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ABSTRACT 
The comparison of various competing design concepts 
during conceptual architectural design is commonly needed 
for achieving a good final concept. For this, computational 
design exploration is a key approach. Unfortunately, most 
of existing research tends to skip this crucial process, and 
purely focuses on the late-stage design optimization based 
on a single concept that, they assume, has been good 
enough or accepted already. This paper focuses on 
information or knowledge extracted from a multi-objective 
design exploration for the formulation of a good 
geometrical building design concept. To better support the 
exploration process, a new integration plug-in is developed 
to integrate parametric modelling software and process 
integration and optimization software. Through a case study 
that investigates the daylight and energy performances of a 
large indoor space, this paper 1) tackles the importance of 
design exploration on the formulation of a good design 
concept; 2) presents and shows the usability of the new 
integration plug-in for supporting the exploration process. 

Author Keywords 
Multi-objective design exploration; Design concepts; 
Trade-off; Comparison; Top daylighting; Energy; Daylight  
 

ACM Classification Keywords 
J.6 COMPUTER-AIDED ENGINEERING 

1 INTRODUCTION 
There are multiple definitions of conceptual design and 
design concepts. According to Pahl [1], conceptual design 
is the phase in which the design requirements defined in the 
first phase are synthesized into a number of concept 
variants thus a final concept. O’Sullivan [2] includes into 
conceptual design the phase in which the designer takes 
specifications for an item to be designed and constructs a 

statement (subject to further modification) upon which the 
generation of many solutions is initiated. In this research, 
we define a design concept as a collection of ideas or 
principles that aim to achieve all the requirements of a 
design situation. Thus, to describe a design concept (which 
includes many potential solutions), there are at least two 
aspects that need to be specified: the design requirements 
and how to achieve them by applying the design ideas or 
principles. Moreover, similar to the definition in [1], we 
consider conceptual design includes the phases of 
generating multiple potential design concepts, of evaluating 
and comparing the concepts for the most suitable one. 

In computational design, parametric modelling [3, 4] is 
usually avoided during the conceptual design, especially in 
the very early phases. This is because the hierarchical 
structure of parametric models is considered to hinder the 
freedom of explorative thinking and to prematurely freeze 
ideation [5-7]. It is more widely applied, after a final design 
concept has been chosen (i.e. after the conceptual design), 
in combination with performance simulation for predicting 
various building performances. In this context, the design 
requirements are indicated by the performance criteria 
being considered; and the design ideas are implemented via 
the definition of parameters of the parametric model 
corresponding to the final concept. Thus, in some sense, the 
description of a design concept includes the formulation of 
an optimization problem, except for added values of design 
(such as cultural values, beauty, emotions, etc.). As such, a 
design concept is partially described or formulated by: a set 
of objective and constraint variables (i.e. output variables 
that are selected among performance criteria, to form an 
objective space); and a set of design variables (i.e. input 
variables that are selected among parameters of a 
parametric model, to form a design space). 

In this paper, we claim that parametric modelling, together 
with performance simulation and computational design 
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exploration, are also useful during the conceptual design, 
but in the relatively late phases. That is, when multiple 
competing design concepts are generated, they are useful 
for evaluating and comparing the different concepts, 
identifying the promising ones, and then re-formulating 
them or even ideating entirely new concepts. For this, the 
computational design exploration is a key approach. 

Computational design exploration differs from design 
optimization. In this study, design exploration refers to the 
process of extracting information or knowledge and 
applying it to formulate or re-formulate a design concept. 
This process includes two levels of exploratory activities: 1) 
the exploration of information or knowledge hidden behind 
obtained data sets; and one step further, 2) the exploration 
of how to apply the extracted information or knowledge to 
support the human decision-making on ideation. This is an 
iterative process during which the definitions of objective 
variables, constraint objectives and design variables may 
change towards a better concept formulation. This change 
occurs in two ways: modification of existing design concept 
or creation of new design concept, which is similar to 
Gero’s definition of design exploration [8]. In contrast, 
design optimization refers to the process that is only keen 
on searching for optimal design solution(s) by using various 
optimization algorithms, when the design concept has been 
well-defined. Thus, optimization typically occurs in a later 
stage, during which the definitions of objective variables, 
constraint objectives and design variables remain fixed.  

