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Preface

This report contains my Master’s Thesis, which is the final part of my 7 years as a student at Delft University of
Technology. I chose to focus my research on a project only slightly related to Aerospace Engineering. In this
project models to identify pilot control behaviour are applied to develop methods for aiding the diagnosis of
neurological disorders. My work continues on the work performed by my predecessors, in particular Rick de
Vries and Lieke Lugtenborg. It focuses on identifying behavioural changes in control performance, caused by
Parkinson’s Disease, through use of a machine learning model: Least Squares Support Vector Regression. My
choice for this subject came both out of a very personal interest (my grandfather suffered from Parkinson’s
Disease), as well as a desire to learn about and work with machine learning algorithms.
Part I of this report contains the scientific paper that covers the main findings of my thesis work. It improves
upon the work done by Lieke by increasing the accuracy and decreasing the latency of detecting behavioural
changes due to Parkinson’s Disease. Part II contains my preliminary work, covering the literature related to
my thesis and motivation my selection of the Least Squares Support Vector Regression. Part III contains the
appendices belonging to the scientific article.
Work on this thesis was not always easy and straightforward, and I could not have completed it without the
valuable input from my supervisors. Daan and Johan, without your positivity, patience, suggestions, stimu-
lation and kindness this thesis would not be what it is today. Thank you for everything!
Besides my thanks to my supervisors, I would like to thank my beloved friends and family for keeping me
sane during the two Covid-stricken years I worked on this thesis. Martijn and Lina, thank you for the many
walks we took, always providing a listening ear and sharing in my struggles and accomplishments. Papa en
Mama, thanks for the support, editing, and the occasional "schop onder mijn kont". And finally I would like
to thank you for taking the time to read this thesis. I hope you enjoy my work, and find inspiration in it!

K. den Hertog
Delft, August 2022
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Abstract—Parkinson’s Disease is a neurodegenerative disease
that has a decline in motor behaviour as one of its main
symptoms. This decline is currently monitored using subjective
measures, such as questionnaires and clinical observations. More
detailed and objective tracking of this decline can improve
treatment of the disease and allow for earlier identification.
Earlier work in this area has lead to the development of a
proof-of-concept for detecting behavioural changes in motor
performance, but the linear regression model used was limited
in its accuracy and had a high latency. This paper uses a non-
linear Least Squares Support Vector Regression (LS-SVR) model
to increase performance in those areas. LS-SVR was chosen for its
ability to regress complex non-linear relationships and because it
is highly adaptable and scalable, yet easy to understand and work
with. Test data were simulated based on earlier measured data
which resulted in a complete and varied data set that allows for
exploring many different situations. Results from the machine
learning model when applied to the test data are promising.
With the right combination of hyperparameter settings an
improvement of 80% in accuracy was reached, and latency could
be reduced by 30%. Additionally, a sensitivity analysis of the
hyperparameters revealed further room for improvement with
more careful tuning. Finally, it was shown that by using LS-SVR
to make predictions on data from future trials a further reduction
in latency can be achieved. Overall, the new model shows definite
improvement over the earlier model and can be developed further
in subsequent steps towards a clinical applicable method.

Index Terms—Manual tracking, Parkinson’s disease, cyber-
netic approach, motor performance, behavioural changes, ma-
chine learning, regression, least squares support vector machine

NOMENCLATURE

α Lagrange multiplier
β0, β1 Linear regression parameters (intercept and slope)
δ Change in parameter value due to PD symptoms
ε Regression error
γ LS-SVR regularisation constant
µ Parameter average
ωnms HC neuromuscular frequency
φ(x) Kernel function
σ RBF kernel parameter
σp Parameter standard deviation
τ Time delay of HC dynamics
ζnms HC neuromuscular damping ratio
D Difference metric

Dlim Difference threshold value
D̄ Averaged difference metric
Hce Controlled element dynamics
Hpe HC dynamics
HC Human controller
K Radial Basis Function kernel
Kc Controlled element gain
Kp HC gain
LS-SVR Least Squares Support Vector Regression
N Sample size
Nh Number of healthy trials
Ns Number of symptomatic trials
PD Parkinson’s Disease
RMSe Tracking performance
RMSu Control performance
b LS-SVR bias term
e System error
f(x) LS-SVR regression function
ft Target signal
ldet Detection window
n Nonlinear remnant
nfuture Number of predicted trials
u Control signal
w LS-SVR coefficient vector
x Vector of trial numbers
x Trial number
y System output
yp Parameter value
yLSSVR Value of the LS-SVR regression
yavg Average of training data

I. INTRODUCTION

Around the world, more than 10 million people are living with
Parkinson’s Disease (PD) [1], a neurodegenerative disease that
impacts almost everything in a patient’s life, from simple tasks
like drinking a cup of coffee, to more complex and abstract
problems such as living a happy life [2]. One of the main
ways PD affects a patient’s life is through influencing motor
performance. The disease causes cell death of dopaminergic
neurons within the basal ganglia, leading to a shortage of
the neurotransmitter dopamine [3]. Dopamine is vital for the
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communication between brain areas that are responsible for
coordination and effective planning of movements, and a lack
of it causes the classical motor symptoms associated with
PD: bradykinesia, postural instability, rigidity, and tremors
[4]. Parkinson’s Disease is incurable, and its symptoms are
progressive. Luckily, symptom severity can be reduced by
therapy and medication, but treatment is dependent on the
disease stage [1, 5]. Currently, the main way of determining
the disease stage and planning treatment is by use of
subjective clinical rating scales: the patient’s motor symptoms
are evaluated by a physician, and an extensive questionnaire
is filled in [6]. These results are mapped to a rating scale,
such as the often used 5-point Movement Disorder Society’s
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
[7]. Evaluating disease progression in such a way comes with
a few disadvantages: it is subjective and time-intensive, and
has therefore a low resolution [8].

Much research is being done into more objective methods of
tracking PD progression [9, 10]. Brooks et al successfully
mapped human behaviour coding of video recordings of PD
patients to MDS-UPDRS, as a proof-of-concept for a method
of quantifying the scale [11]. Patel et al ran a pilot for a
method of estimating the severity of the PD motor symptoms,
using wearable sensors, and it achieved low estimation errors
(2-4%) [12]. Finally, Zhan et al used multiple input sources
(voice, finger tapping, gait, balance, and reaction time),
obtained by smartphone, in a machine learning model in
an attempt to quantify PD severity [13]. This resulted in a
novel metric correlating well with parts of the MDS-UPDRS.
However, this research is all in the proof-of-concept stage
and much work has still to be done to develop a clinically
applicable method.

Another approach to objectively tracking PD progression is
by evaluating a decline in fine-motor performance, as the
dopamine-deficiency of PD patients leads to limitations in
performance of eye-hand tasks [14]. This performance can be
analysed by using eye-hand coordinated tracking tasks. Much
research has been done in this area [15, 16, 17, 18, 19, 20],
but, as with the other proof-of-concept methods, no
clinically applicable method has been developed yet. A new
collaborative research project has been set up by the Erasmus
Medical Centre Department of Neuroscience and the Delft
University of Technology Faculty of Aerospace Engineering
to change this. In this project, methods are being developed
to quantify and analyse the effects of neurodegenerative
disorders [21]. The main tool of this project is cybernetics;
using this to analyse and track the motor performance of
a human controller within a dynamic system [22] in order
to detect deviating behaviour. Earlier research related to PD
involved creating a specific tracking task and using that to
show that the loss of motor performance due to PD can
be quantified [23]. Lugtenborg subsequently proved that a
sudden change in tracking task control behaviour, caused by
PD progression, can be detected using linear trend analysis
methods [21, 24].

While Lugtenborg’s work showed that behavioural changes
are indeed present in PD progression, the linear regression
method used still has its limitations [21]. Changing trends only
showed for certain tracking parameters, and in a maximum
of 50% of the cases. Furthermore, linear regression is slow
in responding to changes (it has high latency), meaning a lot
of data with changed behaviour is needed before a change
is is actually detected. On average, it took 10 trials before a
change in trend was detected. Finally, only historic data are
used in the trend analysis. Predicting the control performance
for future trials might lead to earlier notice of changing
behaviour and could provide medical staff with valuable
insights.

In this paper a non-linear regression model is investigated
as a more advanced approach for the same data set that
was previously used [21]. Some of the most advanced
regression models fall in the domain of machine learning.
Unlike traditional statistical methods, machine learning
algorithms require no prior knowledge of the underlying
distribution of the data, but are able to infer this themselves
[25, 26]. Furthermore, most machine learning algorithms are
adaptable to a variable and scaling data set, and can still
be quick to run [27]. Many different regression algorithms
can be used, but one of the simplest, yet still powerful, is
Least Squares Support Vector Regression (LS-SVR) [28].
LS-SVR is a type of machine learning model, capable of
regressing complex non-linear relationships and being highly
adaptable and scalable [25, 29], and easy to understand
and work with. General Support Vector Regression as
well as LS-SVR specifically have seen application in various
research areas [30, 31, 32, 33], including PD research [34, 35].

The goal of this paper is to use LS-SVR for detecting a
change in control behaviour due to PD progression and
improve upon the linear regression model used by Lugtenborg
[21]. It is hypothesised that LS-SVR will have both a higher
accuracy as well as less latency than linear regression, and
the eventual aim is to provide earlier notice of a change
in PD symptoms in a clinical setting. In order to test the
potential improvement, data sets comparable to ones used
in earlier research [23, 21] will be customly generated. Due
to the COVID-19 pandemic getting measurements of real
participants was undesired, and having a simulated data set
allows for easy generation of large data sets, and testing of
many different cases. A direct comparison is run between
LS-SVR and the linear regression method used in earlier work
[21]. To detect the changes in the simulated behavioural data
a new detection metric is introduced. Two different versions
of this metric are investigated, one only looking at historic
data, and the second taking projected future data into account,
with the aim of further reducing latency. Furthermore, the
influence of some key hyperparameters present the method
for detecting trend deviations will be investigated, to be able
to set them to their optimal value. Insight into this allows
for further optimalisation of the method in later stages of its
development leading to clinical application.
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This paper starts with giving the background information
for the research in Section II; explaining the control task,
the two regression models, and the method used for detect-
ing behavioural trends. Section III describes the method for
generating data sets, as well as the different steps taken in
investigating the behavioural change detecting performance of
the LS-SVR model. The results of these steps are laid out
in Section IV, and Section V contains a discussion on the
implications of this research and its results. Finally, the paper
is concluded in Section VI.

II. BACKGROUND

A. Cybernetic approach

The basis for the method used in this research is a tracking
task. In such a task, the human controller (HC) is asked
to control a dynamic system that is subject to disturbances.
Analysis of control performance in this task gives insight
into the cybernetic control behaviour of the HC [36]. For this
research project the data are based upon a horizontal-axis
pursuit tracking task, which was developed and used in
preceding studies [21, 23], and is similar to tasks used
in other PD-related studies [17]. In the tracking task the
participant is asked to keep the tracking error to a minimum
by manipulating the controlled element via a touch screen.
In earlier work the participants were asked to perform the
tracking task in a number of trials. In this way a longitudinal
data set was obtained [21]. For this paper the longitudinal
data set was simulated, this is further explained in Section
III-A.

1) Tracking task: A schematic overview of the tracking task
is given in Figure 1 [21], and its corresponding block diagram
is shown in Figure 2 [37]. The Controller block indicates the
HC, and HCE is the controlled element. The latter’s dynamics,
which are based on previous research, are taken to be single
integrator. In Equation (1) these dynamics are given, with the
gain, Kc, taken to be equal to 1 [21].

Hce(s) =
Kc

s
(1)

The input to the tracking task is determined by a forcing
function that takes the form of a quasi-random multisine
signal [21, 23].

2) Cybernetic HC model: From experimental data of the
tracking task a cybernetic model can be fitted that describes
the detailed dynamics of the HC. The model used for this
research is the extended crossover model, defined by McRuer
and Hex (1967) as a combination of a linear HC model and
a nonlinear remnant [38]. The linear part consists of the
dynamics of the neuromuscular system, a pure delay term,
and a pilot equalisation model, taken to be a pure gain term
for a single-integrator control task. The contribution of the
nonlinear remnant can separated from the linear HC dynamics
by proper design of the forcing function [36]. The used HC
model is given in Equation (2).

Fig. 1: Schematic overview of the tracking task performed by
the participants [21]. ft is the target signal, and the black ring
is the target. The human controller controls the blue circle, the
controlled element. y the system output, and e the error, ft − y.

Fig. 2: Block diagram of the tracking task, adapted from El et al
[37]

Hpe(s) = Kpe
−sτ ω2

nms

s2 + 2ζnmsωnmss+ ω2
nms︸ ︷︷ ︸

Neuromuscular dynamics

(2)

The HC model contains four parameters. These are the
controller gain (Kp) the time delay (τ ) and the neuromuscular
frequency and damping ratio (ωnms and ζnms, respectively).
These four parameters are used for tracking the HC’s
control dynamics across trials and participants, and allow for
comparisons to be made.

In addition to the parameters of the HC model, two perfor-
mance parameters will be included, with the aim of providing
additional parameters on which the analysis can be based [21].
These are two well known metrics for tracking performance
(RMSe) and control activity (RMSu). The first, RMSe, is
determined using Equation (3). It indicates whether or not the
HC reduced the tracking error while controlling the system,
in which case RMSe < 1. For RMSe = 1, the HC does not
give any input, and for RMSe > 1 the HC is increasing the
tracking error with their input. RMSu, given by Equation (4),
is a measure of control activity; a high value indicates that the
HC is using an active control strategy, while for a lower value
of RMSu this is more reserved.

RMSe = RMS(e)/RMS(ft) (3)

RMSu = RMS(u)/RMS(ft) (4)
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3) Effect of Parkinson’s Disease on the HC parameters:
Earlier research investigated what happens to the nominal
values of the HC parameters when the HC is experiencing
early-stage PD symptoms [23]. It was shown that there is a
slight increase in values for τ and ωnms, a significant decrease
for Kp and a significant increase for the value of ζnms. In
Table I the mean and standard deviation for the HC parameters
are given, based on the average for the participants in the study
[21]. These values are considered typical for a healthy subject.
Table II gives a range for how these values can change when
PD symptoms are introduced, with δ indicating the change to
the nominal mean [21]. Table II also shows the maximum δ
as a percentage of the nominal standard deviation.

TABLE I: Nominal HC parameter values for healthy subjects [21]

Kp [-] τ [s] ζnms [-] ωnms [rad/s]
µ 0.91 0.37 0.38 8.7
σp 0.26 0.14 0.19 4.3

TABLE II: Range for the change in HC parameter values caused
by PD symptoms, δ [21, 23]

Range for δ Max δ as % of σp
Kp −0.9 < δ < 0 [-] -346%
τ 0 < δ < 0.07 [s] 50%

ζnms 0 < δ < 0.31 [-] 163%
ωnms 0 < δ < 5 [rad/s] 116%

B. Regression modelling

In this paper two different regression models were compared.
The linear regression model used by Lugtenborg is taken as a
baseline [21], and compared against a new nonlinear regres-
sion model: Least Squares Support Vector Regression. This
section explains the two models, as well as the implemented
approach for detecting behavioural changes in the tracking task
data.

B1. Linear Regression

1) Model: The linear regression model is defined by Equa-
tion (5). For each of the parameters of interest (Kp, τ , ζnms,
ωnms, RMSe, RMSu) the relation between the parameter
value, yp and the trial number, x, can be determined.

yp = β0 + β1x+ ε (5)

2) Dectecting changes: In earlier work a student’s t-test
was used to determine if there is a significant change in de
trend present in the data [21]. The null-hypothesis, no change
(β1 = 0), was tested against the alternate hypothesis of there
being a change of the trend in the data (β1 6= 0) [21, 39].
By using Equation (6), which has a t-distribution with N − 2
degrees of freedom if β1 = 0 (N being the sample size), the
significance of a potential change could be determined [39].
When the null-hypothesis is rejected with a significance of
p < 0.05 a change is detected in the PD progression data.

t =
β̂1√∑

(ypi−β̂0−β̂1xi)2

N−2

(6)

B2. LS-SVR

Least Squares Support Vector Regression (LS-SVR) is a
reformulation of the standard support vector regression
algorithm [28, 40, 41]. It uses linear programming and is
therefore both easy to understand and easy to implement
[42]. In its most basic form, LS-SVR is only capable of
linear regression, but through the use of kernels non-linear
regression can be performed [41]. These kernels are defined
in literature, and different variants exist that have different
properties [30].

1) Model: The basic idea of LS-SVR is to find the optimal
hyperplane; that is, to fit a function, f(x), through the training
data that lie close to as many datapoints as possible. Where in
ordinary least squares one fits this line by minimising the sum
of the squared errors, in support vector regression the objective
is to minimise the coefficients in the estimation function, hand-
ling the error in the constraints of an optimisation problem.
The estimation function f(x), for a given input x, is given by
Equation (7), where φ indicates the non-linear kernel used.

f(x) = w · φ(x) + b (7)

To find the coefficient vector w, LS-SVR is formulated as an
optimisation problem, as given in Equation (8). The objective
function consists of two terms: the minimisation of the coeffi-
cients, w, and the minimisation of the errors, ε, regulated by a
constant, γ. The objective function is subject to one constraint,
namely that the regression result has to equal the actual value
ypk (corresponding to input xk), excluding the allowed error.

ŵ = arg min
w

1

2
w · w +

1

2
γ

N∑

k=1

ε2k

subject to ypk = w · φ(xk) + b+ εk, k = 1, ..., N (8)

Solving the optimisation problem leads to the estimator given
in Equation (9), where αk are the Langrange multipliers, and
b is the bias [42, 43].

f(x) =

N∑

k=1

αkφ(x) · φ(xk) + b (9)

As stated before, φ indicates the non-linear kernel function.
Different kernels can be used, but for this paper the Radial
Basis Function kernel is chosen, as it is versatile and has ade-
quate computing performance when applied to this particular
data set [30]. It is given by Equation (10), with σ being the
kernel parameter.

K(x, xk) = e−
||x−xk||2

2σ2 (10)

2) Detecting changes: In order to detect changes in control
performance a detection metric for the LS-SVR model has
been defined, along with a variation that takes predicted trials
into account. This metric is called the ”difference metric”,
and its basic version is determined by taking the difference
between the LS-SVR regression and the average of the training

6



data for the last added trial, as given in Equation (11), where
(D) is the difference metric, evaluated at the last added trial.

D = |yLSSVR − yavg| (11)

An example of the difference metric is illustrated in Figure
3, where the average of the training data is shown, along
with the LS-SVR regression. The difference for the current
added trial, trial 52, is shown by the thick black line. The
full time-plot of the difference metric is shown in blue: for
each trial the difference is determined, and when no PD
symptoms are present in the data the difference is expected
to stay below the threshold. However, when PD symptoms
are introduced, the LS-SVR will deviate from a horizontal
line as the values of the parameters change with δ (Table II).
The difference will increase significantly, and as a result a
changing trend is detected if D is larger than some threshold
value Dlim. To prevent false positive detection, analysis is
actually done for stable changes: the difference should not go
below the threshold again for a number of subsequent trials,
(ldet). In Figure 3 the triangle indicates were the a change in
the trend is detected. Dlim and ldet are also shown.

