
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
TECHNISCHE FAKULTÄT • DEPARTMENT INFORMATIK

Lehrstuhl für Informatik 10 (Systemsimulation)

Solving Stochastic PDEs with Approximate Gaussian Markov Random
Fields using Different Programming Environments

Kelvin Kwong Lam Loh

Master Thesis

Solving Stochastic PDEs with Approximate Gaussian Markov Random
Fields using Different Programming Environments

Kelvin Kwong Lam Loh
Master Thesis

Aufgabensteller: Prof. Dr. U. Rüde
Betreuer: Dr.-Ing. H. Köstler

Dr.-Ing. B. Gmeiner
S. Kuckuk, M.Sc.

Bearbeitungszeitraum: 15.03.2014 – 15.09.2014

Erklärung:

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der an-
gegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
sind als solche gekennzeichnet.

Der Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für Systemsimulation (In-
formatik 10), wird für Zwecke der Forschung und Lehre ein einfaches, kostenloses, zeitlich
und örtlich unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der Master Thesis ein-
schließlich etwaiger Schutzrechte und Urheberrechte eingeräumt.

Erlangen, den 18. August 2014 .

Abstract

This thesis is a study on the implementation of the Gaussian Markov Random Field
(GMRF) for random sample generation and also the Multilevel Monte Carlo (MLMC)
method to reduce the computational costs involved with doing uncertainty quantification
studies. The GMRF method is implemented in different programming environments in
order to evaluate the potential performance enhancements given varying levels of lan-
guage abstraction. It is seen that the GMRF method can be used to generate Gaussian
Fields with a Matérn type covariance function and reduces the computational require-
ments for large scale problems. Speedups of as much as 1000 can be observed when
compared to the standard Cholesky Decomposition sample generation method, even for
a relatively small problem size. The MLMC method was shown to be at least 6 times
faster than the standard Monte Carlo method and the speedup increases with grid size.
It is also seen that in any Monte Carlo type methods, a Krylov subspace type solver is
almost always recommended together with a suitable preconditioner for robust sampling.

This thesis also studies the ease of implementation of these methods in varying
levels of programming abstraction. The methods are implemented in different languages
ranging from the most common language used by mathematicians (MATLAB), to the
more performance oriented language (C++-PETSc/MPI), and ends with one of the
newest programming concept (ExaStencils). The GMRF method featured in this thesis
also is one of the earliest application to be implemented in ExaStencils.

i

Contents
1 Introduction 1

2 Theory 2
2.1 Gaussian Field . 2

2.1.1 Stationary Processes . 3
2.1.2 Covariance Function . 3

2.2 Gaussian Markov Random Field . 3
2.3 Generation of Gaussian Fields . 4

2.3.1 Cholesky and Singular Value Decomposition 5
2.3.2 GMRF Approximation . 6

2.4 Gaussian White Noise . 6
2.5 Standard Monte Carlo . 7
2.6 Multilevel Monte Carlo . 8

3 Implementation 10
3.1 Finite Volume Discretization . 10
3.2 Standard Monte Carlo Parallelization . 11

3.2.1 Domain Decomposition . 11
3.2.2 Static Master-Slave . 11
3.2.3 Dynamic Master-Slave . 12

3.3 Multilevel Monte Carlo (MATLAB) . 13
3.4 PETSc Details . 14

3.4.1 Standard Cholesky decomposition . 14
3.4.2 GMRF approximation . 14

3.5 ExaStencils . 14
3.6 Hardware and Software Specifications . 15

4 Results and Discussion 18
4.1 Grid Convergence . 18
4.2 Standard Monte Carlo Sampling Convergence 20
4.3 Validation of GMRF approximation . 20

4.3.1 1D case . 21
4.3.2 2D case . 22

4.4 MATLAB . 22
4.4.1 MATLAB - Standard Monte Carlo . 22
4.4.2 MATLAB - Multilevel Monte Carlo . 25
4.4.3 Performance Analysis . 26

4.5 PETSc - Standard Monte Carlo . 26
4.5.1 Solvers . 28
4.5.2 Preconditioners and KSP Solvers . 29

4.6 PETSc - Performance Analysis . 32
4.6.1 Performance of different parallelization strategies 32
4.6.2 Performance of GMRF compared to Cholesky decomposition 36
4.6.3 Effect of CPU socket utilization . 38
4.6.4 Miscellaneous analysis of the GMRF and Variational Poisson program . 41

ii

4.7 ExaStencils - Standard Monte Carlo . 41
4.7.1 Results . 46
4.7.2 Experiences . 47

5 Conclusion 50
5.1 Future work . 50
5.2 Acknowledgments . 50

A PETSc Solver Settings Report 54

B Jumpshot Visualizations 55

iii

List of Figures
2.1 Problem domain . 2
3.1 FVM discretization of interior cell, Ωi, and faces, Γ

(i)
j associated with the cell . 11

3.2 Example DD of matrix for PETSc using the mpiaij type. (Image taken from [3]) 12
3.3 The Static Master-Slave (MSS) strategy [Ns = Total number of samples, P =

Total number of worker groups] . 13
3.4 The Dynamic Master-Slave (MSD) strategy [Ns = Total number of samples, P

= Total number of worker groups] . 14
3.5 The workflow for the ExaStencils programming paradigm [Image taken from

[13]] . 16
3.6 The Domain Specific Language (DSL) hierarchy of ExaStencils [Image taken

from [13]] . 16
4.1 Grid convergence test . 20
4.2 SLMC convergence test [Solid line = Curve fit] 20
4.3 Covariance for the point, x = 0.5 for the 10000 samples realized, (λ = 0.1, σ =

0.5) . 21
4.4 Expectation and standard deviation as a function of x for the 10000 samples

realized, (λ = 0.1, σ = 0.5) . 22
4.5 Covariance field for x = (0.51, 0.49) for the 10000 samples realized, (λ =

0.1, σ = 0.3) . 23
4.6 GMRF, a(x), random coefficient, ea(x) and solution, U(x) fields for a single

realization . 23
4.7 Expectation and variance of a(x) as a function of x for the 10000 samples realized 24
4.8 Expectation and variance of ea(x) as a function of x for the 10000 samples realized 24
4.9 Expectation and variance of U(x) as a function of x for the 10000 samples

realized . 24
4.10 Statistics of QM as a function of grid size for the SLMC using λ = 0.1, σ = 0.3,

sampling error, ε = 5E− 3. 25
4.11 Statistics of Q30 as a function of sampling error for the SLMC using λ = 0.1,

σ = 0.3, grid size [30×30] . 26
4.12 MLMC sample case plots for λ = 0.1, σ = 0.3, Finest grid size is at [240×240],

sampling error, ε = 5E− 3. 27
4.13 Speedups for the MLMC using λ = 0.1, σ = 0.3, finest grid size [240×240],

sampling error, ε = 5E− 3. 27
4.14 GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.01, σ = 1 30
4.15 GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.1, σ = 1 . 30
4.16 GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.25, σ = 1 30
4.17 GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.1, σ = 0.3 31
4.18 GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.1, σ = 2 . 31
4.19 GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.1, σ = 10 31
4.20 Speedups as a function of number of processors for different parallelization

strategies, 1000 samples, [500×500], 1 processor per sample 33
4.21 Efficiency as a function of number of processors for different parallelization

strategies, 1000 samples, [500×500], 1 processor per sample 34
4.22 Efficiency as a function of number of samples for different parallelization strate-

gies, 32 processors, [500×500], 1 processor per sample 34

iv

4.23 Speedups as a function of number of processors for different parallelization
strategies, 1000 samples, [500×500], 2 processors per sample 35

4.24 Efficiency as a function of number of processors for different parallelization
strategies, 1000 samples, [500×500], 2 processors per sample 35

4.25 Efficiency as a function of number of samples for different parallelization strate-
gies, 32 processors, [500×500], 2 processor per sample 36

4.26 Efficiency as a function of number of processors for different grid sizes, 1000
samples, Dynamic MS, 1 processor per sample 37

4.27 Efficiency as a function of number of samples for different grid sizes, 32 pro-
cessors, Dynamic MS, 1 processor per sample 37

4.28 Speedup of the GMRF approximation over the Cholesky decomposition ap-
proach as a function of number of samples for different number of processors . 38

4.29 Percentage of total wall clock time for Cholesky Decomposition (4 processors,
100x100 grid size, 100 samples) . 39

4.30 Percentage of total wall clock time for Cholesky Decomposition (4 processors,
100x100 grid size, 1000 samples) . 39

4.31 Percentage of total wall clock time for Cholesky Decomposition (32 processors,
100x100 grid size, 1000 samples) . 40

4.32 Efficiency as a function of number of processors for different npersocket values
using 2500 samples, [1000×1000] grid and Dynamic master-slave 41

4.33 Efficiency as a function of number of samples for different npersocket values
using 32 processors, [1000×1000] grid and Dynamic master-slave 42

4.34 MPE Jumpshot color legend . 42
4.35 Processor bindings report from OpenMPI (balanced) 43
4.36 Processor bindings report from OpenMPI (unbalanced) 43
4.37 Jumpshot analysis for 10 processors (balanced) 43
4.38 Jumpshot analysis for 10 processors (unbalanced) 44
4.39 Program output for 10 processors . 44
4.40 Percentage of total wall clock time for Dynamic Master-Slave (4 processors,

500x500 grid size, 1000 samples) . 45
4.41 Percentage of total wall clock time for Dynamic Master-Slave (64 processors,

500x500 grid size, 1000 samples) . 45
4.42 Jumpshot visualization of PETSc program for Dynamic Master-Slave - 4 pro-

cessors per sample (32 processors, 1000x1000 grid size, 500 samples) 46
4.43 Expectation of the solution field as calculated from the code generated by

ExaStencils ([511×511] points), 100 samples 47
4.44 Speedups for ExaStencils . 48
B.1 Jumpshot visualization of PETSc program for Dynamic Master-Slave - 1 pro-

cessor per sample (32 processors, 1000x1000 grid size, 500 samples) 55
B.2 Jumpshot visualization of PETSc program for Dynamic Master-Slave - 2 pro-

cessors per sample (32 processors, 1000x1000 grid size, 500 samples) 55

v

List of Tables
2.1 Advantages and disadvantages of the two GF generating methods 5
3.1 Hardware and software specifications . 19
4.1 Solver settings for robustness study . 28
4.2 Maximum number of iterations for solving Eq. (1) with fgmres+boomeramg

preconditioner - [NA = stats problem] . 29
4.3 Maximum number of iterations for solving Eq. (1) with boomeramg (symmetric

SOR relaxation solver) - [DNC = did not converge, NA = stats problem] . . . 29
4.4 Preconditioner and Solvers . 32
4.5 Wall clock times (seconds) to compute 150 samples, with different KSP solvers

and preconditioners using 32 processors . 32

vi

1 Introduction
The field of uncertainty quantification is important to science and engineering as the variables
involved in real-life systems are rarely deterministic. Whenever we solve the Navier-Stokes
equations in Computational Fluid Dynamics (CFD), there will always be uncertainties in-
volved with the system coming from various sources. For example the viscosity field, or the
boundary conditions since these variables are given as inputs to the simulation. Usually, these
variables are obtained from experiments or other sources from which there are errors involved.
As such, in order to know the effects of these uncertainties on the solution field, we need to
perform an asymptotically unbiased uncertainty quantification experiment. Examples of such
simulations are the Monte Carlo and randomized quasi-Monte Carlo methods. The idea is
to run multiple independent simulations by considering that the variables involved with the
original deterministic system are in fact random variables. By having a large sample set of
the resulting solution field, we can then perform statistical analysis on that set to determine
the effects of the input uncertainties.