The design exploration precedes the design optimization 
and it is more important. If one defined an improper or a 
bad design concept, he/she might probably get poor results 
no matter how advanced the optimization algorithm was. 
Unfortunately, most of existing research tends to skip the 
process of formulating a good design concept, and rather 
focuses on the late-stage optimization based on a single 
given design concept. As response, this paper focuses on 
the formulation of a good geometrical building design 
concept based on the information or knowledge extracted 
from a multi-objective design exploration.  

Accordingly, a process integration platform is required that 
is suitable for multi-objective and multi-disciplinary design 
exploration and supports the decision-making on ideation. 
However, most of existing platforms integrating parametric 
modeling and simulation systems with a design exploration 
and optimization environment lack important features, like 
scalability, extensibility [9], ease in using advanced 
sampling techniques and post-processing tools etc. This 
largely limits their applications in conceptual architectural 
design. In our research, to better support the exploration 
process, a new integration plug-in is developed to integrate 
parametric modeling software (i.e. McNeel’s Grasshopper – 
GH [10]) and process integration and optimization software 
(i.e. ESTECO's modeFRONTIER - MF [11]).  

In a case study that investigates the daylight and energy 
performances of a large indoor space, three typical types of 

top daylighting design are explored; and eventually, an 
improved design concept comes up based on the design 
exploration. Through this case, the paper 1) highlights the 
importance of design exploration on the formulation of a 
good design concept; 2) shows the usability of the new 
integration plug-in for supporting the computational design 
exploration process. 

2 METHODOLOGY 

2.1 Computational framework 
The overall computational framework is shown in Figure 1. 
It consists of two iterative loops: a design exploration loop 
(indicated by a large cycle: the outer loop, involving Stage 
1, 2 and 3) and a design optimization loop (indicated by a 
small cycle: the inner loop involving Stage 1 and 4). 
Different from the traditional focus on design optimization, 
this paper focuses on design exploration. 

Stage 1 - formulation of initial design concepts: it is 
involved in the process for one time (marked in dash lines 
in Figure 1). In this stage, multiple initial design concepts 
are created and ready for the subsequent design exploration. 
The tasks below are required: 

 Formulation of design variables, parametric model(s) 

 Formulation of objective variables, simulation model(s) 

Stage 2 - computational design exploration: this is the key 
of the design exploration loop. It generates and collects 
data; explores the information or knowledge behind the 
obtained data (i.e. the first level of exploration); and 
explores how to apply the extracted information or 
knowledge to support the human decision-making on 
ideation (i.e. the second level of exploration). The tasks 
below are required: 

 Workflow establishment 

 Simulation run & Data storage 

 Data analysis & Knowledge extraction 

 Promising concept identification & Preference integration 

Stage 3 - re-formulation of new design concepts: it is the 
consequence of the previous stage. In this stage, new design 
concepts are created and ready for the subsequent design 

 
Figure 1. Overall computational framework 
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optimization (note that the optimization run is not included 
in this paper). The tasks below are required: 

 Re-formulation of design variables, parametric model(s) 

 Re-formulation of objective variables, simulation model(s) 

2.2 Software Platform 
To well support the computational framework, especially 
the computational design exploration, a process integration 
platform is required. It should be able to (1) connect with 
software familiar to architects and engineers; (2) cope with 
challenges related to computational power; and (3) include 
data analysis tools to facilitate analytic decision making etc. 

Considering all these and other requirements, Grasshopper 
and modeFRONTIER have been chosen and integrated into 
one desired platform in this research (more information in 
Section 3). Grasshopper (integrated with Rhinoceros) is one 
of the most popular parametric modelling environments 
among architectural design professionals. It includes plug-
ins for integrating various building performance 
simulations. modeFRONTIER is a process integration and 
automation platform for multi-objective and multi-
disciplinary design exploration and optimization. It allows 
the integration with a variety of third party CAD and CAE 
tools; supports parallel computing; and offers a number of 
easy-to-use post-processing tools for data analysis and 
visualization. 

2.3 Computational Design Exploration  
Considering the relative importance of computational 
design exploration, as mentioned in Section 2.1, this section 
focuses on the computational process of Stages 2, for which 
the following four steps are involved. 