The variation on the difference metric utilises one of the
inherent advantages of a machine learning algorithm, like LS-
SVR: using the regression to predict control performance for
future trials, leading to earlier detection of changes. Instead
of only taking the difference at the last added trial, the LS-
SVR model is used to predict the parameter value for nfuture
trials ahead, allowing for difference calculation at those trials
as well. These differences are subsequently averaged, in order
to arrive at the new metric, D̄. In Figure 3 this is illustrated
as well. The black shaded area indicates nfuture, and it is in
this area that D will be averaged. The new metric is given in
Equation (12). The detection procedure remains unchanged,
with a changing trend being detected if D̄ is larger than the
threshold Dlim for ldet subsequent trials.

D̄ =
1

(nfuture)

nfuture∑

k=0

|yLSSVR − yavg|k (12)

C. LS-SVR hyperparameters

The LS-SVR model used in this paper has two
hyperparameters: γ and σ. γ is the regularisation constant
of the LS-SVR objective function, Equation (II-B1). It
determines the trade-off between the two parts of the
objective function. A lower value leads to less emphasis
being placed on minimising the errors, thus less overfitting.
σ is the kernel specific hyperparameter, see Equation (10),
which determines how ”flexible” the regression is. A larger
value means that the regression is flatter, but therefore a worse
fit for the data, while a higher value allows the regression
line to match the training data.

Examples of LS-SVR fits using different hyperparameter val-
ues are shown in Figure 4, along with the linear regression.
Note that with sigma being large, the regression is forced to

Fig. 3: The black line in the figure indicates the difference taken
as the evaluation metric. The blue line is a plot for the difference,
with the triangle indicating where a changing trend is detected
in the data. The LS-SVR regression shown in this figure is from
Trial 52.

Fig. 4: Different values for the hyperparameters lead to different
regression lines. As training data are the Kp data of one
simulated participant used, with Nh = 50 and Ns = 25.

be as flat as possible, leading to the same result as linear
regression. In the figure one of the main advantages of LS-
SVR over linear regression can also be seen: with the right
combination of hyperparameters LS-SVR is capable of higher
order regression, and can therefore quickly change when the
underlying trend in the data changes. This is in contrast with
linear regression, where the previous trend has to be overcome
with sufficient new data.

D. Online learning approach

In order to reflect how this approach would be used in a real
world scenario, both models will be run in an online learning
approach [44]. This means that, starting with a single trial,
the machine learning model is trained and trend analysis is
performed. These results are stored, and the second trial is
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introduced into the training data set, and training and change
detection are performed again. This continues until all training
data are used. This is opposed to batch learning, where the
entire training data set is inputted into the model, and training
and trend analysis is performed only once. For the eventual
application of this research to PD evaluation, online learning
is the better approach, as it allows for continuous monitoring
of (potential) patients.

III. METHOD

A. Data generation

The data set used in this research is a simulated data set, based
on earlier experimental work [21]. By using a simulation-
based approach, varying scenarios can be tested and the
machine learning model is not constrained by incomplete or
inconsistent data. An example of the simulated data set can
be found in Figure 5. The data generation was done in three
steps. First, for the HC model parameters (Kp, τ , ζnms and
ωnms), data for Nh healthy trials are independently drawn
from a normal distribution, its parameters (µ, σp) equal to the
average parameters of the participants in the earlier study [21],
see Table I.
In addition to the Nh healthy trials, a decline in control
performance due to PD is simulated for Ns symptomatic trials.
For these trials, data are drawn from the same distribution as
for the healthy trials, and subsequently appended with a δ
value, taken from a U(a, b) distribution with parameters from
Table II. Lastly, the two performance parameters (RMSe and
RMSu) are determined by simulating the tracking task shown
in Figure 1. This is done using the block diagram in Figure
2, without including the remnant (n(t)), and determining the
RMS of the relevant signals [21]. This is done for each set of
HC model parameter values, resulting in a complete data set
of 6 metrics for each trial that can be simulated for as many
different trial runs and participants as desired.

B. Model implementation

The two regression models used in this study are implemented
in Python, using existing libraries. For linear regression the
LinearRegression model from the Scikit-learn library is used
[45], and for the LS-SVR model the Scikit-learn libary is used
to make a custom regressor class [46].

C. Method hyperparameters

The method described in this paper has a number of settings,
or hyperparameters, that influence the behaviour of the trend
detection, and the performance of the method. The hyper-
parameters are divided into three groups. First there are the
hyperparameters related to the data generation procedure:

- Nh: the number of healthy trials in the training data.
- Ns: the number of symptomatic trials in the training data.
- Simulation parameters: µ and σp for the normal distribu-

tion used in data simulation (Table I).
- δ: offset values for symptomatic trials (Table II).

Secondly, there are the hyperparameters related to the LS-SVR
model:

- γ: hyperparameter the in LS-SVR cost function.
- σ: hyperparameter in the LS-SVR kernel.

And finally, there are the hyperparameters related to the
detection method for behavioural changes.

- Dlim: the threshold value for the difference in the LS-
SVR detection method.

- ldet: number of subsequent trials with a detected change
needed for a stable detection.

For optimum performance of the method these hyperparame-
ters will need to be tuned, which will be discussed in Section
III-D2.

D. Analysis procedure

In order to test the novel regression model proposed in
this paper, a number of analysis steps will be taken. The
goal of these steps is to prove the usefulness of the LS-
SVR model, and determine the optimal configuration of
its hyperparameters. Furthermore, it will allow for insight
into the strengths and weaknesses, and limits of the model.
The steps that were taken in the analysis are shown in Figure 6.

1) Detecting changes using LS-SVR: The first step is
to test if the LS-SVR model is actually able to detect
changes in the trend in the data. For this, two groups of 25
participants are simulated. The first is a healthy group, with
75 simulated healthy trials (Nh = 75, Ns = 0). The second
is a symptomatic group, where Nh = 50 and Ns = 25. If
the model works as intended, for the majority of participants
in the second group a change will be detected, while for the
participants in the first group no changes should be detected.
For simulating the data for the trials, the simulation parameters
and δ from Table I and Table II, respectively, are used. The
LS-SVR and detection method hyperparameters are given in
Table III, and these are the default hyperparameter settings
used throughout the paper. γ and σ are varied for each of the
six model parameters (Kp, τ , ζnms, ωnms, RMSe, RMSu),
as each parameter shows different stochastic variation that
requires different hyperparameter settings. Dlim is also
varied, as its value depends on the range of possible values
for the specific model parameter.
A binary classification approach is used for determining
detection performance. For the healthy group, a False Positive
(FP) is defined as any detection of a change in behavioural
data. For the symptomatic group, a False Positive is defined
as any detection in the healthy part of the data set and a False
Negative occurs when no change is detected.

TABLE III: Default hyperparameter values, obtained heuristi-
cally, based on test runs with the model.

Kp τ ζnms ωnms RMSe RMSu

γ 5 1 5 1 5 40
σ 50 50 100 100 10 100
Dlim 0.15 0.03 0.06 1.0 0.1 0.1
ldet 5 5 5 5 5 5
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(a) Kp (b) τ (c) RMSe

(d) ζnms (e) ωnms (f) RMSu

Fig. 5: Example of simulated data for three participants, all with the same settings. Data for the first 75 trials are drawn from the
N(µ, σp) distribution in Table I. Subsequently, for the last 25 symptomatic trials a delta is drawn from the U(a, b) distribution from
Table II and added to the already drawn value. The dashed orange line marks the transition from healthy to symptomatic, and the
red line indicates the theoretic averages.

Fig. 6: Schematic overview of the analysis steps taken in this
paper, as well as the data set used for each step. The data
sets in step 2-4 have the same settings, but are independently
generated.

2) Sensitivity analysis: The second step is to perform a
sensitivity analysis on the method hyperparameters, in order
to determine their influence on the detection performance, and
find the optimal values. In this step only the hyperparameters
related to the LS-SVR model and the detection method are
evaluated: γ, σ, Dlim, and ldet.

For the sensitivity analysis a single simulated data set is used,
consisting of 200 participants. From preliminary experiments
it was concluded that this number is sufficient for averaging
the stochastic variation between the data sets. Each simulated
data sets has 50 healthy trials and 25 symptomatic trials to
match the experimental setup used by Lugtenborg [21], with
simulation parameters and δ taken from Table I and Table II,
respectively. γ and σ together control the LS-SVR regression
and therefore the influence on each other’s results is taken into
account. The other two hyperparameters are expected to be
more independent, and are therefore optimised independently
the others. Each time, the hyperparameters of interest will
be varied along a range, while the other LS-SVR related
hyperparameters will be fixed to the same values as described
in the first step (Table III).
Two performance parameters will be evaluated, the first a
measure for accuracy, and the second one for latency:

- Recall: amount of successful detections out of the 200
detections that should take place.

- Average detection lag: the average trial at which a a
change in the trend is first detected. Only detections from
trial 50 onward (True Positive) are taken into account, and

9



all parameters for which no change in trend is detected
get an average detection lag penalty value of 50.

The results are averaged over all 200 participants.

3) Direct comparison of LS-SVR with linear regression:
Once the hyperparameters have been optimised through
sensitivity analysis a direct comparison between the linear
regression and the novel LS-SVR method can be made as the
third step. For this step 200 participants are simulated, again
with 50 healthy trials, 25 symptomatic trials, using the values
in Table I and Table II.
The linear regression model is run as described in Section
II-B. For the LS-SVR model two cases were initially
identified: Case A, with all four hyperparameters optimised
for the highest recall, and Case B, all four optimised for the
lowest average detection lag. However, during the course of
this analysis step it was discovered that the optimum settings
identified for Case A and Case B might not lead to overall
optimal results. This is likely due to interactions between
the different hyperparameters, which are not present when
optimised in isolation (as done for Dlim and ldet). Therefore
Case C and Case D are introduced. Here, only the optimal
values for the LS-SVR hyperparameters (γ and σ) are taken,
with Case C being optimised for highest recall (values from
Case A), and Case D being optimised for least average
detection lag (values from Case B). For Dlim and ldet = 5
the dafault values are taken, as given in Table III.

4) Using projected future trials: In the final step the
variation on the detection metric is used, as explained in
Section II-B2 in order to incorporate projected future trials into
the detection method for changes in the trend. The aim of this
is to further increase recall and respond quicker to a change
in control behaviour. To test this, again 200 participants with
a 50/25 split of healthy and symptomatic trials are simulated,
using the values in Table I and Table II, and the default
hyperparameters from Table III. The model is run with eight
different values of nfuture: [0, 2, 4, 6, 8, 10, 12, 14], with
a value of zero corresponding to the standard detection metric.

IV. RESULTS

A. Step 1: Detecting changes using LS-SVR

For testing the method for detecting changes in the
behavioural data 25 healthy participants and 25 participants
with PD symptoms were simulated. In this step the LS-SVR
hyperparameters were not optimised, but chosen heuristically,
based on earlier test runs with the model, as explained in
Section III-D1.

The core of the method proposed in this paper is the LS-SVR
regression model. With each trial added in the online learning
approach the LS-SVR regression model is retrained and
the average of the training data is recalculated, in order to
determine D. An example of the regression results for a
single (simulated) participant from the symptomatic group
can be found in Figure 7. Here the LS-SVR model is shown

for two different trials, trial 41 (red) and trial 75 (purple),
along with the raw input data, their average, and the theoretic
trend in the data. PD symptoms start at trial 50 (similar to
the data presented in Figure 5), and the difference between
the regression in both trials can be clearly seen, particularly
in Kp, ζnms, and RMSe. On trial 41, where no PD is present,
the regression line deviates much less from the average of the
training data (dashed line) as on trial 75, where PD symptoms
are present. The influence of the LS-SVR hyperparameters
can be seen in the contrast between RMSe and RMSu:
because of the low value of sigma (10) for RMSe (compared
to 100 for RMSu) the regression is allowed to more closely
track the individual datapoints, which results in a higher order
regression.

Figure 8 shows examples of the difference metric (D) for the
τ data from Figure 7, plotted for each trial (x), for different
participants. When the difference is more than Dlim for five
consecutive trials a change in behavioural data is detected,
indicated with an arrow at the start of the five trials. For the
healthy group (Figure 8a), participant 1 shows no changes.
But for participant 9 a clear changing trend is detected at
trial 65, while there should not be one. This is an example
of a false positive: due to the particular combination of data
and hyperparameter settings for this participant, the LS-SVR
model deviates considerably from the training data average.
For the symptomatic group three examples are given in
Figure 8b. Participant 4 shows no trend: D never comes
above the threshold. This is an example of a false negative.
For participant 5 a change is detected as expected: from
trial 61 onward the difference stays above the threshold. For
this particular case the detection lag is 11. In contrast, for
participant 18 a false positive detection occurs: the difference
comes above Dlim before symptoms are introduced, but does
not stay there.

The full results of the first analysis step are summarised in
the confusion matrix in Table IV. The desired result is true
negative (TN) for the healthy group, and true positive (TP) for
the symptomatic group. As can be seen in Table IV, for the
healthy group the desired result is reached in the majority of
the cases: 64% for RMSu, as lowest, 96% for Kp, as highest.
For the symptomatic group this is also the case for Kp (96%),
ζnms (84%), RMSe (72%), and RMSu (80%). However, this
is not the case for τ and ωnms, where there are approximately
equal true positives and false negatives, meaning changing
trends are only detected in about half of the cases. This result
is explained by the first analysis step being performed with
unoptimised parameters, leading to suboptimal results.

B. Step 2: Sensitivity analysis

1) Sensitivity analysis of γ and σ: In order to optimise
the detection results presented in part A the model
hyperparameters have to be optimised. This is done through
a sensitivity analysis. First the results of the optimisation of
γ and σ are given. Figure 9 shows the results in terms of
total detections, and Figure 10 for average detection lag. In
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(a) Kp (γ = 5, σ = 60) (b) τ (γ = 1, σ = 50) (c) RMSe (γ = 5, σ = 10)

(d) ζnms (γ = 5, σ = 100) (e) ωnms (γ = 1, σ = 100) (f) RMSu (γ = 40, σ = 100)

Fig. 7: LS-SVR regression results for participant 5 in the symptomatic group of step 1. The red lines indicate the results from trial
41, and the purple lines the results from trial 75.

(a) Difference over time for 2 participants from the healthy group

(b) Difference over time for 3 participants from the symptomatic
group

Fig. 8: Results from the detection procedure in step 1 for τ ,
for different participants. The triangles show where a change
in trend is detected, and the green circles indicate the values for
D corresponding to the two regression results in Figure 7.

the graphs, γ is plotted along the x-axis, with results from
different values of σ shown as separated lines. For the total
detections (Figure 9) clear optima can be found: for example,
τ shows an optimum recall at γ ≈ 5 and σ = 50. For many
parameters optima can be found in multiple combinations
of hyperparameter values, with generally higher values of

TABLE IV: Confusion matrix per parameter for the healthy
and the symptomatic group in Step 1, as percentage of the
total of 25 simulated participants. The healthy group contains
no trend changes in the behavioural data, so there are no
True Positives. Similarly, for the symptomatic group in every
simulated participant a trend change is present, so there are
no True Negatives.

Kp τ ζnms ωnms RMSe RMSu

Healthy TP 0% 0% 0% 0% 0% 0%
Group FP 4% 20% 12% 12% 4% 36%

TN 96% 80% 88% 88% 96% 64%
FN 0% 0% 0% 0% 0% 0%

Sympto- TP 96% 44% 84% 40% 72% 80%
matic FP 4% 8% 12% 12% 8% 20%
Group TN 0% 0% 0% 0% 0% 0%

FN 0% 48% 4% 48% 20% 0%

σ requiring higher values of γ for optimality. There are
also combinations of hyperparameter values that lead to no
detections, e.g., combinations of low γ and high σ. For the
average detection lag results (Figure 10) this is taken into
account: combinations with no detections are left out when
calculating the detection lag. This can for example be seen
in RMSe (Figure 10c), where for σ = 500 and σ = 1000
only results for γ > ∼ 50 are given. In the average detection
lag graphs it can be seen that in general higher values for γ
and lower values for σ lead to less detection lag. This was
expected, as this combination of hyperparameter values leads
to the highest order regression, allowing for the quickest
response to changes.

2) Sensitivity analysis of Dlim and ldet: Sensitivity
analysis is also performed for the two detection method
hyperparameters, Dlim (Figure 11) and ldet (Figure 12). For
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(a) Kp (b) τ (c) RMSe

(d) ζnms (e) ωnms (f) RMSu

Fig. 9: Sensitivity analysis results for different values of γ and σ, recall. The markers indicate default hyperparameter values (Table
III), as well as those optimised for highest recall (Table Va) and for least detection lag (Table Vb).

(a) Kp (b) τ (c) RMSe

(d) ζnms (e) ωnms (f) RMSu

Fig. 10: Sensitivity analysis results for different values of γ and σ, average detection lag. The markers indicate default
hyperparameter values (Table III), as well as those optimised for highest recall (Table Va) and for least detection lag (Table Vb).
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(a) Kp (b) τ (c) RMSe

(d) ζnms (e) ωnms (f) RMSu

Fig. 11: Sensitivity analysis results for different values of Dlim, both recall and average detection lag. The markers indicate default
hyperparameter values (Table III), as well as those optimised for highest recall (Table Va) and for least detection lag (Table Vb).

(a) Recall per parameter (b) Average detection lag per parameter

Fig. 12: Sensitivity analysis results for ldet

(a) Recall per parameter (b) Average detection lag per parameter

Fig. 13: Recall and average detection lag for varying nfuture
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(a) Kp (b) τ (c) RMSe

(d) ζnms (e) ωnms (f) RMSu

Fig. 14: Boxplot of detection lag for each of the four LS-SVR cases, and linear regression. The dashed horizontal line indicates the
median for linear regression.

Dlim optima can be found in the recall, while the average
detection lag increases for higher values of Dlim. This is
expected, as a higher threshold for detection means the
difference has to increase more. As a result it takes more
trials for the difference to pass the threshold value. The
influence of ldet on the detection results is less prominent.
For all but RMSe (in both cases) and RMSu (for recall) the
results stay approximately constant.

3) Selecting optimal hyperparameter values: Once the
sensitivity analysis has been completed, the optimal values
could be selected, and used in subsequent analysis steps. Two
optimised settings were taken: one optimised setting solely
for the highest recall (Case A), and a second, heuristically
optimised setting for the lowest average lag (Case B). For
Case A the values with highest recall were selected, while for
Case B the lowest value of average detection lag was taken as
leading, but it was checked if there is sufficient recall for this
combination of hyperparameters. For example, when looking
at ζnms, a combination of γ = 1000 and σ = 10 leads to the
least detection lag (Figure 10d). However, here the recall is
only 10/25, therefore this combination of values was deemed
insufficient. For ldet a minimum of three subsequent trials is
taken. The selected hyperparameter values for the two cases
are given in Tables Va and Vb, respectively. As described
in Section III-D3, Case C and D were introduced as well.
Their hyperparameter values are given in Tables Vc and Vd,
respectively.

