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An Evaluation of Intrusive Instrumental
Intelligibility Metrics

Steven Van Kuyk, Student Member, IEEE, W. Bastiaan Kleijn, Fellow, IEEE, and Richard C.
Hendriks, Member, IEEE

Abstract—Instrumental intelligibility metrics are commonly
used as an alternative to listening tests. This paper evaluates
12 monaural intrusive intelligibility metrics: SII, HEGP, CSII,
HASPI, NCM, QSTI, STOI, ESTOI, MIKNN, SIMI, SIIB, and
sEPSMcorr. In addition, this paper investigates the ability of
intelligibility metrics to generalize to new types of distortions
and analyzes why the top performing metrics have high perfor-
mance. The intelligibility data were obtained from 11 listening
tests described in the literature. The stimuli included Dutch,
Danish, and English speech that was distorted by additive noise,
reverberation, competing talkers, pre-processing enhancement,
and post-processing enhancement. SIIB and HASPI had the
highest performance achieving a correlation with listening test
scores on average of ρ = 0.92 and ρ = 0.89, respectively. The
high performance of SIIB may, in part, be the result of SIIBs
developers having access to all the intelligibility data considered
in the evaluation. The results show that intelligibility metrics tend
to perform poorly on data sets that were not used during their
development. By modifying the original implementations of SIIB
and STOI, the advantage of reducing statistical dependencies
between input features is demonstrated. Additionally, the paper
presents a new version of SIIB called SIIBGauss, which has similar
performance to SIIB and HASPI, but takes less time to compute
by two orders of magnitude.

Index Terms—Intelligibility prediction, instrumental measures,
speech enhancement

I. INTRODUCTION

WHEN designing a speech-based communication system
it is important to understand how the system will affect

the intelligibility and quality of speech. Intelligibility is often
defined as the proportion of words correctly identified by a
listener [1], whereas speech quality refers to the pleasantness
of the speech signal [2]. Many algorithms for predicting the
intelligibility of a communication system have been proposed.
This paper summarizes existing algorithms and evaluates their
accuracy using data from formal listening tests.

In [3], Shannon proposed that any communication system
can be modelled by three components: a transmitter, a receiver,
and a channel. In the context of speech communication, the
transmitter is the vocal apparatus of the talker, the receiver
is the auditory system of the listener, and the channel is the
physical medium traversed by the speech signal. The channel
may distort the speech signal and decrease the speech signal’s
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intelligibility or quality. As an example, for telephone systems,
the speech signal is sampled, quantized, and compressed prior
to transmission. Additionally, environmental degradation such
as additive noise and reverberation may be introduced at the
far-end (i.e., at the talker) or the near-end (i.e., at the listener).

To combat environmental degradation, a variety of speech
enhancement algorithms have been proposed (see [2] for an
overview). There are two main approaches to speech enhance-
ment: 1) the speech signal can be modified prior to degradation
(e.g., optimal energy redistribution [4] and dynamic range
compression [5]), or 2) the speech signal can be modified after
degradation has been introduced (e.g., Wiener filters [6]). The
former type of algorithm is referred to as a pre-processing
algorithm and the latter as a post-processing algorithm.

A key component to the design of speech-based communi-
cation systems is an understanding of how they affect intelli-
gibility. Although formal listening tests can provide valid data,
such tests are time-consuming, laborious, and expensive. For
this reason, quantities that are fast to compute and correlated
with intelligibility are of interest. Such quantities are referred
to as instrumental intelligibility metrics.

Rather than using human subjects, instrumental intelligi-
bility metrics may rely on knowledge of the clean speech,
distorted speech, and the communication channel. There are
two types of intelligibility metrics: intrusive and non-intrusive.
Intrusive intelligibility metrics require knowledge of the clean
speech and either the channel or the distorted speech, whereas
non-intrusive intelligibility metrics require only the distorted
speech. Although non-intrusive metrics are more widely appli-
cable, they tend to be less correlated with intelligibility than
intrusive metrics [7], [8]. From here on, this paper focuses on
intrusive intelligibility metrics.

One of the first intelligibility metrics was developed during
the 1920’s and is called the articulation index (AI) [9]. The AI
is calculated by computing a weighted average of the signal-to-
noise ratio (SNR) of several frequency bands. More recently,
the AI has been refined to incorporate the results of new
experiments and is now known as the speech intelligibility
index (SII) [10].

Another intelligibility metric that was developed early on is
the speech transmission index (STI) [11]. For this intelligibility
metric, probe signals consisting of sinusoidally modulated
Gaussian noise are transmitted through the communication
system. The change in the modulation depth of the probe
signals at the receiver is then measured and converted to
an apparent SNR for each frequency band. Subsequently, the
apparent SNRs are averaged similarly to the AI and SII.
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Both the SII and STI have found widespread use by en-
gineers and audiologists. However, the SII and STI have a
number of limitations. First, both metrics are based on long-
term statistics. This means that they do not accurately account
for degradations caused by noise sources that fluctuate over
time such as competing talkers and wind [12]. Second, neither
metric can account for distortion introduced by enhancement
algorithms [13], [14].

To overcome the limitations of the SII and STI, a number of
intelligibility metrics have been proposed. Examples include
the coherence SII (CSII) [15], the extended SII (ESII) [12],
the quasi-stationary STI (QSTI) [16], the normalized covari-
ance measure (NCM) [17], [18], the temporal fine-structure
spectrum based index (TFSS) [19], the hearing-aid speech
perception index (HASPI) [20], the Christiansen-Pedersen-
Dau metric (CPD) [21], those based on the short-time objective
intelligibility measure (STOI) (e.g., [22], [23]), those based on
the speech-based envelope power spectrum model (sEPSM)
(e.g., [24], [25], [26]), and those based on the glimpse pro-
portion metric (GP) (e.g., [27], [28], [29]). Many of these
metrics have not been extensively tested on data sets other
than those used during their development. Additionally, the
above metrics are often heuristically motivated, which suggests
that they may not generalize well to new environments and
enhancement strategies.

Recently, information theory has been proposed as a theo-
retically grounded approach to model speech communication.
This is a natural direction to take given that the fundamental
goal of speech communication is to transfer information from
a talker to a listener. Information theory has been used to
design state-of-the-art speech enhancement algorithms [30],
[31] and intelligibility metrics [32], [33], [34]. Moreover, [35]
used the information bottleneck principle [36] to argue that the
structure of speech might be adapted to the coding capability
of the mammalian auditory system (see also [37]).

Motivated by the fact that many intrusive intelligibility
metrics have been recently proposed but have not been widely
evaluated, this paper presents a study on the accuracy of 12
existing monaural intrusive intelligibility metrics. To assess
the accuracy of each metric, the strength of the relationship
between intelligibility and the metric is measured. The intel-
ligibility data were obtained from 11 experiments described
in the literature. The data include Dutch, Danish, and English
speech that was degraded by additive noise, reverberation, and
competing talkers, and subjected to pre-processing enhance-
ment and post-processing enhancement.

The majority of the intelligibility metrics in this paper were
developed with Germanic languages in mind, however, the
studies in [38], [39], [40], [41] have suggested that many intel-
ligibility metrics can obtain good performance for Mandarin,
Cantonese, and Korean.

In addition to evaluating the accuracy of pre-existing intel-
ligibility metrics, this paper analyzes why the top performing
metrics have high performance. Specifically, the effect of
decorrelating input features, the effect of the auditory model,
and the effect of using different distortion measures is inves-
tigated.

Previous evaluations of intrusive intelligibility metrics exist.