Workflow Establishment 
The parametric models and simulation models are set in 
GH, based on the formulation of multiple initial design 
concepts. The preliminary establishment of the workflow is 
facilitated by GH-MF integration. Through an introspection 
process, the input and output variables being investigated in 
GH are automatically propagated to MF. Thus, a 
modeFRONTIER workflow is preliminarily established, as 
shown in Figure 2. Moreover, some settings still need to be 
configured before the workflow is fully established. First, 
the domain and step of each input variable should be set 
properly; second, Design of Experiments (DoE) sampling 
strategies should be applied for guiding the choice of 
computer experiments or test designs; third, the sequential 

evaluation of previously defined test designs should be set. 
It is worth noting that DoE is very useful for design 
exploration. It helps to extract the most relevant qualitative 
information from a limited number of test designs. It is 
especially meaningful for the case that has relatively long 
simulation time. Uniform Latin Hypercube (ULH) [12] is 
one of the commonly used DoE sampling strategies in MF. 

Simulation Run & Data Storage 
Via various simulation engines, performances are predicted 
and the data are stored for later use. The simulation run and 
data storage is automated by GH-MF integration. During a 
run process, for each test design, MF automatically sends 
the input values to GH, and then receives the output values 
from GH when the simulation results are generated. 
Meanwhile, numerical simulation data are stored in MF 
database; images and 3D models are saved in the MF 
working directory. All the results can be browsed through 
MF user interface (more information in Section 3). 

Data Analysis & Knowledge Extraction 
Based on the data obtained, useful information (about data) 
is extracted by using statistical techniques. The information 
needed to know during design exploration includes output-
output relationships and input-output relationships. The 
former refers to the inter-correlations between pairs of 
output variables; the latter refers to the impact of input 
variables on output variables. Considering the relatively 
large number of variables being considered, Multivariate 
Analysis (MVA) techniques are used to identify patterns 
and relationships among these variables. Self-Organizing 
Map (SOM) and Hierarchical Clustering (HC) [12] are 
among the handy MVA tools in MF.  

The SOM is an unsupervised neural network for ordering of 
high-dimensional data in such a way that similar data are 
grouped spatially close to one another [13]. It represents 
multi-dimensional data in a two-dimensional space, which 
is very useful and directly interpretable. It can be used to 
identify the output-output relationships as well as other 
unexpected multiple variable correlations. The Cluster 
analysis tries to identify homogeneous subgroups of 
samples in a data set such that they both minimize within-
group variation and maximize between-group variation [14]. 
The HC classifies large amounts of data into manageable 
and meaningful subgroups, which provides more abstract 
views to the inherent structure of the data. It facilitates to 
identify the input-output relationships by using a more 
refined data set. 

 
Figure 2. modeFRONTIER workflow showing input and output variables 
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Based on the information obtained, useful knowledge 
(about building disciplines) is extracted via designers' 
interpretation. The knowledge to be extracted during design 
exploration may include reasons: why different criteria are 
correlated in some patterns and why different groups (or 
concepts) of designs perform differently? To obtain this 
knowledge, a good understanding of all input and output 
variable definitions is crucial, because it helps designers to 
interpret the information in building disciplinary contexts. 

Promising Concept Identification & Preference Integration 
Based on the knowledge obtained, the variables describing 
the most promising concept need to be identified, for the re-
formulation of a new design concept. First, based on the 
correlation patterns between different criteria, the most 
contradictive criteria and/or the criteria with significantly 
different correlation patterns are selected as objective 
variables (not more than three); the remaining criteria can 
be selected as constraint variables. This ensures obtaining a 
meaningful set of Pareto trade-off solutions (from DoE test 
designs). Second, a special design variable that controls the 
switch among different groups (or concepts) of designs is 
crucial (see Section 4.3). Based on its effect on the selected 
objectives, the performance of each initial design concept is 
observed; and hence the design variables describing the 
most promising concept are identified. 

It is worth noting that design preference integration is also 
important during the identification of the promising 
concept. Human designers or clients may have subjective 
preference on "soft" criteria (e.g. aesthetics) which are hard 
to evaluate numerically. The incorporation of design 

preference allows human to balance between visually 
preferred and high-performing concepts. For instance, one 
could select visually preferred but mid- or low-performing 
concepts for further research. In this sense, it is helpful to 
have a user-friendly interface that allows monitoring the 
variation of geometry while exploring data and simulation 
results, such as the interface provided by MF, as shown in 
Figure 3 (top right). 

