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Summary
This article is concerned with the design and performance optimization of
feedback controllers for state-based switching bilinear systems (SBLSs), where
subsystems take the form of bilinear systems in different state space polyhe-
dra. First, by further dividing the subregions into smaller regions and designing
region-dependent feedback controllers in the resulting regions, the SBLSs can be
transformed into corresponding switching linear systems (SLSs). Then, for these
SLSs, by imposing contractility conditions on the Lyapunov functions, an upper
bound on the infinite horizon quadratic cost can be obtained. Optimizing this
upper bound yields the controller design. The optimization problem is formu-
lated as a linear matrix inequalities optimization problem, which can be solved
efficiently. Finally, the stability of the close-loop system under the proposed
controller is established step by step through a decreasing overall Lyapunov
function.

K E Y W O R D S

bilinear system with state-based switching, switching bilinear system control, Lyapunov stability,
LMIs

1 INTRODUCTION

Most of the problems found in practice are normally nonlinear problems, which are usually complex. In order to opti-
mize or control these kind of realistic problems, the nonlinear complex systems are usually described by multiple simple
models, such as linear models, bilinear models, Markov models, statistic models, and so on. Many research works have
been done to identify the individual simple models and their connections that build up the nonlinear systems.1-9

A special kind of nonlinear system, that is, the bilinear system, contains the sum of a linear term and a bilinear
term. Bilinear systems have been investigated a lot since the 1960s.10-15 It has been proved bilinear systems have a better
performance than linear systems in optimal control,16 since bilinear systems have a variable structure due to the existence
of the bilinear term. In practice, there are systems that naturally have a bilinear term with the states multiplying the
control inputs, such as in the field of sociology, biology, power systems, and so on.10,17 Usually, the reason for the existence
of the term is that the influence of the control input on the system depends on the current system state.

In practice, some complex nonlinear systems can be approximated by dividing into multiple state-based bilinear
subsystems.18,19 In each state region, a bilinear subsystem is activated, and the bilinear subsystems switch between each
other according to the switching of the state regions. This results in a state-based switching bilinear system (SBLS).20

Developing the theory on stabilizing controllers for the state-based SBLSs provides a methodology to design controllers
for systems with complex nonlinear features in practice. Inspired by this, a stabilizing controller design based on linear
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matrix inequalities (LMI) has been addressed in Reference 21. It should be pointed out that generally many controllers
can be designed to achieve the stabilizability of bilinear systems,22,23 but maybe more work needs to be done to improve
the close-loop performance by utilizing the remaining degrees of freedom. For bilinear systems, optimal control problems
have attracted much attention.10,24-26 However, to the best knowledge of the authors, for state-based SBLSs few results
exist focusing on the performance optimization of the controller. Motivated by this, this article is devoted to optimizing
the performance of stabilizing controllers for state-based SBLSs.

To deal with the state-based SBLSs, the subregions where subsystems are activated are further divided into some mul-
tiple regions, then region-dependent controllers are designed for the resulting subregions, which transforms the bilinear
systems into linear ones. For the resulting state-based switching linear systems (SLSs), the infinite horizon quadratic cost
is difficult to calculate explicitly. To solve this problem, contractility conditions on the Lyapunov function are used to
derive an upper bound on the quadratic cost. Then instead of directly optimizing the infinite horizon quadratic cost, an
LMI optimization problem is formulated to optimize this upper bound.

The remainder of the article is organized as follows. In Section 2, the problem statement is given. The main results
including the transformation of the bilinear systems into linear ones and the derivation of an upper bound on the quadratic
cost are given in Section 3. In the end, a numerical example is given in Section 4 to illustrate the proposed approach.
Finally, some conclusions are drawn in Section 5.

2 PROBLEM STATEMENT

Consider a SBLS

ẋ = Aix +
mi∑
j=1

(Gi,jx + bi,j)ui,j, if x ∈ Ωi, i ∈ Λ, (1)

where Ai and Gi,j are [n×n] matrices, bi,j is an [n× 1] vector, Ωi is the corresponding state space polyhedron with i∈Λ
the state space partition of Ω ⊂ Rn (∪i∈ΛΩi =Ω, Ωi ≠ ∅, ∀i∈Λ, Ωi ∪Ωj =∅, ∀i, j∈Λ, i≠ j), j∈Mi = {1, … , mi}, and Ui =
[ui,1 ui,2 ⋅ ⋅ ⋅ ui,mi]

T ∈ Rmi is an mi-dimensional control input.
In order to find the relationship between the bilinear term and the linear term, the bilinear system can be further

adapted. Since each control input ui,j is a scalar, then rank(Gi,j)= 1, so it can be expressed as the inner product of two
vectors. Then, we can write (1) as

ẋ = Aix +
mi∑
j=1

bi,j(cT
i,jx + 1)ui,j, if x ∈ Ωi, i ∈ Λ. (2)

Due to the similarity between SBLSs and SLSs, we could define the control inputs as

ui,j =
ki,jx

cT
i,jx + 1

, if x ∈ Ωi, i ∈ Λ. (3)

so as to obtain a corresponding SLS for the original SBLS, as

ẋ = Aix +
mi∑
j=1

bi,jki,jx, if x ∈ Ωi, i ∈ Λ. (4)

Herein, the controller can be designed for the derived corresponding SLS.

