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The Multi-Disciplinary Design Optimisation (MDO) process can be supported by
partial automation of analysis and optimisation steps. Design and Engineering Engines
(DEE) are useful concepts to structure this type of automation. Within the DEE, a
product can be parameterically defined using Knowledge Based Engineering (KBE).
This parameteric product model needs to be initiated before global multidisciplinary
optimisation can be performed. This paper presents the first phase in the development
of an aerodynamic initiator tool. This tool combines all aspects of the aerodynamic
design process, thereby allowing the designer to efficiently determine a feasible aircraft
shape that can be used as an initial state for the MDO. This research is performed as
part of the CleanEra project at the Faculty of Aerospace Engineering at Delft Univer-
sity of Technology.

The Class-Shape-Transformation (CST) method is used to create a parameteric de-
scription of a blended-wing-body (BWB) aircraft. The method is then expanded to
allow for more local control of the aircraft shape. The mathematical description of the
BWB is then translated to an input for the panel method program VSAERO, which
outputs a number of relevant flow characteristics. These are then fed into an optimisa-
tion algorithm which generates a new aircraft shape and the process is repeated.

The CST method has proven to be very useful as a parameterisation tool. VSAERO
is considered sufficient for the flow analysis for now, but should later be replaced by a
Euler or Navier-Stokes code. Work on the optimiser will start later this year.

1 Introduction

Aviation is one of society’s great contributors,
bringing people and cultures together and creat-
ing economic growth across the globe. At the same
time, the air transport industry does not ignore the
growing concerns about the environment, related
to air pollution, noise and contribution to climate
change. Although today the contribution of air

transport to man-made greenhouse gases is only
2%, it is expected to increase to 3-10% by 2050, [1].

This is however not the only problem. It is ob-
vious that at some point, the oil will be depleted
and long before that, the oil prices will have risen
enormously. Due to the economic growth and the
growing population, air transportation is expected
to triple in the next 20 years. Looking back at the
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development in aircraft history, the aircraft config-
uration did not change in the last 50 years (since
the Boeing 707).

For this reason, the Faculty of Aerospace Engi-
neering at Delft University of Technology has em-
barked on a four-year project called CleanEra to
develop the ultra-eco-friendly plane. A special team
of engineers, primarily Ph.D. students, is develop-
ing new technologies for a revolutionary conceptual
aircraft optimised for environmental and passenger
friendliness. The team also actively investigates the
possibility of integrating these different technolo-
gies.

One of the technologies to be developed is a fully
integrated design tool, combining generic shape
parameterisation, analysis and optimisation. The
first step in developing this tool is to create an
aerodynamic initiator for the DEE. The current
paper therefore focuses purely on the aerodynamic
optimisation, i.e., on finding the outer shape of the
aircraft for which the lift-over-drag ratio is optimal,
subject to constraints.

Section 2 describes the complete process that is
executed by the initiator tool. The subsequent sec-
tions then focus on the specific steps in this process.
Section 3 describes the parameterisation, section 4
looks into the aerodynamic analysis and section
5 explains the optimisation process. Finally, the
conclusions and recommendations can be found in
section 6.

2 Process overview

The initiator process consists of three main parts:
shape parameterisation, aerodynamic analysis and
optimisation. An initial input to this process is re-
quired, which can consist of any aircraft shape. In
this preliminary state of the research, the shape pa-
rameterisation is done using MATLAB, because of
easy implementation. For the aerodynamic analy-
sis, the panel method program VSAERO is used.
This commercially available software couples inte-
gral methods for potential and boundary layer flows
to achieve low runtimes and adequate accuracy for
preliminary design applications. The mathematical
description of the aircraft shape as defined in MAT-
LAB has to be translated to a VSAERO input file.
This is accomplished by modifying a software algo-

rithm developed by Frank Dircken from Delft Uni-
versity of Technology. Once the VSAERO input file
has been created, the program can be run and an
output file containing all the flow analysis results
is created. Another MATLAB algorithm interprets
these results and forwards them to the optimisa-
tion algorithm. Once this optimisation algorithm
has converged, the output of the process forms the
input to the multi-disciplinary design optimisation.
The whole process is depicted in figure 1.

