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1 Abstract

In this Masters thesis, the dynamics of pipes conveying pulsating flow are investigated. The
initial-boundary value problem associated with the linear beam equations of motions gov-
erning the pipe system is derived using the principles of Lagrangian mechanics. In this the-
sis, the fluid flow is assumed to have a small velocity with harmonic time dependence V (t ) =
ε(V0+V1 sin(Ωt )), which allows us to investigate the effects of different pulsation frequencies on
the pipe system. For certain Ω frequencies, the pipe system is observed to be exposed to more
complex dynamical behaviours. By using the multiple time scale perturbation method, com-
prehensive insights into the stability and the dynamic behaviour of pipe systems are achieved.

The study focuses on investigating the primary resonance frequencies and understanding
how pulsation frequencies near those resonance frequencies impact the stability of the system.
Furthermore, we elaborate on special resonance cases where multiple oscillatory modes inter-
act leading to even more complicated dynamics.

By building upon existing literature this research enhances our understanding of stability
and dynamic behaviors under various flow pulsation frequencies. This study makes an im-
portant contribution to the present literature by exploring scenarios where multiple resonant
modes interact, due to coinciding primary resonance frequencies, which has not been exten-
sively discussed in the literature. Our findings suggests scepticism on the relevance of the exist-
ing solution methods and results in the literature for certain parameter values.
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2 Introduction

In numerous industries and infrastructural systems, pipe structures that convey fluids are es-
sential to various operational processes. Whether in the applications of urban water distribu-
tion, the transportation and extraction of oil and gas in refineries and offshore platforms, or
the fuel supply mechanisms of engine systems, pipes stand as the backbone of numerous in-
dustrial applications. The fluctuations in the fluid velocity can lead to vibrations in the pipe
structures. This can be due to the operation of equipment like reciprocating pumps or inherent
fluid excitation fluctuations. These vibrations present potential challenges in terms of system
integrity, safety, and longevity. Understanding the mechanisms behind such systems and their
real-world implications is crucial for efficient system design and operation.

The study of the dynamics of pipes conveying fluids has a rich history dating back to 1885
when Brillouin first began investigating the subject. However, the first written study on the
topic did not appear until the late 1930s, when Bourrieres published his work [5]. In his work in
1939, Bourrieres treated the pipe as a string-like structure and made conclusions on the stabil-
ity of the cantilevered system. The research topic was re-initiated in 1950 by Ashley and Havi-
land, who further developed this model, during their research on the Trans Arabic pipeline, for
cantilevered pipes, treating the pipe as a beam-like structure and considering its bending stiff-
ness [3]. In the following years, Feodos’ev [8], Housner [12], and Niordson [16] made significant
contributions to the field, by studying the dynamics of pipes supported at both ends, as they
were among the first to independently derive correct linear equations of motion using different
methods, and reached the same conclusions about the stability of the system [19]. In 1976, Paï-
doussis and Laithier were the first ones that considered the shear deformations and modelled
the system as a Timoshenko beam, which is a higher order and more accurate model [21].

The dynamics of pipes conveying fluid can be explored using equations from two princi-
pal branches of analytical mechanics: Newtonian and Lagrangian mechanics. Both methods
lead to the same governing differential equations. However, the distinct advantage of the La-
grangian approach lies in its boundary condition treatment. While the Newtonian approach
requires careful assumptions on the determination of boundary conditions, the Lagrangian
method naturally provides these conditions derived from scalar quantities like kinetic and po-
tential energy. This advantage of the Lagrangian method simplifies the problem formulation,
making it the preferred method for our study.

Benjamin (1961) presented one of the first complete Lagrangian derivations of the linear
equations of motion in the literature, considering the pipe as an Euler-Bernoulli beam with
constant fluid velocity and neglecting viscoelastic damping and gravity [4]. In 1971, Chen was
the first to derive the equations for pulsating fluid flow [7], and later in 1974, Païdoussis and
Issid corrected this model for pulsating fluid flow, and improved it by including the Kelvin-
Voigt viscoelastic effects of the pipe material [20]. In 1994, Semler and Païdoussis derived the
nonlinear equations of motion by considering partial derivatives of longitudinal deflections and
including higher-order terms for the curvature term in the expression for strain energy [26].
The effects of viscoelasticity have been studied in detail for accelerating beams by Chen, Tang,
Zhang, and others [6, 31, 33].

In 2005, Païdoussis and his colleagues, and Kuiper and Metrekine revisited the direction of
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mean flow velocity at the inlet and derived the non-classical free end boundary condition for
aspirating pipes from Newtonian principles [13, 18]. Aldraihem obtained the same boundary
conditions as Païdoussis et al. in 2007 using the variational approach and called it the "flow
out release effect" [2]. In his study, Aldraihem also adjusted the free-end boundary conditions
for Kelvin-Voigt viscoelastic pipes, which were previously not considered. Furthermore, the
effects of viscoelasticity on natural boundary conditions have also been studied for accelerated
beam problems, that are similar to problems of pipes conveying fluid, by Chen, Tang, Zhang,
and others [6, 31, 33]. Furthermore, van Horssen, Gaiko, Sandilo and Akkaya studied dashpot-
spring-mass non-classical boundary conditions for string-like problems [1, 9, 25].

The Galerkin truncation method, established by Gregory and Païdoussis in 1966 as a solu-
tion approach for the existing equations of pipes conveying fluids [10], provides a truncated
solution of the equations that consist of often, up to four modes of oscillations. This method
has been widely used as the primary tool to solve equations related to pipes conveying fluids.
In their later study in 1991, Païdoussis and his colleagues highlighted some quantitative differ-
ences between existing solutions obtained by the truncation method and experimental results
for certain parameter values, as reported in [22].

In their studies, Suweken, Ponomareva, and van Horssen have shown that for conveyor belt
problems, which are governed by string-like equations similar to those of pipes conveying flu-
ids, the truncation method may not provide accurate approximations of the solutions on long-
time scales for certain parameter values [23, 24, 28–30]. This is due to the presence of internal
resonances, in which all modes interact. Considering only the first N modes and truncating the
higher-order modes avoids the appearance of interactions of higher-order modes and conse-
quently, neglects their contribution to the actual system. In these studies, authors have made
improvements for the solutions of conveyor belt problems for various boundary conditions. In
their study, Gaiko and van Horssen (2015) also highlighted that, for string-like equations, with
the absence of bending stiffness, the Galerking truncation is only applicable for t ∼O (1) [9].

In string-like equations, van Horssen and Ponomareva proposed the solution method by
Laplace transform as an alternative solution method to eigenfunction expansion [32]. In 2015,
Malookani and van Horssen compared the solution obtained by the method of multiple scales
and Laplace transform with Galerkin’s truncation method to axially moving strings with varying
axial velocity [14]. In the context of beam-like equations, Suweken and van Horssen employed
the method of multiple time scales for conveyor belt problems, highlighting potential interac-
tions with higher-order modes for specific parameter values [29]. In a subsequent study [30],
they used this approach to examine the stability of beam structures governed by nonlinear
equations of motion.

Despite the advancements in the literature on pipes conveying fluids, certain aspects re-
main to be addressed more thoroughly. Where the main solution method in the literature is
the Galerkin truncation method, our study aims to analyze the initial boundary value problem
with multiple time scales methods, particularly in the context of flow-induced vibrations. The
primary questions guiding this research include: When do internal resonances arise? How do
the various oscillatory modes interact? And, what are the limitations of the Galerkin truncation
method?
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To address the outlined research questions, the equations of motion will be derived using
mathematical modelling and the asymptotic approximation of the solution of this problem will
be constructed. The thesis is structured as follows: Section 3.1 the mathematical derivations of
the cantilevered pipe using the Lagrangian approach, focusing on the determination of energy
and virtual work contributions is presented. Section 3.2 adapts these derivations to establish
the equations of motion for a simply supported pipe and in section 3.3, the respective initial-
boundary value problems are presented. Moving to Section 4.1, the multiple time scales pertur-
bation method is applied to the initial-boundary value problem for the simply supported pipe
system. Section 4.2 discusses the occurrence of various resonant cases, while Section 4.3 exam-
ines the non-resonant scenario. Sections 4.4 and 4.5 provide detailed analysis of the primary
resonant cases and the resonance coincidence cases, respectively. In Section 5, we summarize
and reflect on the findings of our study. Finally, Section 6 presents possible directions for future
research.
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3 Derivation of Equations of Motion

In this study, we will use the Lagrangian approach to obtain the linear equation of motion for
a cantilevered pipe conveying fluid. We assume the transverse deflections are small and that
the pipe material is sufficiently resistant to bending, which leads to the Euler-Bernoulli beam
model. To simplify our analysis, we assume that the pipe has uniform material properties and
cross-section in the longitudinal direction. To account for the viscoelastic damping effects of
the pipe material, we will initially consider a more general derivation. In addition, we will con-
sider the flow velocity inside the pipe to be small and time-dependent to study non-classical
flow cases, such as pulsating flow represented by V (t ) = ε(V0 +V1 sin(Ωt )), where 0 < ε¿ 1.

3.1 Cantilevered Pipe

In this subsection, we will derive the equation of motion for a cantilevered pipe by building
upon the works of Benjamin [4], Païdoussis and Issid [20], Semler and Païdoussis [26], and Chen
and his colleagues [6]. We have adjusted the derivation of linear equations and natural bound-
ary conditions, resulting in a more comprehensive model.

Figure 1: Schematic diagram of the cantilever pipe system.

Inextensibility Condition
For the cantilevered pipe, due to the absence of external axial tension, we assume that the pipe
preserves its initial length.

Figure 2: Infinitesimal element of pipe.
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If we assume that the pipe is inextensible, we can write (d s)2 = (d x)2 + (d v)2 and therefore,
the horizontal displacement of the deflected pipe can be written as

u(x, t ) =
∫ x

0
d s −d x =

∫ x

0

√
(d x)2 + (d v)2 −d x =

∫ x

0

(√
1+ v2

x −1

)
d x. (1)

Due to the assumption of small deformation (|vx | ¿ 1), we can write the Taylor expansion of
the square root term as √

1+x2 = 1+ x2

2
+O (x4).

Hence, we obtain the horizontal displacement of the pipe as

u(x, t ) '
∫ x

0

1

2
v2

xd x. (2)

Energy Method
The equations of motion will be derived using Hamilton’s principle, often referred to as the
energy method [26]. Hamilton’s principle for the open system can be written as,

δ

∫ t2

t1

L d t +
∫ t2

t1

δW d t = 0, (3)

where δ denotes the variation of a function, L is the Lagrangian of the system and defined as
L =T −V , where T and V are the kinetic energy and potential energy respectively, and δW is
the virtual work done by non-conservative forces that are not included in the Lagrangian [26].

Hamilton’s principle states that among all possible paths between the end points, the mo-
tion of a system will occur along the path that gives an extreme value to the integral

I (u) =
∫ t2

t1

F (u)d t , (4)

for arbitrary times t1 and t2. Assuming that u minimizes the Hamiltonian integral, let us con-
sider the true evolution of the system as ū=u+εµ, where ε ∈R and u ∈Rn , εδu is the variation
or perturbation of the function and µ is the perturbation direction. In the literature, the per-
turbation direction is often denoted as µ = δu, and in this study, we will also use the notation
ū =u+εδu to stay consistent with the notation in the literature. The function δu is arbitrary,
differentiable, and vanishes at the end time points t1 and t2, that is, δu(x, t1) = δu(x, t2) = 0 [9].

Since the functional I = I (u) has a minimum at u, the functional I (u+εδu) also has a min-
imum at ε= 0. Therefore, we have

δI (u;δu) = d

dε
(I (u+εδu))

∣∣∣∣
ε=0

= 0. (5)

This definition is also known as the Gateaux derivative [27].
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3.1.1 Kinetic Energy

The kinetic energy of the Lagrangian consists of two components, such that T =Tp+T f , where
Tp refers to the kinetic energy of the pipe and T f refers to the kinetic energy of the fluid.

Kinetic Energy of Pipe Tp

The velocity vector of a pipe element is defined as

Vp = uti+ vtj. (6)

If we assume that the longitudinal velocity component (along the x-axis) of a pipe element is
much smaller compared to the transversal velocity component, by neglecting the contribution
of the longitudinal velocity component, the kinetic energy of the pipe can be written as

Tp = 1

2
m

∫ L

0
|Vp |2d x = 1

2
m

∫ L

0

(
u2

t + v2
t

)
d x ' 1

2
m

∫ L

0
v2

t d x, (7)

where m is the mass per unit length of the pipe.
In order to find the kinetic energy component of the Lagrangian in (3), we apply the varia-

tional operator to the integral I = ∫ t2
t1

(Tp +T f )d t . Hence, for the Tp component, we can write

the Gateaux derivative of I = ∫ t2
t1

Tp d t as

I (v +εδv) =1

2
m

∫ t2

t1

∫ L

0
(vt +εδvt )2d xd t

=1

2
m

∫ t2

t1

∫ L

0
(v2

t +2εvtδvt +O (ε2))d xd t ,

⇒ d

dε
I (v +εδv)

∣∣∣∣
ε=0

=
(

1

2
m

∫ t2

t1

∫ L

0
(2vtδvt +O (ε))d xd t

)∣∣∣∣
ε=0

=m
∫ t2

t1

∫ L

0
vtδvt d xd t

=m
∫ L

0
[vtδv]t2

t1︸ ︷︷ ︸
=0

d x −m
∫ t2

t1

∫ L

0
vt tδvd xd t

=−m
∫ t2

t1

∫ L

0
vt tδvd xd t .

(8)

Kinetic Energy of Fluid T f

The velocity of the fluid element is the combination of the relative velocity of the fluid to pipe,
V τ , and the velocity of the pipe (6). V =V (t ) is the amplitude of the average fluid velocity inside
the pipe and τ is the tangential vector of relative fluid velocity defined as τ = icosθ+ j sinθ.
By assuming that the deflections are small, we will approximate sinθ ' vx +O (v3

x) and cosθ '
1− v2

x/2+O (v4
x). Hence, we obtain the absolute fluid velocity as

V f =Vp +V τ

=(V cosθ−ut )i+ (V sinθ+ vt )j

'(
V

(
1− v2

x/2
)−ut

)
i+ (V vx + vt )j.

(9)
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From fluid velocity (9), the kinetic energy of the enclosed fluid is expressed as

T f =
1

2
M

∫ L

0
|V f |2d x = 1

2
M

∫ L

0

((
V

(
1− v2

x/2
)−ut

)2 + (V vx + vt )2
)
d x, (10)

with M being the mass per unit length of the fluid. If the higher order terms are neglected, we
can write (10) as

T f '
1

2
M

∫ L

0

(
V 2 + v2

t +2V vx vt −2V ut
)
d x. (11)

By using the definition for the longitudinal deflection term given in (2), the last term in equation
(11) can be rewritten as

2
∫ L

0
V ut d x =

∫ L

0
V
∂

∂t

(∫ x

0
v2

xd x

)
d xd t

=
{[

xV
∂

∂t

(∫ x

0
v2

xd x

)]L

0
−

∫ L

0
xV

∂

∂t
(v2

x)d x

}
d t

=
∫ L

0
(L−x)V

∂

∂t
(v2

x)d xd t .

(12)

By plugging (12) into (11) and integrating with respect to t from t1 to t2, we obtain∫ t2

t1

T f d t =M
∫ t2

t1

∫ L

0

(
1

2
V 2 + 1

2
v2

t +V vx vt − 1

2
(L−x)V (v2

x)t

)
d xd t . (13)

Now, we can write the Gateaux derivative of I = ∫ t2
t1

T f d t , which results in

I (v +εδv) =M
∫ t2

t1

∫ L

0

(
1

2
V 2 + 1

2
(vt +εδvt )2 +V (vx +εδvx)(vt +εδvt )

−1

2
(L−x)V ((vx +εδvx)2)t

)
d xd t ,

⇒ d

dε
I (v +εδv)

∣∣∣∣
ε=0

=
[

M
∫ t2

t1

∫ L

0
(vtδvt +V (vxδvt + vtδvx)− (L−x)V (vxδvx)t +O (ε))d xd t

]∣∣∣∣
ε=0

=M
∫ t2

t1

∫ L

0
(vtδvt +V (vxδvt + vtδvx)− (L−x)V (vxδvx)t )d xd t .

(14)

If we apply integration by parts, we obtain

δ

∫ t2

t1

T f d t =−M
∫ t2

t1

∫ L

0
(vt t +2V vxt +Vt (L−x)vxx)δvd xd t

+M
∫ t2

t1

(
[V vtδ]L

0 −MVt Lvx(0, t )δv(0, t )
)
d t .