2.4 Re-formulation of New Concepts 
There are two ways to re-formulate new concepts based on 
the most promising one. According to Gero [15], one option 
is to change the ranges of values for design variables (i.e. 
innovative design); while the other option is to introduce 
new design variables (i.e. creative design). In this paper, we 
are interested in the latter. Thus, new design variables are 
inspired via the analysis of the promising concept. 

3 GH-MF INTEGRATION 
The integration of Grasshopper and modeFRONTIER is 
useful for supporting computational design exploration. 
This potential has been shown in existing research [16-18], 
in which the GH-MF integration is provided by a previous 
version of customized nodes (both in GH and MF). To 
overcome some limitations in the last version (like manual 
operations, unstable process initiation and automation etc.), 
an improved version of the precedent is developed. The 
development has been implemented by using the myNODE 
tool [12] (a tool enabling the creation of custom nodes for 
the integration of external software in MF), and the Python 
tool (scriptable components in GH). 

 
Figure 3. Grasshopper UI (top left); modeFRONTIER UI (top right); diagram of GH-MF integration (bottom) 
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Compare with the precedent, the new GH-MF integration 
streamlines the integration process through automatically 
recognizing input and output variables from GH in the 
introspection phase; facilitates the initiation of the run 
phase by one-click action; and improve the stability of the 
run phase by automatically calling and closing GH and 
Rhinoceros applications for each simulation run (instead of 
keeping them always alive which may increase the risk of 
crashing). Moreover, the new GH-MF integration is also 
supposed to work on Grid, for which, some bugs still need 
to be fixed. The communication between GH and MF is 
achieved via the automatic data exchange between .dat and 
.xml files, as shown in Figure 3 (bottom).  

4 CASE STUDY 
The case study investigates how to design the geometry of 
top-daylighting elements to improve daylight and energy 
performances of a large indoor space (i.e. 40m*70m*15m). 
It is structured as following. Three typical types of top-
daylighting design are introduced as initial design concepts 
(Section 4.1). The formulation of the initial concepts is 
described, including the selection of objective variables 
(Section 4.2) and design variables (Section 4.3). Then, the 
computational design exploration process is followed; 
results about the obtained data, and results of the data 
analysis, knowledge extraction and design inspiration are 
showed (Section 4.4). Last, the performances of a new 
concept obtained are compared with that of the initial 
concepts (Section 4.4). 

4.1 Initial Design Concepts 
Top daylighting is a common and effective way of bringing 
light deep into a building, thus, it is often used in large 
single level space, such as indoor sports halls. Three typical 
types of top-daylighting design shown in Figure 4 (in the 
dash box) are initial design concepts. They are: skylights 
(Concept 1), roof monitors (Concept 2) and saw-tooth roofs 
(Concept 3). They perform differently in term of daylight 
and energy performances, due to different strategies of 
introducing light into the space. In addition, Concept 4 is 
the new concept proposed after the design exploration.  

Although there might be some general understanding of the 
initial concepts, it is not sufficient to support a good 
decision on which type we should choose. There are a lot of 
geometrical variations for each initial concept. The different 
geometrical variations perform differently though they 
belong to the same concept. Thus, there is a risk that one 
may choose a relatively high performing solution, but from 
a less promising concept. In that case, they may overlook a 
lot of better solutions or equally good trade-off solutions in 
a more promising concept. In this sense, it is crucial to have 
a clear view of the overall performance trend or pattern of 
each initial concept. 

4.2 Objective Variables 
Three categories of objective variables are selected for the 
formulation of the initial concepts, namely, energy, daylight 
and geometry related objectives. Energy related objectives 
include: Energy Use Intensity (EUI, energy used per square 
meter of floor area), Percentages of Cooling, Heating, 
Lighting, Equipment. Daylight related objectives include: 
Useful Daylight Illuminance (i.e. UDI(<100), UDI(100-
2000) and UDI(>2000)); DaylitArea; OverlitArea; Average 
Uniformity. Here, UDI represents the percentage of floor 
area that meets the specified illuminance range at least 50% 
of the occupied time. DaylitArea represents the percentage 
of floor area that is above 300 lux for at least 50% of the 
occupied time (i.e. sDA). OverlitArea represents the 
percentage of floor area that is above 3000 lux for at least 
5% of the occupied time, which indicates potential glare or 
overheating. Average Uniformity represents the annual 
average of the minimum-to-average uniformity ratio of 
illuminance. Geometry related objective is Area of Glass. It 
calculates the total area of the glass being used, which is 
often an interesting criterion associate with investment cost.  

