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Abstract

Ablation is a medical procedure to treat liver cancer where a needle-like catheter has to
be inserted into a tumor, which will then be heated or frozen to destroy the tumor tis-
sue. To guide the catheter, Ultrasound(US) imaging is used which shows the catheter
position in real time. However, some tumors are not visible on US images. To make
these tumors visible, image fusion can be used between the inter-operative US image
and a pre-operative contrast enhanced CT(CECT) scan, on which the tumors are visi-
ble. Several methods exist for tracking the motions of the US transducer relative to the
CECT scan, but they all require a manual initialization or external tracking hardware
to align the coordinate systems of both scans. In this thesis we present a technique
for finding an initialization using only the image data. To achieve this, deep learning
is used to segment liver vessels and the boundary of the liver in 3D US images. To
find the rigid transformation parameters, the SaDE evolutionary algorithm was used to
optimize the alignment between the blood vessels and the liver boundary between both
scans.
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Chapter 1

Introduction

Liver cancer is the fifth most prevalent cancer in men and the ninth most prevalent cancer
in women, and it is the second most frequent cause of cancer-related death [1]. One of the
treatments for liver cancer is ablation. In an ablation procedure a needle-like catheter is
inserted through the skin of the patient into a tumor and the tip of the catheter is then either
heated(microwave ablation, radiofrequency ablation) or frozen(cryoablation), to destroy the
tumor tissue. To guide the ablation catheter, ultrasound(US) imaging is used (Figure 1.1),
but some tumors can not be detected on US images. Contrast enhanced computed tomogra-
phy(CECT) or agnetic resonance(MR) images can be used to visualize these tumors [2], but
they cannot be acquired in real time and are unpractical to acquire during an intervention.

The current practice for liver tumor ablations at Erasmus MC is to acquire a CECT

Figure 1.1: Illustration on how US guidance is used in liver tumor ablations. Image source:
Brace [3]
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1. INTRODUCTION

scan of the patient before the intervention to localize and classify the tumors. During the
intervention, real time ultrasound imaging is used to guide the ablation catheter. When the
catheter is in approximately the right position, a non-contrast CT scan is acquired to more
accurately see the position of the catheter relative to the tumors that are visible in the pre-
operative CECT scan. When the catheter is not yet in the right position it will be adjusted
and one or more extra CT scans may be made. When the cathether is in the right position
the ablation is performed, and at the end of the intervention a CECT scan is acquired to
determine whether the tumor was fully ablated. Only one CECT scan can be acquired
during an intervention, because injecting more contrast agent within a short amount of time
can cause kidney failure [4, 5]. To be able to perform CT scans during the intervention, the
CT scanner is occupied for the entire duration of the intervention. Moreover, during CT
acquisition all medical staff will have to leave the room to avoid radiation exposure and all
medical instruments have to be clamped to the patient to avoid displacements when the CT
platform is moving.

To make the information from the pre-operative CECT scan available during the in-
tervention, image fusion between US and CECT can be used. The traditional method to
achieve this is to use external sensors to track the movements of the US transducer. Two
types of tracking systems are most used: 1.) Electromagnetic(EM) tracking systems use a
field generator to generate a varying magnetic field. Sensors on the transducer derive its po-
sition and orientation by measuring the EM-field. 2.) Optical tracking systems use multiple
cameras to derive the position and orientation of the transducer in 3D. Markers are often
attached to the US transducer to get better visibility. Tracking systems track the orientation
relative to either the field generator or the cameras. To find how this orientation corresponds
to the position in the CT scan an initial registration is needed. This can be done manually
which takes approximately 5–20 min [6]. In a recent study [6], an EM-tracker was used
for image fusion between US and CT or MR images. 295 Tumors that were not visible on
contrast enhanced US were included and 95.6% of these tumors were correctly targeted and
90.2% were completely ablated.

Nevertheless tracking systems have several downsides: EM trackers are sensitive to in-

Blood vessels
Tumor

Liver boundary

Figure 1.2: Side by side view of US(left) and registered CECT(right). The tumors are
visible in the CECT scan, but not on the US scan. Some features, such as the liver boundary
and the blood vessels are visible in both modalities.
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1.1. Research goal

terference, which can be caused by ferromagnetic and electrical devices within the EM-field
[7]. Optical trackers require that the cameras have an unobstructed view of the transducer.
Moreover, both types of trackers can only track rigid transformations, so non-rigid deforma-
tions inside of the body will cause errors. Lastly, there is still a manual registration required
to get the initial alignment between the coordinate systems.

1.1 Research goal

At the Biomedical Imaging Group Rotterdam(BIGR) of the Erasmus MC, research has been
ongoing to develop a fully image based tracking system [8, 9]. Such a system would use
image registration between the inter-operative US and pre-operative CECT images to pro-
vide real time image fusion between these two imaging modalities. The goal is to design a
system that does not rely on external sensors, that can track non-rigid deformations and that
does not need a manual initialization. To make more information available for registration
in the US domain 3D ultrasound scans are used.

Banerjee et al. [8] already developed a technique for fast multimodal 3D US CECT
registration, which could be used for tracking the movements of the US transducer and the
patient. Because this system has a relatively small capture range it still needs an initial-
ization, similarly to the EM and optical trackers. In this thesis we will investigate how to
automatically obtain an initial registration between 3D US and CECT scans.

1.2 Requirements

Initialization can be seen as a registration problem with specific requirements: 1.) The tech-
nique has to be able to find an initial registration from any orientation of the US transducer
where the liver is in view. 2.) The error of the initialization has to be low enough for the
tracking algorithm to converge. The allowed error for the technique of Banerjee et al. [10]
is approximately 10 mm translations or 15◦ rotations. 3.) To be useful, the automatic ini-
tialization would have to be faster than a manual initialization, which takes 5-20 minutes
[6]. When the initialization fails, the doctor can slightly adjust the orientation of the US
transducer and restart the initialization. Moreover, if the tracking algorithm is not always
able to maintain tracking, multiple initializations may be needed during a procedure. Be-
cause of this, the aim is to get the run time to be less than ten seconds. However, in this
thesis we focus on meeting the first two requirements, leaving the task of speeding up the
implementation to future work.

1.3 Contributions

This thesis presents the following contributions:

1. A novel method for initializing registrations between 3D US and CECT scans. On a
clinical dataset of 38 scan pairs the results were manually scored as follows: 23 as
good, 7 as fair, 5 as poor and 3 as bad. On the same dataset, rigid registrations based
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1. INTRODUCTION

on manual annotations by radiologists were scored as follows: 27 as good, 8 as fair,
1 as poor and 2 as bad.

2. A novel method for segmenting blood vessels and the liver boundary in 3D US scans
of the liver. To the authors’ knowledge this is the first time a neural network has been
applied to segment these features from 3D US scans.

3. Annotations and extra medical information about the used dataset that can be used
for further research at BIGR.

1.4 Thesis structure

Chapter 2 provides background information about the medical context and the imaging tech-
niques relevant to this thesis. Chapter 3 gives an overview of the prior work in multimodal
US registration and registration initialization. Chapter 4 describes how the proposed system
works. Chapter 5 describes the experiments that were performed to evaluate the system and
gives the results. Chapter 6 concludes the thesis, discusses its contents and proposes future
work. Appendix A explains the working of the neural network techniques that were used in
this thesis and appendix B lists additional figures and results of the experiments that were
performed.

This thesis is best viewed in color. All figures created for this thesis have been tested to
be colorblind friendly by using the Color Oracle colorblindness simulator 1.

1https://colororacle.org/
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Chapter 2

Background

Because this thesis spans multiple topics some readers may not be familiar with all of them.
The goal of this chapter therefore is to provide the necessary background information. A
more in depth look into registration of the liver will be provided Chapter 3 and neural
networks are explained in Appendix A.

2.1 Medical terms of location

Figure 2.1: Medical terms of location relative to a human body.

To describe the space in and around the patient several medical terms are used, which
are illustrated in figure 2.1. This three dimensional space is defined by three orthogonal
axes. The superior-inferior axis is along the length of the body. The right-left axis is
along the width of the body, with right corresponding to the right hand side of the patient,

5



2. BACKGROUND

so it does not depend on the viewer. The posterior-anterior axis distinguishes between the
back and the front of the body.

In medical imaging you will often look at 2D slices of the body. To describe these slices
it is useful to also name the planes that can be spanned in the medical space. Transverse
planes (also called axial planes) are spanned by the right-left axis and the posterior anterior
axis. CT image slices are acquired as transverse planes. Sagittal planes are spanned by the
inferior-superior axis and the posterior-anterior axis. Coronal planes are spanned by the
inferior-superior axis and the the right-left axis.

2.2 Anatomy of the liver

The liver is located in the front of your body mostly behind your ribs, underneath the lungs
and the diaphragm (Figure 2.2). It consists of two lobes, separated by the falciform liga-
ment, which secures the position of the liver. The right lobe is bigger than the left lobe, so
the liver occupies more room in the right side of your body than the left side.

The blood supply of the liver is different than that of other organs, because it is con-
nected to two veins instead of one. The portal vein transports blood from the intestines to
the liver, so that it can be filtered before entering the rest of the body. The portal vein is the
main supply of blood to the liver, but the hepatic artery also supplies the liver with fresh
blood from the heart. The hepatic vein is connected to the inferior vena cava, which brings
the blood back to the heart. This is illustrated in Figure 2.3.

One function of the liver is that it produces bile. The bile is transported to the gallbladder
via bile ducts. The gallbladder is located underneath the liver and it is partially surrounded
by the liver. Bile can be stored in the gallbladder until it has to be discharged into the start
of the small intestine, where it helps with breaking down fats.

Figure 2.2: Position of the liver
in the body. Source: Database
Center for Life Science

Figure 2.3: Blood supply of the liver. Modified from:
Cancer Research UK / Wikimedia Commons
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2.3. Contrast enhanced CT

2.3 Contrast enhanced CT

CT imaging creates 3D images of a patient based on the x-ray attenuation of different tissues
in the body. CT images can be acquired in seconds and can show the entire abdomen in high
resolution (<1 mm voxel size within transverse slices and typically 2-3 mm between slices).
Because the x-ray attenuation of blood and soft tissues is similar, the liver shows up as a
uniform area on CT.

To make blood vessels, tumors and lesions within the liver visible contrast agent is
used. The contrast agent is injected into the arm or leg of the patient, and it has a high x-ray
attenuation, so the parts of the body that contain contrast agent will show up brightly on the
scan.

2.3.1 Contrast phases

After the moment of injection the contrast agent will travel trough the body. Because of
this the appearance of a scan will change depending on how long you wait after the injec-
tion. The passage of contrast through the body is divided into multiple phases, which are
displayed in Figure 2.4 and explained more thoroughly below [11, 12, 13]. For liver tumor
detection and characterization, scans at multiple phases are acquired. There is some varia-
tion in the protocols [12, 13], but a late arterial scan and a portal venous scan are included
in both.

Figure 2.4: Multi-phase CT study of a 64-year-old woman with a tumor (sclerosing hema-
gioma). From left to right: pre-contrast image, arterial phase, portal-venous phase. Both
the blood vessels (bright spots) and the tumor (indicated by arrows) are only recognizable
after contrast injection. Source: Song et al. [14]

The first phase is the arterial phase. In this phase the contrast agent has been pumped
back through the heart, and the contrast agent enters the liver through the liver artery. In
the early arterial phase, around 20 seconds after contrast injection, the liver artery will be
brightly visible. In the late arterial phase, around 30-35 seconds after contrast injection,
hypervascular tumors will also show up brightly, because they will retrieve more blood
from the artery than the surrounding tissue.

The second phase is the portal-venous phase, which occurs around 60-70s after con-
trast injection. During the arterial phase the contrast agent will also reach the intestines.

7



2. BACKGROUND

From the intestines the contrast agent will flow to the liver through the portal vein. At the
same time contrast rich blood will flow away from the liver through the hepatic vein. Be-
cause of this, the portal vein, the hepatic vein, and their branches will be visible in the portal
venous phase. This phase highlights most of the vessels within the liver. Hypovascular tu-
mors take up less blood and contrast agent than the surrounding tissue so they can be best
detected in this phase.

The last phase is the equilibrium phase, which occurs around 2-10 minutes after con-
trast injection. In this phase most of the contrast will have flowed away from the liver.
Fibrotic lesions(scar like damaged tissue) will hold contrast longer, making them best visi-
ble in this phase.

The speed at which contrast agent propagates is dependent on the patient’s physique
and other factors [15], so the start time and duration of each phase can vary. Therefore,
automatic bolus triggering may be used. This tracks whether the contrast agent has reached
the region of interest by making repeated low dose scans of a small region of interest.
When a certain contrast threshold is reached the high quality scan of the entire abdomen is
acquired.

2.3.2 Downsides

Contrast enhanced CT scans have several downsides: (1) Contrast agent is toxic to the
kidneys, which has a risk of causing kidney failure especially when the patient has renal
impairment [4, 5] (reduced kidney function). This also limits the amount of contrast en-
hanced scans that can be acquired during an intervention. (2) CT scans expose the patient
to radiation, which increases the risk of cancer. According to Smith-Bindman et al. [16]
multiphase CT studies of the abdomen and pelvis have the highest median dose of all com-
monly performed CT studies at a median of 31mSv. The expected development of cancer
caused by one multiphase abdomen and pelvis CT study varies with age and sex between
1 in 250 studies for a 20 year old female and 1 in 700 for a 60 year old female. It has to
be noted that the radiation dose varies strongly between CT studies within this category,
and that intra-operative CT scans are usually taken at low quality and within a small area,
which reduces the radiation dose. (3) The scans can not be acquired in real time and the
doctor and assistants have to leave the room during image acquisition, which makes CT
scans unpractical for imaging during a procedure.

2.4 3D ultrasound

An ultrasound scanner creates an image inside of the body using high frequency sound
waves. Ultrasound imaging has many advantages: Ultrasound scanning is harmless to the
patient, the machines are portable, scans can be acquired in real time in 2D and almost real
time (±5 Hz) in 3D, and the machines are cheaper than CT and MR scanners. However, US
images can only look at a small area of the body at the same time and they are susceptible to
artifacts. In this section we will briefly review US image reconstruction and what artifacts
this can cause.