(15)
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3.1.2 Potential Energy

The potential energy of the system consists of the strain energy of the pipe Vs and the gravita-
tional potential energy Vg , and we write V = Vs +Vg .

Strain Energy Vs

We assume our pipe structure to remain in the linear (or elastic) deformation region under load-
ing. Thus, the stress-strain relation is expressed as σ= Eε, known as Hooke’s law, where σ and
ε are stress and strain respectively. We consider the strain energy Vs in the form

δ

∫ t2

t1

Vsd t =
∫ t2

t1

∫ L

0

∫
S

(σδε)dSd xd t , (16)

see [6, 31, 34]. From the definition of strain, ε= y/r = yκ= y vxx , r being the radius of curvature
and κ= vxx being the curvature, (16) can be given by∫ t2

t1

∫ L

0

∫
A

Eε(δε)d Ad xd t =
∫ t2

t1

∫ L

0

∫
A

E y(vxx)δ(y vxx)d Ad xd t

=
∫ t2

t1

∫ L

0

(∫
A

y2d A

)
Evxxδvxxd xd t ,

(17)

and where I = ∫
A y2d A is defined as the second moment of inertia, (17) becomes

δ

∫ t2

t1

Vsd t =
∫ t2

t1

∫ L

0
E I vxxδvxxd xd t . (18)

By applying integration by parts twice, we can obtain

δ

∫ t2

t1

Vsd t =
∫ t2

t1

∫ L

0
E I vxxxxδvd xd t +

∫ t2

t1

E I [vxxδvx]L
0 −

∫ t2

t1

E I [vxxxδv]L
0 . (19)

Gravitational Potential Energy Vg

• Horizontal Pipe
The gravitational potential energy Vg when the pipe is horizontally placed (or perpendicular to
the vector of gravitational acceleration) is given by

Vg =
∫ L

0
(m +M)g vd x, (20)

where g is the gravitational acceleration. Hence, we can write I =−∫ t2
t1

∫ L
0 (m +M)g vd xd t , and

from the Gateaux derivative, we obtain

δ

∫ t2

t1

Vg d t = d

dε
I (v +εδv)

∣∣∣∣
ε=0

=
∫ t2

t1

∫ L

0
(m +M)gδvd xd t . (21)
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• Vertical Pipe
For the case that the undeflected pipe is vertical, the gravitational potential energy is given by

Vg =
∫ L

0
(m +M)g ud x = 1

2
(m +M)g

∫ L

0

(∫ x

0
v2

xd x

)
d x. (22)

Now if we apply integration by parts as in (12), (22) becomes

Vg = 1

2
(m +M)g

∫ L

0
(L−x)v2

xd x. (23)

From this expression, we can define the integral I = ∫ t2
t1

Vg d t and from the Gateaux derivative,
we obtain

δ

∫ t2

t1

Vg d t = d

dε
I (v +εδv)

∣∣∣∣
ε=0

=
∫ t2

t1

∫ L

0
(m +M)g (L−x)vxδvxd xd t (24)

and from integration by parts, we get

δ

∫ t2

t1

Vg d t =
∫ t2

t1

(m +M)g [(L−x)vxδv]L
0 −

∫ t2

t1

∫ L

0
(m +M)g (L−x)vxxδvd xd t

=
∫ t2

t1

(m +M)g Lvx(0, t )δv(0, t )d t −
∫ t2

t1

∫ L

0
(m +M)g (L−x)vxxδvd xd t .

(25)

3.1.3 Virtual Work by Non-conservative Forces

Viscoelastic Damping
In this study, viscoelastic damping of the pipe is assumed to follow the Kelvin-Voigt model. The
stress-strain relation of a Kelvin-Voigt viscoelastic material is proposed as

σ= Eε+ηεt , (26)

where η is the viscoelastic damping coefficient. Let σK V = ηεt be the Kelvin-Voigt viscoelastic
component of stress. Again by using the definition of strain, we obtain

σK V = ηy vt xx . (27)

Hence, we can write the expression corresponding to the virtual work term as∫ t2

t1

δWK V d t =−
∫ t2

t1

∫ L

0

∫
A

(σK V δε)d Ad xd t

=−
∫ t2

t1

∫ L

0

∫
A
ηy vt xxδ(y vxx)d Ad xd t

=−
∫ t2

t1

∫ L

0
ηI vt xxδvxxd xd t .

(28)
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If we apply integration by parts twice, we can obtain

∫ t2

t1

δWK V d t =−
∫ t2

t1

∫ L

0
ηI vt xxxxδvd xd t −

∫ t2

t1

ηI [vt xxδvx]L
0 d t +

∫ t2

t1

ηI [vt xxxδv]L
0 d t . (29)

Fluid Discharge From Outlet
The virtual work done by the discharge of fluid from the outlet, δWd is expressed as the change
of momentum times virtual displacement, hence δWd = −MV (Ṙ+Uτ ) ·δR [4, 15]. The dot-

Figure 3: Schematic diagram of the cantilever pipe system.

dashed curve corresponds to the natural axis of the deflected pipe of length L, τ represents the
unit normal vector of the pipe outlet and the R is the displacement vector of the outlet from
the undeflected pipe (see Figure 3). We define R := −u(L, t )i+ v(L, t )j and from the previous
definition of τ , τL := (1− v2

x(L, t )/2)i+ vx(L, t )j. From these definitions, the virtual work δWd

can be written as∫ t2

t1

δWd d t =−
∫ t2

t1

[
MV

(
V −ut −V

1

2
v2

x

)
δu(L, t )−MV (vt +V vx)δv(L, t )

]
d t

'−
∫ t2

t1

(
MV 2δu(L, t )−MV (vt +U vx)δv(L, t )

)
d t .

(30)

If we use the longitudinal deflection expression from (2) for the first term in the integral in (30),
we get ∫ t2

t1

δWd d t =−
∫ t2

t1

(
MV 2δ

(∫ L

0

1

2
v2

xd x

)
−MV (vt +V vx)δv(L, t )

)
d t . (31)

If we apply the Gateaux derivative to the integral
∫ L

0
1
2 v2

xd x, we get

δ

(∫ L

0

1

2
v2

xd x

)
= d

dε

(∫ L

0

1

2
(vx +εδvx)2d x

)∣∣∣∣
ε=0

=
∫ L

0
vxδvxd x. (32)

And from integration by parts, we obtain∫ L

0
vxδvxd x = [vxδv]L

0 −
∫ L

0
vxxδvd x. (33)
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Thus (31) becomes∫ t2

t1

δWd d t =
∫ t2

t1

∫ L

0
MV 2vxxδvd xd t −

∫ t2

t1

(
MV 2[vxδv]L

0 +MV (vt +V vx)δv(L, t )
)
d t . (34)

3.1.4 Equation of Motion and Boundary Conditions

If we substitute, L =Tp +T f −Vs −Vg and δW = δWK V +δWd into (3), then we obtain

−
∫ t2

t1

∫ L

0

(
ηI vt xxxx +E I vxxxx +MVt (L−x)vxx +MV 2vxx

+2MV vxt + (m +M)vt t + (m +M)g
)
δvd xd t

+
∫ t2

t1

(
M [MV vtδv]L

0 −MVt Lvx(0, t )δv(0, t )−E I [vxxδvx]L
0

+E I [vxxxδv]L
0 −ηI [vt xxδvx]L

0 +ηI [vt xxxδv]L
0

+MV 2[vxδv]L
0 −MV (vt (L, t )+V vx(L, t ))δv(L, t )

)
d t = 0.

(35)

The equation of motion for a horizontally cantilevered pipe is obtained from the first integral in
(35) and is given by

ηI vt xxxx +E I vxxxx +
(
MVt (L−x)+MV 2)vxx +2MV vxt + (m +M)vt t + (m +M)g = 0. (36)

The second integral in (35) leads to the natural (or force) boundary conditions and can be writ-
ten as

x =0 ⇒
{

MV (vt +V vx)+MVt Lvx +E I vxxx +ηvt xxx = 0,

E I vxx +ηI vt xx = 0,
(37a)

x =L ⇒
{

E I vxxx +ηvt xxx = 0,

E I vxx +ηI vt xx = 0.
(37b)

The terms in (36) represent viscoelasticity, bending strain, acceleration effect of the fluid, cen-
trifugal effect, Coriolis effect, local transverse acceleration and gravitational force respectively.
It must be highlighted that the first boundary condition in (37a) is the same as the inflow condi-
tion proposed by Païdoussis [18], Kuiper and Metrikine [13] if we assume V =const. and η= 0.
Also, the difference between the left and right boundary condition is termed the outflow release
effect by Aldraihem [2].

3.1.5 Dimensional Analysis

• Horizontal Cantilevered Pipe
Before we study the partial differential equation with boundary conditions that are obtained

15



(36) and (37a) & (37b), we must first convert the equation in dimensionless form and we will
use the dimensionless groups to determine a scaling [11].

[E ] = M

LT 2
, [η] = M

LT
, [I ] = L4, [g ] = L

T 2
, [V ] = L

T
,

[M ] = [m +M ] = M

L
, [x] = L, [v] = L, [t ] = T.

(38)

And now, in order to nondimensionalize the problem, we introduce the change of variables

t = tc t∗, x = xc x∗, v = vc v∗, (39)

where the asterisk superscript denotes the dimensionless variable and the c subscript denotes
the characteristic value of the given variable, which is also constant. By using the chain rule, we
substitute the dimensionless variables (39) into the equation (36). Each term of the equation is

in units of M
T 2 . Thus, we multiply each term by

t 2
c

(m+M)vc
in order to make each term dimension-

less. We obtain

ηI tc

(m +M)x4
c

v∗
t xxxx +

E I t 2
c

(m +M)x4
c

v∗
xxxx +

MVt (L−xc x∗)tc

(m +M)x2
c

v∗
xx

+ MV 2t 2
c

(m +M)x2
c

v∗+ 2MV tc

(m +M)xc tc
v∗

xt + v∗
t t +

g t 2
c

vc
= 0.

(40)

We choose xc = vc = L, which is the constant geometrical parameter. To determine the char-
acteristic value for time, denoted by tc , we follow existing literature and notation conventions,
such as [17, 20], by selecting the coefficient of the second term in (40) and setting it equal to
one. Once we have determined tc in this manner, we can obtain the dimensionless parameters
as follows:

x∗ = x

L
, v∗ = v

L
, t∗ =

√
E I

m +M

t

L2
, α=

√
I

E(m +M)

η

L2

β= M

m +M
, V ∗ =

√
M

E I
V L, γ= m +M

E I
L3g .

(41)

For convenience, we will not use the asterisk notation, and with the dimensionless parameters
defined in (41), we obtain the dimensionless problem (36) with (37a) & (37b) as

αvt xxxx + vxxxx +
(
V 2 +

√
βVt (1−x)

)
vxx +2

√
βV vxt + vt t +γ= 0, (42)

with the natural boundary conditions,

x =0 ⇒
{

V (
√
βvt +V vx)+√

βVt vx + vxxx +αvt xxx = 0,

vxx +αvt xx = 0,
(43a)

x =1 ⇒
{

vxxx +αvt xxx = 0,

vxx +αvt xx = 0.
(43b)
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• Vertical Cantilevered Pipe
If we follow the same steps with the potential energy of a vertical pipe, we obtain

αvt xxxx + vxxxx +
(
V 2 +

(√
βVt −γ

)
(1−x)

)
vxx +2

√
βV vxt + vt t = 0, (44)

with the natural boundary conditions,

x =0 ⇒
{

V
√
βvt +

(
V 2 +√

βVt +γ
)
vx + vxxx +αvt xxx = 0,

vxx +αvt xx = 0,
(45a)

x =1 ⇒
{

vxxx +αvt xxx = 0,

vxx +αvt xx = 0.
(45b)

3.2 Simply Supported Pipe

Figure 4: Schematic diagram of the simply supported pipe system.

In this subsection, we will derive the equation of motion for a simply supported pipe con-
veying fluid by introducing adjustments to the cantilevered pipe. For this case, the inextensi-
bility condition is no longer valid due to the fact that both ends of the pipe are pinned, and a
vertical deflection results in a change in the length of the pipe. Furthermore, we can no longer
consider virtual work due to fluid discharge, hence δWd = 0.

We consider the elongation ε of the pipe due to transversal deflection as the same expression
for the inextensibility condition given in (2), namely

ε= d s

d x
−1 =

√
1+ v2

x −1 = 1

2
v2

x +O (v4
x). (46)

In contrast to the cantilevered pipe, the fluid velocity V will get a contribution from the elonga-
tion of the pipe [17]. With the elongation of the pipe and conservation of mass (also conserva-
tion of volume due to the assumption of incompressible fluid flow),

S0d x = S1(1+ε)d x, (47)

where S0 is the undeflected cross-section and S1 is the cross-section area of the pipe after elon-
gation. And from the incompressible fluid inside the pipe, we have

V0S0 =V1S1, (48)
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V0 and V1 are the velocities before and after the elongation. Therefore, we obtain

V1 = S0

S1
V0 = (1+ε)V0 = (1+ v2

x/2)V0 (49)

[17]. For a simply supported beam, if we neglect the axial velocity of the beam, we can write
the adjusted kinetic energy of the fluid element as

T f =
1

2
M

∫ L

0

(
V

(
1+ v2

x/2
)(

1− v2
x/2

))2 + (vt +V vx)2d x, (50)

If the higher order terms are neglected, we can write (50) as

T f '
1

2
M

∫ L

0
V 2 + v2

t +2V vx vt +V 2v2
xd x. (51)

From the kinetic energy of the fluid in (51) the contribution of the fluid kinetic energy to the
Lagrangian becomes

δ

∫ t2

t1

T f d t =−M
∫ t2

t1

∫ L

0
(vt t +2V vxt +Vt vx +V 2vxx)δvd xd t

+
∫ t2

t1

[MV vtδv +MV 2vxδv]L
0 d t .

(52)

It should be noted that even in the absence of virtual work done by the fluid discharge from the
free end, the MV 2vxx term remains in the equation due to the contribution of the elongation
to the fluid velocity [17], as also obtained in (52).

Another adjustment that is necessary when comparing simply supported pipes to cantilevered
pipes is accounting for the contribution of potential energy resulting from external axial ten-
sion. Potential energy due to external axial tension P can be defined as follows:

Vt :=
∫ L

0
Pεd x =

∫ L

0
P

1

2
v2

xd x. (53)

For its contribution to the Lagrangian, we get

δ

∫ t2

t1

Vt d t =−
∫ t2

t1

∫ L

0
P vxxδvd xd t +

∫ t2

t1

[P vxδv]L
0 d t . (54)

3.2.1 Equation of Motion and Boundary Conditions

From the changes above, we obtain the equation of motion and the natural boundary condi-
tions for the simply supported beam in the form:

ηI vt xxxx +E I vxxxx +
(
MV 2 −P

)
vxx +2MV vxt + (m +M)vt t +MVt vx + (m +M)g = 0, (55)

with the natural boundary conditions,

x =0 ⇒
{

MV (vt +V vx)+P vx +E I vxxx +ηvt xxx = 0,

E I vxx +ηI vt xx = 0,
(56a)

x =L ⇒
{

MV (vt +V vx)+P vx +E I vxxx +ηvt xxx = 0,

E I vxx +ηI vt xx = 0.
(56b)
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3.2.2 Dimensional Analysis

We choose the characteristic value for variables xc = vc = L, and tc =
√

(m+M)
P L. Following the

change of variables, we introduce the dimensionless parameters

x∗ = x

L
, v∗ = v

L
, t∗ =

√
P

m +M

t

L
, α= ηI

εL3
p

(m +M)P

µ= E I

PL2
, β= M

m +M
, V ∗ =

√
M

P
V , γ= m +M

P
Lg ,

(57)

where the dimensionless parameter ε indicates that the viscoelastic damping coefficient η is
small. By plugging these dimensionless parameters to the equation (55) and the boundary con-
ditions (56a) and (56b), we obtain

εαvt xxxx +µvxxxx +
(
V 2 −1

)
vxx +2

√
βV vxt + vt t +

√
βVt vx +γ= 0, (58)

with the dimensionless natural boundary conditions

x =0 ⇒
{

V (
√
βvt +V vx)+ vx +µvxxx +εαvt xxx = 0,

µvxx +αvt xx = 0,
(59a)

x =1 ⇒
{

V (
√
βvt +V vx)+ vx +µvxxx +εαvt xxx = 0,

µvxx +αvt xx = 0.
(59b)

3.3 Problem Definition

For physical relevance, we will focus on two specific pipe configurations: a vertical cantilevered
pipe and a simply supported horizontal pipe. In both cases, we assume that the fluid velocity
inside the pipe has a harmonic variation around the small mean velocity, and we consider it:

V (t ) = ε(V0 +V1 sin(Ωt )), (60)

where |V1| < |V0|. This equation characterizes a unidirectional flow, with no reverse flow oc-
curring. We assume that there are no transversal external forces applying to the pipe system.
By considering the essential geometrical boundary conditions, we can present the equations of
motion along with their corresponding initial and boundary conditions as shown below.

