2 distance (Euclidean

Distance), particularly in high-dimensional vector spaces, due
to a phenomenon known as the "curse of dimensionality."
As the number of dimensions increases, the l2 distance be-
tween vectors tends to become more uniform, which reduces
its effectiveness in distinguishing between vectors. This is
because the distance between any two points in a high-
dimensional space becomes almost the same, making it harder
to identify which vectors are truly similar or different. In
contrast, cosine similarity measures the cosine of the angle
between two vectors, focusing on their directional alignment
rather than their magnitude. Since cosine similarity is based
on the angle rather than the distance, it remains effective in
high-dimensional spaces, where the orientation of vectors (i.e.,
their direction in space) is often more informative than their
absolute distance. This makes cosine similarity more robust
and reliable for high-dimensional data.

III. EXPERIMENTS AND RESULTS

In this section, we describe the experimental setup and
evaluate the results of various agent configurations under a

Invoking: `SEARCHEXPERIENCELIBRARY` with
{
 'conflict_description': 'FLIGHT1 and FLIGHT2
are flying at the same altitude of 31600 ft with
headings 183 and 003 degrees respectively,
approaching each other.',
 'num_ac': 2,
 'conflict_formation': 'Head-On Formation'
}

Conflict Report
- Number of Aircraft Involved: 2 (AIRCRAFT_A, AIRCRAFT_B)
- Relative Conflict Description: AIRCRAFT_A and
AIRCRAFT_B are positioned closely to each other with both
aircraft maintaining the same altitude. AIRCRAFT_A is
heading southward, while AIRCRAFT_B is heading northward,
indicating they are moving in opposite directions. Both
aircraft are flying level, with no changes in their
vertical speed. The aircraft are on a collision course,
with each maintaining a steady track directly towards the
other.
- Conflict Formation: Head-On Formation

1 | Increase altitude of AIRCRAFT_A by 2000 ft | Do's
Reason: This command was helpful because it created
vertical separation between AIRCRAFT_A and AIRCRAFT_B,
which were previously at the same altitude and on a
collision course. By increasing AIRCRAFT_A's altitude,
the risk of collision was mitigated as the aircraft were
no longer in the same flight level.

Remember this is only a similar conflict and not
identical. Use the information wisely'

Conflict description is
embeded into 3072
dimension vector

text-embedding-3-large Metadata filtering:

num_ac: 2
conflict: Head-On Formation

Vector search using
Hierarchical Navigable Small
World (HNSW) algorithm and
Cosine Similarity

Experience document with the
highest similarity is returned

Figure 9. Filtering and searching in the experience library based on
experience embeddings

diverse set of simulated conflict scenarios. We explore the per-
formances of different agent models with and without access
to the Experience Library, a tool that enhances the learning
process by providing past experiences. Our experiments are
systematically structured to assess the agents’ effectiveness
in handling increasingly complex scenarios, providing insight
into their ability to manage air traffic conflicts.

The experiments are divided into three main phases. First,
we conduct initial tests with a limited dataset to identify the
most promising models and configurations. This step helps
narrow down the range of models and temperature settings
for more extensive testing. In the second phase, we generate a
larger dataset of conflict scenarios to thoroughly evaluate the
selected models, focusing on different types of conflicts and
aircraft numbers. Finally, we analyse the results, comparing the
performance of single-agent and multiple-agent setups, with
and without access to the Experience Library.

A. Initial tests

An initial experiment was conducted with a small dataset
containing 12 conflict scenarios, which included conflict for-
mations such as: head-on, parallel, t-formation and converging
with three different aircraft numbers each: 2, 3, and 4 aircraft.
In all scenarios, there is no altitude difference between aircraft

13

in conflict. We tested a single agent configuration without
experience library with the following models: Llama3-8B ,
Llama3-70B , Mixtral- 8x7b , Gemma2-9b-it and GPT-4o .

These models were selected because they represent some
of the top-performing open-source language models avail-
able, encompassing both large models (Llama3-70B and
Mixtral-8x7B) and smaller models (Gemma2-9b-it and
Llama3:8B). Including a range of model sizes allowed us

to compare how model complexity impacts performance. Ad-
ditionally, the commercial model GPT-4o was included to
provide a benchmark against a leading closed-source model.
The selection was also influenced by computational resource
and hosting constraints, as detailed in subsection IV-F.

We also evaluated a range of temperatures: 0.0 , 0.3 ,
0.6 , 0.9 , and 1.2 . Temperature is the main hyperpa-

rameter for LLM models, and it can significantly influence
their performance. It controls how conservative or creative the
model’s predictions are, with lower temperatures resulting in
more deterministic outputs and higher temperatures encourag-
ing more diverse and exploratory behaviour. In Figure 10 the
bar charts illustrate the predicted next token probabilities for
"FLIGHT2: descend to ... " sentence example at two different
temperatures using the GPT-4o model. At temperature 0.0, the
model shows a clear preference for a single token ("260") with
a probability of 53.88%, demonstrating a more deterministic
behaviour. As the temperature increases to 0.6, the distribution
of probabilities becomes more balanced, with "260" still
maintaining the highest probability (48.71%) but other tokens
gaining more likelihood, reflecting increased diversity in token
selection.

By testing various temperature values, we aimed to identify
the optimal setting that balances consistency and creativity for
effective conflict resolution.

This initial experiment was designed to identify the most
promising models based on a limited set of scenarios. The tests
narrow down the number of models to focus on for later more
extensive testing. We score the effectiveness of the setting
based on the criteria in Table I. The scoring system used in this
study is designed to reflect the critical outcomes that air traffic
controllers aim to achieve in real-world conflict resolution
scenarios. The highest score (1) is assigned when a conflict
is successfully resolved, meaning that the aircraft maintains
a safe separation throughout the scenario, aligning with the
primary goal of air traffic management, which is to prevent any
loss of separation. This represents a successful intervention
where the agents demonstrated effective conflict resolution
strategies. A score of 0 indicates a loss of separation (LoS),
which occurs when two aircraft come closer than the mini-
mum safe distance without colliding. While not immediately
resulting in a collision, this outcome is considered undesirable
in actual air traffic control operations, as it breaches safety
protocols and could escalate into a more severe incident if
not corrected promptly. The lowest score (-1) is given when
a near miss or collision occurs. The inclusion of this scoring
criterion allows us to assess the agent’s ability to solve air

260 250 1 270 26 25
Tokens

0

10

20

30

40

50

60

P
ro

b
ab

ili
ty

 (%
)

Temperature: 0.0

260 270 26 250 25 262
Tokens

0

10

20

30

40

50

60

P
ro

b
ab

ili
ty

 (%
)

Temperature: 0.6

FLIGHT2: descend to ____

Figure 10. Effect of temperature on token prediction with GPT-4o

traffic conflicts and ensures that the models are evaluated
against strict safety standards.

TABLE I. Scores for evaluating conflict resolution

Score Outcome Description

1 Conflict is solved (successful)
0 Conflict results in loss of separation (unsuccessful)
-1 Conflict results in near miss or collision (unsuccessful)

Based on the test results in Figure 11, the Llama3-70B
(open-source) and GPT-4o (commercial) models demon-
strated the highest success rates in solving air traffic conflicts.
In contrast, the smaller models and Mixtral-8x7B faced chal-
lenges, achieving success rates of only 58.3% for Gemma2-9B ,
41.7% for Llama3-8B , and 50% for Mixtral-8x7B . Both
Llama3-70B and GPT-4o exhibited optimal performance at

lower temperatures (0.0 and 0.3), though an anomaly occurred
at temperature 1.2 for Llama3-70B , which solved the initial
dataset without any errors.

Although a temperature of 0.0 provides reliable results
for both models, introducing a small degree of temperature
is preferred, as it encourages the models to generate more
creative solutions without deviating too far from accurate
predictions. For both models, the temperature is capped at 2
to avoid erratic behaviour. It was decided that GPT-4o would
be tested further with a temperature of 0.3.

14

To determine the optimal temperature for Llama3-70B , an
additional test was conducted on a larger dataset comprising
120 scenarios (subsection III-B). Out of 120 cases, 35 were
solved at a temperature of 1.2, while 62 were solved at 0.3.
Therefore, in conclusion, both GPT-4o and Llama3-70B will
be tested further with a temperature of 0.3 on the expanded
dataset of 120 scenarios, alongside various agent configura-
tions.

0.0 0.3 0.6 0.9 1.2

Temperature

GPT-4o

Gemma2-9B

Llama3-70B

Llama3-8B

Mixtral-8x7B

M
o

d
el

 N
am

e

83.3 83.3 66.7 58.3 66.7

58.3 58.3 50.0 58.3 8.3

83.3 83.3 75.0 66.7 100.0

41.7 25.0 41.7 25.0 41.7

41.7 25.0 33.3 50.0 25.0

Success Rate by Model and Temperature

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Figure 11. Success rate for different models and temperatures, tested
on 12 conflict cases

B. Generating conflict scenarios dataset
To assess the performance of the Llama3-70B and GPT-4o

models in solving air traffic conflicts, we generated a dataset
comprised of 120 distinct conflict scenarios for BlueSky.

The pseudocode illustrates the process of generating aircraft
conflict scenarios. The procedure begins with writing the
ASAS activation command, which uses a state-based method
to detect potential conflicts between aircraft. Following this,
the first aircraft is introduced into the simulation using the
CRE command. Subsequently, the CRECONFS command gen-

erates conflicts between aircraft in the scenario. The second
aircraft is always placed in conflict with the first, as it is
the only available option at that point. For each subsequent
aircraft, there is the possibility of being in conflict either with
the first aircraft or any of the previously generated aircraft,
allowing for varied and realistic conflict scenarios. The pa-
rameter dpsi represents the heading difference between the
conflicting aircraft, with values such as 0 degrees indicating
parallel flight paths and 180 degrees representing head-on
conflicts. In addition, horizontal and vertical TLOS (Time to
Loss of Separation) values, height differences, and speeds are
selected randomly to further diversify the conflict scenarios.
All conflicts are created with a Distance at the Closest Point
of Approach set to 0 nautical miles, implying that without any
intervention from the LLM agent, these scenarios would result
in a collision. This setup effectively creates real-world conflict
situations, providing a comprehensive basis for testing conflict
resolution strategies.

The dataset contains 40 scenarios, each with two, three,
or four aircraft conflicts. The conflicts are categorised into

Algorithm 5: Generate Conflict Scenario File
Input: num-aircraft, conflict-type, dH-values,

tlos-hor-values, tlos-ver-values, folder-path
Output: Conflict scenario file written in specified

format
1 Open the file for writing in the given folder path
2 Write the ASAS activation command:

00:00:00.00>ASAS ON
3 Randomly generate latitude, longitude, heading, flight

level, speed, and aircraft type for the first aircraft
4 Write the first aircraft creation command:

00:00:00.00>CRE FLIGHT1 aircraft_type lat long
heading flight_level speed

5 Write the PAN command to centre the view:
00:00:00.00>PAN lat long

6 for j from 2 to num-aircraft do
7 Select target aircraft ID randomly
8 Determine dpsi angle based on conflict type
9 Select random values for horizontal TLOS, vertical

TLOS, speed, and aircraft type
10 Use corresponding dH value from dH-values list
11 Write the conflict creation command:

00:00:00.00>CRECONFS FLIGHTj aircraft_type
target_id dpsi 0 tlos_hor dH tlos_ver speed

12 end
13 Close the file
14 return Created scenario file

four primary types: 1) head-on, where aircraft are on a direct
collision course; 2) T-formation, which involves perpendicu-
lar flight paths; 3) parallel, where aircraft fly close parallel
courses; and 4) converging, where multiple aircraft are on
intersecting paths heading towards the same point. There are
30 conflict scenarios in these four types.

In addition to conflict type, we also consider changes in
flight levels. Half scenarios have all aircraft at the same
level, while others half involve climbing, descending, and level
flights, adding further complexity to the conflict dynamics.
Examples are shown in Figure 12.

All scenarios are designed under the assumption that, with-
out timely intervention, the aircraft involved will inevitably
collide. This design ensures that each scenario presents a
genuine challenge that tests the models’ abilities to effectively
navigate and resolve potential airborne conflicts in high-risk
situations.

It is also worth noting that all these scenarios present
imminent conflicts with very short response time. They are
incredibly challenging for human operators, especially when
involving more than two aircraft.

C. Results

These conflict scenarios are tested with single-agent and
multiple-agent configurations using different language models.
Figure 13 shows the success rates across different agent

15

F L I G H T 1
F L 2 1 7
1 8 6

F L I G H T 2
F L 2 2 3 🡓
2 8 7

F L I G H T 3
F L 2 6 0
2 6 5

F L I G H T 1
F L 2 6 0
2 0 4

F L I G H T 2
F L 2 6 0
2 9 1

F L I G H T 3
F L 1 6 5
2 4 6

F L I G H T 1
F L 1 6 5
2 4 4

F L I G H T 2
F L 1 6 5
2 4 9

F L I G H T 3
F L 2 3 4 🡓
1 9 0F L I G H T 1

F L 2 1 9
1 8 1

F L I G H T 2
F L 2 2 7 🡓
1 6 2

F L I G H T 4
F L 2 4 2 🡓
2 7 7

Head-On Conflict

Parallel Conflict Converging Conflict

T-Formation Conflict

Figure 12. Examples of Conflict Scenarios

GPT-4o Llama-70B
0%

20%

40%

60%

80%

100%

Single Agent

Single Agent + Experience

Multi Agent

Multi Agent + Experience

Figure 13. Success rate for different agent configurations, tested for
a total of 120 conflict cases.

configurations for GPT-4o and Llama3-70B models. We
also test their performance when they have access to the
SearchExperimentLibrary tool. The objectives and prefer-

ences were identical across all model configurations. In our
experiments, each configuration operated under the same con-
ditions. The only variable we altered was the inclusion of the
experience library. For configurations labeled with "+ Expe-
rience," agents had access to the SEARCHEXPERIENCELIBRARY
tool and were explicitly instructed in their system prompts to
utilize it. This approach allowed us to isolate the impact of
the experience library on the models’ performance, ensuring
that any observed differences were due to its inclusion rather
than variations in objectives.

For single-agent setup, we can see that GPT-4o performs

TABLE II. Performance with single and multiple agents

Model Configuration Collision LoS Resolved

GPT-4o

Single Agent 4 4 112
Single Agent + Exp 0 1 119
Multiple Agent 4 0 116
Multiple Agent + Exp 4 0 116

Llama3-70B

Single Agent 13 45 62
Single Agent + Exp 6 23 91
Multiple Agent 2 3 115
Multiple Agent + Exp 2 3 115

0%

20%

40%

60%

80%

100%

GPT-4o

Single Agent

Single Agent + Exp

Multi Agent

Multi Agent + Exp

2 3 4
Number of Aircraft

0%

20%

40%

60%

80%

100%

Llama-70B

Single Agent

Single Agent + Exp

Multi Agent

Multi Agent + Exp

Figure 14. Success rate by the number of aircraft in conflict for
different agent configurations, for a total of 120 cases.

better than Llama3-70B . And by including experience li-
braries, significant improvements are observed. For multiple-
agent setup, the success rates are all high, even for the open-
source Llama3-70B with a significantly smaller model size.