Parameterisation
(MATLAB)

Optimisation
(MATLAB)

Aerodynamic 
analysis

(VSAERO)

VSAERO 
input creator 

VSAERO 
output interpreter 

Initial 
shape

MDO 
input

Figure 1: The design process

3 Parameterisation

Airfoil geometry can be modelled in a number of
ways. The most straightforward way is to describe
the shape using a cloud of points. This however
requires a huge amount of design variables in order
to guarantee a smooth and accurate airfoil shape.
Additionally, modifying the airfoil shape by chang-
ing the positions of the individual points is very
counter-intuitive and has no real physical meaning.
In order to limit the amount of design variables,
an airfoil section can also be modeled as a curve.
Such a curve can be described as a set of param-
eteric polynomial equations. One way to increase
the complexity of a curve is to increase the order
of the polynomials. A type of curve that makes use
of this principle is the Bézier curve, as described
in section 3.1. Another way is to combine multiple
(low-order) curve segments that together form the
airfoil shape. B-splines make use of this principle,
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as explained in section 3.2.

In section 3.3 a geometry representation method
called the Class-Shape-Transformation method is
briefly explained. It was developed by Brenda Kul-
fan, [2]. A new addition to this method is presented
in section 3.3.2. How to implement the method in
three dimensions is briefly explained in section 3.5.

3.1 Bézier curves

A parameteric representation of a quadratic curve
is given by:

x(u) = axu
2 + bxu+ cx,

y(u) = ayu
2 + byu+ cy,

z(u) = azu
2 + bzu+ cz.

(1)

The a-, b- and c-coefficients determine the shape of
the curve. Equations (1) can be written in vector
form as:

p(u) = au2 + bu+ c. (2)

For a Bézier curve, equation (2) can be expressed
as:

p(u) =
n∑
i=0

piBi,n(u), u ∈ [0, 1], (3)

where the basis functions Bi,n are defined as:

Bi,n(u) =
(
n

i

)
ui(1− u)n−i, (4)

in which n is the number of sides of the control
polygon. The number of vertices then equals n+ 1.

3.2 B-splines

Multiple (lower order) Bézier curves can be com-
bined to form a B-spline. For B-splines, equation
(3) changes to:

p(u) =
n∑
i=0

piNi,k(u). (5)

The basis functions Ni,k are no longer a function of
the number of vertices, but instead are dependent
on a separate parameter k. This parameter k deter-
mines the degree of the basis function polynomial.
The basis functions are defined iteratively as:

Ni,1(u) =
{

1, if ti ≤ u < ti+1,
0, otherwise. (6)

and

Ni,k(u) =
(u−ti)Ni,k−1(u)

ti+k−1−ti + (ti+k−u)Ni+1,k−1(u)
ti+k−ti+1

, (7)

where ti are the knot values that relate the param-
eteric variable u to the control points pi. They are
defined as:

ti =

 0, if i < k,
i− k + 1, if k ≤ i ≤ n,
n− k + 2, if i > n.

(8)

3.3 Class-Shape-Transformation
(CST) method

In [2] Brenda Kulfan presents the Class-Shape-
Transformation (or CST) method. In two dimen-
sions, the method combines two special functions,
called “Class Functions” and “Shape Functions”.
The Class Function defines the basic class of gen-
eral shapes. The Shape Function can be defined in
different ways but has to guarantee an analytically
smooth geometry. Mathematically the method is
defined as:

ζ(ψ) = CN1
N2 (ψ) · S(ψ), (9)

with ζ = z/c, ψ = x/c and c the chord length.
CN1
N2 (ψ) and S(ψ) represent the Class and Shape

Function respectively. The Class Function is de-
fined as:

CN1
N2 (ψ) = (ψ)N1(1− ψ)N2. (10)

For a NACA type round nose and pointed aft end
airfoil the C0.5

1.0 (ψ) Class Function is used. In other
words: C(ψ) =

√
ψ(1− ψ).

3.3.1 Bernstein polynomials as Shape Func-
tion

As was mentioned before, the shape function can be
defined in a number of ways. One possibility is to
use a Bernstein polynomials representation. In or-
der to do this, the shape function is first written as
the product of a coefficient vector A and the Bern-
stein polynomial terms Si. For the upper side of
the airfoil the formula for the Shape Function then
becomes:
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Su(ψ) =
n∑
i=1

Aui · Si(ψ). (11)

The Bernstein polynomial terms are typically de-
fined as:

Si =
(
n

i

)
ψi(1− ψ)n−i, (12)

where n is the order of the Bernstein polynomial.
Note that this definition is identical to that of the
Bézier basis functions from section 3.1. Compar-
ing equations (11) and (12) one sees that the order
of the polynomial is always equal to the number of
control points (or length of the vector A) minus one.
For six control points (n = 5) the following terms
are found:

S1 = (1− ψ)5,

S2 = 5(1− ψ)4ψ,

S3 = 10(1− ψ)3ψ2,

S4 = 10(1− ψ)2ψ3,

S5 = 5(1− ψ)ψ4,

S6 = ψ5.