C. Step 3: Direct comparison of LS-SVR with linear regression
With the optimised values for the hyperparameters a
comparison between detection using an LS-SVR model and

TABLE V: Hyperparameter values for the different cases in Step
3

(a) Case A, all optimised for highest recall

Kp τ ζnms ωnms RMSe RMSu

γ 1 5 0.5 0.5 1000 50
σ 50 50 50 50 100 500
Dlim 0.175 0.025 0.065 0.65 0.085 0.15
ldet 5 3 9 3 4 15

(b) Case B, all optimised for least lag

Kp τ ζnms ωnms RMSe RMSu

γ 1 1 0.5 0.5 10 0.5
σ 10 5 10 10 10 10
Dlim 0.1 0.015 0.040 0.5 0.07 0.1
ldet 3 3 3 3 3 5

(c) Case C, γ and σ optimised for highest recall

Kp τ ζnms ωnms RMSe RMSu

γ 1 5 0.5 0.5 1000 50
σ 50 50 50 50 100 500
Dlim 0.15 0.03 0.06 1.0 0.1 0.1
ldet 5 5 5 5 5 5

(d) Case D, γ and σ optimised for least lag

Kp τ ζnms ωnms RMSe RMSu

γ 1 1 0.5 0.5 10 0.5
σ 10 5 10 10 10 10
Dlim 0.15 0.03 0.06 1.0 0.1 0.1
ldet 5 5 5 5 5 5

a linear regression model can be made to see if the former
is an improvement on the latter. The data set consists of 200
simulations of a PD patient, and behavioural change detection
was performed using linear regression, as well as Case A and
Case B for LS-SVR. During the analysis it was discovered
that the optimum settings identified for Case A and Case B
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might not lead to optimal results, as explained in Section
III-D2, therefore Case C and D were introduced as well.

Table VI gives the confusion matrix for these results. For
most parameters, optimising for highest recall (Case A and
C) will indeed lead to more detections in LS-SVR than for
linear regression. For example, for ωnms, linear regression
has a 28% recall, versus 61% and 68% for Case A and
C respectively. This is the case for all parameters in Case
C, and all but RMSu in Case A (67.5% vs 70% for linear
regression). Another interesting point with LS-SVR is that
False Negatives are rare, especially in Case B and D (less
than 5%). However, for these cases (when optimising for
the lowest average detection lag, Case B and D) a lot of the
detections are False Positives: meaning they occur before
the point were symptoms are actually introduced. For Case
B, only RMSe and RMSu show an adequate detection
performance (39.5% and 66.5% respectively), with RMSu
being close to the linear regression. Case D has around the
same recall as the linear regression model, while on average
detecting changes much earlier. This implies that LS-SVR
has a much higher potential than linear regression, since for
Case D only γ and σ were optimised. Even better results can
be obtained with better hyperparameter selection for Dlim

and ldet.

The detection lag results can be found in Figure 14 which
gives a boxplot of the detection lag. For the cases optimised for
minimum detection lag, Case B (Kp, RMSe and RMSu) and
Case D (all parameters), the median detection lag is between
4 and 7 trials lower than for linear regression or LS-SVR case
A and C (an up to 30% improvement), and the spread is less
as well. Only τ is an exception, as for this parameter the
median is similar for all cases, while the spread is actually
lowest for linear regression. Interesting to note is that for
Case B there were no detections in τ en ωnms. This can also
be seen in Table VI: the regression becomes too sensitive,
and only results in False Positives. Furthermore, for Case A
and Case C, optimised for highest recall, it depends on the
selected hyperparameters if they perform better than linear
regression. For example, linear regression results in earlier
detections for Kp, ζnms, and RMSu, but for τ , ωnms, and
RMSe the results between linear regression and LS-SVR are
more similar. Finally, it can be seen that for Case D, optimised
for average detection lag, results in terms of recall are quite
similar to the results for linear regression, while the average
detection lag is significantly lower.

D. Step 4: Using projected future trials

The results of using data from projected future trials in
the regression is given in Figure 13. It shows the recall
and average detection lag for different values of nfuture.
For all parameters it can be seen that the average detection
lag decreases with 2-3 trials when looking further ahead,
as was expected. For all parameters except RMSe the lag
keeps decreasing, while for RMSe there is an optimum at
nfuture = 8. It can also be seen that the recall goes down

TABLE VI: Confusion matrix per parameter for the different
regression models in step 3, as percentage of the total of 200
simulated participants. Note that there are no True Negatives in
the data set.

Kp τ ζnms ωnms RMSe RMSu

Linear TP 75% 11.5% 58% 28% 75% 70%
regression FP 22.5% 16% 20% 19% 21% 20.5%

FN 2.5% 72.5% 22% 53% 4% 9.5%
LS-SVR TP 98% 24% 85.5% 61% 91% 67.5%
Case A FP 0% 72.5% 2.5% 34.5% 6% 3%

FN 2% 3.5% 12% 4.5% 3% 29.5%
LS-SVR TP 14% 0% 4.5% 0% 39.5% 66.5%
Case B FP 86% 100% 95.5% 100% 60.5% 33.5%

FN 0% 0% 0% 0% 0% 0%
LS-SVR TP 99% 36% 86.5% 68% 90.5% 88.5%
Case C FP 0.5% 46.5% 2.5% 8% 9% 5%

FN 0.5% 17.5% 11% 24% 0.5% 6.5%
LS-SVR TP 73.5% 23.5% 57.5% 27.5% 76% 66.5%
Case D FP 26.5% 72% 42% 69.5% 21.5% 33.5%

FN 0% 4.5% 0.5% 3% 2.5% 0%

as well, with RMSe and RMSu showing the greatest decline.
Only for ωnms does the recall slightly increase. This is
unexpected, and the reasoning will have to be investigated.

An example of the change in the difference for varying nfuture
is given in Figure 15. The results are given for Kp, as this
parameter consistently shows the best results, and is indicative
of what can be achieved. Here it can be seen that by looking
further ahead the difference graph shifts to higher values of
D̄, and the threshold (Dlim) is crossed earlier. Furthermore, in
Table VII the confusion matrix for Kp is given. When nfuture
increases the amount of False Positives increases, from 3.5%
(nfuture = 0) to 14.5% (nfuture = 14.5). This is unexpected,
and needs to be investigated further.

TABLE VII: Confusion matrix for Kp in Step 4, as percentage of
the total of 200 simulated participants

nfuture 0 2 4 6
TP 96.5% 93.5% 93.5% 91.5%
FP 3.5% 6.5% 6.5% 8.5%
FN 0% 0% 0% 0%

nfuture 8 10 12 14
TP 90% 89.5% 89.5% 85.5%
FP 10% 10.5% 10.5% 14.5%
FN 0% 0% 0% 0%

V. DISCUSSION AND RECOMMENDATIONS

A. Discussion

The goal of this paper was to investigate LS-SVR as a
potential improvement upon the linear regression model
used in by Lugtenborg for detecting behavioural changes
in PD progression [21]. By generating custom data sets
different configurations were tested, and the effect of
changing the regression model on the detection results was
directly compared in terms of recall and average detection lag.

In Step 1 the ability of LS-SVR to detect changes was tested
by comparing the detection results of a healthy group of
simulated participants with a symptomatic group. For the

15



Fig. 15: Difference graph for varying nfuture. Only Kp is shown,
for a single simulated participant. The horizontal line is the
threshold, Dlim.

healthy participants, the desired result (True Negative) was
obtained in at least 80% of cases, for all parameters except
RMSu (which still has over 60% accuracy). It shows the
ability of LS-SVR, with careful hyperparameter setting, to
filter out the day-to-day variation present in the data, and
only to react to actual changes in the control performance
over time. This is confirmed when looking at the simulated
patients. In particular, for Kp, ζnms, RMSe and RMSu a
changing trend is accurately detected (True Positive) in more
than 70% of cases. This indicates an improvement over the
results in earlier work, where more than 50% of cases were
True Positives [21]. In general, this analysis step shows
that LS-SVR is able to accurately detect the changes in
behavioural data from simulated in PD patients, and correctly
detects no changes in data from simulated healthy participants.

These initial results are promising, but the goal of this paper
was to investigate a potential improvement of LS-SVR over
linear regression. Therefore a direct comparison was made
between linear regression and four different configurations
of the LS-SVR model (Case A-D, as explained in Section
III-D3). When looking at recall, LS-SVR (Case A and C)
performs better than linear regression, with Case A showing
a an average increase of 50% across all parameters, and Case
C 80%. While this was expected, as these cases are optimised
for highest recall, the difference is still large. Especially when
looking at the two worst performing parameters overall, τ and
ωnms, more than the double amount of detections take place,
and for τ in Case D even triple. This shows that detection
based on LS-SVR is more sensitive than when using a linear
regression model, and more capable of distinguishing between
the natural variation and a trend due to PD. Interesting to
note is that even when optimised for low detection lag, as in
Case C, the recall of LS-SVR is similar to that of the linear
regression approach from the earlier work [21].

When looking at average detection lag, it can also be seen

that LS-SVR is an improvement over linear regression. Linear
regression on the dataset used for the experiment in step 3
has an average detection lag across all parameters of ca. 8
trials. This is slightly better than Lugtenborg’s results, were
the average was 10 trials[21]. However, LS-SVR shows better
results. For both Case B and D the average detection lag
is significantly lower, across all parameters, except τ : ca. 2
trials on average for Case B, and ca. 4 for Case D. However,
for Case B the recall is really poor. Only in RMSe are
changes being detected over half of the time. For τ and ωnms
the recall is 0/200, and most runs result in a False Positive
detection. This can be explained by the nature of the LS-SVR
model when optimised for the least detection lag, as in Case
B. In such cases the regression is highly sensitive to changes:
it will take on a higher order, and track the natural variation
in the data more closely. This leads to more trend changes
being detected in the healthy part of the data. For Case D a
balance has been found, in which the majority of detections
are True Positives, with the best RMSe having the highest
recall of 152/200. Only τ and ωnms have a low recall (47/200
and 52/200 respectively). In addition to this higher recall
than for Case B, Case D is still reacting to changes faster
than LS-SVR, with a 4 trial improvement. Another difference
between the detection performance of linear regression and
LS-SVR is that the spread of the average detection lag
is in general less for Case B and D. This indicates better
consistency for LS-SVR. In general it can be concluded that
LS-SVR performs better than linear regression in both recall
and average detection lag.

However, the specifics of the results are highly dependant on
the model parameter, as well as the hyperparameter settings.
From the results it can be concluded that Kp, RMSe,
and RMSu, and to a certain extent ζnms, show the best
performance in detecting behavioural changes, with ωnms
and in particular τ showing less changes detected. This can
be explained by comparing the mean and standard deviation
for data simulation and δ for these parameters (Tables I and
II). For Kp the average δ is double the standard deviation,
while for τ the average δ is four times smaller. This means
that the natural variation in τ is more likely to mask the
actual change due to PD in the data than with Kp. This is
in line with the findings in earlier work [23, 21], where the
difference between healthy participants and PD patients is
greatest in Kp and smallest in τ . For further study towards
clinical application it is thus recommended to focus on these
high performing parameters.

When comparing the new LS-SVR model proposed in this
paper with the linear regression model used in earlier work
a definite improvement can be found. However, there is a
large influence of the value of the hyperparameters, γ, σ,
Dlim, and ldet, on the results, both in terms of recall and
average detection lag, and understanding this influence would
help setting up the method in this paper for best detection
performance. As explained in Section IV-B, optimal values in
the individual hyperparameters can be found. However, the
sensitivity analysis in this paper is done individually. From
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the results it can be concluded that the hyperparameters are
highly dependant upon the values of the other parameters.
An indication of this can already be found in the results for
the sensitivity analysis for γ and σ: changing the value of
one significantly the effect of the other. This was expected,
as both parameters control the order of LS-SVR regression.
However, from the results in step 3, when comparing Case
A and C and Case B and D, it can be concluded that the
interaction with the values for Dlim and ldet is of greater
influence than expected. Only taking the optimised values
for γ and σ, and setting Dlim and ldet to the value used in
the sensitivity analysis, leads to better results than taking the
optimised values for all four hyperparameters. In a future
study a complete dependent sensitivity analysis is needed for
even better performance of the detection method using the
LS-SVR model.

The final step was to use data from predicted trials to im-
prove the detection performance. The results from this step
show that this is indeed the case: behavioural changes are
indeed detected earlier by looking further ahead. Though the
difference was only 2-3 trials, this can still be clinically
relevant. On the other hand, the amount of False Positives
detections increased when increasing nfuture. The results for
using projected future trials are a good first step. However,
there are still some unknowns. For example, the interaction
with the different hyperparameters, especially ldet, could be
of great influence on the results. Further research is required
before this aspect of the detection method can be fully utilised.
With this step the trade-off between optimising the model for
a high recall or for low detection lag was clearly influential.
This trade-off has been comping up throughout this paper. For
clinical application one wants to have an as early detection
as possible, but not at the cost of too many False Positives,
and False Negatives need to be avoided as much as possible.
This requires careful tuning of all hyperparameters, and further
research should focus upon expanding on the work done in this
paper and develop a working prototype for clinical application.

B. Recommendations for future research

The results obtained in this research show that LS-SVR is an
improvement upon linear regression for detecting behavioural
changes in PD tracking data. As a proof-of-concept the
model used in this paper shows great promise. However,
more research is needed before this approach can be used in
a clinical setting. There are three main areas on which future
research should focus.

Firstly, for this paper a simulated data set was used, based
upon the measured data from earlier work [21]. While the
data simulation procedure accurately reflects the average
measured data taken, all the simulated participants used in
this paper are based on a single normal distribution for each
parameter (Table I), which might lead to biased results.
Additionally, the method of simulating PD symptoms used
in this research is not completely reflective of reality. While
this paper uses a step function to simulate a sudden decline

in control performance, in real patients this decline would
be more gradual. It is expected that LS-SVR would still be
an excellent way of tracking this decline, as the underlying
distribution is irrelevant to the regression algorithm, and with
the right combination of hyperparameters any distribution
can be modelled [42]. This will have to be tested with an
extended simulation data set with different parameters for
the simulation and different underlying trends in the data.
Furthermore, validation with measured data from a varying
group of healthy people and PD patients is desired.

Secondly, the work in this paper focuses on a general group
analysis. Most results are in the form of averages and
accumulations, and the way the hyperparameter values have
been determined is based upon these results. Furthermore,
the procedure for differentiating between True Positives and
False Positives in this paper is based upon prior knowledge
(the trial number at which PD simulated symptoms start).
For practical application in a clinical setting however, the
model should be applicable to the individual. Hyperparameter
settings and other model details will vary from person to
person, and a procedure for finding their values will have
to be created. A recommended first next step is thus to
gather data from actual patients, and develop a method for
hyperparameter tuning that leads to the desired results in
terms of detection lag, and the amount of False Positives and
True Negatives.

Lastly, in this paper, analysis is based on the individual
model parameters. Combining the model parameters into a
multivariate regression model might lead to even better results.
Such multivariate (Least Squares) Support Vector Regression
models are used in literature to predict an outcome variable,
such as air pollution [47] and brain lesion mapping [48].
For this research project a multivariate model could be used
to predict a PD-score, for example relating it to the MDS-
UPDRS, or developing a new scoring metric.

VI. CONCLUSIONS

The goal of this study was to investigate the potential of
Least Squares Support Vector Regression (LS-SVR) as an
improvement over linear regression in detecting behavioural
changes in control performance due to Parkinson’s Disease.
The new model was compared in terms of detection accuracy
and latency, and the effect of its hyperparameter settings on
the detection performance of the method was investigated.

From this research it can be concluded that LS-SVR is indeed
an improvement, detecting changes in behavioural data earlier
and more often: depending on the hyperparameter settings an
improvement of 50-80% in accuracy and a 30% improvement
in latency was found. In addition, the sensitivity analysis
done in this research revealed that with optimal tuning of the
hyperparameters even better results can be reached. Finally,
the effect of using data from predicted future trials was
investigated, showing potential for further reducing latency.
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Further research steps should focus upon experiments with
actual patients to validate the work done in this paper and
to develop procedures for individual hyperparameter tuning.
Overall, LS-SVR shows definite improvement over the earlier
linear regression model and this paper is a further step towards
a clinical applicable method.
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1
Introduction

Around the world, more than 10 million people are living with Parkinson’s Disease (PD)1, a neurodegenerative
disease that impacts almost everything in a patients life, from simple tasks such as drinking a cup of coffee,
to more complex and abstract problems such as living a happy live. It is a progressive disease, meaning it
gets worse over time, its causes are largely unknown, and as of yet no cure has been discovered. Furthermore,
the degradation and symptom progression are poorly understood and hard to predict, and palliative care
is highly patient specific and trial and error based. But, fortunately, research is ongoing in all these areas.
Biologists and pathologists are studying PD’s causes [1], physicians and pharmacists are looking for cures [2],
and different types of research are being done into objectifying diagnoses, quantifying disease progression,
and evaluating symptom treatments.

One of the research areas currently active is in quantifying disease progression based on the motor symptoms
of Parkinson’s. Some of the main debilitating factors of PD are symptoms such as bradykinesia (slowness of
movement), rigidity, and a rest tremor, occurring in almost all patients [3]. These motor symptoms are some
of the most obvious features of the disease, and are qualitatively well described. However, evaluating the
progression of the disease and the effectiveness of treatment is currently being done using questionnaires
and subjective evaluation by neurologists [4]. But so far no objective evaluation method has been developed,
and there is an unmet need for more quantitative ways of evaluating these motor symptoms.
One way this problem can be solved is through a line of study currently being conducted by a collabora-
tion between the TU Delft Faculty of Aerospace Engineering, and the Erasmus Medical Center. This line
of research applies cybernetic methods to research the decline in fine-motor performance caused by neu-
rodegenerative disorders. Cybernetics in this context is defined by Mulder et al. as "a system-theoretical,
model-based approach to understand and mathematically model how humans control vehicles and devices"
[5], and it is widely used in Aerospace Engineering to model the pilot of an aircraft. This modelling of humans
can also be applied in other areas, as is done in this thesis.

The idea behind the research conducted in this area is that a tracking task, in which a human operator needs
to track a target on a screen, can be used to measure certain cybernetic parameters. Earlier research proved
that these cybernetic parameters differ significantly for PD patients when performing a tracking task [6].
Lugtenborg (2020) used this knowledge to create a ’proof-of-concept’ for a diagnostic tool that will measure
the tracking task control of PD patients, and from this longitudinal data identify behavioural trends in motor
performance [7]. Whereas Lugtenborg looked at linear trends in the data, this thesis will also look at non-
linear trend detection methods. This will be done by surveying different machine learning methods capable
of detecting non-linear trends. Machine learning is a form of artificial intelligence, in which an algorithm im-
proves automatically through experience. Lately, it has been hailed as the solution to many problems, though
a lot of applications are still ’proof-of-concept’. Likewise, machine learning has seen various applications in
healthcare and research into neurodegenerative disease specifically, and is seen by some as the solution to
better diagnosis and treatment [8]. Also for this thesis it will be explored as a solution to finding non-linear
trends, since it is accurate, can capture highly complex relationships and is easily adapted and scaled. In this
thesis a selection of machine learning algorithms is tested and the best performing further improved.