The problem with such methods is that they are computationally very expensive for prob-
lem sizes which are large. Suppose one can solve a single M large deterministic system with
the computational cost in the order of O(M), which one can achieve using efficient implemen-
tations of multigrid methods. However, when one needs to do Monte Carlo experiments, the
computational cost then increases to at least O(NM), where N is the minimum number of
trials to reduce the statistical sampling error. There exist a need to find ways to reduce the
cost involved by reducing the number of required samples.

Also, for spatially varying coefficient fields, such as the viscosity, or thermal conductiv-
ity, we also need to take into account when there are any spatial correlations between the
coefficients in the domain. This is rather common in the field of geophysics and oil reservoir
exploration. We then need to find an efficient method to generate the coefficient fields for the
simulation in such a way that the statistical properties of the input coefficient fields are still
preserved. The problem is due to the covariance function, which when the spatial domain is
discretized, result in a dense matrix. There is then a need to efficiently generate these fields
by ideally not operating on the dense covariance matrix.

The first problem is addressed by the Multilevel Monte Carlo method, where the primary
idea is taken from the Multigrid counterpart in linear algebra solvers. The second problem is
addressed by an approximation of the Gaussian field (GF) using a Gaussian Markov Random
Field (GMRF).

There are two primary interests for this thesis. The first is in the interest of applied math-
ematics, and the other in computational engineering. In the applied mathematics interest,
this thesis attempts to verify the use of the two recent methods. This thesis also explores the
practical implementation and solving methods for the GMRF method. In the same interest
as well, the potential performance enhancements are discussed. As for the computational
engineering interest, three types of parallelization strategies for the Monte Carlo method are
discussed. Also, the methods are implemented in different languages with varying abstrac-
tion levels. The idea is to determine the ease of practical implementation of these methods
and the experiences of implementation are mentioned in the results. The last objective is
also to create an application using the GMRF and Standard Monte Carlo method for a new
programming environment called ExaStencils.

This thesis starts of with the description of the deterministic toy problem from which we
can easily obtain the solution to it, and then introduce the two recent methods along with

1

current standard methods in Section 2. We then discuss the implementation of the methods
in Section 3. The results of the study are described in Section 4. The section starts with
the verification of the newer methods against standard methods, and then we examine the
performance gains on the toy problem that can be obtained by using such newer methods.

2 Theory
The variable Poisson equation, Eq. (1) is to be solved in the square domain, Ω = [0, 1]× [0, 1],
with the exponential Gaussian field, ea(x), as the coefficients. This problem can be thought
of physically as a variable heat conduction problem with Dirichlet boundary conditions. The
problem can be visualized by Figure 2.1.

∇ ·
(
ea(x)∇U(x)

)
= 0 x ∈ Ω = [0, 1]× [0, 1] (1)

U(0, x2) = 3 x2 ∈ ∂ΩW = [0, 1]

U(1, x2) = 5 x2 ∈ ∂ΩE = [0, 1]

U(x1, 0) = 10 x1 ∈ ∂ΩS = [0, 1]

U(x1, 1) = 1 x1 ∈ ∂ΩN = [0, 1]

Ω

(0, 0) (1, 0)

(0, 1) (1, 1)UN = 1

US = 10

UE = 5UW = 3

Figure 2.1: Problem domain

2.1 Gaussian Field
In order to generate a Gaussian field (GF), a(x), for Eq. (1), we need to know what is a
Gaussian field, and its properties. The following assumes that the reader is already familiar
with basic stochastic processes concepts such as random variables, expectation, and variance.
For more theoretical background, the reader is invited to refer to a standard text such as [19].

Definition 2.1.1. A stochastic process, {a(x),x ∈ D} where D ⊂ Rd, and x ∈ D represents
the location is called a Gaussian process if (a(x1), . . . , a(xn))T has a multivariate normal
distribution for all x1, . . . ,xn

Since a multivariate normal distribution (MVN), is completely determined by the marginal
expectation vector, and covariance matrix, it then follows that a Gaussian process is also

2

having such a property as well. Hence, a Gaussian random field will have this property

a(x) ∼ MVN(µ,Σ) , x ∈ Rd

where µ(x) = E[a(x)] is the expectation (vector) of the field, and C(xi,xj) = Cov(a(xi), a(xj))
forms the elements in the covariance matrix, Σ of the field in Rd.

2.1.1 Stationary Processes

In this thesis, the random processes are assumed to be stationary.

Definition 2.1.2. A stochastic process, {a(x),x ∈ D}, is said to be a stationary process if
for all x ∈ D, µ(x) = µ, and if the covariance function only depends on xi − xj, i 6= j.
A stationary Gaussian Field is also isotropic if the covariance function only depends on the
Euclidean distance between xi and xj, i.e., C(xi,xj) = C(δx), where δx =

√
||xi − xj||2.

In other words, a process is stationary if choosing any fixed point as the origin, the process
has the same probability law [19]. Hence, for a stationary Gaussian random field, such as
that in this thesis, the expectation, and covariance matrix is independent of the location of
the sampling point origin.

2.1.2 Covariance Function

For any finite set of locations, it can be seen then, that a covariance function must induce a
covariance matrix, Σ which is positive definite. For isotropic stationary GFs, the matrix is
also symmetric. In most applications for geostatistics, one of the following isotropic covari-
ance functions is used [20]:

Exponential C(δx) = exp (−3 δx)
Gaussian C(δx) = exp (−3 δx2)
Powered Exponential C(δx) = exp (−3 δxα), 0 < α ≤ 2
Matérn See Equation (2)

For this thesis, the Matérn covariance function, Eq. (2) is used to describe the Gaussian
random field. Although this seems rather restrictive, the function covers the most important
and most used covariance model in spatial statistics. Stein [23] in 1999, even concluded a
detailed theoretical analysis with ’Use the Matérn model’. The Matérn covariance function
is shown as follows:

C(δx) =
1

2ν−1Γ(ν)
(κδx)ν Kν(κδx) (2)

where δx is the Euclidean distance between xi, xj ∈ Ωd, Kν is the modified Bessel function
of the second kind and order ν > 0, and κ if a function of ν such that the covariance function
is scaled to C(1) = 0.05, and C(0) = 1. The variance of the distribution becomes σ2 if we
multiply the covariance function, C(δx) by σ2.

2.2 Gaussian Markov Random Field
From section 2.1.2, we see that the covariance matrix Σ is dense. However, for certain types
of GFs, the precision matrix, Q = Σ−1 can be sparse. For Gaussian Markov Random Fields

3

(GMRFs), this precision matrix is a more useful matrix than the covariance matrix. The
reason is that the off-diagonal elements of the precision matrix characterizes the conditional
dependence properties of the distribution.

Very briefly, a GMRF is a multivariate GF that satisfy a certain conditional independence
structure. In order to be more rigorous, the concept of a graph is required. For this thesis, the
assumptions are that all graphs are finite and unordered unless otherwise specified. Since the
graph is finite, the vertices can be numbered from 1, . . . , n, where n is the number of vertices.

Definition 2.2.1. A graph is an ordered pair G = (ν, ε) comprising a finite set ν of vertices
and a set ε of edges, where ε is a set of unordered pairs of elements of ν. If ν = {1, 2, . . . , n},
the graph is a labelled graph.

The formal definition of a GMRF is then provided by Rue and Held [20].

Definition 2.2.2. A random vector x = (x1, . . . , xd)
T ∈ Rd is called a GMRF wrt a labelled

graph G = (ν, ε) with expectation µ and precision matrix Q > 0 iff its density has the form

pdf(x) = (2π)−n/2|Q|1/2 exp

(
−1

2
(x− µ)TQ(x− µ)

)
(3)

and

Qi,j 6= 0 ⇐⇒ {i, j} ∈ ε ∀i 6= j

Theorem 2.2.1. (Conditional independence and the precision matrix). Let x ∼ N(µ,Q−1),
with Q > 0. Then, for i 6= j,

xi ⊥ xj|{xk : k ∈ ν − {i, j}} ⇐⇒ Qi,j = 0

Proof. See Theorem 2.2 from Rue and Held [20]

Theorem 2.2.1 is a nice and useful result. Simply put, it states that the nonzero pattern
of the precision matrix, Q determines G, and we can see from Q whether xi and xj are
conditionally independent. The converse is also true, which, for a given graph, G, we can
know the nonzero terms in Q.

2.3 Generation of Gaussian Fields
A Gaussian Field must be generated efficiently for the use in Monte Carlo methods as a field
needs to be generated for each independent sample. In this thesis, two types of methods
are investigated. The first is the standard method based on Cholesky Decomposition of
the Covariance matrix describing the Gaussian field. The second is a recent method which
approximates a Gaussian field with a Matérn covariance function. A third method which has
not been investigated due to time constraints is the circulant embedding method proposed
by Dietrich and Newsam [8]. A summary of the advantages and disadvantages of the two
investigated methods is given by Table 2.1.

4

Method Advantage Disadvantage

Direct factorization • Arbitrary isotropic stationary covariance functions • Dense covariance matrix, Σ
• Computationally expensive (memory and operations)

GMRF approximation • Sparse precision matrix, Q • Restricted to only Matérn covariance functions
• Computational cost same as solving another PDE

Table 2.1: Advantages and disadvantages of the two GF generating methods

2.3.1 Cholesky and Singular Value Decomposition

The Cholesky decomposition method of the covariance matrix is a direct method which is
computationally expensive considering the covariance matrix is dense. It is related to the
Karhunen-Loeve (KL) expansion (see Lemma 2.3.1) which is used to generate samples with
the exponential covariance function in Cliffe et al [6].

Lemma 2.3.1. The KL expansion is related to the Singular Value Decomposition (SVD) for
the covariance matrix. This by extension then is related to the Cholesky decomposition method
to generate isotropic stationary Gaussian fields.

In the 1981 paper by Gerbrands [10], the relationship between KL expansion and SVD is
established. The next part of the proof is then to establish a relationship between SVD and
the Cholesky decomposition method.

Proof. Any symmetric positive definite (spd) matrix, A can be decomposed using Cholesky
decomposition into:

A = LLT

The SVD of a spd matrix is given by:

A = UΛUT

where Λ is a diagonal matrix with entries equal to the singular values (or eigenvalues for spd
matrices) ofA, andU are the singular vector matrix in which the columns are the eigenvectors
that correspond to the singular values. From there, we can see that:

A = LLT = (U
√

Λ)(U
√

Λ)T

∴ L = U
√

Λ

From Lemma 2.3.1, we can use either KL expansion, SVD, or Cholesky decomposition to
generate arbitrary stationary isotropic GFs depending on convenience. This also shows the
computational drawback of these methods as they still rely on dense matrix factorizations for
the covariance matrix.

The GF, y with a spd covariance matrix Σ can then be generated by the following:
Suppose y ∼ N(0,Σ) is desired, and SVD is used, then,

Z ∼ N(0, I)

y = U
√

ΛUTZ

In words, we just need to find the decomposition of the covariance matrix once and then
reuse the factors of that matrix to generate GFs with the desired distribution by multiplying
with a random variable that has a standard normal distribution.

5

2.3.2 GMRF Approximation

A Gaussian Field with a Matérn covariance (2) can be approximated by the solution to the
SPDE, Eq. (4) as mentioned by Lindgren and Rue in 2011 [15]. Instead of having to do a
Karhunen-Loeve expansion (identical to Singular Value Decomposition for the case of zero
mean fields [10]) on the dense covariance matrix for the generation of a sample, one can just
solve the SPDE, Eq. (4), taking advantage of sparsity in the discretization matrix to generate
a GMRF which approximates the Gaussian field instead.