(13)

Plotting these polynomial terms results in figure 2.
A special feature of Bernstein polynomials is that
for every value of ψ they add up to one, which is
shown by the black line in figure 2. This means
that if the coefficients of the vector A are all equal
to one, equation (11) will also be equal to one and
equation (9) will simplify to:

ζ(ψ) =
√
ψ(1− ψ). (14)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Figure 2: Bernstein polynomial terms for n = 5

This equation describes the so-called unit C0.5
1.0 air-

foil, which is plotted in figure 3.
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Figure 3: Unit airfoil for C0.5
1.0

Changes in the coefficient vector A will lead to a
variation in shape around the unit airfoil. Fig-
ure 4 shows the unit airfoil (black line) and
the airfoil belonging to a coefficient vector of
[1 2 1/2 2 1/2 1] (blue line).
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Figure 4: Airfoil shape belonging to A =
[1 2 1/2 2 1/2 1] (blue line) and A =
[1 1 1 1 1 1] (black line)

A special feature of the CST method is that the
values of the Shape Function at ψ = 0 and ψ = 1
are directly related to the leading edge nose radius
and the boat-tail angle respectively, [2]. In the ex-
ample of figure 4 this means that both the leading
edge nose radius and the boat-tail angle should be
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the same, since the first and last value of the A
vector are equal for both cases. From the plot it
appears that this is indeed the case.

The advantage of using the CST method in com-
bination with Bernstein polynomials is that every
reasonable coefficient vector A leads to a realistic,
smooth shape of the airfoil. However, any change
in A will lead to a global change in airfoil geometry,
thereby not allowing for any local modifications.
Another disadvantage is that an increase in con-
trol points automatically leads to an increase in
the order of the polynomial, which might not be
required. These disadvantages can be overcome by
using B-splines instead of Bernstein polynomials
for the Shape Function.

3.3.2 B-splines as Shape Function

An alternative approach is to use B-splines as a
Shape Function, instead of Bernstein polynomials.
In this method the ζ-coordinates of the control
points are used as the control variables. The ψ-
coordinates can be chosen as required. It is usually
advantageous to have more control points on the
leading edge of the airfoil. Using B-splines, this can
be accomplished without having to increase the or-
der of the curve.

The main difference between a conventional B-
spline and a B-spline coupled to the CST method
is that the ζ-component of the curve is multi-
plied by

√
ψ(1 − ψ). This means that if the ζ-

components are all equal to one, the airfoil will be
the unit airfoil. This is a nice similarity with the
CST/Bernstein method. However, changing one
component of the ζ-vector will only lead to a local
change in airfoil geometry. Figure 5 shows the air-
foil shape determined using the CST/Bernstein
method for A = [1 1.1 1.2 1.2 1.1 1]
(blue line) and the CST/B-spline method for
ζ = [1 1.1 1.2 1.2 1.1 1] (red line). Also
shown are the unit airfoil (black line) and the
control points for the B-spline (blue crosses).
There is no significant difference between the
two methods. However, when the A and ζ co-
efficients are chosen in a less ‘smooth’ man-
ner, say A = [1 1.1 0.8 0.8 1.1 1] and
ζ = [1 1.1 0.8 0.8 1.1 1], then the situa-
tion changes, as can be seen in figure 6.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5: CST/Bernstein (blue line) and CST/B-
spline (red line) airfoil belonging to A/ζ =
[1 1.1 1.2 1.2 1.1 1]
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Figure 6: CST/Bernstein (blue line) and CST/B-
spline (red line) airfoil belonging to A/ζ =
[1 1.1 0.8 0.8 1.1 1]

Now it is clear that the effect of changing the co-
efficients is much more local for the CST/B-spline
method than for the CST/Bernstein method. The
Bernstein curve still looks like a smooth airfoil,
while the B-spline curve shows a clear ‘dent’. Hav-
ing only local control is also not practical, so the
best solution seems to be a combination of both
methods.
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3.4 Class-Shape-Refinement-
Transformation method

A useful way of combining both methods is to
start with the CST/Bernstein approach and use B-
splines to further refine the shape. This method
will be referred to as the Class-Shape-Refinement-
Transformation (CSRT) method. This method con-
tains three functions: the Class Function, the Shape
Function and the Refinement Function. Symboli-
cally this is defined as:

ζ(ψ) = CN1
N2 (ψ) · S(ψ) ·R(ψ). (15)

CN1
N2 (ψ) is defined according to equation (10), S(ψ)

are the Bernstein polynomial terms and R(ψ) are
the B-spline basis functions.