1https://www.parkinson.org/Understanding-Parkinsons/Statistics, retrieved on 8 November 2020
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28 1. Introduction

This report gives the initial findings of the literature study, as well as a providing a plan for further research.
It starts by outlining the research objective and research questions in the rest of this chapter. Afterwards,
Chapter 2 gives an overview of Parkinson’s Disease and discusses its symptoms, diagnosis, progression and
treatment. It also explains the effects PD has on fine-motor performance and thus on tracking task control.
Subsequently, Chapter 3 covers the basics of the tracking task used for this research, as well as a discussion
on the nature of the data set and simulation of new data. After that, in Chapter 4 the field of machine learning
is outlined. It gives an overview of the most important concepts, and surveys the wide range of algorithms
available. Then, in Chapter 5 the selection of the candidate models is discussed, and the selected algorithms
are explained. Finally, in Chapter 6 the literature study is concluded, and the steps for further research are
explained.

1.1. Research objective and research questions
This research project has the following objective:

"To contribute to the development of quantitative ways of evaluating Parkinson’s Disease pro-
gression, in particular fine-motor skills, by using nonlinear trend analysis to identify behavioural
changes in tracking task control."

Keeping the objective of this research in mind, the main research question can be stated as follows:

"What is the best method for detecting a change in tracking task motor behaviour due to Parkin-
son’s disease symptoms in varying human controller data?"

Sub-questions can be defined, arising from the main research question:

1. How can the change in a PD patients tracking task control be simulated?

(a) How does the motor behaviour of PD patients change over time?

(b) What data needs to be simulated, and what are the steps that need to be taken in order to simulate
this change in tracking task motor behaviour?

(c) How can the change of motor behaviour be accurately represented in the simulated data, and how
can a variability be introduced?

(d) Which bootstrapping method best preserves the dependence present in the participant data?

2. What criteria are relevant for evaluating the performance of the chosen models?

3. Do nonlinear trend detection methods perform better than linear methods when applied to this data
set of simulated tracking task data?

(a) How do linear methods perform when applied to this data set?

(b) Which nonlinear methods are available, and which of these is most fitting for solving the problem
in this research?

(c) How does the chosen nonlinear model compare to the earlier used linear methods when applied
to varying levels of motor symptom change?

(d) Does the model have to be unique for each individual, or can a training dataset be used that com-
bines data from multiple individuals?



2
Parkinson’s Disease

In this chapter some of the aspects of Parkinson’s Disease (PD) relevant to this research topic are discussed.
The chapter starts with a general introduction of the disease, its symptoms and causes in Section 2.1. Then
the way PD is diagnosed and treated is discussed in Section 2.2 and 2.3, respectively. Finally the relation
between PD and fine-motor skills is discussed in Section 2.4, and the chapter is concluded in Section 2.5.

2.1. Introduction to Parkinson’s disease
Parkinson’s Disease is a brain disorder, characterised by the cell death of many of the neurons in the Substan-
tia nigra, a small part of the midbrain [9] (see Figure 2.1.1) These neurons are responsible for the creation of
dopamine, and their deaths lead to a shortage of this neurotransmitter. Dopamine is vital for the coordina-
tion and effective planning of movements [10], and lack of it causes the classical motor symptoms associated
with the disease [1]. With more than 10 million people living with PD worldwide2, it is the second most com-
mon neurodegenerative disorder (after Alzheimer’s Disease). Yet much about the disease is unknown; we do
not know what causes it, and there is no cure [2].

In many patients PD first manifests as a slight tremor in one of the hands, but other early symptoms include
difficulty with walking, rigidity and bradykinesia (slowness of movement) [1]. These motor symptoms are
the most well known aspect about the disease. It was in fact James Parkinson who first published a detailed
description of these symptoms in his An Essay on the Shaking Palsy, back in 1817 [11]. Since then, much
research has been put into describing and measuring these symptoms. As PD progresses, these motor symp-
toms worsen, and in the later stages of the disease a patient typically experiences postural instability, speech

1Modified from: https://upload.wikimedia.org/wikipedia/commons/9/9e/Basal_ganglia_circuits.svg, retrieved on 29
September 2020

2https://www.parkinson.org/Understanding-Parkinsons/Statistics, retrieved on 8 November 2020

Figure 2.1: The location of the Substantia nigra within the brain, given in black.1
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dysfunction, and difficulty swallowing [1, 4]. Unfortunately, Parkinson’s Disease also comes with neuropsy-
chiatric symptoms [3, 12]: dementia caused by PD is prevalent under patients (up to 78% [13]). This PD de-
mentia is furthermore associated with depression, anxiety, apathy and hallucinations. Additionally, patients
often develop sleep disorders, bladder dysfunction, and several sensory symptoms.

Although the exact cause of PD has yet to be determined, research indicates that a combination of environ-
mental and genetic factors is working together to cause the disease [1]. The greatest risk factor for developing
PD is age: incidence rises exponentially after the age of 60 [14]. Furthermore, more males than females suf-
fer from the disease (approximately 3:2 [1]). Other risk factors are of environmental nature. Among others,
exposure to pesticides and prior head injury increase the risk of contracting PD, while smoking and coffee
consumption lower the risk [14]. Overall, many risk factors and their effects are largely unknown, and the
epidemiology of PD is poorly understood.

2.2. Diagnosis
Parkinson’s Disease is hard to explicitly identify: there is no test that will give a definite diagnosis. Instead,
clinical criteria are used [1, 3]: both the presence of the cardinal motor symptoms (bradykinesia, tremor,
rigidity, and postural instability), as well as the absence of certain symptoms that would point to a different
diagnosis are used as indicators for a possible case of PD. Furthermore, the patient’s response to dopaminer-
gic treatments is evaluated [3].

One of the difficulties of diagnosing PD is that the syndrome Parkinsonism, the condition that causes many
of the movement disorders seen in PD, can have other causes, such as medications (drug-induced parkin-
sonism), small strokes (vascular parkinsonism), or other neurodegenerative diseases that intially present in
a similar way (e.g. progressive supranuclear palsy) [4]. There are a couple important differences between PD
and Parkinsonism from other causes. PD is a progressive disease, meaning it gets worse over time. This is
not necessarily the case for other forms of Parkinsonism. Secondly, the symptoms of PD can somewhat be
treated with dopaminergic medications, while these medications have no or even detrimental effect when
used for other causes3. When diagnosing PD, the presence of red flags suggesting other causes of the motor
symptoms should be considered carefully. The US National Institute of Neurological Disorders and Stroke
(NINDS) defines criteria for Possible PD, Probable PD, and Definite PD, depending on how many of the PD
cardinal motor symptoms are present, and the severity of the red flags [15]. Features suggesting alternative
diagnoses can be found using neuroimaging and lab tests, but unfortunately no method has been developed
yet that incorporates these tools for positively diagnosing PD. The definite diagnosis for PD can only be given
after the presence of biological indicators has been observed through autopsy.

In order to overcome these problems a lot of research is performed into developing new methods for diag-
nosing Parkinson’s Disease. Many of these methods involve analysis of early motor symptoms. These will
be discussed in Section 2.4. A second area of research is evaluating speech patterns. Little (2009) collected
voice measurements from healthy persons and PD patients, and developed a new way to measure dysphonia
(disorders of the voice), that is "robust to many uncontrollable confounding effects including noisy acoustic
environments and normal, healthy variations in voice frequency" (p. 1015) [16]. Using a machine learning
algorithm to classify these new measures of voice data into either coming from a healthy person or a PD pa-
tient, a correct classification performance of 91.4% was reached. Das (2010) used the data collected by Little
to compare the performance of different machine learning algorithms, and achieved a 92.9% accuracy using
neural networks [17]. Other studies using similar methods reached similar levels of accuracy [18, 19].

Machine learning algorithms are also used in conjunction with gait analysis. In Abdulhay (2018) [20], mea-
surements of vertical ground reaction force during two minutes of walking on level ground are used to eval-
uate different parts of the gait cycle (stance time, swing time), as well as the stride period and the foot strike
profile. Applying this data to a Medium Gaussian SVM machine learning algorithm, a 94% classification ac-
curacy was reached. Other studies combining gait analysis data performed similarly [21]. Unfortunately,
both speech and gait analysis methods are still very much in development, and not yet applicable in clinical
practice.

3https://davisphinneyfoundation.org/parkinsons-vs-parkinsonism/, retrieved on 25 October 2020

https://davisphinneyfoundation.org/parkinsons-vs-parkinsonism/
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2.3. Progression and treatment
Parkinson’s Disease is progressive and chronic, meaning that the symptoms worsen over time and no cure is
available. This means treatment of PD is focused on treating the symptoms, and the used treatment approach
depends on the disease stage [1].

The main treatment for the PD motor symptoms is dopaminergic function enhancing drugs, such as Lev-
odopa, dopamine agonists, and monoamine oxidase type B inhibitors. These drugs do not alter the course
of the disease, and thus treatment can be started at any time. However, a trade-off has to be made between
symptom relief and the side-effects these medications have [1, 22]. The Levodopa related side effects are es-
pecially relevant for this study, as these influence the motor performance of patients that take the medication.

Levodopa is an amino-acid common in humans, and it is the precursor to dopamine. Since PD patients are
deficient in dopamine, which is the cause of the motor symptoms, artificially introducing Levodopa, which
gets transformed into dopamine, helps to alleviate some of these symptoms [23], mainly bradykinesia and
rigidity. Unfortunately, long-term treatment with the drug requires higher and higher doses, leading to a high
chance (40-50% in the first five years of chronic treatment, 70-80% after 10 years [7]) of developing Levodopa-
Induced Dyskinesia (LID). LID involves dyskinesia (involuntary muscle movements) and motor fluctuations
[23, 24], and can cause problems in the lives of patients. Although no way has been found to administer
Levodopa long-term without it resulting in LID, most patients prefer this over the PD motor symptoms [25].

Since PD is a progressive disease the treatment options are different based on the stage the disease is in. Sub-
jective rating scales are used in order to monitor the progression and plan treatment. The most-commonly
used and best tested rating scale is the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) [26]. It considers both the symptoms and the experiences of daily living, and makes a dis-
tinction between motor and non-motor symptoms [27]. The MDS-UPDRS is divided into four parts, that are
given in Table 2.1. Other scales are used as well, and the most well known of these is the Hoehn and Yahr
Rating Scale [4]. It is much simpler than the MDS-UPDRS, but due to that its use is more limited. It does not
cover all motor-symptoms, and none of the non-motor symptoms [28].

Table 2.1: The four parts of the MDS-UPDRS, with an example question topic for each of the parts. Part 1 & 2 are filled in by the patient,
whereas part 3 & 4 are filled in by the examiner [29].

Part Topic Example question topic
I Non-motor experiences of daily living Depressed mood
II Motor experiences of daily living Eating tasks
III Motor examination Gait
IV Motor complications Time spent with dyskinesia

In general, there is no best rating scale, it depends on the patients and their circumstances. However, there
are a few points one has to keep in mind. Rating scales are subjective, and the outcome depends on the spe-
cific patient, but also on the examiner. Not only that, the time a rating scale interview is done also matters.
Patients experience good and bad days, and symptoms can even vary over the course of the day. Further-
more, depending on the medication given to the patient LID might be present. These limitations indicate the
need for more objective methods [30]. Research is being done into human behaviour coding in video record-
ings [26], wearing sensors to evaluate motor performance [31, 32], and even using smartphones to evaluate
various aspects of PD [30, 33]. Unfortunately, this research is still in the early stages, and there are still many
challenges that have to solved before home-based monitoring systems can become commonplace.

2.4. The relation between Parkinson’s disease and fine-motor performance
For this study, the main point of attention is PD’s influence on fine motor skills. Parkinson’s disease affects
the substantia negra in the basal ganglia of the brain (see Figure 2.1). These areas are involved in the process
of cognitive-motor decisions, which involve decision making and voluntary movement generation [34]. This
can be seen by the orange lines in Figure 2.2 [34]. Damage in this area of the brain causes bradykinesia
[35], difficulty in executing sequential movements [36], and decreased ability to coordinate and synchronise
movements [37], all of which decrease the patients ability to perform fine motor functions.
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Figure 2.2: Schematic depiction of the neural pathways involved in eye-hand movement generation [34]

A lot of research has been done on this decrease in ability. Flowers (1978) found that PD patients have diffi-
culties in their control during continuous movements, and for simple multisine signal tracking tasks perform
slower than healthy persons of the same age [38, 39]. Furthermore, research found that PD patients are de-
ficient in the strategy of movement; it seems they have trouble predictively controlling their movements due
to a lack of a dynamic ’internal model’ [40]. This reduction in prediction capabilities was also observed by
Jones [41]. The effect of dopaminergic medications (such as Levodopa) on the fine-motor skills of PD patients
varies. Some problems, such as the tendency to overshoot a target, are reduced when using medication (the
damping ratio is increased) [42]. Furthermore, it was found that the natural frequency of movements tends
to become more similar to healthy persons. In contrary, many patients limit the range (amplitude) of their
movements; this is not changed when using medication [43].

De Boer (2015) evaluated fine-motor performance using "precise measurements of eye- and hand parame-
ters during visuomotor coordination tasks with varying cognitive load" (p. 150) [34]. In this research it was
found that the movements of early-stage Parkinson’s patients were slower when reaching for targets. In order
to further investigate the dynamics of fine-motor performance in patients suffering from neurodegenerative
disorders, a collaborative research project was set up between the department of Neuroscience of the Eras-
mus Medical Center and the faculty of Aerospace Engineering of Delft University of Technology. This research
focuses on using cybernetics to quantify the decline in fine-motor performance caused by neurodegenera-
tive disorders. De Vries (2016), building on the work of Flowers (1978), Jones (1989), and Hufschmidt (1995)
[40–42], used a pursuit tracking task to show that PD patients have a lower control gain, but increased damp-
ing and higher control variability [6]. Lugtenborg (2020) developed a trend analysis method for quantifying
the decline in motor performance for PD patients [7]. Using a general linear regression model she was able
to successfully detect trends in tracking task data. However, nonlinear trends were not explored in this work,
and they might provide a better fit. That is where this research comes in.

2.5. Conclusions
This chapter gave an overview of Parkinson’s Disease. It has become clear that PD is a highly individual
disease; every patient experiences it differently, and the symptoms differ wildly. There is no comprehensive
and objective clinical method for diagnosing the disease, nor for monitoring its progression, though clearly
there is a need for such a method. This research will further develop one approach for solving this problem.
Earlier research proved that a cybernetic tracking task can be used for measuring the impact PD has on the
fine-motor skills of patients. Subsequently, a way to detect linear trends in longitudinal patient data was
developed. However, the most optimal way for detecting trends (and thus tracking progression) is not yet
known. This research will develop a way of detecting nonlinear trends in the data, and compares this against
the methods developed earlier. State-of-the-art in detecting nonlinear trends is by making use of machine
learning techniques [8], and those will be used in this research as well.
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Tracking tasks and the data set

In this chapter the problem at hand for this research will be analysed, by looking at the tracking task and
data set that will be used. It starts with a description of the tracking task in Section 3.1. Due to the Covid-19
pandemic gathering data from real patients was undesired, and therefore a procedure for simulating artificial
data is explained in Section 3.2. Then, in Section 3.3 a preliminary data simulation is discussed, and the
chapter is concluded in Section 3.4 with a summary of the problem that will be solved using machine learning.

3.1. Tracking task for evaluating fine-motor control
As discussed in Chapter 2, tracking tasks can be used to track fine-motor performance, and earlier research
has been done into this area. De Vries (2016) and Lugtenborg (2020) defined a particular tracking task, that
is capable of detecting changes due to PD motor symptoms, and this task will also be used in this research
[6, 7]. A condensed overview of the task, defined using control theory principles, will be given in this section,
and a more elaborate view can be found in the earlier research.

3.1.1. Types of control
The control behaviour of a human controller (HC) differs depending on the task. In their 1960 paper, Krendel
and McRuer described three different control classifications: [44]

• With Compensatory control the only input for the HC is the error signal between their output and the
target signal.

• For Pursuit control the HC gets the actual signals of the output and target as input, and can use that to
derive the error themselves.

• Finally, with Precognitive control the HC knows the target and necessary input completely.
Different displays are used for the different control classifications, from which the HC gathers their informa-
tion. Figure 3.1a gives an example of a compensatory display and Figure 3.1b of a pursuit display [45]. Figure
3.1c shows a preview display [45]. This is a more advanced display for pursuit control, where apart from the
output and target also the future path of the target signal is given. Regarding precognitive control, this is
only possible when the target signal is super predictable, and this is thus independent of the type of display
used. Earlier work determined that for this research, where the focus lies on elderly people and PD patients,
a pursuit display would be most optimal [6, 7].

Figure 3.1: An example of a compensatory (a), pursuit (b), and preview display (c) [45]. A preview display attempts to provide the HC
with as much information as possible by providing the future path of the target signal.

33
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3.1.2. Block diagram
The block diagram corresponding to a pursuit tracking task is given in Figure 3.2 [45]. The HC is represented
by controller, and the element that needs to be controlled by Hce , which is acted upon by the control signal
(u(t )) from the controller and the external disturbance ( fd (t )). The controller takes three information sources
as input, the controlled element output (y(t )), the target signal ( ft (t )), and the error signal (e(t )), as well as
the as well as the nonlinear remnant, n(t ), present when modelling humans.

Figure 3.2: Block diagram of a pursuit tracking task, adapted from [45].

The system given in Figure 3.2 is overdetermined, meaning that it can be simplified. Often this is done by
removing the y(t ) feedback [7], meaning that the HC only uses the error and target signal. A further simplifi-
cation can be made by looking at the controlled element. It is defined by single integrator dynamics, as given
in Equation 3.1, where its gain, Kc , is taken to be equal to 1.

Hce = Kc

s
(3.1)

When controlling single integrator dynamics in a pursuit task, the HC does not use the target input func-
tion [46], and the model can thus be reduced to what is effectively a compensatory control task, as shown in
Figure 3.3 [45], where the controlled element dynamics are as given in Equation 3.1. The disturbance forc-
ing function has become redundant due to the single-input-single-output nature of the system [7], and the
controller dynamics and target forcing function will be described next.

Figure 3.3: Block diagram of a compensatory tracking task, adapted from [45].

3.1.3. Controller
The controller represents the dynamics of the human operator. The dynamics follow from the extended
crossover model, defined by McRuer and Hex (1967) as a combination of a linear model and a nonlinear
remnant [47]. The linear part consists of the dynamics of the neuromuscular system, a pure delay term, and a
pilot equalisation model, taken to be a pure gain term for a single-integrator control task. It is given in Equa-
tion 3.2, . The contribution of the nonlinear remnant can be neglected by using a properly designed forcing
function, with a high signal-to-noise ratio (SNR) at the excitation frequencies [48]. Such a forcing function is
defined in the next section.



3.2. Data set 35

Hpe (s) = Kp e−sτ ω2
nms

s2 +2ζnmsωnms s +ω2
nms︸ ︷︷ ︸

Neuromuscular dynamics

(3.2)

3.1.4. Forcing function
The forcing function takes the form of a quasi-random multisine signal, with k different sines, as given in
Equation 3.3. N f is the number of sines, and each sine has amplitude A f , frequency ω f , and phase φ f .

ft (t ) =
N f∑

k=1
A fk

sin
(
ω fk

t +φ fk

)
(3.3)

The frequencies are obtained by multiplying the base frequency, ωm , by a prime integer, n f , as in Equa-
tion 3.4, where Tm is the measuring time (taken by De Vries as 40.96 seconds [6]).

ω f = n f ∗ωm = n f ∗
2π

Tm
n f =

{
4,7,13,19,29,37,43,53,79,109,157

}
(3.4)

The amplitudes come from Equation 3.5, scaled by Equation 3.6 in order to set the standard deviation to 1.