Table II shows the exact number of times the conflicts
resulted in the collision, loss of separation (LoS), and conflict
resolved. We observe that the best result is achieved by the
single-agent backed by GPT-4o with experience library, where
only 1 out 120 was not fully cleared (in section IV we discuss
the reasons for failure).

In Figure 14, we illustrate how the success rate of con-
flict resolution varies with the number of aircraft involved
for both models. Here, we can observe the GPT-4o model
manages to solve all conflicts for two-aircraft and three-
aircraft cases and missed a few four-aircraft scenarios. Model
Llama3-70B missed a few three-aircraft and four-aircraft

cases in a multiple-agent setup.
In the Figure 15, we compare the success rates across

different conflict types for both models.

16

0%

20%

40%

60%

80%

100%

GPT-4o

Single Agent

Single Agent + Exp

Multi Agent

Multi Agent + Exp

converging head-on parallel t-formation
Conflict Type

0%

20%

40%

60%

80%

100%

Llama-70B

Single Agent

Single Agent + Exp

Multi Agent

Multi Agent + Exp

Figure 15. Success rate by the conflict type for different agent
configurations, for a total of 120 cases

The parallel conflict stands out as the most difficult, with
single agents struggling the most, especially in the Llama-
70B model. Across all conflict types, the experience library
increases the performance, especially for single agent config-
urations. However, no clear pattern suggests that the LLM
agents have a distinct advantage in resolving specific types of
conflict formations. Instead, both models (Llama3-70B with
only multi agent configuration) demonstrate a robust capability
to handle a variety of conflict scenarios without favouring any
particular formation.

In Figure 16, the results show that conflicts involving
different altitudes, where one or multiple aircraft are ascending
or descending, present a greater challenge for the agents. For
instance, the performance of the single Llama-70B agent drops
significantly from a success rate of around 60% to about
40% when a vertical conflict is introduced. Other Llama-
70B configurations also experience a similar drop in success
rate, except for the multi-agent system with an experience
library, which maintains consistent performance. In contrast,
GPT-4o shows less sensitivity to vertical conflicts. Although

the single-agent configuration without experience sees a drop,
configurations using the experience library maintain their
success rates, regardless of whether vertical conflict is present.

IV. DISCUSSIONS

A. General Observation on Performance

In the single-agent configuration, the Llama3-70B model
demonstrated the weakest performance (Figure 13. This result
can be attributed to its smaller model size and more limited
context window when compared to GPT-4o . The context
window is a crucial aspect, as it determines how much

0%

20%

40%

60%

80%

100%

GPT-4o

Single Agent

Single Agent + Exp

Multi Agent

Multi Agent + Exp

No Yes
Vertical Conflict

0%

20%

40%

60%

80%

100%

Llama-70B

Single Agent

Single Agent + Exp

Multi Agent

Multi Agent + Exp

Figure 16. Success rate by the vertical conflict for different agent
configurations, for a total of 120 cases

information the model can consider at once when generating
or analysing text. Llama3-70B has a context window of
8,000 tokens, while GPT-4o has a significantly larger context
window of 128,000 tokens. This difference in context win-
dow size becomes especially important in tasks requiring the
model to process large amounts of information. For example,
when resolving conflicts between multiple aircraft in an air
traffic control scenario, the context window can become filled
quickly as the model tracks multiple instructions, updates, and
information streams. A smaller context window, like that of
Llama3-70B , can cause performance degradation as the model

loses track of earlier details when the window is filled, whereas
GPT-4o ’s larger window allows it to retain and process

a broader set of information without losing context. Also
according to current estimates, GPT-4o is believed to have
around 200 billion parameters, making it nearly three times
larger than Llama3-70B , which has 70 billion parameters,
illustrated in Figure 17. The significant difference in model
size has a direct impact on each model’s ability to process
complex scenarios.

Despite its smaller size, Llama3-70B ’s performance can be
significantly improved when utilising the experience library.
With access to the library, its success rate increased from 52%
to 76%, suggesting that even smaller models can effectively
leverage external knowledge to enhance problem-solving effi-
ciency. This highlights the importance of external sources for
less capable models, allowing them to partially overcome their
inherent limitations.

In a multi-agent setup, Llama3-70B achieved its best
performance. This configuration is particularly beneficial
because it distributes the processing load across several

17

Llama3-70B
(70B params)

GPT-4o
(~200B params)

Model Size Comparison

Figure 17. Model size comparison between Llama3-70B and GPT-4o.

agents, allowing each agent to handle less information. Given
Llama3-70B ’s smaller context window of 8,000 tokens, this

division of tasks prevents any single agent from reaching
its token limit, thus improving overall efficiency. In contrast,
when handling larger conflicts, such as those involving four
aircraft (which can result in six conflict pairs), the model’s
context window becomes saturated, leading to a sharp decline
in performance.

On the other hand, GPT-4o consistently exhibited high
success rates across all configurations. In the single-agent
setup without the experience library, GPT-4o achieved a 93%
success rate. With the experience library, this performance
improved to 99%, with only a single unresolved conflict across
all cases. Both single and multi-agent configurations, with and
without the experience library, demonstrated similarly high
performance for GPT-4o , which suggests that its larger model
size and significantly larger context window (128k tokens)
play a critical role in its success.

The larger context window of GPT-4o provides a clear
advantage in conflict resolution tasks, where a large amount
of information must be processed. For example, in con-
flicts involving four aircraft, the total token usage—including
prompts, tools, and information received from BlueSky—can
reach around 8,000 tokens. This matches the maximum ca-
pacity of Llama3-70B , causing a noticeable degradation in
its performance, as seen in Figure 14. In contrast, GPT-4o ,
with its 128k token context window, can handle significantly
more information without experiencing a performance drop,
even in larger conflicts.

Therefore, splitting tasks between multiple agents is partic-

ularly beneficial for Llama3-70B , as it prevents any single
agent from filling its context window, allowing for more
efficient conflict resolution. In contrast, GPT-4o does not
experience this limitation, and its performance remains stable
even with increasing numbers of aircraft in conflict.

B. Limitations due to language model hallucination
There are several reasons why the aircraft conflict is not

resolved, and each agent configuration has its own reasons.
Starting with the single Llama3-70B agent, the main reason
is the model’s size, which affects reasoning capabilities.

Many times, an agent sends an altitude command, which
will not ensure enough vertical separation even though there
are instructions for vertical separation in the system prompt.
An example below shows how FLIGHT3 is instructed to
descend to 22800 feet, which would reduce the vertical sepa-
ration between the rest of the aircraft.

Invoking: ‘CONTINUEMONITORING‘ with ‘{’duration’: 10}‘
Aircraft Pairs in Conflict and their TCPA (sec):
...
<EXTENSIVE CONFLICT INFORMATION>
...
Number of aircraft in conflict: 3
Aircraft Altitude Information:
FLIGHT1: Altitude 22500.0 ft -> 22500.0 ft (level)
FLIGHT2: Altitude 23322.38 ft -> 23000.0 ft (descending)
FLIGHT3: Altitude 23328.64 ft -> 23298.75 ft (descending)
Invoking: ‘SENDCOMMAND‘ with ‘{’command’: ’ALT FLIGHT3 22800’}‘

Although the experience library contributes significantly to
reducing errors, it is particularly effective at the beginning
of conflict resolution. Initially, the agent applies the library’s
suggestions directly to its current conflict. However, if conflicts
between aircraft pairs persist, the agent’s limitations in rea-
soning may become apparent again. Another current limitation
often observed in agents is their failure to anticipate secondary
conflicts caused by resolving initial ones. In the example
below, the planner directed FLIGHT2 and FLIGHT4 to climb
to the same altitude, which will later create a secondary
conflict.

Planner Agent:
Invoking: ‘GETALLAIRCRAFTINFO‘ with ‘{’command’: ’GETACIDS’}‘
...
Invoking: ‘CONTINUEMONITORING‘ with ‘{’duration’: 10}‘
...
1. **FLIGHT2**: Climb to an altitude of 36200 ft. This will

create vertical separation from FLIGHT1 and FLIGHT3,
reducing the risk of collision.

2. **FLIGHT3**: Descend to an altitude of 32200 ft. This will
provide vertical separation from FLIGHT1 and FLIGHT2,
ensuring safety.

3. **FLIGHT4**: Climb to an altitude of 36200 ft. This will
increase vertical separation from FLIGHT1, reducing the
risk of collision and ensuring FLIGHT4 is at a different
altitude than FLIGHT3, which is descending.

The occurrence of these hallucinations is complex and can
stem from several factors, including limitations in the training
data, difficulties in handling intricate domain-specific rules, or
the inherent uncertainty in generating text based on statistical
patterns. While the model possesses a general understanding of

18

language and can mimic reasoning processes, it may lack the
precise domain expertise needed to consistently produce valid
commands in specialized fields like air traffic control. Under-
standing and mitigating hallucinations remain active areas of
research. In our work, we recognize that these hallucinations
highlight the limitations of LLMs and underscore the need for
further refinement, potentially through reinforcement learning
from human feedback.

C. Detailed analysis of failed scenarios

Single-agent configuration failures with the Llama3-70B
model can be attributed to its limitations, which are primarily
due to the model’s size and the constraints of its context
window. These limitations are closely linked to hallucinations
and poor reasoning performance. Better results are observed
with multi-agent configurations or when GPT-4o is employed.
However, even these setups could not fully resolve all scenar-
ios. This is particularly concerning given the safety-critical
nature of air traffic control. We will examine the failed cases
in greater detail, identify possible improvements, and re-run
the experiments to determine whether the unresolved scenarios
can be addressed with the updates.

In the multi-agent configuration using the Llama3-70B
model without an experience library, all five unresolved con-
flicts stemmed from hallucinations. One such case, shown in
Listing 1, involved a vertical conflict between four aircraft.
The planner agent generated a resolution plan instructing
FLIGHT3 to descend to 15,500 ft and FLIGHT4 to climb to
16,000 ft, claiming this would ensure a vertical separation of
500 ft between the two aircraft, which supposedly exceeded
the required minimum of 2,000 ft. This highlights a critical
reasoning failure: although the model correctly calculated the
500 ft separation, it failed to recognise that 500 ft is less than
2,000 ft, leading to an incorrect resolution.

To resolve the conflict between FLIGHT3 and FLIGHT4, I instruct
:

1. FLIGHT3 to descend to 15,500 ft.
2. FLIGHT4 to climb to 16,000 ft.

This will ensure a vertical separation of 500 ft between the
two aircraft, which is more than the required 2,000 ft.

Listing 1: Llama3-70B planner agent hallucinates

Following the execution of these commands, the conflict
remained unresolved. Additionally, the Llama3-70B verifier
agent hallucinated by failing to recognise that a conflict still
existed, despite stating that no further conflicts remained.
This occurred even though the verifier agent had invoked the
CONTINUEMONITORING tool, which reported that two aircraft

were still in conflict.
In another example, shown in Listing 2, the Llama3-70B

planner agent claims that it will ensure a vertical separation
of more than 2,000 ft between FLIGHT1 and FLIGHT2.
However, upon closer inspection, this command would only
provide a separation of 100 ft.

...
<EXTENSIVE CONFLICT INFORMATION>
...
Number of aircraft in conflict: 4

Aircraft Altitude Information:
FLIGHT1: Altitude 23,100.0 ft -> 23,100.0 ft (level)
FLIGHT2: Altitude 23,790.15 ft -> 23,732.55 ft (descending)
FLIGHT3: Altitude 24,504.77 ft -> 24,375.17 ft (descending)
FLIGHT4: Altitude 24,504.68 ft -> 24,378.52 ft (descending)

To resolve the conflicts, I recommend the following plan:
1. FLIGHT2 descend to 23,000 ft.
2. FLIGHT3 turn to 140 deg.
3. FLIGHT4 turn to 320 deg.
This plan ensures that the vertical separation between FLIGHT1

and FLIGHT2 is more than 2,000 ft, and the horizontal
separation between FLIGHT2, FLIGHT3, and FLIGHT4 is more
than 5 nautical miles.

Listing 2: Llama3-70B planner agent hallucinates

Once again, the Llama3-70B model incorrectly reported
that there were no remaining conflicts, even though the
CONTINUEMONITORING tool returned conflict information.

Since all the failed scenarios in this configuration were due
to hallucinations, improving the outcomes is challenging, as
the primary issue stems from the model’s inherent performance
limitations.

The multi-agent Llama3-70B configuration with the expe-
rience library had the same success rate as the configuration
without it, though there are some areas that could be improved.
One issue is that Llama3-70B sometimes fails to describe
conflicts adequately, as illustrated in Listing 3. In this case,
it only mentions that there is a conflict between the aircraft,
without providing further details.

Invoking: ‘SEARCHEXPERIENCELIBRARY‘ with ‘{’
conflict_description’: ’Aircraft FLIGHT1, FLIGHT2,
FLIGHT3, FLIGHT4 are in conflict with each other’, ’
num_ac’: 4, ’conflict_formation’: ’Converging Formation
’}‘

Listing 3: Llama3-70B planner agent poorly describing the conflict

The tool invocation itself appears correct and clear. How-
ever, when the model is swapped to GPT-4o under the same
configuration, the conflict description is much more detailed,
as seen in Listing 4:

Invoking: ‘SEARCHEXPERIENCELIBRARY‘ with ‘{’
conflict_description’: ’All four aircraft are at the same
altitude and level. FLIGHT1 and FLIGHT2 are in a head-on
formation. FLIGHT1 and FLIGHT3, as well as FLIGHT1 and

FLIGHT4, are in a T-formation. FLIGHT2 and FLIGHT4 are in
a head-on formation. All aircraft are level and not

ascending or descending.’, ’num_ac’: 4, ’
conflict_formation’: ’T-Formation’}‘

Listing 4: GPT-4o planner agent extensively describing the conflict

Another problem arises when the Llama3-70B planner or
verifier agent blindly implements suggestions from the experi-
ence library without considering the current conflict situation,
sometimes introducing new conflict pairs. The system prompt

19

includes the remark: "This is a similar conflict, not an identical
one, hence you must still use your judgement to solve the
current conflict." A potential improvement would be to include
this remark within the experience document itself. Making this
the last instruction the agent sees, may help mitigate the issue
of blindly following experience library suggestions.