3 OPTIMIZED STATE-FEEDBACK CONTROL DESIGN FOR SLSS

Instead of designing a controller for the SBLS directly, we consider designing a state-feedback controller for the corre-
sponding SLS of the original system. Based on the similarity between the two systems, the derived controller can be
extended to be used for the SBLS easily.
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3.1 Corresponding SLS

For SBLSs, in order to design stabilizing switching division controllers for each bilinear subsystem i∈Λ, we need to parti-
tion the state space polyhedronΩi into more subregions. If for subbilinear system i∈Λ, the control input is ui,j(i∈Λ,j∈Mi),
then for each control input ui,j two state-feedback controllers should be designed. The polyhedral partition of Ωi(i∈Λ)
for bilinear subsystem i can be defined as {Ωi,l}i∈Λ,l∈Γi , where ∪l∈ΓiΩi,l = Ωi,Ωi,l ≠ ∅,∀l ∈ Γi,Ωi,l1 ∩ Ωi,l2 ≠ ∅,∀l1 ≠ l2, l1,

l2 ∈ Γi.
Based on the polyhedral partition of the state space and defining the equilibrium as the origin, the controller is

designed for each polyhedron Ωi,l as

Ui,l = [ui,l,1 ui,l,2 ⋅ ⋅ ⋅ ui,l,mi ]
T, i ∈ Λ, (5)

where each control element is designed according to (3). If we substitute (3) into (4), then the bilinear terms are
eliminated, and the bilinear system in (4) becomes a SLS, which is the corresponding SLS of the SBLS. In order to con-
trol the SBLS, we can first consider to design a stabilizing state-feedback controller for the following corresponding
SLS:

ẋ = (Ai + BiKi,l)x, if x ∈ Ωi,l, l ∈ Γi, i ∈ Λ, (6)

where

Bi = [bi,1 bi,2 ⋅ ⋅ ⋅ bi,mi],
Ki,l = [ki,l,1 ki,l,2 ⋅ ⋅ ⋅ ki,l,mi ]

T. (7)

Therefore, by dividing the state space into more subregions, the SBLS can be adapted into the corresponding SLS. The
corresponding SLS and the SBLS are actually the same model working on different divisions of state space.

3.2 Lyapunov functions and boundary constraints

Each polyhedral region Ωi,l can be described as a system of linear inequalities:

[Fi,l fi,l]
⏟⏞⏟⏞⏟

Fi,l

[
x
1

]
≥ 0, if x ∈ Ωi,l, (8)

and the boundary hyperplane for two neighboring regions Ωi,l and Ωi′,l′ is characterized by an equality and inequality
as

[Ψii′,ll′ 𝜓ii′,ll′ ]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Ψii′,ll′

[
x
1

]
= 0, and [Φii′,ll′ 𝜙i′,ll′ ]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Φii′,ll′

[
x
1

]
≥ 0, ∀ x ∈ Ωi,l ∩ Ωi′,l′ . (9)

Lyapunov functions are defined for each polyhedral region Ωi,l(l∈Γ i, i∈Λ) with the following format

Vi,l(x) =

[
x
1

]T[
Pi,l ⋆

sT
i,l ri,l

]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Pi,l

[
x
1

]
⏟⏟⏟

x

, ∀ l ∈ Γi, i ∈ Λ, x ∈ Ωi,l, (10)

with x = [x 1]T, Pi,l ∈ Rn×n a symmetric matrix, si,l an [n× 1] dimensional vector, and ri,l ∈ R. ⋆ stands for the transpose
of its symmetrical element.
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3.3 Optimized state-feedback control for SLS

In this part, optimal switching state-feedback control laws will be designed for the SLS in (7), to asymptotically steer any
state in the feasible region to the origin, and to guarantee the minimization of a given objective function along the system
state trajectory at the same time. More related reference work could be found in References 18,27.