For example [42], [43] evaluated the accuracy of intelligibility
metrics for noise-reduced speech, and [44] evaluated the
accuracy of intelligibility metrics for speech processed by ideal
time-frequency segregation (ITFS). Those evaluations each
considered a single type of degradation, whereas the evaluation
in this paper considers data from many real-word scenarios.

Evaluations can also be found in publications that propose
new intelligibility metrics, but in terms of the number of
intelligibility metrics and the number of data sets, the scope
of such evaluations is smaller than the present study. Two
advantages of considering a broader scope are 1) it is easier
to determine why some intelligibility metrics perform better
than others, and 2) it is possible to investigate the ability of
intelligibility metrics to generalize to new types of distortion.

The remainder of this paper is organized as followed.
Section II describes the listening test data and Section III
describes intelligibility metrics from the literature. Modified
intelligibility metrics are proposed in Section IV. Performance
criteria are described in Section V and results are presented
in Section VI. Finally, Section VII concludes the paper.

II. LISTENING TEST DATA

This paper considers the results of 11 intelligibility studies.
From these studies, 13 data sets were created. In this section,
each data set is described. Table I summarizes the data sets,
while the accompanying references provide additional details.
The naming convention for the data sets includes the first
author of the publication that describes the data set in full,
and an abbreviation that indicates the type of degradation or
processing. The order that the data sets are presented in is
such that similar data sets are grouped together.

A. JensenMOD

The first data set consists of speech degraded by noise with
strong temporal modulations. In [23] phrases from the Dantale
II corpus [51] were degraded by ten types of noise. Four of
the noise types included Track 1, 4, 6, and 7 from the ICRA
noise corpus [52]. The ICRA signals are synthetic signals
with spectral and temporal properties similar to speech. Four
of the noise types were constructed by multiplying speech-
shaped noise (SSN) (i.e., Gaussian noise with a long-term
power-spectrum that is similar to the power spectrum of clean
speech) with 1+sin(2πft+φ) where φ is uniformly distributed
between ±π, t is the sample index, and f = 2, 4, 8, or
16 Hz. The final two noise sources were machine-gun noise
and destroyers-operation-room noise from the NOISEX corpus
[53]. Six SNRs were chosen for each noise source so that
some stimuli were unintelligible and others were perfectly
intelligible. In total there are 10 noise sources × 6 SNRs =
60 conditions. Stimuli were presented to 12 normal-hearing
listeners. For each word in a given sentence, the listeners were
shown ten candidate words from which they were instructed
to select from. See [23] for more details.

B. SantosREV

The second data set consists of speech corrupted by noise
and reverberation. In [45], IEEE sentences [54] were degraded
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TABLE I
SUMMARY OF LISTENING TEST DATA SETS. m IS THE NUMBER OF LISTENERS AND n IS THE NUMBER OF LISTENING CONDITIONS.

Name Degradation Enhancement strategy Bandwidth (kHz) m n

JensenMOD [23] Modulated noise None 10.0 12 60
SantosREV [45] Noise & reverb None 8.0 10 17
KjemsAN [46] Noise None 7.7 15 40
KjemsITFS [46] Noise Ideal time-frequency segregation. 7.7 15 168
TaalPOST [22] Noise Minimum mean-squared error estimate of the

short-time spectral amplitude.
8.7 15 15

JensenPOST [47] Noise Minimum mean-squared error estimate of the
short-time spectral amplitude.

4.0 13 20

HuPOST [48] Noise Spectral subtractive, sub-space, statistical model based,
and Wiener-type algorithms.

3.5 40 72

HendriksPRE [49] Noise & reverb Optimal energy redistribution. 8.0 8 20
KleijnPRE [30] Noise Optimal energy redistribution. 8.0 9 32
CookePRE [50] Noise & competing talker Nine pre-processing enhancement algorithms. 8.0 175 60
KhademiJOINT [31] Noise MVDR beamformer, Wiener filter, & optimal energy

redistribution.
8.0 7 24

DutchMRG - JensenPOST, HendriksPRE, KleijnPRE, and
KhademiJOINT merged into a single data set.

- - -

DantaleMRG - KjemsAN, KjemsITFS, and TaalPOST merged into a
single data set.

- - -

by three types of distortion: 1) additive noise, 2) reverberation,
and 3) additive noise and reverberation. For the additive noise
distortion, SSN and babble noise at SNRs of −5, 0, 5, and 10
dB were used. For the reverberant distortion, IEEE sentences
were convolved with a room impulse response with T60 = 0.3,
0.6, 0.8, 1, and 1.4 s. For the additive noise and reverberant
distortion the sentences were convolved with room impulse
responses with T60 = 0.3 and 0.6 s and mixed with SSN
at SNRs of 5 dB and 10 dB. In total there are 8 noise + 5
reverberant + 4 noise and reverberant = 17 conditions. Stimuli
were presented to ten normal-hearing listeners. The listeners
were instructed to transcribe sentences without any additional
information and the proportion of correctly identified words
was recorded. See [45] for more details.

Originally, the distorted stimuli in SantosREV were offset
in time from the clean stimuli. However, time-alignment is
a requirement for many intrusive intelligibility metrics. For
this paper, the signals in SantosREV were aligned by finding
the time-offset that maximised the cross-correlation of the
clean and distorted stimuli. This resulted in significantly higher
performance scores than those reported in [45].

C. KjemsAN

The third data set consists of speech degraded by additive
noise. In [46] phrases from the Dantale II corpus [51] were
degraded by four types of noise: SSN, cafeteria noise, noise
from a bottling factory hall, and car interior noise. The stimuli
were presented to 15 normal-hearing listeners. The listeners
were instructed to transcribe sentences without any additional
information and the proportion of correctly identified words
was recorded. Based on the listening test results, Kjems et al.
derived psychometric curves that relate intelligibility to SNR
for each noise type.

For this paper, KjemsAN was created by adding the noise
signals to the clean Dantale II sentences at ten SNRs. The
SNRs were selected by sampling the psychometric curves at

intervals of 10% intelligibility from 10% to 100%. In total
there are 4 noise types × 10 SNRs = 40 conditions.

D. KjemsITFS

The fourth data set consists of speech subjected to ideal
time-frequency segregation processing (ITFS) [55]. ITFS pro-
cessing aims to eliminate the energy of a speech signal at
particular time-frequency locations by multiplying the short-
time Fourier transform of the speech signal with a binary gain
function. Similarly to KjemsAN, the listening experiment was
conducted by Kjems et al., used phrases from the Dantale II
corpus [51], involved 15 normal-hearing listeners, and used
the same four types of noise. For each noise type, the noisy
phrases were processed by two types of ITFS called an ideal
binary mask and a target binary mask. Three SNRs were
used (−60 dB, and SNRs corresponding to 20% and 50%
intelligibility) and eight variants of each ITFS algorithm were
considered. In total there are 168 conditions. See [46] for more
details.

E. TaalPOST

The fifth data set consists of speech subjected to post-
processing enhancement. In [22] phrases from the Dantale
II corpus were degraded by SSN at SNRs of 8.9, 7.7, 6.5,
5.2, and 3.1 dB. The MMSE-STSA enhancement algorithm
[56] and an improved version [57] were applied to the noisy
phrases. In total there are 5 SNRs × (2 algorithms + 1
unprocessed) = 15 conditions. Stimuli were presented to
15 normal-hearing listeners. The listeners were instructed to
transcribe sentences without any additional information, and
the proportion of correctly identified words was recorded.