3.5 CST method in three dimensions

In order for the CST method to be usable in prelim-
inary aircraft design, it must be extended to three
dimensions. In [2] the 3D version of equation (9) is
given as:

ζ(ψ, η) = CN1
N2 (ψ) · S(ψ, η), (16)

with η = 2y
b the non-dimensional semi-span station

and b the wing span. The Class Function CN1
N2 is

defined according to equation (10).

3.5.1 Bernstein polynomials as Shape Func-
tion

A Bernstein polynomials representation, like ex-
plained in section 3.3.1, can also be used in three
dimensions. In order to guarantee a smooth surface,
Bernstein polynomials are necessary in both x- and
y-direction. This leads to the following definition
of the Shape Function for the upper surface of the
airfoil:

Su(ψ) =
nx∑
i=1

ny∑
j=1

Bui,j · Sxi(ψ) · Syj(η), (17)

with

Sxi(ψ) =
(
nx
i

)
ψi(1− ψ)nx−i, (18)

and

Syj(η) =
(
ny
j

)
ηj(1− η)ny−j . (19)

Comparing equation (17) to equation (11) shows
that the coefficient vector A changed to a coef-
ficient matrix B of size nx × ny. The Bernstein
polynomials now represent a set of surfaces instead
of curves, as is illustrated in figure 7.
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Figure 7: 3D Bernstein polynomial terms for nx =
ny = 5

These surfaces again add up to one everywhere in
the domain. Because the Class Function is only
defined in the x-direction, this implies that if all
coefficients in the matrix B are equal to one, the
cross section of the surface will be the unit airfoil as
shown in figure 3 and it will be constant in spanwise
direction. This is shown in figure 8.
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Figure 8: Unit airfoil in 3D for C0.5
1.0

To show that the surface generated by this method
is always smooth, figure 9 shows the surface result-
ing from randomly selecting the coefficients of the
matrix B.
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Figure 9: Surface resulting from randomly selecting
the coefficients of B

3.5.2 Deviation from the unit airfoil

In real aircraft, a wing generally does not look like
the unit airfoil from figure 8. Hence it should be
modifiable by a tangible set of parameters. These
parameters are chosen to be chord, taper, sweep,
twist, dihedral, span and the airfoil sections. This
section explains the definition of these parameters.

The chord length (c) is the length of the root air-
foil (of a particular section) measured horizontally
along the x-axis. The taper ratio (λ) is the ratio
between the tip chord and the root chord (of the
section), again measured horizontally along the x-
axis. The taper is also applied to the thickness of
the wing, to keep the airfoil shape constant. The
sweep angle (Λ) is the angle about the z-axis be-
tween the leading edge of the wing and the y-axis.
Sweep is applied by linearly translating the wing
along the x-axis, as shown in figure 10.

Λ

Figure 10: The definition of the sweep angle

The twist angle (ε) is the angle about the y-axis

between the line joining the leading and trailing
edge and the x-axis. Twist is applied by linearly
translating the wing along the z-axis, as shown in
figure 11. In spanwise direction, the twist increases
linearly from the root twist angle (θ0) over the given
twist angle (θ).

The dihedral (Γ) is the angle about the x-axis be-
tween the wing leading edge and the y-axis. The
dihedral is applied similarly to the sweep angle,
only in (negative) z-direction. The span (s) is the
length between the section root and section tip
measured horizontally along the y-axis.

ε

Figure 11: The definition of the twist angle

Finally, the root and tip airfoils have to be specified
in terms of their Bernstein polynomial coefficients
(see section 3.3.1). An easy way to ensure a smooth
transition from the root to the tip is to assume a
linear development from the root coefficients to the
tip coefficients. It is of course possible to use any
specific transition between the two.

3.5.3 Building a BWB using the CST
method

To test the capabilities of the CST method and to
provide a basis for an optimisation, a CST model
is created of a blended-wing-body (BWB) aircraft.
The aircraft geometry that is used comes from [3].
This design was originally created for the Aerospace
Vehicle Design project at Cranfield College of Aero-
nautics in 1998, [4]. A slightly modified design has
later been used as a basic configuration for the
MOB project, [5]. For this reason the design will
from here on be referred to as the MOB aircraft.