8



2.4. 3D ultrasound

2.4.1 Physics and reconstruction

The transducer sends high frequency (1-18MHz) pulses into the body. As a pulse traverses
through the body it will react to the tissues in roughly four possible ways: The pulse may
traverse through the tissue, it may be reflected back, it may be converted into heat, or it
may be scattered in all directions. Between sending two pulses the transducer measures the
sound that is reflected back and these measurements are used to create an image.

Reflections occur on boundaries between tissues. The amount of sound that is reflected
back depends on the acoustic impedances Z1,Z2 of the tissues and the angle between the
pulse and the boundary θ. The impedance Z depends on the speed of sound c and density ρ

of a tissue:
Z = ρc (2.1)

The reflection ratio R, describes the ratio between the reflected and transmitted pressure
pr, pt . For perpendicular incidence it is defined as follows [17]:

R =
pr

pt
=

Z2−Z1

Z2 +Z1
(2.2)

By measuring the time between sending out the pulse and measuring the reflection, the
distance of the reflecting edge can be measured. This assumes the speed of sound is constant
within the body at 1540 m/s, which is approximately correct in soft tissue, but not in bone
or air (Table 2.4.1).

Tissue Speed
(m/s)

Acoustic Impedance
(kg/m2/s)

air 330 0.0004×106

fat 1460 1.34×106

water 1480 1.48×106

liver 1555 1.65×106

blood 1560 1.65×106

muscle 1600 1.71×106

skull bone 4080 7.80×106

Table 2.1: Ultrasound characteristics of different tissues. Source: Konofagou [17]

A phased array 2D ultrasound transducer has an array of piezoelectric elements that can
create a pulse at any angle within the plane parallel to the transducer by using beamform-
ing (Figure 2.5). After sending a pulse at a certain angle the transducer will measure the
reflected sound to determine the position of the reflectors along that angle. By sending and
measuring for a range of angles a 2D image can be generated, where every measurement
contributes to one line of the image.

3D images can be created by using a 2D matrix of transducer elements to steer the pulses
with two angles. Alternatively, a 2D transducer can be moved or rotated over the body either
manually or automatically and the resulting 2D images can be stitched together to obtain a
3D volume. Huang and Zeng [18] provide a review of how 3D ultrasound volumes can be
obtained and rendered, and how they are used in practice.

9



2. BACKGROUND

Figure 2.5: Illustration of beamforming: By sending the same pulse signal to an array of
transducer elements with a different delay for each element, it is possible to create waves
that propagate at any angle θ ∈ (−1

2 π, 1
2 π).

2.4.2 Artifacts

While ultrasound imaging has many positive qualities, it is also susceptible to multiple types
of artifacts. These artifacts tend to reduce image quality more than the artifacts that occur
in CT or MR.

Shadows

Some interfaces between different kinds of tissue reflect almost all sound. This most often
occurs within the body on interfaces including bone or air, and it can also occur when the
transducer does not make good contact with the body. In those cases, the interface itself
shows up brightly, but behind the interface nothing is visible. This is illustrated in Figure
2.6.

Speckle

Speckle is an artifact that has a noise like grainy appearance and it appears all over the im-
age. It is caused by interference of scattered waves [19] (Figure 2.7). Bright spots are caused
by constructive interference and dark spots by destructive interference. It is a deterministic
result of the pulse signal, but because it is not modelled during image reconstruction its
position does not directly correspond to any structure inside the body. Nevertheless, the
speckle pattern does stay the same over time and over small movements, so it has been used
to track images over time [20, 21].

Orientation dependence

The intensity of a reflection is not only dependent on the tissue properties, but also on the
angle of the interface relative to the propagation direction of a wave. Edges perpendicular

10



2.4. 3D ultrasound

Gallbladder

Shadows

Gallstones

Rib

Shadow
Liver

Figure 2.6: Left: Example of a shadow in 2D ultrasound, caused by gallstones in the gall-
bladder, source: Støylen [22]. Right: Example of a shadow in our dataset.

Figure 2.7: Left: Wave pattern of two sources. Right: Wave pattern of several randomly
placed sources. Similar patterns can be seen in US images. Source: Støylen [22]

to the scan direction show up brightest, and the more close to parallel an edge is to the scan
direction the less clearly visible it will be. Because of this, the same structures will look
different when scanned from different directions.

Time gain compensation

Reflections that occur further inside the body in general reflect less power to the transducer
because there is more tissue in between. To compensate for this, the US machine amplifies
measured reflections more when they are further away. How this amplification is performed
exactly varies between machines, and it often contains user tunable parameters. Therefore,
this can be a source of variation between different scans even when they are acquired with
the same scanner.

11



2. BACKGROUND

Log compression

The typical distribution of the measured ultrasound intensities contains mostly low values
with a few values that are much higher, so a typical image would look very dark, with a few
bright spots. To reveal more information, a logarithm-like function is applied to each pixel.
Log compression also reduces the visual effect of the orientation dependence of the scanner.
Again, the exact function is machine dependent and may contain user tunable parameters.

2.5 Coordinate transformation models

The result of a registration is a set of transformation parameters that maps the coordinate
system of one scan onto the other. How the coordinates of one scan can be mapped from
one scan to the other is defined in the coordinate transformation model. Selecting the right
transformation model is a trade off between accuracy and problem complexity. If you use
too few parameters you will not be able to register the images accurately. However, if
you use too many parameters your registration result may contain deformations that are not
physically possible, and your optimizer might get stuck in a local optimum. Therefore many
registration approaches increase the transformation model complexity as the registration
progresses [23, 24]. Some of the most common transformation models are described below:

Rigid transformations allow for a translation and rotation between the images. Angles,
distances, lines and planes are preserved. It can be described as a 3D vector for the
translation and another 3D vector or a unit quaternion for rotation.

Affine transformations are a more general model, allowing for translations, rotations,
scaling along each axis, mirroring and shearing. Lines and planes remain lines and
planes, but angles and distances can change. Affine tranformations can be described
by a 3x3 matrix and a 3d vector.

Deformable transformations allow for locally different bending. Cubic B-splines [25] are
often used, where the local transformation parameters are specified on a grid, and be-
tween the grid points, the transformation is interpolated. Deformable transformation
models are typically unable to describe big rotations and translations and they use
many more parameters than rigid or affine transformations, making them not suitable
to be directly used for initialization.

In the case of 3D US CECT liver registration, the position of the US transducer can
vary, which can be described as a rigid transformation. These motions can be tracked using
an EM or optical tracking system. There are also several causes of non-rigid deformations:
The pose of the patient can differ, the US transducer and other medical instruments may
apply pressure to the body and the respiratory(breathing) motion also causes deformation.
When the CT scan is taken the respiratory state can be controlled by asking the patient to
hold his/her breath at inhalation or exhalation, but this is not possible during the intervention
because the patient is sedated with the natural breathing intact.
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2.5. Coordinate transformation models

Figure 2.8: 2D illustration of different transformation models

The non-rigid deformation of the liver caused by respiratory motion was measured by
Rohlfing et al. [26] on gated MRI data. They measured the distances of the liver surface
and the biggest vessels between rigid and non-rigid registrations. These distances are on
average around 10 mm and at most 34 mm in their measurements. According to Wein et al.
[27] most of the deformations caused by respiratory motion occur in the saggital plane.

The non-rigid deformation inside of the liver between intra- and pre-operative CT scans
for liver tumor ablations was measured by Luu [9]. They measured the distances of equally
sampled points within the liver between rigid and non-rigid registrations. The average mea-
sured error in rigid deformations over the entire liver was 5.9±1.6 mm. They also measured
the error within the field of view of a 3D US scan acquired from either a inter-costal(between
the ribs) or a sub-xiphoidal(under the sternum) position, which are also the acquisition po-
sitions in our dataset. The measured error was 4.6± 1.2 for inter-costal scans and 4.8± 1.5
for subxiphoidal scans. However, they did not take into account the extra deformations that
are caused by pushing the US transducer against the body
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Chapter 3

Prior Work

In this section, the prior work is reviewed. Not a lot of research has been preformed on
registration initialization between 3D US and CECT scans. Therefore, a broader overview
of the literature on multimodal US registration and registration initialization is given.

Most work on multimodal US registration uses an intensity based approach, but these
methods are not very suitable for finding an initialization. Nevertheless they give an indica-
tion of what kind of features can be used for US registration, so they are reviewed in Section
3.1. Feature based approaches can be used for initialization, but we could only find two fea-
ture based methods for US registration: one method was only evaluated on two scans and
the results of the other method were not reproducible. They are presented in Section 3.2.
Another way to find an initialization is to use global search. To the authors’ best knowledge
this has not yet been applied for US registration initialization, but good results have been
achieved in registration initialization between other modalities. These results are presented
in Section 3.3.

3.1 Intensity based multi-modal US registration

Intensity based registration approaches formulate registration as an optimization problem.
A cost function is defined that is based on the features that are overlapping between a fixed
image, and an image that is being transformed according to a coordinate transformation
model. The transformation parameters with minimum cost should describe the transforma-
tion from one image space to the other.

Images acquired with different modalities display the same tissues in different ways, so
to be able to use a cost function for registration, the cost function should be mostly invariant
to these differences in appearance. Commonly used cost functions are the correlation ratio
and mutual information [28, 29]. The correlation ratio between two images is invariant to
linear intensity changes, so when you apply a function ax+ b to the intensity of all voxels
the optimum will not change. Mutual information(MI) is in theory invariant to remapping
intensities using any bijective function f , as long as the same function is used on all vox-
els. In practice MI is calculated using a joint histogram, so there might be some changes
due to the discretization into bins, especially when f is not a smooth function. A differ-
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Figure 3.1: US simulation from MR using intensity and gradient magnitude as described in
Roche et al. [33]. Left: US image, middle: US simulation, right: MR image slice

ence between ultrasound and other modalities such as MR or CT is that ultrasound images
display a higher intensity on the boundary between different tissues. Cross correlation and
mutual information are not invariant to such changes, so cost functions have been developed
specifically for multi-modality registration with ultrasound.

To optimize the cost function an iterative local search strategy is used. Local search
strategies start with a certain set of parameters and search in every iteration for a small
change of parameters that will improve the cost function. Commonly used local optimiza-
tion strategies in multimodal US registration are the Nelder-Mead method [30] and the
combined methods of Powell [31] and Brent [32]. Both methods do not use the gradient
of the cost function, so the cost function does not have to differentiable. Because local
search algorithms only take small steps that have to improve the cost function, they tend to
converge to a local optimum that is close to the initial set of parameters. Because intensity
based cost functions typically have many local optima a close initialization is required.

3.1.1 MR-2D US registration

Roche et al. [33, 34] proposed a method for rigid MR to 2D US registration based on
a generalization of the correlation ratio cost function. Their cost function is invariant to
certain combinations of the intensity and the gradient magnitude of the MR volume. At
every iteration of the optimization process, a new volume Î is calculated from the MR
volume intensity I and gradient G that is supposed to look more like an US image. For
every voxel xxx the following formula is applied:

Î(xxx) =
3

∑
p=0

3−p

∑
q=0

wpqI(xxx)pG(xxx)q (3.1)

The weights wpq are chosen in such a way that they minimize the difference between
Î and the US image for the current transformation. This can be formulated as a weighted
least squares problem, which can be solved using singular value decomposition. One result
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3.1. Intensity based multi-modal US registration

Figure 3.2: Dip image calculation from Penney et al. [35]. Left: scan direction in US image,
middle: intensity profile along line Y Z and the regions where the central (c̄), before (b̄) and
after (ā) mean intensity values are calculated, right: resulting dip image

is shown in Figure 3.1. Afterwards, one update step of the Powell local optimization method
[31] is performed on the cross correlation between Î and the US image. After that a new
iteration starts, and these two steps are repeated until convergence.

In another approach, by Penney et al. [35], multiple 2D images that were tracked using
an optical tracker are rigidly registered to an MR volume. First the vessel probability for
each pixel in the US images and for each voxel in the MR volume is approximated. A
custom derivative free local optimizer is used for optimizing the transformation parameters
over the cross correlation between the vessel probability images from the US and MR scans.

The US vessel probability images are obtained in three steps. First the region of shadow
artifacts is estimated by tracing rays from the back of the scan towards the scanner and dis-
carding all pixels until a threshold is reached. Secondly, local intensity dips are calculated
and stored in an image: For each pixel in an US image, along the scan direction, the average
intensity is compared between the center region c̄ and the two regions before b̄ and after ā
it. This is illustrated in Figure 3.2. In the third step the US intensity and dip image value
are combined into the US vessel image by means of a lookup table. The lookup table was
trained on manual vessel annotations. For the MR images, another lookup table was trained
on manual annotations that directly mapped the MR intensity to the vessel probability.

3.1.2 CT-3D US registration

A method for registering 3D US and CECT images was developed by Wein et al. [36, 27].
A 2D US transducer with a small motor was used to create a sweep of 2D US images of
the liver in a range of angles. Not all images are used: the range of angles is divided into
20-30 bins and for every bin the image with maximum entropy is selected. Two features
are calculated for every pixel of the CT scans, which are combined in the cost function.
This is similar to the method of Roche et al. [34], but the features of Wein et al. are more
strongly based on US physics. The first feature p is the estimated tissue density, which can
be obtained by applying the mapping displayed in Figure 3.3 to the CT intensities. The
density of a tissue determines the intensity of a uniform region of that tissue in an US scan.
The difference between two densities determines the intensity of the boundary between
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Figure 3.3: Mapping from the intensities of normal CT(red dashed line) and contrast en-
hanced CT(blue line) to tissue density, which is important in US images [27].

.

Figure 3.4: US simulation from CT [27]. (a) and (b) are the original US and CT images, (c)
is the simulated reflection, (d) is the simulated transmission and (e) is the combination of
the simulated density and reflection images

those two tissues in an US scan. This is simulated by tracing rays from the scanner through
the image and at each pixel updating how much the ray is reflected and how much energy is
left. This is Illustrated in Figure 3.4.

To combine the estimations of the density p(xxx) and reflection r(xxx) at pixel xxx a linear
model is used: f (xxx) = αp(xxx)+ βr(xxx)+ γ. The weights α, β and γ are updated for every
pixel separately at every update step of the optimizer. They are calculated by applying
linear regression in a 11x11 pixel neighborhood around the pixel of interest. Because the US
simulation depends on the current registration estimate, the simulation quality will get better
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3.1. Intensity based multi-modal US registration

when the registration progresses. The final cost function is the correlation ratio between the
real US image and the simulated US image. For optimization the Nelder-Mead method [30]
is used to fit a rigid model. After that, optionally a semi-affine model can be fitted, which
includes one shearing and two scaling parameters in the sagittal plane.