F. JensenPOST

The sixth data set consists of speech subjected to post-
processing enhancement. In [47] phrases from the Dutch
version of the Hagerman test [58] were degraded by SSN



ACCEPTED FOR PUBLICATION IN IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, DOI: 10.1109/TASLP.2018.2856374 4

at SNRs of −8, −6, −4, −2, and 0 dB and processed by
three enhancement algorithms. The three algorithms compute
a minimum mean-squared error estimate of the clean speech
by multiplying the short-time spectral amplitude of the noisy
speech with a gain function. In total there are 5 SNRs × (3
algorithms + 1 unprocessed) = 20 conditions. Stimuli were
presented to 13 normal-hearing listeners. For each word in a
given sentence, the listeners were shown ten candidate words
from which they were instructed to select from.

G. HuPOST

The seventh data set consists of speech subjected to post-
processing enhancement. In [48] IEEE sentences [54] were
filtered by a simulated telephone channel, degraded by four
noise types: babble, car, street, and train, at SNRs of 0 and 5
dB, and processed by eight enhancement algorithms encom-
passing spectral subtractive, sub-space, statistical model based
and Wiener-type algorithms. In total there are 4 noise types
× 2 SNRs × (8 algorithms + 1 unprocessed)= 72 conditions.
Stimuli were presented to 40 normal-hearing listeners where
ten listeners were used for each of the four noise types.
The listeners were instructed to transcribe sentences without
any additional information and the proportion of correctly
identified words was recorded. See [48] for more details.

H. HendriksPRE

The eighth data set consists of speech subjected to pre-
processing enhancement and degraded by reverberation and
noise. In [49] phrases from the Dutch version of the Hagerman
test [58] were processed by four enhancement algorithms,
convolved with a room impulse response with a T60 time
of 1 s, and then degraded by SSN at SNRs of −2, 0, 2,
and 4 dB. Three of the enhancement algorithms optimally
redistribute the energy of the clean speech according to a
distortion criterion. The fourth algorithm uses steady-state
suppression to reduce degradation caused by reverberation. In
total there are 4 SNRs × (4 algorithms + 1 unprocessed) =
20 conditions. Stimuli were presented to eight normal-hearing
listeners. For each word in a given sentence, the listeners were
shown ten candidate words from which they were instructed
to select from. See [49] for more details.

I. KleijnPRE

The ninth data set consists of speech subjected to pre-
processing enhancement and degraded by noise. In [30]
phrases from the Dutch version of the Hagerman test [58] were
subjected to three pre-processing enhancement algorithms and
then degraded either by SSN at SNRs of −15,−12,−9, and
−6 dB, or car noise at SNRs of −23,−20,−17, and −14 dB.
The three enhancement algorithms optimally redistribute the
energy of the clean speech according to a distortion criterion.
In total there are 2 noise types × 4 SNRs × (3 algorithms + 1
unprocessed) = 32 conditions. Stimuli were presented to nine
normal-hearing listeners. For each word in a given sentence,
the listeners were shown ten candidate words from which they
were instructed to select from. See [30] for more details.

J. CookePRE

The tenth data set consists of speech subjected to pre-
processing enhancement and degraded by noise. In [50] IEEE
sentences [54] were processed by 19 pre-processing enhance-
ment algorithms and degraded either by SSN at SNRs of 1,
−4, and −9 dB, or by speech from a competing talker at
SNRs of −7, −14, and −21 dB. Stimuli were presented to
175 normal-hearing listeners. The listeners were instructed to
transcribe sentences without any additional information and
the proportion of correctly identified words was recorded.
Short words (e.g., a, the, in, to) were not scored.

For this paper, a subset of the data in [50] was considered
because the entire data set was not available. Ten of the IEEE
sentences for each condition and nine of the enhancement
algorithms were used. The algorithms are referred to in
[50] as AdaptDRC, F0-shift, IWFEMD, on/offset, OptimalSII,
RESSYSMOD, SBM, SEO, and SSS. In total there are 2 noise
sources × 3 SNRs × (9 algorithms + 1 unprocessed) = 60
conditions.

K. KhademiJOINT

The eleventh data set consists of speech that has been jointly
processed by far-end and near-end enhancement algorithms.
In [31], four enhancement strategies were considered, all of
which used an MVDR beamformer at the far-end. The first
strategy used no near-end enhancement, the second used blind
optimal energy redistribution at the near-end, the third used
blind optimal energy redistribution at the near-end and an ad-
ditional Wiener filter at the far-end, and the fourth used jointly
optimal energy redistribution at the near-end. Three near-end
SNRs (−7.5, 0, and 5 dB) and two far-end SNRs (−10 and 2.5
dB) were used. In total there are 4 enhancement strategies ×
3 near-end SNRs × 2 far-end SNRs = 24 conditions. For each
condition phrases from the Dutch version of the Hagerman
test [58] were presented to seven normal-hearing listeners. For
each word in a given sentence, the listeners were shown ten
candidate words from which they were instructed to select
from. See [31] for more details.

L. DutchMRG

The twelfth data set was created by merging JensenPOST,
HendriksPRE, KleijnPRE, and KhademiJOINT. It is reason-
able to merge these data sets because the associated listening
tests all used phrases from the Dutch version of the Hagerman
test [58] and were conducted using the same procedures by
the Circuits and Systems Group at Delft University of Tech-
nology. Note, that the number of subjects differed for the four
experiments. DutchMRG was included in the evaluation to test
if the intelligibility metrics give consistent measurements for
different enhancement strategies.

M. DantaleMRG

The thirteenth data set was created by merging KjemsAN,
KjemsITFS, and TaalPOST. It is reasonable to merge these
data sets because the associated listening tests all used phrases
from the Dantale II corpus. To prevent KjemsITFS from



ACCEPTED FOR PUBLICATION IN IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, DOI: 10.1109/TASLP.2018.2856374 5

dominating the other data sets, 60 out of the 168 conditions
from KjemsITFS were randomly selected, and all of the
conditions for KjemsAN and TaalPOST were selected. Note
that the listening tests were conducted by different laboratory
groups. Similarly to DutchMRG, this data set was included to
test if the intelligibility metrics give consistent measurements
for different enhancement strategies. JensenMOD also used
the Dantale II corpus, but was not included in DantaleMRG
because the listening test for JensenMOD presented listeners
with ten candidate words to select from, whereas the listening
tests for KjemsAN, KjemsITFS, and TaalPOST did not.

III. PRE-EXISTING INTELLIGIBILITY METRICS

Over the past decade a large number of intrusive intelligi-
bility metrics have been proposed. In this section, 12 metrics
from the literature, which are considered in this evaluation, are
summarized. An overview of the metrics can be found in Table
II. See the accompanying references for more detailed descrip-
tions. Unless stated otherwise, all parameters were selected
according to those recommended in the original publications.

A. Speech Intelligibility Index

The speech intelligibility index (SII) [10] is based on the
idea that intelligibility is related to audibility. To compute the
SII, a bandpass filterbank is applied to the clean speech and
the noise signal, and a weighted average of the long-term SNR
of each frequency band is calculated. The weights define a
band-importance function (BIF) that characterizes the relative
importance of each frequency band. Prior to averaging, the
SNR is clipped to be between ± 15 dB and normalized to be
between 0 and 1. This reflects the idea that below −15 dB the
speech signal is inaudible and above 15 dB the intelligibility is
at its maximum. The SII is known to perform well for speech
degraded by stationary additive noise, but poorly for speech
degraded by modulated noise sources [12].

In this paper, the SII was only evaluated using JensenMOD,
KjemsAN, and CookePRE. For the remaining data sets, either
the noise signal was not available, or noise was not the
main cause of distortion. The implementation of the SII was
obtained from the Acoustical Society of America (http://sii.to)
and used the 1/3 octave band procedure with the BIF tabulated
in Table 3 of [10].