The model will consist of different CST surfaces
that will be connected to form the MOB aircraft.
These surfaces will be defined by the parameters as
listed in the previous section.
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Figure 12: The MOB sections

In order to allow for the implementation of all the
airfoil sections specified in [3], the MOB model con-
sists of nine sections (see figure 12). Each section is
defined using two fifth order Bernstein polynomials,
one for the upper side and one for the lower side.
In order to translate the known airfoil coordinates
to the correct Bernstein coefficients, a simple opti-
misation was performed. Note that the coefficients
have been made non-dimensional by dividing them
by the local chord length of the section. All section
data is listed in tables 1 and 2.

c(m) λ(-) Λ(0) θ0(
0) θ(0) Γ(0) s(m)

sec 1 48.0 0.957 64 -1.6 0.0 4.4 1.0
sec 2 45.9 0.910 64 -1.6 0.0 4.4 2.0
sec 3 41.8 0.853 64 -1.6 0.2 4.4 3.0
sec 4 35.7 0.885 64 -1.4 0.2 4.4 2.0
sec 5 31.6 0.870 64 -1.2 0.2 4.4 2.0
sec 6 27.5 0.780 64 -1.0 0.5 4.4 3.0
sec 7 21.4 0.630 38 -0.5 0.5 4.4 4.5
sec 8 13.5 0.690 38 0.0 1.0 5.9 6.0
sec 9 9.3 0.420 38 1.0 -3.5 7.4 14.5

Table 1: MOB section data

Notice that not all these parameters are indepen-
dent. The chord length of section 2 for example
equals the chord length of section 1 multiplied by
the taper of section 1. Care has to be taken in ap-
plying these relationships to guarantee a perfectly
closed model.

B1 B2 B3 B4 B5 B6
sec 1
root
upper 0.2307 0.2916 0.1678 0.2550 0.1871 0.2080
lower 0.2143 0.1791 0.1637 0.2386 0.2126 0.2952
sec 2
root
upper 0.2421 0.2829 0.1874 0.2435 0.1918 0.2090
lower 0.2219 0.1853 0.1951 0.2020 0.2560 0.2845
sec 3
root
upper 0.2582 0.2621 0.2254 0.2143 0.2030 0.2058
lower 0.2362 0.2062 0.2141 0.2101 0.2506 0.2803
sec 4
root
upper 0.2611 0.2363 0.2557 0.1778 0.2086 0.2004
lower 0.2553 0.2140 0.2650 0.1683 0.2680 0.2531
sec 5
root
upper 0.2526 0.2193 0.2591 0.1579 0.2059 0.1937
lower 0.2521 0.2141 0.2774 0.1442 0.2614 0.2411
sec 6
root
upper 0.2355 0.1981 0.2468 0.1415 0.1949 0.1848
lower 0.2295 0.2104 0.2534 0.1349 0.2359 0.2136
sec 7
root
upper 0.1714 0.1640 0.1602 0.1342 0.1483 0.1574
lower 0.1612 0.1740 0.1548 0.1179 0.1564 0.1512
sec 8
root
upper 0.1364 0.0781 0.1412 0.1133 0.1437 0.1469
lower 0.1312 0.0972 0.0898 0.1972 0.0305 -0.0964
sec 9
root
upper 0.1210 0.0699 0.1246 0.1018 0.1270 0.1309
lower 0.1166 0.0869 0.0789 0.1763 0.0263 -0.0854
sec 9
tip
upper 0.1210 0.0699 0.1246 0.1018 0.1270 0.1309
lower 0.1166 0.0869 0.0789 0.1763 0.0263 -0.0854

Table 2: MOB Bernstein coefficients

The MOB model that follows from this input is
shown in figure 13.

Figure 13: The MOB geometry
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3.5.4 B-splines as Shape Function

As was the case for the Bernstein polynomials, B-
splines can also be applied in 3D. Equation (5) is
expanded with an extra set of basis functions. This
leads to the following parameteric equation for the
B-spline surface:

p(u,w) =
m∑
i=0

n∑
j=0

pijNi,k(u)Nj,l(w). (20)

The control points pij are now the vertices of a con-
trol polyhedron. The basis functions Ni,k(u) and
Nj,l(w) are defined in the same way as for 2D. For
k = 3, equation (20) can be expanded as follows for
the interior points of the control polyhedron:

pi,j(u) =

UMSi
PMT

Sj
WT

= 1
2

[
u2 u 1

]  1 −2 1
−2 2 0

1 1 0

 . . .
. . .