Moreover, Daysim [19] and EnergyPlus [20], as frequently 
used daylight and energy simulation engines, are chosen in 
this research. And the Grasshopper plug-ins Ladybug and 
Honeybee [21] are used to integrate parametric models with 
these simulation engines.  

4.3 Design Variables 
A special design variable called "Concept" is used to 
facilitate the simultaneous investigation of the multiple 
concepts. It controls the switch among different groups (or 
concepts) of designs; and determines the selection of other 
design variables that formulate the initial concepts. 
Normally, changing the value of a design variable will not 
affect the selection of other design variables. That is, the 
dimensions of the design space will be fixed, as the design 
variable changes its value. But, in this case, the variable 
"Concept" is a nominal variable, which is used for labelling 
the specific group (or concept) of designs without any 
quantitative meanings. The "values" of this variable 
include: Concept1, Concept2 and Concept3. When a 
specific "value" is chosen, different set of design variables 
will be selected to create the geometry of the corresponding 

 
Figure 4. Initial design concepts (1-3); new concept (4) 
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initial concept. Thus, the specific "value" determines the 
dimensions of the design space being investigated. That is, 
by using the special variable "Concept", the dimensions of 
the design space are not fixed in this case, which is good for 
the simultaneous investigation of the multiple concepts. 

Moreover, the design variables determined by the variable 
"Concept" are shown in Table I, together with their ranges 
and steps. Some of them are shared by multiple concepts; 
while some are only for a specific concept. 

4.4 Results 
Following the steps of computational design exploration 
(Section 2.3) and re-formulation of new concepts (Section 
2.4), all the results obtained are reported in this section. 

First, results about the obtained data are shown in Figure 5. 
They include: all the numerical data of design variables and 
objective variables; images showing daylight and energy 
simulation outcomes; and images showing geometries. This 

data are generated by applying ULH sampling strategy and 
running sequential simulations of the samplings. Second, 
results of the data analysis, knowledge extraction and 
promising concept identification are described in two parts: 
identification of promising objective variables and design 
variables. Self-Organizing Map and Hierarchical Clustering 
are used to analyze the data; then useful information and 
knowledge are extracted, based on which, a promising 
concept is identified. Last, results of the re-formulation of 
new concepts are shown. A new concept is formulated in a 
more informed manner, and its performances are compared 
with the performances of the initial concepts. 

Identification of Promising Objective Variables 
Self-Organizing Map is used to identify the output-output 
relationships. It is created by including all initial objective 
variables, based on the data sets related to initial concepts.  
As shown in Figure 6 (left), SOM maps of different 
variables are distributed on a hexagonal grid; and those 
with similar patterns are placed in adjacent positions. The 
color represents the values of variables; deep red means 
highest values and deep blue means lowest values. The 
level of similarity between patterns indicates the level of 
their correlation. Moreover, to facilitate observation, the 
general direction of achieving a desired performance goal 
of each objective variable is shown by a write arrow. For 
instance, EUI aims for a minimization goal, thus the 
direction of achieving this goal is from left bottom (high 
value) to top right (low value). Similar principles apply to 
others as well. By comparing the directions and patterns 
between pairs of initial objective variables, the following 
information and knowledge are obtained. 

 
Figure 5. Geometry and simulation results 

Type  Design variable  Range  Step  

Share by 
Concept 1-4  

NumberOfSkylights  2-10  1  

LengthOfGlass  30-38m  0.1 m 

WidthOfGlass  1-3 m 0.1 m 

Share by 
Concept 2, 3  WidthOfBottom  1-3 m 0.1 m 

Only for 
Concept 4  

HeightOfSkylights  1-3 m 0.1 m 

ExtraWidthOfBottom  1-3 m 0.1 m 

Table 1. Design variables and their ranges and steps. 
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(1) EUI changes in the similar direction as Percentage of 
Lighting, but in the opposite direction as Percentage of 
Lighting/Equipment/Heating. By further checking the 
variable values, we notice that the increase of total energy 
use is mainly due to the increase of lighting energy use. 

(2) EUI changes in the similar direction as DaylitArea, 
UDI(<100), UDI(100-2000). This indicates that total 
energy use becomes high when more space has insufficient 
daylighting level and vice versa. 