The following theorem gives a sufficient condition to design optimal switched state-feedback control laws for the SLS
in (7) that, to asymptotically bring the state to the origin (the equilibrium for at least one of the subsystems), and to
optimize the objective function along the system state trajectory. Since the switchings are unknown among the subregions,
and the objective function along the system state trajectory is not certain, it is not possible to explicitly optimize the
objective function along the state trajectory as

J(∞) = ∫
∞

0

[
xTQJx + uTRJu

]
dt. (11)

Therefore, instead of optimizing the infinite objective function, we optimize the upper bound of the infinite objective
function in a min max format, and prove the realization with LMIs in the following theorems.

In the description below, the augmented system matrices are used to describe the linear affine systems as follows:

Āi =

[
Ai 0
0 0

]
, Bi =

[
Bi

0

]
. (12)

Theorem 1. For the optimization problem

min
u

max
x

J(∞) = ∫
∞

0

[
xTQJx + uTRJu

]
dt

s.t. (16) − (19), (13)

if there exists a solution satisfying all the constraints, with positive definite matrices Qi,l, Qi,l, Ri,l, and Mi,l, then taking the
state-feedback control laws with gains as

Ki,l = Ni,lQ
−1
i,l ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi, 0 ∉ Ωi,l}, (14)

and

Ki,l = Ni,lQ−1
i,l ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi, 0 ∈ Ωi,l}, (15)

asymptotically stabilizes the SLS system in (7), and guarantees the minimization of the objective function along the state
trajectory.

[
Qi,l ⋆

Fi,lQi,l Ri,l

]
> 0, ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi, 0 ∉ Ωi,l}, (16)

[
Qi,l ⋆

Fi,lQi,l Ri,l

]
> 0, Qi,l =

[
Qi,l ⋆

0 qi,l

]
> 0, ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi, 0 ∈ Ωi,l}, (17)

⎡⎢⎢⎢⎢⎢⎣

AiQi,l + Qi,lAT
i + BiNi,l + NT

i,lB
T
i ⋆ ⋆ ⋆

Fi,lQi,l −Mi,l 0 0
Qi,l 0 −Q−1

J 0
Ki,lQi,l 0 0 −R−1

J

⎤⎥⎥⎥⎥⎥⎦
< 0, ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi}, (18)
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⎡⎢⎢⎢⎢⎢⎣

Qi,l ⋆ ⋆ ⋆

Qi,l Qi′,l′ ⋆ ⋆

Ψii′,ll′Qi,l 0 −𝜆ii′,ll′ ⋆

Φii′,ll′Qi,l 0 0 −Θii′,ll′

⎤⎥⎥⎥⎥⎥⎦
> 0, if di,j > di′,j′ , and {Ωi,l ∩ Ωi′,l′ } ≠ ∅, ∀i, i′ ∈ Λ, l ∈ Γi, l′ ∈ Γi′ (19)

Proof. First, using the Schur complement for (16), and multiplying the result from the right and left side by Q
−1
i,l = Pi,l,

yields

Pi,l − F
T
i,lR−1

i,l Fi,l > 0, ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi, 0 ∉ Ωi,l}, (20)

which guarantees that the Lyapunov function on each state polyhedron is positive because of the positiveness of the
matrix Ri,l, that is,

Vi,l > 0, if Fi,lxi,l ≥ 0 and xi,l ≠ 0, ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi, 0 ∉ Ωi,l}. (21)

For the case for the subsystem containing the origin, that is, for the polyhedron with 0∈Ωi,l, the LMIs in (17) and
(18) are applied to make sure obtain a positive Lyapunov function and a negative derivative of Lyapunov function on the
region. The row and column corresponding to the augmented variable are removed here, to guarantee that the derivative
of the Lyapunov function V̇ i,l would be zero only when the state x is zero.

Second, the Schur complement is applied on (18), and the obtained result is multiplied from left and the right side by
Q−1

i,l = Pi,l. With the feedback laws (14), we obtain

Pi,l(Ai + BiKi,l) + (Ai + BiKi,l)TPi,l < −FT
i,lM

−1
i,l Fi,l − QJ − KT

i,lRJKi,l, ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi, 0 ∉ Ωi,l}, (22)

since the parameter matrices in the objective functions (QJ and RJ) are positive definite, and Mi,l is also positive definite;
therefore it guarantees that the derivative of the Lyapunov function on each state polyhedron is negative, as

V̇ i,l < 0, if Fi,lxi,l ≥ 0 and xi,l ≠ 0, ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi, 0 ∉ Ωi,l}. (23)

The LMI that makes sure the derivative of the Lyapunov function is negative is written in the format of (18), because
for the linear affine switching subsystems, the derivative of the affine offset is 0.