In 2001, Rue and Tjelmeland [21] demonstrated empirically that GMRFs could closely ap-
proximate most of the commonly used covariance functions in geostatistics, and they proposed
to use them as computational replacements for GFs for computational reasons.

(κ2 −∆)α/2(τa(x)) = W (x) (4)

where x ∈ Ωd, W (x) ∼ MVN(0,1) and τ scales the variance of the approximate GF solution
to σ2.

The solution, a(x), of the SPDE, Eq. (4) has a covariance which approximates Eq. (2) by
the following relations, and zero neumann boundary condition, Eq. (5).

∇a(x) · n̂ = 0, x ∈ ∂Ω (5)

τ 2 =
Γ(ν)

Γ(ν)(4π)d/2κ2νσ2
(6)

κ =

√
8ν

λ
(7)

ν = α− d

2
(8)

The boundary condition has to be treated carefully during implementation to ensure that
the approximate solution is relatively free from boundary effects. As a rule of thumb proposed
by Lindgren and Rue [14], the boundary effect is negligible at a distance, λ, from the boundary.
In practice, therefore, we can avoid the boundary effect if we extend the computational domain
to at least a distance of λ.

The Gaussian field, a(x) for the coefficient in Eq. (1) is to be generated with a Matern
covariance function with constants, α = 2, σ = 0.3, and λ = 0.1. This is the default case used
in this thesis unless otherwise stated.

2.4 Gaussian White Noise
Since the source term of Equation (4) features a Gaussian white noise, W (x), we must know
the definition and statistical properties of the Gaussian white noise.

Adler and Taylor [1] defines the following as a Gaussian noise.

Definition 2.4.1. Let (T, T , ν) be a σ-finite measure space and denote by Tν the collection
of sets of T of finite ν measure. A Gaussian noise based on ν, or ’Gaussian ν-noise’ is a
random field W : Tν → R s.t., ∀ A,B ∈ Tν:

6

1. W (A) ∼ N(0, ν(A))

2. A ∩B = Φ =⇒ W (A ∪B) = W (A) +W (B) a.s.

3. A ∩B = Φ =⇒ W (A) and W (B) are independent.

Now that we have a definition of a Gaussian noise, we now proceed to look at its properties.
A theorem (2.4.1) introduced by Fuglstad [9] provides the properties that we can use to modify
the form of Equation (4).

Theorem 2.4.1. Let W be a standard Gaussian white noise process on Rn, for some n > 0,
and let L2(Rn) be the set of Lebesgue square-integrable functions from Rn to R. Then the
following holds ∀f, g ∈ L2(Rn):

i.
∫
Rn f(x)W (x)dx has a Gaussian distribution.

ii. E
[∫

Rn f(x)W (x)dx
]

= 0.

iii. E
[(∫

Rn f(x)W (x)dx
)
·
(∫

Rn g(x)W (x)dx
)]

=
∫
Rn f(x)g(x)dx.

The proof of the theorem can be found in Walsh [26].

2.5 Standard Monte Carlo
Solving just one instance of a SPDE is rather meaningless since the statistics of the solution
is what interests us. Hence, the most basic method to obtain such information can be from
the standard Monte Carlo (SLMC). The simplest idea is to run multiple independent trials of
the deterministic PDE, Eq. (1), using random GFs as input to the system, and then obtain
the statistical information of the solution.

A review of the standard Monte Carlo method is provided by this section as this method
is used primarily in this thesis. We will then extend this knowledge to the Multilevel Monte
Carlo method introduced by Giles in 2008 [11].

Suppose the continuous solution to Eq. (1) is given by U . The discretized solution can
then be given by UM , where M is the number of cells contained within the domain, Ω.
Suppose now that QM = F(UM) be the linear or nonlinear functional of UM . In this thesis,
the functional is defined by the norm of the solution, QM = ||UM ||2√

M
. The assumption then is

that E[QM]→ E[Q], as M →∞.
The interest is in estimating E[Q], thus, having a sufficiently large M ∈ N, we compute

the discretization error between the estimator Q̂M of E[QM] and E[Q], which can then be
quantified via the root mean square error (RMSE)

e(Q̂M) :=
(
E
[
(Q̂M − E[Q])2

])1/2

In other words, for the PDE application, it just corresponds to choosing a fine enough
mesh for the approximation. Hence, a grid convergence study is needed.

7

The standard Monte Carlo estimator for E[QM] is

Q̂MC
M,N :=

1

N

N∑
i=1

Q
(i)
M (9)

where Q(i)
M is the i-th sample of QM and N independent samples are computed in total. Then

the mean square error (MSE) of the standard Monte Carlo estimator, e(Q̂MC
M,N)2 is given by

[11]:

e(Q̂MC
M,N)2 =

V(QM)

N
+ (E[QM −Q])2 (10)

The first term of the MSE in Eq. (10) is the variance of the estimator and represents the
sampling error (i.e. the error due to the finite-ness of the samples). The second term represents
the discretization error.

2.6 Multilevel Monte Carlo
The idea of the Multilevel Monte Carlo (MLMC) method recently developed by Giles [11] is
simple. We sample not just from one approximation QM of Q, but from multiple levels. This
thesis will only outline the main idea of the method. More details can be obtained from the
main paper [11].

Let Ml : l = 0, . . . , L be an increasing sequence in N called levels, i.e. M0 < M1 < · · · <
ML =: M , and assume for simplicity that ∃s ∈ N\{1} s.t.

Ml = sMl−1, ∀l = 1, . . . , L (11)

Similar to the multigrid methods applied to linear algebraic systems, the key is to avoid
estimating E[QMl

] directly on level l, but instead we estimate the correction with respect to
the next lower level, i.e. E[Yl], where Yl := QMl

− QMl−1
. The linearity of the expectation

operator then implies that

E[QM] = E[QM0] +
L∑
l=1

E[QMl
−QMl−1

] =
L∑
l=0

E[Yl] (12)

where Y0 := QM0 .
Hence, the expectation on the finest level is equal to the expectation on the coarsest

level, E(QM0), plus a sum of corrections,
∑L

l=1 E[Yl] of the difference in expectation between
simulations on consecutive levels. The multilevel idea is then to independently estimate each
of these expectations such that the overall variance is minimized for a fixed computational
cost.

Let Ŷl be an unbiased estimator for E[Yl], e.g. the SLMC estimator

Ŷ SL
l,Nl

:=
1

Nl

Nl∑
i=1

(
Q

(i)
Ml
−Q(i)

Ml−1

)
(13)

with Nl samples. The multilevel estimator is then defined as in Equation 14.

Q̂ML
M :=

L∑
l=0

Ŷl (14)

8

If the individual terms are estimated using standard Monte Carlo (SLMC), i.e. Eq. 13 with
Nl samples on level l, then the estimator, Eq. (14) is called the multilevel Monte Carlo. We
denote it by Q̂MLMC

M,{Nl}. The quantity Q
(i)
Ml
−Q(i)

Ml−1
in Eq. (13) has to come from using the same

random sample ω(i) ∈ Ω on both levels Ml and Ml−1. This thesis uses the SLMC and MLMC
methods.

We already know that the expectations E[Ŷl] are estimated independently, the variance of
the MLMC estimator is then V

(
Q̂MLMC
M

)
=
∑L

l=0N
−1
l V(Yl). The mean square error (MSE)

as defined by Giles [11] is in the form as shown in Eq. (15).

e(Q̂MLMC
M)2 := E

[
(Q̂MLMC

M − E[Q])2
]

=
L∑
l=0

N−1
l V(Yl) + (E[QM −Q])2 (15)

Similar to the SLMC, we notice that the MSE consists of two terms, sampling error, and
discretization error. Again, they are assumed to be independent of each other. It is then
claimed that MLMC is cheaper than the SLMC to reduce the sampling error term to less
than ε2/2 for the following two reasons:

• If E [(QM −Q)2]→ 0 as M →∞, then, V(Yl) = V(QMl
−QMl−1

)→ 0 as l →∞. It is
then possible to choose Nl → 1 as l→∞.

• The coarsest level l = 0 and thus M0 can be kept fixed for all ε, and so the cost per
sample on level l = 0 does not grow as ε→ 0.

Practically, M0 must be chosen sufficiently large to provide a minimum resolution to the
problem. For the problem described in the thesis, this depends on the regularity of the
covariance function of the coefficient field, ea(x) and on the correlation length.

The computational cost of the multilevel Monte Carlo estimator is

C(Q̂MLMC
M) =

L∑
l=0

NlCl (16)

where Cl := C(Y (i)
l) represents the cost of a single sample of Yl. Treating the Nl as continuous

variables, the variance of the MLMC estimator is minimized for a fixed computational cost
by choosing

Nl
∝∼
√

V(Yl)/Cl (17)

with the constant of proportionality chosen so that the overall variance is ε2/2. The total cost
on level l is proportional to

√
V(Yl)Cl and hence

C(Q̂MLMC
M) <∼

L∑
l=0

√
V(Yl)Cl (18)

Putting all the ideas together, the original MLMC algorithm as outlined by Cliffe et al [6]
are as follows:

9

1. Start with L = 0.

2. Estimate V(YL) by the sample variance of an initial number of samples.

3. Calculate the optimal Nl, l = 0, 1, . . . , L using Eq. (17).

4. Evaluate extra samples at each level as needed for the new Nl.

5. If L ≥ 1, test for convergence using ŶL ∝∼M−α.

6. If not converged, set L = L+ 1 and go back to 2.

Note that in the above algorithm, step 3 aims to make the variance of the MLMC estimator
less than 1

2
ε2, while step 5 tries to ensure that the remaining bias is less than 1√

2
ε.

3 Implementation
This section will discuss the numerical discretization and algorithms used to solve the stochas-
tic PDE system.

3.1 Finite Volume Discretization
The problem is to be discretized with the Finite Volume Method (FVM) for both the SPDE
(4), and Eq. (1). The stencil is shown in Figure 3.1. The FVM discretization for Eq. (1) follows
the usual manner [24] for variable elliptic problems since it deals with deterministic variables
for each independent sample set. However, special care must be treated with respect to the
SPDE described by Eq. (4). To discretize the SPDE, we follow the same steps as averaging
over a control volume, and then applying Gauss’ theorem to the diffusion term. The difference
lie in the treatment of the Gaussian white noise term, W (x), where the equality sign, "=",
in the SPDE, is to be understood as having equal statistical properties, " d

=" over the finite
dimensional distributions (i.e. same expectation, variances, etc...).

Starting from Eq. (4) and using Theorem 2.4.1, assuming α = 2, and suppose we are
discretizing over the i-th control volume, Ωi with volume dΩi, and surface ∂Ωi:

(κ2 −∆)a(x) = W (x) (19)∫
Ωi

(
κ2a(x)−∇ · ∇a(x)

)
dΩ

d
=

∫
Ωi

W (x)dΩ (20)∫
Ωi

κ2a(x)dΩ−
∮
∂Ωi

∇a(x) · n̂dΓ
d
= Z

√∫
Ωi

dΩ (21)

κ2a(xi)dΩi −
Nf∑
j=1

(∇a(xj) · n̂)|dΓj
dΓj

d
= Z

√
dΩi (22)

10

Ωi

Ωi+1Ωi−1

Ωi+Mx

Ωi−Mx

Γ
(i)
1

Γ
(i)
2

Γ
(i)
3

Γ
(i)
4

Figure 3.1: FVM discretization of interior cell, Ωi, and faces, Γ
(i)
j associated with the cell

where Nf = number of discretized faces over the surface ∂Ωi, and Z ∼ N (0, 1).
As an example, the FVM implementation done in this thesis referring to Figure 3.1,

Eq. (22) is shown as:

κ2aidΩi −
(

Γ
(i)
1 + Γ

(i)
3

)
∆y −

(
Γ

(i)
2 + Γ

(i)
4

)
∆x = Zi

√
dΩi (23)

where dΩi = ∆x∆y, and we use linear interpolation in between the cell values for the faces,
e.g. Γ

(i)
1 = 1

2
(Ωi + Ωi+1).