(3) EUI changes in the opposite direction as OverlitArea, 
and their patterns are very similar. This indicates that there 
might be an obvious trade-off between minimizing both 
total energy use and the risk of glare. 

(4) EUI changes in the opposite direction as Average 
Uniformity, but their patterns are significant different. This 
indicates that there might be a less obvious trade-off 
between minimizing energy use and maximizing daylight 
uniformity. 

(5) EUI changes in a different (not exactly opposite) 
direction as Area of Glass, and the similarity level between 
their patterns is medium. This also indicates an interesting 
potential trade-off between minimizing both total energy 
use and investment cost. 

Based on the above information and knowledge extracted, 
EUI, OverlitArea, Average Uniformity and Area of Glass 
(which may lead to interesting trade-off relations) are 
identified as promising objective variables. 

Identification of Promising Design Variables 
Hierarchical Clustering facilitates to identify the input-
output relationships by using a clustered data set. The 
clusters are created by including the design variable 
"Concept" and the four objective variables identified, based 
on the data sets related to initial concepts. As shown in 
Figure 6 (right), the clusters are visualized by a clustering 
parallel coordinate chart which shows their distribution in 
all selected variables. Each cluster is represented by a 
colored band. The mean of each cluster is represented as a 
thick center line, whereas the confidence interval is 
represented as the band width. The selected variables are 

represented by parallel vertical lines. Moreover, to facilitate 
observation, the general direction of achieving a desired 
performance goal of each selected objective variable is 
shown by a black arrow. By using the concise visualization, 
the following information and knowledge are obtained.  

(1) Concept1 (i.e. green band) performs very well in EUI; 
but less well in Average Uniformity; and very bad in 
OverlitArea and Area of Glass. This may be associated with 
the widest angle of receiving daylight from all directions 
compare with other concepts. 

(2) Concept2 (i.e. blue band) performs very well in Average 
Uniformity, OverlitArea and Area of Glass; but relatively 
bad in EUI. This relatively balanced overall performance 
may benefit from the protruding roof elements blocking 
daylight from certain unwanted directions. 

(3) Concept3 (i.e. red band) performs very well in 
OverlitArea and Area of Glass; but very bad in Average 
Uniformity and EUI. This may be associated with the 
asymmetric geometry of the saw-tooth roof which makes 
the daylight unevenly distributed. 

Based on the above information and knowledge extracted, 
Concept2 is considered as a more promising initial concept 
out of three, with relatively balanced overall performance. 
The design variables describing the concept are identified. 

Re-formulation of a New Concept 
We are interested in getting a new and high-performing 
concept by adding new design variables, as mentioned in 
Section 2.4. Based on the concept identified, improving its 
EUI performance while maintaining its advantages in other 
performances is the key to improve its overall performance. 
Triggered by the previous analysis, we notice that good EUI, 
OverlitArea and Average Uniformity performances may be 
associated with the use of horizontal windows, protruding 
elements and symmetrical geometries; and that good Area 
of Glass performance can be achieved by searching within a 
certain concept, given its relatively wide band width. 

Inspired by the above indications, a new concept (i.e. 
Concept4 shown in Figure 4) is proposed. It leaves the 
glazing exposed horizontal to the sun, blocks daylight by 

                
Figure 6. Self-Organizing Map (left); clustering parallel coordinate chart (right) 
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using inclined protruding elements while remaining the 
symmetrical geometry. In this concept, the height and angle 
of the protrusion are important, thus HeightOfSkylights and 
ExtraWidthOfBottom are added to replace some original 
design variables in the initial promising concept. To better 
understand how the new concept performs, it is sampled by 
using the same sampling strategy and run. Data obtained are 
plotted in a 3D objective space, together with the data of the 
three initial concepts, as shown in Figure 7 (the objective 
Area of Glass is left out for the easy of visualization). The 
results show that, out of total 25 Pareto solutions, 15 
solutions belong to the new concept, while Concept1 and 
Concept2 account for only 6 and 4 solutions respectively. 
This confirms the potential of the new concept in achieving 
better Pareto solutions, compared with the other concepts. 

5 CONCLUSION 
In conclusion, computational design exploration is crucial 
for formulating good design concepts in conceptual design 
stage. During the exploration, information and knowledge 
extraction plays an important role. To support this process, 
an integration and automation platform with powerful post-
processing capability is highly useful. In this regard, GH-
MF integration is a good option with great potential. 
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