It can be observed that we have maintained the natural boundary conditions for the free-
end boundary (x = 1) in (62), which corresponds to the classical free-end boundary condition
for beam equations when we neglect the viscoelastic damping term. On the other hand, for
the left boundary conditions, we have applied the clamped boundary conditions, i.e. v(0, t ) =
vx(0, t ) = 0. These are the essential (or geometrical) boundary conditions that correspond to
the clamped beam.
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The dimensionless partial differential equation that governs the transversal motion of a
vertical cantilevered pipe is represented by:

αvt xxxx + vxxxx +
(
ε2(V0 +V1 sin(Ωt ))2 +

(
ε
√
βV1Ωcos(Ωt )−γ

)
(1−x)

)
vxx

+2ε
√
β(V0 +V1 sin(Ωt ))vxt + vt t = 0,

(61)

for 0 < x < 1 and t > 0, with the boundary conditions:

v(0, t ) = vx(0, t ) = 0,

vxxx(1, t )+αvt xxx(1, t ) = vxx(1, t )+αvt xx(1, t ) = 0,
(62)

for t > 0, and with the initial conditions:

v(x,0) =φ(x),

vt (x,0) =ψ(x),
(63)

for 0 < x < 1.

For a simply supported beam, we also consider the essential boundary conditions for pinned
at both ends (65), and we obtain the initial boundary problem.

The dimensionless partial differential equation that governs the transversal motion of a
simply supported horizontal pipe is represented by:

εαvt xxxx +µvxxxx +
(
ε2(V0 +V1 sin(ωt ))2 −1

)
vxx

+2ε
√
β(V0 +V1 sin(ωt ))vxt + vt t +ε

√
βV1ωcos(ωt )vx +γ= 0,

(64)

for 0 < x < 1, t > 0, and ε¿ 1, with the initial and boundary conditions:

v(0, t ) = vxx(0, t ) = 0,

v(1, t ) = vxx(1, t ) = 0,
(65)

for t > 0, and with the initial conditions:

v(x,0) =φ(x),

vt (x,0) =ψ(x),
(66)

for 0 < x < 1.
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4 Perturbation Analysis

In this study, we will focus on solving a horizontal simply supported pipe governed by the equa-
tion (64) and with the initial-boundary conditions (65) and (66). In order to solve the Eq. (64),
the naïve perturbation expansion will be applied. Therefore, we assume that the solution is in
the form

v(x, t ) = v0(x, t )+εv1(x, t )+O (ε2). (67)

O (1) Equation

By substituting (67) into (64), we obtain the O (1) problem

O (1) : µ∂4
x v0 −∂2

x v0 +∂2
t v0 +γ= 0, (68)

with the initial and boundary conditions:

BC’s: v(0, t ) = ∂2
x v0(0, t ) = 0, v(1, t ) = ∂2

x v0(1, t ) = 0,
IC’s: v0(x,0) =φ(x), ∂t v0(x,0) =ψ(x),

(69)

for 0 < x < 1. Where the Eq. (68) is nonhomogeneous, we assume the solution to be in the form

v(x, t ) = u(x, t )+U (x), (70)

with the boundary and initial conditions:

BC’s: u(0, t )+U (0) = ∂2
xu(0, t )+U (0) = 0, u(1, t )+U (1) = ∂2

xu(1, t )+U (1) = 0,
IC’s: u(x,0)+U (x) =φ(x), ∂t u(x,0) =ψ(x).

(71)

Thus, if U (x) is the solution of the problem,

µU ′′′′−U ′′+γ= 0,

U (0) =U (1) =U ′′(0) =U ′′(1) = 0,
(72)

then u(x, t ) must satisfy

µ∂4
xu −∂2

xu +∂2
t u = 0,

BC’s: u(0, t ) = ∂2
xu(0, t ) = 0, u(1, t ) = ∂2

xu(1, t ) = 0,

IC’s: u(x,0) =φ(x)−U (x), ∂t u(x,0) =ψ(x).

(73)

Now, in order to solve Eq. (72), we introduce a variable ξ(x) :=U ′′(x), the homogeneous equa-
tion can be written as

µξ′′−ξ= 0. (74)
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And if we assume the solution in the form ξ(x) = ekx , we can obtain(
k2 −1/µ

)
ekx = 0 ⇐⇒ k =±√

1/µ⇒ ξ(x) = c1e
√

1/µx + c2e−√
1/µx . (75)

From (75), we can write the nonhomogeneous solution as

U ′′(x) = c1e
√

1/µx + c2e−√
1/µx + γ

µ
. (76)

And by integrating this expression twice, we obtain

U (x) = c1µe
√

1/µx + c2µe−√
1/µx + γ

2µ
x2 + c3x + c4 (77)

and from the boundary conditions in Eq. (72), we get the coefficients as

c1 =− γ

µ(e1/
p
µ+1)

, c2 =− γe1/
p
µ

µ(e1/
p
µ+1)

, c3 =− γ

2µ
, c4 = γ. (78)

From these coefficients, Eq. (77) becomes

U (x) =−γsech

(
1

2
p
µ

)
cosh

(
1−2x

2
p
µ

)
+ γ

2µ

(
x2 −x +2µ

)
. (79)

Now we assume that the solution of Eq. (73) is in the form u(x, t ) = X (x)T (t ), hence we can
write

µX ′′′′T −X ′′T +X T̈ = 0

⇒X ′′′′

X
− 1

µ

X ′′

X
+ 1

µ

T̈

T
= 0

⇒ 1

µ

T̈

T
= 1

µ

X ′′

X
− X ′′′′

X
= k.

(80)

If we first assume the spatial component be in the form X (x) = er x , we get

(
r 4 − 1

µ
r 2 +k

)
er x = 0 ⇒ r =±

√
1±√

1−4µ2k

2µ
. (81)

This leads to the following possibilities for k:

1 : k > 1

4µ2
,

2 : k = 1

4µ2
,

3.1 :
1

4µ2
> k > 0, 3.2 :

1

4µ2
> k = 0, 3.3 :

1

4µ2
> 0 > k.

(82)
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The only interval for k that leads to non-trivial solution is 3.3 : k < 0 and choosing k :=
−(nπ)4 − (nπ)2/µ leads to the solution

Xn(x) = Ãn sin(nπx). (83)

If we also define

ωn := nπ
√

1+µn2π2, (84)

we obtain the temporal component of the solution as

Tn(t ) = An sin(ωn t )+Bn cos(ωn t ). (85)

If we substitute (83) and (85) into (70), we obtain the general form of the O (1) solution as

v0(x, t ) =U (x)+
∞∑

n=1
[An sin(ωn t )+Bn cos(ωn t )]sin(nπx). (86)

O (ε) Equation

From the naïve expansion, we obtain the O (ε) Eq. as:

O (ε) : α∂4
x∂t v0 +2

√
β(V0 +V1 sin(ωt0))∂x∂t v0 +

√
βV1ωcos(ωt0)∂x v0

+µ∂4
x v1 −∂2

x v1 +∂2
t v1 = 0.

(87)

Since, (83) is odd and 2-periodic for our spatial domain, Eq. (87) must also be expanded odd
and 2-periodic in space by multiplying even terms (i.e. ∂x∂t v0 and ∂x v0) by [28]

H (x) =
∞∑

j=0

4sin
(
(2 j +1)πx

)
(2 j +1)π

=
{

1, 0 < x < 1,

−1, −1 < x < 0.
(88)
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This gives us

µ∂4
x v1 −∂2

x v1 +∂2
t v1 =

−απ4
∞∑

n=1
n4ωn sin(nπx)[An cos(ωn t )+Bn sin(ωn t )]

−4
√
βV0

∞∑
n=1

∞∑
j=0

nωn

2 j +1

[
sin

(
(2 j +1+n)πx

)+ sin
(
(2 j +1−n)πx

)]
× [An cos(ωn t )+Bn sin(ωn t )]

−2
√
βV1

∞∑
n=1

∞∑
j=0

nωn

2 j +1

[
sin

(
(2 j +1+n)πx

)+ sin
(
(2 j +1−n)πx

)]
× {An[sin((ωn +Ω)t )+ sin((ωn −Ω)t )]+Bn[cos((ωn +Ω)t )−cos((ωn −Ω)t )]}

−
√
βV1

∞∑
n=1

∞∑
j=0

n

2 j +1

[
sin

(
(2 j +1+n)πx

)+ sin
(
(2 j +1−n)πx

)]
× {An[sin((ωn +Ω)t )+ sin((ωn −Ω)t )]+Bn[cos((ωn +Ω)t )+cos((ωn −Ω)t )]}

+ 4

π

√
βV1Ωcos(Ωt )

∞∑
j=0

1

2 j +1
sin

(
(2 j +1)πx

)
∂xU .

(89)

However, the expression obtained from the naïve expansion leads to secular terms. Therefore,
a multiple time scales approach will be used to obtain an approximation of the solution which
is O (ε) accurate for t ∼O

(1
ε

)
, and ε→ 0.

4.1 Method of Multiple Scales

In order to avoid the secular terms in v1, we introduce a two-time-scales perturbation methods.
Therefore, we introduce the variables

t0 = t and t1 = εt . (90)

As a consequence of these time variables, the first and second order time derivatives become

d

d t
→ d t0

d t

∂

∂t0
+ d t1

d t

∂

∂t1
= ∂t0 +ε∂t1 and

d 2

d t 2
→ ∂2

t0
+2ε∂t0∂t1 +ε2∂2

t1
. (91)

If we substitute Eq. (91) into Eq. (87), we obtain the O (1) and O (ε) equations as

O (1) : µ∂4
x v0 −∂2

x v0 +∂2
t0

v0 +γ= 0, (92)

O (ε) : α∂4
x∂t0 v0 +2

√
β(V0 +V1 sin(Ωt0))∂x∂t0 v0 +

√
βV1Ωcos(Ωt0)∂x v0

+2∂t0∂t1 v0 +µ∂4
x v1 −∂2

x v1 +∂2
t0

v1 = 0.
(93)

We know from Eq. (86) that the Eq. (92) has the solution in the form

v0(x, t0, t1) =U (x)+
∞∑

n=1
[An(t1)sin(ωn t0)+Bn(t1)cos(ωn t0)]sin(nπx). (94)
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By substituting Eq. (94) into Eq. (93), the O (ε) equation is obtained in the form

Lv1 =µ∂4
x v1 −∂2

x v1 +∂2
t0

v1 = f , (95)

with f representing the RHS terms occurring from (93). We assume that v1 =∑∞
k=1 uk (t0, t1)φk (x),

with φk (x) = sin(kπx) as obtained in Eq. (83). Thus, Eq. (95) can be written as

Lv1 =
∞∑

k=1

(
µukφ

′′′′
k −ukφ

′′
k +∂2

t0
ukφk

)= f . (96)

We multiply both sides of (96) by the eigenfunction φk and integrate over the spatial domain,
such as

∫ 1
0 (Lv1)φk d x = ∫ 1

0 f φk d x, and that leads to:

∂2
t0

uk +ω2
k uk

=−απ4k4ωk [Ak cos(ωk t0)−Bk sin(ωk t0)]−2ωk
[

Ȧk cos(ωk t0)− Ḃk sin(ωk t0)
]

− ∑∗
n

√
βV1

2kn

n2 −k2

{
(Ω+2ωn)[An sin((ωn +Ω)t0)+Bn cos((ωn +Ω)t0)]

+ (Ω−2ωn)[An sin((ωn −Ω)t0)+Bn cos((ωn −Ω)t0)]
}

− 8

π

√
βV1Ωcos(Ωt0)

∞∑
j=0

1

2 j +1

∫ 1

0
(∂xU )sin

(
(2 j +1)πx

)
sin(kπx)d x,

(97)

where
∑∗

n :=∑
2 j+1+n=k +

∑
2 j+1−n=k −

∑
2 j+1−n=−k for n +k is odd, and zero otherwise. For sim-

plicity, we define Ck :=∑∞
j=0

1
2 j+1

∫ 1
0 U ′(x)sin

(
(2 j +1)πx

)
sin(kπx)d x, where

∫ 1

0
U ′ sin

(
(2 j +1)πx

)
sin(kπx)d x

=
4γk

µ2π4(2 j+1−k)2(2 j+1+k)2−[
1+(2 j+1−k)2µπ2

][
1+(2 j+1+k)2µπ2

]
µπ2(2 j+1−k)2(2 j+1+k)2

[
1+(2 j+1−k)2µπ2

][
1+(2 j+1+k)2µπ2

] , if k is even,

0, if k is odd.

(98)

It is observed that Ck is a constant and nonzero only for k is even. Exact calculation of the
coefficient CK is not in the scope of this study, however, the convergence of Ck is proven in
Appendix A. Hence Eq. (97) can be written as

∂2
t0

uk +ω2
k uk

=−απ4k4ωk [Ak cos(ωk t0)−Bk sin(ωk t0)]−2ωk
[

Ȧk cos(ωk t0)− Ḃk sin(ωk t0)
]

− ∑∗
n

√
βV1

2kn

n2 −k2

{
(Ω+2ωn)[An sin((ωn +Ω)t0)+Bn cos((ωn +Ω)t0)]

+ (Ω−2ωn)[An sin((ωn −Ω)t0)+Bn cos((ωn −Ω)t0)]
}

− 8

π

√
βV1ΩCk cos(Ωt0).

(99)
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4.2 Resonant Cases

In this section, we will determine and study the cases where different values of fluid pulsation
frequencies (Ω) lead to secular terms in the solution.

It can be observed that sin(ωk t0) and cos(ωk t0) are in the kernel of ∂2
t0

uk +ω2
k uk = 0, thus

the existence of these terms in the RHS of Eq. (99) will lead to secular terms in the solution
uk . In order to avoid the secular terms, the coefficients Ak (t1) and Bk (t1) need to be chosen to
eliminate these terms.

From Eq. (99) it can be seen that the excitation frequencies Ω, that leads to resonance are
ωK , ωK −ωN and ωK +ωN . These frequencies are called primary resonance frequencies. Where
the natural frequencies are defined as in (84), given primary resonant frequencies may coincide
for critical parameter values µ. These special resonant cases are presented in Table 1.

Ω ωK ωK −ωN ωK +ωN

ωK̃ Case-1 Case-2
ωK̃ −ωÑ Case-3 Case-4
ωK̃ +ωÑ Case-5

Table 1: Special cases where different resonant frequencies coincide

By considering primary resonance frequencies and coincided resonance frequencies, the cases
studied in this section are presented in Figure 5

Ω

Non-Resonant 4.3 Resonant

Primary Resonant
Frequencies 4.4

Ω'ωK

Ω'ωK −ωN

Ω'ωK +ωN

Resonance Coincidence 4.5
Ω'ωK −ωN =ωK̃
Ω'ωK +ωN =ωK̃
Ω'ωK −ωN =ωK̃ −ωÑ
Ω'ωK −ωN =ωK̃ +ωÑ
Ω'ωK +ωN =ωK̃ +ωÑ

Figure 5: Different resonant cases occuring due to excitation frequencyΩ
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4.3 The CaseΩ Being Non-Resonant

Before studying resonant frequenciesΩ, we will examine the scenario whereΩ does not lead to
resonances. WhenΩ is not in an order ε neighborhood of ωK or ωK ±ωN with K +N is odd, Eq.
(99) becomes

∂2
t0

uk +ω2
k uk =−απ4k4ωk [Ak cos(ωk t0)−Bk sin(ωk t0)]

−2ωk
[

Ȧk cos(ωk t0)− Ḃk sin(ωk t0)
]+n.r.t..

(100)

where "n.r.t." stands for non-resonant terms. In this case, the secular terms in uk (t0, t1) can be
avoided if

Ȧk +
απ4k4

2
Ak = 0 and Ḃk +

απ4k4

2
Bk = 0 (101)

holds. Thus Ak (t1) and Bk (t1) must satisfy

Ak (t1) = Ak (0)e−απ4k4

2 t1 and Bk (t1) = Bk (0)e−απ4k4

2 t1 . (102)

Hence, it is observed that the solution, Eq. (94), converges to the steady state solution U (x) as
t →∞.