In another instance, the experience library provided useful
recommendations, and the planner agent followed them accu-
rately. However, a problem occurred when one aircraft was
instructed to change its altitude by 4,000 feet, which naturally
requires some time. The verifier agent, despite being aware of
the plan and observing the aircraft’s progress, failed to account
for the time needed for the aircraft to reach the instructed
altitude. Instead of continuing to monitor the situation, the
verifier prematurely generated a new plan. In this new plan,
two aircraft were instructed to ascend. Although their target
altitudes were distinct, both aircraft were ascending towards
each other, which did not prevent the conflict. The new plan
kept both aircraft in the process of ascending, leading to an
unresolved conflict and eventually resulting in a collision.

One key challenge for the verifier agent is determining how
long to monitor the situation before taking further action. A
plan may be good, but because altitude changes and heading
adjustments take time, conflicts may persist temporarily before
resolving. A potential improvement could involve the initial
planner agent suggesting a monitoring period alongside the
conflict resolution plan. The planner could estimate how
long it would take for each aircraft to reach its instructed
altitude or heading and use the longest estimated time as a
guideline. The verifier agent could then monitor the situation
for this specified period before generating a new plan, thereby
avoiding premature interventions and preventing unnecessary
or faulty re-planning.

In the GPT-4o failed scenarios, there are instances where
the executor agent does not consistently send commands that
involve maintaining altitude or heading, sometimes ignoring
them altogether. For example, in Listing 5, the planner agent
creates a plan where FLIGHT1 and FLIGHT3 are instructed
to maintain their current altitude. In this scenario, FLIGHT3
is descending, and the planner aims to stop the descent by
instructing it to hold its current altitude, but the executor fails
to execute this command.

1. **FLIGHT1**: Maintain current altitude of 26200 ft.
2. **FLIGHT2**: Descend to 25000 ft to ensure vertical

separation from FLIGHT1 and FLIGHT3.
3. **FLIGHT3**: Maintain current altitude of 27800 ft.
4. **FLIGHT4**: Climb to 30000 ft to ensure vertical separation

from FLIGHT3.
This plan ensures a vertical separation of at least 2000 ft

between all aircraft in conflict.
> Finished chain.
> Entering new AgentExecutor chain...
Invoking: ‘SENDCOMMAND‘ with ‘{’command’: ’ALT FLIGHT2 25000’}‘
Command executed successfully.
Invoking: ‘SENDCOMMAND‘ with ‘{’command’: ’ALT FLIGHT4 30000’}‘
Command executed successfully.
TASK COMPLETE

Listing 5: GPT-4o executor agent ignores two commands

The executor agent’s behaviour is inconsistent, sometimes
executing these commands correctly, but other times failing to
do so. This issue could potentially be improved by modifying
the prompts, as there are currently no specific instructions
for the executor agent on how to handle situations where the
planner instructs it to maintain the aircraft’s current state.

The GPT-4o multi-agent configuration also experiences the
same problems as Llama3-70B , particularly with the verifier
agent. The verifier agent often rushes to create a new plan
without allowing enough time for the current plan to resolve
the conflict. In many cases, if the verifier had waited a bit
longer, the conflict would have been resolved without the need
for re-planning. Additionally, the verifier agent sometimes
follows the experience document too rigidly. In one scenario,
this led to two conflicting aircraft being assigned the same
altitude, which resulted in an unresolved conflict.

It is important to note that GPT-4o is not immune to
hallucinations. In one scenario, where four aircraft were flying
in parallel at the same altitude and were in conflict, a single
GPT-4o agent without the experience library instructed one

aircraft to descend and another to ascend, but maintained the
same altitude for the other two. After realising that these two
aircraft were still in conflict, it instructed one to climb, but
seemed to forget that it had already instructed the other aircraft
to climb to the same altitude, thereby introducing a new con-
flict. Also GPT-4o model has a strong preference for altitude
changes rather than heading changes. Still, in some conflict
formations, especially in parallel conflicts it would be easier to
solve it if the altitude and heading changes would be combined
in the solution and not solely altitude changes. Additionally,
in the same scenario, the agent appeared to misinterpret the
information returned from the CONTINUEMONITORING tool.
When the agent uses this tool, it inputs the duration in seconds,
and the tool returns conflict information in the format: before
value -> after value. In the example shown in Listing 6,
the agent incorrectly assumes that FLIGHT3 is descending
to 15,568.6 ft, when in reality, it is already at that altitude
but still descending. Here, the CONTINUEMONITORING tool’s
output description could be made clearer to help the model
understand how to properly interpret the returned data.

FLIGHT3: Altitude 15632.66 ft -> 15568.6 ft (descending)

FLIGHT3: Maintain current descent to 15,600 ft.

Listing 6: GPT-4o agent misinterprets information

Overall, these are the improvements that can be made:
• Improve the prompts for the executor agent to ensure

it handles instructions related to maintaining altitude or
heading, as it currently lacks clarity in such scenarios.

• Modify the SEARCHEXPERIENCELIBRARY tool so that it
would also include a reminder for agents to exercise
judgment when applying learned experiences, rather than
blindly following past solutions.

• Ensure that the planner agent provides a monitoring
period together with the plan, preventing premature re-

20

planning from verifier agent that could lead to unneces-
sary or faulty conflict resolutions.

• Clarify the output format of the CONTINUEMONITORING
tool to avoid misinterpretations of aircraft status, such as
altitude or heading changes.

• In the user prompt encourage to use both altitude and
heading change methods to solve the conflict

All these improvements are prompt changes and are listed
below:

• The following note was added to the executor system
prompt:

Note: If there is a command that mentions
maintaining heading or altitude at a certain
value, you must still send that command. For
example: GHT980 maintain current heading/
altitude of X degrees/feet. You would then send
the command: HDG GHT980 X or ALT GHT980 X.

• The following note is added at the end of the returned
experience document:

Note: This is a similar conflict but not identical.
Please use your judgement and adapt the
solution to the current situation.

• A new output format has been introduced to ensure that
a monitoring period is provided together with the initial
conflict resolution plan. This prevents the verifier agent
from prematurely initiating re-planning. The planner sys-
tem prompt now includes the following:

monitoring value: x -- Provide a value in seconds to
indicate how long the verifier should monitor

the solution before verifying the resolution.
It takes about 25 sec for an aircraft to change
altitude by 1000 ft and about 7 sec to change

heading by 10 degrees. If multiple aircraft are
involved, provide the largest monitoring value

. For example, if one aircraft is increasing
altitude by 2000 ft and another is changing
heading by 30 degrees, the monitoring value
would be 50 sec.

• To avoid misinterpretation of aircraft status changes, the
output format for CONTINUEMONITORING tool has been
clarified. The following description was added:

The format is: "value before -> value after", where
the ’value after’ represents the current status
.

• A sentence has been added to encourage the use of
both altitude and heading change methods for conflict
resolution in the user prompt:

You are encouraged to use both methods (altitude and
heading change) to resolve the conflicts.

With the following changes we reran the unresolved conflict
scenarios with the multi agent configurations and configura-
tions that has GPT-4o model.

TABLE III. Unresolved conflicts before prompt improvements

Model Configuration Collisions LoS Total

GPT-4o Single Agent 4 4 8
Single Agent + Exp 0 1 1

GPT-4o Multi Agent 4 0 4
Multi Agent + Exp 4 0 4

Llama3-70B Multi Agent 2 3 5
Multi Agent + Exp 2 3 5

TABLE IV. Unresolved conflicts after prompt improvements

Model Configuration Collisions LoS Total

GPT-4o Single Agent 0 0 0
Single Agent with Exp 0 0 0

GPT-4o Multi Agent 0 0 0
Multi Agent with Exp 1 1 2

Llama3-70B Multi Agent 4 0 4
Multi Agent with Exp 0 0 0

The prompt improvements have significantly enhanced the
system’s performance across various configurations, as com-
pared in Table III and Table IV . Notably, all configurations
exhibited dramatic improvements except for the Llama3-70B
multi-agent setup without the experience library. This ex-
ception was anticipated, as failure analysis indicated that
unresolved conflicts in this configuration were primarily due to
hallucinations, resulting in ineffective reasoning and planning.

For the GPT-4o single-agent configurations, both with and
without the experience library, all previously unresolved con-
flicts were successfully resolved after the improvements. The
GPT-4o multi-agent system without the experience library

also showed significant progress by resolving four conflict
scenarios that it had previously failed to address. When
incorporating the experience library, the same multi-agent
configuration improved its results but still encountered two
unresolved scenarios.

The Llama3-70B multi-agent system with the experience
library demonstrated remarkable enhancement by resolving all
five previously unsuccessful conflict scenarios after the prompt
improvements. However, the same configuration without the
experience library did not exhibit improvement; all unresolved
conflicts remained due to the model’s hallucinations and lack
of effective reasoning.

GPT-4o multi agent with experience library had one loss
of separation because The planner agent generated a generally
sound plan but included an instruction for a descending aircraft
to maintain its current heading and altitude without specifying
the numerical values, despite being instructed to provide such
details. The executor agent processed the command but, due
to the absence of specific altitude and heading values, did
not perform any changes for that aircraft. The verifier agent
monitored the situation for the prescribed 50 seconds as per

21

the plan and, observing no immediate conflicts, concluded
the monitoring phase. However, shortly after, the aircraft
continued its descent (since no explicit command was executed
to alter its behaviour), leading to a loss of separation that
was detected by the system. The same configuration had
also a collision in one scenario. The planner agent devised
a plan that was suboptimal, causing one aircraft to approach
another dangerously close, ultimately triggering the collision
threshold.

All unresolved conflicts in Llama3-70B multi agent without
experience library configuration persisted due to the model
generating hallucinations, which manifested as incoherent rea-
soning and ineffective planning. The lack of an experience
library contributed to the model’s inability to produce viable
conflict resolution strategies, underscoring the importance of
incorporating historical experience data to enhance decision-
making capabilities.

The remaining unresolved scenarios highlight areas where
further refinement of the planning and execution processes
is necessary, especially in ensuring that all instructions are
explicit and adequately executed by the respective agents.

D. Optimizing the use of experience library

Throughout the development of the experience library, we
have been constantly adapting the experience library architec-
ture. Initially, complete experience document was converted to
the embedding, but it was discovered that by embedding only
the conflict description, we can enhance search accuracy and
relevance. This change ensured that search results were more
applicable to current conflicts.

The underlying rationale for this optimization is grounded
in the operational behaviour of agents interacting with the
experience library. Agents initiate a search by providing a
description of their current conflict scenario. By concentrat-
ing the embedding process exclusively on these conflict de-
scriptions—rather than embedding comprehensive experience
documents that include additional elements such as command
lists and their corresponding insights—the search mechanism
can perform more targeted and meaningful comparisons. By
not including the list of good and bad commands together with
their explanations in the embeddings, the system reduces noise
and potential sources of inaccuracy, leading to more reliable
search outcomes.

We noticed more performance issues with the Llama3-70B
when summarizing the experience, particularly its tendency
to produce sometimes inaccurate content in experience doc-
uments. Again, this is due to the smaller size of the model.
Additionally, Llama3-70B frequently failed to resolve conflict
scenarios, as demonstrated in the section III. Moreover, the
resolution strategies it proposed did not effectively reduce the
number of conflicting aircraft pairs. Consequently, the result-
ing experience document contained only non-recommended
commands, lacking any effective strategies for conflict reso-
lution and example can be seen in Figure 18. This absence of
useful commands renders the experience document unhelpful
for addressing and mitigating conflicts.

To maintain a consistent quality of the library’s content, we
only retain experience documents created by GPT-4o . Further-
more, we chose not to create experience documents for conflict
resolution strategies that involved more than seven commands
being sent to the aircraft. This decision was made to keep the
documents concise, which benefits the Llama3-70B model
by staying within its smaller context window. This constraint
only resulted in the exclusion of a few scenarios, as we still
generated 110 experience documents out of a potential 120.

Number of Aircraft Involved: 4 [AIRCRAFT_A, AIRCRAFT_B, AIRCRAFT_C,
AIRCRAFT_D]

Relative Conflict Description: AIRCRAFT_A and AIRCRAFT_D are positioned to
the west of AIRCRAFT_B and AIRCRAFT_C, with all aircraft maintaining the same
altitude. AIRCRAFT_A and AIRCRAFT_D are heading westward, while AIRCRAFT_B is
heading southward, and AIRCRAFT_C is heading northward. All aircraft are
maintaining level flight with no changes in altitude. AIRCRAFT_A and AIRCRAFT_D
are moving in parallel, whereas AIRCRAFT_B and AIRCRAFT_C are on opposing courses
relative to each other.

Conflict Formation: Converging Formation

1 | Increase altitude of AIRCRAFT_A by 100 ft | Don'ts |
Reason: This command was not helpful because it only increased the altitude of
AIRCRAFT_A, which did not address the converging paths of AIRCRAFT_B and
AIRCRAFT_C. Additionally, AIRCRAFT_D remained at the same altitude, maintaining
the conflict.

2 | Decrease altitude of AIRCRAFT_B by 100 ft | Don'ts |
Reason: This command was not helpful because decreasing the altitude of
AIRCRAFT_B did not resolve the conflict with AIRCRAFT_C, which was on an opposing
course. The altitude change was insufficient to create vertical separation from
AIRCRAFT_A and AIRCRAFT_D.

3 | Increase altitude of AIRCRAFT_C by 150 ft | Don'ts |
Reason: This command was not helpful because it increased the altitude of
AIRCRAFT_C, but AIRCRAFT_A and AIRCRAFT_D were still at the same altitude,
maintaining the conflict. Additionally, AIRCRAFT_B was not addressed, which was
on an opposing course to AIRCRAFT_C.

4 | Decrease altitude of AIRCRAFT_D by 50 ft | Don'ts |
Reason: This command was not helpful because the altitude change was minimal and
did not create sufficient vertical separation from AIRCRAFT_A, AIRCRAFT_B, or
AIRCRAFT_C. The converging formation was not addressed effectively.

Figure 18. Experience document from Llama3-70B containing only
non-recommended commands

E. Complexity of the traffic

Looking at Figure 14, it is evident that as the number of
aircraft involved in a conflict increases, the success rate for
resolving these conflicts declines. This outcome is expected
as the more significant number of aircraft introduces more
information that the large language model must process, which
in turn impacts its performance.

Notably, the GPT-4o agent configurations maintain similar
performance levels when dealing with conflicts involving
two or three aircraft. There is a slight decrease in perfor-
mance when the number of aircraft increases to four. For
Llama3-70B , the performance is similar in multi-agent setups.

F. Computing resource constraints

Our testing capabilities were significantly influenced by
accessing computing resources, particularly in the context of
model hosting and processing power.