3.2 Standard Monte Carlo Parallelization
Monte Carlo methods are examples of embarrassingly parallel problems since the samples
are independent of each other. Therefore, the Work Pool/Processor Farms will be a good
strategy [27]. Nevertheless, 3 types of parallelization strategy for the SLMC, namely, Domain
Decomposition, Static Master-Slave, and Dynamic Master-Slave were implemented.

3.2.1 Domain Decomposition

Within the Monte Carlo method (either SLMC or MLMC), we can parallelize the computation
of a sample. Algorithm 1 shows the DD main pseudocode as implemented for this thesis. The
"Unit Work" step is inherently made parallel by default using the Domain Decomposition
(DD) strategy while the MATLAB code is not utilizing this strategy. The DD strategy deals
with the decomposition of the matrices and vectors involved in solving the problem to the
multiple processors. In PETSc, the mpiaij parallel sparse matrix type is set up such that each
process locally owns a submatrix of contiguous global rows. Then, each submatrix consists
of diagonal and off-diagonal parts of the matrix. Figure 3.2 shows the decomposition of a
matrix using the PETSc mpiaij type.

3.2.2 Static Master-Slave

The Static Master-Slave (MSS) is also known as Static Task Assignment [27]. In this strategy
the total number of samples are assumed to be known before the simulation and the samples

11

Figure 3.2: Example DD of matrix for PETSc using the mpiaij type. (Image taken from [3])

Algorithm 1: DD main pseudocode as applied to SLMC
Initialize random generator with processor rank as seed;
Setup GMRF operator matrix;
while (N < Ns) and (tol > ε) do

NormU ← Solve "Unit Work";
tol ← Update stats;
++N;

are distributed evenly amongst the processors. After the computations are done in each of the
samples, a reduction to the root processor is performed to obtain the result. Figure 3.3 shows
the main idea of the MSS implementation. The main MSS implementation is represented
by Algorithm 2. It has to be noted that the tol termination criteria is local to the Slave
Processor group. Also, this implementation is the most basic implementation of concurrent
sample computations. The advantage of having a static task assignment is that even the
root processor can take part in the computation step, and thus increases the efficiency of the
parallelization. However, the disadvantage is that the implementation cannot load balance
itself automatically as well as being unable to sense a global sampling error termination
criterion. Another disadvantage is also that the number of samples must be divisible by the
total number of Slave Groups.

3.2.3 Dynamic Master-Slave

The Dynamic Master-Slave (MSD) is based on a centralized dynamic load balancing method
which was implemented for the SLMC through PETSc. The master (root) process holds the
collection of tasks to be performed. The tasks are then sent to the slave processes. When
a slave process completes one task, it requests another task from the master process [27].
Figure 3.4 shows the main idea of the MSD implementation. The main MSD implementation
is represented by Algorithm 3. The disadvantage is that the root process takes no part in

12

Ns

P
Ns

P
Ns

P
Ns

P
Ns

P
Ns

P

Slave Group 1 Slave Group 2 · · · · · · Slave Group P-1 Slave Group P

Root

Figure 3.3: The Static Master-Slave (MSS) strategy [Ns = Total number of samples, P =
Total number of worker groups]

Algorithm 2: MSS main pseudocode as applied to SLMC
Split communicator;
Initialize random generator with processor rank as seed;
if mod(Ns,P) == 0 then

Nspc ← Ns/P;
else

Nspc ← Ns/P + 1;

Setup GMRF operator matrix;
for (Ns← 1 to Nspc)and(tol < ε) do

NormU ← Solve "Unit Work";
tol ← Update stats;

Reduce sum to root processor → NormU;

the computation of the samples, hence, efficiency can be lower if generally the number of
samples are less or equal to the total number of processes involved. Another disadvantage
would be that the master process can only issue one task at a time. Thus, there is a potential
for a bottleneck to occur when there are many slave processes making simultaneous requests.
The primary advantage of using the MSD concept is that the system is automatically load
balanced (i.e. the faster processors will compute more samples). Another advantage of MSD
is that the termination condition for the program is simply a matter of the master process to
recognize whenever it is met.

3.3 Multilevel Monte Carlo (MATLAB)
As mentioned in Section 2.6, Cliffe et al [6] outlined an algorithm for the Multilevel Monte
Carlo (MLMC). As we see later that the error terms are independent of each other, we can
devise another algorithm so that the error reductions are also independent, and that this
algorithm (4) is purely only for sampling error reduction. It is important to also note that the
SLMC is used as an estimator for calculating the samples, and hence, we can parallelize the
algorithm by parallelizing the SLMC steps (Algorithm 5). The MATLAB Parallel Toolbox

13

Slave Group 1

Slave Group 2 · · · · · ·· · ·

Ns

Slave Group P-1

Slave Group P
Work pool - Root

Figure 3.4: The Dynamic Master-Slave (MSD) strategy [Ns = Total number of samples, P =
Total number of worker groups]

was used to parallelize the MATLAB implementation.

3.4 PETSc Details
The SLMC method is implemented in PETSc with all 3 parallelization strategies. The "Unit
Work" routine for PETSc as mentioned in the previous Algorithms (Alg. 1 to 3) are shown
in Algorithm 6. We can see then that all of the steps in the "Unit Work" routine can be
parallelized using the DD strategy.

3.4.1 Standard Cholesky decomposition

As we have seen in the "Unit Work" routine (Alg. 6) as well as Section 2.3, there are many ways
to generate the Gaussian Field. Algorithm 7 describes the implementation of the Cholesky
Decomposition method to generate the Gaussian field.

3.4.2 GMRF approximation

The newest method to generate an approximate GF with the Matérn covariance function is
described by Algorithm 8. The effects of the boundary is minimized by following the rule-
of-thumb as described by Section 2.3.2. This is implemented by padding more ghost cells
until the a(x) domain is larger than the U(x) domain by the correlation length, λ. a(x) is
then solved in the larger domain and the corresponding field is transferred directly to Ω. For
example, suppose λ = 0.1, then, a(x) is solved in the domain [−0.1, 1.1]× [−0.1, 1.1], and the
field within Ω ∈ [0, 1]× [0, 1] is used.

3.5 ExaStencils
This thesis also explores the use of a new software technology for applications with exascale
performance called ExaStencils [13]. The idea is that at different levels of abstraction to
solve a stencil-based problem, the choices made at every refinement step leads to the goal of
exascale performance. Each step also benefits from the knowledge of experts at different levels.

14

Algorithm 3: MSD main pseudocode as applied to SLMC
Split communicator excluding root process;
Initialize random generator with processor rank as seed;
Setup GMRF operator matrix;
if (root process) then

Send initial tasks;
while (N < Ns) and (tol > ε) do

NormU ← Receive from slave group;
tol ← Update stats;
++N;
if (Na < Ns) or (tol > ε) then

Send work signal;
++Na;

Send termination signal;
else

Receive signal;
while (No terminate signal) do

NormU ← Solve "Unit Work";
Send NormU;
Receive signal;

Figure 3.5 shows the workflow of ExaStencils to produce a final Exascale code. An end user
(e.g. in DSL level 4, fig. 3.6) will provide a Domain Specific Language (DSL) program. The
ExaStencils compiler will harness the domain knowledge of the different experts at different
levels to finally generate a tuned code for a target machine. The problem described by this
thesis is one of the first applications of this programming paradigm. We implemented a
GMRF approximation method for the generation of the GF to solve Eq. (1) in DSL level 4.
The target code generated was in C++ and is tuned for the cluster of the Computer Science
Department (LSS) at the University of Erlangen-Nürnberg [7].

A code snippet from the DSL program to define the boundary conditions of the problem
is shown in Listing 1.

Listing 1: DSL level 4 snippet for BC definition
def bcSol (xPos : Real , yPos : Real) : Real {

if (yPos >= 1.0) { return (UN) }
if (xPos >= 1.0) { return (UE) }
if (yPos <= 0.0) { return (US) }
if (xPos <= 0.0) { return (UW) }
return (0.0)

}

3.6 Hardware and Software Specifications
Table 3.1 are the specifications of the hardwares and software libraries used to obtain the
results in this thesis.

15

Figure 3.5: The workflow for the ExaStencils programming paradigm [Image taken from [13]]

Figure 3.6: The Domain Specific Language (DSL) hierarchy of ExaStencils [Image taken from
[13]]

16

Algorithm 4: MLMC algorithm as implemented in MATLAB
for (l < Lmax) do

Estimate V(Yl) by the initial number of samples;

VQml
←
∑L

l=0N
−1
l V(Yl);

tol ←
√
VQml

;
while (tol > ε) and (iter < itermax) do

Calculate Nl based on Eq. (17);
for (l < Lmax) do

Calculate extra samples as needed for the new Nl;

VQml
←
∑L

l=0N
−1
l V(Yl);

tol ←
√
VQml

;

Algorithm 5: The SLMC estimator in the MLMC method as implemented in MATLAB
if l 6= 0 then

for N < Ns [Parallel MSD] do
a(x)← Solve GMRF(Mx,My);
NormU1 ← Solve PDE(Mx,My,ea(x));
a(x)← Bilinear interpolation downsample(Mx,My,Mx/2,My/2);
NormU2 ← Solve PDE(Mx/2,My/2,ea(x));
Yl ← NormU1 - NormU2;

else
for N < Ns [Parallel MSD] do

a(x)← Solve GMRF(Mx,My);
NormU ← Solve PDE(Mx,My,ea(x));
Y0 ← NormU;

The PETSc library for performance benchmarking was compiled using the following
configuration command and options:

./configure PETSC_ARCH=linux_gnu_all_cluster
--download-f-blas-lapack --download-hypre
--download-superlu_dist --download-parmetis
--download-metis --download-suitesparse
--download-fftw --download-scalapack
--download-mumps --with-clanguage=cxx
--with-mpi-dir=/software/sles/openmpi/1.6.5-ib/
--with-debugging=no --with-shared-libraries=0

17

Algorithm 6: The "Unit Work" routine as implemented in PETSc
W (x)← Set Gaussian white noise field ∼ N (0, 1);
a(x)← Generate Gaussian Field(W (x));
a(x)← Scale(a(x)

τ2
);

A← Set PDE operator(ea(x));
b← Set PDE source and boundary conditions(ea(x));
NormU ← Solve(A,b);
return NormU

Algorithm 7: Cholesky Decomposition routine to generate GF as implemented in
PETSc
Outside "Unit Work" performed once and residing in all Slave Groups:
Cov ← Generate Covariance matrix;
L← Get Cholesky Factor(Cov);
Inside "Unit Work(L)":
a(x)← LW (x);
return a(x);

A slightly different PETSc library with MPE profiling was used for the Jumpshot visu-
alizations of the PETSc code. The following are the configuration command and options
used to build this version of the PETSc library:

./configure PETSC_ARCH=linux_gnu_all_cluster_log_C
--download-f-blas-lapack --download-hypre
--download-superlu_dist --download-parmetis
--download-metis --download-suitesparse
--download-fftw --download-scalapack
--download-mumps --with-mpe-dir=~/mpe/
--with-mpi-dir=/software/sles/openmpi/1.6.5-ib/
--with-debugging=no --with-shared-libraries=0

4 Results and Discussion
As previously discussed in Section 2.5, there are two independent error terms involved in
the estimator for any Monte Carlo type simulations, namely discretization and sampling
errors. A grid convergence study must be performed in order to have a sufficient sample
solution accuracy due to the discretization error. A test for the sampling convergence rate
over different grid sizes must be performed to validate the claim that the two error terms are
independent of each other.