pi−1,j−1 pi−1,j pi−1,j+1

pi,j−1 pi,j pi,j+1

pi+1,j−1 pi+1,j pi+1,j+1

 . . .
. . . 1

2

 1 −2 1
−2 2 0

1 1 0

T w2

w
1

 . (21)

If i = 1 and/or j = 1 then the matrices MSi and/or
MSj

change to:

MS0 =

 1 − 3
2

1
2

−2 2 0
1 1 0

 . (22)

Similarly, if i = n − 1 and/or j = m − 1 then the
matrices MSi

and/or MSj
change to:

MSe =
1
2

 1 −3 2
−2 2 0

1 1 0

 . (23)

Now it is again possible to model the MOB aircraft
from the previous section. However, the coefficients
describing the MOB shape will be different from
those in table 2. The coefficients for a B-spline rep-
resentation of the MOB with six control points for
each B-spline are listed in table 3.

B1 B2 B3 B4 B5 B6
sec 1
root
upper 0.2503 0.2447 0.2256 0.2161 0.2074 0.2014
lower 0.2092 0.1863 0.1918 0.2159 0.2489 0.2884
sec 2
root
upper 0.2568 0.2480 0.2291 0.2170 0.2079 0.2033
lower 0.2163 0.1969 0.2003 0.2197 0.2491 0.2865
sec 3
root
upper 0.2626 0.2513 0.2328 0.2166 0.2067 0.2039
lower 0.2311 0.2158 0.2153 0.2258 0.2481 0.2807
sec 4
root
upper 0.2580 0.2461 0.2295 0.2094 0.2005 0.2019
lower 0.2478 0.2349 0.2293 0.2287 0.2392 0.2602
sec 5
root
upper 0.2467 0.2362 0.2209 0.2005 0.1928 0.1967
lower 0.2449 0.2361 0.2282 0.2203 0.2285 0.2505
sec 6
root
upper 0.2282 0.2182 0.2052 0.1866 0.1813 0.1878
lower 0.2266 0.2225 0.2129 0.2026 0.2061 0.2221
sec 7
root
upper 0.1714 0.1644 0.1549 0.1472 0.1478 0.1568
lower 0.1658 0.1639 0.1525 0.1445 0.1450 0.1546
sec 8
root
upper 0.1233 0.1097 0.1181 0.1279 0.1377 0.1485
lower 0.1233 0.1089 0.1143 0.1115 0.0341 -0.0946
sec 9
root
upper 0.1095 0.0976 0.1049 0.1137 0.1224 0.1320
lower 0.1096 0.0969 0.1016 0.0991 0.0303 -0.0840
sec 9
tip
upper 0.1095 0.0976 0.1049 0.1137 0.1224 0.1320
lower 0.1096 0.0969 0.1016 0.0991 0.0303 -0.0840

Table 3: MOB B-spline coefficients

4 Analysis

In this preliminary design stage a panel method pro-
gram called VSAERO is chosen for the aerodynamic
analysis. This section briefly explains the workings
and a validation of VSAERO.

4.1 Flow analysis

4.1.1 Laplace’s equation

Panel methods are based on Laplace’s equation for
the velocity potential:

∇2Φ = 0. (24)

The control volume to which equation (24) is ap-
plied is shown in figure 14. The boundary of the
control volume consists of three parts: the body
surface SB , the wake surface SW and the outer
boundary S∞. The potential is split into two parts:



4 ANALYSIS 10

the potential in the flow field Φ and the potential
in the inner region Φi.

S∞

n

r

SB

SW

P

Φi

Φ

V∞

Figure 14: Control volume

Applying Green’s theorem to equation (24) for both
the flow field and the inner region results in:

ΦP =
1

4π

∫∫
SB+SW +S∞

(Φ− Φi)n · ∇( 1
r )dS

− 1
4π

∫∫
SB+SW +S∞

1
rn · (∇Φ−∇Φi)dS. (25)

This expression describes the velocity potential in
any point P expressed in terms of surface integrals.
The first integral represents the local jump in po-
tential and the second integral represents the local
jump in the normal component of the velocity. In
terms of singularities, the first integral represents
the doublet distribution, while the second integral
represents the source distribution, [6].

4.1.2 Boundary conditions

The boundary condition that is chosen needs to
specify a zero normal velocity on the surface. This
can be done either directly by applying the Neu-
mann condition (∇Φ · n = 0) or indirectly by ap-
plying the Dirichlet condition (Φ specified on the
boundary). VSAERO makes use of the former.