3.1.3 Block Matching

A different method for CECT-3D US registration was developed by Banerjee et al. [8, 10].
They used block matching [37] as the optimization strategy. First random points were se-
lected in the US scan. A 15mm3 block of the US scan centered around each selected point
is matched to the CECT scan with the multiple correlation coefficient between US intensity
and CECT intensity and gradient as the cost function. To find the optimal corresponding
block, exhaustive (grid) search is applied in a 40 mm3 region around the corresponding
center point in the CECT scan according to the initial registration estimate. Some of the
found correspondences might be erroneous, so an outlier rejection step is performed. This
is based on two criteria: The geometric criterion specifies that two pairs of matched points
should have similar distance in both scans. The smoothness criterion specifies that the dis-
placement vector from US to CECT should be similar for points that are close together. On
the remaining points an affine model is fit minimizing the squared distance between the two
scans [38].

The original block matching paper by Ourselin et al. [37] used a simpler form of outlier
rejection. It assumes that outliers have a bigger distance between the scans than inliers.
Therefore only the 50% of the point pairs with the lowest distance between them are in-
cluded when calculating the transformation. This approach is called least trimmed squares
(LTS) and it originated from robust (linear) regression [39]. Modat et al. [40] made block
matching symmetrical by sampling points in both scans and then matching in both direc-
tions. This improved the performance over the asymmetrical (original) approach on all their
registration experiments between images acquired using different MR sequences(T1, T2&
PD), CT and PET.

3.1.4 Initializing intensity based methods

All the US registration methods in this section rely on an initialization for the registration
to converge to the global optimum. In the method of Roche et al. [33, 34] the initializa-
tion was entered manually, but they "always made sure that a slight misalignment was still
visible", so that the images were not already registered before running the algorithm. The
approach by Penney et al. [35] used a camera tracking system for initializing the rotation
and they manually aligned the translation by selecting the center of the IVC in both images.
Moreover, they only registered images at maximum exhalation so there were no deforma-
tions caused by breathing. The method by Wein et al. [36, 27] either initializes the rotation
parameters using an electromagnetic tracker or by entering an estimate manually. After-
wards an exhaustive search is performed over all translations where the US transducer is
on the skin. All translations "suggesting an optimum" are further optimized using a local
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optimization approach. Finally Banerjee et al. [8] used a manual initialization, based on
selecting multiple corresponding points in the US and CECT scans.

3.2 Feature based multi-modal US registration

Feature based approaches try to detect corresponding features in both scans, and derive the
transformation parameters so that each feature is matched as closely as possible. The detec-
tion of features is not dependent on the orientation of the scans, making these approaches
suitable for initialization.

3.2.1 Registration based on IVC and liver boundary segmentation

A feature based method for registering MR to 3D US volumes was proposed by Weon et al.
[41]. They assume the edge of the liver and the inferior vena cava(IVC) can be segmented
in both modalities. Furthermore they assume that close to the liver the IVC can be ap-
proximated by a straight line. For both modalities the direction of this line is calculated by
taking the largest principal component of the segmentation. When the lines that are found
in both modalities are aligned only two degrees of freedom remain: the translation along the
line, and the rotation around the line. Both the translation and rotation are sampled at fixed
intervals, and for each combination a ray is cast away from the IVC line to calculate the
distance to the closest point on the liver surface in that direction. These results are stored in
a geometric distance map. These two distance maps are aligned by minimizing their aver-
age absolute distance, and from the alignment result the translation and rotation parameters
can be retrieved. The method was evaluated on only two scans resulting in a mean error
between annotations of 4.10± (0.54) and 4.39± (0.62).

The above method is extended by Hwang et al. [42] by specifying how to segment the
IVC and the liver edge in both scan modalities. In the MR scan the IVC is segmented using a
level set approach and a single manually placed seed point. In the US scan they use adaptive
thresholding for segmenting both the surface and the IVC. The threshold is based the mean
and standard deviation within a local window, but they do not specify the window size. As
a next step for the IVC segmentation one connected component is selected that has a shape
similar to a cylinder and has the biggest diameter. Again this method was only evaluated on
(possibly the same) two scans, resulting in an average annotation error of 11.31± (3.37).

3.2.2 Registration based on vessel segmentation

Another method for automatic US-CECT registration was developed by Nam et al. [43].
They use a segmentation of the liver vessels and liver boundary as features. Because the US
image has a limited field of view and less image quality, they only try to find some vessels
and a part of the liver surface in the US image, while they assume the whole segmentation
is available for the CECT scan. For segmentation in the US scan they first filter the image to
remove noise and speckles. After that they use Hessian based filtering to detect plane like
structures, which should be parts of the boundary of the liver. After applying a threshold
they only use the largest connected component, which should be the interface between the
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liver and the lung. For segmenting the vessels they first fit a quadratic surface through
the liver segmentation and only use the part above the surface as a rough estimate of the
liver volume. Within this volume, local mean and variance based thresholding is used to
find blood vessel candidates. For each connected component the similarity in shape to a
vessel is calculated using a shape measure and if this is above a threshold the component is
included within the vessel segmentation.

In the first step of the registration only the blood vessels are registered. To do this, the
centerlines of the vessels in the US and CT scans are extracted and sampled at a constant
interval. Each edge between two samples in the US segmentation is matched to an edge
in the CT segmentation in such a way that the relative distances and angles are preserved
as good as possible. To find this matching, the Viterby algorithm is used. From the corre-
sponding edge centerpoints the optimal rigid transformation is calculated using a singular
value decomposition [44]. In a second step this result is refined by using the iterative closest
point(ICP) method on the vessel and liver boundary segmentations to find the optimal affine
transformation with the result from the previous step as the initialization.

This method was evaluated on a simulated dataset and on 20 scans obtained from a
mechanical 3D US scanner, which were obtained so that the liver boundary and vessels
were conspicuous. 6-8 corresponding points were annotated by a radiologist in the clinical
dataset, and the mean RMS error after the first step was 4.30(±1.07) and after the second
step 3.0(±0.95). Manual rigid registration had an error of 3.59(±1.0).

This method appears to solve the same problem that we are aiming to solve. However,
their results have proven difficult to reproduce: They don’t report the values that were used
as thresholds and both their code and dataset are not made public. We tried implementing
the liver boundary segmentation method ourselves. This did not work well on our dataset.
The Hessian based filter did output high values on the edge of the liver, but it also outputted
high values on other parts of the scan and these parts were often connected. Therefore we
were unable to find a threshold for which the largest connected component contained only
a substantial part of the liver boundary and nothing else. We also emailed the authors but
they did not reply.

3.3 Global optimization in registration

Feature based methods require a certain the structure of the detected features to be able find
the transformation parameters, and intensity based methods require an initialization. An
alternative is to use a global optimization algorithm. These algorithms can be applied to
any cost function to find their global optimum, which allows for more freedom in designing
a solution. However as proven by the No Free Lunch Theorem for Optimization [45] "All
algorithms that search for an extremum of a cost function perform exactly the same when
averaged over all possible cost functions. So, for any search/optimization algorithm, any
elevated performance over one class of problems is exactly paid for in performance over
another class." Therefore, if you don’t make any assumptions about your cost function, you
cannot make any assumptions about the performance of you optimization either. Neverthe-
less, global optimization approaches have been successfully used in some areas of registra-
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tion problems, so they give an indication of what kind of cost functions and optimizers may
work well in registration problems.

3.3.1 Evolutionary algorithms and other metaheuristics

Evolutionary algorithms are optimization algorithms inspired by the biological process of
evolution. They maintain a population of possible solutions to the optimization problem
that you want to solve. From the first population new generations are generated by apply-
ing operations on the previous generation. Typical operations are mutations, which cause
a small modification to one or more parameters and crossover, which combines param-
eters from two members of the population. These operations are applied multiple times
until ideally all members of the population converge to the same optimal solution. There
are many different evolutionary algorithms, using different ways of encoding solutions and
different operations to generate new solutions. Metaheuristics are a broader class of algo-
rithms which includes evolutionary algorithms. They are used to solve the same kind of
problems, but they are not necessarily inspired by evolution. Many of these algorithms use
other parallels to nature such as ant colony optimization [46] or simulated annealing [47],
which is inspired by a chemical process. In a recent survey by Boussaïd et al. [48] many
metheheuristics, including evolutionary algorithms, are reviewed.

Evolutionary algorithms and other metaheuristics have been used to solve registration
problems over a large search space. In the overview of Damas et al. [49], 8 evolutionary
algorithms, 5 other metaheuristics and 2 robust local optimization methods were compared
for use in registration. A brain and a wrist dataset were used, from which ridge line features
were extracted. A transformation had to be found over a space of all rotations, ±40mm
translation over all axes and (0.5,2) times uniform scaling. Scatter search [50] performed
best, closely followed by differential evolution [51, 52].

Another evolutionary algorithm was used by Otake et al. [53] to solve the 2D X-ray
to 3D CT registration problem. They applied the covariance matrix adaptation evolution
strategy(CMA-ES) evolutionary algorithm to find an automatic registration with a 99.993%
success rate over a search space of ±200mm translation along each axis and ±10◦ rotation
around each axis.

3.3.2 library based search

When performing a registration during an intervention you want the run time to be as short
as possible. Sometimes it is possible to use a computationally expensive method, by doing
most calculations before the intervention, when a long run time is less of a problem. This
approach has been used multiple times in X-ray to CT registration initialization [54, 55, 56,
57]. Before the intervention, a library is generated by simulating X-Ray images from the
pre-operative CT scan at many orientations and performing further pre-processing. When
the real X-ray image is acquired during the intervention, the cost function can be evaluated
quickly for all orientations available in the library.
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Figure 4.1: Overview of the registration pipeline

To be able to find an initial registration from any position of the US transducer that
shows the liver, we present a global optimization based method, based on the work by
Santamaría et al. [50]. In the cost function we use the distance of the liver boundary and
the blood vessels between both scans. Both features have been used for multimodal US
registration before [35, 43, 41, 42]. Neural network based segmentation is used to extract
these features in the US scan, and more traditional approaches and already available manual
labels are used for segmenting the CT scan. Moreover, we also include the distance from
the US transducer to the skin in the cost function, similar to the initialization method used
in Wein et al. [27]. The method is illustrated in Figure 4.1. To reduce the computation
time during the intervention, computations are performed before the intervention whenever
possible.
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4.1 Registration cost function

A cost function is defined to quantify the goodness of fit of a coordinate transformation T
between the two scans. The cost function we use is a weighted combination of three cost
functions:

Cregistration(T ) = wlivCliv(T )+wvesCves(T )+Ctrans(T ) (4.1)

Cliv(T ) describes the fit of the segmented liver boundaries, Cves(T ) describes the fit
of the segmented blood vessels and Ctrans(T ) describes whether the US transducer is in a
feasible position. wliv & wves are weights that can be used to take each part more or less
into account. A separate weight for Ctrans(T ) is not needed, because only the ratio between
the weights has influence on the optimum of the cost function. We combine the different
cost functions in this way to eliminate false optima. Each cost function component may
have a low cost for several values of T , but we only expect them all to have a low cost when
the scans are correctly aligned. Cliv(T ) and Cves(T ) both describe the distance between two
segmentations, so the same distance function can be used for both functions. For Ctrans(T )
a different approach is used, because it consists of only one point.

4.1.1 Quick distance lookups using sampling and the distance transform

To quantify the distance between two segmentation masks we use the distance from sampled
points in the US segmentation to the the closest point that is part of the CT segmentation.
Only the distance from US to CT was used instead of from CT to US or both directions,
because the US scan area does not cover the entire liver, and the segmentation of the CT
scan is more reliable. In other words, we assume that whenever a structure is segmented in
the US it will also be available in the CT segmentation, but not the other way around.

To sample points in the US segmentation mask, first the coordinates of all voxels in the
segmented area are stored in a list by iterating over the volume line by line. Afterwards, an
equally spaced subset of 1000 samples is selected from that list. This results in a more or
less evenly spaced set of samples in 3D as well.

To be able to quickly look up the distances of these points to the closest point in the
CT segmentation, the euclidean distance transform is calculated for each CT segmentation.
In a distance map every voxel corresponds to the distance to the closest voxel within the
segmentation mask. It can be calculated in linear time [58] before the intervention, because
the CT scans are acquired before the intervention. This step is illustrated in Figure 4.2.

4.1.2 Robustness to segmentation errors

The available segmentations will not be perfect, so we present three cost function variants
that provide some robustness to segmentation errors. All three can be used for Cliv(T ) and
Cves(T ), and we will evaluate how well each one performs in chapter 5.

Least trimmed squares of closest distances(LTS-CD)

The LTS-CD cost function takes the average over the fraction f lowest distances between
closest points, with f being a tunable parameter. When n points are sampled in the US
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Figure 4.2: The distance to the closest point in a segmentation can be quickly looked up for
multiple points by calculating the euclidean distance transform.

segmentation, Dsorted(i,T ) returns the sorted distances to the closest points in the CT seg-
mentation for a given transformation T . The distances are sorted in ascending order and i is
the index in the sorted list, so Dsorted(0,T ) would return the distance of the sample closest
to the CT segmentation. Using this, LTS-CD is defined as:

CLT S−CD(T, f ) =
1

b f ·nc

b f ·nc

∑
i=0

Dsorted(i,T )2 (4.2)

The assumption that is made in this cost function is that distances corresponding to
outliers are usually higher. Therefore only the smallest f · n(rounded down) distances are
included and the others are discarded. We slightly modified the original LTS [39] formula-
tion by adding the weight 1

b f ·nc . This does not affect the optimum of CLT S−CD by itself, but it
does affect the optimum when the different cost function parts are combined into Cregistration.

Trimmed average closest distance(TACD)

The TACD cost function is the same as the LTS-CD cost function, but without squaring the
distances. The LTS-CD is similar to the L2-norm of the closest distances, while TACD is
similar to the L1-norm, which is generally less sensitive to outliers.

CTACD(T, f ) =
1

b f ·nc

b f ·nc

∑
i=0

Dsorted(i,T ) (4.3)

Clipped average closest distance(CACD)

The CACD cost function takes the average of all distances to closest points, but when the
distance to the closest point is far away the distance is clipped to some maximum value
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dmax, which is selected by the user. Just like LTS-CD and TACD, it also assumes false cor-
respondences between segmentations will result in bigger distances, but it uses a different
method for handling these distances. For this cost function the distances to the closest point
D(i,T ) do not have to be sorted.