4.4 Primary Resonant Cases

For various values of Ω, internal resonances can be observed in Eq. (99). This phenomenon
occurs when the frequency in the right-hand side of Eq. (99) matches a natural frequency ωK .
The frequencies at which fluid fluctuationΩ can lead to internal resonances are order ε neigh-
bourhood of ωK or ωK ±ωN , where K and N are arbitrary integers satisfying the condition that
K +N is odd (due to the indexing of

∑∗
n). In this section, we will study these primary resonance

frequencies, without and with a small detuning εϕ.

4.4.1 The CaseΩ'ωK

The first primary resonant case arises whenΩ'ωK . In this section, the fluid frequencyΩ=ωK

andΩ=ωK +εϕ will be studied.

4.4.1.1 The Pure Resonance CaseΩ=ωK

One can easily see that Ω=ωK causes resonance in the Eq. (99) for the index value k = K with
K even (see Eq. (98)), and by separating the terms that give rise to secular terms in uK (t0, t1),
Eq. (99) becomes

∂2
t0

uK +ω2
K uK =−απ4K 4ωK [AK cos(ωK t0)−BK sin(ωK t0)]

−2ωK
[

ȦK cos(ωK t0)− ḂK sin(ωK t0)
]

− 8

π

√
βV1ωK CK cos(ωK t0)+n.r.t. .

(103)
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In this case, the secular terms can be prevented if

ȦK + απ4K 4

2
AK + 4

π

√
βV1CK = 0, and ḂK + απ4K 4

2
BK = 0. (104)

Therefore, AK (t1) and BK (t1) must satisfy

AK (t1) = AK (0)e−απ4K 4

2 t1 − 4

π

√
βV1CK and BK (t1) = BK (0)e−απ4K 4

2 t1 . (105)

As time approaches infinity, we note that AK converges to − 4
π

√
βV1CK while BK tends towards

zero. Consequently, instead of decaying to the steady solution U (x), Eq. (94)evolves towards a
solution that exhibits oscillations around U (x).

4.4.1.2 The CaseΩ=ωK +εϕ
In practical applications, fluid velocity fluctuations often deviate from their natural frequency.
To account for this deviation, we will investigate the resonant scenario with a slight detuning
parameter εϕ.

∂2
t0

uK +ω2
K uK =−απ4K 4ωK [AK cos(ωK t0)−BK sin(ωK t0)]

−2ωK
[

ȦK cos(ωK t0)− ḂK sin(ωK t0)
]

− 8

π

√
βV1ΩCK cos

(
ωK t0 +ϕt1

)+n.t.r..

(106)

From the relation cos
(
ωK t0 +ϕt1

)= cos(ωK t0)cos
(
ϕt1

)− sin(ωK t0)sin
(
ϕt1

)
, Eq. (106) becomes

∂2
t0

uK +ω2
K uK =cos(ωK t0)

[
−απ4K 4ωK AK −2ωK ȦK − 8

π

√
βV1ΩCK cos

(
ϕt1

)]
+sin(ωK t0)

[
απ4K 4ωK BK +2ωK ḂK + 8

π

√
βV1ΩCK sin

(
ϕt1

)]
+n.t.r..

(107)

For the sake of simplicity, let us introduce the parameters:

a := απ4K 4

2
, c := 4

π

√
βV1CK . (108)

After employing this new notation and considering the orthogonality of sine and cosine func-
tions, the equations that AK (t1) and BK (t1) must satisfy in order to avoid secular terms can be
derived as

ȦK =−a AK − c cos
(
ϕt1

)
,

ḂK =−aBK − c sin
(
ϕt1

)
.

(109)

By using method of integrating factor, one can solve the Eq. (109) as

AK (t1) =− c

a2 +ϕ2

(
a cos

(
ϕt1

)+ϕsin
(
ϕt1

))+(
AK (0)+ ac

a2 +ϕ2

)
e−at1 ,

BK (t1) =− c

a2 +ϕ2

(
a sin

(
ϕt1

)−ϕcos
(
ϕt1

))+(
BK (0)− ϕc

a2 +ϕ2

)
e−at1 .

(110)
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For the detuned case, as time progress, the exponential terms dissipate, leaving both AK and
BK to exhibit oscillations in t1. This leads, Eq. (94) to transition into a solution that oscillates
around steady hanging position U (x) with a slow phase shift.

4.4.2 The CaseΩ'ωK −ωN

As the second primary resonant case, in this section, we will study the fluid velocity fluctuation
frequencyΩ=ωK −ωN andΩ=ωK −ωN +εϕ.

4.4.2.1 The Pure Resonance CaseΩ=ωK −ωN

In this case, where the fluid velocity fluctuation is equal to difference of two natural frequencies,
the terms that lead to secular terms in uk (t0, t1) are

∂2
t0

uK +ω2
K uK =−απ4K 4ωK [AK cos(ωK t0)−BK sin(ωK t0)]

−2ωK
[

ȦK cos(ωK t0)− ḂK sin(ωK t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )[AN sin(ωK t0)+BN cos(ωK t0)]+n.r.t.,

(111a)

∂2
t0

uN +ω2
N uN =−απ4N 4ωN [AN cos(ωN t0)−BN sin(ωN t0)]

−2ωN
[

ȦN cos(ωN t0)− ḂN sin(ωN t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )[AK sin(ωN t0)+BK cos(ωN t0)]+n.r.t..

(111b)

The terms that lead to resonance can be rewritten as

∂2
t0

uK +ω2
K uK =cos(ωK t0)

[
−απ4K 4ωK AK −2ωK ȦK −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )BN

]
+sin(ωK t0)

[
απ4K 4ωK BK +2ωK ḂK −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )AN

]
+n.r.t.,

(112a)

∂2
t0

uN +ω2
N uN =cos(ωN t0)

[
−απ4N 4ωN AN −2ωN ȦN −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )BK

]
+sin(ωN t0)

[
απ4N 4ωN BN +2ωN ḂN −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )AK

]
+n.r.t..

(112b)
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In order to avoid secular terms in uk (t0, t1) and uN (t0, t1), the coefficients AK (t1), BK (t1), AN (t1)
and BN (t1) must satisfy

ȦK =− απ4K 4

2
AK −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
BN ,

ḂK =− απ4K 4

2
BK +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
AN ,

ȦN =− απ4N 4

2
AN −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
BK ,

ḂN =− απ4N 4

2
BN +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
AK .

(113)

We define the parameters:

a := απ4K 4

2
, b := απ4N 4

2
,

p :=
√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
, q :=

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

) (114)

for simplicity, and rewrite Eq. (113)
ȦK

ḂK

ȦN

ḂN

=


−a 0 0 −p
0 −a p 0
0 −q −b 0
q 0 0 −b




AK

BK

AN

BN

 (115)

or equivalently, (
ȦK

ḂN

)
=

(−a −p
q −b

)(
AK

BN

)
,

(
ḂK

ȦN

)
=

(
p −a
−b −q

)(
BK

AN

)
. (116)

The systems in Eq. (116) have identical characteristic polynomials, and they are stable if

tr

(−a −p
q −b

)
=−(a +b) =−απ

4(K 4 +N 4)

2
< 0,

det

(−a −p
q −b

)
= ab +pq = α4π8K 4N 4

4
+βV 2

1
K 2N 2

(N 2 −K 2)2

(ωK +ωN )2

ωKωN
> 0.

(117)

It can be observed that for α> 0, or equivalently assuming that viscoelastic damping effects are
present in the system, stability of the given system is guaranteed. And the eigenvalues can be
written as

λ1,2 =−a +b

2
±

√
(a −b)2 −4pq

2
. (118)

Hence, forΩ=ωK −ωN , the pipe system gradually approaches the equilibrium state over time.
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4.4.2.2 The Detuned Resonance CaseΩ=ωK −ωN +εϕ
Now we study the case where fluid excitation deviates from difference of two natural frequen-
cies by a detuning parameter εϕ. IfΩ=ωK −ωN +εϕ, Eq. (99) can be written as

∂2
t0

uK +ω2
K uK

=−απ4K 4ωK [AK cos(ωK t0)−BK sin(ωK t0)]

−2ωK
[

ȦK cos(ωK t0)− ḂK sin(ωK t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )

{
AN

[
sin(ωK t0)cos

(
ϕt1

)+cos(ωK t0)sin
(
ϕt1

)]
+BN

[
sin(ωK t0)cos

(
ϕt1

)+cos(ωK t0)sin
(
ϕt1

)]}
+n.r.t.,

(119a)

∂2
t0

uN +ω2
N uN

=−απ4N 4ωN [AN cos(ωN t0)−BN sin(ωN t0)]

−2ωN
[

ȦN cos(ωN t0)− ḂN sin(ωN t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )

{
AK

[
sin(ωN t0)cos

(
ϕt1

)−cos(ωN t0)sin
(
ϕt1

)]
+BK

[
cos(ωN t0)cos

(
ϕt1

)+ sin(ωN t0)sin
(
ϕt1

)]}
+n.r.t..

(119b)

By rearranging the above equations (119), we obtain

∂2
t0

uK +ω2
K uK

= cos(ωK t0)

{
−απ4K 4ωK AK −2ωK ȦK −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )

[
AN sin

(
ϕt1

)+BN cos
(
ϕt1

)]}
+ sin(ωK t0)

{
απ4K 4ωK BK +2ωK ḂK −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )

[
AN cos

(
ϕt1

)−BN sin
(
ϕt1

)]}
+n.r.t.,

(120a)

∂2
t0

uN +ω2
N uN

= cos(ωN t0)

{
−απ4N 4ωN AN −2ωN ȦN −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )

[−AK sin
(
ϕt1

)+BK cos
(
ϕt1

)]}
+ sin(ωN t0)

{
απ4N 4ωN BN +2ωN ḂN −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )

[
AK cos

(
ϕt1

)+BK sin
(
ϕt1

)]}
+n.r.t..

(120b)

With the parameters defined for pure resonance case (114), we obtain the set of differential
equations that must be satisfied for uK (t0, t1) and uN (t0, t1) to avoid secular terms as
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ȦK =−a AK −p sin
(
ϕt1

)
AN −p cos

(
ϕt1

)
BN ,

ḂK =−aBK +p cos
(
ϕt1

)
AN −p sin

(
ϕt1

)
BN ,

ȦN =−b AN +q sin
(
ϕt1

)
AK −q cos

(
ϕt1

)
BK ,

ḂN =−bBN +q cos
(
ϕt1

)
AK +q sin

(
ϕt1

)
BK .

(121)

We can observe that, contrary to Eq. (115), Eq. (121) is a coupled system that cannot be reduced
to two smaller systems. The intermediate steps are presented in the Appendix B. We obtain from
the Eq. (121)

ÄK + (a +b)ȦK + (ab +pq)AK +ϕ(ḂK +aBK ) = 0,

B̈K + (a +b)ḂK + (ab +pq)BK −ϕ(ȦK +a AK ) = 0,
(122)

or

A(4)
K +2(a +b)

...
A K + (

ϕ2 + (a +b)2 +2(ab +pq)
)

ÄK

+ (
2aϕ2 +2(a +b)(ab +pq)

)
ȦK + (

ϕ2a2 + (ab +pq)2)AK = 0
(123)

which have identical characteristic polynomials. And the corresponding characteristic equa-
tion is

λ4 +2(a +b)λ3 + (
ϕ2 + (a +b)2 +2(ab +pq)

)
λ2

+ (
2aϕ2 +2(a +b)(ab +pq)

)
λ+ (

ϕ2a2 + (ab +pq)2)= 0.
(124)

From the quartic polynomial Eq. (124), the eigenvalues of Eq. (122) can be obtained as

λ1 =− (a +b)

2
+ ϕ

2
i − 1

2

√
2ϕ(a −b)i + (a −b)2 −4pq −ϕ2,

λ2 =− (a +b)

2
+ ϕ

2
i + 1

2

√
2ϕ(a −b)i + (a −b)2 −4pq −ϕ2,

λ3 =− (a +b)

2
− ϕ

2
i − 1

2

√
−2ϕ(a −b)i + (a −b)2 −4pq −ϕ2,

λ4 =− (a +b)

2
− ϕ

2
i + 1

2

√
−2ϕ(a −b)i + (a −b)2 −4pq −ϕ2.

(125)

For known parameter values, one can determine the roots and the solutions of Eq. (122)
respectively. For known AK and BK , one can calculate the AN and BN as:

AN =− 1

p

[
sin

(
ϕt1

)(
ȦK +a AK

)−cos
(
ϕt1

)(
ḂK +aBK

)]
,

BN =− 1

p

[
cos

(
ϕt1

)(
ȦK +a AK

)+ sin
(
ϕt1

)(
ḂK +aBK

)]
.

(126)
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In order to define the stability of Eq. (122) and consequently (121) for arbitrary parameter val-
ues, we study the real part of the eigenvalues obtained in (125). Where the square root of a
complex number is in the form:

z =
p

A+Bi =±
√p

A2 +B 2 + A

2
+ i

B

|B |

√p
A2 +B 2 − A

2

,

the eigenvalue with the greatest real component must satisfy the condition such that its real
part meets the following condition:

− (a +b)

2
+ 1

2

√√√√√[
(a −b)2 −ϕ2 −4pq

]2 +4ϕ2(a −b)2 + (a −b)2 −4pq −ϕ2

2
< 0.

(127)

This leads to the inequality

ϕ2(a −b)2 < (
ϕ2 +4(ab +pq)

)
(a +b)2. (128)

Where a,b, pq > 0, it is clear that ϕ2(a − b)2 < ϕ2(a + b)2 < (
ϕ2 +4(ab +pq)

)
(a + b)2, hence

the inequality (128) is true for all parameter values. Therefore, we can conclude that the case
Ω=ωK −ωN +εϕ is stable for all detuning frequencies.

4.4.3 The CaseΩ'ωK +ωN

As the third and final primary resonance frequency, we study the fluid pulsation frequency is
equal to sum of two natural frequencies.

4.4.3.1 The Pure Resonance CaseΩ=ωK +ωN

If the frequency of fluid velocity fluctuation is the sum of two natural frequencies, Eq. (99) with
resonant forcing terms can be written as

∂2
t0

uK +ω2
K uK =−απ4K 4ωK [AK cos(ωK t0)−BK sin(ωK t0)]

−2ωK
[

ȦK cos(ωK t0)− ḂK sin(ωK t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK −ωN )[−AN sin(ωK t0)+BN cos(ωK t0)]+n.r.t.,

(129a)

∂2
t0

uN +ω2
N uN =−απ4N 4ωN [AN cos(ωN t0)−BN sin(ωN t0)]

−2ωN
[

ȦN cos(ωN t0)− ḂN sin(ωN t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK −ωN )[−AK sin(ωN t0)+BK cos(ωN t0)]+n.r.t..

(129b)
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By collecting terms with sin(ωK t0) and cos(ωK t0), we obtain

∂2
t0

uK +ω2
K uK =cos(ωK t0)

[
−απ4K 4ωK AK −2ωK ȦK −

√
βV1

2K N

N 2 −K 2
(ωK −ωN )BN

]
+sin(ωK t0)

[
απ4K 4ωK BK +2ωK ḂK +

√
βV1

2K N

N 2 −K 2
(ωK −ωN )AN

]
+n.r.t.,

(130a)

∂2
t0

uN +ω2
N uN =cos(ωN t0)

[
−απ4N 4ωN AN −2ωN ȦN −

√
βV1

2K N

N 2 −K 2
(ωK −ωN )BK

]
+sin(ωN t0)

[
απ4N 4ωN BN +2ωN ḂN +

√
βV1

2K N

N 2 −K 2
(ωK −ωN )AK

]
+n.r.t..

(130b)

In order to avoid secular terms in uK (t0, t1) and uN (t0, t1), coefficients AK (t1), BK (t1), AN (t1)
and BN (t1) must satisfy

ȦK =− απ4K 4

2
AK −

√
βV1

(
K N

N 2 −K 2

)(
ωK −ωN

ωK

)
BN

ḂK =− απ4K 4

2
BK −

√
βV1

(
K N

N 2 −K 2

)(
ωK −ωN

ωK

)
AN

ȦN =− απ4N 4

2
AN −

√
βV1

(
K N

N 2 −K 2

)(
ωK −ωN

ωN

)
BK

ḂN =− απ4N 4

2
BN −

√
βV1

(
K N

N 2 −K 2

)(
ωK −ωN

ωN

)
AK

(131)

Given the parameters:

a := απ4K 4

2
, b := απ4N 4

2
,

p :=
√
βV1

(
K N

N 2 −K 2

)(
ωK −ωN

ωK

)
, q :=

√
βV1

(
K N

N 2 −K 2

)(
ωK −ωN

ωN

)
,

(132)

Eq. (131) can be expressed as:(
ȦK

ḂN

)
=

(−a −p
−q −b

)(
AK

BN

)
,

(
ȦN

ḂK

)
=

(−b −q
−p −a

)(
AN

BK

)
. (133)

The systems in Eq. (133) have identical characteristic polynomials. Their stability is determined
by the inequalities.

tr

(−a −p
−q −b

)
=−(a +b) =−απ

4(K 4 +N 4)

2
< 0,

det

(−a −p
−q −b

)
= ab −pq = α2π8K 4N 4

4
−βV 2

1
K 2N 2

(N 2 −K 2)2

(ωK −ωN )2

ωKωN
> 0.