In VSAERO the user has the possibility to specify
a certain normal velocity (Vn) to model for exam-
ple boundary layer suction. Furthermore, boundary
layer displacement (δ∗) can be modelled by assum-
ing a certain transpiration velocity. Finally, a nor-

mal velocity component due to rotation (ω) can be
specified. This changes the boundary condition to,
[7]:

∇Φ ·n = −Vn + (V∞−ω× rg) ·n +
∂

∂s
(V δ∗) (26)

4.1.3 Singularity model

Equation (25) does not have a unique solution.
There is still an infinitely large number of combina-
tions of source and doublet distributions that satisfy
the flow problem. A number of techniques are pos-
sible to find a unique combination of singularities.
It is for example possible to specify the source dis-
tribution and solve for the doublet distribution, or
vice versa. Another possibility is to apply boundary
conditions to the inner flow, either to the velocity
or the velocity potential. VSAERO specifies the ve-
locity potential of the inner flow to be equal to the
freestream velocity potential, i.e. Φi = Φ∞. An al-
ternative is to assume zero velocity potential in the
inner region, but this method is more sensitive to
bad panelling.

4.1.4 Compressibility

In the derivation of Laplace’s equation it is as-
sumed that the flow is incompressible. However,
some methods are available to approximate the ef-
fects of compressibility on the solution. The best
method available in VSAERO for external flows is
the Karman-Tsien method. This method relates
the compressible and incompressible velocities as:

V

V∞
=

( V
V∞

)inc(1− λ)

1− λ( V
V∞

)2
inc

, (27)

where

λ =
M2
∞

(1 +
√

1−M2
∞)2

. (28)

4.1.5 Viscosity

In order to model aircraft drag, viscous effects need
to be included. Since the potential flow model it-
self neglects viscosity, it needs to be coupled to a
boundary layer method. VSAERO uses a method
developed by Thwaites, later adapted by Curle.
This method, which is explained in detail in [7],
is used to calculate the displacement thickness δ∗,
which can then be substituted into equation (26).
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In the transonic regime, viscous drag is not just
caused by the displacement thickness of the bound-
ary layer. Shockwave/boundary layer interaction
effects also play an important role. VSAERO is not
capable of modelling these effects. Using a Euler
code it is possible to calculate viscous drag caused
by shock wave/boundary layer interaction, as long
as the shock wave is weak. Generally this is the
case for transonic transport aircraft.

4.2 VSAERO Validation

In order to determine whether VSAERO will pro-
vide a reliable analysis for preliminary design opti-
misation, the program is validated using reference
data available from the AGARD-AR-303 study, [8].

4.2.1 AGARD

AGARD, or Advisory Group for Aerospace Re-
search & Development, is a NATO initiative aimed
at bringing together knowledge in the fields of sci-
ence and technology relating to aerospace within its
member nations. One particular study, AGARD-
AR-303, was performed to provide the scientific
community with a selection of experimental test
cases for the validation of CFD codes. For these
tests the geometry of the DLR-F4 model was used.
The model was tested in three different wind tun-
nels (NLR-HST, ONERA-S2MA, DRA-8ft x 8ft
DRA Bedford) in order to distinguish and correct
the wind tunnel effects as much as possible.

4.2.2 DLR-F4 Model

The DLR-F4 model consists of a swept wing con-
nected to a fuselage. No wing/body fairing is used
and no tail is present. The geometry of the model
and wing can be seen in figures 15 and 16. A com-
plete geometry data set for the DLR-F4 model was
freely available online from the proceedings of the
1st AIAA CFD Drag Prediction Workshop held in
Anaheim, California in 2001. For this workshop,
the data supplied with the AGARD-AR-303 report
was used to produce a complete point by point de-
scription of the wind tunnel model.

Figure 15: Definition of the DLR-F4 wind tunnel
model

Figure 16: Definition of the DLR-F4 wing

4.2.3 Results

The model was analyzed for M = 0.75 and Re =
3 ·106. The angle of attack was varied from -6 to +4
degrees. From the output data, a lift curve and lift-
drag polar were constructed and compared to the
wind tunnel data from the AGARD-AR-303 report.
The results are shown in figures 17 and 18.
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Figure 17: Lift curve comparison between AGARD
and VSAERO
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Figure 18: Lift-drag polar comparison between
AGARD and VSAERO

Figure 17 shows the wind tunnel results (blue), the
VSAERO results (red) and the difference between
the two (green). VSAERO clearly overpredicts the
lift coefficient. The reason for this is yet unclear,
although the same phenomenon has been found for
other codes in literature, [9] and [10].