4.1 Grid Convergence
Since we already know the expectation of the GF, i.e. E

[
ea(x)

]
= 1, ∀x ∈ Ω, the test

is nothing more than solving a Laplace equation subject to the same Dirichlet boundary
conditions as Eq. (1). Figure 4.1a shows the grid convergence study result performed using

18

Algorithm 8: GMRF routine to generate approximate GF as implemented in PETSc
Outside "Unit Work" performed once and residing in all Slave Groups:
G← Generate GMRF sparse matrix operator;
Inside "Unit Work(G)":
a(x)← Solve(G,W (x));
return a(x);

Machine Hardware Software

Laptop • Intel Core-i7 2630QM • CentOS 6.3
• 8 GB RAM • MATLAB R2013a (8.1.0.604) 64-bit (glnxa64)

• MATLAB Parallel Computing Toolbox V6.2

LSS Cluster • 8 compute nodes • OpenMPI V1.6.5 (InfiniBand)
• Each node has 4 x Intel(R) Xeon(R) CPU E7-4830 • GCC 4.9.0
• Each CPU: 2.13 GHz - 2.4GHz (max. turbo) (8 cores + SMT) • CMAKE 2.8.11.1
• SSE 4.1/4.2 • PETSc 3.4.4
• 24 MB shared cache • MPE 2.4.6
• 256 GB RAM • Jumpshot 4
• QDR Infiniband

Table 3.1: Hardware and software specifications

the PETSc code. As one can see, the PETSc implementation does behave correctly with
the same order of convergence as that of a ’second’ order implementation, which is true for
the finite volume discretization method used in this thesis. The grid convergence test by
Richardson extrapolation gives an average order of convergence, p = 1.84 which is lower than
2, but this is expected due to boundary condition treatment, numerical models, and grid
implementations [18]. The order of convergence, p, is calculated by using Eq. (24). As we
can see, Eq. (24) only needs 3 values of the functional at different grid sizes, while we have
many, hence, the p reported is an average of all the different grid sizes. The exact Richardson
extrapolation as calculated from the results of the PETSc implementation is Q = 5.229.

p = ln
(
Q3 −Q2

Q2 −Q1

)
/ln(r) (24)

where Q3 is the functional value obtained by the finest grid, and Q1 by the coarsest, with the
number of cells in each direction related by, MQ3 = rMQ1 . We are able to use that relation
for the 2D case since we discretize the domain with equal number of cells in each direction.
For this thesis, the constant grid refinement ratio, r = 2.

The result of the implementation from MATLAB (Fig. 4.1b) using much coarser grids
show that the order of convergence, p = 1.75, with an exact Richardson extrapolation of
Q = 5.203. This differs from the PETSc implementation, and could be due to the use of a
coarse grid in MATLAB to derive the order of convergence and exact solution. The use of
the coarse grids are due to hardware limitations as the MATLAB code is run in a laptop. As
the results are close to each other, the implementations for both PETSc and MATLAB seem
to be correct.

19

(a) PETSc (b) MATLAB

Figure 4.1: Grid convergence test

(a) PETSc (b) MATLAB

Figure 4.2: SLMC convergence test [Solid line = Curve fit]

4.2 Standard Monte Carlo Sampling Convergence
The sampling convergence rate of the standard Monte Carlo method (SLMC) is known to be
O(1√

N
) [4], and is independent of the grid size. Figures 4.2a and 4.2b show the reduction in

the sampling error term as a function of number of samples for the PETSc and MATLAB
implementations, respectively. They both show that the error term is independent of the
problem grid size. The results are validated against the statement made by Caflisch in 1998
[4]. The bad news then is that for larger grid sizes, the computational cost will combine to
be at best O(NM), where M is the number of cells in the domain, and N is the number of
samples in the standard Monte Carlo method.

4.3 Validation of GMRF approximation
In order to validate the use of the GMRF approximation, two smaller cases were performed
in MATLAB using the standard Monte Carlo. The first case is a 1D simulation of just
generating the GMRF and then comparing the results with the actual analytical covariance

20

Figure 4.3: Covariance for the point, x = 0.5 for the 10000 samples realized, (λ = 0.1, σ = 0.5)

function using the SVD. The second case is done in 2D and follows the same procedure as the
first case. The difference is that in the 2D case, Equation (1) is also solved, hence, some of the
results will also serve to be discussed later in Section 4.4.1. Results from both the cases show
that the GMRF approximation to the GF with a Matérn covariance can be used instead, and
that the approximation can be close to the desired GF for computational purposes.

4.3.1 1D case

The 1D case is used to test the approximation of the GMRF to a Gaussian field using the
exact Matérn covariance with KL expansion (implemented as SVD). As can be seen from
Figures 4.3, and 4.4, the approximation of the GMRF is sufficient to reproduce the exact
Matérn field.

Figure 4.3 shows the result of the covariance at the point x = 0.5 for the exact Matérn
covariance (2), and the covariance generated by solving the 1D form of the SPDE (4) using
10000 realizations and 100 discrete spatial points. Figure 4.4 show the spatial statistical
variables associated with the realizations between the solutions of the SPDE and the exact
Matérn covariance field with KL expansion. The fluctuations in the expectation are due to
the sampling error and are reduced as the number of samples are increased. The shift seen
in the standard deviation (fig. 4.4b), is conjectured to be due to the GMRF approximation
approach to the actual GF covariance function.

21

(a) Expectation (b) Standard deviation

Figure 4.4: Expectation and standard deviation as a function of x for the 10000 samples
realized, (λ = 0.1, σ = 0.5)

4.3.2 2D case

The 2D case is the actual solution to the problem as described in Section 2. The domain
is discretized with [50×50] cells of equal sizes. As can be seen from Figure 4.5, the solution
to the SPDE manages to also approximate the exact Matérn covariance. Figure 4.6 show
a single realization of the GMRF, random coefficient, and solution fields. Figures 4.7 to 4.9
show the spatial statistical variables associated with the GMRF field, a(x), random coefficient
field, ea(x) and the solution field, U(x), respectively, using 10000 realizations. We see from
the variance of the solution field (fig. 4.9b) that the highest region of uncertainty corresponds
to the largest spatial gradient in the solution field. So, we already see a potential in the use
of uncertainty quantification in practical engineering design. Suppose this field represents a
temperature field of an object, and we want to design an insulation system for the object,
then, we would expect to be able to vary the safety factor in the spatial sense (i.e. increase
in regions of high variance, and reduce in regions of low variance) to save insulation material
cost.

4.4 MATLAB
MATLAB codes were written as proof-of-concepts for the mathematical validation exercise
and also for potential performance enhancement for the different algorithms such as com-
parisons between the Standard Monte Carlo (SLMC) and Multilevel Monte Carlo (MLMC)
methods.

4.4.1 MATLAB - Standard Monte Carlo

The Standard Monte Carlo method results are shown in this section. Figure 4.10 show
the statistical variables associated with the solution, QM as computed by the MATLAB
implementation for varying grid sizes. The statistical parameters of the input GMRF field
were kept constant with λ = 0.1, σ = 0.3. The sampling error, ε = 5E − 3 is kept constant,
i.e. the SLMC simulation is terminated once the sampling error is less or equal to 5E − 3.
As expected, the expectation, E[QM] converges as the grid size is increased. It corresponds

22

(a) Exact Matérn (b) GMRF

Figure 4.5: Covariance field for x = (0.51, 0.49) for the 10000 samples realized, (λ = 0.1, σ =
0.3)

(a) GMRF (b) Random coefficient

(c) Solution

Figure 4.6: GMRF, a(x), random coefficient, ea(x) and solution, U(x) fields for a single
realization

23

(a) Expectation (b) Variance

Figure 4.7: Expectation and variance of a(x) as a function of x for the 10000 samples realized

(a) Expectation (b) Variance

Figure 4.8: Expectation and variance of ea(x) as a function of x for the 10000 samples realized

(a) Expectation (b) Variance

Figure 4.9: Expectation and variance of U(x) as a function of x for the 10000 samples realized

24

(a) Expectation, E[QM] (b) Variance, V(QM)

Figure 4.10: Statistics of QM as a function of grid size for the SLMC using λ = 0.1, σ = 0.3,
sampling error, ε = 5E− 3.

to one of the assumptions mentioned in Section 2.5. The variance, V(QM) does not show
any noticeable trend when the grid size is varied, except that they are within the range,
[0.002,0.004]. This could be due to the definition of the sampling error term and subsequently
the simulation termination condition. We know that the sampling error for any random
variable in the Monte Carlo method is dependent on the variance of that random variable,
hence, if we wanted to determine the actual uncertainty involved with the solution, then, we
would need to determine the variance of the variance of QM , i.e. V(V(QM)). For this thesis,
we will focus only on the expectation errors as implementations for the variance errors will
be similar with more number of samples required.

Figure 4.11 show the statistical variables associated with the solution as computed by the
MATLAB implementation for varying sampling errors. The grid size [30×30] used is coarser to
obtain the solutions faster in the laptop. We also know from the grid convergence study that
E[Q30] = 5.138050. Figure 4.11a show the variable, |E[QN − Q30]| as a function of sampling
error. Notice that there does not seem to be a trend. However, the objective is to show that
the absolute difference between the expectation of QN at the end of the SLMC simulation is
indeed close to the sampling error allowed. The variance is shown for completeness sake.

4.4.2 MATLAB - Multilevel Monte Carlo

As we have seen from previous sections that the sampling and discretization errors are inde-
pendent of each other, we can use that knowledge to test whether the MLMC implementation
is capable of reproducing the statistical information of QM in a similar manner as the SLMC.
Figure 4.12 show the case plots for a test case using λ = 0.1, σ = 0.3, with finest grid size
at [240×240], and sampling error, ε = 5E − 3. They show that the implementation is in-
deed consistent with the theory as mentioned in Section 2.6. For the grid size of [240×240],
E[Q240] = 5.201268. The expectation as calculated from the MLMC implementation is cal-
culated to be, E[QMLMC

240] = 5.209588. This gives an absolute error of 8.3E− 3 which is close
to the required sampling error of 5E − 3. The variance is also calculated at 0.0034 which
is within the range as calculated by the SLMC implementation. The result shows that the
MLMC method does produce statistical data which are consistent with that of the SLMC

25

(a) Expectation, |E[QN −Q30]| (b) Variance, V(Q30)

Figure 4.11: Statistics of Q30 as a function of sampling error for the SLMC using λ = 0.1,
σ = 0.3, grid size [30×30]

method.

4.4.3 Performance Analysis

We have seen previously that the MLMC method is indeed consistent with the SLMC method.
This section now discusses the performance enhancements that can be obtained by the MLMC
method. The speedup, S, is defined by Equation (25).

S =
TSLMC

TMLMC
(25)

where TSLMC and TMLMC are the time-to-solution for the SLMC and MLMC methods respec-
tively.

For all the cases, the statistical parameters of the GMRF field are λ = 0.1, and σ = 0.3.
Figure 4.13a show the speedup obtained when we vary the grid size while keeping the number
of grid levels constant at 3. It shows that the speedup increases with grid size and this
shows the advantage of MLMC over SLMC for real-world applications. Figure 4.13b show
the speedup obtained when we vary the number of levels and keep the grid size constant at
[240×240]. It shows that there is indeed an optimum number of levels which gives a maximum
speedup for a particular grid size. For this case, it gives a maximum speedup of approximately
24 using 4 grid levels. With these results, it shows the potential of MLMC to improve the
time-to-solution for Monte Carlo methods.