CCACD(T, f ) =
1
n

n

∑
i=0

min(D(i,T ),dmax) (4.4)

4.1.3 Transducer distance function

For the distance between the US transducer and the skin a different distance function is used
because the skin is flexible and can deform by the pressure applied to the transducer. To
account for this, the transducer distance is only taken into account if it is bigger than a user
defined threshold dmin. Here Dtrans represents the distance from the transducer position to
the closest point on the skin in the CECT scan.

Ctrans(T,dmin) = max(Dtrans(T )−dmin,0) (4.5)

4.2 Registration optimization

The Self-adaptive Differential Evolution(SaDE) [59] is used to optimize the transforma-
tion parameters over the cost function. This algorithm is an extension of the Differential
Evolution algorithm, which performed well in the comparison by Damas et al. [49].

4.2.1 Transformation parameterization

Because the cost function is based on looking up US samples in CT distance transforms, the
optimizer will not try to find the transformation from the CT space to the US space directly.
Instead the optimizer will try to find a transformation from US to CT, which can be inverted
to get the transformation from CT to US.

First a constant matrix is applied to the US samples that transforms the US voxel co-
ordinates to the distance in millimeters from the center of the scan. Secondly a rotation
followed by a translation is applied, which are optimized by SaDE. Lastly the positions in
millimeters are transformed to CT voxel coordinates using another constant matrix.

The translation is parameterized as a 3D vector and the rotation is parameterized as a
unit quaternion, resulting in a total of 7 variables to be optimized. A unit quaternion is used
to describe the rotation because it does not exhibit gimbal lock like Euler angles.

4.2.2 Differential Evolution

The Differential Evolution optimizer [52] tries to find the global optimum of the cost func-
tion C by calculating the cost function for each transformation of a population P for G
generations resulting in a total of P×G evaluations. In the first generation each transforma-
tion is randomly generated in such a way that the center of the US scan is within the liver
and a random rotation around the center is applied.

26



4.2. Registration optimization

After initialization, each following transformation Tp,g is generated from the trans-
formation in the previous generation Tp,g−1 and three randomly selected transformations
Tr1,g−1,Tr2,g−1,Tr3,g−1 where r1 6= r2 6= r3 6= p. First a mutation vector is generated using
the following equation, which relies on a user specified mutation factor F :

Tmutation,p,g = Tr1,g−1 +F (Tr2,g−1−Tr3,g−1) (4.6)

Secondly a crossover operation is applied between each parameter t0 . . . t6 of the mutated
vector and the vector of the previous generation. The crossover operation is based on a user
specified crossover ratio CR, and the result is called a trial vector.

ttrial,p,g,i =

{
tmutation,p,g,i if rUni(i)<CR or rInd(p) = i
tp,g−1,i else

(4.7)

rUni(i) is a random uniform number [0,1] unique for each transformation parameter and
rInd(p) is a random index [0,6] to make sure that at least one transformation parameter is
crossed over.

Finally a trial vector is only accepted into the new generation when its cost is lower than
the cost of the previous vector in that position:

Tp,g =

{
Tcross,p,g if Cregistration (Ttrial,p,g)<Cregistration (Tp,g−1)

Tp,g−1 else
(4.8)

Because of the random nature of the algorithm it is not guaranteed to converge to the
global minimum of the cost function. To reduce the chance of getting stuck in a local
optimum, the algorithm is started multiple (R) times. Because of the random initialization
and random mutations the restarted algorithm may converge to a different optimum. In the
end the result with the lowest cost function value is selected as the final result.

4.2.3 Self-adaptive Differential Evolution (SaDE)

To optimize Cregistration we use the SaDE algorithm Qin et al. [59]. This algorithm extends
normal differential evolution by adding multiple combination strategies for generating new
transformations. The idea is that each strategy has different strengths that may be more
or less useful depending on the problem, the problem instance and the current state of the
optimization process. Moreover, SaDE adaptively tunes the occurrence of each strategy and
their parameters, such as CR and F , so they can change over time, and they no longer have
to be tuned by the user.

SaDE combination strategies

In total four different combination strategies are used in SaDE, which are listed below.

DE/rand/1/bin:

Tmutation,p,g = Tr1,g−1 +F (Tr2,g−1−Tr3,g−1) (4.9)

ttrial,p,g,i =

{
tmutation,p,g,i if rUni(i)<CR or rInd(p) = i
tp,g−1,i else
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DE/rand/2/bin:

Tmutation,p,g = Tr1,g−1 +F (Tr2,g−1−Tr3,g−1)+F (Tr4,g−1−Tr5,g−1) (4.10)

ttrial,p,g,i =

{
tmutation,p,g,i if rUni(i)<CR or rInd(p) = i
tp,g−1,i else

DE/rand-to-best/2/bin:

Tmutation,p,g = Tp,g−1 +F (Tbest,g−1−Tp,g−1) (4.11)

+F (Tr1,g−1−Tr2,g−1)+F (Tr3,g−1−Tr4,g−1)

ttrial,p,g,i =

{
tmutation,p,g,i if rUni(i)<CR or rInd(p) = i
tp,g−1,i else

DE/current-to-rand/1:

Ttrial,p,g = Tp,g−1 +K (Tr1,g−1−Tp,g−1)+F (Tr2,g−1−Tr3,g−1) (4.12)

SaDE adaptive strategy selection

The strategy for generating each new trial vector is randomly selected with the probability
of each strategy based on the results in a learning period of a number of generations LP.
When the algorithm starts, the probability of selecting each strategy is equal, and they will
remain equal for the first LP generations. During that period a success memory and a
failure memory are built up, storing for each generation g and each strategy k how many
transformation vectors were successfully selected to be used in the next generation (nsk,g)
and how many transformation vectors failed to improve the cost function (n fk,g). Using this
information, the probability pk,gc of each strategy for the current generation gc is calculated
as follows:

pk,gc =
Sk,gc

∑
4
k=1 Sk,gc

, where Sk,gc =
∑

gc−1
g=(gc−LP) nsk,g

∑
gc−1
g=(gc−LP) (nsk,g +n fk,g)

+ ε (4.13)

Each iteration the success and failure memories are updated and the probabilities are
recalculated. ε = 0.01 is included to avoid that any strategy gets a zero probability.

SaDE parameter adaptation

The behavior of each strategy is dependent on two parameters: K and F for DE/current-to-
rand/bin and CR and F for the other strategies. "CR is usually more sensitive to problems
with different characteristics, e.g., the unimodality and multimodality, while F is closely
related to the convergence speed" Qin et al. [59]. Therefore to maintain both exploration
and exploitation, F is randomly sampled from a normal distribution with a mean of 0.5 and
a standard deviation of 0.3, while CR is adaptively tuned to the current problem. Every time
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4.3. US segmentation using a 3D/2D U-net

when crossover is applied in strategy k, a new CR is generated from a normal distribution
with mean CRmk and standard deviation 0.1. If this CR value produces a successful trial
vector, it is stored in the CR-memory. This memory contains a list of successful CR values
for each strategy for every generation. At the start of every generation the median over the
last LP generations is used to calculate CRmk for each strategy. In the first LP generations
CRmk is fixed at 0.5. Parameter K was randomly sampled [0,1].

4.2.4 Quaternion re-normalization

The quaternion part of a transformation that is generated by Differential Evolution is not
necessarily a unit quaternion, but only unit quaternions describe rotations. Therefore the
quaternion is normalized before the trial vector is used to evaluate the cost function. More-
over, between mutation and crossover the quaternion part is negated (qnew =−q) if the dot
product between the quaternion of the trial vector and the quaternion from the previous gen-
eration is negative. This reduces the difference in their representations, while the negated
quaternion still represents the same rotation. These modifications were inspired by the paper
by Kavan and Žára [60], where they blended multiple quaternions by applying a weighted
average followed by a normalization.

4.3 US segmentation using a 3D/2D U-net

For segmenting the blood vessels and the liver boundary a neural network was used with the
same network architecture but a different training set. The architecture was based on the U-
net [61], which was first used with 3D convolutions by Çiçek et al. [62] and further refined
by Milletari et al. [63], which they call the V-net. The U-net was originally developed for
segmenting medical images when only limited data is available, which is similar to the
problem we are trying to solve here. Moreover, we had available the work of Muhammad
Arif, who had good results in segmenting needles in 3D US scans by using a 3D U-net.

The US transducer position was not segmented using deep learning. US scans are al-
ways acquired relative to the transducer position, so the transducer position has a constant
position on all US scans. Therefore it does not need to be segmented.

4.3.1 3D/2D U-net architecture

Just like the 2D U-net and the V-net our architecture has four downsampling and upsampling
steps resulting in five different resolution levels. The main difference and the source of the
name of the 3D/2D U-net is that it performs 2D convolutions and 2D downsampling instead
of 3D convolution and downsampling on every other layer. The reason for doing this is to
compensate for the fact that the resolution along the z-axis is lower than the other 2 axes.

The network also uses batch normalization to speed up training. It is only applied every
few layers and not at the highest resolution to reduce the amount of memory needed. To fit
within the available memory, the amount of feature maps is also low.
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Figure 4.3: Illustration of the 3D/2D U-net architecture

4.3.2 Dice cost function

For quantifying the segmentation quality a cost function is needed. A simple choice would
be to take the accuracy (fraction of wrongly classified voxels) as the cost function. However,
if you do this you will run into the problem of class imbalance. Because about only one
percent of the volume of the US cone consists of blood vessels and about two percent is
covered by the liver boundary mask, the network is much more likely to classify a voxel as
background than as foreground. To overcome this problem we use a cost function based on
the Dice measure [64]. When A is the set of foreground voxels outputted by the network,
and B is the set of foreground voxels in the ground truth, the Dice measure DSC is defined
as:

DSC =
2|A∩B|
|A|+ |B|

The Dice measure is always between zero and one, with one meaning perfectly over-
lapping classes (A = B). One thing to note is that this function only looks at foreground
voxels. This makes the function not dependent on the size of the background and therefore
less sensitive to class imbalance. Nevertheless both types of errors are penalized, but in
different ways: false positives increase the denominator while false negatives decrease the
numerator. Another thing to note is that the intersection operator ∩ is not differentiable, so
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4.3. US segmentation using a 3D/2D U-net

it cannot be optimized using gradient descent. Therefore we use a slightly modified version
of the Dice measure to construct the cost function [63]:

CDice = 1− 2aaa ·bbb
aaa2 +bbb2 +1

Here aaa and bbb are the output of the network and the ground truth in vector form. If aaa and
bbb would have been binary vectors, containing only zeros and ones, aaa ·bbb would be the same
as |A∩B| and aaa2 would be the same as |A|. The +1 in the nominator and denominator, are
added to avert division by zero. By using a sigmoid activation function in the last layer,
all values of these vectors will be in the range [0,1]. However, their values can still be in
between zero and one, causing a difference between this version and one minus the original
Dice score. Moreover, if you want a binary mask as result you have to threshold the output
of the network.

To optimize this cost function we used the ADAM optimizer [65], because it was also
used by Muhammad Arif and because it was recommended by Ruder [66] as a good overall
choice for deep learning optimization. In total 350 epochs are used with a learning rate of
0.001, which was divided by two every 75 epochs. The decaying learning rate was used to
precisely converge to a (local) optimum and to have little variation in result near the end of
the training period.

4.3.3 Data annotation

Both the blood vessels and the liver boundary were annotated by the author to be used as
training data. To reduce the amount of manual work, annotations were done every few slices
and interpolated on the slices in between.

The liver surface was annotated every fourth slice resulting in a 2.52mm annotation
spacing. Within each slice, connected points were manually selected and a smooth curve
was interpolated between these points using spline interpolation. These splines were raster-
ized to get a mask image for each slice and these curves were dilated using a 15×15 voxel
(6.3×5.8mm) kernel. Shape based interpolation [67] was used to interpolate the masks to
slices in the US volume without annotations. All slices were finally eroded again using a
9×9 voxel (3.78×3.48mm) kernel. The erosion and dilation steps were performed around
the shape based interpolation to avoid getting holes between neighboring slices. To aid the
annotation, a view of the (roughly) corresponding CT slice was provided side by side of
the US slice view. The US CT registration needed to provide this view was based on 3-9
manually annotated corresponding points that were available with the dataset.

The blood vessels were annotated every third slice resulting in a 1.89mm annotation
spacing. Within each slice each vessel was annotated by manually providing the corners of
a polygon. These polygons were rasterized to get a mask image for each slice. Two inter-
polation methods were applied to fill in the slices that were not annotated. 1.) Shape based
interpolation was used to interpolate to the slices without annotations. 2.) The slices with
annotations were eroded with a 3×3 voxel (1.26×1.16 mm) kernel and then copied to the
neighboring slices to get masks for the entire volume. The results from both interpolation
methods were combined by taking the voxelwise maximum. The second interpolation was

31



4. METHOD

performed to provide more thickness to vessels that move along the slice, which looked too
thin by using just shape based interpolation. Again a CT view was provided alongside the
US view to aid the annotation.

4.3.4 Data augmentation

To prevent overfitting, data augmentation is applied with small affine transformations to the
training examples. New augmented examples are generated on the fly for each iteration, so
new images are used every iteration. Moreover, only the images of the current mini-batch
are loaded into memory, so the computer will not run out of memory even on big datasets.

To augment the image an affine matrix is composed. First the voxel positions are cen-
tered around zero and scaled to a unit voxel size, so the transformation is performed around
the center of the volume. At the end, these transformations are inverted to go back to the
original position and voxel size. In between, the image is randomly sheared, rotated around
the z, x and y axes, and flipped along the x and z axes in that order. Because US images
are orientation dependent, only flips along the x and z axes are performed. The range of
rotations along the x, y and z axes is respectively [-20, 20], [-30, 30] and [-20, 20]. The
range of rotations around the x and z axes are smaller because these directions affect the ori-
entation dependence of US images. The shearing is parameterized according to the matrix
below with x, y and z each within the range [-0.1, 0.1]. All random values are uniformly
distributed.

Mshear =

1 x x
y 1 y
z z 1


The combined affine matrix is used to resample the image. Third order spline inter-

polation is used in both the US scan and the segmentation mask, but the mask image is
thresholded at 0.5 to get a binary image again. Parts outside the original image are assumed
to be 0, which is the same value as the area outside US cone.