Then, we perform the Schur complement on (19) 3 times, each time with respect to the last row and column. Similarly,
we multiply the result from the right and left side by Q

−1
i,l = Pi,l; and use (14), then we obtain the following inequalities to

guarantee the boundary condition:

Pi,l − Pi′,l′ + 𝜆−1
ii′,ll′Ψ

T
ii′,ll′Ψii′,ll′ + Φ

T
ii′,ll′Θ−1

ii′,ll′Φii′,ll′ > 0, if di,j > di′,j′ , and Ωi,l ∩ Ωi′,l′ ≠ ∅, ∀i, i′ ∈ Λ, l ∈ Γi, l′ ∈ Γi′ , (24)

which ensures that V i,l ≥V i′,l′ for all the states x ∈ ii′,ll′ on the boundary of Ωi,l and Ωi′,l′ . di,j is the shortest distance
between the origin and the polyhedron Ωi,j.The augmented Qi,l is defined for the polyhedron Ωi,l containing the origin in
(17), to make it comparable on the boundary conditions with other polyhedron without the origin.

Because the Lyapunov functions reduce during the switchings of the regions in the state space, there is a sequence of
polyhedra in Ω, whose distances to the origin are reducing, which satisfy

dp ≥ dp−1 ≥ ⋅ ⋅ ⋅ ≥ d1 ≥ 0, (25)

with p as the total number of polyhedron Ωi,l, ∀i∈Λ, l∈Γi in Ω, which is corresponding to a sequence of decreasing
Lyapunov functions for all the polyhedra as

Vp(x∗p) ≥ Vp−1(x∗p−1) ≥ ⋅ ⋅ ⋅ ≥ V1(x∗1) ≥ 0, (26)

that can make the system state asymptotically converge to the origin, from an initial state x0 within any of the polyhedra
in Ω. At the same time, the upper bound of the cost function is minimized along the trajectory, to make sure the objective
function of the worst case is minimized under the uncertain switchings. Consequently, by solving the optimization in
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Theorem 1, it is possible to design the optimal switched state-feedback control laws for the SLS in (7) that, asymptotically
bring the state to the origin (the equilibrium for at least one of the subsystems), and optimize the objective function along
the system state trajectory. ▪

In order to solve the min max optimization problem, the upper bound of the objective function is derived to further
solve the optimization with LMIs.

Since the objective function is

J(∞) = ∫
∞

0

[
xTQJx + uTRJu

]
dt, (27)

and for the derived sequence of polyhedra in Ω, according to (22), we have

V̇ p(x) < −xTFT
p M−1

p Fpx − xTQJx − xTKT
p RJKpx, (28)

for polyhedron Ωp. Integrating along the trajectory for Ωp on both sides of (28), yields

∫
xp,e

xp,s

xTFT
p M−1

p Fpx dx + ∫
xp,e

xp,s

[
xTQJx + xTKT

p RJKpx
]
dx < ∫Ωp

V̇ p(x)dx, (29)

that is

Cp + Jp < Vp(xp,s) − Vp(xp,e), (30)

where xp,s and xp,e are the starting and ending states on polyhedron Ωp. For the sequence of polyhedra in Ω, we have

C1 + J1 < V1(x1,s) − V1(x1,e),

C2 + J2 < V1(x2,s) − V2(x2,e),

⋮

Cp + Jp < Vp(xp,s) − Vp(xp,e), (31)

where x1,s = x0. In addition, according to (19), we have

V1(x1,e) > V0(x0,s),

V0(x0,e) > V3(x3,s),

⋮

Vp−1(xp−1,e) > Vp(xp,s). (32)

If we sum up (31) along the switching sequence for all the polyhedra to the equilibrium, then we have

C + J < V1(x0) − Vp(xp,e), (33)

where C is the integrating of xTFT
p M−1

p Fpx along the state trajectory, which is larger than 0 because the matrices Mp are
positive definite. Since limt→∞Vp(xp,e) = 0, and C is positive, thus J <V 1(x0), an upper bound of the objective function is
V1(x0) = xT

0 P1x0. Therefore, the min max problem can be solved by minimizing the upper bound of the objective function
with the following theorem satisfying the following constraint[

𝛾 ⋆

x0 Q1

]
≥ 0, (34)

which guarantees xT
0 P1x0 ≤ 𝛾 .
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Theorem 2. For the optimization problem

min 𝛾

s.t. (16) − (19) and (34), (35)

if there exists a solution satisfying all the constraints (16 )-(19 ) and (34 ), with positive definite matrices Qi,l, Qi,l, Ri,l, and
Mi,l, then taking the state-feedback control laws with gains as

Ki,l = Ni,lQ
−1
i,l ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi, 0 ∉ Ωi,l}, (36)

and

Ki,l = Ni,lQ−1
i,l ∀ (i, l) ∈ {(i, l)|i ∈ Λ, l ∈ Γi, 0 ∈ Ωi,l}, (37)

asymptotically stabilizes the SLS system in (7), and guarantees the minimization of the upper bound of the objective function
along the state trajectory with uncertain switchings.