A fk
=

∣∣∣∣
(
1+0.1 jω fk

)2(
1+0.8 jω fk

)2

∣∣∣∣ (3.5)

A fk
:= A fk

∗
√

1

σA f

(3.6)

Finally, the phase is taken at random with a couple constraints defined by De Vries [6], and given in Equa-
tion 3.7.

φ f =
{
7.239,0.506,7.860,8.184,9.012,6.141,6.776,6.265,4.432,2.672,8.009

}
(3.7)

3.2. Data set
The second part of this chapter concerns the data set that will be used in this research. In order to train and
validate a machine learning model a sufficiently large data set is needed; the more data the more accurate the
model. Secondly, as will be explained in Section 4.2, models trained using a small data set are more prone to
over-fitting. However, due to current circumstances1, it is undesirable to gather new data from human test
subjects. Therefore another solution has to be found. Here, previous research can help. Data gathered by
Lugtenborg (2020) [7], will be used as a reference for creating an artificial dataset of both healthy persons, as
well as PD patients. This dataset will subsequently be used to train the machine learning models.

3.2.1. Measured data
The basis of the data used for this research is the data gathered by testing human subjects in earlier research
[7]. This data takes the form of panel data: different observations for different entities at different points in
time [49]. The data set consists of trial data of 25 healthy participants. Each participant completed 50 trials,
with each trial consisting of performing the tracking task explained in Section 3.1. Performing the tracking
tasks works as depicted in Figure 3.4 [7]: the target (black circle) moves across the screen, and the participant
is tasked with reducing the error between the target and the system output (blue dot), by moving the blue dot
with their finger, as depicted in Figure 3.5 [7]. Each experiment is repeated for the other hand.

From the experiments the time trace of the control and output signals are recorded. An example of the
output signal is given in Figure 3.6, where it is shown together with the target signal [7]. From this, and
the known time trace of the forcing function, system identification techniques can be used to solve for the
unknown controller parameters in the human controller model described in subsection 3.1.3: Kp , τ, ζnms ,
and ωnms [47]. These parameters are the footprint of a human’s control performance, and De Vries (2016)
showed that there is a significant difference in their values when comparing healthy subjects to PD patients,

1This research is being carried out during the height of the Covid-19 pandemic.
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Figure 3.4: A schematic overview of the tracking task performed
by the participants. [7]

Figure 3.5: The experiment set-up. Participants manipulate the
blue dot via a touchscreen. [7]

Figure 3.6: An example of the time trace of the target (blue) and output signal (red). [7]

as explained in Chapter 2 [6]. An example of the values of each of the parameters can be found in Figure 3.10
[7].

3.2.2. Improving the data set
As explained earlier the data is obtained from healthy participants and therefore no significant trend is ex-
pected in the data, as there is no decline in fine-motor skills (just day-to-day variations). In order to progress
with this research a method has to be setup to simulate this decline.

This simulation will be done in two steps. First, 25 additional data points are constructed using bootstrap-
ping. With bootstrapping one draws random samples with replacement from the data [50]. Unfortunately,
one of the core assumptions of standard bootstrapping methods is that the data is independent and identi-
cally distributed (i.i.d.). With time series data this is not the case, as each data point depends on previous
data points. Drawing random samples from the data ignores this dependency. Therefore, another method
has been proposed: the block bootstrap. This method, first introduced by Künsch (1989) [51], divides the
data into overlapping block of length l , determined by Equation 3.8, where N is the length of the time series.
The block consists of l entries of the time series, in order, with the first block starting at the first entry of
the time series, the second block at the second entry, etc. To prevent the first few entries of the time series
from occuring less than the others, the data is wrapped around in a circle, meaning the last block consists of
the entries {yn , y0, y1, ..., yl−1}. Instead of sampling single entries entire blocks are sampled, preserving the
dependent structure within the separate blocks.

l = ⌈
N 1/3⌉ (3.8)

According to Künsch, observations are nearly uncorrelated when they are far enough separated in time, in-
dicating the blocks can be sampled at random. Much research is still being done into bootstrapping time
series, and one problem persists: the block bootstrap tends to make the dependency present in the time
series weaker [52]. In order to overcome this problem, Politis and Romano (1994) proposed the stationary
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Table 3.1: Range of parameter changes for simulated PD symptoms
[7]

Mild Symptoms Severe Symptoms
Kp −0.5 < δ< 0 −0.9 < δ< 0
τ 0 < δ< 0.02 0 < δ< 0.07

ζnms 0 < δ< 0.2 0 < δ< 0.31
ωnms 0 < δ< 3 0 < δ< 5

Figure 3.7: Comparison of Kp values for healthy people and
PD patients. [6]

bootstrap [53]. Here, sampling is still done in blocks, but the block length is no longer fixed. Instead it is a
random variable L, with its probability distribution equal to the geometric distribution with parameter p, as
given in Equation 3.9. In order to select p the desired average block length, λ can be used, since λ = p−1. λ
itself can be determined in a similar way to l in the block bootstrap, by using Equation 3.8.

P (L = j ) = (1−p) j−1p (3.9)

The second step in simulating the required trend in the data is artificially inducing a decline in motor skills
by manipulating the constructed parameters in such a way that it simulates the decline of motor skills in PD
patients. This is done by adding a δ to each of the bootstrapped data points. This δ is selected at random
from a predefined range, that can be found in Table 3.1. The range is constructed by Lugtenborg (2020) [7],
based on experiments with PD patients carried out by De Vries (2016) [6]. An example of the results of these
experiments can be found in Figure 3.7. δ is constructed subjectively, with mild and severe symptoms corre-
sponding to the average and extreme difference in values, respectively. The random drawing of 25 different
δ results in a variation in symptom severity per trial, for each specific case. This variation accounts for the
real life differences in control of PD patients on good and bad days, as explained in Chapter 2 [1]. In the ideal
case the trend introduced into the data set in this way matches the real life trend that exists within PD patient
data.

3.3. Data simulation
As explained in the previous section, not only will the data measured by Lugtenborg be used as input for the
trend analysis, additional data points will be simulated using bootstrapping [7]. Simulating data allows for
increasing the size of the dataset, but another benefit is that the data set is ’clean’, meaning the prediction
models can be more accurately tested and assessed. In this section the simulation of the data through a
Python script will be explained, and the initial results will be shown and compared to the measured data.

3.3.1. Performance parameters
First two new performance parameters will be introduced [7]. These performance parameters give an indica-
tion of how well the HC in controlling the controlled element. The performance parameters are the tracking
performance, RMSe , given by Equation 3.10 and the control activity, RMSu , given by Equation 3.11. In both
equations, RMS() indicates taking the root mean squared value of the signal. The former gives an indication
of how well the test subject is performing the control task, and the latter parameter indicates the extend to
which the participant is actively controlling the system; a high value indicates high control activity.

RMSe = RMS(e)/RMS( ft ) (3.10)

RMSu = RMS(e)/RMS(u) (3.11)

The value of the performance parameters is determined by running the control system depicted in Figure 3.2,
and obtaining its time response. The different signals, e(t ), u(t ), and y(t ) come from running the system. The
system is run in Python, with as input the forcing function described in subsection 3.1.4. In order to run the
system the delay term has to be linearised, and this is done using a third-order Padé approximation [54], as
given in Equation 3.12.
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Figure 3.8: Phase response of the third order Padé approximation of e−0.9s . The blue line is the Padé approximation of the pure delay,
given by the red line. As can be seen, the approximation starts to diverge at around x = 7, where x denotes the frequency, w [rad/s].

e−sτ ≈ −τ3s3 +12τ2s2 −60τs +120

τ3s3 +12τ2s2 +60τs +120
(3.12)

Through trial and error it was found that a third-order approximation was sufficient. At the extreme values of
τ (τ = 0.9 s) it matches the phase response of a pure delay, as can be seen in Figure 3.8. Beyond w ≈ 7 rad/s
it starts to diverge significantly, however, this is also where the magnitude of the response starts the decrease,
lessening the impact the diversion has on the final simulation result.

3.3.2. Preliminary data simulation
In order to prepare for further research a preliminary data simulation script was developed to test the sim-
ulation process. Random samples are drawn from a normal distribution, with mean and standard deviation
taken from the data of Lugtenborg [7], for each of the four human controller parameters. Then, the 25 ad-
ditional data points are obtained through block bootstrapping, and the delta is introduced to simulate PD
symptoms. The RMSe and RMSu where simulated through the process described in the previous section.
The results are given in Figure 3.9, and the comparative results of Lugtenborg’s research are given in Fig-
ure 3.10 [7]. In both figures the vertical line gives the separation between "healthy" trials, and trials where
PD symptoms were simulated. From a visual inspection of the results it can be concluded that the simulated
data is comparable. The major difference is in the RMSe and RMSu , indicating that in future research some
settings of the control system simulation will have to be checked. The data simulation results will be used in
Chapter 5 to test the preliminary implementation of the chosen machine learning algorithms, and in further
research to create a clean data set upon which the various algorithms can be tested.

3.4. Conclusions
This chapter explained the nature of the problem that will be solved in the rest of this thesis. It started by
explaining the tracking task that was used in earlier research for evaluating PD patients. The results were
analysed and through system identification techniques 6 control parameters were identified: Kp , τ, ζnms ,
ωnms , RMSe , and RMSu [7]. But unfortunately this data was gathered using healthy subjects, and due to
the Covid-19 pandemic no additional testing can be done with humans. Therefore, a method was setup to
simulate the tracking task data, which was artificially altered to reflect values corresponding to those of PD
patients.

The data that will be used in the next steps takes the form of panel data: 6 parameters, for 25 participants,
in 75 trials. The parameters (or features as they will be called later) are dependent upon each other; they
result from the same measured time traces of the tracking tasks. In earlier research trend analysis on this data
was performed using linear methods, and each metric evaluated separately [7]. However, non-linear trends
might be a better fit, and taking all metrics as input might give more accurate results. Finding non-linear
trends in the data set of multiple dependent features will be the topic of the rest of this research.

For solving this problem machine learning techniques will be used. Machine learning is highly suitable
to solving these problems: it is most likely to provide accurate predictions (when compared to ordinary sta-
tistical methods), it is highly adaptable and scalable, and it allows for capturing more complex relationships
[55]. This makes it the ideal technique for application in this research.
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Figure 3.9: Results of the preliminary data simulation. The dotted line indicates the separation between the "normal" values, and the
values where artificial PD is introduced. The parameters (µ, σ) for the normal distribution are taken from Lugtenborg (Table VIII, p. 19)
[7], and are the following: Kp = (1.25, 0.25), τ = (0.29, 0.07), ζnms = (0.564, 0.22), ωnms = (11.9, 3.69). These are the values for Participant
25, D.

Figure 3.10: Results for Participant 25, D of Lugtenborg’s research [7].
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Machine Learning

Machine learning is the field of computer science in which computers use large amounts of data to inde-
pendently learn to perform tasks, without being programmed how to do them. Since this research involves
applying machine learning techniques to quantifying the cybernetics of Parkinson’s Disease a quick overview
of the field is given in this chapter. First, a general introduction to machine learning is given in Section 4.1,
and data processing is discussed in Section 4.2. Following this introduction into the field a closer look is
taken at the various algorithms that can be considered for this research. In Section 4.3 a number of these
are explained (linear regression, linear regression based, decision trees, support vector machines, and neural
networks), and relevant examples from literature are given. Finally, the chapter is concluded in Section 4.4.

4.1. Introduction to Machine Learning
Machine learning algorithms are algorithms that improve automatically through experience. A large set of
data is used to train the algorithm to deliver a particular output. Once the algorithm is sufficiently trained, it
can then be applied to new data, processing input separate from the training data. This is called generalisa-
tion; successful generalisation is one of the central goals of a machine learning problem [55].

4.1.1. The machine learning process
A machine learning model is a model that is setup in such a way that it can develop its own algorithm for
solving a problem [56]. Machine learning has many applications, from computer vision [57] and voice recog-
nition [58], to, relevant for this research, medical diagnosis [8]. There are many different aspects to consider
when solving a problem using machine learning, and the general process looks as given in Figure 4.11.

Figure 4.1: The process of creating a machine learning model1

It starts by converting the raw data into three different data sets, through a process called feature engineering.
These three data sets each have a different purpose2. The training set is the actual data set that is used to train

1Modified from: https://techblog.cdiscount.com/a-brief-overview-of-automatic-machine-learning-solutions-automl,
retrieved on 3 November 2020

2https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7, retrieved on 3 November 2020
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the algorithm and determine its parameters. However, the internal parameters of the algorithm are not the
only parameters that have to be determined. Each algorithm comes with a set of hyperparameters, these are
the different settings of the algorithm, used to alter its learning process [59]. An example of this is the amount
of nodes in a neural network. The validation set is used to tune these hyperparameters, through a process
called model selection. Once both the internal- and hyperparameters of the algorithm are determined the
algorithm is said to be "trained". However, before one can use the model to make predictions it has to be
independently evaluated to make sure it is working properly. That is where the test set is used. This latter set
is completely new to the model, and often carefully curated in order to best reflect the real world.

4.1.2. Types of machine learning
A lot of different machine learning algorithms exist, that each have different properties and serve different
purposes [60]. Selection of the right algorithm depends on quite a few factors: what is the problem that
needs to be solved, how much data can be gathered and what types, how much computer power is avail-
able, etc. Especially the first factor makes quite a difference; within the field of machine learning there are
several different approaches, and each approach can be used to solve different problems. The first step in al-
gorithm selection is therefore to determine the machine learning approach that is most applicable to solving
the problem. The different approaches are [55]:

• Supervised learning works with labelled data; the training set consists of input vectors, along with
their corresponding target vectors (the labels). The model is trained to categorise the input with a
certain target vector. Within supervised learning a distinction can be made between regression and
classification. For the former the output is a continuous quantity, while for the latter the output takes
on a discrete set of labels.

• Opposite of supervised learning is unsupervised learning. The training data only consists of the in-
put vectors, without any corresponding target values. The goal of algorithm is to take the inputs and
generate structure in the data.

• In between the two approaches above lies semi-supervised learning, where some data is labelled and
some isn’t. This form of learning is useful when a large data set needs an initial labelling to cluster
around, but labelling everything would be too resource intensive.

• Finally, there is the technique of reinforcement learning. Here the algorithm is not given optimal target
vectors, but must discover them itself, through maximising a reward corresponding to how well the
algorithm solved the problem. This can for example be used to train an algorithm how to play chess.

The goal of this research is to develop a way to detect nonlinear trends in longitudinal patient data. Regression
algorithms are the algorithms that are used for these type of problems [55], and these will therefore be the
ones considered in the rest of this research.

4.1.3. Over- and underfitting
One of the major complications to watch out for in any machine learning model is the concept of overfitting.
Overfitting happens when the model fits the training data too well. The noise, inherent in any data, has been
captured by the model structure, and the model is therefore no longer applicable to new data. An example
of this can be found in Figure 4.23. There, the green line represents an overfitted model, while the black line
represents a usable model. As can clearly be seen, when using the green model to make predictions they
will be way to specific, and thus often incorrect for other samples. The danger for overfitting is largest when
the data set is small, especially when the number of features is close to, or even surpasses, the number of
observations. Luckily, most advanced algorithms will have build-in methods to deal with overfitting.

On the other side of overfitting is the problem of underfitting. This happens when one chooses a model
that is to simplistic to fully capture the complexity of the data (i.e. choosing a linear model to represent a
polynomial relation). Underfitting is easier to detect than overfitting (using good performance metrics), and
therefore less of a problem.

4.2. Data processing and features
The machine learning process starts with data collection. Lots of data is needed in order to properly train and
validate the learning algorithm. The different data attributes fed into the machine learning model are referred
to as features. One only wants a certain selection of features to be fed into the model, but often there are a lot

3Modified from: https://en.wikipedia.org/wiki/Overfitting, retrieved on 3 December 2020

https://en.wikipedia.org/wiki/Overfitting
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Figure 4.2: Example of a overfitted (classification) model3. The algorithm needs to determine a good split into the red and the blue class
(as given by the black line), however, it overfits (green line).

of features present, that might or might not be relevant to the problem. That’s where feature engineering and
feature learning come in; selecting the right features is crucial for creating a good performing model.

Feature engineering is the process of determining the features that will be used in the machine learning
model. This can either be done by selecting a subset of features that are most relevant to the model (feature
selection), or by deriving new features from an initial set of measured data (feature extraction). For feature
selection, three main approaches are defined [61], in addition to manually picking the features. The three
main approaches are:

• Wrapper methods take a subset of the features, train a model using these features, and evaluate the
model performance using separate validation data set. Wrapper methods usually succeed in selecting
the most optimal set of features, however because the process needs to be performed for many different
feature subsets they are very computationally expensive. Methods that use the wrapper approach are
for example Genetic Algorithms [62].

• Filter methods are similar to wrapper methods. They, too, test subsets of features, but instead of eval-
uating them using the model, a proxy method is used. An example is Welch’s t-test, which can be used
to investigate the effect of selecting different features on the target variable [63].

• Embedded methods are feature selection methods that are inherent to a model. By constructing the
model one automatically performs feature selection. An example of this is Random Forests1.

In contrast to feature selection is the concept of feature extraction. With feature extraction an initial set of
measured data is taken, and features are constructed by combining the data in different ways. Often fea-
ture extraction is performed in order to come up with a smaller set of new features that better describe the
data. For feature extraction too a split can be made between manual and algorithmic feature extraction.
Manual feature extraction is relatively simple, but does require knowledge in the field to do properly [64].
Examples of manual feature extraction are derivatives, feature scaling, and statistical functionals [65]. On the
other hand, using algorithms for feature extraction is more complex, but often performs better. Examples of
such algorithms are Principal Component Analysis, where linear combinations are combined to maximise
the variance, and Linear Discriminant Analysis, which ranks these combinations of features on the basis of
their separability4.

Finally there is the concept of feature learning. Here the feature selection is done completely by the machine
learning algorithm, and the only input is the raw data [66]. An example of this are Deep Learning algorithms.

Though performing feature engineering is of vital importance in creating any good working machine learning

4https://elitedatascience.com/dimensionality-reduction-algorithms, retrieved on 9 November 2020

https://elitedatascience.com/dimensionality-reduction-algorithms
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model, it is beyond the scope of this study to go into further detail here. The selection of features relevant to
this research will be discussed later in this report.

4.3. Selecting and evaluating ML algorithms
The most important choice in developing a machine learning model is the selection of the algorithm. In order
to make this choice a few aspects have to be considered. These are outlined in this section. Furthermore, two
performance metrics that can score the performance of regression algorithms are explained.

4.3.1. General selection factors
There are a few factors that are important to every machine learning algorithm selection. The first of these is
the type of problem one wants to solve. This has been discussed in section 4.1, and fundamentally limits the
range of algorithms to choose from (supervised/unsupervised, classification/regression, etc.).

Secondly, there is the data set. Things like size, structure, whether or not there is missing data, the ratio be-
tween the number of observations and the number of features all suggest different algorithms. For example,
when there is a limited amount of training data, or if the amount of features is higher than the amount of
observations, one should choose algorithms with low variance and/or high bias, often the more simpler al-
gorithms (i.e. Linear Regression) [55]. Furthermore, domain knowledge can play a role here; especially in the
way the selected algorithm can match an expected outcome. It would make sense, for example, to choose an
algorithm capable of finding nonlinear trends when such trends are expected, though it can still be beneficial
to first try linear algorithms, as they are often way easier to set up and interpret.