All models, with the exception of GPT-4o , were hosted
on a cloud platform called Groq. Groq utilizes a specialized
processing unit known as the Language Processing Unit, which
can deliver around 1000 tokens per second, making it an
optimal choice for our needs. However, Groq also imposes
strict token-per-minute and token-per-day restrictions. This

22

restriction prevented us from running multiple models and
conflict scenarios in parallel, thus reducing the number of
scenarios we could test.

We have also tried to set our own Llama3-70B model with
Ollama and using TU Delft DelftBlue cluster [19], where
NVIDIA A100 GPUs are available. However, the inference
speed in the high-performance computing environment is too
slow for our use cases.

As presented in Table V, there exists a substantial disparity
in token processing speeds between the Groq and DelftBlue
platforms. Groq exhibits an impressive capability, processing
approximately 38,543 input tokens per second and 325 output
tokens per second. In contrast, DelftBlue manages only 10.41
input tokens per second and 4.11 output tokens per second,
which is 3,700 times slower for input speeds and 79 times
slower for output speeds. To illustrate the practical implica-
tions of this speed discrepancy, consider a scenario where a
prompt’s length incrementally increases, potentially reaching
up to 8,000 tokens. This situation is particularly relevant when
managing complex conflict scenarios, such as four aircraft con-
flict scenarios. On the DelftBlue platform, processing such an
extensive prompt would result in a processing time exceeding
10 minutes. This delay not only hampers the efficiency of
real-time operations but also limits the scalability of testing
multiple conflict scenarios concurrently.

Conversely, Groq’s high token throughput ensures that even
as prompt lengths grow, the processing remains swift and
manageable. This capability is crucial for maintaining opera-
tional responsiveness and enabling the simultaneous testing of
numerous scenarios without incurring significant time delays.

TABLE V. Comparison of token processing speeds between Groq
and DelftBlue platforms

Platform Input Tokens (tokens/s) Output Tokens (tokens/s)

Groq 38,543 325
DelftBlue 10.41 4.11

G. Future Work

G.1 Tool writing agents

An important direction for future research involves enabling
agents to generate their own tools. Currently, the tools and
their descriptions are predefined, and agents utilize them
to interact with the simulation environment effectively. We
recognize that equipping agents with the ability to create new
tools autonomously could significantly enhance the system’s
flexibility and problem-solving capabilities. Our envisioned
approach involves introducing a dedicated agent responsible
for tool creation, referred to as the tool-writer agent. The
process could involve the following steps: When the planner
agent identifies the need for a specific tool that is not present
in its current inventory, it would request this tool from the tool-
writer agent. The tool-writer agent would first verify whether
the tool already exists. If it does not, the agent would proceed
to generate the code for the new tool, ensuring compatibility
with the existing system. Should any errors occur during the

execution of the new tool, these would be reported back to the
tool-writer agent. The agent would then iteratively debug and
refine the tool until it operates correctly. Once validated, the
new tool would be added to the shared tool inventory, making
it available for use by the planner agent and potentially other
agents within the system. This closed-loop system promotes
adaptability, allowing agents to expand their capabilities dy-
namically in response to new challenges. It also maintains
a modular architecture, with specialized agents focusing on
distinct tasks—planning, verification, execution, and now tool
creation. Exploring this capability raises interesting research
questions related to autonomous code generation, reliability,
and safety in AI systems. It aligns with our overarching goal
of developing intelligent agents that can adapt and evolve,
ultimately contributing to more robust and efficient air traffic
control solutions.

G.2 Reinforcement learning with human feedback

Incorporating Reinforcement Learning with Human Feed-
back (RLHF) represents a promising road for enhancing the
decision-making capabilities of the gents. While the current
framework relies on predefined tools and an experience library
to navigate and resolve air traffic conflicts, integrating RLHF
would allow agents to learn and refine their strategies through
iterative interactions and feedback from human air traffic
controllers. This approach would enable the agents to align
more closely with human expertise and operational standards,
fostering more intuitive and effective conflict resolution meth-
ods. By receiving continuous feedback on their actions, agents
can adapt to nuanced scenarios and optimize their performance
in real-time, thereby improving both safety and efficiency in
air traffic management. Future research should explore the
integration of RLHF into the agent training pipeline, aiming
to create more adaptive and reliable autonomous systems that
complement and enhance human decision-making in complex
airspace environments.

G.3 Integration with Real-Time Data Streams

Another critical direction for future research involves in-
tegrating language model-based agents with real-time data
streams from actual air traffic control systems. While our
current experiments utilize simulated environments that are
invaluable for testing and development, they do not fully
capture the complexity and dynamism of live air traffic op-
erations. Real-time data integration would enable agents to
operate in environments that closely mimic actual airspace
conditions, allowing for more accurate assessments of conflict
scenarios and the development of solutions directly applicable
to real-world operations. Additionally, live data streams would
empower agents to respond dynamically to rapidly changing
conditions, such as unexpected weather events, sudden flight
path alterations, or emergent traffic patterns, which is essential
for maintaining safety and efficiency in high-stakes environ-
ments.

23

V. CONCLUSION

This study explored the application of large language mod-
els as embodied agents in air traffic control scenarios, focusing
on their ability to autonomously resolve conflicts.

Our experiments with both open and closed-source models
such as Llama3-70B and GPT-4o demonstrate the potential
of large language models embodied agents in performing air
traffic control tasks. This new approach could reduce the
gap between artificial and human situational awareness. We
have demonstrated that it provides human-like reasoning with
timely control instructions or recommendations.

The findings highlight that larger models outperform smaller
models in complex conflict resolution scenarios. The incor-
poration of an experience library further aids in boosting
efficiency by providing access to past conflict resolution
insights, which is particularly beneficial for smaller models
like Llama3-70B .

Moreover, the study has shown that multi-agent systems,
where tasks are distributed among specialized agents, yield
high success rates in resolving conflicts as well. This research
paves the way for new research paths to apply language
model-embodied agents in more complex tasks for air traffic
management.

REFERENCES

[1] G. Skaltsas, J. Rakas, and M. G. Karlaftis, “An analysis of air traffic
controller-pilot miscommunication in the nextgen environment,” Journal
of Air Transport Management, vol. 27, pp. 46–51, 2013.

[2] U. Linz, S. Consulting, T. U. Braunschweig, U. P. D. Madrid, Z. H.
F. A. Wissenschaften, Skyguide, and S. U. Z. F. P. Znanosti, “AI
Situational Awareness Foundation for Advancing Automation.” https:
//www.aisa-project.eu/, 2022. Accessed: 2024-09-01.

[3] C. Hurt, A. Degas, A. Guibert, N. Durand, A. Ferreira, et al., “Toward
a more transparent and explainable conflict resolution algorithm for air
traffic controllers,” in 34th Conference of the European Association for
Aviation Psychology, European Association for Aviation Psychology,
2022.

[4] Y. Zou and C. Borst, “Investigating transparency needs for supervising
unmanned air traffic management systems,” in 13th SESAR Innovation
Days, 2023.

[5] “Common crawl.” https://commoncrawl.org/. Accessed: 2024-07-22.
[6] S. Abdulhak, W. Hubbard, K. Gopalakrishnan, and M. Z. Li, “Chatatc:

Large language model-driven conversational agents for supporting strate-
gic air traffic flow management,” arXiv preprint arXiv:2402.14850,
2024.

[7] L. Wang, J. Chou, A. Tien, X. Zhou, and D. Baumgartner, “Aviationgpt:
A large language model for the aviation domain,” in AIAA AVIATION
FORUM AND ASCEND 2024, p. 4250, 2024.

[8] G. Jarry, P. Very, and R. Dalmau, “The effectiveness of large language
models for textual analysis in air transportation,” EasyChair preprints,
2024.

[9] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and
A. Anandkumar, “Voyager: An open-ended embodied agent with large
language models,” ArXiv, vol. abs/2305.16291, 2023.

[10] J. M. Hoekstra and J. Ellerbroek, “Bluesky atc simulator project:
an open data and open source approach,” in Proceedings of the 7th
international conference on research in air transportation, vol. 131,
p. 132, FAA/Eurocontrol Washington, DC, USA, 2016.

[11] OpenAI, “Openai tokenizer,” 2023. Accessed: 2024-09-16.
[12] P. Gage, “A new algorithm for data compression,” C Users Journal,

vol. 12, pp. 23–38, February 1994.
[13] A. Dubey, A. Jauhri, A. Pandey, and et. al., “The llama 3 herd of

models,” 2024.
[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.
[15] B. Bycroft, “Llm visualization.” Accessed: 2024-09-16.

[16] Z. R. Tam, C.-K. Wu, Y.-L. Tsai, C.-Y. Lin, H. yi Lee, and Y.-N. Chen,
“Let me speak freely? a study on the impact of format restrictions on
performance of large language models,” 2024.

[17] “Chroma.” https://www.trychroma.com/. Accessed: 2024-07-22.
[18] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-

mate nearest neighbor search using hierarchical navigable small world
graphs,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 42, no. 4, pp. 824–836, 2018. Available at arXiv.

[19] Delft High Performance Computing Centre (DHPC), DelftBlue Su-
percomputer (Phase 2), 2024. https://www.tudelft.nl/dhpc/ark:/44463/
DelftBluePhase2.

24

Additional Results

Reasoning Abilities
A critical aspect of integrating AI into air traffic management is ensuring explainability. While an AI solution

might be correct, it can likely be rejected by air traffic control operators if the reasoning behind it is not

clearly communicated. Hence, the ability to provide explanations is essential for successful integration into

real-world operations.

LLM agents can not only execute tasks by calling tools but also offer reasoning behind their decision-

making when properly instructed. The examples below demonstrate how model size plays a significant role

in the quality of explanations provided. In particular, GPT-4o delivers a comprehensive conflict overview,

explains the reasoning to the operator, and communicates the command to the pilot using appropriate

radiotelephony phraseology .

In Figure 1 GPT-4o agent stars off by gathering aircraft and conflict information and then it uses a

tool SENDCOMMAND but also provides a message with a reasoning behind the command and also gives a

command to the aircraft in radiotelephony terminology .

Invoking: `CONTINUEMONITORING` with `{'duration': 20}`

responded: The command to FLIGHT1 to climb to 18,000
ft has been executed successfully. This will provide
the necessary vertical separation to resolve the
conflict. I will monitor the airspace again to ensure
the conflict is resolved.

No conflicts detected.

The conflict between FLIGHT1 and FLIGHT2 has been
successfully resolved, and there are no more conflicts
detected in the airspace.

FLIGHT1
FL162↑
207

FLIGHT2
FL162
172

Invoking: 'CONTINUEMONITORING' with '{'duration': 10}'

Gathers Conflict Information

Invoking: 'SENDCOMMAND' with '{'command': 'ALT FLIGHT1
18000'}'

Command executed successfully.

responded: Currently, there is a conflict between FLIGHT1
and FLIGHT2, both at the same altitude of 16,200 ft. To
resolve this conflict, I will change the altitude of
FLIGHT1 to ensure vertical separation.

Sending command to FLIGHT1: "FLIGHT1, climb and maintain
flight level 180."

> Entering new AgentExecutor chain...

Invoking: 'GETALLAIRCRAFTINFO' with
'{'command': 'GETACIDS'}'

Gathers Aircraft Information

FLIGHT1
FL162
207

FLIGHT2
FL162
172

FLIGHT1
FL180
207

FLIGHT2
FL162
172

Figure 1: GPT-4o successfully resolves a two-aircraft conflict and provides reasoning for the solution.

This can also extend to a conflict with more than two aircraft as can be seen in Figure 2.

26

27

Invoking: 'SENDCOMMAND' with '{'command': 'ALT FLIGHT3
36000'}'

Command executed successfully.

Invoking: `CONTINUEMONITORING` with `{'duration': 30}`

No conflicts detected.

All conflicts have been successfully resolved, and
there are no more conflicts detected in the airspace.
The adjustments to the altitudes of FLIGHT2 and
FLIGHT3 have ensured safe vertical separation between
all aircraft.

Invoking: 'CONTINUEMONITORING' with '{'duration': 10}'

Gathers Conflict Information

Invoking: 'SENDCOMMAND' with '{'command': 'ALT FLIGHT2
31000'}'

Command executed successfully.

responded: There are three aircraft pairs in conflict:
1. **FLIGHT2 and FLIGHT3**: Current vertical separation is
691 feet, with a time to lose separation (tLOS) of 145.55
seconds.
2. **FLIGHT1 and FLIGHT2**: Current vertical separation is
658 feet, with a tLOS of 145.55 seconds.
3. **FLIGHT1 and FLIGHT3**: Current vertical separation is
1350 feet, with a tLOS of 113.27 seconds.
Resolution Plan:
- **FLIGHT1** is currently at 33,000 feet and level.
- **FLIGHT2** is descending and currently at 33,658 feet.
- **FLIGHT3** is descending and currently at 34,350 feet.
To resolve the conflicts, I will adjust the altitudes to
ensure a minimum vertical separation of 2000 feet between
each pair.
Command for FLIGHT2:
- **Operator Explanation**: To resolve the conflict with
FLIGHT1 and FLIGHT3, I will instruct FLIGHT2 to descend to
31,000 feet to ensure adequate vertical separation.
- **Pilot Instruction**: "FLIGHT2, descend and maintain
flight level 310."
Command for FLIGHT3:
- **Operator Explanation**: To further ensure separation
from FLIGHT1, I will instruct FLIGHT3 to descend to 36,000
feet.
- **Pilot Instruction**: "FLIGHT3, descend and maintain
flight level 360."
Let's proceed with these commands.

> Entering new AgentExecutor chain...

Invoking: 'GETALLAIRCRAFTINFO' with
'{'command': 'GETACIDS'}'

Gathers Aircraft Information

FLIGHT2
FL337↓
300

FLIGHT1
FL330
223

FLIGHT3
FL345↓
227

FLIGHT2
FL310
300

FLIGHT1
FL330
223

FLIGHT3
FL360
227

Figure 2: GPT-4o resolves a three-aircraft conflict and effectively explains its reasoning.

> Entering new AgentExecutor chain...

Invoking: 'GETALLAIRCRAFTINFO' with
'{'command': 'GETACIDS'}'

Gathers Aircraft Information

Invoking: 'CONTINUEMONITORING' with
'{'duration': 10}'

Gathers Conflict Information

Invoking: 'SENDCOMMAND' with '{'command': 'ALT FLIGHT2
21500'}'

Command executed successfully.

- **FLIGHT2 and FLIGHT3** are in the most immediate
conflict due to their minimal vertical separation and
close horizontal distance. I will adjust their
altitudes to ensure vertical separation.