(134)
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Thus, the stability of the coefficients AK ,BK , AN and BN is determined by

α2π8K 2N 2

4
> βV 2

1

(N 2 −K 2)2

(ωK −ωN )2

ωKωN
. (135)

The eigenvalues of the system can be represented as:

λ1,2 =−a +b

2
±

√
(a −b)2 +4pq

2
. (136)

4.4.3.2 The CaseΩ=ωK +ωN +εϕ
Now we will study the case where excitation deviates from sum of two frequencies by a detuning
parameter εϕ.

∂2
t0

uK +ω2
K uK

=−απ4K 4ωK [AK cos(ωK t0)−BK sin(ωK t0)]

−2ωK
[

ȦK cos(ωK t0)− ḂK sin(ωK t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK −ωN )

{
−AN

[
sin(ωK t0)cos

(
ϕt1

)+cos(ωK t0)sin
(
ϕt1

)]
+BN

[
sin(ωK t0)cos

(
ϕt1

)−cos(ωK t0)sin
(
ϕt1

)]}
+n.r.t.

(137a)

∂2
t0

uN +ω2
N uN

=−απ4N 4ωN [AN cos(ωN t0)−BN sin(ωN t0)]

−2ωN
[

ȦN cos(ωN t0)− ḂN sin(ωN t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK −ωN )

{
−AK

[
sin(ωN t0)cos

(
ϕt1

)+cos(ωN t0)sin
(
ϕt1

)]
+BK

[
cos(ωN t0)cos

(
ϕt1

)− sin(ωN t0)sin
(
ϕt1

)]}
+n.r.t.

(137b)
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By collecting terms with sin(ωK t0) and cos(ωK t0), we obtain

∂2
t0

uK +ω2
K uK

= cos(ωK t0)

{
−απ4K 4ωK AK −2ωK ȦK +

√
βV1

2K N

N 2 −K 2
(ωK −ωN )

[
AN sin

(
ϕt1

)−BN cos
(
ϕt1

)]}
+ sin(ωK t0)

{
απ4K 4ωK BK +2ωK ḂK +

√
βV1

2K N

N 2 −K 2
(ωK −ωN )

[
AN cos

(
ϕt1

)+BN sin
(
ϕt1

)]}
+n.r.t.,

(138a)

∂2
t0

uN +ω2
N uN

= cos(ωN t0)

{
−απ4N 4ωN AN −2ωN ȦN +

√
βV1

2K N

N 2 −K 2
(ωK −ωN )

[
AK sin

(
ϕt1

)−BK cos
(
ϕt1

)]}
+ sin(ωN t0)

{
απ4N 4ωN BN +2ωN ḂN +

√
βV1

2K N

N 2 −K 2
(ωK −ωN )

[
AK cos

(
ϕt1

)+BK sin
(
ϕt1

)]}
+n.r.t..

(138b)

With the parameters defined for the pure resonance case (132), we obtain the system of equa-
tions for coefficients AK (t1), BK (t1), AN (t1) and BN (t1) must satisfy in order to avoid secular
terms in uK (t0, t1) and uN (t0, t1),

ȦK =−a AK +p sin
(
ϕt1

)
AN −p cos

(
ϕt1

)
BN ,

ḂK =−aBK −p cos
(
ϕt1

)
AN −p sin

(
ϕt1

)
BN ,

ȦN =−b AN +q sin
(
ϕt1

)
AK −q cos

(
ϕt1

)
BK ,

ḂN =−bBN −q cos
(
ϕt1

)
AK −q sin

(
ϕt1

)
BK .

(139)

After following similar steps as presented in the Appendix B, the time independent systems for
AK and BK can be obtain from the Eq. (139) becomes

ÄK + (a +b)ȦK + (ab −pq)AK +ϕ(ḂK +aBK ) = 0,

B̈K + (a +b)ḂK + (ab −pq)BK −ϕ(ȦK +a AK ) = 0.
(140)

The corresponding characteristic equation is

λ4 +2(a +b)λ3 + (
ϕ2 + (a +b)2 +2(ab −pq)

)
λ2

+ (
2aϕ2 +2(a +b)(ab −pq)

)
λ+ (

ϕ2a2 + (ab −pq)2)= 0
(141)
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and we find the solution of Eq (141) to be

λ1 =− (a +b)

2
+ ϕ

2
i − 1

2

√
2ϕ(a −b)i + (a −b)2 +4pq −ϕ2,

λ2 =− (a +b)

2
+ ϕ

2
i + 1

2

√
2ϕ(a −b)i + (a −b)2 +4pq −ϕ2,

λ3 =− (a +b)

2
− ϕ

2
i − 1

2

√
−2ϕ(a −b)i + (a −b)2 +4pq −ϕ2,

λ4 =− (a +b)

2
− ϕ

2
i + 1

2

√
−2ϕ(a −b)i + (a −b)2 +4pq −ϕ2.

(142)

For known parameter values, one can determine the roots and the solutions of Eq. (122) respec-
tively. For known AK and BK , one can calculate the AN and BN as:

AN = 1

p

[
sin

(
ϕt1

)(
ȦK +a AK

)−cos
(
ϕt1

)(
ḂK +aBK

)]
,

BN =− 1

p

[
cos

(
ϕt1

)(
ȦK +a AK

)+ sin
(
ϕt1

)(
ḂK +aBK

)]
.

(143)

In order to define the stability of Eq. (140), we study the real part of the eigenvalues (142) and
we obtain the condition for stability as

ϕ2 > (a +b)2
(pq

ab
−1

)
(144)

or explicitly

ϕ2 > (K 4 +N 4)2

((
βV 2

1 (ωK −ωN )2

K 2N 2(N 2 −K 2)2ωKωN

)
− α2π8

4

)
. (145)

4.5 Resonance Coincidence Cases

In Sections 4.3 and 4.4, we investigated the occurrence of resonance associated with the fre-
quencies Ω = ωK , ωK −ωN and ωK +ωN , where ωn = nπ

√
1+n2π2µ and µ is the parameter

corresponding to bending stiffness.
However, for critical values ofµ, two primary resonance frequencies may coincide (see Table

1). We will investigate the given resonant frequency coincidence for the described cases in Table
1. Each case will be studied for both pure resonance and detuned resonance frequencies. Coin-
ciding resonance frequencies may also have a common frequency, e.g. Ω=ωK −ωN =ωN −ωÑ ,
and these scenarios will be discussed further in detail. The resonance coincidence cases oc-
curring for Case-1 and Case-2, Ω =ωK ±ωN =ωK̃ , where all indices are different can be found
as

Ω=ωK ±ωN =ωK̃ ⇒ω2
K +ω2

N ±2ωKωN =ω2
K̃
⇒

(
ω2

K +ω2
N −ω2

K̃

)2 = 4ω2
Kω

2
N . (146)
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Now by substitutingωn = nπ
√

1+n2π2µ for each resonant frequency with corresponding index
values and divide the whole expression byπ4, we obtain the quadratic equation inµ for arbitrary
values of K , N and K̃ as:

π4(K 2 + K̃ 2 −N 2)(K 2 − K̃ 2 +N 2)(K 2 + K̃ 2 +N 2)(K 2 − K̃ 2 −N 2)µ2

+2π2(K 6 + K̃ 6 +N 6 −K 4K̃ 2 −K 4N 2 −K 2K̃ 4 −K 2N 4 − K̃ 4N 2 − K̃ 2N 4)µ
+ (

K − K̃ +N
)(

K + K̃ +N
)(

K − K̃ −N
)(

K + K̃ −N
)= 0.

(147)

When the Case-1 occurs with a common frequency, i.e. Ω = ωK −ωN = ωN , we obtain the
expression of µ for arbitrary K and N as:

Ω=ωK −ωN =ωN ⇒ω2
K −4ω2

N = 0 ⇒µ= 4N 2 −K 2

π2
(
K 4 −4N 4

) (148)

and there exists a positive real µ value that leads to coincidence as long as 2N > K >p
2N holds

true.
The resonance coincidence cases occurring with 4 different natural frequencies are investi-

gated numerically, by searching the zero of

Case-3: Ω=ωK −ωN =ωK̃ −ωÑ ⇒ωK −ωN −ωK̃ +ωÑ = 0, (149a)

Case-4: Ω=ωK −ωN =ωK̃ +ωÑ ⇒ωK −ωN −ωK̃ −ωÑ = 0, (149b)

Case-5: Ω=ωK +ωN =ωK̃ +ωÑ ⇒ωK +ωN −ωK̃ −ωÑ = 0 (149c)

or equivalently searching the zero’s of

F1(µ) =K
√

1+µK 2π2 −N
√

1+µN 2π2 − K̃
√

1+µK̃ 2π2 + Ñ
√

1+µÑ 2π2, (150a)

F2(µ) =K
√

1+µK 2π2 −N
√

1+µN 2π2 − K̃
√

1+µK̃ 2π2 − Ñ
√

1+µÑ 2π2, (150b)

F3(µ) =K
√

1+µK 2π2 +N
√

1+µN 2π2 − K̃
√

1+µK̃ 2π2 − Ñ
√

1+µÑ 2π2 (150c)

respectively. It is observed that, a common frequency can occur only for the Case-3 and Case-
4. It is clear that for Case-5, Ω = ωK +ωN = ωK̃ +ωN implies that ωK = ωK̃ , thus, K = K̃ . The
resonance coincidence cases with a common frequency occurring for Case-3 and Case-4, Ω =
ωK −ωN =ωK̃ ±ωN , can be found as

Ω=ωK −ωN =ωN ±ωÑ ⇒ω2
K +ω2

Ñ
±2ωKωÑ = 4ω2

N ⇒
(
4ω2

N −ω2
K −ω2

Ñ

)2 = 4ω2
Kω

2
Ñ

. (151)

By substituting ωn = nπ
√

1+n2π2µ with corresponding indices, we obtain the quadratic ex-
pression for µ that satisfies the coincidence of Case-3 and Case-4 as

π4(K 2 − Ñ 2 +2N 2)(K 2 + Ñ 2 −2N 2)(K 2 − Ñ 2 −2N 2)(K 2 + Ñ 2 +2N 2)µ2

+2π2(K 2 + Ñ 2 −2N 2)(K 4 −2K 2Ñ 2 −2K 2N 2 + Ñ 4 −2Ñ 2N 2 −8N 4)µ
+ (

K − Ñ −2N
)(

K − Ñ +2N
)(

K + Ñ −2N
)(

K + Ñ +2N
)= 0.

(152)
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In this section, we will delve into the study of these special cases of primary resonance fre-
quency coincidences. A similar study can be found in [29, 30] where a number of these cases
were studied for definite modes for equations of conveyor belt problems, which are similar to
the equations that are being studied.

In Figure 6, the number of cases with respect to µ values for different resonant cases are pre-
sented for K , N , K̃ , Ñ ≤ 50. The vertical values of each horizontal interval indicate the number
of instances that primary resonance frequencies coincide for µ being in this interval.
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Figure 6: Number of µ values within the horizontal interval with for ωK −ωN =ωK̃ , for
ωK +ωN = ωK̃ , for ωK −ωN = ωK̃ −ωÑ , for ωK −ωN = ωK̃ +ωÑ and for ωK +ωN =
ωK̃ +ωÑ

It can be concluded that the instances, where ωK −ωN = ωK̃ +ωÑ , occur more frequently
for almost all µ intervals, which shows the abundance of occurrence of this special resonant
case. Additionally, it must be noted that the horizontal intervals illustrated by Figure 6 use a
logarithmic scale. This highlights that until a certain µ value, the number of instances that
leads to resonance coincidences increases expeditiously as µ decreases. However, for µ smaller
or larger than certain thresholds, we do not observe any instances of resonance coincidences.

4.5.1 Case-1: Ω'ωK −ωN =ωK̃

We begin this section by exploring a resonant scenario in which a natural frequency coincides
with the difference between two other natural frequencies. Initially, the scenario where all in-

39



dices are different will be studied. Table 2 displays some of the coincidence cases with the
respective µ values.

Table 2: Instances of coinciding frequencies: ωK −ωN =ωK̃ along with their respective µ values

Ω µ Ω µ Ω µ

ω4 −ω3 =ω2 0.010935 ω6 −ω5 =ω2 0.003376 ω8 −ω5 =ω4 0.000718
ω5 −ω2 =ω4 0.005484 ω7 −ω2 =ω6 0.002310 ω8 −ω5 =ω6 0.015623
ω5 −ω4 =ω2 0.005484 ω7 −ω6 =ω2 0.002310 ω8 −ω7 =ω2 0.001688
ω6 −ω3 =ω4 0.001992 ω8 −ω3 =ω6 0.000891 · · · · · ·

Figure 7 illustrates the relation between the number of primary resonance coincidences and
decreasing µ values. It can be observed that, as µ decreases, we observe an increasing density
of resonance frequencies concerning the higher order modes ωn .

101 102 103

10−7

10−6
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10−4
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n

µ

ωn+1 −ωn =ω2
ωn+1 −ωn =ω4
ωn+1 −ωn =ω6
ωn+1 −ωn =ω8
ωn+1 −ωn =ω10

Figure 7: Values of µ corresponding to the condition ωn+1−ωn =ωk for varying indices n and k

In Figure 8, the first 100 interactions occurring between the lower order modes, their µ val-
ues and the Ω pulsation frequency where the interactions occur are presented. At the top, the
index values K , N and K̃ are presented for each instances, i.e. values on horizontal axis. In the
second and third plots, the µ andΩ values are given, for their respective index values.
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Figure 8: Index values for the first 100 coincidence cases: ω −ω =ω and corresponding µ

and Ω values respectively.

For the first 100 instances, the µ values associated with the coincidences tend to decrease
slightly, with all being less than 0.1. However, for many instances, we do not observe significant
differences between their µ values. Similarly, excitation frequencies Ω remain relatively close.
This means that a selected fluid fluctuation frequencyΩ, for a given µ value, can potentially fall
within the order ε neighbourhood of other resonance frequencies and consequently can excite
respective other modes as well.

For the situation where all indices inΩ=ωK −ωN =ωK̃ are distinct, it’s observed that ωK >
ωN ,ωK̃ and ωN 6= ωK̃ . This translates to conditions on their indices, namely K > N , K̃ with
N 6= K̃ . Under these constraints, Eq. (99) takes the form:
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∂2
t0

uK +ω2
K uK =−απ4K 4ωK [AK cos(ωK t0)−BK sin(ωK t0)]

−2ωK
[

ȦK cos(ωK t0)− ḂK sin(ωK t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )[AN sin(ωK t0)+BN cos(ωK t0)]+n.r.t.,

(153a)

∂2
t0

uN +ω2
N uN =−απ4N 4ωN [AN cos(ωN t0)−BN sin(ωN t0)]

−2ωN
[

ȦN cos(ωN t0)− ḂN sin(ωN t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )[AK sin(ωN t0)+BK cos(ωN t0)]+n.r.t..

(153b)

∂2
t0

uK̃ +ω2
K̃

uK̃ =−απ4K̃ 4ωK̃

[
AK̃ cos

(
ωK̃ t0

)−BK̃ sin
(
ωK̃ t0

)]
−2ωK̃

[
ȦK̃ cos

(
ωK̃ t0

)− ḂK̃ sin
(
ωK̃ t0

)]
− 8

π

√
βV1ωK̃ CK̃ cos

(
ωK̃ t0

)+n.r.t..

(153c)

It can be seen that these equations are identical to the individual equations for Ω = ωK −
ωN and Ω = ωK̃ , in Section 4.4.2 and 4.4.1 respectively. In order to avoid the secular terms in
uk (t0, t1), k = K , N , K̃ , coefficients must satisfy

ȦK =− απ4K 4

2
AK −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
BN ,

ḂK =− απ4K 4

2
BK +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
AN ,

ȦN =− απ4N 4

2
AN −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
BK ,

ḂN =− απ4N 4

2
BN +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
AK .

(154a)

ȦK̃ =− απ4K̃ 4

2
AK̃ − 4

π

√
βV1CK̃ ,

ḂK̃ =− απ4K̃ 4

2
BK̃ .

(154b)

Hence the solution of the equations will be identical to the individual systems (104) and
(113). Similarly, the detuned case leads to systems (109) and (121) with corresponding index
values.