4.5 PETSc - Standard Monte Carlo
Due to time constraints, only the standard Monte Carlo method was implemented in PETSc.
The robustness of the solvers in PETSc are explored with respect to the different statistical
parameters. Then, studies were done to determine the speed of the time to solution with
different preconditioners. The PETSc cases are run entirely in the cluster of the Informatics
Department (LSS) at the University of Erlangen-Nürnberg [7].

26

(a) Expectation, E[Yl] = E[Ql −Ql−1] (b) Variance, V(Yl) = V(Ql −Ql−1)

(c) Number of samples

Figure 4.12: MLMC sample case plots for λ = 0.1, σ = 0.3, Finest grid size is at [240×240],
sampling error, ε = 5E− 3.

(a) Speedup as a function of grid size (b) Speedup as a function of levels

Figure 4.13: Speedups for the MLMC using λ = 0.1, σ = 0.3, finest grid size [240×240],
sampling error, ε = 5E− 3.

27

4.5.1 Solvers

In order to perform any Monte Carlo simulations with SPDEs, the solver used must be robust
enough so that a solution can be found in each sample. This PETSc implementation investi-
gates the robustness of the BoomerAMG solver from the hypre package (which is conveniently
interfaced with PETSc) [12] without any preconditioner, as well as the flexible GMRES (fgm-
res) solver native to PETSc [22, 2] with the BoomerAMG as preconditioner. The solver
robustness study was done by varying the statistical parameters of the covariance function (λ
and σ) while keeping the grid size at [500×500] and solver relative tolerance at 1.0E−6.

The settings of the solvers are given in Table 4.1.

Table 4.1: Solver settings for robustness study

Solver settings fgmres BoomerAMG

Preconditioner BoomerAMG (1 V-Cycle) None

AMG relaxation solver Symmetric SOR (up-down) Symmetric SOR (up-down)
Gaussian Elimination (coarsest) Gaussian Elimination (coarsest)

Maximum iterations 1000 1000 (V-Cycles)

For the solvers study, 2000 samples were realized for each parameter and for each sample,
the number of iterations were recorded. The average, maximum, and minimum iterations
across all the samples were calculated. For the purpose of brevity, only the maximum number
of iterations are shown in this thesis as the average and minimum iterations also follow the
same trends.

Table 4.2 shows that as we increase the correlation length, λ, the number of iterations
decreases, and as we increase the standard deviation, σ, of the GMRF, then, the number of
iterations increases. There is a region where NA is denoted and this means that the solver
does converge, however, the statistical results obtained does not seem to be converging within
2000 samples. This means that E[Q500] still has not converged to within tol = 0.1. Hence,
further study must be done to increase the number of samples to determine if the statistics
are reasonable. However, it is determined that the fgmres solver with the BoomerAMG
preconditioner is a robust enough solver for the applications in the thesis.

Table 4.3 shows the same trend as the fgmres solver with the difference that it takes a
bit more number of iterations for each parameter. Also, DNC in the table denotes that the
solver did not converge within the maximum iterations specified in Table 4.1. This actually
shows that the solver does have trouble in terms of robustness to obtain solutions which have
GMRFs with σ ≥ (2.6, 2.8].

In order to further understand why the solvers fail to converge, and to also help explain
the behaviour of the number of iterations as a function of the statistical parameters λ and
σ, we take a look at one sample of the solution and the corresponding GMRF. Figures 4.14
to 4.19 show the realizations for different parameters. They show that as one increases the
correlation length, λ, the GMRF field input is less noisy. Therefore the number of iterations
to obtain the solution would decrease as one increases λ. As for the increase in iteration with
standard deviation, σ, this is easily explained since the variations between the neighbouring
cells in the GMRF is higher, so, this behaves closer to a highly irregular exponential coefficient

28

field for Eq. (1). This is proven when we view the sample (fig. 4.19), from which the solver
has problems in the statistical convergence.

Table 4.2: Maximum number of iterations for solving Eq. (1) with fgmres+boomeramg pre-
conditioner - [NA = stats problem]

λ
σ

0.1 0.4 0.8 1.1 1.8 2.8 3.8 4.8 5.8 6.8 7.8 9.8
0.1 8 9 9 10 12 13 14 14 14 NA NA NA
0.15 8 8 9 9 11 13 13 13 14 14 NA NA
0.2 8 8 9 9 10 12 13 13 13 13 14 NA
0.25 8 8 9 9 10 11 12 13 13 13 13 13
0.3 8 8 9 9 10 11 11 12 12 13 13 13
0.35 8 8 9 9 10 10 11 12 12 12 12 13
0.4 8 8 9 9 9 10 11 12 12 12 12 13

Table 4.3: Maximum number of iterations for solving Eq. (1) with boomeramg (symmetric
SOR relaxation solver) - [DNC = did not converge, NA = stats problem]

λ
σ

0.1 0.4 0.8 1.1 1.8 2.8 3.8 4.8 5.8 6.8 7.8 9.8
0.1 11 12 15 19 25 DNC DNC DNC DNC DNC DNC NA
0.15 10 12 15 17 22 DNC DNC DNC DNC DNC DNC NA
0.2 10 12 14 16 20 DNC DNC DNC DNC DNC DNC NA
0.25 10 12 13 15 18 DNC DNC DNC DNC DNC DNC NA
0.3 10 11 13 14 17 DNC DNC DNC DNC DNC DNC DNC
0.35 10 11 13 15 17 22 DNC DNC DNC DNC DNC DNC
0.4 10 11 13 13 17 22 DNC DNC DNC DNC DNC DNC

4.5.2 Preconditioners and KSP Solvers

From Section 4.5.1, it can be seen that the Krylov subspace (KSP) type solvers are more robust
for the application. Hence, we now test for the performance in using different preconditioners
as well as different KSP solvers implemented in PETSc [2]. There are so many variants of
preconditioners and KSP solvers and the speed depends on the problem being solved. Hence,
again, only a representative few are being tested. The list of tested variants are shown in
Table 4.4. The reason these solvers were chosen is that they are each representative of the
different KSP type solvers, namely, BiCG, GMRES, and CGNR [25]. The solver SYMMLQ
is a hybrid between MINRES and LSQR [16]. The default statistical variables are used, with
[500×500] grid size, and 150 samples. The SOR preconditioner is set with ω = 1.8 and 200
iterations.

As can be seen from Table 4.5, for the problem in the thesis, the BoomerAMG yields the
fastest results across all solvers except Conjugate Gradient Normal Residual (CGNR). The
CGNR solver does show a converging trend, however, the total time-to-solution to converge
exceeded the maximum compute time (8 hours) allowed in the LSS cluster.

29

(a) GMRF (b) Solution

Figure 4.14: GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.01, σ = 1

(a) GMRF (b) Solution

Figure 4.15: GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.1, σ = 1

(a) GMRF (b) Solution

Figure 4.16: GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.25, σ = 1

30

(a) GMRF (b) Solution

Figure 4.17: GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.1, σ = 0.3

(a) GMRF (b) Solution

Figure 4.18: GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.1, σ = 2

(a) GMRF (b) Solution

Figure 4.19: GMRF, a(x) and solution, U(x) fields for a single realization, λ = 0.1, σ = 10

31

Table 4.4: Preconditioner and Solvers

Solver Preconditioner

fgmres BoomerAMG

bi-cg stab icc(0)

symmlq ilu(0)

cgnr sor

Table 4.5: Wall clock times (seconds) to compute 150 samples, with different KSP solvers and
preconditioners using 32 processors

Solver Preconditioner
BoomerAMG icc(0) ilu(0) sor

fgmres 25.42 950.61 944.43 461.41
bi-cg stab 31.70 204.05 188.87 710.23
symmlq 34.21 1271.4 1632.6 604.59
cgnr > 8 h 3617 3654 1702.0

With the results from this study, the remaining studies were performed using the fgmres
solver with BoomerAMG preconditioner.

4.6 PETSc - Performance Analysis
The performance analysis of the PETSc code starts with the comparison between the paral-
lelization strategies for the SLMC method. We then determine the performance enhancements
that can be potentially obtained from using the GMRF approximation method over the stan-
dard Cholesky decomposition to sample the GF field. After that, the compositions of the
total wall clock time that is spent to solve, setup, and communicate for the GMRF approxi-
mation, Eq. (4) and for the variable Poisson problem, Eq. (1) between processors are shown
and discussed. All of the speedups and efficiency variables are measured against the serial
code.

4.6.1 Performance of different parallelization strategies

We start the performance analysis by studying the various standard Monte Carlo paralleliza-
tion strategies that are implemented for this thesis. We define the speedup, and efficiency as
Equations (26) and (27), respectively [17].

Speedup =
Tser

Tpar
(26)

Efficiency =
Speedup
Np

(27)

where Tser and Tpar are the total time-to-solution of the serial and parallel implementation,
respectively. Np denotes the number of processors for that parallel run.

32

Figure 4.20: Speedups as a function of number of processors for different parallelization
strategies, 1000 samples, [500×500], 1 processor per sample

The first case we study is to determine the speedups and efficiencies that we obtain by
varying the number of processors with 1000 samples, [500×500] grid size, and 1 processor per
sample. Figure 4.20 shows the speedup while Figure 4.21 shows the efficiency.

They both show that applying the Domain Decomposition method alone is insufficient for
large number of processors and this is not unexpected since communication overheads will
tend to dominate for a small problem size. However, both the Static and Dynamic master-
slave strategies does indicate that they are potentially scalable up to at least 256 processors.
This is also not unexpected since the Monte Carlo methods are an example of embarrassingly
parallel applications. What is most unexpected is that in all of the efficiency curves (fig. 4.21
to fig. 4.25), the efficiency barely reaches 60%. This seems rather discouraging at first but
the reason for that is discussed elaborately in Section 4.6.3.

We now turn to changing the number of samples while keeping the other variables con-
stant. Figure 4.22 show the efficiency when we vary the number of samples for the different
parallelization strategies keeping a grid size of [500×500]. 32 processors were used with 1
processor per sample. It shows that for both strategies, the efficiency fluctuates within a
range of 40-60%. It also show that the both the master-slave strategies do not differ from
each other that much in terms of parallel efficiency.

The same trend also happens (Figure 4.23 to 4.25) when we mix domain decomposition
strategy with the two master-slave implementations. We change to a 2 processor per sample
configuration and run the above cases. The efficiencies again show a fluctuation of approxi-
mately 40-60% as seen from the 1 processor per sample previously.

Therefore, we fix the parallelization strategy to that of the Dynamic MS due to the advan-
tages of having on-the-fly sampling tolerance termination as well as dynamic load balancing

33

Figure 4.21: Efficiency as a function of number of processors for different parallelization
strategies, 1000 samples, [500×500], 1 processor per sample

Figure 4.22: Efficiency as a function of number of samples for different parallelization strate-
gies, 32 processors, [500×500], 1 processor per sample

34

Figure 4.23: Speedups as a function of number of processors for different parallelization
strategies, 1000 samples, [500×500], 2 processors per sample

Figure 4.24: Efficiency as a function of number of processors for different parallelization
strategies, 1000 samples, [500×500], 2 processors per sample

35

Figure 4.25: Efficiency as a function of number of samples for different parallelization strate-
gies, 32 processors, [500×500], 2 processor per sample

for larger number of processes.
Figures 4.26 and 4.27 show the efficiency curve as a function of number of processors,

and number of samples, respectively for different grid sizes. It does show that efficiency is
consistently higher for the larger grid size and can be explained by the possibility that the
larger grid size makes the serial code to be slower as the socket memory cache becomes full
for the larger grid size.