This last point touches on another consideration: interpretability [67]. In order words, how easy it is to
understand the algorithm and how it comes to its conclusions. This relates to how well researchers can trust
the prediction. A distinction is made between white-box, grey-box, and black-box [68]. The former is an
algorithm that is easy to describe and understand, an example is linear regression, where one can easily see
how the different features relate to the outcome through their weights. On the other side of the spectrum
are black-box algorithms, where an input leads to an output, but the process of getting from one to the other
is not understood. An example of this is Deep Neural Networks. In-between the two extremes lie grey-box
models, where the process can be understood to some degree.

Interpretability is often traded off with accuracy (the degree to which the prediction matches the real world)
[67]. For most machine learning problems, the more interpretable a model, the less accurate it is. The reason-
ing behind this is that highly interpretable models are less flexible, and conform less well to the data, whereas
models such as deep neural networks can approximate even the most complex structures.

Other considerations all have to do with the implementation of the algorithm. Training time (time to learn
the model) and prediction time (time to make a prediction based on input) are factors that should be taken
into account, and depend on the purpose of the machine learning model. These factors depend on the algo-
rithm selected, but are also highly influenced by the amount of data, and the power of the system on which
the model is run.

Finally there is a subjective metric: Ease of Use. This includes aspects as how easy it is to code, how much
information is available, how much research has been done into the various intricacies of the algorithm, and
whether special data preparation is necessary.

4.3.2. Performance metrics
In order to determine how accurate the model is in making predictions a performance metric can be used.
For regression there are two often used metrics. First of these is the Root Mean Square (RMS) error, which
gives an indication of how much error the model makes in its predictions. It is determined using Equation 4.1
[69], where m is the number of instances in the dataset, xi the ith feature vector in matrix X, which contains
all feature values in the dataset. Finally, h is the prediction function of the model.

RMS(X,h) =
√

1

m

m∑
i=1

(h(xi )− yi )2 (4.1)

A second performance metric that can be used is this Mean Absolute Error (MAE). Where RMSE punishes
larger errors more than minor errors, MAE punishes errors linearly, meaning it is more interpretable and less
sensitive to outliers. The MAE is determined using Equation 4.2 [69].
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MAE(X,h) = 1

m

m∑
i=1

|h(xi )− yi | (4.2)

4.4. A survey of ML Algorithms
Many different ML algorithms exist, and each works in a different way and has its own strengths and weak-
nesses. As stated in Section 4.1, for this research a supervised regression algorithm will be used, of which an
overview of the most popular is given in this section. Special attention is paid to those algorithms used in
medical literature, and where relevant examples will be noted and commented upon.

4.4.1. Linear regression
Linear regression is the simplest and fastest form of regression. It works by fitting a straight line through the
data, which consists of a scalar response, and a scalar or vector of explanatory variables. Even though linear
regression is a simple method, it can still be quite powerful, and it often gives a good baseline for further
analysis. This can for example been seen in [70], where it is compared against more advanced algorithms.
Interestingly it was found that simple linear regression performed as well as more advanced linear regression
algorithms when applied to nonlinear data, suggesting that for providing a baseline for nonlinear analysis the
former is preferred. Linear regression has two main disadvantages: it is unusable for fitting nonlinear trends,
and it is prone to overfitting and multicollinearity. The former can only be overcome by choosing different
algorithms, but to deal with the latter disadvantage extensions of the simple algorithm have been developed,
all performing regularisation (artificially penalising model coefficients). Some of these are:

• Least-angle regression (LARS). LARS starts with no variables in the model, and step-wise adds the
variables with the most explanatory power (least-angle to the residual) [71].

• Least Absolute Shrinkage and Selection Operator (LASSO). LASSO works by adding a penalty term
to the regression cost function, equal to the magnitude of the coefficients. This allows for coefficients
to go to zero, removing them from the model [55] (de facto performing feature selection). LASSO is
sometimes combined with least-angle regression.

• Ridge Regression is developed to deal with multicollinearity. Ridge regression is linear regression with
an added penalty term to the cost function, equal to the square of the magnitude of the coefficients. It
lowers their value, but does not push them to zero. This is useful when all coefficients are of importance
[55].

• The final extension that will be discussed is Elastic Net, which combines LASSO and Ridge Regression.
The balance between the two has to be carefully tuned, but if the right combination is found it removes
the problems with either algorithm.

In a comparison study on linear regressors done by Bayestehtashk et al (2013) it was found that ridge regres-
sion was the best performing regularisation technique for voice data [72], and research by Lugtenborg (2020)
successfully a general linear regression model to tracking task data [7].

4.4.2. Linear regression based algorithms
There are several algorithms that are in essence just linear regression, but get treated as separate algorithms.
The first of these is polynomial regression. Instead of fitting a straight line, a nth order polynomial is fitted to
the data, using least squares methods. The different xn are treated as features, and therefore this method is
in fact another form of linear regression. The main disadvantage with polynomial regression is that it is very
prone to overfitting, and therefore, unless one is very sure of a polynomial relationship, will only work within
the domain of the test data. Another algorithm of this family is Multivariate adaptive regression spline. With
this algorithm, instead of fitting a single linear relation to the data, hinge functions are used to break the re-
gression up into several linear parts, that together can model nonlinear relations. Both polynomial regression
and multivariate adaptive regression spline are seldom used in the area of prediction. Finally, there is Theil-
Sen regression, Developed to deal with variables that have a non-constant variance, Theil-Sen regression fits
a straight line by taking the median of slope of all lines through pairs of points [73]. Theil-Sen regression
is compared to other linear and nonlinear algorithms by Salmanpour (2020), where it performed quite well
in predicting the UPDRS score in year 4 based on certain parameters in year 0 and 1 [74]. Unfortunately,
Theil-Sen regression is only capable of fitting linear relations.
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Figure 4.3: An example of a decision tree5
Figure 4.4: Illustrative example of SVR. The boundary is defined by
the allowed error ϵ, and the slack is given as ζ7

4.4.3. Decision trees
A second form of linear regression is to make use of decision trees. These are a set of hierarchical decisions
which eventually give a final result [75]. An example of this can be seen in Figure 4.35. The main advantage of
tree based models is that they are highly interpretable, it is easy to understand how a set of decisions leads to
the outcome. There are also major disadvantages however; the model is highly sensitive to the training data
(meaning that when trained on different data an entirely different tree will result), and the split made at each
level is a hard split, leading to functions with discontinuities at the split boundaries. Proper construction of
the three model based on the data set is a difficult problem to solve by hand, but luckily many different algo-
rithms have been developed. Examples of these are called ID3 and C4.5, but the most used one in regression
analysis is called CART (Classification and Regression Trees) is most often used in regression analysis [76].
CART uses binary trees, where each node leads to only two branches. The example in Figure 4.3 is of a CART
model. CART has been developed by Breiman et al. in 1984 [75], and has subsequently been used in many
different studies to solve regression problems. For example, Tsanas et al. (2010) [70] compared the algorithm
to linear regression in predicting UPDRS score based on voice data, and found that it performed satisfactory.
CART is also widely applied in other fields, such as for prediction of panel data in precipitation forecasting
[77].

Decision trees are easy to interpret, and perform well with nonlinear problems. However, single trees have a
high tendency for overfitting, because they memorise the training data. This is especially the case with noisy
data. As with linear regression, extensions have been developed to deal with this problem. These methods
are so called ensemble methods, as they combine multiple trees, and come in two variants:

• Random Forest is an example of a bootstrap aggregation (bagging) method [78]. Subsets of the data
are created using bootstrapping methods (see section 3.2). Decision trees are trained on each of the
subsets, and their predictions are averaged to arrive at a single prediction. Bagging methods handle
high-dimensional data very well, and are good at dealing with missing data. However, because the final
prediction is an average they are less accurate.

• The second method is boosting. Here the learners (trees) are learned sequentially. Early learners are
trained on the data and analysed for errors. Subsequent trees are fitted to take the error into account,
with the goal of improving the accuracy. Examples of boosting methods are AdaBoost [79] and XG-
Boost [80]. Boosting methods are more accurate than bagging, but they do require careful tuning of
hyperparameters.

4.4.4. Support Vector Regression
Support Vector Machines are algorithms originally developed for classification problems, but they can be
applied to regression as well (SVR). The most simple form of SVR finds the best fitting straight line, similar
to linear regression, but in SVR this line is called a hyperplane6. Contrary to linear regression, SVR does not
seek to minimise the errors, instead allowing a certain degree of error to be present in the model. SVR tries

5Modified from: https://upload.wikimedia.org/wikipedia/commons/2/25/Cart_tree_kyphosis.png, retrieved on 2 Decem-
ber 2020

6Formally, a hyperplane is defined as "a subspace whose dimension is one less than that of its ambient space", from: https://en.
wikipedia.org/wiki/Hyperplane, retrieved on 3 December 2020

https://upload.wikimedia.org/wikipedia/commons/2/25/Cart_tree_kyphosis.png
https://en.wikipedia.org/wiki/Hyperplane
https://en.wikipedia.org/wiki/Hyperplane
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to fit the line in such a way that all points fall within the margin of error, minimising the slack between the
boundary line and any outlying points. The SVR hyperplane is visualised in Figure 4.47.

Not all models can be represented by a linear hyperplane. But luckily SVR can still be applied. By first map-
ping the features to a higher space, where linear SVR is possible, then define a hyperplane in that space, and
subsequently map this hyperplane back into the original space, obtaining a linear decision boundary is pos-
sible. This is where so called kernel tricks come in. The kernel function is specific to each feature mapping,
and represents an efficient way to perform the earlier explained process8. There are three main kernels used,
and one generally tries the least complex first, before moving on to more complex kernels.

• Linear kernel: as the name suggests, a linear kernel fits a straight line through the data. It is the most
simple form of SVR, but often performs worse than simple linear regression. The linear kernel cannot
be used when the relation between the data is not linear.

• The Polynomial kernel is used for mapping the data to a higher order polynomial.
• Finally, the Radial Basis Function (RBF) kernel is used to map the data into infinite dimensions. It

is difficult to visualise how this works, but the result is the RBF works on the principle of similarity: a
point gets rated based on the points closest to it.

The main advantage of SVR is that it is a really fast way to capture and predict highly non-linear phenomena,
but it is also very susceptible to outliers. In literature, support vector machines are most often used for clas-
sification tasks, but nonetheless some good results were achieved in regression. For example, Eskidere et al
(2012) [81] compared two SVR and two neural network algorithms against each other in predicting UPDRS
data from speech measurements, and found that ’Least-Squares Support Vector Regression’ (LS-SVR) [82]
provided the lowest prediction errors.

4.4.5. Neural Networks
Neural networks are the most popular and most well known type of machine learning algorithm, and are
modelled after the brain [55]. A neural network consists of different types of nodes, and each node receives
inputs from other nodes. These inputs are weighted, and all inputs are summed together in the node, and
serve as input for the node activation function ( f () in Figure 4.5). This activation function can be thought of
as kind of mathematical gate between the input and the output of the node. This gate can take on different
kinds of forms, from a simple step function turning the output on or off to a complex transformation mapping
the input into the correct output signals. The learning aspect of a neural network is in the weights, which
determine how strong the connection is between the various nodes, and thus what the final output will be.
The nodes are put together in a network, with an input and output layer, and one or more hidden layers [83].
This is illustrated in Figure 4.69.

There are a lot of different types of neural network architectures, and the most used ones (looking only at
regression problems) will be outlined here.

• A Feedforward neural network is the simplest form of a neural network. In fact, the network given in
Figure 4.6 is an example of such a network. In a feedforward neural network information only moves
in one, ’forward’, direction and there is no feedback present. Simple feedforward neural networks are
easy to setup and train, and are capable of dealing with lots of noise in a data set.

– A special type of feedforward neural network is the Radial Basis Function network. Here, the
hidden layer activation functions consist of radial basis functions [55]. This means that the input
is weighted based on its distance to a certain centre. This centre needs to be determined through
training.

– The simplest way of training a neural network is through random variation of the weights. Unfor-
tunately, since there is no structure this is an incredibly inefficient way. That is where backprop-
agation comes in [83]. Backpropagation is the most used algorithm for training a feedforward
neural network, and it’s significantly more efficient. The algorithm works by determining how
much each output node needs to change its output for the right answer to come out. It then back-
propagates this error through the network, adjusting the required weights as necessary.

• Recurrent Neural Networks (RNN’s) are more advanced algorithms. In RNN’s, the sequential input is
processed one element at a time. From each step information is retained for the next step through a so

7Modified from: https://towardsdatascience.com/an-introduction-to-support-vector-regression-svr-a3ebc1672c2,
retrieved on 3 December 2020

8Specifically, the kernel function is a very efficient way to compute a dot-product in a feature space, possibly of a very high dimension.
9Modified from: https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/, retrieved on 3 December 2020

https://towardsdatascience.com/an-introduction-to-support-vector-regression-svr-a3ebc1672c2
https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
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Figure 4.5: Schematic depiction of a single node in
a neural network

Figure 4.6: Example of a simple neural network architecture9. Not all nodes are
connected; where there is no connection the weight factor is equal to zero.

called hidden state, and this information gets combined with a new input into a new hidden state. At
the end of the chain is the final output of the model. The output is thus not only based on the current
input, but also on all previous inputs. The main advantage of RNN’s is that they often perform superior
to standard feedforward neural networks when working with sequential data [83], for example when
predicting time series. An schematic depiction of a single neuron of an RNN is given in Figure 4.710,
which illustrates how the RNN retains information from each step.
Unfortunately, RNN’s are hard to train; they suffer from the vanishing gradient problem, meaning that
the backpropagated error, used for training, decays over time [84]. This leads to RNN’s having short
term memory: the earlier layers hardly ’learn’. Two specific forms of RNN’s have been developed to
deal with this short term memory problem: Long Short Term Memory (LSTM) Networks, and Gated
Recurrent Unit (GRU) Networks. Both work with gates; internal mechanisms that combined allow the
networks to store information for a longer time.

– The first of these is the LSTM, first developed by Hochreiter and Schmidhuber (1997) [85]. The
basis of an LSTM cell is the LSTM state, which can be stored for a longer time, thus forming a
memory cell of sorts. Through the gates information gets added or removed from the cell state.
An LSTM contains three types of gates: forget gate, which decides what information from the
previous hidden state to keep and what to forget, the input gate, which combines the result of the
forget gate and the input into the new cell state, and the output gate, which decides what the new
hidden state will be. The LSTM cell and its gates are illustrated in Figure 4.8.11

– The second form of RNN is GRU, developed by Cho et al. (2014) [86]. It simpler than LSTM, con-
taining only two gates and no cell state. Instead, the previous hidden state gets modified directly
through the reset gate, which takes the input and previous hidden state, and determines how
much information to retain from the previous hidden state, resulting in a candidate hidden state.
This candidate state then passes through the update gate, which decides what the final hidden
state will be. An example of a GRU cell is given in Figure 4.9.12

• Convolutional Neural Networks (CNN’s) are the final variant of neural networks relevant to this prob-
lem. Though more often associated with image recognition, CNN’s can also be used for time series
analysis [87]. CNN’s are neural networks with one or more convolutional layers. These are similar to
normal layers, in that they have an activation function that transforms the input into the output. How-
ever, in convolutional layers the transformation is a convolutional operation. This means that one or
more filters are applied to the input, increasing certain features and decreasing others. The specifics of
the filter are determined when training the CNN. By using this method of filtering, the model is able to
learn filters that ’search’ the input for specific patterns. One advantage of CNN’s is that they are quite
efficient in training and predicting [55]. An example of a typical CNN architecture can be found in
Figure 4.10.13

10https://upload.wikimedia.org/wikipedia/commons/b/b5/Recurrent_neural_network_unfold.svg, retrieved 30 April
2021

11https://en.wikipedia.org/wiki/File:Long_Short-Term_Memory.svg, retrieved 30 April 2021
12https://en.wikipedia.org/wiki/File:Gated_Recurrent_Unit.svg, retrieved 30 April 2021
13https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Typical_cnn.png, retrieved 3 April 2021

https://upload.wikimedia.org/wikipedia/commons/b/b5/Recurrent_neural_network_unfold.svg
https://en.wikipedia.org/wiki/File:Long_Short-Term_Memory.svg
https://en.wikipedia.org/wiki/File:Gated_Recurrent_Unit.svg
https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Typical_cnn.png
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Figure 4.7: Overview of a recurrent neural network recurrent neural network, which shows how information is retained throughout the
time steps.10

Figure 4.8: An LSTM cell. The gates are indicated by their first
letter (F for forget gate, etc.).11

Figure 4.9: A GRU cell. The reset gate is indicated by Rt , and the
update gate by Zt .12

Figure 4.10: An example of a typical CNN architecture.13 In the image it can be seen how each step is filtered and only part of the input
is carried over to the next layer.

Neural networks in relevant literature
Due to their popularity, there are a lot of examples of applications of neural networks within relevant liter-
ature. Eskidere et al (2012) used a standard multilayer feedforward neural network, as well a a variant of
the radial basis function network to predict UPDRS score from speech measurements [81]. Though in this
particular case other algorithms performed better (LS-SVR), the neural networks still achieved sufficient ac-
curacies. Salmanpour et al. (2020) compared 11 different algorithms for predicting the UPDRS score in year
4 based on certain parameters in year 0 and 1 [74], among which a radial basis function neural network,
a normal feedforward neural network, and a recurrent neural network. Of the three, RNN performed best.
Recently the focus has started to shift from RNN’s to CNN’s for time series analysis: Borovykh et al. (2018)
use CNN’s to forecast time series based on financial data, and thereby argue that CNN’s perform better than
RNN’s when forecasting time series with limited data [88], and Hewamalage et al. agree with this in their 2021
overview paper on using RNN’s for time series forecasting [89]. Nonetheless, RNN’s are still widely used in
time series prediction, especially in neurology: Wang et al. (2018) used an RNN for predicting the progres-
sion of Alzheimer’s Disease [90], and Che et al. (2017) used an RNN for evaluating the similarities between
longitudinal patient data [91].

4.5. Conclusions and selected algorithms
This chapter gave an introduction to machine learning. It outlined the general process and explained some
concepts that are important for every machine learning problem. It has become clear that for this research a
supervised regression approach is most suitable, and therefore an overview of the most popular algorithms
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for regression analysis (linear regression, decision trees, support vector regression, and neural networks) has
been provided. Machine learning is an incredibly wide field, and many more algorithms exist. Examples
of these are Gaussian Process Regression and K-nearest Neighbours Regression. However, compared to the
described algorithms in this chapter they are sparsely used, and therefore not considered for this research.
Of the four groups of algorithms, only the latter three (Decision Trees, Support Vector Regression, and Neural
Networks) support nonlinear regression. These are summarised in Table 4.1, along with a few key points that
help decide which algorithms will be used in further research.