B. High-Energy Glimpse Proportion Metric

The glimpse proportion metric (GP) is the initial stage
of the glimpsing model of speech perception [27] and has
been used as an intelligibility metric in various studies (e.g.,
[28], [29]). The GP is defined as the proportion of spectro-
temporal regions where the clean speech has energy greater
than the noise signal by a pre-defined threshold. The GP
shares similarities with the SII in that both metrics assume
that audibility is the determining factor of intelligibility. The
difference is that the SII averages the long-term SNR of each
frequency band, whereas the GP is the proportion of short-time
frequency-local SNRs above a threshold.

TABLE II
PRE-EXISTING INTELLIGIBILITY METRICS CONSIDERED IN THIS STUDY.

Abbreviation Description

SII The speech intelligibility index [10].
HEGP The high-energy glimpse proportion metric [29].
CSII-MID The mid-level coherence SII [15].
HASPI The hearing-aid speech perception index [20].
NCM-BIF The normalized covariance measure with

signal-dependent band-importance functions [42].
QSTI The quasi-stationary speech transmission index [16].
STOI The short-time objective intelligibility measure [22].
ESTOI The extended STOI measure [23].
MIKNN The k-nearest neighbour mutual information

intelligibility measure [32].
SIMI Speech intelligibility prediction based on a mutual

information lower bound [33].
SIIB Speech intelligibility in bits [34].
sEPSMcorr The speech-based envelope power spectrum model

with short-time correlation [26].

In [29] a variation of the GP called the high-energy GP
(HEGP) was shown to be more highly correlated with intel-
ligibility than the original GP. The main difference between
the metrics is that HEGP only uses spectro-temporal regions
where the noisy speech has above average energy. Similarly to
the SII, HEGP can only quantify distortion caused by additive
noise signals. For this reason, HEGP was evaluated using
KjemsAN, JensenMOD, and CookePRE only.

The implementation of HEGP used in this paper was
obtained from its developers. Note that CookePRE is a subset
of a data set that was used during the development of HEGP.

C. Coherence Speech Intelligibility Index

The coherence speech intelligibility index (CSII) [15] is
based on the SII, but replaces the SNR of each frequency band
with a signal-to-distortion ratio (SDR). The SDR is estimated
from the coherence function [59] of the clean and distorted
speech signal. For the case of speech degraded by additive
noise, the SDR and SNR are equivalent, making the CSII a
generalization of the SII that can be applied to a wider range
of distortions. In [15] it was found that the performance of the
CSII could be improved by calculating the CSII separately for
low, mid, and high-energy speech segments.

The implementation of the CSII used in this paper was
obtained from [2] and is described in [42], where it is referred
to as CSIImid. Note that the implementation in [2] differs to
that originally proposed in [15] in that [2] averages the CSII
over short-time segments. For this paper, the implementation
in [2] was modified to make it more similar to that originally
proposed (i.e., it does not use short-time segments) because we
found that the original method had higher overall performance.
In this paper the algorithm is referred to as CSII-MID.

D. Hearing-Aid Speech Perception Index

The hearing-aid speech perception index (HASPI) [20]
is based on an elaborate auditory model where the shape
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and bandwidth of the cochlear filters depend on the speech
signal intensity and the outer hair-cell damage of the listener.
Dynamic range compression is applied to the output of each
cochlear filter in accordance with physiological measurements
of compression in the cochlea and psychophysical estimates of
compression in the human ear. Additionally, a time-alignment
stage is included. The auditory model has two outputs: a
sequence of short-time log-spectra, and a basilar membrane
vibration signal for each frequency band.

From the outputs of the auditory model the cepstral cor-
relation and auditory coherence are computed. To compute
cepstral correlation, the log-spectra are converted to an approx-
imation of Mel-frequency cepstral coefficients [60] by taking
the inner product between the log-spectra and a set of cosine
functions. Pearson’s correlation coefficient between the cepstra
of the clean and distorted speech is then computed for each
cepstral dimension and the resulting coefficients are averaged.

The auditory coherence is computed by splitting the basilar
membrane vibration signals into three sets that contain low,
mid, and high-energy segments. For each set and each fre-
quency band, short-time correlation coefficients between the
clean vibration signals and the distorted vibration signals are
computed and then averaged over the time dimension and the
frequency dimension. This results in three auditory coherence
terms corresponding to low, mid, and high energy segments.

HASPI is computed as a linear combination of the cepstral
correlation and the three auditory coherence terms. The rela-
tive importance of each term depends on the type of distortion
and thus is fitted to the intelligibility data. In this paper the
weights of the cepstral correlation and auditory coherence
terms were computed for each data set such that the mean
squared error between the predicted and measured intelli-
gibility scores was minimized. However, it was found that
similar performance could be obtained simply by summing
the cepstral correlation and high-energy auditory coherence.
The implementation of HASPI used in this paper was obtained
from its developers.

E. Normalized Covariance Measure

The normalized covariance measure (NCM) [17], [18] is a
variant of the STI that uses clean speech as the probe signal.
To compute the NCM, a band-pass filterbank is applied to the
clean and distorted speech signals, and the temporal envelope
of the output of each filter is extracted. Subsequently, the
normalized covariance (i.e., Pearson’s correlation coefficient)
between the clean and distorted envelopes is calculated and
converted to an apparent SNR for each frequency band.
Similarly to the SII, the apparent SNR is clipped before a
weighted average over the frequency bands is computed.

In [42] it was found that the NCM is strongly correlated
with intelligibility for speech subjected to post-processing en-
hancement. The correlation was particularly strong when new
signal dependent BIFs were used. The implementation of the
NCM used in this paper was obtained from [2] and is described
in [42] where it is referred to as NCM W

(1)
i , p = 1.5. In

this paper the algorithm is referred to as NCM-BIF. Note that
HuPOST was used during the development of NCM-BIF.

F. Quasi-Stationary Speech Transmission Index

The quasi-stationary speech transmission index (QSTI) was
proposed in [16]. The QSTI is a variation of the STI that uses
clean speech as the probe signal and averages the score over
short-time segments. In [16] the QSTI was reported to be more
strongly correlated with intelligibility than the traditional STI.

The implementation of the QSTI used in this paper was
obtained from its developers webpage. Note that HuPOST,
TaalPOST, and KjemsITFS were used during the development
of QSTI.

G. Short-Time Objective Intelligibility Measure

The short-time objective intelligibility measure (STOI) was
proposed in [22] as an algorithm for predicting the intelligi-
bility of time-frequency weighted noisy speech. To compute
STOI, a simple model of the human auditory system is used
to extract temporal envelopes of the clean speech and the
distorted speech for various frequency bands. The temporal
envelopes are segmented into short-time frames with a dura-
tion of 386 ms and a clipping procedure is used to ensure
that the SDR of each frame is greater than −15 dB. STOI
is calculated by computing Pearson’s correlation coefficient
between the clean and distorted envelopes for each short-time
frame and each frequency band and then taking the mean.

The implementation of STOI used in this paper was ob-
tained from its developer’s webpage. Note that TaalPOST and
KjemsITFS were used during the development of STOI.

H. Extended Short-Time Objective Intelligibility Measure

The extended short-time objective intelligibility measure
(ESTOI) was proposed in [23] to address the finding that STOI
performs poorly for modulated noise sources (e.g., Gaussian
noise that is amplitude modulated by a sinusoid). Rather
than computing the correlation of the clean and distorted
envelopes for short-time segments, ESTOI computes the cor-
relation between clean and distorted spectra so that ‘glimpses
of clean speech’ can be detected. Additionally, the clipping
procedure in STOI was removed to make the new model more
mathematically tractable.