Figure 4.4: The center slice of the same volume with different data augmentation applied
three times. The liver boundary mask is displayed in orange.
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4.4 CT segmentation

CT segmentation is not a major focus of this thesis. Partially because manual annotations
were already available, and partially because CT segmentations can be performed before the
intervention, allowing for more manual interaction if needed. The parameters in this section
have been chosen to get visually good results on our dataset, but have not been evaluated
for performance or applicability to new data.

4.4.1 Skin segmentation

First the scan is thresholded at >400 to extract the body. Then a 5 mm (rounded to the
nearest integer voxel size) morphological opening is applied to smooth the mask and to
disconnect parts of clothing or medical equipment. Then the biggest connected component
is selected as the body. At this point the lungs and some parts of the intestines are still not
segmented. To solve this, all holes in transverse slices are filled in, by filling in all areas that
can not be reached from region growing over the background in all transverse slices starting
at the edges of the slice.

4.4.2 Liver boundary segmentation

From earlier research by Luu [9] manual annotations of the liver were already available for
all CT scans. These annotations were performed on transverse slices, and every fifth slice
was annotated. On slices without annotations we copied the mask of the closest slice. When
two annotated slices were equally close the union of both masks was used. The annotator
was not always consistent in whether to include the IVC, the portal vein and the gallbladder
in the liver mask or not, which sometimes resulted in sudden changes in the mask.

To be used in clinical practice, this would have to replaced with a system involving less
manual work. Several automatic and semi-automatic approaches have been presented for
CT liver volume segmentation as part of the SLIVER07 grand challenge [68].

4.4.3 Blood vessel segmentation

For vessel segmentation, Frangi vesselness filtering [69] is used at two scales (σ = 2 and
σ = 4), with α = 0.9, β = 0.5 and γ = 30. This is thresholded at 0.01 to obtain a vessel
mask. To avoid detecting vessels outside of the liver and false detections on the edge of the
liver, the liver mask is shrunk by 1 cm and then applied to the vessel mask. Finally a 2 mm
(rounded to the nearest integer voxel size) opening is applied to the vessel mask.

The portal vein and the IVC are not always included in the shrunk liver mask. Moreover,
vesselness filtering at a big scale would be needed to detect the IVC, which would introduce
extra false detections on the edge of the liver. Therefore parts of these vessels were often not
segmented automatically, so they were added manually. This was done by selecting points
within the vessels and region growing within a 15 mm radius over all intensities >1140.
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Chapter 5

Results and Evaluations

In this chapter, the performance of the system is described. Furthermore, the system con-
tains several parameters for which we have studied the behavior. Given the complexity of
the system we evaluate the different parts incrementally. In the first experiment the neu-
ral network for US segmentation is evaluated. In the second experiment the parameters of
the registration optimizer are optimized. These values are used in the third experiment to
optimize the cost function parameters. In the fourth experiment a manual evaluation is per-
formed and in the fifth experiment the results are placed in a medical context. Lastly, in the
sixth experiment we measured the computation time needed during the intervention.

5.1 Data

The dataset consists of 20 CECT scans and for each CECT scan 2 3D US scans from dif-
ferent views, resulting in 40 scan pairs over 20 patients. It was originally acquired for the
research by Banerjee et al. [8], Luu [9]. For each patient an US scan is acquired from
sub-xiphoidal position (below the sternum) in the saggital plane and another from the inter-
costal position(from the side between the ribs) views in the coronal plane. These are the
standard scanning locations for liver tumor ablations. All scans are named with a number
for the patient, and a letter for the US acquisition position: C for inter-costal and S for
sub-xiphoidal.

All ultrasound scans were acquired using a Philips IU22 ultrasound system with a x6-
1 3D matrix transducer, at a resolution of 512× 378× 222 and a voxel size of 0.42×
0.387× 0.629mm. During acquisition the patients were asked to breathe freely. Before
segmentation the scans were downsampled by a factor 2 using the Lancsoz3 filter [70].

The CT scans were acquired from three different scanners(Somatom Flash, Somaton
Force and Somatom AS+, all by Siemens) with slice spacing of 2 or 3 mm and a pixel
size between 0.388mm and 0.625mm. For each patient multiple CT scans were acquired at
different contrast phases, but only the scan closest to portal venous phase was used.

The dataset also contains manual annotations that can be used for evaluating registration
results. For each scan pair, 3 to 6 corresponding points were selected by a radiologist. 16
scans were annotated twice by different radiologists resulting in up to 9 annotations per
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scan. For two US scans the radiologists were unable to find corresponding points due to bad
scan quality, so these scans were excluded in all experiments, resulting in a total of 38 scan
pairs over 20 patients.

These annotations were originally acquired to provide an initialization for the regis-
tration method of Banerjee et al. [8], but we use them here for measuring the error of a
registration. We observed that the annotation error is not a very precise measurement of
registration quality, which is why we performed a manual scoring of all results in Section
5.5. This is probably caused by the fact that the scans were annotated from different 2D
views, making it hard to pinpoint corresponding structures exactly. Moreover, some scans
appear to contain big non-rigid deformations and only between 3 and 9 annotations are
available for each scan pair, so the annotations do not capture all the deformations that are
present.

5.2 Experiment 1: Neural network based US segmentation

In this section we will look at the performance of the 3D/2D U-net for segmenting blood
vessels and the liver boundary. The results of these segmentations are used for registration,
so the errors of the network have been investigated in this context

5.2.1 Experiment setup

During manual annotation of the blood vessels one scan was excluded due to the presence
of a very big(± 200 mm diameter) tumor covering most of the visible liver area and another
was excluded because the blood vessel edges were unclear. For segmenting the liver bound-
ary the scan with the big tumor was also excluded, and another scan was excluded where
the liver boundary was not clearly visible. These scans are not included in the evaluations
in this section, because no reference standard is available.

The remaining 36 scans were divided randomly into four splits of nine scans for four
fold cross-validation. The scans were divided in such a way that when two US scans of the
same patient were available they were put into the same split. This also made sure that the
different views(sub-xiphoidal and inter-costal) were evenly divided over the splits.

Neural networks were trained for the blood vessels and the liver boundary on the com-
bined data of 3 splits and evaluated on the remaining split. This resulted in 8 networks, each
using 27 scans for training and 9 for testing. After 350 epochs the network parameters were
saved as the final result. No early stopping was used, because we did not observe increasing
validation loss during earlier experiments. There may be a bias because the hyperparame-
ters of the network have been tuned on the test set. This was accepted as a trade off because
of the small amount of data available and we expect the bias to be small given the generic
nature of the network architecture. Because of the cross-validation no network parameters
are trained on the test data.

36



5.2. Experiment 1: Neural network based US segmentation

5.2.2 Training

The training curves are shown in Figure 5.1. For both segmentation tasks the training curves
of the cross-validation splits with the highest and the lowest test set Dice cost are plotted.
There is some difference between the worst and the best results, especially on the liver
boundary segmentation task. This might be explained by the fact that there is limited data
available, resulting in a difference in distribution among the splits. With more data each
split would contain more samples causing the overall distribution of the split to be more
similar to the entire dataset. The network is always nicely converging to an optimum, but
the decrease in ripple is also caused by the fact that the learning rate is halved every 75
epochs.
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Figure 5.1: Training curves of the liver boundary and blood vessel segmentation networks.
For both segmentation tasks the worst and the best results during cross-validation are plot-
ted.

5.2.3 Result statistics

Several statistics commonly used to evaluate segmentations were calculated by comparing
the output of the network to the reference standard mask. Each statistic was calculated
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for each scan separately and the average and standard deviation over all scans is displayed
in Table 5.1. The sensitivity, precision and accuracy are based on the ratios between true
positives (T P), false positives (FP), true negatives (T N) and false negatives (FN):

precision =
T P

T P+FP
, sensitivity =

T P
T P+FN

, accuracy =
T P+T N

T P+FP+T N +FN
(5.1)

The accuracy is very high, but this is mostly caused by the class imbalance, causing there
to be many more true negatives than all other categories. The same would hold for the
specificity, which is therefore not included here.

Liver boundary Blood vessels

Dice score 0.52 (± 0.16) 0.57 (± 0.19)

precision 0.53 (± 0.12) 0.68 (± 0.17)

sensitivity 0.54 (± 0.19) 0.56 (± 0.23)

accuracy 0.99 (± 0.00) 1.00 (± 0.00)

Table 5.1: Average and standard deviation of the results of neural network based US seg-
mentation.

5.2.4 Investigating the errors

The statistics in Table 5.1 provide an overview of the performance of the neural networks,
but they also hide many details. The precision for liver boundary segmentation is on average
0.53 which would mean that almost half of the voxels detected as the liver boundary are false
positives. However, by looking at the results individually we observed that big parts of the
boundary of the liver were segmented almost correctly, but they did not overlap exactly.
An example of this is given in Figure 5.2. Small misalignments such as these are mostly
harmless during registration, and they could also be attributed to variance in the annotations,
but because the liver boundary is a thin structure they have a relatively big influence on the
measured performance. To see how much of the wrongly segmented voxels are still close to
correct we calculated the distance from each false positive voxel to the closest positive voxel
in the reference standard, and the distance from each false negative voxel to the closest voxel
in the neural network output. Histograms of these properties over all scans are displayed
in Figure 5.3. As you can see more than halve of the false positives in the liver boundary
segmentation are within 2mm of the reference standard. Given that the registration error of
the liver boundary and big blood vessels caused by using a rigid transformation model is on
average around 10mm [26], this is very small by comparison.

For tuning the fliv and fves parameters of the LTS-CD and TACD cost functions it is
also interesting to know how the false positives are distributed over all scans. These cost
functions try to remove outliers (false positives) by removing a constant fraction of samples.
This works best when the relative amount of false positives is the same in all scans. Because
we already concluded that many of the false positives are relatively harmless we introduce
the soft precision to visualize the false detection distribution over all scans (Figure 5.4). The
soft precision is the precision measure, where all false detections with a distance below a
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Figure 5.2: 2D slice of a liver boundary segmentation result with slight misalignments.
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Figure 5.3: The top histograms display the distance from all false positive voxels to the
closest positive voxel in the reference standard. The bottom histograms display the distance
from all false negative voxels to the closest positive voxel in the neural network output. The
rightmost bin contains all voxels at a distance of 30 mm or more.
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Figure 5.4: Distribution of the precision over all scans, disregarding false positives that are
close to the reference standard. A 4 mm threshold was used for the liver boundary and a 2
mm threshold was used for the blood vessels.

threshold are discarded. We used a threshold of 4 mm for the liver boundary and of 2 mm
for the blood vessels. The vessels should have a lower threshold because they are closer
together and have better defined edges. Most scans have a soft precision of 0.9 or higher for
both the blood vessels and the liver boundary. It is also possible to generate a soft sensitivity
histogram using the same principle to visualize how the false negatives are distributed over
all scans. These are included in Appendix B.

In the blood vessel segmentations another effect was observed: The bigger blood ves-
sels, especially the portal vein, make up most of the volume, which has the result that the
network mostly focuses on those vessels. Because of this, smaller vessels are sometimes
not segmented. An example of this is displayed in Figure 5.5.
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Figure 5.5: 2D slice of a blood vessel segmentation result where not all vessels were seg-
mented.
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5.2.5 Effect of the output threshold

The output of the neural network for each voxel is a continuous variable between zero and
one. This value is rounded to either zero or one by a threshold. With a lower threshold you
expect more positive detections, but also more false positives.

To test this influence we calculated the Dice score for each scan, for all thresholds that
have a unique outcome. For the blood vessel segmentation networks, the position of the
threshold has almost no influence on the Dice score because the network already pushes its
outputs close to either zero or one, with only a few values in between. The average Dice
score for each threshold is shown in Figure 5.6. For the liver boundary segmentation two
cross-validation splits push all outputs to almost zero or one, and the two other splits push
their outputs to either zero or approximately 0.74 (0.7377 in one split and 0.7425 in the
other). No voxels have a value above approximately 0.74 in the output of those networks.
We have no explanation why this happened. For all values between 0 and 0.74 the average
Dice score is almost the same, so the threshold very robust. In the end a threshold of 0.5
was selected, so the output is rounded to the closest integer.
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Figure 5.6: Influence of the threshold of the neural network output on the Dice score.

Note

While investigating the results of this experiment we found out that there was a small bug
in the segmentation code. Instead of thresholding the output of the network at > 0.5, which
was the intended behavior, the output was directly cast to an integer, which has the same
behavior as thresholding at ≥ 1. Because the sigmoid activation function in the last layer
of the network already pushes most of the outputs of the network to either zero or one,
the differences between the bugged and the intended segmentations were small for most
scans. Typically a slightly wider area is included around the same structures (Figure 5.7).
However, for the two cross-validation splits of the liver boundary segmentation, where no
values above±0.74 were outputted, nothing was segmented. This was noticed as soon as the
network was executed, but when re-evaluating the network with a slightly different version
of the code that did include the right threshold the network returned normal results. Because
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we were not aware of the differences between the two versions we did not look into it earlier.
The results in this section use the right (> 0.5) threshold, but repeating experiments 2 and
3 would take about four weeks of computation time on two computers so they still use the
bugged (≥ 1) threshold, with the exception of the two liver boundary splits. In experiment
4 both thresholds were investigated and no big difference in results was found.

Figure 5.7: Example of the difference between vessel segmentations using the bugged
threshold(left) and the right threshold(right).

5.3 Experiment 2: Registration optimizer parameters

To improve results in later experiments the parameters of the optimizer were tuned. Four
parameters were taken into account: The population size P, the number of generations G, the
number of repetitions R and the learning period LP. Storn and Price [52] suggested selecting
setting P between five and ten times the amount of parameters that have to be optimized.
Because we have seven learnable parameters we started out with P = 50. This converged
in most cases with G = 500 and we observed that when P is increased, the algorithm needs
longer to converge, so G should be higher too. Originally we used ten repetitions (R = 10).
In this experiment we tested eight other parameter settings with the same amount of cost
function evaluations P×G×R. In this part the learning period was kept constant at 20.

To test each combination of settings, the registration algorithm was run on all US scans
for which neural network segmentations of the blood vessels and liver boundary were avail-
able. As the cost function TACD was used with fves = 0.65, fliv = 0.75, dmax = 10 mm,
wves = 1.5, wliv = 1.5 and wscan = 1. As the transformation model an affine model was used
that added 3 scaling and 3 shearing parameters to the rigid model. In the end we did not
end up using that model in other experiments due to low quality results. To measure the
quality of the optimizer parameters the average of the final result of the cost function was
used. This was used instead of the annotation error because it is more directly indicative of
the ability of the optimizer to find an optimum, and less dependent on other factors such as
the cost function parameters. The results are displayed in Table 5.2.