- **FLIGHT1** is in conflict with both FLIGHT2 and
FLIGHT3 but has more time to resolve due to greater
horizontal separation.
Commands:
1. **FLIGHT2**: Descend to 21,500 ft to create vertical
separation from FLIGHT3.
- **Reasoning**: FLIGHT2 is already descending, so
continuing to descend will quickly increase vertical
separation from FLIGHT3.
- **Radiotelephony Command**: "FLIGHT2, descend and
maintain flight level two one five."

2. **FLIGHT3**: Maintain current altitude to allow
FLIGHT2 to descend below.
- **Reasoning**: Holding FLIGHT3's altitude will allow
FLIGHT2 to descend below, creating the necessary
vertical separation.
- **Radiotelephony Command**: "FLIGHT3, maintain
current altitude."Let's execute these commands.

Invoking: 'SENDCOMMAND' with '{'command': 'ALT FLIGHT3
23369'}'

Command executed successfully.

Invoking: 'CONTINUEMONITORING' with '{'duration':
30}'

Gathers Conflict Information

Invoking: `SENDCOMMAND` with `{'command': 'HDG
FLIGHT1 180'}`

Command executed successfully.

- **FLIGHT1** and **FLIGHT3** are still in
conflict. To resolve this, I will adjust the
heading of FLIGHT1 to increase horizontal
separation.
Command:
1. **FLIGHT1**: Change heading to 180° to increase
horizontal separation from FLIGHT3.
- **Reasoning**: By changing FLIGHT1's heading, we
can increase the horizontal separation and resolve
the conflict.
- **Radiotelephony Command**: "FLIGHT1, turn left
heading one eight zero."

Invoking: 'CONTINUEMONITORING' with
'{'duration': 30}'

No conflicts detected

All conflicts have been successfully
resolved. The airspace is now clear, and
there are no conflicts between any
aircraft pairs.
Summary of Actions Taken:
1. **FLIGHT2** was instructed to descend
to 21,500 ft to create vertical separation
from FLIGHT3.
2. **FLIGHT3** was maintained at its
current altitude to allow FLIGHT2 to
descend below.
3. **FLIGHT1** was instructed to change
its heading to 180° to increase horizontal
separation from FLIGHT3.

These actions ensured both vertical and
horizontal separation, resolving all
conflicts effectively.

FLIGHT2
FL234↓
264

FLIGHT1
FL225
292

FLIGHT3
FL234↓
253

FLIGHT2
FL217↓
264

FLIGHT1
FL225
292

FLIGHT3
FL234
253

FLIGHT2
FL215
264

FLIGHT1
FL225
292

FLIGHT3
FL234
253

Figure 3: GPT-4o resolves a three-aircraft conflict by first resolving the most imediate conflict and then

the rest later

In Figure 3 GPT-4o agent understands that FLIGHT2 and FLIGHT3 are closer to each other currently

28

than to FLIGHT1 and it provides such explanation as well as separates those two aircraft first. After that it

notices that there is still one more conflict pair and it solves it by adjusting the heading of FLIGHT1. Finally

when there are no more conflicts the agent confirms it, provides a summary of actions it took and ends its

turn.

On the other hand, a smaller Llama3:70B model did not provide any explanation behind its decisions

and only gave the final answer concluding the conflict has been solved (Figure 4). The framework, tools,

system prompts and the rest are the same, only difference is different models.

Invoking: `CONTINUEMONITORING` with `{'duration': 10}`

No conflicts detected.

Since there are no conflicts detected, I can conclude
that the conflict has been resolved.

FLIGHT1
FL162↓
207

FLIGHT2
FL162
172

Invoking: 'CONTINUEMONITORING' with '{'duration': 10}'

Gathers Conflict Information

Invoking: 'SENDCOMMAND' with '{'command': 'ALT FLIGHT1
14000'}'

Command executed successfully.

Invoking: 'GETALLAIRCRAFTINFO' with '{'command':
'GETACIDS'}'

Gathers Aircraft Information

> Entering new AgentExecutor chain...

Invoking: 'GETALLAIRCRAFTINFO' with
'{'command': 'GETACIDS'}'

Gathers Aircraft Information

FLIGHT1
FL162
207

FLIGHT2
FL162
172

FLIGHT1
FL150↓
207

FLIGHT2
FL162
172

Figure 4: Llama3:70B resolves a two-aircraft conflict but fails to provide reasoning.

The following user prompt was employed to test the agents’ capabilities:

User Prompt

Objective: Monitor the airspace and resolve conflicts between aircraft pairs until there are no

more conflicts.

Guidelines: You are allowed to change the aircraft altitude and heading. You are encouraged to

use both methods (altitude and heading change) to resolve the conflicts. Provide your reasoning

for each command to air traffic operator as well as a command to the aircraft in radiotelephony

terminology. Think step by step.

These results shows the importance of model size in generating understandable explanations while

also executing tools for air traffic control operators. GPT-4o not only resolved the conflicts but also provided

clear and concise reasoning, making it more suitable for integration into air traffic management systems

compared to Llama3:70B, which lacked explainability in its solutions.

Experience Library
In this section we show some examples comparing solutions with and without experience library. In

Figure 5 can be seen how Llama3-70B model struggles to solve the conflict. It sends out the commands

that do not provide sufficient separation and also sends FLIGHT1 and FLIGHT3 to the same flight level,

while they are heading straight into each other. It then tries to adjust the headings of the aircraft, however

the adjustments are too small which does not lead to a solved conflict. Eventually the agent stops, leaving

the conflict unresolved.

29

FLIGHT1
FL294
283

FLIGHT3
FL294
231

FLIGHT2
FL312
169

Invoking: `SENDCOMMAND` with `{'command':
'ALT FLIGHT1 29400'}`

Command executed successfully.

Invoking: `GETALLAIRCRAFTINFO` with
`{'command': 'GETACIDS'}`

<Aircraft information>

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

<FLIGHT2 - FLIGHT3 conflict information>

Invoking: `SENDCOMMAND` with `{'command':
'ALT FLIGHT3 29400'}`

Command executed successfully.

Invoking: `GETALLAIRCRAFTINFO` with
`{'command': 'GETACIDS'}`

<Aircraft information>

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

<FLIGHT1 - FLIGHT2 conflict information>
<FLIGHT2 - FLIGHT3 conflict information>

Invoking: `SENDCOMMAND` with `{'command':
'HDG FLIGHT2 320'}`
Command executed successfully.

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

<FLIGHT1 - FLIGHT2 conflict information>
<FLIGHT1 - FLIGHT3 conflict information>
<FLIGHT2 - FLIGHT3 conflict information>

Invoking: `SENDCOMMAND` with `{'command':
'HDG FLIGHT1 140'}`

Command executed successfully.

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

<FLIGHT1 - FLIGHT2 conflict information>
<FLIGHT1 - FLIGHT3 conflict information>
<FLIGHT2 - FLIGHT3 conflict information>

Invoking: `SENDCOMMAND` with `{'command':
'HDG FLIGHT3 140'}`

Command executed successfully.

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

<FLIGHT1 - FLIGHT2 conflict information>
<FLIGHT1 - FLIGHT3 conflict information>
<FLIGHT2 - FLIGHT3 conflict information>

Invoking: `CONTINUEMONITORING` with `{'duration': 10}`

Aircraft Pairs in Conflict and their TCPA (sec):
FLIGHT1 - FLIGHT2 | TCPA: 138.74 sec -> 127.74 sec |
Heading Difference: 180.0 deg -> 180.0 deg | Distance:
27.18 Nautical miles -> 25.03 Nautical miles | Vertical
Separation: 0.0 ft -> 0.0 ft | Horizontal Distance:
27.18 Nautical miles -> 25.03 Nautical miles | DCPA:
0.05 Nautical miles -> 0.05 Nautical miles | tLOS:
113.33 sec -> 102.33 sec

FLIGHT2 - FLIGHT3 | TCPA: 138.74 sec -> 127.74 sec |
Heading Difference: 0.0 deg -> 0.0 deg | Distance: 2.72
Nautical miles -> 2.43 Nautical miles | Vertical
Separation: 0.0 ft -> 0.0 ft | Horizontal Distance: 2.72
Nautical miles -> 2.43 Nautical miles | DCPA: 0.05
Nautical miles -> 0.05 Nautical miles | tLOS: 113.33 sec
-> 102.33 sec

FLIGHT1 - FLIGHT3 | TCPA: 134.78 sec -> 123.78 sec |
Heading Difference: 180.0 deg -> 180.0 deg | Distance:
29.9 Nautical miles -> 27.46 Nautical miles | Vertical
Separation: 0.0 ft -> 0.0 ft | Horizontal Distance: 29.9
Nautical miles -> 27.46 Nautical miles | DCPA: 0.06
Nautical miles -> 0.06 Nautical miles | tLOS: 112.34 sec
-> 101.34 sec

Number of aircraft pairs in conflict: 3
Aircraft Altitude Information:
FLIGHT1: Altitude 29600.0 ft -> 29600.0 ft (level)
FLIGHT2: Altitude 29600.0 ft -> 29600.0 ft (level)
FLIGHT3: Altitude 29600.0 ft -> 29600.0 ft (level)

> Entering new AgentExecutor chain...

Invoking: 'GETALLAIRCRAFTINFO' with
'{'command': 'GETACIDS'}'

Aircraft idx: ['FLIGHT1', 'FLIGHT2',
'FLIGHT3']
Info on FLIGHT1 B747 index = 0
Pos: N45'18'37.0" E122'21'40.0"
Hdg: 141 Trk: 141
Alt: 29600 ft V/S: 0 fpm
CAS/TAS/GS: 283/439/439 kts M: 0.744

Info on FLIGHT2 A330 index = 1
Pos: N44'57'17.0" E122'46'15.0"
Hdg: 321 Trk: 321
Alt: 29600 ft V/S: 0 fpm
CAS/TAS/GS: 169/269/269 kts M: 0.456

Info on FLIGHT3 B777 index = 2
Pos: N44'55'9.0" E122'48'42.0"
Hdg: 321 Trk: 321
Alt: 29600 ft V/S: 0 fpm
CAS/TAS/GS: 231/363/363 kts M: 0.615

FLIGHT1
FL296
283

FLIGHT3
FL296
231

FLIGHT2
FL296
169

Figure 5: Llama3-70B unable to solve three-aircraft conflict

Here we consider the same agent configuration and conflict scenario as depicted in Figure 6, but with

an additional capability: the agent can now search in the experience library. The initial steps remain

unchanged, as the agent gathers information about the aircraft and the conflict. However, in this case, it

invokes a search in the experience library, providing accurate metadata, such as the number of aircraft

involved in the conflict (three) and the conflict formation (parallel).

Notably, the conflict description provided by the agent was less detailed in this instance, highlighting a

point addressed in the scientific article—where it was discussed that the quality of the conflict description

can depend on the model used. Despite the less informative description, the experience library still offered

useful conflict resolution suggestions. Following these recommendations, the agent instructed one aircraft

to ascend to a higher altitude, another to descend, while the third aircraft maintained its current altitude.

30

FLIGHT1
FL296
283

FLIGHT3
FL273
231

FLIGHT2
FL312
169

Invoking: `SENDCOMMAND` with `{'command':
'ALT FLIGHT2 31227'}`

Command executed successfully.
Invoking: `SENDCOMMAND` with `{'command':
'ALT FLIGHT3 27230'}`

Command executed successfully.

Invoking: `CONTINUEMONITORING` with
`{'duration': 10}`

<FLIGHT2 - FLIGHT3 conflict information>

Invoking: `CONTINUEMONITORING` with
`{'duration': 20}`

No conflicts detected.

It seems that there are no more conflicts
detected. I'll stop using tools and
respond directly. The aircraft are now
safely separated, and there are no more
conflicts. The air traffic control system
has successfully resolved the conflicts,
and the aircraft can continue their
flights without any further issues.

Invoking: `SEARCHEXPERIENCELIBRARY` with
`{'conflict_description': 'Aircraft FLIGHT1, FLIGHT2,
and FLIGHT3 are heading in the same direction with a
small horizontal distance between them.', 'num_ac':
3, 'conflict_formation': 'Parallel Formation'}`

Conflict Report
- **Number of Aircraft Involved:** 3 (AIRCRAFT_A,
AIRCRAFT_B, AIRCRAFT_C)

- **Relative Conflict Description:** AIRCRAFT_A is
positioned to the north of AIRCRAFT_B and AIRCRAFT_C,
maintaining a level altitude as it flies in the same
direction as the other two aircraft. AIRCRAFT_B is
slightly ahead of AIRCRAFT_C and is descending, both
flying parallel to each other. AIRCRAFT_C is also
descending and is positioned close to AIRCRAFT_B. All
aircraft are heading in the same direction, with
AIRCRAFT_A maintaining its altitude while AIRCRAFT_B
and AIRCRAFT_C are descending.

- **Conflict Formation:** Parallel Formation

1 | Increase altitude of AIRCRAFT_B by 1627 ft | Do's
Reason: This command was helpful because it increased
the vertical separation between AIRCRAFT_B and
AIRCRAFT_C, which were both descending and flying
parallel to each other. By increasing AIRCRAFT_B's
altitude, it reduced the risk of collision with
AIRCRAFT_C, which was positioned close to it.
2 | Decrease altitude of AIRCRAFT_C by 2370 ft | Do's
Reason: This command was helpful as it further
increased the vertical separation between AIRCRAFT_B
and AIRCRAFT_C. By decreasing AIRCRAFT_C's altitude,
it ensured that both aircraft were at different
altitudes, thereby resolving the conflict by
preventing any potential overlap in their flight
paths.

Invoking: `CONTINUEMONITORING` with `{'duration': 10}`

Aircraft Pairs in Conflict and their TCPA (sec):
FLIGHT1 - FLIGHT2 | TCPA: 138.74 sec -> 127.74 sec |
Heading Difference: 180.0 deg -> 180.0 deg | Distance:
27.18 Nautical miles -> 25.03 Nautical miles | Vertical
Separation: 0.0 ft -> 0.0 ft | Horizontal Distance:
27.18 Nautical miles -> 25.03 Nautical miles | DCPA:
0.05 Nautical miles -> 0.05 Nautical miles | tLOS:
113.33 sec -> 102.33 sec

FLIGHT2 - FLIGHT3 | TCPA: 138.74 sec -> 127.74 sec |
Heading Difference: 0.0 deg -> 0.0 deg | Distance: 2.72
Nautical miles -> 2.43 Nautical miles | Vertical
Separation: 0.0 ft -> 0.0 ft | Horizontal Distance: 2.72
Nautical miles -> 2.43 Nautical miles | DCPA: 0.05
Nautical miles -> 0.05 Nautical miles | tLOS: 113.33 sec
-> 102.33 sec

FLIGHT1 - FLIGHT3 | TCPA: 134.78 sec -> 123.78 sec |
Heading Difference: 180.0 deg -> 180.0 deg | Distance:
29.9 Nautical miles -> 27.46 Nautical miles | Vertical
Separation: 0.0 ft -> 0.0 ft | Horizontal Distance: 29.9
Nautical miles -> 27.46 Nautical miles | DCPA: 0.06
Nautical miles -> 0.06 Nautical miles | tLOS: 112.34 sec
-> 101.34 sec

Number of aircraft pairs in conflict: 3
Aircraft Altitude Information:
FLIGHT1: Altitude 29600.0 ft -> 29600.0 ft (level)
FLIGHT2: Altitude 29600.0 ft -> 29600.0 ft (level)
FLIGHT3: Altitude 29600.0 ft -> 29600.0 ft (level)

> Entering new AgentExecutor chain...