The implementation of ESTOI used in this paper was
obtained from its developer’s webpage. Note that JensenPOST,
JensenMOD, KjemsITFS, and a data set similar to KjemsAN
were used during the development of ESTOI.

I. K-Nearest Neighbour Mutual Information Intelligibility
Measure

The k-nearest neighbour (KNN) mutual information in-
telligibility measure (MIKNN) was proposed in [32] while
investigating the use of information theoretical techniques for
intelligibility prediction. MIKNN uses the same representation
of speech as STOI, however, rather than using the short-
time correlation coefficient to quantify distortion, MIKNN
estimates the mutual information between the clean and dis-
torted temporal envelopes using a non-parametric estimator
based on k-nearest neighbours [61]. One advantage of mutual
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information is that unlike Pearson’s correlation coefficient,
mutual information can account for non-linear dependencies.

The implementation of MIKNN used in this paper was
obtained from its developer’s webpage. Note that TaalPOST
and KjemsITFS were used during the development of MIKNN.

J. Speech Intelligibility Prediction Based on Mutual Informa-
tion

Similarly to MIKNN, the speech intelligibility prediction
based on mutual information measure (SIMI) [33] is based on
the hypothesis that intelligibility is related to the mutual in-
formation between the clean and distorted temporal envelopes.
In contrast to MIKNN, SIMI estimates a lower bound on the
mutual information by assuming a parametric statistical model.
Another important difference between SIMI and MIKNN is
that SIMI operates on short-time segments of 250 ms, whereas
MIKNN uses whole utterances. In [33] SIMI was used to
justify some of the heuristic design decisions of STOI.

The implementation of SIMI used in this paper was obtained
from its developer’s webpage. Note that JensenPOST, Kjem-
sITFS, and a data set similar to KjemsAN were used during
the development of SIMI.

K. Speech Intelligibility in Bits

Speech intelligibility in bits (SIIB) is an information theo-
retic intelligibility metric that was recently proposed in [34].
Similar to MIKNN, a non-parametric mutual information esti-
mator [61] is used to estimate the information shared between
a clean and distorted speech signal.

There are three main differences between SIIB and MIKNN.
First, SIIB uses the Karhunen-Loève transform (KLT) [62]
to reduce statistical dependencies between spectro-temporal
regions, and thus reduces overestimation of the information
rate.

Second, SIIB accounts for ‘production noise’, which in-
corporates differences in pronunciation between talkers. Im-
portantly, production noise causes the information rate of the
communication channel to saturate [30].

Third, SIIB uses an auditory model that more accurately
accounts for the frequency masking [63] and temporal masking
[64] of the human auditory system. To account for fre-
quency masking, the temporal envelopes are extracted using an
equivalent rectangular bandwidth (ERB) gammatone filterbank
[65]. To account for temporal masking, the forward masking
function suggested in [66] is used. Additionally, logarithmic
compression is applied to the envelopes.

The end result of SIIB is an estimate of the information
shared between a talker and a listener in bits per second. Note
that all of the data sets considered in this paper were used
during the development of SIIB.

L. Speech-Based Envelope Power Spectrum Model with Short-
Time Correlation

The speech-based envelope power spectrum model forms
the basis of three intelligibility metrics: sEPSM [24], mr-
sEPSM [25], and sEPSMcorr [26]. All of the sEPSM metrics

use the Hilbert transform and a gammatone filterbank to
extract temporal envelopes for different frequency bands. A
second bandpass filterbank called a modulation filterbank is
then applied to each envelope signal. This results in a multi-
dimensional representation that includes a time, frequency, and
modulation dimension. Within this multi-dimensional domain,
sEPSM and mr-sEPSM quantify distortion using a SNR met-
ric, whereas sEPSMcorr quantifies distortion using short-time
correlation coefficients similarly to STOI. In this paper only
the most recent metric is considered: sEPSMcorr.

Note that the output of sEPSMcorr increases as the duration
of the stimulus increases. This is a consequence of the ‘multi-
ple looks’ strategy that sEPSMcorr uses to integrate information
over the time dimension. For this reason, when comparing
results from multiple data sets (i.e., for the merged data sets),
it is important that the duration of the stimuli is held constant.
In this paper, when evaluating sEPSMcorr, all stimuli were
truncated to have a duration of 20 seconds.

The implementation of sEPSMcorr used in this paper was
obtained from its developers. Note that KjemsITFS was used
during the development of sEPSMcorr.

IV. MODIFIED INTELLIGIBILITY METRICS

One of the goals of this paper is to investigate why some
intelligibility metrics have higher performance than others. In
this section we modify existing intelligibility metrics so that
effective strategies can be identified.

A. Investigating the effect of decorrelating input features

The majority of the intelligibility metrics in the previous
section quantify distortion by comparing time and/or fre-
quency local features. SIIB and HASPI are exceptions to this.
SIIB decorrelates log-spectra over the time and frequency
dimension using the KLT, and HASPI decorrelates log-spectra
over the frequency dimension using a cosine expansion similar
to the type-1 discrete cosine transform (DCT) [67]. Recall that
for stationary signals the DCT asymptotically approximates
the KLT.

To investigate the effect of decorrelating input features, SIIB
and STOI were modified to produce two intelligibility metrics
denoted SIIBnoKLT and STOIKLT. To compute SIIBnoKLT, the
implementation of SIIB described in [34] was used, but the
KLT was not applied. To compute STOIKLT three changes are
made to the original STOI implementation [22]:

1) Instead of using temporal envelopes to represent speech
signals, log-temporal envelopes are used. To prevent
singularities, a small amount of uniformly distributed
noise is added to the envelopes before applying the
logarithm.

2) The KLT is used to decorrelate the log-temporal en-
velopes over the frequency dimension. To do so, the
eigenvectors of the covariance matrix of the clean log-
temporal envelopes are computed.

3) Short-time correlation coefficients for the eigenchannels
are computed and then averaged to produce a final value.
The short-time segmentation approach in [22] is used,
but the clipping procedure is not.
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By comparing the performance of STOI with STOIKLT, and
SIIB with SIIBnoKLT the effect of decorrelating input features
can be investigated.

B. Investigating the effect of the auditory model
The auditory model that is used to extract features could

have a significant impact on performance. To investigate this
effect, the auditory model used for STOIKLT (i.e., STOIs
auditory model) was replaced with the auditory model used
by SIIB. The differences between the auditory models are: 1)
SIIB uses an ERB gammatone filterbank, whereas STOI uses
a 1/3 octave band rectangular filterbank, 2) SIIB considers
frequencies up to 8 kHz, whereas STOI considers frequencies
up to 5 kHz, and 3) SIIB includes a forward temporal masking
function, whereas STOI does not. The resulting intelligibility
metric is denoted STOIKLT

gamma.

C. Investigating the effect of mutual information estimation
The majority of the intelligibility metrics in the previous

section rely on the correlation coefficient to quantify dis-
tortion. On the other hand, SIIB and MIKNN use a non-
parametric mutual information estimator. Recall that if the
clean and degraded signals are jointly Gaussian, then the
mutual information is a function of the correlation coefficient
only. In [33] this observation was used to justify the use
of the correlation coefficient. However, a direct comparison
between the performance obtained using a non-parametric
mutual information estimator and the performance obtained
using the capacity of a Gaussian channel has not been made.

To investigate the effect of mutual information estima-
tion, SIIB was modified to produce a simpler metric called
SIIBGauss. The original SIIB algorithm [34] quantifies dis-
tortion using a KNN mutual information estimator, whereas
SIIBGauss uses the information capacity of a Gaussian channel.
Concretely,

SIIBGauss = − F

2K

∑
j

log2(1− r2ρ2j ), (1)

where F is the frame rate, K = 15 is the number of stacked
log-spectra, r = 0.75 is the production noise correlation coef-
ficient, j is the eigenchannel index, and ρj is the correlation
coefficient between the jth clean eigenchannel and the jth
distorted eigenchannel. The values for F , K and r are the
same as those in [34].