The best 5 parameter settings of the first part were used in the second part of this ex-
periment. The test was the same, but now the learning period was varied over the values
20,30,40,50,60 for each combination of other parameter settings. These values for LP
were used because they were also used in the analysis of Qin et al. [59]. The results are

42



5.4. Experiment 3: Registration cost function parameters

displayed in Table 5.3, and P = 80, G = 800, R = 4 & LP = 20 was selected as the final
settings to be used in further experiments.

P G R Average cost

30 420 20 1.588

50 500 10 1.437

60 700 6 1.266

70 700 5 1.304

80 800 4 1.330

90 950 3 1.398

100 1250 2 1.352

150 1700 1 1.364

200 1250 1 1.366

Table 5.2: Result of first part of the optimizer parameters experiment. The table lists
Cregistration after registration for several optimizer settings. The results are color coded from
worst(red) to best(green).

P G R LP = 20 LP = 30 LP = 40 LP = 50 LP = 60 Average

60 700 6 1.362 1.379 1.411 1.402 1.374 1.386

70 700 5 1.366 1.328 1.363 1.400 1.349 1.361

80 800 4 1.283 1.350 1.317 1.301 1.339 1.318

100 1250 2 1.347 1.291 1.411 1.499 1.377 1.385

150 1700 1 1.461 1.419 1.410 1.437 1.427 1.431

1.364 1.353 1.383 1.408 1.373Average

Average cost

Table 5.3: Result of second part of the optimizer parameters experiment. The table lists
Cregistration after registration for several optimizer settings. The results are color coded from
worst(red) to best(green).

5.4 Experiment 3: Registration cost function parameters

In this experiment the influence of the cost function Cregistration and its parameters will be
investigated. Regardless of what cost function variant for comparing segmentations (LTS,
TACD or CACD) is used, Cregistration will have five parameters in total: wves & wliv, dmin−trans

and either fves & fliv or dmax−ves & dmax−liv. We are interested in both the optimal parameter
settings and the sensitivity of the algorithm to these parameters.

5.4.1 Random sampling for parameter optimizations

Performing grid search to find the optimal parameter settings within a given range would
quickly become prohibitively computationally expensive because the amount of duration of
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the experiment increases to the fifth power with the amount of choices you use for each
parameter. For example, if four settings were evaluated for each parameter, already 45 =
1024 evaluations would be needed. Given that in the current implementation running the
registration algorithm on the entire dataset takes about 4 hours, this experiment would take
about 170 days on one computer.

In many problems some parameters are more sensitive than others, so you might want to
sample those parameters more densely. However, you often do not know which parameters
are sensitive beforehand. Bergstra and Bengio [71] argue that in those cases random search
on average performs better than grid search, because in random search each iteration a new
value for each parameter is selected, while in grid search the same value is reused many
times in combination with different values for other parameters. This is illustrated in Figure
5.8. The original application of this paper is hyperparameter tuning for deep learning, but
they also performed more general experiments where for some parameters a bigger range
was acceptable than others.

Figure 5.8: When using random sampling each parameter is more densely sampled than in
grid sampling. This results in a better result when some parameters are less important than
others. Source: Bergstra and Bengio [71]

5.4.2 Experiment setup

Random search was performed with 100 iterations for each cost function variant (LTS-CD,
TACD & CACD, Section 4.1.2), always using the same variant for both Cliv and Cves. For
the LTS-CD and TACD cost functions the following ranges were used for each parame-
ter: wliv ∈ [0.5,3], wves ∈ [0.5,3], dmin−trans ∈ [0,25], fliv ∈ [0.5,1], fves ∈ [0.4,0.9]. For
the CACD cost function the following ranges were used: wliv ∈ [0.5,3], wves ∈ [0.5,3],
dmin−trans ∈ [0,25], dmax−liv ∈ [3,30], dmax−ves ∈ [3,30]. Uniform distributions were used to
generate the random values of all parameters.

For evaluating the quality of the results the annotations of corresponding points that
were provided by radiologists were used. For each scan the average distance between cor-
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responding points after registration was calculated. This value was clipped at 30 mm be-
cause we observed that when the average annotation error exceeded 30 mm the scans were
completely misaligned and a higher value no longer indicated a worse result. Over all scans
the average over the clipped average distances was used to determine the best settings.

The best performing settings from the random search will be biased towards the dataset.
To get an unbiased estimate of the performance cross-validation is applied: The same cost
measure is used as in the above paragraph, but instead of selecting the same settings for all
scans, for each scan the settings that perform best over all other scans are selected. This
procedure can not be used to get one set of settings, but it does give an indication on how
well the best settings of a cost function would perform on unseen scans.

Because we minimized over the annotation error we only wanted to include scans were
the annotations were reliable. To measure this, the US and CT scans were rigidly registered
by minimizing the sum of squared errors between corresponding points [44] and then the
registration quality was manually judged. Four scan pairs were excluded because the anno-
tation based registration was not successful. The three scans that were excluded for either
the blood vessel segmentation or the liver boundary segmentation are also excluded here.
In total 31 scans are included in this experiment.

5.4.3 Results

The best performing settings for each cost function are listed in Table 5.4. Interesting results
are that the LTS-CD cost function includes almost all vessel samples, while the TACD cost
function includes almost all liver samples. Moreover, the clipping distance for vessels in
the CACD cost function is very low at 3.817 mm. The settings for the second and third
best options look similar to the best settings in each cost function, suggesting that the found
results are stable. The ten best and five worst settings for each cost function are available in
Appendix B. The TACD cost function has the highest error on its optimal settings, but the
the cross-validation error is lowest. Therefore it is probably overfitting less than the other
cost functions.

Nevertheless the registration error appears much more dependent on the scan than on
the parameter settings. Most scans get consistently good or bad results for all settings. This
can be seen for the TACD cost function in Figure 5.9, and the same can be observed for the
other cost functions, for which the heatmap is available in Appendix B.
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Cost function Best settings Best cost CV cost

LTS-CD
wliv = 1.14, wves = 1.71,
dmin−trans = 17.51,
fliv = 0.566, fves = 0.891

12.43 13.81

TACD
wliv = 2.35, wves = 1.43,
dmin−trans = 18.57,
fliv = 0.905, fves = 0.685

12.50 13.68

CACD
wliv = 1.66, wves = 2.19,
dmin−trans = 23.93,
dmin−liv = 10.85, dmin−ves = 3.82

12.01 14.42

Table 5.4: Results of experiment 3. For each cost function the optimal settings are listed.
The best error column displays the average error on the dataset. The cross-validation(CV)
error is the expected error on unseen data.
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Figure 5.9: Heatmap of the registration error of each scan for each tested setting of the
TACD cost function. Each rectangle represents the average marker distance, which was
clipped at 30 mm. The settings are sorted from a low average over the average marker
distances (top) to a high average (bottom). Most scans have a consistently high or low error
for most settings.
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5.5 Experiment 4: Manual scoring

Because the annotations that were included with the dataset do not give a precise measure
of the registration quality, a second evaluation was performed where the author manually
scored the quality of each registration result.

5.5.1 Experiment setup

Registration was performed using 13 different settings: Each of the three cost functions
(LTS-CD, TACD and CACD) was used in combination with the neural network segmenta-
tions, the neural network segmentation with the threshold bug (Subsection 5.2.5) and the
manual segmentations that were used for training the neural network. On the scans that
were included in experiment 3, the same settings were used for registration as in the cross-
validation experiment to avoid overfitting. On the scans that were not included in experi-
ment 3, the optimal settings according to experiment 3 were used. A cost function that did
not filter outliers was also included to test whether outlier removal is necessary. This was
done by using the TACD implementation, but setting fliv and fves both to one, which we
will call ACD(average closest distance). The other parameters of the ACD cost function
were set based on what gave good results in the other cost functions: wliv = 2, wves = 2
and dmin−trans = 25. To have a baseline result, a registration minimizing the sum of squared
distances between manual annotations was included [44]. Finally, to test our implemen-
tation of the SaDE optimizer, the same cost function was also optimized using our SaDE
implementation.

During the scoring, the names of the experiments were randomized, so we did not know
which folder belonged to which experiment. However it was possible to identify which
experiments used the manual segmentations, because they excluded three scans.

Each registration result was scored in one of four categories: Good, fair, poor and bad
(goed, redelijk, matig, slecht in Dutch). Because the rigid transformation model can not
describe all the deformations that might be present, some error was still accepted even in
the good category, especially when these errors were outside of the liver. To view the
registration results, a side by side view of the US and registered CECT scans was used,
with a movable cursor that was visible on the same position in both scans (SynchroView2D
module in MeVisLab). In which category a scan would be rated is not exactly defined, but
to give an idea of the errors present in each category four examples of each category are
included in Appendix B.

5.5.2 Results

How many scans were scored in each category is shown in Table 5.5. How the scores
are divided over the scans is displayed in Figure 5.10. There is only a small difference
between the results of different cost functions. The ACD performs a bit worse than the other
cost functions when using the neural network based segmentations, which may indicate
that removing outliers improves results, but it could also be explained by the fact that the
parameters of the other cost function have been tuned more extensively. All tested cost
functions perform better on the neural network segmentation without the bug (Subsection
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5.2.5), despite the fact that the cost function parameters were optimized on the set with
the bug. All tested cost functions also perform better on manual segmentations than on
automatic segmentations, indicating that improving the segmentation results would also
improve the registration results.

The registration results using the closed form solution and the SaDE optimizer for min-
imizing the annotation distances are almost the same, which indicates that the SaDE opti-
mizer works well. When using the manual segmentations the CACD cost function based
registration performs about as good as the manual annotation based registrations. When
using automatic segmentations, the TACD cost function performs best, which was also con-
cluded in experiment 3.

Experiment Good Fair Poor Bad Excluded

Bug NN segmentations (CACD) 21 4 6 7 0

Bug NN segmentations (LTS-CD) 20 4 6 8 0

Bug NN segmentations (TACD) 23 5 7 3 0

NN segmentations (ACD) 20 5 6 7 0

NN segmentations (CACD) 23 5 6 4 0

NN segmentations (LTS-CD) 24 1 6 7 0

NN segmentations (TACD) 23 7 5 3 0

Manual segmentations (ACD) 26 4 4 1 3

Manual segmentations (CACD) 29 4 1 1 3

Manual segmentations (LTS-CD) 25 4 6 0 3

Manual segmentations (TACD) 26 4 4 1 3

Annotations (SaDE) 26 9 1 2 0

Annotations (closed form) 27 8 1 2 0

Table 5.5: Results of manual scoring of each cost function
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Figure 5.10: Heatmap of the manual scores of each cost function
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5.5.3 Relation to the average annotation distance

The relation between the manual score and the average annotation distance is visualized in
Figure 5.11. The median of the average annotation distance decreases as the score improves.
However, there is a lot of overlap between the distributions of each score. This can be par-
tially explained by errors in the annotations, but the registrations based on these annotations
have mostly good results, so the errors can not be very big. A further explanation might
be the fact that we use a rigid transformation model while there are non-rigid deformations
present. Because of this there might be multiple solutions possible that are equally good,
but have errors in different places. Because the manual annotations consist of only a few
points, not all areas are penalized equally.
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Figure 5.11: Boxplots of the distribution of the average annotation distance of scans with
the same score.

5.6 Experiment 5: Scan quality and medical context

In the heatmaps displayed in experiments 3 and 4 (Figures 5.9 and 5.10) you can see vertical
streaks. This indicates that the errors are not influenced a lot by changing the settings, and
they mostly occur on the same scans. The goal of this experiment is to investigate if there
are properties related to the medical condition of the patients that influence the registration
quality. We looked at three properties: the contrast phase of the CECT scan, whether a
patient has cirrhosis and the amount of tumors that a patient has. The contrast phase was
included because it influences the amount of vessels that are visible. Cirrhosis was included
because Hwang et al. [42] noted that less blood vessels are visible in patients with cirrhosis,
making registration more difficult. The amount of tumors was included because tumors
change the overall appearance of the liver which may make the segmentations more difficult.
Moreover, because this system is aimed to be used during liver tumor ablations, knowing the
number and size of the tumors in each patient makes it possible to predict the performance
on patients that could be treated by ablation.

49



5. RESULTS AND EVALUATIONS

5.6.1 Experiment setup

All properties were determined by Adriaan Moelker, MD, PhD, interventional and cardio-
vascular radiologist at Erasmus MC. For detection of cirrhosis and contrast phase the same
CECT scan was used as for registration. These scans were also mostly used for detecting
tumors, but in some cases other CECT scans from the same series, but at different contrast
phases, were used as well.

Patients with 3 or fewer tumors were assumed to be treatable by ablation [72], except
for one patient, who had a tumor that was noted by Adriaan Moelker to be too big to be
ablation treatable. Using this classification the patients were divided into three categories:
healthy, ablation treatable cancer, non-ablation treatable cancer.

5.6.2 Results

Most CECT scans were in the portal venous phase, which was expected because the scan
closest to portal venous phase was selected to be used for registration. Nevertheless, for
three patients (patients 15, 20 and 21) a scan acquired exactly at portal venous phase was
not available, so the scan that has been used for registration was on the boundary between
late arterial phase and early portal venous phase.

Only one patient in our dataset has cirrhosis (patient 4). Because of this, only a few
blood vessels are visible on the US and CECT scans, which explains why this scan is often
registered incorrectly with automatic segmentations. However, with manual segmentations
enough data is present to get a good registration result.

Looking at the number of tumors, only three patients are treatable by ablation, nine
patients have no tumors, and in eight patients the cancer is too severe to be treatable by
ablation. The manual registration score of the scans in each category is displayed in Table
5.6. The TACD cost function was used for registration in combination with the NN segmen-
tations, because this was the registration method based on automatic segmentations with the
best results according to experiment 4. For most patients two US scans were acquired, so
there are six scan pairs of treatable patients, and for all of them the registration quality was
rated either good or fair. However, the registration results between the healthy and untreat-
able categories are very similar, so the amount of tumors present does not appear to have
influence on the registration quality.