4.6.2 Performance of GMRF compared to Cholesky decomposition

We have already validated that GMRF approximation can be used to generate the GF with
the desired Matérn covariance field. Now we would determine the performance enhancement
of using a GMRF over the standard Cholesky decomposition in solving Equation (1). In
terms of domain size, the GMRF approximation already is advantageous since the Cholesky
decomposition program fails to run for grid sizes which are larger than [100×100]. The
speedup of the GMRF approximation approach is shown in Figure 4.28. The speedup, defined
in Equation (28), is measured with respect to the dynamic master-slave implementation using
1 processor per sample.

Speedup =
TChol

TGMRF
(28)

where, TChol and TGMRF are the wall clock times for the Cholesky and GMRF implementation,
respectively. Figure 4.28 shows that the GMRF approximation is consistently faster than
using Cholesky decomposition even for large samples. However, the speedup will decrease

36

Figure 4.26: Efficiency as a function of number of processors for different grid sizes, 1000
samples, Dynamic MS, 1 processor per sample

Figure 4.27: Efficiency as a function of number of samples for different grid sizes, 32 processors,
Dynamic MS, 1 processor per sample

37

Figure 4.28: Speedup of the GMRF approximation over the Cholesky decomposition approach
as a function of number of samples for different number of processors

asymptotically. This can be explained by the initial cost of setting up the covariance matrix
and performing the Cholesky decomposition of the matrix.

To further prove the claim, Figures 4.29 to 4.31 show the composition of the wall clock
time for the Cholesky decomposition implementation. They show clearly that the largest time
is taken by the decomposition step, and as the number of samples increases, the Solve step
will dominate but this will only be true for a very large number of samples. We also see an
increase in speedup for higher processor numbers. This could be due to the parallelization of
only the covariance matrix setup and solution steps in the Cholesky decomposition implemen-
tation. This is because the PETSc library does not have a parallel Cholesky decomposition
implementation.

4.6.3 Effect of CPU socket utilization

As we have also seen from Section 4.6.1, the efficiency seems to range from 40-60% for the
Master-Slave parallelization strategies. This can be explained by the effects of the CPU socket
utilization. Since the performance analysis is based on the speed of the serial code, we are
utilizing only 1 core in an 8-core socket with a small problem size. However, when we run
using the parallel codes, the socket cache usage becomes full, and thus the computational
speed for each core is reduced by half. This could also be due to the snoop filter in the Intel
Xeon processor as explained by the roofline model proposed by Williams et al [28].

The study to determine the reason for the efficiency drop uses a [1000×1000] grid and
the Dynamic master-slave implementation. We bind the processes to each physical core using
the OpenMPI’s command line switch "–bind-to-core" with two different processors per socket

38

Figure 4.29: Percentage of total wall clock time for Cholesky Decomposition (4 processors,
100x100 grid size, 100 samples)

Figure 4.30: Percentage of total wall clock time for Cholesky Decomposition (4 processors,
100x100 grid size, 1000 samples)

39

Figure 4.31: Percentage of total wall clock time for Cholesky Decomposition (32 processors,
100x100 grid size, 1000 samples)

values of "–npersocket". Figure 4.32 show the efficiency as we vary the number of processors
used in the cluster for different npersocket values. We kept the number of samples constant
at 2500. The result show that the Dynamic master-slave implementation does indeed achieve
efficiencies which are close to 90% as expected when we do not fully utilize the CPU sockets in
each node. Figure 4.33 show the efficiency when we vary the number of samples for different
npersocket values. Again, it shows that for the definition of efficiency in this thesis, the cases
in which we do not fully utilize the CPU sockets are shown to be more efficient. However,
this cannot be the only metric of efficiency as we are not fully utilizing the entire CPU socket.
Perhaps a better measure of efficiency for scalability studies would be to compare the timings
against that obtained from an entire node.

This argument can in fact be clarified even more when we have a look at logged runs
with the MPE library [5]. Two simple cases ([500×500] grid size, 100 samples) are run
with balanced and unbalanced processor assigns. Balanced means the processors are evenly
distributed across the available sockets, with the processor bindings shown in Figure 4.35, and
Figure 4.36, respectively. We visualize the behaviour of the programs by linking the MPE
library during compilation and using Jumpshot to visualize the log files. The color legend for
the Jumpshot tool is shown in Figure 4.34. The figures which show any Jumpshot analysis
will always refer to this color legend. Figures 4.37 and 4.38 show the entire behaviour of the
program in Jumpshot for the balanced and unbalanced cases, respectively. It clearly shows
that process ranks 8 and 9 for the unbalanced case is calculating approximately twice the
number of samples as that of the other ranks. They were bound to an unfilled socket (fig
4.36). Figures 4.39a and 4.39b show the number of samples calculated for each rank. As
expected they show that ranks 8 and 9 complete almost twice as many samples as other ranks

40

Figure 4.32: Efficiency as a function of number of processors for different npersocket values
using 2500 samples, [1000×1000] grid and Dynamic master-slave

for the unbalanced case.

4.6.4 Miscellaneous analysis of the GMRF and Variational Poisson program

We have seen previously the composition of time for the Cholesky decomposition implemen-
tation in Section 4.6.2. We now examine the details of the time-to-solution for the GMRF
approach. Figures 4.40 and 4.41 show the composition of the total time-to-solution for the
GMRF implementation for 4 processors and 64 processors, respectively. The clock times are
obtained for solving the system using [500×500] grid size, 1000 samples, and the Dynamic
master-slave strategy. It confirms the findings obtained from the previous sections (4.6.1 &
4.6.3) that at least 90% of the wall clock time is being spent to solve the two equations.

The figures also show the potential scalability of the PETSc code since the percentage time
taken by the solve steps do not change very significantly across the number of processors.

We next show the entire workings of the program. Figure 4.42 shows the Jumpshot visu-
alization of the program for 4 processors per sample. It shows the working implementation of
the Domain decomposition mixed with the Dynamic master-slave. The lines show the mes-
sage sending and receiving between the global root process and the designated root processes
for each sample.

4.7 ExaStencils - Standard Monte Carlo
Some preliminary results and performance data are discussed in this section. As the ExaS-
tencils concept is very new, some experiences as an end user will also be mentioned.

41

Figure 4.33: Efficiency as a function of number of samples for different npersocket values
using 32 processors, [1000×1000] grid and Dynamic master-slave

Figure 4.34: MPE Jumpshot color legend

42

Figure 4.35: Processor bindings report from OpenMPI (balanced)

Figure 4.36: Processor bindings report from OpenMPI (unbalanced)

Figure 4.37: Jumpshot analysis for 10 processors (balanced)

43

Figure 4.38: Jumpshot analysis for 10 processors (unbalanced)

(a) Balanced (b) Unbalanced

Figure 4.39: Program output for 10 processors

44

Figure 4.40: Percentage of total wall clock time for Dynamic Master-Slave (4 processors,
500x500 grid size, 1000 samples)

Figure 4.41: Percentage of total wall clock time for Dynamic Master-Slave (64 processors,
500x500 grid size, 1000 samples)

45

Figure 4.42: Jumpshot visualization of PETSc program for Dynamic Master-Slave - 4 proces-
sors per sample (32 processors, 1000x1000 grid size, 500 samples)

4.7.1 Results

Figure 4.43 shows the expectation of the solution field as calculated from the target code
generated by ExaStencils. We use a [511×511] grid size since the domain decomposition
method employed by ExaStencils does not allow for arbitrarily large grid shapes or sizes.

Results show that the expectation of the norm, E[Q511] = 5.22667, calculated by the target
code is close to that of the PETSc cases. Also, since, the field qualitatively looks consistent to
the solutions produced by PETSc and MATLAB (fig. 4.43), we proceed with the assumption
that the generated code works correctly.

As for performance, the target code was run with 36 processors (18 processors per node)
in the LSS cluster. Figure 4.44 shows the speedup attained by the ExaStencils target code as
a function of number of samples with respect to the PETSc code. The comparison is made
between the best timings of the ExaStencils generated code and that of the PETSc code.
The ExaStencils code uses a geometric multigrid solver with a Red-Black Gauss-Seidel for the
relaxation solver. The CG relaxation is at the coarsest grid only. The PETSc code uses the
(fgmres+BoomerAMG) combination as mentioned in previous sections. For the same type of
parallelization strategy (DD), we see that the ExaStencils code is consistently 3 times faster
than the corresponding PETSc code. However, when we change the parallelization strategy
from just DD to Dynamic Master-Slave (MSD), then, approximately after 300 samples, the
PETSc code can be as fast as or faster than the ExaStencils generated code. Also from
the trend, it can be conjectured that as we increase the number of samples, the PETSc
code will be faster than the ExaStencils code. This is not overly surprising since the MSD
parallelization strategy is ideally suited for the Monte Carlo method as we have seen from

46

Figure 4.43: Expectation of the solution field as calculated from the code generated by Ex-
aStencils ([511×511] points), 100 samples

Section 4.6.1. It would be very beneficial if the ExaStencils project can incorporate a MSD
type of parallelization strategy in order to support Monte Carlo type applications.

4.7.2 Experiences

ExaStencils is a very new concept. As an early end user, the following are some notes about
implementing the thesis problem using ExaStencils:

• The language at layer 4 has a relatively low learning curve provided documentation is
available.

• Similar in user friendliness such as MATLAB, but much easier than C/C++ when com-
pared to the PETSc implementation.

• Still limited in application capability (No arbitrary grid size, and no custom paralleliza-
tion strategy i.e. Master-Slave for concurrent sample calculations).

• Performance of target code is very good and should be even more enhanced if concurrent
sample calculations can be performed.

47

Figure 4.44: Speedups for ExaStencils

• Program code (DSL Layer 4) management is easier than the PETSc implementation
(484 lines vs 575 lines) and (1 source file vs 5 source/header files).

• More comfortable with PETSc or MATLAB since the source codes can be easily de-
bugged. Not the same with the generated target code which generated greater than 130
source files.

In general, MATLAB is the easiest to implement but suffers from poor performance and the
inability to scale. Implementing the C++ code using the PETSc library made it significantly
easier to obtain decent performance gains, but the code development time is also significantly
longer compared to that with MATLAB. The DSL Layer 4 program is easy to manage, and
the generated code provides a large performance gain but debugging the target code will be
a challenge. As a comparison of the different programming languages, below are snippets of
code (Listings 2 to 4) from the different languages to calculate res = b−Ax, as an example.