Invoking: 'GETALLAIRCRAFTINFO' with
'{'command': 'GETACIDS'}'

Aircraft idx: ['FLIGHT1', 'FLIGHT2',
'FLIGHT3']
Info on FLIGHT1 B747 index = 0
Pos: N45'18'37.0" E122'21'40.0"
Hdg: 141 Trk: 141
Alt: 29600 ft V/S: 0 fpm
CAS/TAS/GS: 283/439/439 kts M: 0.744

Info on FLIGHT2 A330 index = 1
Pos: N44'57'17.0" E122'46'15.0"
Hdg: 321 Trk: 321
Alt: 29600 ft V/S: 0 fpm
CAS/TAS/GS: 169/269/269 kts M: 0.456

Info on FLIGHT3 B777 index = 2
Pos: N44'55'9.0" E122'48'42.0"
Hdg: 321 Trk: 321
Alt: 29600 ft V/S: 0 fpm
CAS/TAS/GS: 231/363/363 kts M: 0.615

FLIGHT1
FL296
283

FLIGHT3
FL296
231

FLIGHT2
FL296
169

Figure 6: Llama3-70B ables to solve three-aircraft conflict with experience library

Prompts
In this section, we present the various prompts used in both single-agent and multi-agent systems, including

the planner, executor, and verifier. These prompts guide each agent’s actions and decision-making

processes.

Single Agent Prompt
The following prompt is designed for a single agent to manage aircraft conflicts and provide solutions

based on the operator’s preferences:

31

Single Agent System Prompt

You are an air traffic control assistant. Your goal is to solve aircraft conflict according to the following

requirements: {separation_guidelines}.

{experience_lib_instructions}

<commands>

{bluesky_commands}

</commands>

<EXAMPLES>

{examples}

</EXAMPLES>

<INSTRUCTIONS>

You need to send commands in order to solve the conflicts. Start by gathering aircraft information

with GETALLAIRCRAFTINFO and conflict information with CONTINUEMONITORING. You must

solve the conflicts till there are no more conflicts left. Confirm that there are no conflicts left by using

tool CONTINUEMONITORING.

Even if aircraft is descending or climbing, you can still change its altitude to either higher or lower

altitude. {operator_preference} </INSTRUCTIONS>

Multi-Agent System Prompts
Planner Input Prompt:

Planner Prompt

Check the airspace and if there are conflicts, provide the actionable plan together with monitoring

value.

<OPERATORS PREFERENCE>

{user_input}

</OPERATORS PREFERENCE>

Planner System Prompt:

Planner System Prompt

You are an air traffic controller who must monitor the airspace. Gather aircraft information and

conflict information, and provide an actionable plan to resolve the conflicts. {planner_options}

{experience_lib_instructions}

<REQUIREMENTS>

{separation_guidelines}

</REQUIREMENTS>

<EXAMPLES>

{examples}

</EXAMPLES>

<INSTRUCTIONS>

1. Use specific, global values for instructions, not relative values. For example never instruct to

change altitude by x amount or heading by x amount.

2. If there are no aircrafts in conflicts, respond with: NO CONFLICTS.

3. Do not introduce new conflicts in your plan, people’s lives depend on this plan.

4. You must adhere to operators preference.

</INSTRUCTIONS>

{operator_preference}

Executor Input Prompt:

32

Executor Prompt

Only execute the plan (ignore monitoring value): {plan}

Commands syntax:

{bluesky_commands}

Once you have executed the commands from the plan, finish the task by responding with: TASK

COMPLETE

Executor System Prompt:

Executor System Prompt

You are an air traffic controller who must execute commands according to the plan.

Commands syntax:

{bluesky_commands}

Note:

- If there is a command that mentions maintaining heading or altitude at a certain value, you must

still send that command.

Once you have executed the commands from the plan, finish the task by responding with: TASK

COMPLETE

Verifier Input Prompt:

Verifier Prompt

Here is the resolution plan that has been executed: {plan}

Here is the operator’s preference: {user_input}

Verifier System Prompt:

Verifier System Prompt

You are an air traffic controller. There has been a conflict in the airspace. The resolution plan has

been executed. You must verify if the conflict has been resolved or not.

Gather aircraft information and conflict information by monitoring the airspace for the instructed

duration before verifying the resolution. You must provide a new plan to resolve the conflict if it

persists.

<INSTRUCTIONS>

1. Use specific, global values for instructions, not relative values.

2. Do not introduce new conflicts in your plan.

3. If there are no aircraft in conflict, respond with: NO CONFLICTS.

4. You must adhere to the operator’s preference.

</INSTRUCTIONS>

{operator_preference}

These prompts ensure that each agent in the system performs its task effectively, following the provided

instructions and guidelines.

Other Prompts
The following additional prompts are used in the the input and system prompts. For example in the executor

agent prompt there is {bluesky_commands} where the bluesky commands prompt goes in.

Separation Guidelines

Either vertical separation of 2000 ft or horizontal separation of 5 nautical miles between all aircraft

in conflict.

33

Bluesky Commands

Command to change aircraft altitude is: ALT AIRCRAFT_CALL_SIGN ALTITUDE.

Command to change aircraft heading is: HDG AIRCRAFT_CALL_SIGN HEADING.

Arguments information:

- Altitude is in feet. In the command ALTITUDE is only the number without any units.

- Heading is in degrees between 0 and 360. In the command HEADING is only the number without

any units.

- Aircraft call sign is a unique identifier for each aircraft.

Operator Preference

<OPERATORS PREFERENCE INSTRUCTIONS>

You must always adhere to operator’s preference. For example, if the operator prefers to only use

heading changes, you can only use HDG command, or if the operator prefers to only use altitude

changes, you can only use ALT command. If the operator prefers to start solving conflict when

tLOS (time to lose separation) is less than a specific value, then you can only send commands to

the aircraft in conflict when their tLOS is less than that value.

If all aircraft pairs in conflict have tLOS greater than the value, use the CONTINUEMONITORING

tool to fast forward the time until tLOS is less than the value and then send the command to

that aircraft pair. You can repeat the process for other pairs by fast forwarding time and sending

commands when tLOS is less than the specified value.

</OPERATORS PREFERENCE INSTRUCTIONS>

Experience Library Instructions

You must use the SearchExperienceLibrary tool if there is a conflict to get help from past conflict

experiences and then solve your conflict (if no conflict, don’t use it). Only use it one time after

acquiring aircraft information and conflict details. It is only a similar conflict, not identical, hence you

must still use your judgement to solve the current conflict.

Planner Options

You can instruct to change aircraft altitude and/or heading.

Examples

For example, if three aircraft are in conflict and at the same altitude, it would be a good idea to

send one aircraft up, the other down, and the third to keep the same altitude, ensuring enough

vertical separation. Alternatively, you could change their headings so that one aircraft goes one

way, another goes in the opposite direction, and the third goes straight.

Or, if multiple aircraft are ascending and in conflict, you can instruct one aircraft to descend and the

other to continue ascending.

The user input prompt is the prompt that the operator would input. It can vary based on operators

instructions or test that are being done, but in this example the user input prompt provides an objective

and guidelines, which encouraged to us aircraft altitude and heading change to resolve conflicts and to

provide reasoning as well as a command to the aircraft in radiotelephony terminology.

34

User Input

Objective: Monitor the airspace and resolve conflicts between aircraft pairs until there are no

more conflicts.

Guidelines: You are allowed to change the aircraft altitude and heading. You are encouraged to

use both methods (altitude and heading change) to resolve the conflicts. Provide your reasoning

for each command to air traffic operator as well as a command to the aircraft in radiotelephony

terminology. Think step by step.

Part II
Appendix

35

1
Research proposal

1.1. Introduction
Air traffic control (ATC) is a critical yet increasingly complex field tasked with ensuring the safety and

efficiency of global airspace. As air traffic volumes grow, so too does the complexity of managing multiple

flights, which heightens the risk of operational errors and potential accidents [1]. Traditional methods of air

traffic management (ATM) have been reliable yet are limited by their slow adaptability to dynamic and high-

demand scenarios. Recognising this, SESAR has identified artificial intelligence (AI) as a crucial enabler

for modernising air traffic control systems, which includes addressing new complexities like U-Space

operations. Early initiatives like the SESAR AISA project [2] aimed to enhance situational awareness

through knowledge graphs and machine learning. Subsequent projects, such as SESAR TAPAS [3] and

ARTIMATION [4], have focused on making AI decision-making transparent through explainable AI and

visual analytics, attempting to bridge the gap between artificial and human situational awareness.

Recent advancements in AI, particularly the integration of large language models (LLMs) founded on

transformer architectures, have shown significant promise in transforming ATC operations. LLMs, trained

on extensive datasets like the Common Crawl [5], can generate contextually relevant text for real-time

decision-making typical in air traffic control. These models not only facilitate natural language processing

but also extend to more complex cognitive tasks such as conflict resolution and strategic planning. Building

upon these developments, this thesis explores the integration of LLMs into ATM, proposing that they can

serve as intelligent assistants in air traffic control, particularly in enhancing situational awareness and

aiding with routine tasks. Drawing inspiration from the Voyager framework—a novel concept of a language

model-empowered embodied agent designed for autonomous exploration and skill acquisition in virtual

environments [6] — this thesis focuses on the potential of LLM-based systems designed for interactive

and autonomous operations within air traffic simulation environments. The development of an embodied

LLM agent is proposed to further enhance this integration. An embodied LLM can interact with software

tools and perceive the state of air traffic in real time. By leveraging function-calling capabilities, LLMs

can execute actions within air traffic management simulators, allowing them to learn ATC experiences

in a manner similar to trainee ATCOs. This embodiment allows the LLM to not only understand and

generate human-like text but also to engage directly with the operational environment, enabling it to provide

recommendations and perform tasks through a direct interface with control systems, thereby combining

cognitive capabilities with physical or digital actions in the control environment.

Moreover, these LLM agents could assist in managing routine tasks, such as monitoring flight data and

updating flight plans, thereby reducing the cognitive load on human controllers. More critically, they could

play a decisive role in conflict resolution strategies by identifying potential aircraft conflicts, suggesting

optimal manoeuvring solutions as well as executing. The ability to store and retrieve learned experiences

through a vector database, similar to Voyager’s skill library, would enable these agents to adapt to new

scenarios by applying previously acquired knowledge. This approach harnesses the cognitive abilities of

LLMs and their capacity for continuous learning.

Furthermore, the thesis will evaluate the capabilities of these AI models in operational scenarios,

focusing on their ability to understand, monitor, and resolve air traffic conflicts with a level of reasoning to

human controllers, while also addressing the transparency of LLM decision-making processes, contrasting

with other AI approaches that often operate as ”black boxes.”

36

1.2. Motivation and Research Proposal 37

1.2. Motivation and Research Proposal
By adopting LLMs into ATM, which mimic human cognitive processes such as memory, awareness, and

decision-making, this research aims to bridge the current gaps between automated systems and human

controllers. This section outlines the objective, research main question and sub-questions and the strategic

plan devised to investigate the capabilities and integration of LLMs into ATM, laying the groundwork for

this thesis.

Objective

Develop a Language Model Embodied Air Traffic Agent capable of solving air traffic conflicts with

human reasoning abilities and learning from past experiences.

Main Research Question

How can the integration of LLM into ATM systems, through the development of an embodied

Language Model Air Traffic Agent, enable the resolution of air traffic conflicts with human-like

reasoning and learning abilities?

Sub-Questions

• How can the decision-making process of an embodied agent be made transparent and

understandable to human operators?
• Which LLMs would be able to solve air traffic conflicts?
• What methodologies can be developed to enable agents to learn from past conflict resolutions

and improve future performance?
• How can the embodied agent be connected with air traffic simulators like BlueSky?

Research Plan

1. Review existing literature to establish a theoretical framework and identify integration strategies for

LLM in air traffic simulator.

2. Develop an LLM agent capable of interfacing with the BlueSky simulator to receive data and send

commands.

3. Develop a methodology that enables the LLM agent to learn from historical conflict resolutions to

improve decision-making.

4. Construct a comprehensive dataset of various BlueSky conflict scenarios to test the LLM agent.

5. Assess the LLM agent’s ability to resolve air traffic conflicts using the constructed scenarios and

document the results.

6. Analyse performance data to pinpoint deficiencies and enhance the LLM agent’s algorithms and

operational protocols.

2
Literature Review

2.1. Incresed Workload and its Impact on Aviation Safety
The aviation sector continuously strives to balance increasing air traffic demands with safety and efficiency.

One significant concern is the rising workload on air traffic controllers (ATCOs) and pilots, which compro-

mises safety margins and increases the risk of high-severity incidents. Recent studies underscore the

escalating complexity in air traffic management due to increased global travel demands. The number of

airborne aircraft has risen steadily. The trend can be seen in Figure 2.1.

Figure 2.1: Global air passenger journeys, billion [7]

The increasing volume of flights results in a higher communication load between ATCOs and pilots,

directly impacting their workload. According to Hui-Hua Yang, Yu-Hern Chang and Yi-Hui Chou [8],

communication errors between pilots and ATCOs are identified as a critical factor in aviation safety.

These errors often lead to high-severity incidents, where the interactions between ATCOs and pilots,

compounded by increasing air traffic, become overly complex, making the airspace management highly

challenging. The study systematically explored factors leading to communication errors through detailed

analysis using t-tests, factor analysis, and linear regression. The research identified critical factors such as

high traffic flow and severe weather conditions, which often trigger communication misunderstandings.

These errors are further worsened by high workload scenarios, which diminish the cognitive capacity

of ATCOs and pilots, leading to a higher probability of errors during peak traffic times [8]. The study

points out that the complicated interactions required under high-stress conditions in air traffic control

settings are particularly susceptible to human factors limitations. High workload and rapid decision-making

requirements, significantly increase the likelihood of aviation incidents. For instance, the study highlights

that errors in communication, like misheard call signs or overlooked instructions due to workload, directly

correlate with the number of near-misses and actual collisions.