V. PERFORMANCE CRITERIA

The key requirement of an intelligibility metric is that it has
a strong monotonic increasing relationship with intelligibility.
This paper uses two performance criteria to quantify the
strength of the relationship: Kendall’s tau coefficient, τ , and
Pearson’s correlation coefficient, ρ. Both performance criteria
are discussed below.

In the following, pc is the intelligibility in terms of percent-
age of words correctly identified for condition c in a particular
data set and d(xc, yc) is the corresponding score computed
by an intelligibility metric. The clean signal xc is formed by
concatenating all available clean sentences for condition c and
likewise for the distorted signal yc.

A. Kendall’s Tau Coefficient

Kendall’s tau coefficient [68], τ , measures the ordinal
association between two quantities and ranges between −1
and 1. If τ = −1 then pc and d(xc, yc) have a monotonic
decreasing relationship, if τ = 1 they have a monotonic
increasing relationship, and if they are statistically independent
then τ = 0.

B. Pearson’s Correlation Coefficient

Pearson’s correlation coefficient, ρ, is defined as the normal-
ized covariance between two quantities. To use ρ effectively,
the relationship between the quantities must be linear. For
this reason, a monotonic function f is applied to d(xc, yc)
to linearize the relationship before computing ρ. The function
f can be thought of as a mapping from the metric to predicted
intelligibility scores, but more generally it is simply a tool for
quantifying the strength of the relationship between d(xc, yc)
and pc.

In the literature f is commonly assumed to be a logistic
function, e.g., [69], [15], [22]:

f(d(xc, yc)) =
100

1 + ea(d(xc,yc)−b)
, (2)

where b is the midpoint and a is the slope at the midpoint.
These parameters are fitted to the data to minimize the mean
squared error between pc and f(d(xc, yc)).

In the literature ρ is sometimes also computed without
applying a mapping function. However, we believe that such
a measure is misleading because without f , a metric with a
strong non-linear relationship between pc and d(xc, yc) will
have a small value for ρ, but could also have a monotonic
increasing relationship with intelligibility.

Note that pc depends on the experimental procedures used
to measure intelligibility, but that d(xc, yc) does not. For
example, the intelligibility of a given stimulus can be increased
by changing an open listening test to a closed listening test1.
It follows that the relationships between intelligibility and
intelligibility metrics also depend on experimental procedures.
For this reason, f is fit individually to each data set. Finally,
negative values of ρ and τ are set to zero.

VI. RESULTS

Scatter plots for all data sets described in Section II and
all pre-existing intelligibility metrics described in Section III
are displayed in Figure 1. Each row of plots corresponds
to a data set and each column of plots corresponds to an
intelligibility metric. The vertical axis of each scatter plot
is the ’ground-truth’ intelligibility in terms of the percentage
of words correctly identified during listening tests, and the
horizontal axis is the score computed by an intelligibility
metric. To facilitate an easy visual comparison, the horizontal
axis of each scatter plot is normalized to be between 0 and
1. Each point on a scatter plot corresponds to a condition
in the respective data set. The function in (2) that was used

1In a closed listening test, subjects are given a list of possible speech sounds,
e.g., phones or words, and are asked to identify the sounds that they heard. In
an open listening test, no list is provided, which makes the test more difficult.
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Fig. 1. Scatter plots for all data sets and pre-existing intelligibility metrics. The vertical axis is the ’ground-truth’ intelligibility in terms of the percentage
of words correctly identified during listening tests, and the horizontal axis is the score computed by an intelligibility metric. The horizontal axis of each plot
has been normalized to be between 0 and 1. Each data point corresponds to a processing condition. The mapping function in (2) is also shown.

to linearize the relationship between the intelligibility scores
and the metric for each data set is also shown. For an ideal
intelligibility metric, all points would fall exactly on top of
the fitted curve.

The labels ‘icra’, ‘sin’, ‘noisex’, ‘noise’, ’reverb’, ‘both’,
‘ssn’, ‘cafe’, ‘car’, ‘bottles’, ‘talk’, and ‘ssn’ in Figure 1
indicate the type of environmental degradation in the data set.
The labels ‘pro’ and ‘un’ indicate whether a stimulus was
processed by an enhancement algorithm or was unprocessed.
The labels ‘jensen’, ‘hend’, ‘kleijn’, ‘khad’, ‘itfs’, ‘an’, and
‘post’ refer to individual data sets within the merged data sets.

Table III displays Kendall’s tau coefficient for all data sets

and intelligibility metrics and, similarly, Table IV displays
Pearson’s correlation coefficient. In both tables, an asterisk
is used to indicate when a data set was used during the
development of an intelligibility metric. For the remainder of
the paper, ’unseen’ refers to a data set that was not used during
development, and ’seen’ refers to a data set that was used
during development. The mean performance of each intelligi-
bility metric and a confidence interval, [CIlow, CIhigh], with
95% coverage of the mean performance is also included. The
confidence intervals were calculated using the non-parametric
BCa bootstrap approach [70]. To do so, 5000 bootstrap sample
sequences of pc and d(xc, yc) were generated for each data set
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TABLE III
PERFORMANCE IN TERMS OF KENDALL’S TAU COEFFICIENT, τ , FOR ALL DATA SETS AND INTELLIGIBILITY METRICS. THE INTELLIGIBILITY METRICS

ARE LISTED IN ORDER OF MEAN PERFORMANCE AND ARE GROUPED BY PRE-EXISTING METRICS (LEFT) AND MODIFIED METRICS (RIGHT).
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JensenMOD 0.52 0.71 0.41 0.34 0.57 0.55 0.34 0.51 0.38 0.75∗ 0.75 0.74∗ 0.59 0.72 0.71 0.74

SantosREV − − 0.38 0.61 0.57 0.70 0.72 0.72 0.82 0.79 0.85 0.82∗ 0.82 0.79 0.79 0.80

KjemsAN 0.76 0.75 0.65 0.78 0.80 0.65 0.81∗ 0.74 0.81 0.74∗ 0.79 0.82∗ 0.74 0.74 0.76 0.84

KjemsITFS − − 0.48 0.51∗ 0.41 0.71∗ 0.80∗ 0.70∗ 0.82∗ 0.81∗ 0.66 0.73∗ 0.69 0.73 0.74 0.73

TaalPOST − − 0.85 0.87∗ 0.81 0.83∗ 0.81 0.79 0.92∗ 0.96 0.83 0.87∗ 0.87 0.79 0.79 0.87

JensenPOST − − 0.81 0.80 0.60 0.68 0.92∗ 0.66 0.89 0.83∗ 0.95 0.92∗ 0.65 0.82 0.82 0.94

HuPOST − − 0.67∗ 0.68∗ 0.63 0.64 0.55 0.44 0.59 0.69 0.61 0.74∗ 0.39 0.72 0.70 0.73

HendriksPRE − − 0.30 0.00 0.69 0.56 0.52 0.59 0.26 0.43 0.78 0.66∗ 0.72 0.53 0.62 0.60

KleijnPRE − − 0.13 0.20 0.86 0.71 0.57 0.88 0.70 0.58 0.79 0.86∗ 0.77 0.78 0.88 0.86

CookePRE 0.44 0.72∗ 0.38 0.38 0.46 0.72 0.52 0.71 0.56 0.77 0.75 0.76∗ 0.71 0.87 0.84 0.77