4.5.1.1 The Pure Resonance of Case-1 With a Common Frequency: Ω=ωK −ωN =ωN

A further special case occurs when the coinciding frequencies have a common natural fre-
quency. In our case, the only possibility is that N = K̃ , thus Ω = ωK −ωN = ωN . Some of the
associated coinciding frequencies and the µ values for the coincidence are presented in Table
3.
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Table 3: Instances of coinciding frequencies: ωK −ωN =ωN along with their respective µ values

Ω µ Ω µ Ω µ

ω3 −ω2 =ω2 0.041720 ω13 −ω8 =ω8 0.000724 ω17 −ω12 =ω12 0.050397
ω7 −ω4 =ω4 0.001104 ω15 −ω8 =ω8 0.000092 ω19 −ω10 =ω10 0.000044
ω9 −ω6 =ω6 0.004636 ω15 −ω10 =ω10 0.001669 ω19 −ω12 =ω12 0.000460
ω11 −ω6 =ω6 0.000246 ω17 −ω10 =ω10 0.000258 · · · · · ·

With theΩ considered, resonant terms in Eq. (99) can be written as

∂2
t0

uK +ω2
K uK =−απ4K 4ωK [AK cos(ωK t0)−BK sin(ωK t0)]

−2ωK
[

ȦK cos(ωK t0)− ḂK sin(ωK t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )[AN sin(ωK t0)+BN cos(ωK t0)]+n.r.t.,

(155a)

∂2
t0

uN +ω2
N uN =−απ4N 4ωN [AN cos(ωN t0)−BN sin(ωN t0)]

−2ωN
[

ȦN cos(ωN t0)− ḂN sin(ωN t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )[AK sin(ωN t0)+BK cos(ωN t0)]

− 8

π

√
βV1ωNCN +n.r.t.

(155b)

Rearranging (155) results in

∂2
t0

uK +ω2
K uK

= cos(ωK t0)

[
−απ4K 4ωK AK −2ωK ȦK −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )BN

]
+ sin(ωK t0)

[
απ4K 4ωK BK +2ωK ḂK −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )AN

]
+n.r.t.,

(156a)

∂2
t0

uN +ω2
N uN

= cos(ωN t0)

[
−απ4N 4ωN AN −2ωN ȦN −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )BK − 8

π

√
βV1ωNCN

]
+ sin(ωN t0)

[
απ4N 4ωN BN +2ωN ḂN −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )AK

]
+n.r.t..

(156b)

In order to avoid secular terms in uK (t0, t1) and uN (t0, t1), coefficients AK (t1), BK (t1), AN (t1)
and BN (t1) must satisfy
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ȦK =− απ4K 4

2
AK −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
BN ,

ḂK =− απ4K 4

2
BK +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
AN ,

ȦN =− απ4N 4

2
AN −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
BK − 4

π

√
βV1CN ,

ḂN =− απ4N 4

2
BN +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
AK ,

(157)

From the intermediate variables defined in (108) (with the index N ) and (114), we rewrite Eq.
(157) as (

ȦK

ḂN

)
=

(−a −p
q −b

)(
AK

BN

)
,

(
ȦN

ḂK

)
=

(−b −q
p −a

)(
AN

BK

)
−

(
c
0

)
. (158)

The equilibrium of the Eq. (158) is AK = BN = 0, AN =− ac
ab+pq , BK =− pc

ab+pq and the stability of
the system is identical to the system 116, so is stable.

4.5.2 Case-2: Ω'ωK +ωN =ωK̃

Now, we study the case where the sum of two natural frequencies is equal to a natural frequency.
It is observed that Case-2 is only possible if K > K̃ > N , by considering K > N to avoid repeating
the scenarios considered. Since all the indices are different, the solution of pure resonance and
detuned resonance are identical to systems Ω = ωK +ωN (131) and Ω = ωK̃ (104) and can be
solved respectively. Thus we will not further study this case.

Furthermore, occurrences of Case-2 with the corresponding µ values are presented in the
Table 4

Table 4: Instances of coinciding frequencies: ωK +ωN =ωK̃ along with their respective µ values

Ω µ Ω µ Ω µ

ω3 +ω2 =ω4 0.010935 ω5 +ω4 =ω8 0.000718 ω6 +ω5 =ω9 0.001438
ω4 +ω3 =ω6 0.001992 ω6 +ω3 =ω7 0.010140 ω6 +ω5 =ω10 0.000340
ω5 +ω2 =ω6 0.003376 ω6 +ω3 =ω8 0.000891 ω7 +ω2 =ω8 0.001688
ω5 +ω4 =ω7 0.004570 ω6 +ω5 =ω8 0.015623 · · · · · ·

In order to provide a general view on the interacted modes, µ values and Ω frequencies are
presented in Figure 9 for the first 100 interactions in terms of index values.
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Figure 9: Index values for the first 100 coincidence cases: ω +ω =ω and corresponding µ

and Ω values respectively.

It can be observed that, as interacted mode numbers increase, the corresponding µ values
tend to decrease. On the other hand we do not observe drastic changes for excitation frequency
Ω.

4.5.3 Case-3: Ω'ωK −ωN =ωK̃ −ωÑ

We will now examine the scenario where the difference of two natural frequencies coincides for
a specific parameter value µ. There are two possibilities for this coincidence. First, all index val-
ues are distinct, i.e.,Ω=ωK −ωN =ωK̃ −ωÑ . Alternatively, the subtractions involve a common
frequency. In this case, it takes the form Ω=ωK −ωN =ωK̃ −ωK , as the only possibility. These
two situations yield different physical outcomes, and we will explore these distinctions in the
subsequent sections. Table 5 provides some occurrences of Case-3 for different index values.

45



Ω µ Ω µ Ω µ

ω8 −ω5 =ω6 −ω1 0.005733 ω10 −ω7 =ω6 −ω1 0.001368 ω11 −ω6 =ω9 −ω2 0.002055
ω9 −ω4 =ω8 −ω1 0.010323 ω10 −ω9 =ω4 −ω1 0.005471 ω11 −ω8 =ω6 −ω1 0.000939
ω9 −ω8 =ω4 −ω1 0.010323 ω11 −ω4 =ω10 −ω1 0.003627 ω11 −ω8 =ω7 −ω2 0.001413
ω10 −ω5 =ω8 −ω1 0.001844 ω11 −ω6 =ω8 −ω1 0.000939 · · · · · ·

Table 5: Instances of coinciding frequencies: ωK −ωN =ωK̃ −ωÑ along with their respective µ
values

In Figure 10, interactions for Case-3 with all possible index values for the first 100 coinci-
dences are presented.
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Figure 10: Index values for the first 100 coincidence cases: ω −ω =ω −ω and corresponding
µ and Ω values respectively.

For the scenario where all indices are distinct from each other, similarly we obtain two dis-
tinct 4 dimensional systems of (113) with respective indices. As we learned in Section 4.4.2,
both systems are unconditionally stable.
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4.5.3.1 The Pure Resonance of Case-3 With a Common Frequency: Ω = ωK −ωN = ωK̃ −ωK

We now consider the case where both resonance frequencies have a common natural frequency.
It can be observed that, this is only possible if Ñ = K , hence, Ω = ωK −ωN = ωK̃ −ωK . Table
6 presents some instances where such coincidences occur for special µ values. With defined

Table 6: Instances of coinciding frequencies: ωK −ωN = ωK̃ −ωK along with their respective µ
values

Ω µ Ω µ Ω µ

ω9 −ω6 =ω6 −ω1 0.002303 ω14 −ω9 =ω9 −ω2 0.000404 ω16 −ω11 =ω11 −ω4 0.000382
ω10 −ω7 =ω7 −ω2 0.002729 ω15 −ω10 =ω10 −ω1 0.001122 ω17 −ω10 =ω10 −ω1 0.000160
ω11 −ω8 =ω8 −ω3 0.004826 ω15 −ω10 =ω10 −ω3 0.000389 ω17 −ω12 =ω12 −ω1 0.012271
ω13 −ω8 =ω8 −ω1 0.000431 ω16 −ω11 =ω11 −ω2 0.001287 · · · · · ·

excitation frequencyΩ=ωK −ωN =ωK̃ −ωK , resonant terms in Eq. (99) can be written as

∂2
t0

uK +ω2
K uK =−απ4K 4ωK [AK cos(ωK t0)−BK sin(ωK t0)]

−2ωK
[

ȦK cos(ωK t0)− ḂK sin(ωK t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )[AN sin(ωK t0)+BN cos(ωK t0)]

−
√
βV1

2K K̃

K̃ 2 −K 2
(ωK +ωK̃ )

[
AK̃ sin(ωK t0)+BK̃ cos(ωK t0)

]+n.r.t.,

(159a)

∂2
t0

uN +ω2
N uN =−απ4N 4ωN [AN cos(ωN t0)−BN sin(ωN t0)]

−2ωN
[

ȦN cos(ωN t0)− ḂN sin(ωN t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )[AK sin(ωN t0)+BK cos(ωN t0)]+n.r.t.,

(159b)

∂2
t0

uK̃ +ω2
K̃

uK̃ =−απ4K̃ 4ωK̃

[
AK̃ cos

(
ωK̃ t0

)−BK̃ sin
(
ωK̃ t0

)]
−2ωK̃

[
A′

K̃
cos

(
ωK̃ t0

)−B ′
K̃

sin
(
ωK̃ t0

)]
+

√
βV1

2K K̃

K̃ 2 −K 2
(ωK +ωK̃ )

[
AK sin

(
ωK̃ t0

)+BK cos
(
ωK̃ t0

)]+n.r.t..

(159c)

The terms that leads to resonance can be rewritten as

47



ȦK =− απ4K 4

2
AK −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
BN +

√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK +ωK̃

ωK

)
BK̃ ,

ḂK =− απ4K 4

2
BK +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
AN −

√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK +ωK̃

ωK

)
AK̃ ,

ȦN =− απ4N 4

2
AN −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
BK ,

ḂN =− απ4N 4

2
BN +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
AK ,

ȦK̃ =− απ4K̃ 4

2
AK̃ +

√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK +ωK̃

ωK̃

)
BK ,

ḂK̃ =− απ4K̃ 4

2
BK̃ −

√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK +ωK̃

ωK̃

)
AK .

(160)

If we introduce the intermediate parameters:

a := απ4K 4

2
, b := απ4N 4

2
, c := απ4K̃ 4

2

p :=
√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
, q :=

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
,

s :=
√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK +ωK̃

ωK

)
, r :=

√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK +ωK̃

ωK̃

)
,

(161)

Eq. (160) becomes Ȧk

ḂK̃
ḂN

=
−a s −p
−r −c 0
q 0 −b

AK

BK̃
BN

,

 Ḃk

ȦK̃
ȦN

=
−a −s p

r −c 0
−q 0 −b

BK

AK̃
AN

. (162)

The characteristic polynomial for both system in Eq. (162) are identical and that is

r 3 + (a +b + c)r 2 + (ab +ac +bc +pq + r s)r + (abc + cpq +br s) = 0. (163)

One can define the roots of the characteristic polynomial by usin the Cardano’s formula for
given parameter values. In order to obtain a manageable explicit expression for stability of sys-
tem (162), we apply the Routh-Hurwitz criterion to the characteristic polynomial (163). For a
general, cubic polynomial d3r 3 +d2r 2 +d1r 1 +d0 = 0, Routh-Hurwitz stability criterion is satis-
fied if T0,T1,T2,T3 > 0 where

T0 = d3, T1 = d2, T2 = det

(
d2 d3

d0 d1

)
, T3 =

d2 d3 0
d0 d1 d2

0 0 d0

. (164)
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If we substitute the characteristic polynomial obtained in Eq. (163), we obtain

T0 = 1 =, T1 = a +b + c, T2 = (a +b)(b + c)(a + c)+ (a +b)pq + (a + c)r s

T3 = (abc +ar s + cpq)
[
(a +b)(b + c)(a + c)+ (a +b)pq + (b + c)r s

]
.

(165)

Parameters a, b, and c correspond to structural damping terms and are positive. Similarly, pq
and r s are positive as well. Therefore, it is evident that T0, T1, T2 and T3 are all greater than zero
for all parameter values and vibration modes. As a result, we can conclude that the coefficients
are stable for Case-1.

4.5.3.2 Detuned Case-3: Ω=ωK −ωN +εϕ=ωK̃ −ωK +εϕ
Now we study the case with a detuning. If we substituteΩ=ωK −ωN +εϕ=ωK̃ −ωK +εϕ into
the Eq. (99), we obtain

ȦK =−απ
4K 4

2
AK −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]
,

−
√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK +ωK̃

ωK

)[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]
,

ḂK =−απ
4K 4

2
BK +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]
,

−
√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK +ωK̃

ωK

)[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]
,

ȦN =−απ
4N 4

2
AN +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)[
sin

(
ϕt1

)
AK −cos

(
ϕt1

)
BK

]
,

ḂN =−απ
4N 4

2
BN +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)[
cos

(
ϕt1

)
AK + sin

(
ϕt1

)
BK

]
,

ȦK̃ =−απ
4K̃ 4

2
AK̃ +

√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK +ωK̃

ωK̃

)[
sin

(
ϕt1

)
AK +cos

(
ϕt1

)
BK

]
,

ḂK̃ =−απ
4K̃ 4

2
BK̃ −

√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK +ωK̃

ωK̃

)[
cos

(
ϕt1

)
AK − sin

(
ϕt1

)
BK

]
.

(166)

From the intermediate parameters defined fore the pure resonant case in (161), the linear sys-
tem can be obtained as

ȦK =−a AK −p
[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]− s
[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]
,

ḂK =−aBK +p
[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]− s
[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]
,

ȦN =−b AN +q
[
sin

(
ϕt1

)
AK −cos

(
ϕt1

)
BK

]
,

ḂN =−bBN +q
[
cos

(
ϕt1

)
AK + sin

(
ϕt1

)
BK

]
,

ȦK̃ =− c AK̃ + r
[
sin

(
ϕt1

)
AK +cos

(
ϕt1

)
BK

]
,

ḂK̃ =− cBK̃ − r
[
cos

(
ϕt1

)
AK − sin

(
ϕt1

)
BK

]
.

(167)
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It can be observed that the detuned case leads to a time dependent linear dynamical system.
Where the intermediate calculations are presented in the Appendix B.2, we obtain the time in-
dependent system for AK and BK as below:

...
A K =− (a +b + c)ÄK − (ab +ac +bc +pq + r s)ȦK − (abc +br s + cpq)AK

−ϕ[−(b − c)ḂK − (ab −ac +pq − r s)BK
]−ϕ2(ȦK +a AK ),

...
B K =− (a +b + c)B̈K − (ab +ac +bc +pq + r s)ḂK − (abc +br s + cpq)BK ,

−ϕ[
(b − c)ȦK + (ab −ac +pq − r s)AK

]−ϕ2(ḂK +aBK ).

(168)

The above equation leads to a sextic characteristic polynomial for its eigenvalues. Therefore we
can neither analytically solve it nor obtain a manageable Routh-Hurwitz stability criterion for
arbitrary parameter values or frequency numbers. Hence, a case with definite index values of
natural frequencies will be studied as an example.

4.5.3.3 Case-3 Example: Ω=ω6 −ω1 +εϕ=ω9 −ω6 +εϕ
As an example, we study the case where K = 6, N = 1 and K̃ = 9, which is the case that satisfies
ωK −ωN =ωK̃ −ωN with smallest indices (K +N + K̃ is the smallest). With this choice of indices
and from (84), we obtain that µ= 1

44π2 ' 0.0023028.

If we substitute µ = 1
44π2 , K = 6, N = 1 and K̃ = 9, and by introducing variables α̃ := απ4/2

and β̃ :=√
βV1 we obtain

ω1 = π3
p

5p
44

, ω6 = π24
p

5p
44

, ω9 = π45
p

5p
44

,

a = 1296α̃, b = α̃, c = 6561α̃,

p =−27β̃

140
, q =−54β̃

35
, s = 69β̃

20
, r = 46β̃

25
.