4 EXAMPLE

In this section, an example is presented to evaluate the performance of the optimal controller designed for a SBLS based
on Theorem 2.

In the example, we use the conditions presented in Theorem 2 to design state-feedback control laws optimizing the
upper bound of the infinite objective function. We directly use the SBLS model in (4) with the following vectors and
matrices:

A1 =

[
−3 1
−5 −8

]
, b1,1 =

[
1
0

]
, c1,1 =

[
1
0

]

A2 =

[
−1 −3
2 −5

]
, b2,1 =

[
0
−1

]
, c2,1 =

[
0
−1

]

QJ =

[
0.1 0
0 0.1

]
, RJ = 0.1.

There are 2 bilinear subsystems separated by x1−x2 = 0. According to Sec. 3.1, the state space is partitioned into 4
regions withΛ= {1, 2} and Γ1 = {1, 2}, Γ2 = {1, 2}. Then, the parameters for the obtained corresponding SLS with the format
(7) are:

A1 =

[
−3 1
−5 −8

]
, B1 =

[
1
0

]
,

F1,1 =

[
1 0
−1 −1

]
, F1,2 =

[
−1 0 −1
−1 −1 0

]
,

Ψ11,12 =
[
1 0 1

]
, Φ11,12 =

[
0 −1 1

]
,

A2 =

[
−1 −3
2 −5

]
, B2 =

[
0
−1

]
,

F2,1 =

[
0 −1
1 1

]
, F2,2 =

[
0 1 −1
1 1 0

]
,

Ψ22,12 =
[
0 −1 1

]
, Φ22,12 =

[
1 0 1

]
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Using the Yalmip toolbox (with the SeDuMi solver) to solve the optimization problem (ie, the LMIs) (16)-(19) and
(34), an decreasing overall Lyapunov function is obtained as given in Figure 1.

As the overall Lyapunov function shows, the Lyapunov function is smooth with each subregion, positive, and decreas-
ing gradually to the origin of the state space. In addition, the Lyapunov function is able to jump and decrease on the
boundaries of the state space switchings of the sequence of the switching state polyhedra. As a result, applying the derived
Lyapunov function, the controllers are obtained according to (3), (36), and (37), as

U1,1 =
K1,1x
x1 + 1

, U1,2 =
K1,2x
x1 + 1

, U1,12 = 0,

U2,1 =
K2,1x

−x2 + 1
, U1,2 =

K2,2x
−x2 + 1

, U2,12 = 0,

where

K1,1 = [−0.2048 0.0080], K1,2 = [−0.2980 0.0082 0],

K2,1 = [0.0967 − 0.1556], K2,2 = [0.0967 − 0.1556 0].

The simulation shows that the designed controllers are able to steer state to the origin for different initial conditions,
as in Figures 2 and 3.

F I G U R E 1 Illustration for the overall Lyapunov
function [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 2 The closed-loop trajectories with initial states [2 2]T and
[−2 −2]T [Colour figure can be viewed at wileyonlinelibrary.com]

-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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-1 0 1 2

x
1

-2

-1.5

-1

-0.5

0

0.5

1
x 2

F I G U R E 3 The closed-loop trajectories with initial states [2 0.5]T

and [−0.5 −2]T [Colour figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSIONS

In practice, there are some complex nonlinear systems that can be approximated by SBLSs. Designing stabilizing
controller for SBLSs makes it possible to better control these kind of nonlinear systems. To deal with the state-based
SBLSs, the subregions where subsystems are activated are further divided into some regions utilizing the special features
of bilinear systems. And then, region-dependent controllers are designed in resulting subregions, which transform the
bilinear systems into linear ones. Based on the linear property of the system, a state-feedback controller design method
is proposed considering the infinite horizon quadratic cost function to minimize the total cost along the state trajectory.
By solving the series of derived LMIs, optimized switching state-feedback control laws will be obtained for the SBLS, to
asymptotically steer any state in the feasible region to the equilibrium, and can guarantee the minimization of the upper
bound of the objective function along the system state trajectory at the same time. The numerical result shows that the
designed controller is able to stabilize the system. In the future, we will apply the proposed method in traffic flow control,
and try to use it solving real traffic problems.
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