KhademiJOINT − − 0.50 0.51 0.71 0.53 0.74 0.60 0.79 0.80 0.77 0.89∗ 0.90 0.82 0.87 0.90

DutchMRG − − 0.13 0.29 0.57 0.54 0.44 0.68 0.59 0.46 0.64 0.75∗ 0.58 0.54 0.67 0.74

DantaleMRG − − 0.54 0.64 0.53 0.61 0.80 0.66 0.83 0.75 0.67 0.68∗ 0.58 0.70 0.73 0.71

Mean 0.57 0.73 0.48 0.51 0.63 0.65 0.66 0.67 0.69 0.72 0.76 0.79 0.69 0.73 0.76 0.79

CIlow 0.50 0.68 0.43 0.46 0.59 0.61 0.61 0.63 0.65 0.68 0.72 0.75 0.66 0.70 0.73 0.76

CIhigh 0.64 0.77 0.52 0.55 0.67 0.69 0.69 0.70 0.73 0.75 0.78 0.81 0.72 0.76 0.79 0.81

TABLE IV
PERFORMANCE IN TERMS OF PEARSON’S CORRELATION COEFFICIENT, ρ, FOR ALL DATA SETS AND INTELLIGIBILITY METRICS. THE INTELLIGIBILITY
METRICS ARE LISTED IN ORDER OF MEAN PERFORMANCE AND ARE GROUPED BY PRE-EXISTING METRICS (LEFT) AND MODIFIED METRICS (RIGHT).
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JensenMOD 0.65 0.88 0.45 0.43 0.65 0.72 0.51 0.68 0.47 0.92∗ 0.92 0.89∗ 0.78 0.90 0.88 0.89

SantosREV − − 0.46 0.76 0.72 0.90 0.94 0.87 0.94 0.91 0.97 0.93∗ 0.98 0.93 0.95 0.93

KjemsAN 0.89 0.89 0.80 0.90 0.92 0.78 0.93∗ 0.87 0.93 0.87∗ 0.93 0.94∗ 0.88 0.88 0.89 0.94

KjemsITFS − − 0.67 0.72∗ 0.49 0.88∗ 0.95∗ 0.84∗ 0.96∗ 0.95∗ 0.78 0.89∗ 0.83 0.89 0.91 0.89

TaalPOST − − 0.95 0.95∗ 0.93 0.95∗ 0.92 0.90 0.98∗ 0.97 0.95 0.96∗ 0.96 0.92 0.92 0.96

JensenPOST − − 0.95 0.93 0.78 0.86 0.97∗ 0.80 0.99 0.97∗ 0.99 0.98∗ 0.77 0.95 0.96 0.98

HuPOST − − 0.89∗ 0.89∗ 0.89 0.88 0.77 0.73 0.87 0.90 0.88 0.92∗ 0.65 0.91 0.92 0.92

HendriksPRE − − 0.29 0.00 0.86 0.76 0.66 0.78 0.35 0.47 0.92 0.82∗ 0.91 0.65 0.77 0.73

KleijnPRE − − 0.00 0.34 0.98 0.82 0.87 0.98 0.92 0.81 0.94 0.97∗ 0.97 0.91 0.99 0.98

CookePRE 0.62 0.90∗ 0.47 0.49 0.65 0.90 0.69 0.89 0.70 0.94 0.86 0.94∗ 0.90 0.96 0.97 0.95

KhademiJOINT − − 0.74 0.80 0.87 0.53 0.84 0.75 0.90 0.90 0.87 0.96∗ 0.96 0.91 0.97 0.95

DutchMRG − − 0.19 0.49 0.74 0.72 0.65 0.85 0.82 0.69 0.81 0.92∗ 0.77 0.75 0.87 0.91

DantaleMRG − − 0.72 0.81 0.68 0.76 0.94 0.78 0.96 0.90 0.77 0.82∗ 0.72 0.86 0.89 0.85

Mean 0.72 0.89 0.58 0.66 0.78 0.80 0.82 0.82 0.83 0.86 0.89 0.92 0.85 0.88 0.91 0.92

CIlow 0.65 0.85 0.53 0.61 0.74 0.76 0.79 0.79 0.80 0.82 0.86 0.90 0.83 0.86 0.89 0.89

CIhigh 0.78 0.92 0.63 0.70 0.81 0.83 0.85 0.85 0.86 0.89 0.91 0.93 0.87 0.90 0.93 0.93

and intelligibility metric. The sample distribution of the mean
performance of each intelligibility metric was then estimated
from the bootstrap sample sequences.

From here on, subscripts are used to indicate performance
criteria for particular intelligibility metrics. For example,
ρSIIB, refers to the correlation coefficient that SIIB achieved
on some data set.

A. Remarks for the pre-existing metrics

It is clear that out of the pre-existing metrics SIIB and
HASPI have the highest performance overall, on average
achieving τSIIB = 0.79 and ρSIIB = 0.92, and τHASPI = 0.76

and ρHASPI = 0.89. This performance is followed closely
by ESTOI, which has an average score of τESTOI = 0.72
and ρESTOI = 0.86. HEGP has high performance for data
sets distorted by additive noise achieving an average score of
τHEGP = 0.73 and ρHEGP = 0.89, but its usefulness is limited
to situations where noise is the main source of degradation
and where the noise signal is available.

The top performance rating of SIIB may be criticized on
the grounds that SIIB has been ‘over-designed’ for the data
sets in this evaluation. Although the parameters of SIIB were
not intentionally optimized for the data sets in this paper, the
developers of SIIB were the only researchers with access to
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Fig. 2. An example of a clean and degraded stimulus from HendriksPRE. The
severe reverberant distortion ’blurs’ the time-alignment between the stimuli.

all the data sets and thus had greater opportunity to redesign
their algorithm when weaknesses were exposed during SIIBs
development.

Many of the intelligibility metrics performed poorly on
HendriksPRE. This is likely due to the large T60 time of
the room impulse response that causes severe reverberant
distortion. As shown in Figure 2, the large T60 time somewhat
‘blurs’ the time-alignment of clean and degraded temporal
envelopes. Many intrusive intelligibility metrics require that
the clean and degraded signals are strictly time-aligned, and
thus are over-sensitive to temporal blurring. Out of all the
intelligibility metrics in this evaluation, HASPI achieved the
highest performance for HendriksPRE (τHASPI = 0.78, ρHASPI

= 0.92) and is also the only intelligibility metric that included
time-alignment processing.

Recall that HASPI is computed as a linear combination
of four terms: the cepstral correlation, and three auditory
coherence terms. The weights in the linear combination were
optimized for each data set to maximize performance. None of
the other intelligibility metrics modify their parameters based
on the data, suggesting that the high performance of HASPI
may be attributed to overfitting. To test this hypothesis, HASPI
was computed simply by summing the cepstral correlation
term and the high-energy auditory coherence term with equal
weight. Doing so reduced the mean performance of HASPI to
τHASPI = 0.73 and ρHASPI = 0.88, which is still very high.
Thus, the high performance of HASPI is unlikely the result of
overfitting.

Another criteria that can be used to evaluate performance is
whether a metric gives consistent predictions across classes of
distortions. For example, CookePRE has two distinct classes:
stimuli degraded by a competing talker, and stimuli degraded
by SSN. Metrics may give consistent intelligibility predictions
within a class, but could give inconsistent predictions between
classes. An example of this can be seen in the scatter plot
corresponding to STOI and DutchMRG. STOI gives consistent
predictions for JensenPOST, KleijnPRE, and KhademiJOINT,
but when the data sets are merged together we see distinct
clusters corresponding to each data set. This means that for a
given clean stimulus, a STOI score of 0.5 for noise-reduced
speech and a STOI score of 0.5 for pre-processed speech could
correspond to different intelligibility scores.