Figure 18 shows the lift-drag polars from AGARD
and VSAERO. For a lift coefficient up to about
0.7 the computational results are close to the ex-
perimental results. There is a small discrepancy
around Cl = 0.3, but overall these results are very
satisfactory, especially considering the fact that the
tests were performed at a Mach number of 0.75.
Although this is still below the drag rise Mach
number for this aircraft configuration (Mdiv ≈ 0.8),
transonic effects will likely not be negligible.

For values of the lift coefficient above 0.7 the com-
putational results for both Cl and Cd start to devi-
ate from the experimental results. This is also visi-
ble in figure 19, which depicts the lift-to-drag ratio
versus the lift coefficient. This deviation is mainly
caused by separation which is not accurately mod-
elled by VSAERO.
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Figure 19: Lift-to-drag ratio vs lift coefficient

5 Optimisation

The optimisation module of the aerodynamic ini-
tiator still needs to be developed. This work will
start in the coming months. This section will give a
short description of the optimisation methods that
are being considered. Also an example is given of
what happens to the aircraft drag when one of the
variables of the MOB aircraft is varied.

5.1 Optimisation methods

Optimisation problems can be divided into con-
tinuous, discrete and mixed continuous-discrete
problems. All of these problems are common in
preliminary aircraft design. Optimising the sweep
angle for example would be a continuous problem,
while determining the optimum amount of tail sur-
faces would be a discrete problem. Doing both
simultaneously would naturally result in a mixed
problem.

Continuous optimisation methods are generally
based on calculating the gradient of some objective
function. Most of these methods require more func-
tion evaluations as the number of design variables
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increases. An exception to this rule is the adjoint
equation method, [11]. Coupling this method to an
aerodynamic analysis means that only the deriva-
tives of the objective function with respect to the
flow variables are necessary, hence the number of
function evaluations required during the optimisa-
tion process is independent of the number of design
variables. A disadvantage of a continuous optimi-
sation method is that it is only capable of finding
a local optimum.

Discrete optimisation methods do not make use
of the gradient of a function and are often capable
of finding a global optimum. They are however
considerably less efficient than continuous meth-
ods. Some discrete methods that seem promising
are genetic algorithms, [12] and particle swarm op-
timisation, [13].

Mixed optimisation problems can be solved in many
different ways. Probably the most straightforward
way is to relax the integer values as real values
and apply a real-valued optimisation method to
the relaxed problem. The optimised real-valued
solution can then be rounded back to an integer
solution. Although simple, this method is usually
inaccurate and can even lead to infeasible solu-
tions. An interesting alternative could be the so-
called mixed-integer hybrid differential evolution
(MIHDE) method, [14]. This method makes use of
evolutionary algorithms to efficiently find a global
solution to a mixed optimisation problem.

5.2 Varying the sweep

To show that the combination of parameterisation
and analysis is capable of producing an optimum
shape, a one-dimensional example is given in this
section. The sweep angle of the outer wing of the
MOB aircraft is varied from -10 to +55 degrees,
as is shown in figures 20 and 21. Because of the
way in which the sweep is varied (see section 3.5.2)
the surface area and wing span will stay the same
and hence the reference values that are required by
VSAERO do not change.

Figure 20: MOB with an outer sweep angle of -10
degrees

Figure 21: MOB with an outer sweep angle of +55
degrees

Figure 22 shows the lift-to-drag ratio calculated by
VSAERO as a function of the sweep angle. Al-
though this example is one-dimensional and there-
fore not nearly as complex as a real design prob-
lem, it does show that the developed software is
capable of producing a clear optimum value that
would be found by any gradient based optimisation
algorithm. The calculated optimum of 35 degrees is
close to the sweep angle of the actual MOB aircraft,
which is 38 degrees.
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Figure 22: Lift-to-drag ratio as a function of the
sweep angle

6 Conclusions and recommen-
dations

This paper presented the work done so far on an
aerodynamic initiator for the Design Engineering
Engine being developed at Delft University of Tech-
nology. The Class-Shape-Transformation method
has proven to be very useful and intuitive as a pa-
rameterisation tool, especially after adding the Re-
finement Function based on b-splines. The panel
method program VSAERO is considered sufficient
for the aerodynamic analysis now, but should even-
tually be replaced by a Euler or Navier-Stokes code
for better capturing the high-speed flow character-
istics, such as shock wave/boundary layer interac-
tion. For the optimiser part of the initiator some
research has been done, but most of the actual work
still needs to be performed. This work will start
later this year.
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