Condition Good Fair Poor Bad Nr. of scans Nr. of patients

healthy 9 2 3 2 16 9

treatable 3 3 0 0 6 3

untreatable 11 2 2 1 16 8

Table 5.6: Results of the registration using neural network based segmentations and the
TACD cost function, divided by the severity of the cancer of each patient. With treatable
we mean treatable by ablation.
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5.7 Experiment 6: Computation time during the intervention

In this experiment the run time of the method during the intervention was measured. The
two components of the method that have to run during the intervention are the US segmen-
tation and the SaDE based registration. The CT segmentation and the distance transform
computations can be performed before the intervention so the doctor does not have to wait
during the intervention for those steps to finish. We assume that the scans are already avail-
able in memory.

5.7.1 Experiment setup

The segmentation algorithm was run once for each scan in the dataset for both the liver
boundary and the blood vessel segmentations. The code was run an a PC with an Intel Xeon
ES-2623 v3 quad core processor running at 3GHz with 32GB RAM and a Titan XP GPU.
Keras version 2.1.6 was used with a Tensorflow 1.8.0 backend, accessed from Python 3.5.
The first segmentation took a little bit longer to run, due to Keras strating up. This result
was discarded because Keras could be started before the intervention.

The registration algorithm was run once for each scan in the dataset for each cost func-
tion (LTS-CD, TACD and CACD), using the optimal parameters found in experiments 2 and
3. The code was run on a PC with an Intel Xeon E5520 quad core processor running at 2.26
GHz with 16GB RAM. The algorithm was implemented as a Python plugin in MeVisLab
2.7.1, using Python version 2.7.9 with Numpy version 1.6.2.

5.7.2 Results

The average run time of the segmentation was 0.187s(±0.002) for both the vessel and the
liver segmentations. It makes sense that these segmentations take equally long because
they use the same network architecture and the same input data, only with different learned
parameters. Because two segmentations have to be performed the total time spend on seg-
mentation would be approximately 0.37s.

The computation time of the SaDE algorithm is displayed in Table 5.7. The algorithm
takes a bit less time with the CACD cost function. This is caused by the fact that the trim-
ming operation applied by LTS-CD and TACD (Section 4.1.2) requires sorting the distances
every time the cost function is evaluated. This is not needed for the clipping operation that
is performed in the CACD cost function instead.

Cost function Run time (s)

LTS-CD 379.5 (±24.9)

TACD 374.0 (±22.5)

CACD 343.1 (±20.5)

Table 5.7: Run time of the SaDE algortihm during registration

51





Chapter 6

Conclusions and Future Work

At BIGR, research has been ongoing to develop a system to provide image fusion between
US and CECT scans during liver tumor ablations. In this thesis a method for finding an
initial rigid registration between the US and CECT scans has been presented. This method
should be used together with a follow up registration method for refining the registration
result and tracking the movements of the US transducer and the patient.

In the introduction we derived three requirements for the initialization method: 1.) It
should be able to find an optimum from any orientation of the US transducer where the
liver is in view. 2.) The error of the initialization has to be low enough for the follow up
tracking algorithm to converge. The allowed error for the technique of Banerjee et al. [10]
is approximately 10 mm translations or 15◦ rotations. 3.) It should find a solution in ten
seconds or less. In this section we will look into how much of these goals has been achieved
and what can be done to improve the method further.

The SaDE evolutionary algorithm is used to find the optimal registration parameters
over a large search space. In Section 5.5 the SaDE optimizer was compared to a closed
form optimizer on minimizing the sum of squared distances between annotations, and they
found similar solutions. Moreover, when using manual segmentations, for every scan there
is at least one cost function(LTS-CD, TACD, CACD, ACD) where the result was scored
at least as fair (Figure 5.10). This indicates that the SaDE optimizer is capable of finding
optima in the entire search space.

The proposed method finds an initialization for most scans in the dataset, but not for
all. The best performing solution based on automatic US segmentations used the TACD
cost function, and its results were scored as follows: 23 as good, 7 as fair, 5 as poor and
3 as bad. As a comparison, rigid registrations based on manual annotations by radiologists
were scored as follows: 27 as good, 8 as fair, 1 as poor and 2 as bad. One thing that would
improve results is improving the segmentation. When providing our method with manual
US segmentations, registrations were found that were about as good as when using the
manual annotations for registration. To determine whether a registration is accurate enough
for a follow up refinement or tracking method to converge is difficult because of the high
variance in the manual annotations (Section 5.5.3). The best test would be to run that follow
up method on the initialization results.

The run time of the method is currently around 6 minutes, which is on the lower side
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of the 5-20 minutes needed for manual initialization [6]. Nevertheless it is much higher
than the aim of at most ten seconds. Almost all of that time is spent on running the SaDE
algorithm for the registration. We would like to note that there is a lot of room for decreasing
the run time. This part is currently implemented in Python, and we expect that a large
speedup is possible by re-implementing the code in a compiled programming language
such as C or C++. Furthermore, many of the computations can be done in parallel, making
a further speedup possible by running the algorithm on a GPU. SaDE has been implemented
on a GPU before [73]. How much speedup was achieved in their experiments was strongly
dependent on the population size, which is 80 in our method. However, we also use four
restarts that could be run in parallel. Therefore we would expect the speedup achieved
by Wong et al. [73] at a population size of 300 (closest to 80*4) is most indicative of the
expected speedup of our method. They reported a speedup between 17.05 and 21.12 for
this population size for 10 dimensional problems. By combining the speedups of using
a compiled language, excecuting the code on the GPU and possibly using more modern
hardware, we expect that a runtime of less than ten seconds can be achieved.

6.1 Future work

To improve the neural network architecture used for US segmentation there are many op-
tions you could consider, but based on our experiments we have a couple suggestions. The
network architecture used all available memory during training on a 1070 TI with 8 GB,
which limited the mini-batch size and the amount of features that could be used. With more
memory you could try using more features or bigger mini-batches, which may give better
results. Moreover, the training curves of the networks (Figure 5.1) show that there is some
difference in performance between the training and test sets, which means the network is
overfitting. Having more data would help against overfitting, but it may also be possible
to reduce the overfitting and improve the test results by adding more regularization, such
as data augmentation. Currently the data augmentation performs affine transformations,
but this could be extended to include non-rigid deformations and intensity remapping [63].
Using dropout for regularization will probably not work well, because the network already
uses batch normalization and these two techniques do not work well together [74]. Cur-
rently two separate networks are trained for blood vessel and liver boundary segmentation,
but it would also be possible to train one network that outputs both segmentation masks.
The advantage would be that the network could use the information about the liver bound-
ary for better segmenting the blood vessels and vice versa. However, such a network might
need more features to be able to encode the properties of both the blood vessels and the liver
boundary, which would require more memory.

A different approach for getting more information from each US scan without modi-
fying the network architecture would be to segment more classes of features in the liver.
Possible extra features could be the gallbladder and the inferior vena cava(IVC), which are
visible on most US scans and have been used in registration before [75, 41, 42]. More-
over, the portal vein could be segmented separately from the other blood vessels. It might
be possible to segment those features using the same network architecture that was pre-
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sented in this thesis. However, you would need to create manual segmentations for training
these networks and a CT segmentation method for matching the features during registration.
Having more features is expected to reduce the amount of local optima in the combined cost
function, because there is probably not a lot of overlap between the non-global optima of
each feature. However, some of these features do not show up on all US scans, which may
become a problem because the current cost function has a constant weight for each class,
which would be problematic when false detections occur in a non-visible class. Still, this
could be solved by modifying the cost function, which can be freely done because the SaDE
optimizer makes no assumptions about the form of the cost function.

The different strategies for making the cost function robust to outliers appear to improve
the registration performance a little, but not much (Section 5.5.2). One explanation is that
there are not a lot of outliers present and most of the outliers are so close to the reference
standard that they will not harm registration much (Section 5.2.4). Originally we used a
different segmentation technique which had a lot more false positives, which is why there
is still a strong focus on making the cost function robust to outliers in this thesis. It may
be possible to make better use of this robustness by allowing more false positives in the
segmentation. In segmentation it is often possible to make a trade-off between having false
negatives or false positives. Since the cost function is designed to, up to a certain degree,
be insensitive to false positives, you might get better registration results if you accept more
false positives in the segmentation step so you have less false negatives. The trade-off
between false positives and false negatives is usually influenced by setting the threshold of
the output of the network. However, in Section 5.2.5 we showed that this is not possible in
our case. You could still influence the trade-off by changing the cost function of the neural
network: Salehi et al. [76] propose a variant of the Dice cost function with user selectable
weights for penalizing false positives and false negatives separately.

6.2 Conclusion

All in all, the SaDE optimizer is capable of finding results over the entire search space, and
if it would be implemented on a GPU we expect it could run quickly enough for clinical
use. The neural network based US liver boundary and blood vessel segmentation method
provides enough information for an initialization to be found on most scans. Whether this
initialization is close enough for a follow up registration method to converge needs further
investigation. We expect that better segmentation results are needed before clinical use of
our method, and we provided several suggestions for this future work.
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Appendix A

Neural Networks

Neural networks are a class of models that is used in machine learning. A neural network
can learn to approximate a function f from a training set consisting of many examples
of possible input vectors ai paired with expected output vectors bi = f (ai). The network
designer has to provide a specification of how the input and the output can be connected,
which is called the network architecture. A network architecture consists of multiple layers.
Each layer performs an operation on a set of features to produce a new set of features. This
is illustrated in Figure A.1. The input of the first layer is provided by the user. Then, the
network will calculate one or more sets of hidden features1 as intermediate results, and the
output of the last layer is the result of the network.

weight

height

diameter

color hue

apple(1)

or

pear(0)

Input
features

Hidden
features

Output
features

Dense layers

Figure A.1: Example of a small neural network for classifying between apples and pears.

Most types of layers have parameters that describe what a layer will do exactly. These
parameters are learned by an optimization algorithm from a set of examples, called the
training set. For the training set you already know what the output of the network should be

1A set of hidden features is often called a hidden layer, but I will not use that term to avoid confusion with
layers that perform operations on features.
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A. NEURAL NETWORKS

and an optimization algorithm will set the parameters in such a way that that the output of
the network matches the wanted result as closely as possible. To quantify the current match
of the network a cost function(also called loss function) is used. In the example of figure
A.1 you might take the number of incorrectly classified pieces of fruit as the cost function.
To distinguish between parameters that are learned from the data and parameters that are
set by the user, parameters that are set by the user are called hyperparameters.

A.1 Traditional neural networks

A.1.1 Dense Layer

A dense layer(also called fully connected layer) describes a linear function on all input
features of the layer. It will output the result: y = Ax+b, where x and y are the vectors
of the input and output features respectively, A is a matrix of learnable parameters and b
is a vector of learnable parameters. The width of matrix A is determined by the length
n of vector x, but the height of A and b can be specified by the network designer. This
will determine the number of output features, which can be bigger, smaller or equal to the
number of input features.

A.1.2 Activation Functions

Dense layers are linear operators, so when you apply multiple of these layers to an input
vector you will still only perform a linear operation. To model more complicated functions,
non-linearity is added by applying a non-linear activation function to each feature of the
output of a dense layer. Because the linear operation of a dense layer is almost always
followed by an activation function, the activation function is often said to be part of the
dense layer.

One of the most simple activation functions is the rectified linear unit (ReLU): ReLU(x)=
max(0,x), which is often used within a neural network. Another option is the sigmoid func-
tion: σ(x) = 1

e−x+1 . The output of a sigmoid function will always be in the range [0,1] and
often close to either one of these values. This can be useful when you want to output a
yes/no decision.

While adding an activation function may seem like a small change it greatly increases
the amount of functions a neural network is able to approximate. Cybenko [77] proved that
a network consisting of two dense layers with a sigmoid activation in between can be used
to approximate any continuous function on the domain of a unit hypercube [0,1]d with error
smaller than some predifined constant ε using a finite amount of variables in the hidden
layer. This was extended by Hornik [78] to any activation function that is continuous,
bounded and non-constant and over any domain that is compact. A more visual explanation
is provided by Nielsen [79]. Nevertheless, this does not mean that a network of 2 dense
layers and one activation is always a good choice. It may need a lot of hidden features for a
good fit, and there is no guarantee that the optimizer will able to find a useful optimum.
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Figure A.2: Activation functions

A.2 Convolutional neural networks

In traditional neural networks no assumptions are made on the correlation of the input fea-
tures. However, this is different when neural networks are applied to time series (1D),
images (2D) or volumes (3D). For these types of input data, the same features are measured
over different times or positions. One feature measured over the entire space is called a fea-
ture map, which is illustrated in Figure A.3. There usually is a correlation between features
that were measured close together. For example in Figure A.3, when a pixel is part of the cat
there is a relatively big chance the surrounding pixels are also part of the cat. Convolutional
neural networks [80] make use of the local correlations to derive their results. Instead of
hidden features, they derive hidden feature maps (also called channels), that have the same
local structure as the input. To achieve this they use special kinds of layers. Dense layers
can still be applied too by treating every element of a feature map as a separate feature.

Figure A.3: Color images are data with correlations in 2D and they have 3 feature maps:
red, green and blue. To store multiple 2D feature maps you need a 3D array with shape
(xresolution,yresolution,n f eatures).
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A.2.1 Convolution Layer

In convolutional neural networks, convolution layers have the same role as dense layers
in traditional neural networks. The main reason to replace dense layers is to reduce the
amount of learnable parameters. For example: if you would put the values of all pixels of
a one megapixel image into a feature vector it would have one million values. If you then
apply a dense layer to this vector you would get one million and one learnable parameters
for each output feature that you want to generate.

The amount of learnable parameters can be strongly reduced by performing convolu-
tions instead of matrix multiplications, so y = k ∗ x+b, where x and y are the input and
output feature maps respectively, ∗ is the convolution operator, k is a convolution kernel of
learnable weights and b adds a learnable offset to each output feature map. A convolution is
also a linear operator, but it only combines values that are within the area of a convolution
kernel, centered around the point of interest. Just like dense layers, they are typically fol-
lowed by an activation function. The shape of the kernel has to be defined by the network
designer. For images 3×3 kernels are a popular choice because they are the smallest kernel
possible that has a symmetric shape around the point of interest. You can learn multiple
convolution kernels to get multiple output feature maps, and when you have multiple input
feature maps a separate weight is learned for each input feature map. For example, a con-
volution layer with 4 input feature maps, 5 output feature maps and a 3×3 kernel will have
to learn, 4×5×3×3 = 180 parameters.