Further evidence supporting the increasing workload can be seen in studies focusing on heart rate

variability (HRV), which is a reliable indicator of stress and workload in operational settings. Workload

38

2.2. AI Integration in Air Traffic Management 39

assessment of air traffic controllers [9] highlighted significant increases in workload as evidenced by

changes in HRV parameters among ATCOs during operations. The assessment indicated that variations

in low-frequency (LF) and high-frequency (HF) components of HRV were associated with the controllers’

workload levels, directly correlating with the operational complexity and traffic density. These findings

suggest that physiological metrics can provide objective insights into the workload challenges faced by

ATCOs. The increasing workload not only elevates the risk of operational errors but also has profound

implications for the health and well-being of the personnel involved.

2.2. AI Integration in Air Traffic Management
AISA

One of the main developments in air traffic management is the introduction of AI in ATC to reduce the

workload of air traffic controllers. The SESAR AISA (AI Situational Awareness Foundation for Advancing

Automation) project [2] was an early attempt to incorporate AI into air traffic management with the goal of

reducing the workload on ATCOs. the project establishes ”distributed situational awareness,” wherein AI

systems collaborate with ATCOs by sharing an understanding of the airspace and current traffic situations.

Figure 2.2: AISA Concept of Distributed Situational Awareness [2]

The project is designed to explore human-machine cooperation, starting with relatively straightforward

tasks such as monitoring air traffic. In all, three machine learning (ML) modules were developed: trajectory

prediction, conflict detection, and complexity assessment module. The core of the AISA system is a

knowledge graph, which processes factual aeronautical data and applies rule-based reasoning to assess

current and future system states. ML techniques are employed to predict potential conflicts, making the

AI ”aware” of the air traffic situation in a way similar to human ATCOs. The machine learning module

developed within the AISA project has already demonstrated its potential, particularly in conflict detection.

The system was tested with classification techniques to identify situations of interest (SI), where aircraft

pairs are predicted to intersect within predefined horizontal and vertical separation limits. Using historical

4D trajectory and ADS-B data, the system was able to predict conflicts with high accuracy, identifying

critical situations well within current separation minima. The model achieved 100 % accuracy for conflicts

within 5 nautical miles (NM) and 97 % accuracy for conflicts within 10 NM, indicating its potential for

improving air traffic safety and reducing workload.

However, the human-in-the-loop simulations revealed a gap between artificial and human situational

awareness, leaving room for improvement in AI’s ability for complex decision-making processes. One

of the most significant limitations of the current AISA system is its lack of transparency in how it arrives

at its conclusions. The AI system provides conflict detection results and other inputs directly to ATCOs,

but without any explanation or reasoning behind the outputs. ATCOs are only given the final result, such

2.2. AI Integration in Air Traffic Management 40

as a warning of a potential conflict or a non-conformance, but the system does not explain how these

conclusions were reached. This lack of insight into the system’s decision-making process makes it difficult

for human operators to fully trust the AI’s recommendations, particularly in high-pressure or ambiguous

situations where understanding the rationale is crucial. The absence of explanatory feedback from the AI

system also contributes to the broader gap between human and machine situational awareness. Human

operators, especially experienced ATCOs, rely heavily on contextual information and reasoning to make

decisions. In contrast, the AISA system delivers answers in a black-box manner, leaving operators to

accept the outputs without understanding the underlying logic. This contrasts sharply with human ATCOs,

who continuously assess and re-assess information based on experience, prioritisation of tasks, and the

broader air traffic context. The AI’s inability to provide explanations of its reasoning makes it difficult

for operators to know when to trust the system and when to override it. Moreover, this limitation was

further compounded by the method of communication used in the AISA project. AI-generated inputs were

delivered through oral messages, which ATCOs often found distracting, especially when no reasoning

accompanied the alerts. This method not only added to their cognitive load but also prevented them

from critically assessing the AI’s suggestions. Without a clear understanding of why the system issued a

particular warning, ATCOs were less inclined to trust and rely on the system, highlighting the importance

of enhancing transparency in AI-driven decision support systems.

the results in Figure 2.2 and Figure 2.4 show that ATCOs’ evaluations of the AI system were mixed,

particularly when it came to the system’s ability to support situational awareness and decision-making.

The bar charts illustrate the variation in how different ATCOs rated the AI system’s support across different

scenarios. The scenarios are labelled E2S2.1, E2S2.2, E2S3, E2S4.1, and E2S4.2 and there is a range of

support ratings from ”1 = not at all supportive” to ”5 = very supportive.” In general, a significant portion

of ATCOs gave the system low to moderate support ratings, as shown by the large portions of orange

and red bars in the charts, corresponding to the ratings of 1 and 2. This indicates that many ATCOs felt

the AI system did not offer adequate support for situational awareness in various instances. Although

there were some ATCOs who rated the system more positively (as reflected in the green and yellow

portions representing ratings of 4 and 5), these instances were less common. The overall trend across the

scenarios is clear—most ATCOs did not find the AI system highly supportive. This suggests that while the

AI system was able to detect conflicts and provide situational information, its contribution to enhancing

ATCOs’ decision-making and trust in the system was limited. A key reason for this is likely the lack of

explanations accompanying the AI’s outputs, which made it difficult for ATCOs to understand and trust the

AI’s recommendations.

Figure 2.3: Did AISA inputs supported ATCOs situation awareness overall? (N= 16)

2.2. AI Integration in Air Traffic Management 41

Figure 2.4: Did AISA inputs supported ATCOs decision making? (N= 16)

In conclusion, based on these results, AI systems in the context of air traffic control still have a lot

of room for improvement, especially in terms of effectively supporting ATCOs’ situational awareness,

decision-making, and overall trust in the system. Providing clear explanations alongside outputs, improving

communication methods, and enhancing real-time capabilities are essential steps towards closing the gap

between human and machine situational awareness.

TAPAS

The SESAR TAPAS (Towards an Automated and exPlainable ATM System) project [3] represented an

advancement in the ATM field, targeting explainability. The project tested explainable AI (XAI) and visual

analytics (VA) in human-operated simulations that tried to make AI’s decision-making processes accessible

to controllers. The main goal of TAPAS was to investigate how XAI can be applied to two primary use

cases: Air Traffic Flow and Capacity Management (ATFCM) and conflict detection and resolution. XAI

prototypes, developed to explain AI-generated solutions, were integrated with VA systems to provide

real-time visual insights into how decisions were made. This was particularly beneficial in the ATFCM

domain, where operators could get insights into the explanations behind demand-capacity imbalance

solutions. During the simulations, both air traffic controllers and flow managers tested the TAPAS system.

The results showed that explainability improved trust, especially when operators could easily access the

information behind AI decisions. Despite the project’s achievements, several limitations were identified.

The main downside of the TAPAS system lies in the gap between the AI-generated solutions and the visual

analytics (VA) tool meant to explain these outputs to human operators. Although the system uses a visual

format to present information, several issues hinder its effectiveness in fostering clear understanding and

trust. The VA tool pulls information from the AI system, but this bridge between AI and visualisation proves

insufficient in delivering explanations that are both clear and intuitive. Another key limitation was that

the AI’s decision-making process, particularly in the conflict detection and resolution use case, was often

perceived as overly complex. While the AI tools could suggest valid resolutions, controllers sometimes

struggled to fully understand why certain decisions were made, especially under time constraints. While

intended to improve transparency, users found the information difficult to understand, particularly due to

the AI’s method of solving all issues at once. This shift in problem-solving logic further widened the gap

between what the AI was doing and what operators expected. In Figure 2.5 shows TAPAS VA tool. It can

be seen that the suggestions for solving the conflict are not provided one by one but everything at once

which can be overwhelming to operators. This leads to trust issues in the system. Users expressed that

trust in the AI’s decisions could be lost rapidly, and rebuilding it was a challenge. The system’s explanations

2.2. AI Integration in Air Traffic Management 42

Figure 2.5: Snapshot of The TAPAS VA Tool for The Conflict Detection and Resolution Use Case [3]

were not always intuitive, causing users to question the reliability of the AI when decisions seemed unclear

or unfamiliar.

Also, it did not always provide complete solutions. The system occasionally failed to resolve all conflicts,

requiring human operators to intervene. This issue highlighted the challenge of full automation in conflict-

heavy scenarios. Finally, the VA system introduced additional screens for controllers to consult, which

sometimes caused distractions, particularly in high-pressure scenarios. Operators indicated that integrating

the XAI explanations into their existing control systems, rather than using a separate interface, would

have improved usability. In conclusion, the reliance on a purely visual format to explain the AI’s complex

decision-making processes, without adequately bridging the gap between the AI’s logic and the operators’

understanding, is the core downside of the TAPAS system. This disconnect affects clarity, trust, and the

overall effectiveness of the system.

ARTIMATION

Similarly to the TAPAS project, ARTIMATION (Transparent Artificial Intelligence and Automation to

Air Traffic Management Systems) [4], also focuses on a transparent AI model through visualisation. In

this project the visual analytics approach includes tools such as brushing, linking, and aggregation of

flight trajectories, allowing for a detailed analysis of large datasets in real time. These techniques aim

to bridge the gap between human situational awareness and AI automation, ensuring that controllers

can oversee AI decisions and intervene when necessary. While the explainability tools improved trust to

some extent, users still reported low confidence in the AI’s ability to manage conflicts autonomously. The

ARTIMATION project leverages heat maps to visually display ”go” and ”no-go” areas, along with optimal

solutions, providing a comprehensive visual representation of AI-driven decisions. These heat maps offer

controllers a clear depiction of where conflicts may arise and suggest the best courses of action to resolve

them.

However, a significant limitation is that while these visual tools effectively show the AI’s output, they

fall short of explaining why certain areas are designated as ”go” or ”no-go” or why a specific solution is

considered optimal. This lack of a clear, human-intuitive explanation behind the AI’s reasoning creates

a disconnect for air traffic controllers. While they can see the results, they are not given a deeper

understanding of the logic driving these decisions. This missing step in the explainability process limits

the controllers’ ability to fully trust the AI system, as they cannot readily grasp the rationale behind the

suggested actions in a way that aligns with their own decision-making processes. This was particularly

evident when the AI’s proposed solutions deviated from the conventional methods that human controllers

2.3. Large Language Models in Air Traffic Management: Current Applications and Future Potential 43

Figure 2.6: ARTIMATION VA tool

were accustomed to. This lack of trust limits the extent to which AI can take over decision-making processes

in critical, time-sensitive scenarios. The increased cognitive load introduced by the need to constantly

interpret AI explanations can also act as a limitation. During busy operational periods, ATCOs may find it

difficult to engage with the AI system’s detailed visual outputs, which require additional time to process.

Overall, the human-in-the-loop simulations revealed a gap between artificial and human situational

awareness, highlighting room for improvement in AI’s complex decision-making processes. This gap

requires AI to offer more nuanced and human-like reasoning capabilities in air traffic management environ-

ments.

While the AI systems currently being integrated into air traffic management have shown potential, they

still face significant limitations, particularly in decision-making transparency, human-like reasoning, and

complex problem-solving. These challenges reduce their effectiveness in high-pressure environments

where clear reasoning and real-time adaptation are critical. Large language models offer a promising

alternative by addressing some of these gaps. With their advanced natural language processing capabilities,

LLMs can not only process large amounts of data but also provide more intuitive, human-like reasoning,

which may enhance operational efficiency and decision support in air traffic management.

2.3. Large Language Models in Air Traffic Management: Current

Applications and Future Potential
Since 2023, researchers have experimented with the integration of large language models (LLM) into air

traffic management. Large language models are advanced AI systems capable of understanding and

generating human-like text. Their proficiency in real-time decision-making has the potential to improve

operational efficiency and automate labour-intensive tasks.

Several recent studies have explored use cases for aviation applications. For example, ”CHATATC:

Large LanguageModel-Driven Conversational Agents for Supporting Strategic Air Traffic FlowManagement”

[10] employs language models to understand Ground Delay Program (GDP) text data. The authors present

CHATATC, an LLM designed to assist Traffic Managers by summarising historical GDP data, spanning

over 23 years and 80,000 GDP records. The tool aims to help Traffic Managers by quickly retrieving and

synthesising information about previous GDPs, allowing them to focus on unique, non-repetitive challenges

in air traffic management. The paper highlights two approaches to training CHATATC: in-prompt learning

and fine-tuning on a large dataset of GDP records. CHATATC demonstrates promising results in providing

summaries and answering queries related to GDP rates, reasons, and durations. However, the study also

points out certain limitations, such as its inability to handle some questions (e.g., identifying the GDP with

the highest delay) accurately. Another limitation is the risk of hallucinations, where the model generates

responses that are not factually correct but looks very convincing.

2.3. Large Language Models in Air Traffic Management: Current Applications and Future Potential 44

”AviationGPT: A large language model for the aviation domain” project [11] fine-tunes open-source

language models such as LLaMA-2 and Mistral to better understand the aviation context. AviationGPT

is specifically designed to handle aviation-related tasks, including question answering, summarisation,

document writing, information extraction, report querying, and data cleaning. The model is trained on a

curated dataset that includes over 50 aviation-related books, technical reports, FAA and NASA documents,

and additional domain-specific data. This training allows AviationGPT to excel in processing aviation-related

texts filled with jargon and specialised terminology. AviationGPT’s fine-tuning methodology follows a

two-stage domain-specific training framework. The first stage involves continued pre-training on unlabeled

aviation text data, while the second stage uses instruction fine-tuning to improve the model’s ability to

follow specific instructions in an aviation context.

Figure 2.7: AviationGPT tuning process [11]

This results in improved accuracy and context relevance compared to general-purpose models. Avia-

tionGPT shows a performance gain of over 40 % in tasks like runway extraction from Digital Automatic

Terminal Information Service (DATIS) messages compared to rule-basedmethods, highlighting its efficiency

and potential for operational use in the aviation industry. Additionally, the model’s architecture is designed

to mitigate common challenges in LLMs, such as hallucination, by integrating a retrieval-augmented gener-

ation (RAG) mechanism, which allows AviationGPT to reference external aviation knowledge databases.

This feature ensures that the model provides more accurate and up-to-date information, significantly

enhancing its utility for aviation professionals.

Project “The Effectiveness of Large Language Models for Textual Analysis in Air Trans- portation” [12]

uses a language model for text classification and clustering based on ATFM regulations and weather reports.

The study employs a two-step methodology. First, the LLM is tasked with clustering weather-related ATFM

regulations based on textual comments provided by flow managers. These comments describe weather

conditions that led to the implementation of specific regulations, such as low visibility, strong winds, or

thunderstorms. The LLM clusters these textual data into groups representing different weather disruptions,

including snow, runway conditions, cumulonimbus activity, and low visibility. In the second step, the

clustered data is combined with weather observations from METAR reports to train a tree-based classifier.