(169)

If we substitute these into Eq. (168), we obtain the characteristic equation in the form

d6λ
6 +d5λ

5 +·· ·+d1λ+d0 = 0 (170)

where the coefficients of di , i = 1, . . . ,6 with respect to α̃, β̃ and ϕ are obtained to be:

50



d6 = 1, d5 = 15716α̃, d4 = 78769990α̃2 + 81408

6125
β̃2 +2ϕ2,

d3 = 133774514820α̃3 + 663696672

6125
α̃β̃2 +18308α̃ϕ2,

d2 =72569274121665α̃4 + 881390319168

6125
α̃2β̃2 + 1656815616

37515625
β̃4

+
(
80423362α̃2 + 81408

6125
β̃2

)
ϕ2 +ϕ4,

d1 =144737539700256α̃5 + 204891216113952

6125
α̃3β̃2 + 976595116032

37515625
α̃β̃4

+
(
133620383808α̃3 + 615711456

6125
α̃β̃2

)
ϕ2 +2592α̃ϕ4,

d0 =72301961339136α̃6 + 204010489410048

6125
α̃4β̃2 + 143911309660416

37515625
α̃2β̃4

+
(
72301963018752α̃4 + 661227867648

6125
α̃2β̃2 + 1373369481

37515625
β̃4

)
ϕ2 +1679616α̃2ϕ4.

(171)

The Routh-Hurwitz stability criterion is satisfied for a sixth order system by Ti > 0, i = 0,1, . . . ,6
where Ti are defined as

T0 := d6, T1 := d5,

T2 := det

(
d5 d6

d3 d4

)
, T3 := det

d5 d6 0
d3 d4 d5

d1 d2 d3

, T4 := det


d5 d6 0 0
d3 d4 d5 d6

d1 d2 d3 d4

0 d0 d1 d2

,

T5 := det


d5 d6 0 0 0
d3 d4 d5 d6 0
d1 d2 d3 d4 d5

0 d0 d1 d2 d3

0 0 0 d0 d1

, T6 := det



d5 d6 0 0 0 0
d3 d4 d5 d6 0 0
d1 d2 d3 d4 d5 d6

0 d0 d1 d2 d3 d4

0 0 0 d0 d1 d2

0 0 0 0 0 d0

.

(172)

By substituting the coefficients obtained in (171) into (172), we obtain Ti > 0 for i = 0,1, . . . ,6.
Consequently, we can conclude that A6(t1) and B6(t1) are stable for all α, β, V1 parameters and
all small frequency deviations εϕ fromΩ=ω6 −ω1 =ω9 −ω6. This will lead from Appendix C.1
and C.2 that the other coefficients are also stable. The same procedure can be followed for other
coincidence cases, such as in table 6.

4.5.4 Case-4: Ω'ωK −ωN =ωK̃ +ωÑ

Now we study the case where a difference of natural frequencies is equal to a sum of natural
frequencies for a critical µ value. One possibility for this case is that all indices are distinct,

51



which is equivalent the systems Ω = ωK −ωN (113) and Ω = ωK̃ +ωÑ (131) individually and
will not be discussed further. A number of instances where Case-4 occurs for different modes
are presented in Table 7 and in Figure 11, first 100 instances for all possible index values, their
respective µ andΩ values are illustrated.

Table 7: Instances of coinciding frequencies: ωK −ωN =ωK̃ +ωÑ along with their respective µ
values

Ω µ Ω µ Ω µ

ω4 −ω1 =ω3 +ω2 0.039017 ω6 −ω1 =ω4 +ω3 0.004940 ω7 −ω2 =ω4 +ω3 0.002136
ω4 −ω3 =ω2 +ω1 0.039017 ω6 −ω1 =ω5 +ω2 0.009380 ω7 −ω2 =ω5 +ω4 0.021868
ω5 −ω2 =ω4 +ω1 0.016282 ω6 −ω3 =ω4 +ω1 0.004940 ω7 −ω2 =ω6 +ω1 0.006211
ω5 −ω4 =ω2 +ω1 0.016282 ω6 −ω5 =ω2 +ω1 0.009380 · · · · · ·
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Figure 11: Index values for the first 100 coincidence cases: ω −ω =ω +ω and corresponding
µ and Ω values respectively.
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4.5.4.1 The Pure Resonance of Case-4 With a Common Frequency: Ω =ωK −ωN =ωK̃ +ωN

A more special case occurs when the difference and sum of natural frequencies coincide with a
common natural frequency. Some instances leading to this coincidence case are shown in table
8. If we substituteΩ=ωK −ωN =ωK̃ +ωN into the Eq. (99) we get

Table 8: Instances of coinciding frequencies: ωK −ωN =ωK̃ +ωN along with their respective µ
values

Ω µ Ω µ Ω µ

ω5 −ω2 =ω3 +ω2 0.007420 ω7 −ω4 =ω4 +ω1 0.002595 ω8 −ω5 =ω5 +ω2 0.007494
ω6 −ω3 =ω3 +ω2 0.003537 ω7 −ω4 =ω4 +ω3 0.010286 ω9 −ω2 =ω7 +ω2 0.001467
ω6 −ω3 =ω4 +ω3 0.047544 ω8 −ω3 =ω4 +ω3 0.001250 ω9 −ω4 =ω4 +ω3 0.000834
ω7 −ω2 =ω5 +ω2 0.002758 ω8 −ω3 =ω6 +ω3 0.007738 · · · · · ·

∂2
t0

uK +ω2
K uK =−απ4K 4ωK [AK cos(ωK t0)−BK sin(ωK t0)]

−2ωK
[

ȦK cos(ωK t0)− ḂK sin(ωK t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )[AN sin(ωK t0)+BN cos(ωK t0)]+n.r.t.,

(173a)

∂2
t0

uN +ω2
N uN =−απ4N 4ωN [AN cos(ωN t0)−BN sin(ωN t0)]

−2ωN
[

ȦN cos(ωN t0)− ḂN sin(ωN t0)
]

−
√
βV1

2K N

N 2 −K 2
(ωK +ωN )[AK sin(ωN t0)+BK cos(ωN t0)]

−
√
βV1

2K̃ N

N 2 − K̃ 2
(ωK̃ −ωN )

[−AK̃ sin(ωN t0)+BK̃ cos(ωN t0)
]+n.r.t.,

(173b)

∂2
t0

uK̃ +ω2
K̃

uK̃ =−απ4K̃ 4ωK̃

[
AK̃ cos

(
ωK̃ t0

)−BK̃ sin
(
ωK̃ t0

)]
−2ωK̃

[
A′

K̃
cos

(
ωK̃ t0

)−B ′
K̃

sin
(
ωK̃ t0

)]
+

√
βV1

2K̃ N

N 2 − K̃ 2
(ωK̃ −ωN )

[
AN sin

(
ωK̃ t0

)+BN cos
(
ωK̃ t0

)]+n.r.t..

(173c)
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The terms that leads to resonance can be rewritten as

∂2
t0

uK +ω2
K uK =cos(ωK t0)

[
−απ4K 4ωK AK −2ωK ȦK −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )BN

]
+sin(ωK t0)

[
απ4K 4ωK BK +2ωK ḂK −

√
βV1

2K N

N 2 −K 2
(ωK +ωK̃ )AN

]
+n.r.t.,

(174a)

∂2
t0

uN +ω2
N uN =cos(ωN t0)

[
−απ4N 4ωN AN −2ωN ȦN −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )BK

−
√
βV1

2N K̃

N 2 − K̃ 2
(ωK̃ −ωN )BK̃

]
+sin(ωN t0)

[
απ4N 4ωN BN +2ωN ḂN −

√
βV1

2K N

N 2 −K 2
(ωK +ωN )AK

+
√
βV1

2N K̃

N 2 − K̃ 2
(ωK̃ −ωN )AK̃

]
+n.r.t.,

(174b)

∂2
t0

uK̃ +ω2
K̃

uK̃ =cos
(
ωK̃ t0

)[−απ4K̃ 4ωK̃ AK̃ −2ωK̃ ȦK̃ +
√
βV1

2K̃ N

N 2 − K̃ 2
(ωK̃ −ωN )BK

]
+sin

(
ωK̃ t0

)[
απ4K̃ 4ωK̃ BK̃ +2ωK̃ ḂK̃ +

√
βV1

2K̃ N

N 2 − K̃ 2
(ωK̃ −ωN )AK

]
+n.r.t..

(174c)

This leads to the system:

ȦK =− απ4K 4

2
AK −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
BN ,

ḂK =− απ4K 4

2
BK +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
AN ,

ȦN =− απ4N 4

2
AN −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
BK −

√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK̃ −ωK

ωK

)
BK̃ ,

ḂN =− απ4N 4

2
BN +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
AK −

√
βV1

(
K K̃

K̃ 2 −K 2

)(
ωK̃ −ωK

ωK

)
AK̃ ,

ȦK̃ =− απ4K̃ 4

2
AK̃ −

√
βV1

(
K̃ N

N 2 − K̃ 2

)(
ωK̃ −ωN

ωK̃

)
BN ,

ḂK̃ =− απ4K̃ 4

2
BK̃ −

√
βV1

(
K̃ N

N 2 − K̃ 2

)(
ωK̃ −ωN

ωK̃

)
AN .

(175)
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For simplicity, we introduce the parameters

a := απ4K 4

2
, b := απ4N 4

2
, c := απ4K̃ 4

2

p :=
√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)
, q :=

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)
,

r :=
√
βV1

(
K̃ N

K̃ 2 −N 2

)(
ωK̃ −ωN

ωK̃

)
, s :=

√
βV1

(
K̃ N

K̃ 2 −N 2

)(
ωK̃ −ωN

ωN

)
,

(176)

which leads to the linear systemsȦK

ḂK̃
ḂN

=
−a 0 p

0 −c −r
−q −s −b

AK

BK̃
BN

,

ḂK

ȦK̃
ȦN

=
−a 0 −p

0 −c −r
q −s −b

BK

AK̃
AN

. (177)

The characteristic polynomial for both system in Eq. (177) are identical and that is

λ3 + (a +b + c)λ2 + (ab +ac +bc +pq − r s)λ+ (abc −ar s + cpq) = 0. (178)

In order to obtain an explicit expression for stability of system (177), we apply the Routh-Hurwitz
criterion to the characteristic polynomial (178). For a general, cubic polynomila d3λ

3 +d2λ
2 +

d1λ
1 +d0 = 0, Routh-Hurwitz stability criterion is satisfied if T0,T1,T2,T3 > 0 where

T0 = d3, T1 = d2, T2 = det

(
d2 d3

d0 d1

)
, T3 =

d2 d3 0
d0 d1 d2

0 0 d0

. (179)

If we substitute the characteristic polynomial obtained in Eq. (178), we get

T0 = 1, T1 = a +b + c, T2 = (a +b)(b + c)(a + c)+ (a +b)pq − (b + c)r s

T3 = (abc −ar s + cpq)
[
(a +b)(b + c)(a + c)+ (a +b)pq − (b + c)r s

]
.

(180)

where a,b,c > 0, we obtain the stability conditions as:

r s < (a +b)(a + c)+ (a +b)

(b + c)
pq, r s < bc + c

a
pq. (181)

4.5.4.2 Detuned Case-4: Ω=ωK −ωN +εϕ=ωK̃ +ωÑ +εϕ
Now we study the Case-4 with a small detuning. By substitutingΩ=ωK −ωN+εϕ=ωK̃ +ωÑ+εϕ
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into Eq. (99), we obtain the system of equations:

ȦK =−απ
4K 4

2
AK −

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]
,

ḂK =−απ
4K 4

2
BK +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωK

)[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]
,

ȦN =−απ
4N 4

2
AN +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)[
sin

(
ϕt1

)
AK −cos

(
ϕt1

)
BK

]
,

+
√
βV1

(
K̃ N

N 2 − K̃ 2

)(
ωK̃ −ωN

ωN

)[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]
,

ḂN =−απ
4N 4

2
BN +

√
βV1

(
K N

N 2 −K 2

)(
ωK +ωN

ωN

)[
cos

(
ϕt1

)
AK + sin

(
ϕt1

)
BK

]
,

−
√
βV1

(
K̃ N

N 2 − K̃ 2

)(
ωK̃ −ωN

ωN

)[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]
,

ȦK̃ =−απ
4K̃ 4

2
AK̃ +

√
βV1

(
K̃ N

N 2 − K̃ 2

)(
ωK̃ −ωN

ωK̃

)[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]
,

ḂK̃ =−απ
4K̃ 4

2
BK̃ −

√
βV1

(
K̃ N

N 2 − K̃ 2

)(
ωK̃ −ωN

ωK̃

)[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]
.

(182)

with the parameters defined in (176), we obtain the time dependent linear system as

ȦK =−a AK −p
[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]
,

ḂK =−aBK +p
[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]
,

ȦN =−b AN +q
[
sin

(
ϕt1

)
AK −cos

(
ϕt1

)
BK

]+ s
[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]
,

ḂN =−bBN +q
[
cos

(
ϕt1

)
AK + sin

(
ϕt1

)
BK

]− s
[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]
,

ȦK̃ =− c AK̃ + r
[
sin

(
ϕt1

)
AK −cos

(
ϕt1

)
BK

]
,

ḂK̃ =− cBK̃ − r
[
cos

(
ϕt1

)
AK + sin

(
ϕt1

)
BK

]
.

(183)

After some manipulations similar as Appendix B.2, we obtain the time independent equations
below.

...
A K =− (a +b + c)ÄK − (ab +ac +bc +pq + r s)ȦK − (abc +br s + cpq)AK

−ϕ[−(b − c)ḂK − (ab −ac +pq − r s)BK
]−ϕ2(ȦK +a AK ),

...
B K =− (a +b + c)B̈K − (ab +ac +bc +pq + r s)ḂK − (abc +br s + cpq)BK ,

−ϕ[
(b − c)ȦK + (ab −ac +pq − r s)AK

]−ϕ2(ḂK +aBK ).

(184)

Due to the complications of solving this system, we do not further study the given case for
arbitrary resonant modes.

4.5.4.3 Case-4: Ω=ω5 −ω2 =ω3 +ω2

Due to studying Case-4 with arbitrary modes is not feasible, we study the case occurring with
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index values K = 5, N = 2 and K̃ = 3. With this choice of indices and from (84), we obtain that
µ= 13+5

p
65

728π2 ' 0.0074197. Substituting these into (176) and by introducing variables α̃ :=απ4/2

and β̃ :=√
βV1 we obtain the corresponding natural frequencies and parameter values as

ω2 = 2π

√
195+5

p
65

182
, ω3 = 3π

√
845+45

p
65

728
, ω5 = 5π

√
1053+125

p
65

728

a = 625α̃, b = 16α̃, c = 81α̃,

p = (
p

65−25)β̃

28
, q =−5(

p
65+17)β̃

56
,r = (

p
65−13)β̃

10
, s =−3(3

p
65+19)β̃

40
.

(185)

With the parameters determined, we obtain the characteristic polynomial

d6λ
6 +d5λ

5 +·· ·+d1λ+d0 = 0 (186)

where

d6 = 1, d5 = 1444α̃, d4 = 645126α̃2 + 1857−305
p

65

1225
β̃2 +2ϕ2,

d3 = 91033924α̃3 + 971379−444835
p

65

1225
α̃β̃2 +1476α̃ϕ2,

d2 =5003850241α̃4 − 151701453+181065155
p

65

1225
α̃2β̃2 + 4747537−566385

p
65

3001250
β̃4

+
(

442882α̃2 + 1857−305
p

65

1225
β̃2

)
ϕ2 +ϕ4,

d1 =100312020000α̃5 − 854715975+566242185
p

65

49
α̃3β̃2 + 15069045−1217877

p
65

12005
α̃β̃4

+
(
−40598528α̃3 + 1710129+4415

p
65

1225
α̃β̃2

)
ϕ2 +32α̃ϕ4,

d0 =656100000000α̃6 + 11967750000−7277850000
p

65

49
α̃4β̃2 + 2732882625+132753375

p
65

4802
α̃2β̃4

+
(

1676310625α̃4 − 6359400+842510
p

65

49
α̃2β̃2 + 6554081+810120

p
65

1500625
β̃4

)
ϕ2 +256α̃2ϕ4.

(187)
From the coefficients of the characteristic polynomial, we can compute the Routh-Hurwitz de-
terminants in order to determine the stability of A2 and B2. The stability of A2 and B2 leads
to the stability of the whole system from Appendix C.1 and C.2. These determinants defined in
172, and one can observe that T0, T1 and T2 are positive for a,b,c > 0 and for all other parameter
values. The remaining T3, T4, T5 and T6 correspond to algebraic plane curves in α̃ and β̃ and
ϕ is the constant parameter. In Figure 12, the plane algebraic curves Ti = 0, i = 3, . . . ,6 and the
intersection region where Ti (α̃, β̃) > 0 are presented. Note that the analytical expressions could
not be given due to the fact that, them being too lengthy to be presented in the format of thesis.
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Figure 12: T3 = 0, T4 = 0 and T5 = T6 = 0 curves in (α̃, β̃) pane. The domain where
T3,T4,T5,T6 > 0 is shown with green region.