B. Investigating the performance in terms of generalization

Considering only entries in Table III and Table IV that have
an asterisk, the mean performance of all such entries for all
pre-existing metrics and data sets is τ = 0.78 and ρ = 0.92.
Considering only entries that do not have an asterisk, the mean
performance for all pre-existing metrics and data sets is τ =
0.62 and ρ = 0.76. This result demonstrates that, in general,
intelligibility metrics have high performance for seen data sets,
and poor performance for unseen data sets.

To further investigate the performance of intelligibility met-
rics in terms of their ability to generalize, Table V displays the
mean performance for unseen data sets and seen data sets for
each pre-existing intelligibility metric. HASPI has the highest
performance for unseen data sets achieving τunseenHASPI = 0.76 and
ρunseenHASPI = 0.89. HEGP also has high performance for unseen
data sets, however, recall that HEGP was evaluated exclusively
on data sets with additive noise degradation.

STOI and SIMI both have outstanding performance for seen
data sets (τ seenSTOI = 0.87, ρseenSTOI = 0.97, and τ seenSIMI = 0.84,
ρseenSIMI = 0.95), but poor performance for unseen data sets
(τunseenSTOI = 0.66, ρunseenSTOI = 0.80, and τunseenSIMI = 0.60, ρunseenSIMI

= 0.78). This is because STOI and SIMI were specifically
designed for speech processed by ITFS and noise-reduction
algorithms, whereas the data sets in this evaluation include
degradation caused by reverberation and modulated noise
sources. Similarly, NCM-BIF was designed specifically for
speech processed by noise-reduction algorithms. Observe that
in Figure 1 NCM-BIF has good performance for the data sets
with noise-reduction: HuPOST, JensenPOST, and TaalPOST,
but poor performance for the remaining data sets. These results
show the danger of using intelligibility metrics outside of their
intended domain.

In light of the above paragraphs, to ensure that future intelli-
gibility metrics generalize to new data sets and give consistent
predictions between classes, it may be more beneficial to
gather data points with different types of degradation than
to collect many data points for a single type of degrada-
tion. This notion is consistent with the high performance of
HASPI, which considered six types of degradation during de-
velopment: additive noise, envelope-clipping, ITFS processing,
frequency-compression, noise reduction, and vocoded-speech.

C. Remarks for the modified intelligibility metrics

In general, removing the KLT from SIIB significantly
reduced performance (on average τSIIBno KLT = 0.69 and
ρSIIBno KLT = 0.85). Furthermore, introducing the KLT to
STOI improved performance (on average τSTOIKLT = 0.73
and ρSTOIKLT = 0.88). The increase in overall performance
for STOIKLT is mainly due to large increases in performance
for JensenMOD, HendriksPRE, and CookePRE. Note that
STOIKLT performs worse than STOI for KjemsITFS and Taal-
POST, however, these are the same data sets that were used
to tune the parameters of STOI during STOIs development.

The five intelligibility metrics with the highest performance:
SIIB, SIIBGauss, STOIKLT

gamma, HASPI, and STOIKLT are also the
only metrics that decorrelate log-spectra. This outcome clearly
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TABLE V
MEAN PERFORMANCE OF PRE-EXISTING INTELLIGIBILITY METRICS FOR ’SEEN’ AND ’UNSEEN’ DATA SETS.

SII HEGP NCM-BIF QSTI CSII-MID MIKNN SIMI sEPSMcorr STOI ESTOI HASPI SIIB
mean τ seen − 0.72 0.67 0.69 − 0.77 0.84 0.70 0.87 0.78 − 0.79

mean τunseen 0.57 0.73 0.46 0.45 0.63 0.63 0.60 0.66 0.66 0.69 0.76 −
mean ρseen − 0.90 0.89 0.86 − 0.92 0.95 0.84 0.97 0.93 − 0.92

mean ρunseen 0.72 0.88 0.56 0.60 0.78 0.78 0.78 0.82 0.80 0.84 0.89 −

demonstrates the advantage that can be obtained by reducing
the statistical dependencies between input features.

Recall that ESTOI was proposed as an extension to STOI
that can ’listen to glimpses of clean speech’. Interestingly, for
the data sets that contain modulated noise, STOIKLT has similar
performance to ESTOI (for JensenMOD, τSTOIKLT = 0.72,
ρSTOIKLT = 0.90, and for CookePRE, τSTOIKLT = 0.87,
ρSTOIKLT = 0.96). SIIB and SIIBGauss, which are based on
long-term statistics, also have good performance for Jensen-
MOD and CookePRE. Such results contest the idea that short-
time segmentation is necessary for predicting the intelligibility
of modulated noise sources.

On average STOIKLT
gamma achieved τSTOIKLT

gamma
= 0.76 and

ρSTOIKLT
gamma

= 0.91. Thus, by introducing the KLT to STOI
and using a more realistic auditory model, performance com-
petitive with SIIB could be obtained. This means that for some
representations of speech signals, the correlation coefficient
and the KNN mutual information estimator can quantify
distortion equally well. A partial explanation for this result
can be found by considering the high performance of SIIBGauss

(ρSIIBGauss = 0.92 and τSIIBGauss = 0.79), which suggests
that the Gaussian communication channel is a reasonable
approximation of the true communication channel for many
real-word distortions.

Finally, recall that SIIBGauss = − F
2K

∑
j log2(1 − r2ρ2j ).

Since r and ρj are between -1 and 1, the product of their
squares is likely to be small, particularly for challenging
listening environments. Using the approximation log2(1 +
a) ≈ a/ ln(2) for small a, we have that SIIBGauss ≈

F
2K ln(2)r

2
∑

j ρ
2
j . This approximation strongly resembles the

distortion measure used by STOIKLT and STOIKLT
gamma, which

can be written as
∑

j

∑
t ρj,t, where t is the short-time

segment index.

VII. CONCLUSIONS

In this paper, the accuracy of 12 intelligibility metrics from
the literature was evaluated using the results of 11 listening
tests. The stimuli included pre-processing enhancement, post-
processing enhancement, and environmental distortions such
as noise and reverberation. In order to analyze why the top
performing metrics have high performance, four new intelli-
gibility metrics were proposed. The main conclusions are as
follows.

1) Out of the pre-existing metrics, SIIB and HASPI had
the highest overall performance.

2) Many intrusive metrics struggle with severe reverberant
distortion. This may be because they are over-sensitive

to the time-alignment of clean and distorted temporal
envelopes.

3) In general, intelligibility metrics perform more poorly
on unseen data sets than on seen data sets. For this
reason, caution should be taken when using intelligibility
metrics outside of their intended domain.

4) For unseen data sets, HASPI had the highest perfor-
mance. This suggests that HASPI is appropriate for
situations where many types of potentially new speech
material and distortions are likely. Additionally, unlike
the other metrics, HASPI has built-in time-alignment
processing and can account for hearing impairments.

5) The five intelligibility metrics with the highest overall
performance are also the only metrics that decorrelate
log-spectra. On average, introducing the KLT to STOI
improved performance and removing the KLT from SIIB
reduced performance. These results demonstrate the
advantage of removing statistical dependencies between
input features.

6) The high performance of SIIBGauss suggests that the
Gaussian communication channel is a reasonable ap-
proximation of the true communication channel for
many real-world distortions. Additionally, SIIBGauss has
performance similar to SIIB, but takes less time to
compute by two orders of magnitude.2

7) It was shown that STOIKLT and STOIKLT
gamma can be

interpreted as approximations of SIIBGauss.
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