From each of the three groups an exemplar algorithm will be chosen for use in further analysis. Starting
with decision trees, by far the most used algorithm in literature is CART [75]. Compared to other tree based
algorithms it is simple, less susceptible to outliers, and it can use the same variables different times in separate
parts of the tree, allowing for uncovering complex interdependencies [92]. For these reasons it is the decision
tree algorithm that will be used in this research. Secondly, for support vector regression there is the specific
algorithm, Least-Squares Support Vector Regression [82], used in some literature. As it is simpler than normal
support vector regression and performs similarly [93], it is chosen for future research. As kernel the RBF
Kernel will be used, as it is the most versatile [94]. Finally, for neural network regression there are a bit more
options that can be chosen from. However, in most research RNN’s are suggested for use with time series data,
as they have been especially designed for that purpose [69]. Within RNN the GRU Network is the considered
the new state-of-the-art, and it is simpler compared to LSTM [91]. It is therefore the final algorithm selected
for further research.

Table 4.1: Summary of the different algorithms considered for this research

Group Algorithm Comments
Decision trees CART - Can handle missing values

- Simple
- Less susceptible to outliers
- Can use the same variables different times in separate parts of
the tree

ID3 - Can only handle categorical data
C4.5 - Can’t handle missing values

- More susceptible to outliers
- Can use the same variables different times in separate parts of
the tree

Support vector
regression

SVR - Standard version of SVR

LS-SVR - Improved version of SVR
- Uses linear instead of quadratic programming
- Easier to understand and implement

Linear kernel - Can only do linear relationships
Polynomial ker-
nel

- Can only do polynomial relationships

RBF kernel - Can do complex non-linear relations
- Gives good results with an unknown relation between variables

Neural net-
works

Feedforward - Difficulty with capturing sequential information in the input
data, and therefore less suitable for dealing with sequential data

RBF Network - Difficulty with capturing sequential information in the input
data, and therefore less suitable for dealing with sequential data

RNN - LSTM - Designed for handling sequential data
RNN - GRU - Designed for handling sequential data

- Simpler architecture compared to LSTM, leading to shorter
computational time

CNN - Designed for handling spatial data
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Candidate algorithms

Thus far this report outlined the background of the research that will be conducted, explained the problem
that will be solved using machine learning, and gave a high level overview of the field of machine learning,
thereby selecting three algorithms that will be used in the rest of the research. Each of these algorithms will
be implemented, and their performance will be evaluated in order to select the best one for the problem at
hand. In this chapter the three candidate algorithms will be explained: CART in Section 5.1, LS-SVR in Section
5.2, and GRU Network in Section 5.3. Along with this explanation, a preliminary version of each algorithm
will be implemented. The objective of this is two-fold. First, a preliminary implementation can show that
well performing regression is possible using the algorithm, and second, by applying the models to a simple
dataset an initial trade-off can be made, whereby the algorithm most likely to be successful in the context of
this research can be identified. This will be done in Section 5.4.

5.1. Candidate algorithm - CART
The first algorithm that will be explained is CART Decision Trees [75]. CART is a specific algorithm that builds
a decision tree based on a series of Boolean decisions: whether or not to split a node into two daughter nodes.
Every tree starts with a root node, in which all variables are present. By evaluating every possible split for all
the variables present at that node, the algorithm decides on which variable it is best to split. It then creates
two daughter nodes, and each of the daughter nodes is itself split into two daughter nodes, and so on. If a
node is not split further it is referred to as a terminal node. Each terminal node has a corresponding value,
which, when you follow the tree from the top down, is the value that is predicted for this input.

An example of a CART Decision Tree is given in Figure 5.1. Every node, τ, is either given by a circle for
intermediate nodes (1, 2, 3, and 7), or by a square for terminal nodes (4, 5, 6, 8, and 9), and each terminal
node has a prediction value, Y (τ). In decision trees nodes have ancestors and/or descendants. For example,
in Figure 5.1 all nodes are descendants of node 1 (the root node of the tree). Furthermore, node 6, 7, 8, and
9 are all descendants of node 3, but not of node 2. Ancestry goes the other way around: node 2 and 1 are
ancestors of node 4, but node 3 isn’t.

In order to grow a decision tree the following elements have to be determined [75]:

1. How to assign a predictor value to each terminal node
2. How to split each intermediate node into two daughter nodes
3. How to decide whether or not a node is terminal

The rest of this section will explain how this is done.

5.1.1. Resubstitution estimate
In order to answer these questions first the concept of resubstitution estimate has to be introduced, which is
an estimate of the absolute prediction error of the fitted model. It is determined by taking the mean of the
squared residuals when using the fitted model to predict each of the known output values from the dataset,
as given in Equation 5.1 [95]. Here, Rr e is the resubstitution estimate of the predictor function, µ̂, and yi and
ŷi are the known and predicted value belonging to input xi (ŷi = µ̂(xi )), respectively.

51
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Figure 5.1: An example of a CART tree

Rr e (µ̂) = 1

n

n∑
i=1

(yi − ŷi )2 (5.1)

5.1.2. Assigning a predictor value to terminal nodes
The first element that will be treated is assigning a value to a terminal node. For every prediction we want
the resubstitution estimate to be as small as possible, thus the value, Y (τ), of any node τ needs to be taken
in such a way that Rr e (µ̂) is minimised. Breiman proved that "The value of Y (τ) that minimises Rr e (µ̂) is
the average y for all cases (xi , yi ) falling into τ" ([75], p. 230). In other words, the value of a node is taken
as the average value of the training cases, for which following the structure of the decision tree leads to that
particular terminal node. It is given by Equation 5.2, where n(τ) is the total number of cases in τ.

Y (τ) = 1

n

n∑
xi∈τ

yi (5.2)

5.1.3. Redefining the resubstitution estimate
Using the rule for assigning a predictor value to each node, Breiman introduces a new way for determining
the resubstitution estimate, better reflecting the tree structure [75]. Instead of looking at the entire predictor
function, µ̂, we now look at each node individually, and sum the individual resubstitution estimates. This can
be done by taking the insight from the previous section, namely the assigned predictor value for the nodes.
We then get a resubstitution estimate at a node, given by Equation 5.3, and the tree resubstitution estimate is
subsequently given by Equation 5.4, with T indicating the set of nodes that together form the tree.

Rr e (τ) = 1

n

n∑
xi∈τ

(yi −Y (τ))2 (5.3)

Rr e (T ) = ∑
τ∈T

Rr e (τ) (5.4)

One further redefinition can be made, by taking the (biased) sample variance of all training values falling
within a node, as seen in Equation 5.5, where s2 denotes the sample variance.

s2(τ) = 1

n

n∑
xi∈τ

(yi −Y (τ))2 (5.5)

When combining that with the proportion of total observations falling within node τ, p(τ) = n(τ)
n , the resub-

stitution estimate of a single node can be rewritten as in Equation 5.6.

Rr e (τ) = p(τ)s2(τ) (5.6)
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5.1.4. Splitting strategy
This new resubstitution estimate will be used to determine the splitting strategy. According to Breiman, the
best split is the split that provides the biggest reduction in the value of Rr e (T ) [75]. If we define a reduction in
Rr e (τ) due to a split into τL and τR as in Equation 5.7, the best split at a node τ is then the node that maximises
the reduction, ∆Rr e (τ).

∆Rr e (τ) = Rr e (τ)−Rr e (τL)−Rr e (τR ) (5.7)

Finding τL and τR as to maximise∆Rr e (τ) is the same as minimising Rr e (τL)+Rr e (τR ), which, per Equation 5.5
is equal to finding the minimal value of their weighted variance, as given in Equation 5.8 [95].

min
τL ,τR

{
p(τL)s2(τL)+p(τR )s2(τR )

}
(5.8)

5.1.5. Determining which nodes will be terminal
The only question that still needs to answered is how we can determine which nodes will be terminal, and
which ones aren’t. One option would be to grow a tree until no more splits can be made. However, as Breiman
observed [75] (p. 61), there is an optimal tree size: trees that are too large or too small lead to high errors, so
a middle ground has to be found. He proposes a method that doesn’t involve selecting the tree size up front.
Instead, a tree is grown that is much too large, and subsequently pruned in the "right way". Doing this results
into many different subtrees, from which the right sized subtree is chosen as the final tree.

5.1.6. Pruning
The pruning process explained in this section was developed by Breiman [75], and it starts by growing a
large tree, Tmax . This is done by letting the splitting process continue as long as possible, typically until
each node contains less than five observations, but sometimes even further. This Tmax is then selectively
pruned upwards, which produces a sequence of increasingly smaller subtrees, eventually collapsing to T0,
which consists solely of the root node. However, even for a small sized Tmax many subtrees exist, meaning
a "selective" pruning procedure is necessary, where the subtrees continuously decrease in size, and each
subtree is the "best" in it’s size range.

In order to determine the best subtree the error-complexity measure will be introduced. It starts by defining
a complexity parameter, α ≥ 0. The error-complexity measure, Rα(T ), is then given by Equation 5.9. The
first term represents the cost of the tree, and the second term its complexity, where α can be thought of as
a cost penalty for complexity, and |T̃ | is the number of terminal nodes in the subtree T (5 in the example of
Figure 5.1).

Rα(T ) = Rr e (τ)+α|T̃ | (5.9)

For each α we then choose the subtree T (α) of Tmax that minimises Rα(T ). If α is small the penalty for
having a large number of terminal nodes is small, and the minimising subtree, T (α), will be large, and if α
is sufficiently large T (α) will consist of the root node only. Even tough α is continuous, there is only a finite
number of subtrees. Thus what happens is that if T1 = T (α1) is the minimising tree for a given value of α,
then it continues being the minimising tree as α increases, until a certain jump point (α = α2) is reached,
upon which T2 = T (α2) becomes the minimising tree, until the next jump point. This process produces a
finite sequence of subtrees T1, T2, T3, . . . , Tmax .

Now the only problem left to solve is how to determine T (α), as evaluating every possible subtree to find the
minimiser of Rα(T ) is computationally expensive. Luckily, a more efficient process has been developed. This
process starts by constructing T1 from Tmax . T1 is the subtree belonging toα1 = 0. Constructing T1 is done as
follows:

1. Take any two terminal nodes in Tmax , τL and τR , resulting from a split of their immediate ancestor node
τ.

2. If Rr e (τ) = Rr e (τL)+Rr e (τR ), prune off τL and τR .
3. Repeat until no more pruning is possible. The resulting tree is T1.

Once T1 has been found we can continue with the rest of the algorithm. Let τ be any nonterminal node of T1,
and Tτ the subtree whose root node is τ, with T̃τ its set of terminal nodes. Then:
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1. Starting with T1, define a function g (τ) as in Equation 5.10.

g (τ) =
{ Rr e (τ)−Rr e (Tτ)

|T̃τ|−1
,τ ̸∈ T̃1

+∞ ,τ ∈ T̃1
(5.10)

2. Then define the weakest link node, τ̄1, in T1, as the node such that:

g1(τ̄1) = min
τ∈T1

g (τ)

When α increases, τ̄1 is the first node for which its error-complexity measure, Rα(τ1), is equal to the
error-complexity measure of its subtree, Rα(Tτ). This means that the node without its descendants
becomes preferable to the subtree below it.

3. The value of α at which this occurs becomes α2, and this is given by α2 = g1(τ̄1).
4. Prune away the descendants of τ̄1 such that τ̄1 becomes a terminal node. We now have T2. Now we can

find the weakest link in T2 instead of T1, using the same process. If there is a tie for which node is the
weakest link, all nodes in the tie become new terminal nodes by pruning their descendants.

The result of the process described in this section is a sequence of subtrees of decreasing size:

Tmax = T0 → T1 → T2 → T3 →···→ TM

and a corresponding increasing sequence of complexity parameters:

0 =α1 <α2 <α3 < ·· · <αM

5.1.7. Selecting the best pruned subtree
The result of the previous subsection is a selection of subtrees, Tk of different sizes, with Tk = T (αk ). But
which one is the right size, and thus the "best"? For that we depend upon getting a good estimate of the
prediction error, but unfortunately the resubstitution estimate that is used earlier is biased, and will select
the largest tree [75]. Therefore a new, "honest", estimate, R(Tk ), of the prediction error is needed, and the
best subtree can be defined as the subtree with the lowest R(Tk ). This is done using V-fold cross-validation
(CV/V).
In CV/V the entire set of samples, L , is divided into (typically 5 or 10) auxiliary subsamples (L1, L2, . . . ,
LV ), such that these subsamples Lv are of approximately the same size. Then let the vth learning sample
be L (v) = L −Lv , and its corresponding test sample is T (v) = Lv . Repeat the tree growing and pruning
procedure using each L (v). This results in the trees T (v)(α), which are the minimal error-complexity trees
for parameter value α. Then also perform the tree growing procedure using all of L , giving the sequences
{Tk } and {αk }.
In order to select the best pruned tree from {Tk }, the V-fold CV estimate of the prediction error is introduced,
given by Equation 5.11.

RCV /V (Tk ) = 1

n

V∑
v=1

n∑
(xi ,yi )∈T (v)

(yi − µ̂(v)
k (xi ))2 (5.11)

The estimate is obtained letting the prediction function, µ̂(v)
k , associated with subtree T (v)(α′

k ), predict an

outcome corresponding to input xi in T (v), where α′
k is given by Equation 5.12. What shouldn’t be forgotten

here is that although α is continuous, T (v)(α′
k ) is equal to T (v)

k for αk <α<αk+1. The prediction outcome for
each xi is then compared to the known output yi .

α′
k =p

αkαk+1 (5.12)

To determine which subtree, Tk , is the right size, first RCV /V (Tk ) is calculated for every k. The optimal subtree,
T∗, is then chosen as the smallest subtree for which Equation 5.13 holds, where SE denotes the standard
deviation for RCV /V (Tk ).

RCV /V (T∗) ≤ min
k

RCV /V (Tk )+SE(RCV /V (Tk )) (5.13)

The chosen subtree is considered the best, and will subsequently be used to make predictions on new data.
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Figure 5.2: Results of the preliminary CART implementation, us-
ing different values of α.

Figure 5.3: The tree grown using α= 0.0001. Each node contains
the split value of the feature, the mean squared error of the obser-
vations in the node, the amount of observations within the node
("samples"), and the value of the node.

5.1.8. CART conclusions and preliminary implementation
CART is a quite straight forward algorithm. It constructs a number of trees by continually splitting the nodes
until a stopping condition has been reached. Subsequently it prunes these large trees, and it selects the
best pruned tree. Most of these steps require little input; the algorithm decides for itself how to split and
what the best tree is. To test the algorithm a preliminary implementation has been made in Python, using
the scikit-learn library [96, 97]. This library contains implementations of many machine learning algorithms,
among which a CART regression implementation. The scikit-learn implementation is similar to the algorithm
explained above, with the only difference being in how the best pruned subtree is selected. Scikit-learn does
not do this automatically, instead giving two options for determining tree size:

• The first option is to set the maximum tree depth in advance. With this option no pruning will take
place

• The second option does involve pruning, but the ’best’ is not selected. Instead the user is asked to give a
value for the complexity parameter (α), and the minimum number of observations in a terminal node,
and thus choosing the tree size.

The results of the preliminary CART implementation can be found in Figure 5.2, where it is tested on the
simulated Kp data (see Section 3.4). The algorithm regresses the dependent variable Kp against the input
Sim # (de facto time). Different values for α are used, and the effect can clearly be seen: the smaller α, the
flatter the approximation, and if α gets larger the regression matches better. However, at a certain value of
α this effect stops, since at that point the tree is as big as it will ever be. An example of a constructed tree,
corresponding toα= 0.0001, can be found in Figure 5.3. For the minimum required values in a terminal node
a value of five was chosen. The effect of varying this parameter will be explored in the next research steps.

5.2. Candidate algorithm - LS-SVR
The second algorithm that will be explained is Least-Squares Support Vector Regression (LS-SVR). In support
vector regression (SVR) the goal is to fit a line through the data. This line is called a hyperplane, and the way
the line is fit through the data is by taking an allowed error, and letting as many data points as possible fall
within this error. In order to solve the regression problem for a nonlinear trend the data can be mapped to
a higher dimension, by using kernel tricks. This algorithm was first developed by Vapnik [98], and makes
use of quadratic programming. Least-Squares Support Vector Regression is an alternative to standard SVR
developed by Suykens and Vandewalle [99]. It makes use of linear programming, instead of quadratic pro-
gramming, and is therefore both easier to understand and easier to implement. This section explains the
algorithm and its preliminary implementation.

5.2.1. The hyperplane and optimisation function
The basic idea of LS-SVR is to find the optimal hyperplane; that is, to fit a function, f (x), through the training
data that lies close to as many data points as possible. Where in ordinary least squares one fits this line
by minimising the sum of the squared errors, in support vector regression the objective is to minimise the
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Figure 5.4: The LS-SVR hyperplane and the error terms, adapted from [94]

coefficients instead, handling the error in the constraints of an optimisation problem. This allows for a certain
slack in the error; we can select a certain error that is deemed acceptable.

Given the data set (D) given in in Equation 5.14, the approximating function f (x) is given by Equation 5.15,
where w is the coefficient vector, and b the bias term [94].

D = {
(x1, y1), (x2, y2), ..., (xn , yn)

}
, xk ∈Rn , yk ∈R (5.14)

f (x) = w ·x+b (5.15)

However, the function given in Equation 5.15 is a linear function. LS-SVR can be used for non-linear regres-
sion as well. In order to do this the input has to be mapped to a ’high-dimensional feature space’, where
linear regression can be performed, by using some non-linear function φ. The new approximation function
corresponding to this approach is given in Equation 5.16.

f (x) = w ·φ(x)+b (5.16)

The goal of LS-SVR was formulated into an optimisation problem by Suykens, as given in Equation 5.17 [100].
The objective function consists of two terms, the minimisation of the coefficients, w, and the minimisation of
the errors, ek . These errors are illustrated in Figure 5.4. The trade-off between the two parts of the objective
function can be made by altering the regularisation constant, γ, where a lower gamma leads to less emphasis
being placed on minimising the errors, thus less overfitting. The objective function is subject to one con-
straint, namely that the prediction has to equal the actual value yk corresponding to input xk , excluding the
allowed error.

minimise
1

2
w ·w+ 1

2
γ

N∑
k=1

e2
k

subject to yk = w ·φ(xk )+b +ek , i = 1, ..., N (5.17)

5.2.2. Solving the optimisation problem
In order to efficiently solve the optimisation problem explained in the previous section (’primal’ from now
on) a Lagrangian function can be constructed (’dual’) [55], which has as saddle point at the solution in both
the primal and dual. In the case of LS-SVR, this Lagrangian is given by Equation 5.18, where αk ∈ R are the
Lagrange multipliers [101].
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L = 1

2
w ·w+ 1

2
γ

N∑
k=1

e2
k −

N∑
k=1

αk {w ·φ(xk )+b +ek − yk } (5.18)

Finding the saddle point, and thus the optimality conditions, from the Lagrangian leads to the linear system
given in Equation 5.19. More information of this derivation can be found in Wang (2005) or Suykens et al.
(2002) [94, 100]. [

0 1T

1 Ω+γ−1I

][
b
α

]
=

[
0
y

]
(5.19)

In this equation, y is the column vector of training values, 1 is a column vector of ones, and α is the column
vector of Lagrange multipliers. Ω denotes the dot product: Ω=φ(xk ) ·φ(xl ), k, l = 1, ..., N .