Listing 2: MATLAB example
residual = b - A*x;

Listing 3: PETSc example
ierr = MatMult(A,x,xtemp);CHKERRQ(ierr);
ierr = VexWAXPY(residual ,-1,xtemp ,b);CHKERRQ(ierr);

48

Listing 4: ExaStencils Layer 4 example
loop over inner on Residual@current{

Residual@current = RHS@current - (Laplace@current * Solution [0]
@current)

}

49

5 Conclusion
The results show that the two recent methods, namely, GMRF approximation of GFs with
Mátern covariance and Multilevel Monte Carlo (MLMC), are indeed capable of reducing
the computational cost in Monte Carlo simulations. The MLMC method implemented in
MATLAB is slightly different from the standard MLMC. Results did show that they are
consistent. Different solvers and preconditioners were tested for robustness to solve the toy
problem with the flexible gmres and BoomerAMG preconditioner performing best. It was
found that some solvers failed to converge and this was attributed to the statistical parameters
that caused the generation of irregular GFs in the discretized domain. Different parallelization
strategies for the SLMC have also been analyzed. From the result, the Dynamic Master-Slave
method is more suitable to solve the problem in this thesis. The composition of time-to-
solutions for the Cholesky decomposition and GMRF methods were discussed. They show
the ability of the GMRF method to generate samples for large computational domains at
costs which are close to solving a second PDE. It is also seen that the hardware infrastructure
to solve such problems are also important. We see that if the number of processors used are
smaller than the total processors available in the computational nodes, then, it is better to
distribute the processes evenly amongst the nodes. Some preliminary results was also shown
for the implementation of the GMRF approximation method in ExaStencils. Results show
a significant speedup of approximately 3 when compared to a corresponding C++/PETSc
implementation with just domain decomposition. It actually shows that if ExaStencils can
provide a custom parallelization strategy such as Dynamic Master-Slave, the speedup can be
enhanced further when dealing with a large number of independent samples. We also see that
the ExaStencils concept can produce codes of significant performance gains with a relatively
"easy" coding experience requirement.

5.1 Future work
We have seen in the MATLAB implementation that the MLMC method can be used to
reduce the computational cost for Monte Carlo experiments. The next step would be to
implement it in a lower level language such as C++ with PETSc to determine the actual
speed enhancements that can be obtained. Also, the GMRF approximation method needs
to be compared with other efficient GF generating methods such as the circulant embedding
method. It would be also beneficial to implement the MLMC with the GMRF method in
ExaStencils as the performance enhancement shown in the preliminary study indicates the
ability of the ExaStencil compiler to generate a tuned code for a particular machine.

5.2 Acknowledgments
This thesis would not have been possible without the help from other individuals both from
the academic and personal aspects. I would therefore like to extend the greatest appreciation
to my daily thesis supervisor Dr.-Ing. Harald Köstler for his support and guidance throughout
my stay in Universität Erlangen. Many thanks also to Dr.-Ing. Björn Gmeiner, and Sebastian
Kuckuk for their many advices as well as easing any administrative pressures. I would also
like to thank Prof. Dr. Ulrich Rüde for accepting me into the LSS Chair 10 to do this thesis.

Besides the people in Universität Erlangen, I would like to specially extend my gratitude
to Prof. Kees Vuik, from EWI at TUDelft and the many other professors at the TUDelft for

50

their guidance during the coursework portion of my Masters program. Your courses helped
sharpen my mathematical skills by a lot (qualitatively that is). A special shout out also for my
friends in Delft, thanks for the great times! It was a pleasure working in the many coursework
projects with all of you. Thanks also go to Mevr. Evelyn Sharabi for her administrative help
during my stay in Delft.

I would like to thank the Erasmus Mundus COSSE consortium for giving me this op-
portunity to pursue this amazing dual Masters program in Europe and for supporting me
financially. Thank you Ms. Karin Knutsson for all the COSSE-related admin work to help
make transitioning between two universities easier.

Special thanks go to my parents, Loh Siew Weng, and Mah Lee Fung, for their love and
support throughout my academic career. And last but not least, thank you Lee Ping.

51

References
[1] R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer Verlag, 2007.

[2] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-
man, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
K. Rupp, B. F. Smith, and H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11
- Revision 3.5, Argonne National Laboratory, 2014.

[3] J. Brown, P. Brune, E. Constantinescu, M. Knepley, and B. Smith, Towards
high throughput composable multilevel solvers for implicit multiphysics simulation, Pre-
sented at the National Renewable Energy Laboratory, Golden, CO, 2012.

[4] R. E. Caflisch, Monte carlo and quasi-monte carlo methods, Acta Numerica, (1998),
pp. 1–49.

[5] A. Chan, W. Gropp, and E. Lusk, An efficient format for nearly constant-time
access to arbitrary time intervals in large trace files, Scientific Programming, 16 (2008),
pp. 155–165.

[6] K. Cliffe, M. Giles, R. Scheichl, and A. Teckentrup, Multilevel monte carlo
methods and applications to elliptic pdes with random coefficients, Computing and Visu-
alization in Science, 14 (2011), pp. 3–15.

[7] F. Deserno, Hpc-cluster - access and use (lss).

[8] C. Dietrich and G. Newsam, Fast and exact simulation of stationary gaussian pro-
cesses through circulant embedding of the covariance matrix, SIAM Journal on Scientific
Computing, 18 (1997), pp. 1088–1107.

[9] G.-A. Fuglstad, Spatial modelling and inference with spde-based gmrfs, Master’s thesis,
Norwegian University of Science and Technology, Norway, 2011.

[10] J. J. Gerbrands, On the relationships between svd, klt and pca, Pattern Recognition,
14 (1981), pp. 375–381.

[11] M. Giles, Multi-level monte carlo path simulation, Operations Research, 56 (2008),
pp. 607–617.

[12] V. E. Henson and U. M. Yang, Boomeramg: a parallel algebraic multigrid solver and
preconditioner, Applied Numerical Mathematics, 41 (2000), pp. 155–177.

[13] H. Köstler, C. Schmitt, S. Kuckuk, F. Hannig, J. Teich, and U. Rüde, A
scala prototype to generate multigrid solver implementations for different problems and
target multi-core platforms, CoRR, abs/1406.5369 (2014).

[14] F. Lindgren and H. Rue, Bayesian spatial and spatio-temporal modelling with r-inla,
2013.

[15] F. Lindgren, H. Rue, and J. Lindström, An explicit link between gaussian fields
and gaussian markov random fields: the stochastic partial differential equation approach,
Journal of the Royal Statistical Society, 73 (2011), pp. 423–498.

52

[16] C. Paige and M. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM Journal of Numerical Analysis, 14 (1975), pp. 617–629.

[17] M. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill Sci-
ence/Engineering/Math Series, USA, 1 ed., 2003.

[18] P. Roache, Perspective: A method for uniform reporting of grid refinement studies,
ASME Journal of Fluids Engineering, 116 (1994).

[19] S. Ross, Stochastic Processes, John Wiley & Sons, Inc., United States of America, 2 ed.,
1980.

[20] H. Rue and L. Held, Gaussian Markov Random Fields: Theory and Applications,
Monographs on Statistics and Applied Probability, Chapman & Hall, FL, USA, 2005.

[21] H. Rue and H. Tjelmeland, Fitting gaussian markov random fields to gaussian fields,
Scandinavian Journal of Statistics, 29 (2002), pp. 31–49.

[22] Y. Saad, A flexible inner-outer preconditioned gmres algorithm, SIAM Journal on Sci-
entific Computing, 14 (1994), pp. 461–469.

[23] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, no. XVII in
Springer Series in Statistics, Springer New York, New York, USA, 1999.

[24] J. van Kan, G. Segal, and F. Vermolen, Numerical Methods in Scientific Com-
puting, VSSD, Delft, the Netherlands, 2005.

[25] C. Vuik and D. Lahaye, Scientific computing (wi4201) - notes, tech. rep., Delft Insti-
tute of Applied Mathematics, 2012.

[26] J. B. Walsh, École d’Été de Probabilités de Saint Flour XIV - 1984, Springer Berlin
Heidelberg, 1986.

[27] B. Wilkinson and C. Allen, Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers, An Alan R. Apt book, Pearson-
/Prentice Hall, 2005.

[28] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual
performance model for multicore architectures, Communications of the ACM, 52 (2009),
pp. 65–76.

53

A PETSc Solver Settings Report
The following are the details of the default solver (fgmres + BoomerAMG) used to solve the
samples in the PETSc program as reported in the PETSc solver log. The settings for the
BoomerAMG solver only as described in Section 4.5.1 is the same as that of the preconditioner
with the maximum number of V cycles set at 1000.

Solver type: fgmres (flexible gmres)
GMRES: restart=30, using Classical (unmodified) Gram-Schmidt

Orthogonalization with no iterative refinement
GMRES: happy breakdown tolerance 1e-30

maximum iterations=1000, initial guess is zero
tolerances: relative=1e-6, absolute=1e-50, divergence=10000
right preconditioning
using UNPRECONDITIONED norm type for convergence test

Preconditioner
type: hypre

HYPRE BoomerAMG preconditioning
HYPRE BoomerAMG: Cycle type V
HYPRE BoomerAMG: Maximum number of levels 25
HYPRE BoomerAMG: Maximum number of iterations PER hypre call 1
HYPRE BoomerAMG: Convergence tolerance PER hypre call 0
HYPRE BoomerAMG: Threshold for strong coupling 0.25
HYPRE BoomerAMG: Interpolation truncation factor 0
HYPRE BoomerAMG: Interpolation: max elements per row 0
HYPRE BoomerAMG: Number of levels of aggressive coarsening 0
HYPRE BoomerAMG: Number of paths for aggressive coarsening 1
HYPRE BoomerAMG: Maximum row sums 0.9
HYPRE BoomerAMG: Sweeps down 1
HYPRE BoomerAMG: Sweeps up 1
HYPRE BoomerAMG: Sweeps on coarse 1
HYPRE BoomerAMG: Relax down symmetric-SOR/Jacobi
HYPRE BoomerAMG: Relax up symmetric-SOR/Jacobi
HYPRE BoomerAMG: Relax on coarse Gaussian-elimination
HYPRE BoomerAMG: Relax weight (all) 1
HYPRE BoomerAMG: Outer relax weight (all) 1
HYPRE BoomerAMG: Using CF-relaxation
HYPRE BoomerAMG: Measure type local
HYPRE BoomerAMG: Coarsen type Falgout
HYPRE BoomerAMG: Interpolation type classical

54

B Jumpshot Visualizations
These are the full Jumpshot visualizations to solve a system of [1000×1000], with the GMRF
approximation, 500 samples, and the Dynamic master-slave approach using 32 processors.

Figure B.1: Jumpshot visualization of PETSc program for Dynamic Master-Slave - 1 processor
per sample (32 processors, 1000x1000 grid size, 500 samples)

Figure B.2: Jumpshot visualization of PETSc program for Dynamic Master-Slave - 2 proces-
sors per sample (32 processors, 1000x1000 grid size, 500 samples)

55

	Introduction
	Theory
	Gaussian Field
	Stationary Processes
	Covariance Function

	Gaussian Markov Random Field
	Generation of Gaussian Fields
	Cholesky and Singular Value Decomposition
	GMRF Approximation

	Gaussian White Noise
	Standard Monte Carlo
	Multilevel Monte Carlo

	Implementation
	Finite Volume Discretization
	Standard Monte Carlo Parallelization
	Domain Decomposition
	Static Master-Slave
	Dynamic Master-Slave

	Multilevel Monte Carlo (MATLAB)
	PETSc Details
	Standard Cholesky decomposition
	GMRF approximation

	ExaStencils
	Hardware and Software Specifications

	Results and Discussion
	Grid Convergence
	Standard Monte Carlo Sampling Convergence
	Validation of GMRF approximation
	1D case
	2D case

	MATLAB
	MATLAB - Standard Monte Carlo
	MATLAB - Multilevel Monte Carlo
	Performance Analysis

	PETSc - Standard Monte Carlo
	Solvers
	Preconditioners and KSP Solvers

	PETSc - Performance Analysis
	Performance of different parallelization strategies
	Performance of GMRF compared to Cholesky decomposition
	Effect of CPU socket utilization
	Miscellaneous analysis of the GMRF and Variational Poisson program

	ExaStencils - Standard Monte Carlo
	Results
	Experiences

	Conclusion
	Future work
	Acknowledgments

	PETSc Solver Settings Report
	Jumpshot Visualizations