This classifier uses the clustered information to predict the most likely weather-related cause of future

ATFM regulations. The authors found that the LLM-based clustering outperformed traditional machine

learning approaches, identifying specific weather triggers with higher accuracy. One of the study’s key

findings is that this methodology could be applied beyond weather-related regulations to other textual

data, such as NOTAMs, providing valuable insights into the primary causes of regulations or delays. The

clustering approach also demonstrated strong potential in post-operational analysis, helping to identify the

reasons behind regulations that were not immediately apparent during operations.

However, these use cases are primarily focused on natural language processing, which has not utilised

the full potential of language models in managing air traffic operations while providing human-like reasoning.

The current implementations are limited to tasks such as text summarisation, classification, and clustering,

which, although valuable, do not fully address the complexities of real-time decision-making and operational

2.3. Large Language Models in Air Traffic Management: Current Applications and Future Potential 45

management in dynamic air traffic environments. These models, while capable of handling large datasets

and extracting relevant information, still lack the ability to engage in more complex interactions that require

reasoning, prediction, and adaptation over time.

Voyager is a novel concept of a language model-empowered embodied agent designed for autonomous

exploration and skill acquisition in the virtual Minecraft environment [6]. Unlike traditional AI systems,

which focus on isolated tasks, Voyager is an embodied agent, meaning it interacts with its environment not

just through ”thinking” but also by ”acting” within the world. The core idea is that while LLM like GPT-4

serves as the brain, reasoning and generating actions, the agent possesses a ”body” that enables it to

perform physical tasks and interact with its surroundings autonomously, much like a human would. Voyager

consists of three primary components:

• Automatic Curriculum: This component enables the agent to autonomously set exploration tasks

based on its current capabilities and environmental state. The curriculum is designed to incrementally

increase the complexity of tasks, allowing the agent to learn and progress in an open-ended manner.

The focus is on continuous discovery and learning, without a predefined end goal.

• Skill Library: One of Voyager’s most powerful features is its ability to build and maintain a skill library.

As the agent explores the world, it solves tasks by generating executable code, which is then stored

in the skill library. Each stored skill can be retrieved later and used to solve similar tasks, allowing

Voyager to rapidly scale its abilities. The skills are also compositional and reusable, meaning that

complex behaviours are built from simpler, previously learned actions. For example, learning how to

craft a wooden tool can lead to crafting more complex tools like iron and diamond tools.

• Iterative Prompting Mechanism: Unlike traditional approaches where a single action is taken based

on a one-time instruction, Voyager employs a feedback loop. It generates actions, observes the

outcomes, and refines its approach based on environmental feedback or execution errors. This

process allows the agent to improve continuously, correcting mistakes and enhancing its skill set

over time.

Figure 2.8: Voyager three key components

The real innovation in Voyager is its ability to mimic human-like learning. The agent doesn’t just

follow a set of pre-programmed instructions but can learn from experience, adapt to its surroundings,

and apply previously learned knowledge to new and unknown tasks. For instance, if it learns how to

combat zombies, it can apply similar tactics when facing spiders. This capacity for lifelong learning sets

Voyager apart from other AI systems, as it continuously refines its skillset without human intervention.

While the language model serves as the ”brain” of the system—responsible for generating plans and

reasoning through tasks—the agent’s ”body” allows it to interact with the environment in a tangible way,

performing actions such as mining, crafting, or battling enemies in Minecraft. The integration of these two

2.3. Large Language Models in Air Traffic Management: Current Applications and Future Potential 46

elements—the LLM’s cognitive abilities and the agent’s physical interaction with its environment—makes

Voyager a unique development in AI, particularly for open-world exploration and task execution. However,

Voyager is not without limitations. The use of an LLM like GPT-4 incurs significant computational costs,

which may limit its scalability in certain applications. Additionally, the iterative prompting mechanism, while

powerful, can sometimes lead to hallucinations—where the agent generates incorrect solutions or attempts

to craft items that don’t exist in the Minecraft world. Despite these challenges, Voyager represents a major

advancement in the development of embodied AI capable of autonomous learning and task execution.

The skill library functions as a vector database, where each skill’s description and executable code are

transformed into vector embeddings and stored for future retrieval. The use of a vector database allows

the agent to perform similarity searches based on textual input, facilitating rapid access to relevant skills

when faced with new tasks. When LLM needs to find a suitable skill to execute a specific task, it searches

the skill library by embedding the textual query into a vector. The vector database then retrieves the most

similar skills based on the proximity of their embeddings in the vector space. This process ensures that the

agent can leverage previously learned skills to tackle new challenges efficiently. The working mechanism

is as follows: each skill’s description and code are input into an embedding model to generate vector

representations. Embedding translates textual and code data into high-dimensional numerical vectors

that capture semantic meanings and relationships between different skills. The generated vectors are

stored in the vector database along with associated metadata, such as skill identifiers and categories.

The database indexes the vectors using algorithms optimised for similarity search, such as Approximate

Nearest Neighbors (ANN). Indexing accelerates the search process by organising vectors in a way that

minimizes the computation required to find similar vectors during queries. When searching for a skill, the

LLM embeds the textual query into a vector using the same embedding model employed for the skills. The

vector database performs a similarity search between the query vector and the stored skill vectors using

metrics like cosine similarity. The database retrieves the top N most similar skills and will rank them based

on similarity scores. By leveraging a vector database for the Skill Library, Voyager efficiently manages a

vast repository of skills, enabling rapid retrieval and reuse.[13]

Voyager’s autonomous learning and interaction model offers valuable insights for air traffic management.

A similar approach could be applied where an embodied agent, or a team of agents, manages air traffic.

These agents could autonomously learn and refine their skills over time, handling complex, dynamic

tasks like conflict detection and resolution. Just as Voyager interacts with its environment and learns

from experience, an air traffic management agent could interact with live air traffic data, continuously

improving its decision-making processes. Furthermore, by providing clear textual explanations for the

steps taken, these agents could bridge the gap between AI and human controllers, fostering trust and

improving transparency. This would not only reduce the workload on human operators but also allow the

system to adapt to new scenarios, ensuring more efficient and safe airspace management.

Part III
Closure

47

3
Conclusion

3.1. Closing Remarks
This thesis has delved into the innovative integration of large language models as embodied agents within

the domain of air traffic control. By leveraging the advanced reasoning capabilities of models such as

Llama3-70B and GPT-4o , this research has demonstrated the potential for autonomous conflict resolution

in complex airspace scenarios. The development and implementation of an experience library further

enhanced the agents’ ability to learn from past interactions, thereby improving their decision-making

processes over time.

Through rigorous experimentation involving 120 distinct conflict scenarios, the study has highlighted the

strengths and limitations of different model configurations. Notably, larger models like GPT-4o exhibited

superior performance in all configurations, while smaller models benefited significantly from the integration

of the experience library. These findings highlight the critical role of model size and collaborative agent

architectures in achieving high success rates in conflict resolution. Moreover, the research has addressed

key challenges such as model hallucinations and resource constraints, providing valuable insights into

areas requiring further refinement. The ability of LLM embodied agents to provide human-like reasoning

and transparent decision-making processes marks a significant advancement in bridging the gap between

artificial and human situational awareness in ATC.

Overall, this study contributes to the growing field of AI-driven air traffic management by showcasing

the feasibility and effectiveness of using LLMs as autonomous agents. The promising results pave the way

for future explorations into more sophisticated applications, ultimately aiming to enhance the safety and

efficiency of global airspace operations.

3.2. Research Questions
The research questions posed in Chapter 1 are repeated below for convenience.

How can the decision-making process of an embodied agent be made transparent and under-

standable to human operators?

Research Question 1

The decision-making process of embodied agents was approached by integrating large language models

capable of generating human-like explanations alongside their operational commands. Both single-agent

and multi-agent configurations were designed to not only resolve conflicts but also provide detailed

reasoning for each action taken. The incorporation of function-calling capabilities allowed agents to interact

seamlessly with the BlueSky simulator while maintaining a transparent log of their decisions. Additionally,

the experience library played a pivotal role in enhancing transparency by enabling agents to reference past

conflict resolutions, thereby offering contextually relevant explanations. The successful implementation of

these features demonstrated that LLM embodied agents can achieve a high level of transparency, making

their decision-making processes accessible and understandable to human operators.

48

3.2. Research Questions 49

Which LLMs would be able to solve air traffic conflicts?

Research Question 2

This research evaluated both open-source and commercial LLMs, specifically Llama3-70B , GPT-4o ,

Llama3-8B , Gemma2-9B and Mixtral-8x7B to determine their potential in solving air traffic conflicts.

Llama3-70B and GPT-4o from initial tests showed the most promising performance, while the othe

models had little success in solving air traffic conflicts. GPT-4o consistently outperformed Llama3-70B
across various scenarios, achieving a success rate of 99% and after further improvements was able to

solve the remaining unresolved conflicts. However, Llama3-70B showed significant improvements when

integrated with the experience library and deployed in a multi-agent system. These findings indicate that

while larger models like GPT-4o inherently possess superior conflict resolution capabilities, smaller models

can achieve competitive performance through strategic enhancements such as experience libraries and

multi-agent architectures.

What methodologies can be developed to enable agents to learn from past conflict resolutions

and improve future performance?

Research Question 3

To facilitate learning from past conflict resolutions, an experience library was developed using a vec-

tor database (Chroma) to store and retrieve synthesized knowledge from previous interactions. After

each conflict resolution, an experience document was created, encapsulating the conflict description,

executed commands, and the reasoning behind each action. These documents were embedded into

high-dimensional vectors to enable efficient similarity searches. The agents utilized this library through the

SearchExperienceLibrary() tool, allowing them to reference and apply relevant past solutions to new

conflicts. This methodology not only enhanced the agents’ problem-solving efficiency but also contributed

to a continuous learning framework, enabling them to adapt and improve their performance over time

based on accumulated experiences.

How can the embodied agent be connected with air traffic simulators like BlueSky?

Research Question 4

The integration of embodied agents with the BlueSky simulator was achieved through the develop-

ment of specialized tools that facilitated seamless interaction between the LLMs and the simulation

environment. Tools such as GetAllAircraftInfo() , GetConflictInfo() , SendCommand() , and

ContinueMonitoring() were implemented to enable agents to retrieve real-time data, assess conflict

situations, and issue appropriate commands to the simulator. The agents were designed to construct

and modify prompts dynamically based on the simulator’s responses, ensuring real-time adaptability and

responsiveness. Additionally, the multi-agent architecture, comprising planner, executor, and verifier

agents, was established to distribute tasks and enhance operational efficiency within the simulator. This

robust integration framework demonstrated that LLM embodied agents can effectively interface with

air traffic simulators like BlueSky, facilitating autonomous and intelligent conflict resolution in simulated

airspace environments.

References

[1] Gerasimos Skaltsas et al. “An analysis of air traffic controller-pilot miscommunication in the NextGen

environment”. In: Journal of Air Transport Management 27 (2013), pp. 46–51. DOI: https://doi.
org/10.1016/j.jairtraman.2012.11.010. URL: https://www.sciencedirect.com/science/
article/pii/S0969699712001536.

[2] Universitat Linz et al. AI Situational Awareness Foundation for Advancing Automation. https :
//www.aisa-project.eu/. Accessed: 2024-09-01. 2022.

[3] Yiyuan Zou et al. “Investigating Transparency Needs for Supervising Unmanned Air Traffic Manage-

ment Systems”. In: 13th SESAR Innovation Days. 2023.

[4] Christophe Hurt et al. “Toward a more transparent and explainable conflict resolution algorithm for

air traffic controllers”. In: 34th Conference of the European Association for Aviation Psychology.

European Association for Aviation Psychology, 2022.

[5] Common Crawl. https://commoncrawl.org/. Accessed: 2024-05-07.

[6] Guanzhi Wang et al. “Voyager: An Open-Ended Embodied Agent with Large Language Models”. In:

ArXiv abs/2305.16291 (2023).

[7] IATA Sustainability and Economics. Release September 2023. Sept. 2023.

[8] Hui-Hua Yang et al. “Subjective measures of communication errors between pilots and air traffic

controllers”. In: Journal of Air Transport Management 112 (2023), p. 102461. DOI: https://doi.
org/10.1016/j.jairtraman.2023.102461. URL: https://www.sciencedirect.com/science/
article/pii/S0969699723001047.

[9] Vladimír Socha et al. “Workload assessment of air traffic controllers”. In: Transportation Research

Procedia 51 (2020). INAIR 2020 - CHALLENGES OF AVIATION DEVELOPMENT, pp. 243–251.

DOI: https://doi.org/10.1016/j.trpro.2020.11.027. URL: https://www.sciencedirect.
com/science/article/pii/S235214652030884X.

[10] Sinan Abdulhak et al. “CHATATC: Large Language Model-Driven Conversational Agents for Sup-

porting Strategic Air Traffic Flow Management”. In: arXiv preprint arXiv:2402.14850 (2024).

[11] Liya Wang et al. “AviationGPT: A large language model for the aviation domain”. In: AIAA AVIATION

FORUM AND ASCEND 2024. 2024, p. 4250.

[12] Gabriel Jarry et al. “The Effectiveness of Large Language Models for Textual Analysis in Air Trans-

portation”. In: EasyChair preprints (2024).

[13] Pinecone.What is a Vector Database? Accessed: 2024-09-13. 2023. URL: https://www.pinecone.
io/learn/vector-database/.

50

https://doi.org/https://doi.org/10.1016/j.jairtraman.2012.11.010
https://doi.org/https://doi.org/10.1016/j.jairtraman.2012.11.010
https://www.sciencedirect.com/science/article/pii/S0969699712001536
https://www.sciencedirect.com/science/article/pii/S0969699712001536
https://www.aisa-project.eu/
https://www.aisa-project.eu/
https://commoncrawl.org/
https://doi.org/https://doi.org/10.1016/j.jairtraman.2023.102461
https://doi.org/https://doi.org/10.1016/j.jairtraman.2023.102461
https://www.sciencedirect.com/science/article/pii/S0969699723001047
https://www.sciencedirect.com/science/article/pii/S0969699723001047
https://doi.org/https://doi.org/10.1016/j.trpro.2020.11.027
https://www.sciencedirect.com/science/article/pii/S235214652030884X
https://www.sciencedirect.com/science/article/pii/S235214652030884X
https://www.pinecone.io/learn/vector-database/
https://www.pinecone.io/learn/vector-database/

	Acknowledgements
	Abstract
	I Scientific Article
	II Appendix
	Research proposal
	Introduction
	Motivation and Research Proposal

	Literature Review
	Incresed Workload and its Impact on Aviation Safety
	AI Integration in Air Traffic Management
	Large Language Models in Air Traffic Management: Current Applications and Future Potential

	III Closure
	Conclusion
	Closing Remarks
	Research Questions

	References