To describe the area in the input that is used to determine the value of one pixel in the
output we use the term receptive field. For example, when a network consists of only one
3x3 convolution layer, the receptive field is 3x3, or when a network consists of two 5x5x5
convolution layers the receptive field is 9x9x9. If you apply a convolution to all pixels in
an image, the receptive field will partially lie outside of the image for border pixels. One
approach to handle this is to make the output of every convolution slightly smaller than the
input, which is illustrated in Figure A.4. Another approach is to make assumptions about
what is outside of the image. Often it is assumed everything outside the image is zero,
which is called zero padding.

A.2.2 Pooling Layers

Pooling layers reduce the resolution of the image by combining values that are close to
each other. Like in a convolution layer a kernel is moved over the image and the values
are combined into one. Within this kernel the maximum value(max pooling) or the aver-
age value(average pooling) is outputted. Then the kernel is moved with a step size which
determines the factor by which the image will be downsampled. A step size of 2 will down-
sample the image with a factor 2. When each pixel has multiple features, the average or
maximum, is taken separately for each feature.

Pooling layers are often used together with convolution layers to capture large scale fea-
tures with fewer parameters. Moreover, by reducing the resolution, less memory is needed
per parameter during training, because the gradient with respect to fewer pixels has to be
computed.
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Figure A.4: Illustration of three different layers applied to a 2D image. The matrices on the
left are the inputs of the layers and the matrices on the right are the outputs. The orange
matrices are the (de)convolution kernels and their parameters can be learned.

An alternative to pooling is strided convolution. There you have kernels with learnable
weights, just like in a convolution layer, but you also have a step size that is bigger than
one, so you downsample the image, just like a pooling layer. Strided convolutions can re-
tain more information than pooling layers, because they can output more feature maps than
the original moving the information from the higher resolution to the extra features. How-
ever, pooling layers make your network less sensitive to small deformations and translations
because within the convolution kernel the order of the pixels doesn’t matter. In many cases
this is a useful property too.

A.2.3 Upsampling Layers

An upsampling layer increases the resolution of an image with a constant factor. It is most
often used when there are also pooling layers in the network to get an image at the original
resolution. The standard upsampling layer replaces each pixel with an a× b region of the
same value as the source pixel, increasing the resolution on the x axis with a factor a and on
the y axis with a factor b. If you don’t want the same value on each pixel you can also use
a deconvolution layer, which will multiply each source pixel with a learnable a×b kernel.
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Figure A.5: Example of a convolutional neural network for classifying traffic signs. Image
by Maurice Peemen

A.2.4 Concatenation

So far I assumed that a neural network always consists of layers that are performed after
each other as if they were a chain. While many networks are structured like this, it does not
have to be the case. Each layer can have only one input and one output, but the output of
one layer can serve as the input of multiple layers and the feature maps of two equally sized
outputs can be concatenated to become one image again.

Figure A.6: Concatenation is used extensively in the GoogLeNet architecture [81]. The
above block is called an Inception module, and it is repeated multiple times. The max-
pooling used here has a step size of one so the image is not downsampled. Image source:
Szegedy et al. [81]
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A.3 Training

A neural network is a set of operations that relies on a set of learnable parameters p0 . . . pN

that can be put together into a vector ppp. There is also a training set consisting of vectors
aaa0 . . . aaaM. The cost function of a network describes how well the network is performing,
and it is often defined describing the error of the network for one input vector aaam, given
all learnable parameters ppp: C(aaam, ppp). To train the network, an optimization algorithm op-
timizes the values of the learnable parameters (ppp) so that they minimize the average of the
cost over all training vectors: 1

M ∑
M
m=0C(aaam, ppp). As an optimization algorithm, gradient de-

scent is used. To be able to use gradient descent, the cost function has to be differentiable
to all parameters in ppp. An efficient way of calculating the gradient for all parameters in a
neural network is the backpropagation algorithm [82].

A.3.1 Stochastic mini-batch gradient descent

The gradient of the average of the cost functions is equal to the average of all the gradients,
so for normal gradient descent you would have to calculate the gradient for all input vectors
every iteration.

∇

(
1
M

M

∑
m=0

C(aaam, ppp)

)
=

1
M

M

∑
m=0

∇C (aaam, ppp) (A.1)

To speed up this process, stochastic mini-batch gradient descent only averages the gradients
for a subset (mini-batch) of the input vectors to calculate an estimate of the total gradient in
every iteration. Typically, the mini-batches are selected in such a way that every input vector
has to be used once before using the same input vector again. The number of iterations it
takes to use all inputs once, is called an epoch. Moreover, every epoch the order of the input
vectors is shuffled, so that different input vectors end up in a mini batch together. Larger
mini-batch sizes result in a more reliable estimate of the gradient, but smaller mini-batches
use less memory and can even help the network generalize better [83].

Several variants of stochastic mini-batch gradient descent are used in the literature, and
they mostly differ in if and how they use momentum[82, 84] and adaptive learning rates.
This is summarized in table A.3.1. Ruder [66] provides a more complete overview of these
algorithms.

No momentum Momentum Nesterov
constant learning rate Mini batch SGD

adaptive learning rate
Adagrad, Adadelta,
RMSProp

Adam, Adamax,
AMSGrad

Nadam

Table A.1: Comparison of mini batch stochastic gradient descent variants used in training
neural networks.
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A.3.2 Overfitting and validation

The parameters of the network are optimized to minimize the cost on the training set. How-
ever, the end goal is to use the network on data that it has not been trained on. Sometimes
the network learns properties that are unique to the training set. This is called overfitting.
In the worst case scenario the network would learn to recognize each example from the
training set separately, without looking at any property that is shared between examples.
This way the network could get very good results on the training set and very bad results on
unseen data.

If you don’t put in measures to prevent overfitting it almost always occurs. Some over-
fitting may be acceptable, but in general you want to reduce it as much as possible. To
be able see how much your network is overfitting you can keep a small part of your data
separate as a validation set. This set is not used by your optimizer to train your network, but
the loss on the validation set is evaluated every epoch. A plot containing the loss on your
training and validation sets is called the training curve plot (Figure A.7).
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Figure A.7: Training curve examples: Both plots show overfitting, but on the right plot the
overfitting gets worse over time. The green line indicates the epoch where the validation
loss was lowest.

Sometimes your network will first learn properties that are generalizable, but as the
training progresses it will start overfitting more and the validation will increase. One ap-
proach to counter this effect is to select the network with minimal loss on the validation
instead of minimal loss on the training set. Be aware that if you do this, your result will be
biased towards your validation set as well. Because of that, some part of the data is often
kept separate as a test set. Experiments on the test set should only be performed during the
final evaluation, when training and tuning the network is entirely finished.

A.4 Improvements

A.4.1 Data augmentation

Data augmentation is a technique for regularization, which is the term for reducing overfit-
ting. There are other regularization techniques, such as dropout layers [85, 86] and L1/L2-
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regularization, but data augmentation has the nice property that it allows you to make the
network more robust specifically to the variations that you expect to occur in the data. It
works by modifying the training data before it is send to the network. By modifying your
data with the variations you expect to happen you can make your network learn these varia-
tions and make the network more robust to these variations and less strongly fitted on your
training data.

For example, assume you are training a network for detecting faces in pictures. The
faces can be close to the camera or further away, resulting in a smaller or bigger size.
By nature convolutional neural networks are not scale invariant, but a network can learn
separate features for different scales if you provide the network with examples of each scale.
Even when your training set only consists of a few pictures, you can still create examples at
each scale by scaling your training pictures before sending them to the network. This way
it is possible to generate a new set of images each iteration, so the network will never see
exactly the same image twice, which strongly reduces overfitting.

A.4.2 Batch Normalization

Batch normalization [87] aims to reduce the training time of a neural network by counter-
acting the problem of internal covariate shift. Internal covariate shift is that when a network
is training, the distribution of the inputs of a layer will change as a result of changes in
the parameters of the previous layers. Because of this the parameters of that layer may no
longer derive meaningful features from its inputs. This problem becomes worse when a
network has more layers because each layer amplifies the changes of the previous layers.

The proposed solution is to put batch normalization layers between the input and the
output of two neighboring layers at several points in the network. In a batch normalization
layer each feature x is normalized to zero mean and unit variance using the input feature
mean µ and variance σ2 (plus a small ε to avoid division by zero). During training the mean
and variance over the mini batch are used, but during evaluation of the network the mean
and variance over the entire training set are used instead. Also a learnable scale γ and offset
β are added:

BNγ,β(x) = γ

(
x−µ√
σ2 + ε

)
+β

The normalization makes the distribution of the features more stable during training,
which increases training speed (Figure: A.8). However, having a zero mean, unit variance
distribution of each feature might not be desirable. An example where a non-unit variance
would be meaningful is when the batch normalization layer is followed by a sigmoid acti-
vation function. A high variance pushes the activations close to either zero or one, while
with a low variance the function is almost linear. To still make it possible to use batch nor-
malization layers everywhere in your network the linear transform relying on γ and β allows
offsetting the mean and scaling the variance.

The fact that the normalization procedure is different during training and testing may
reduce performance, because the network is not optimizing exactly for how it will be evalu-
ated. This effect becomes stronger as the batch size becomes smaller. However it may also
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A. NEURAL NETWORKS

Figure A.8: (a) Test accuracy of a network on the MNIST dataset with and without batch
normalization plotted against the amount of training steps. (b & c) The input distribution of
one sigmoid activation function as it changes during training plotted as the {15, 50, 85}th
percentile. Source: Ioffe and Szegedy [87]

have a positive regularizing effect, because training samples are in a batch together with
different samples each epoch. This forces the network to learn parameters that are robust
to features that are normalized slightly differently. For this to happen you should have a
mini-batch size of at least two and you should shuffle the order of your training data every
epoch. Both things are commonly done already because they are also beneficial to the result
of mini-batch SGD without batch normalization.
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Appendix B

Additional Results and Figures

0.0 0.2 0.4 0.6 0.8 1.0
Soft sensitivity

0

5

10

15

20

N
um

be
r o

f s
ca

ns

Liver boundary soft sensitivity (4 mm)

0.0 0.2 0.4 0.6 0.8 1.0
Soft sensitivity

0

5

10

15

20

N
um

be
r o

f s
ca

ns
Blood vessel soft sensitivity (2 mm)

Figure B.1: Distribution of the sensitivity disregarding false negatives that are close to the
neural network output. A 4 mm threshold was used for the liver boundary and a 2 mm
threshold was used for the blood vessels.
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f_liv f_ves w_liv w_ves d_trans average error

1 0.566 0.891 1.136 1.714 17.513 12.430

2 0.944 0.882 1.064 2.182 14.713 12.896

3 0.754 0.879 2.729 1.873 13.228 13.039

4 0.883 0.749 1.493 2.287 23.190 13.418

5 0.653 0.417 2.430 2.762 15.365 13.526

6 0.902 0.739 2.646 0.522 10.274 13.546

7 0.800 0.562 1.659 0.572 7.612 13.552

8 0.854 0.679 2.757 2.419 13.522 13.626

9 0.968 0.767 2.367 2.795 24.657 13.634

10 0.786 0.637 2.373 0.699 17.246 13.756

96 0.694 0.549 2.431 0.634 0.400 16.179

97 0.990 0.474 2.088 2.458 1.920 16.186

98 0.534 0.584 1.738 1.062 4.094 16.306

99 0.669 0.523 2.760 2.467 0.269 16.560

100 0.997 0.405 2.129 0.616 13.252 16.709

max

min

Figure B.2: Best ten and worst five settings of the LTS-CD cost function. Each column is
color coded according to where a value lies on the range that was used to randomly generate
that parameter.

f_liv f_ves w_liv w_ves d_trans average error

1 0.905 0.685 2.350 1.431 18.570 12.500

2 0.914 0.771 0.613 1.373 22.773 12.690

3 0.851 0.857 2.809 0.750 15.452 13.030

4 0.859 0.791 2.465 2.005 11.217 13.046

5 0.892 0.807 2.417 2.897 19.405 13.070

6 0.991 0.675 1.762 1.971 9.571 13.111

7 0.819 0.767 2.678 1.931 20.311 13.197

8 0.754 0.808 2.086 2.488 23.833 13.266

9 0.576 0.856 1.379 0.895 13.925 13.320

10 0.978 0.483 2.145 2.829 7.333 13.334

96 0.680 0.470 1.105 1.800 3.748 15.698

97 0.511 0.445 1.093 0.562 4.179 15.894

98 0.632 0.847 2.234 0.787 0.288 16.438

99 0.593 0.426 1.078 2.430 2.307 16.804

100 0.660 0.891 0.736 0.734 0.861 17.114

max

min

Figure B.3: Best ten and worst five settings of the TACD cost function
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d_liv d_ves w_liv w_ves d_trans average error

1 10.851 3.817 1.664 2.194 23.929 12.010

2 28.549 6.206 0.819 1.011 11.950 12.319

3 25.776 3.781 0.677 1.024 10.395 12.451

4 8.309 6.027 1.296 0.864 20.446 12.462

5 28.047 5.968 0.971 0.868 22.010 12.472

6 23.803 3.628 1.261 2.366 4.145 12.476

7 9.266 15.247 1.315 1.531 24.240 12.577

8 10.358 11.125 0.633 1.669 17.840 12.651

9 22.863 7.177 2.199 2.016 12.792 12.695

10 23.761 3.980 2.430 2.789 14.866 12.796

96 13.913 12.480 0.515 2.917 23.001 16.737

97 9.937 17.790 0.515 2.447 1.291 17.256

98 4.913 13.602 0.631 2.542 5.616 17.607

99 4.326 28.701 0.570 2.159 1.469 19.245

100 3.948 13.038 1.424 1.776 0.268 19.536

max

min

Figure B.4: Best ten and worst five settings of the CACD cost function
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Figure B.5: Heatmaps of the registration error of each scan for each tested setting of the
LTS-CD(top) and CACD(bottom) cost functions. Each rectangle represents the average
marker distance, which was clipped at 30 mm. The settings are sorted from a low average
over the average marker distances (top) to a high average (bottom).
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Figure B.6: Examples of registration results that got the score good. Only one slice is
displayed here, but during scoring the whole 3D volume was available.
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Figure B.7: Examples of registration results that got the score fair. Only one slice is dis-
played here, but during scoring the whole 3D volume was available.
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Figure B.8: Examples of registration results that got the score poor. Only one slice is
displayed here, but during scoring the whole 3D volume was available.
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Figure B.9: Examples of registration results that got the score bad. Only one slice is dis-
played here, but during scoring the whole 3D volume was available.
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