Solving the system in Equation 5.19 for b andα allows for construction of the estimator function, as given
in Equation 5.20 [100].

f (x) =
N∑

k=1
αkφ(x) ·φ(xk )+b (5.20)

5.2.3. Kernels
As stated earlier, in order to perform non-linear regression the input can be mapped to a higher dimension
by using some non-linear functionφ, and by performing linear regression in that higher dimension the result
in the original dimension will be non-linear. There is, however, one problem with this approach. Computing
the dot product in the higher dimension becomes unfeasible due to its high computational expense. Luckily
there is a solution to this problem: the algorithm only depends on the value of the dot product of φ(x), not
on the value of φ(x) itself. This means a ’kernel trick’ can be employed to compute the outcome of the dot
product, as in Equation 5.21.

Ω=φ(x) ·φ(xk ) = K (x,xk ) (5.21)

A kernel trick takes advantage of the Kernel function, K , which is a function in the primal space with the same
outcome as the dot product in the higher feature space. The easier-to-compute Kernel function can thus be
used as replacement for the dot product, as given in Equation 5.22.

f (x) =
N∑

k=1
αk K (x,xk )+b (5.22)

These Kernels have been defined by literature, and different variants exist that each have different properties
[102]. For the initial implementation of LS-SVR the so-called Radial Basis Function (RBF) Kernel will be used.
The RBF Kernel is given by Equation 5.23.

K (x,xk ) = e−
||x−xk ||2

2σ2 (5.23)

The parameter σ is a kernel parameter that determines how "flexible" the prediction is. A larger value means
that the prediction is flatter, but therefore a worse fit for the data. The right value has to be determined as to
fit the data as best as possible, while avoiding overfitting.

5.2.4. LS-SVR conclusions and preliminary implementation
Compared to CART, LS-SVR is more difficult to understand, but easier to implement. As with CART, a pre-
liminary implementation has been made in Python, using the scikit-learn library. For this implementation
several values for the hyperparameters, γ and σ, have been used, and the results can be found Figure 5.5,
tested on the same data as the CART algorithm. The effect of increasing or decreasing the hyper parameters
can clearly be seen: increasing σ limits the overfitting, while increasing γ allows the curve to be less flat.

5.3. Candidate algorithm - GRU Network
The final algorithm is the Gated Recurrent Unit Neural Network algorithm (GRU). GRU is a specialised form
of a recurrent neural network, and was first developed by Cho et al. (2014) [103]. It uses sophisticated units
with gates to solve some of the problems inherent in RNN’s (see Section 4.4.5.). GRU Networks are often used
for time series forecasting, but with a slight modification can be used for general regression as well.
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Figure 5.5: Results of the preliminary LS-SVR implementation,
using different values of γ and σ.

Figure 5.6: A single GRU unit. [69]

5.3.1. The GRU unit
In a GRU layer the neurons are GRU units, that look as in Figure 5.6 [69]. The core of a GRU unit is the state
vector, ht , which serves as a memory. In order to arrive at the current state, the current input vector, xt , and
the previous state vector, ht−1, are fed through three different fully connected layers.1 These layers are the
main layer, which outputs the candidate state, gt , the update gate, zt , and the reset gate, rt . The state vector
is determined by Equation 5.24, where ⊗ denotes element wise multiplication between two vectors.

ht = zt ⊗ht−1 + (1−zt )⊗gt (5.24)

The state vector is a combination of the previous state and the candidate state, and the combination is
weighted by the update gate, which is given by Equation 5.25. Here, σ(·) denotes the sigmoid function (which
maps the output into a range of [0,1]). Wxz and Whz are weight matrices for the connection of the input and
previous state to the gate respectively, and bz is the bias term.

zt =σ(W T
xz xt +W T

hz ht−1 +bz ) (5.25)

The role of the candidate state is to combine the current input and previous state in order to be able to add
new information to the state vector. It is determined using Equation 5.26.

gt = tanh(W T
xg xt +W T

hg (rt ⊗ht−1)+bg ) (5.26)

In this equation, tanh denotes the hyperbolic tangent function, (which maps the input into a range of [-1,1]),
and W and b are again weight matrices and the bias term, respectively. rt is the reset gate, and it determines
which part of the previous state gets fed into the the candidate state. If rt is close to zero (in a so called off-
state), the reset gate allows the unit to "forget" the previous output, and the candidate output only depends
on the input vector [84]. The reset gate is computed by Equation 5.27.

rt =σ(W T
xr xt +W T

hr ht−1 +br ) (5.27)

5.3.2. Constructing a GRU Network
As with any neural network, a GRU network consists of multiple layers of neurons. At least three are needed:
an input layer, a GRU layer (the hidden layer), and an output layer. More hidden layers can be added depend-
ing on the desired properties of the network.

5.3.3. GRU conclusions and preliminary implementation
As with any neural networks, GRU requires much tinkering and optimisation. This will be done in future
stages of this research. For now a preliminary implementation has been made, with one GRU layer, with
either 4 or 32 neurons. The results of this, when tested on the Kp data can be found in Figure 5.7. As can be
seen, results differ between runs, even when keeping the settings constant. The reasoning for this will also be

1Each layer is a de facto fully connected network, where the input gets multiplied by a weight vector, and the output gets filtered through
a sigmoid or tangent function.
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Figure 5.7: Results of the preliminary GRU implementation. As
can be seen from the purposefully messy graph, each run gives
different results.

Figure 5.8: Comparison of the results of the three algorithms.

explored in subsequent research. When training a neural network, an amount of epochs has to be specified.
An single epoch means training the network with all data once. Too few epochs leads to under-, and too
many epochs to overfitting, so an optimal number has to be found. This will also be explored in subsequent
research.

5.4. Algorithm trade-off
In this section the three candidate algorithms (CART, LS-SVR and GRU) will be evaluated on various metrics.
In order to this, one implementation will be chosen, corresponding to specific values for the hyperparame-
ters. This can be found in Table 5.1. The results of this evaluation are summarised in Table 5.2.

5.4.1. Evaluation metrics
The algorithms will be evaluated according to certain metrics, an overview of which is given in this section. A
more detailed explanation can be found in Section 4.3.

The first metrics have to do with the performance of the algorithm. These are the (Root) Mean Squared Error
(RMSE) and the Mean Absolute Error (MAE). These are measures that compare the predicted regression curve
to a test data set, and determine the prediction error in various ways [104]. Both will be scored quantitatively
by calculating their value.

The next two metrics are more subjective: interpretability and Ease of Use. The former says something about
how easy it is to understand how the algorithm comes to its results, and is especially important when widely
implementing the algorithm, as researchers and medical personnel have to trust the outcome. The latter
is purely subjective, and includes such aspects as how much information is available and how easy it is to
implement. Both these metrics will be scored on the following scale: [–, -, 0, +, ++], where ’-’ indicates bad
performances, and ’+’ good performance on the metric.

Finally we have the evaluation metrics that have to do with the implementation of the algorithm: training
time and prediction time. These metrics are highly dependent on the size of the data and the hardware on
which the algorithms are run, with supercomputers performing better than ordinary laptops. They are there-
fore often lumped together in one parameter, called computational complexity. The more computational
complex an algorithm, the more time it takes to run when using the same computer and dataset [69].

5.4.2. Hyperparameters
Each algorithm comes with different hyperparameters, whose values determine the characteristics of the
learning process. In the normal machine learning work flow, the hyperparameters are tuned after a model
has been chosen (see Section 4.1.1.). However, in order to make the selection between the three candidate
models (CART, LS-SVR, and GRU) in this research a preliminary implementation is evaluated, for which hy-
perparameter value have to be selected. That is done through visual inspection, using the results in Figure
5.2, Figure 5.5, and Figure 5.7. The hyperparameters and their values for the algorithms are explained in Ta-
ble 5.1, and the results of the regression using these values are given in Figure 5.8. For some hyperparameters
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the effect of changing their values on the regression in this dataset is not yet known, but this will be further
investigated in the next stages of this research.

Table 5.1: Hyperparameters of the chosen algorithms, and their values used in the implementations for the trade-off.

Algorithm Hyperparameter Value Comments

CART
α 0.00001 Increasing α leads to a flatter regression

curve, but limits overfitting
Min. observations in
terminal node

5 Effect as of yet unknown

LS-SVR
γ 100 Decreasing γ leads to a flatter regression

curve
σ 10 Increasing σ limits overfitting

GRU Network
Neurons in the GRU
layer

4 Effect as of yet unknown

Number of training
epochs

100 Effect as of yet unknown

5.4.3. Comparing the algorithms
In the earlier part of this chapter the three algorithms were explained, a long with their implementation, used
to compare the algorithms. The input data for each run is the Kp data as explained in Section 5.1.8. The
scoring for each of the metrics can be found in Table 5.2.

RMSE and MAE
For determining the RMSE and MAE Equation 4.1 and Equation 4.2 are used. A low score is better than a high
score.

Interpretability and Ease of Use
These metrics are scored subjectively. First CART, which is incredibly interpretable. One can exactly follow
the tree, and thus the steps the algorithm is taking to score an input. It is also easy to use: implementation
is done quickly, and there are only two hyperparameters to tune. LS-SVR is harder to interpret, but it has
one advantage: the weights given to the features directly correspond with how important they are in the
model, and thus they say something about what the model has learned. Regarding Ease of Use, for LS-SVR
two hyperparameters have to be tuned as well, and running the model is simply doing matrix operations.
Finally, for GRU interpretability is not good: neural networks are considered black boxes, and it is difficult to
understand how the algorithm comes to a prediction. It’s Ease of Use is also low: many decisions have to be
made about network architecture and training strategy.

Computational Complexity
As explained in section 5.4.1, training time and prediction time are often put together into the computational
complexity. Unfortunately, for neural networks computational complexity is hard to determine, and no reli-
able estimate has been found for the GRU Network used in this research. It is therefore not possible to have
an objective measure for this metric. When running the preliminary implementation it has been observed
that GRU is significantly slower than CART and LS-SVR, for this small dataset. However, this dataset will likely
be larger for future research.
For this trade-off, from literature can be concluded that the CART algorithm scales logarithmic when the
training set increases [69, 97], and LS-SVR scales linearly [69, 105]. It is assumed that GRU will scale worse
than these two [69]. Because of their subjective evaluation these metrics are scored on the +/- scale.

Table 5.2: Scores for each of the algorithm on the five evaluation metrics.

Algorithm RMSE MAE Interpretability Ease of Use Computational complexity
CART 0.27 0.20 ++ + +
LS-SVR 0.30 0.23 0 ++ 0
GRU 0.25 0.19 - - - -
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5.5. Conclusions and most promising algorithm
From this literature study three preliminary algorithms have been selected: CART, LS-SVR, and GRU. Each
algorithm has been explained, and a preliminary implementation has been made, regressing the Kp data from
a single run. A comparison of the three algorithms can be found in Figure 5.8 and Table 5.2. From these results
a few notes can be made. First off all, while GRU Network performs better than the other two in the RMSE and
MAE metric, the values are close (within 0.05 difference). For the other three metrics (interpretability, Ease of
Use, and computational complexity), GRU scores significantly lower, while CART and LS-SVR are comparable.

Since GRU scores low on the latter three metrics, it is discarded as potential algorithm for this research. Re-
garding CART and LS-SVR, because of their comparable scores the selection has to be made in a different way.
Therefore, the focus for the rest of this research will lay on developing LS-SVR, as this has the most interest of
the researchers. CART will be used as a back-up option, or potentially as further comparison material.





6
Conclusions and Future research

This chapter serves as a conclusion of this literature study. It comes in the form of a plan for future research,
and is divided into 2 sections. Section 6.1 looks back at the research questions given in the introduction, and
provides answers to these questions where possible. Section 6.2 explains the steps that will be undertaken for
the rest of this thesis.

6.1. Review of the research questions
The introduction gave the research objective and main research question, as well as several sub-questions.
Many of these sub-questions can be answered after the work done for this report, and this will be done in this
section.

Sub-question 1a: How does the motor behaviour of PD patients change over time?
PD symptoms get worse over time. Due to these symptoms the motor behaviour of PD patients changes: the
control gain becomes lower, the neuromuscular damping gets higher, and control variability increases. In
general it can be said that PD patients perform worse at tracking tasks the more severe the symptoms.

Sub-question 1b: What data needs to be simulated, and what are the steps that need to
be taken in order to simulate this change in tracking task motor behaviour?
The tracking task set-up for this research line involves tracking a target across a touch screen, and the time
trace of the control and output signals is recorded. Four cybernetic parameters and two performance pa-
rameters can be obtained from this time trace: Kp , τ, ζnms , and ωnms , and RMSe and RMSu . Data needs to
be simulated for 75 of these trials, with the patient being healthy for the first 50 trials, and experiencing PD
symptoms for the last 25. In order to simulate this, the following steps have to be taken:

1. Simulate a range of healthy trials by drawing the values of the cybernetic parameters from a normal
distribution with mean and standard deviation taken from experimental data from earlier research.

2. Simulate the tracking task control system in order to determine the performance parameters.
3. Simulate latter 25 trials by artificially changing the parameter values to represent the effect of PD symp-

toms.

Sub-question 1c: How can the change of motor behaviour be accurately represented in
the simulated data, and how can a variability be introduced?
Experimental data from earlier research can be used to change the cybernetic parameter values in order to
simulate a decline in motor behaviour. However, this decline is now random and apart from the split between
the 50 "healthy" and 25 "symptom" trials no other trend is introduced. This variable decline will be further
investigated in the subsequent stage of this research.
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Sub-question 1d: Which bootstrapping method best preserves the dependence present
in the participant data?
Due to the data for the rest of this thesis being pure simulated data, selecting the best bootstrapping method
is of less importance. By any further need for bootstrapping the Block Bootstrap will be used.

Sub-question 2: What criteria are relevant for evaluating the performance of the chosen
models?
Five evaluation metrics are used for evaluating model performance. These are:

• Root Mean Square Error
• Mean Absolute Error
• Interpretability
• Ease of Use
• Computational Complexity

Sub-question 3a: How do linear methods perform when applied to this data set?
Linear trend detection methods were able to successfully detect a decline in motor skills when applied to the
dataset with no variety in this decline, being able to distinguish between healthy subjects and subjects with
early-stage PD. It is unknown how these methods would perform when the decline varies, but this will be
investigated in further research.

Sub-question 3b: Which nonlinear methods are available, and which of these is most
fitting for solving the problem in this research?
Many methods are available, divided into three categories: tree-based models, support vector machines, and
neural networks. The rest of this research will focus on a support vector machine: Least Squares Support
Vector Regression (LS-SVR), with a tree-based model (CART) as backup.

Sub-question 3c: How does the chosen nonlinear model compare to the earlier used lin-
ear methods when applied to varying levels of motor symptom change?
This question can not yet be answered and will be further investigated in the subsequent stage of this re-
search.

Sub-question 3d: Does the model have to be unique for each individual, or can a training
dataset be used that combines data from multiple individuals?
This question can not yet be answered and will be further investigated in the subsequent stage of this re-
search.

6.2. Further research steps
In the rest of this thesis the unanswered research questions will be investigated. That will be done in the steps
below, schematically represented in Figure 6.1.

• Improve and extend model implementation: the current implementation of LS-SVR in Python is rudi-
mentary. This needs to be improved and extended, in order to successfully be analysed in the rest of
the thesis.

• Improve data simulation and introduce decline variability: the current dataset is simulated without
decline variability. The current simulation goes from zero symptoms to symptoms, with no gradual
change. This can be improved and will be added in this step.

• Train model and tune hyperparameters: The model needs to be trained in order to make predictions.
This is done using a training dataset. During this training the hyperparameters need to be tuned in
order to get the best performing model possible.

• Sensitivity analysis: perform sensitivity analysis on the model.
• Analysis of results: analysis of results need and comparison to earlier results (Lugtenborg [7]).
• Model validation: the model needs to be validated to see if it corresponds to reality.
• Report and present: the earlier steps will be repeated if significant changes to the model are made, and

if needed a separate algorithm will be tested as well. After this has been done the results and resulting
model need to be reported and presented.
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6.3. Desired outcome of this research
The steps explained in Section 6.2 have the goal of creating a model that is capable of detecting a change in
tracking task control performance due to PD symptoms. It is expected that the nonlinear LS-SVR model will
perform better than earlier tested linear methods. The model should require as little calibration as possible,
ideally being generalised.

Figure 6.1: Schematic overview of the steps to be taken in the rest of this thesis.
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A
Regression example

This appendix walks through a complete analysis for a single participant, as an example to help understand
the method.

A.1. Data simulation
The first step is to simulate the participant. For this example the settings from Tables A.1 and A.2, with the
numpy.random seed being: 12345. 50 healthy trials are simulated, and 25 symptomatic. The results of the
data simulation are given in Figures A.1 till A.6

Table A.1: Parameters for the normal distribution used
to simulate the healthy trials

Kp [-] τ [s] ζnms [-] ωnms [r ad/s]
µ 0.91 0.37 0.38 8.7
σp 0.26 0.14 0.19 4.3

Table A.2: Range for δ for simulating the PD symptoms

Range for δ
Kp −0.9 < δ< 0 [-]
τ 0 < δ< 0.07 [s]

ζnms 0 < δ< 0.31 [-]
ωnms 0 < δ< 5 [r ad/s]

Figure A.1: Simulated data for Kp
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Figure A.2: Simulated data for τ

Figure A.3: Simulated data for ζnms
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Figure A.4: Simulated data for ωnms

Figure A.5: Simulated data for RMSe
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Figure A.6: Simulated data for RMSu
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A.2. Regression
On these simulated data the two regression models are run. For the LS-SVR model the hyperparameter set-
tings in Table A.3 are used. The results are given in steps of 10 trials, in Figures A.7 till A.14.

Table A.3: LS-SVR hyperparameter values for the example presented in this Appendix

Kp τ ζnms ωnms RMSe RMSu

γ 5 1 5 1 5 40
σ 60 50 100 100 10 100

Figure A.7: Regression results for trial 10

Figure A.8: Regression results for trial 20
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Figure A.9: Regression results for trial 30

Figure A.10: Regression results for trial 40
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Figure A.11: Regression results for trial 50

Figure A.12: Regression results for trial 60
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Figure A.13: Regression results for trial 70

Figure A.14: Regression results for trial 74
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A.3. Difference
For each trial the difference is determined. This difference can be plotted over time, as show in Figure A.15.
From the difference graph a detection of a changing trend can take place, with Dl i m and ldet used given in
Table A.4. In the figure it can be seen that for four parameters a change is detected: Kp (at trial 56), ζnms (60),
ωnms (70) and RMSu (52). For τ and RMSe , D does not stay above Dl i m for at least 5 trials.

Table A.4: LS-SVR hyperparameters for the example presented in this Appendix

Kp τ ζnms ωnms RMSe RMSu

Dl i m 0.15 0.03 0.06 1.0 0.1 0.1
ldet 5 5 5 5 5 5

Figure A.15: Difference plots for this simulated participant





B
Future results

This appendix gives the complete results of the example participant from step 4 in the analysis: using pro-
jected future trials. For every parameter it can be seen that the larger n f utur e the earlier a detection will occur.

Figure B.1: Results for Kp , step 4, single participant Figure B.2: Results for τ, step 4, single participant

Figure B.3: Results for ζnms , step 4, single participant Figure B.4: Results for ωnms , step 4, single participant
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Figure B.5: Results for RMSEe , step 4, single participant Figure B.6: Results for RMSEu , step 4, single participant

.
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