Figure 12 shows that the intersection of regions Ti > 0, i = 0,1, . . . ,6 are equivalent to the
region defined by T5 > 0 or T6 > 0. It is also observed that for ϕ = 0 we have a single region
defining the stability of the equilibrium. The domain of stability evolves into two distinct re-
gions with nonzero detuning parameter f s. As ϕ increases the stable region surrounding the
origin expands and while the second region shifts in the positive α̃ direction.

4.5.5 Case-5: Ω'ωK +ωN =ωK̃ +ωÑ

Finally, we study the case where sum of two natural frequencies coincides with another sum
of two natural frequencies. It can be observed that this case is only possible if all the indices
K , N , K̃ , Ñ are different. As it is previously studied, this leads to two 4-dimensional decoupled
systems that can be solved by the system (131) for corresponding modes. The instances where
Case-5 is emerged are presented in Table 9 and Figure 13.
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Table 9: Instances of coinciding frequencies: ωK +ωN =ωK̃ +ωÑ along with their respective µ
values

Ω µ Ω µ Ω µ

ω8 +ω1 =ω6 +ω5 0.005733 ω11 +ω2 =ω8 +ω7 0.001413 ω12 +ω1 =ω10 +ω5 0.001001
ω10 +ω1 =ω7 +ω6 0.001368 ω11 +ω2 =ω9 +ω6 0.002055 ω12 +ω1 =ω11 +ω4 0.002653
ω10 +ω1 =ω8 +ω5 0.001844 ω12 +ω1 =ω8 +ω7 0.000603 ω12 +ω3 =ω9 +ω8 0.001618
ω10 +ω1 =ω9 +ω4 0.005471 ω12 +ω1 =ω9 +ω6 0.000696 · · · · · ·
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Figure 13: Index values for the first 100 coincidence cases: ω +ω =ω +ω and corresponding
µ and Ω values respectively.
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5 Conclusion

In this study, we explore the dynamics of pipes transporting fluid with a pulsating flow. We de-
rive the initial-boundary value problem for the linear beam equations that govern the dynamics
of pipes conveying fluid with a pulsating axial velocity, using the principles of Lagrangian me-
chanics. These equations are then studied using the multiple time scale perturbation method.
Our research is aimed to provide a comprehensive insight into modelling problems of pipes
conveying fluid and to expand the knowledge in the current literature on stability and dynam-
ical behaviour of these systems under various flow pulsation frequencies, building upon and
refining previous works in the field.

In our investigation, we assume the fluid velocity inside the pipe to be represented by V (t ) =
ε(V0 +V1 sin(Ωt )), where V0, V1,Ω, and ε are constants with |V1| < |V0| and 0 < ε¿ 1. Our anal-
ysis examines the system’s stability under various flow pulsation frequencies Ω and arbitrary
parameter values. Specifically, we evaluate whether a given pulsation frequency is close to any
resonance frequencies, and how this influences the system’s stability.

WhenΩ is not near any resonance frequencies, the pipe system remains stable. This implies
that, from an initial condition, the system reaches its steady state, resting under the influence
of gravity. However, when the excitation frequency Ω aligns with a natural frequency, a differ-
ence of two natural frequencies, or a sum of two natural frequencies, the behaviour of the pipe
system becomes more complicated. These specific frequencies are termed primary resonance
frequencies. Moreover, the system exhibits even more complicated dynamical behaviours when
two primary resonance frequencies coincide.

When Ω = ωK for K is any natural number, the equilibrium of the coefficients AK and BK

is no longer at the origin. Where BK goes to zero, AK goes to a nonzero constant. This in-
dicates that the solution v0(x, t ) approaches to an oscillatory state with constant amplitude
and frequency. In the detuned scenario where Ω = ωK + εϕ, as t1 goes to infinity, AK and BN

retain only oscillatory terms, for the slow time variable t1.This suggests that the pipe system
undergoes oscillations with a constant amplitude and slow phase shift, due to terms such as
sin(ωK t1)sin(ωK t0), around its steady hanging position. For this resonance case, no interaction
among different vibration modes occurs.

For the scenario whereΩ=ωK −ωN with K > N and K +N being odd, the vibration modes
K and N interact. As a result, instead of a 2nd order system, we encounter a 4th order system,
which is unconditional stable with the presence of viscoelasticity of the pipe structure. This
ensures that the pipe transitions to a steady state as t approaches infinity. Furthermore, when
the excitation frequency deviates from the resonance frequency, given byΩ=ωK −ωN +εϕ, the
system’s stability remains unaffected, and it remains stable.

When Ω = ωK +ωN , the modes K and N interact, resulting in a 4th order system. The sys-

tem’s stability is met when the condition α4π8

4 > βV 2
1

K 2N 2(N 2−K 2)2
(ωK +ωN )2

ωKωN
holds. Therefore, if the

viscoelasticity parameter α is not sufficiently large, the system becomes unstable. Additionally,
for the detuned situation, the pipe system is found to be stable if the following expression is

satisfiedϕ2 > (K 4+N 4)2
((

βV 2
1 (ωK −ωN )2

K 2N 2(N 2−K 2)2ωKωN

)
− α2π8

4

)
. Hence, whenα is small, the excitation fre-

quencyΩmust deviate from the resonance frequency for the system to exhibit stable behaviour.
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If the detuning parameter ϕ is not large enough, the pipe system becomes unstable.
For particular values of µ, a coincidence of primary resonance cases arises. If the coinciding

frequencies, such as Ω = ωK ±ωN = ωK̃ ±ωÑ , don’t share any common frequencies, thus all
indices are distinct, we obtain two separate systems for each primary resonance case, exhibiting
no interaction. Consequently, both systems occur simultaneously, and the solutions or stability
conditions for each are assessed independently.

We also identified unique scenarios where coinciding primary resonance frequencies share
a common natural frequency, i.e. Ω=ωK −ωN =ωN ,Ω=ωK −ωN =ωN −ωK̃ , andΩ=ωK −ωN =
ωN +ωK̃ .

For the case ofΩ=ωK −ωN =ωN , the system evolves into a 4th order system where modes K
and N interact. The equilibrium shifts from the origin and is determined to be unconditionally
stable across all modes and parameter values.

In the scenario of Ω ' ωK −ωN = ωK̃ −ωK , the system is characterized by an interaction
of modes K , N , and K̃ , giving rise to a 6-dimensional system. The size of the system leads to
complications in determining stability conditions for arbitrary resonant modes. As a specific
example, we examine the caseΩ=ω6 −ω1 +εϕ=ω9 −ω6 +εϕ and find the system to be stable
across all parameter values of α, β, and V1. Additionally, changes in the detuning parameter ϕ
do not alter the system’s stability.

In the case of Ω ' ωK −ωN = ωK̃ +ωN , we observe a system where modes K , N , and K̃
interact, forming a 6-dimensional system. Given the challenges of defining stability conditions
for such systems with arbitrary resonance modes, we examined the specific case of Ω = ω5 −
ω2+εϕ=ω3+ω2+εϕ. The stability of this system is determined within specific regions ofα and√
βV1. When the viscoelasticity parameter α is relatively much smaller than

√
βV1, the system

becomes unstable. Additionally, we discuss how the stability criterion changes with variations
in the detuning parameter associated with the fluid pulsation frequency.

In examining cases such as Ω ' ω5 −ω2 = ω3 +ω2, it becomes evident that truncating the
eigenvalue expansion after the 4th mode results in the negligence of interactions associated
with the 5th mode. Similarly, for scenarios likeΩ'ω9 −ω6 =ω6 −ω1, restricting the analysis to
only the first six modes erroneously neglects contributions from the 9th mode. Consequently,
the solutions derived for these specific conditions fail to be O (ε) accurate for the time scale
t ∼ O

(1
ε

)
. It is expected that the special resonance cases Ω=ωK −ωN =ωN −ωK̃ and Ω=ωK −

ωN =ωN +ωK̃ can be solved for other resonance modes.
Moreover, our study has discovered numerous instances where multiple modes interact due

to overlapping primary resonance frequencies, particularly for relatively small bending stiffness
parameters µ. For special resonant cases, a chosen fluid pulsation frequency Ω with a given
µ value may fall in the O (ε) neighbourhood of other coincidences of resonance frequencies.
Potentially, this can lead to the excitation of other resonant modes. Such interactions among
special resonant cases might be overlooked when using the truncation method for smaller µ
parameters.
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6 Further Research

In this paper, we focused on the linear equations of motion for a simply supported pipe con-
veying pulsating fluid flow, taking into account various parameter values and Ω pulsation fre-
quencies. From our findings, several potential paths for further exploration emerge:

Special Resonance Cases: It might be worthwhile to study conditions whether the excita-
tion frequency is equal to coincidence of three (or more) primary resonant case with common
frequencies, such as

Ω=ωK −ωN =ωN −ωM =ωM +ωL , (188a)

Ω=ωK −ωN =ωN +ωM =ωM −ωL , (188b)

Ω=ωK −ωN =ωN −ωM =ωM −ωL . (188c)

This would mean the interaction of 5 modes instead of 3 and lead to even more complicated
dynamics. Another, and more likely case is when the excitation frequency is close to other res-
onance frequencies. In particular,

Ω=ωK ±ωN =ωK̃1
±ωÑ1

+εθ1 = ·· · =ωK̃m
±ωÑm

+εθm . (189)

Such conditions could lead to more interactions within the system.
Different Boundary Conditions: Exploring other boundary conditions can be an area of

interest. For example, we can delve into cantilevered (see Eq. (62)) or mass-spring-dashpot
boundary conditions.

Incorporating Additional Physical Effects: This study centered on a horizontally placed
pipe. However, examining vertically oriented pipe systems may provide insights into simulating
real-world pipe structures used in applications (see Eq. (61)). Additionally, the current mathe-
matical model can be expanded by adding more physical parameters. One possibility is looking
into the external forces brought about by wake oscillations from cross-flow perpendicular to the
pipe. To capture the effects of vortex shedding, the simply periodic or van der Pol-type models
might be integrated.

Exploring Nonlinear Equations: A logical next step could involve studying nonlinear equa-
tions of motion. This would mean factoring in aspects like axial deflections and considering
higher-order terms when defining curvature.

Considering these topics for further study can help in deepening our understanding and
contribute to expanding the current research.
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Appendices
Appendix A

In this appendix, the convergence of

∞∑
j=0

1

2 j +1

∫ 1

0
U ′(x)sin

(
(2 j +1)πx

)
sin(kπx)d x (190)

will be proved. Substituting Eq. (98) into Eq. (190) results in

Ck =
∞∑

j=0

1

2 j +1

∫ 1

0
U ′ sin

(
(2 j +1)πx

)
sin(kπx)d x

=
∞∑

j=0
4γk

µ2π4(2 j +1−k)2(2 j +1+k)2 − (
1+ (2 j +1−k)2µπ2

)(
1+ (2 j +1+k)2µπ2

)
µπ2(2 j +1−k)2(2 j +1+k)2

(
1+ (2 j +1−k)2µπ2

)(
1+ (2 j +1+k)2µπ2

)
=

∞∑
j=0

4γkµπ2(
1+ (2 j +1−k)2µπ2

)(
1+ (2 j +1+k)2µπ2

)︸ ︷︷ ︸
=:S1

−
∞∑

j=0

4γk

µπ2(2 j +1−k)2(2 j +1+k)2︸ ︷︷ ︸
=:S2

.

(191)

Let’s focus on S1. Where 2 j +1 corresponding to odd natural numbers, we first study the series
sum with the index set as all natural numbers with k being excluded. Thus, we define the series
sum as:

S̃1 =
(

k−1∑
i=0

+
∞∑

i=k+1

)
4γkµπ2(

1+ (i −k)2µπ2
)(

1+ (i +k)2µπ2
) . (192)

We consider the series element ai as:

ai = 4γkµπ2(
1+ (i −k)2µπ2

)(
1+ (i +k)2µπ2

) . (193)

Now, we split the series S̃1 into two parts, for i < k and i > k:

S̃1 =
k−1∑
i=0

ai +
∞∑

i=k+1
ai , (194)

where the series
∑k−1

i=0 ai is a finite sum and hence bounded.
Next, we study whether if

∑∞
i=k+1 ai is bounded. To simplify the summation, we introduce

the variable n = i +k so that the series becomes:

∞∑
i=k+1

ai =
∞∑

n=1

4γkµπ2(
1+n2µπ2

)(
1+ (n +2k)2µπ2

) (195)
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and Eq. (195) can be bounded as∣∣∣∣∣ ∞∑
i=k+1

ai

∣∣∣∣∣≤ ∞∑
i=k+1

|ai | <
∞∑

n=1

4γkµπ2(
1+n2µπ2

)2 <
∞∑

n=1

4γk

µπ2n4
= 4γk

µπ2

∞∑
n=1

1

n4
= 4γk

µπ2

π4

90
= 2γkπ2

45µ
. (196)

This concludes that S̃1 is absolutely convergent. Since, the subseries of an absolutely conver-
gent series is also convergent, S1 is also convergent.

Now, we focus on S2. Similarly, we define the infinite sum on the index set of natural num-
bers with i 6= k,

S̃2 =
(

k−1∑
i=0

+
∞∑

i=k+1

)
4γk

µπ2(2 j +1−k)2(2 j +1+k)2
. (197)

We consider the series element ai with i 6= k:

bi = 4γk

µπ2(i −k)2(i +k)2
. (198)

Now, we split the series S̃1 into two parts, for i < k and i > k:

k−1∑
i=0

bi +
∞∑

i=k+1
bi , (199)

the series
∑k−1

i=0 ai is a finite sum and hence bounded. For the part
∑∞

i=k+1 ai , in order to simplify
the summation, we introduce the variable n = i +k so that the series yields to

∞∑
i=k+1

bi =
∞∑

n=1

4γk

µπ2n2(n +2k)2
. (200)

and Eq. (200) can be bounded as∣∣∣∣∣ ∞∑
i=k+1

bn

∣∣∣∣∣≤ ∞∑
i=k+1

|bn | <
∞∑

n=1

4γk

µπ2n4
<

∞∑
n=1

4γk

µπ2n4
= 4γk

µπ2

∞∑
n=1

1

n4
= 4γk

µπ2

π4

90
= 2γkπ2

45µ
. (201)

Thus, we have shown that S̃2 is absolutely convergent, which implies that S2 is also convergent.
Since both S1 and S2 are convergent, their difference Ck = S1−S2 is also convergent. There-

fore, we can conclude that Ck is a bounded constant.

Appendix B

B.1

In this appendix, the intermediate steps between of Eq. (121) and (123) will be provided. We
start from (121)

ȦK =−a AK −p sin
(
ϕt1

)
AN −p cos

(
ϕt1

)
BN ,

ḂK =−aBK +p cos
(
ϕt1

)
AN −p sin

(
ϕt1

)
BN ,

ȦN =−b AN +q sin
(
ϕt1

)
AK −q cos

(
ϕt1

)
BK ,

ḂN =−bBN +q cos
(
ϕt1

)
AK +q sin

(
ϕt1

)
BK .

(202)
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where a, b, p and q are given by (114), by differentiating the first term of (202), we obtain

ÄK =−a ȦK −p sin
(
ϕt1

)
ȦN −p cos

(
ϕt1

)
ḂN +ϕ(

p cos
(
ϕt1

)
AN +p sin

(
ϕt1

)
BN

)
=−a ȦK −ϕ(ḂK +aBK )+p sin

(
ϕt1

)[−b AN +q sin
(
ϕt1

)
AK −q cos

(
ϕt1

)
BK

]
−p cos

(
ϕt1

)[−b AN +q sin
(
ϕt1

)
AK −q cos

(
ϕt1

)
BK

]
=−a ȦK −ϕ(ḂK +aBK )−bp sin

(
ϕt1

)
(ϕt1)AN +pq sin2(ϕt1)AK

−pq sin
(
ϕt1

)
cos

(
ϕt1

)
BK +bp cos

(
ϕt1

)
BN +pq cos2(ϕt1)AK

+pq sin
(
ϕt1

)
cos

(
ϕt1

)
BK

=− (a +b)ȦK −ab AK +pq AK −ϕ(
ḂK +aBK

)
.

(203)

Similarly from the differentiation of the second term results in

B̈K =−(a +b)ḂK −abBK +pqBK +ϕ(
ȦK +a AK

)
. (204)

As it can be seen that, already two systems that are not time dependent are obtained after these
manipulations. However, if we want to elliminate the second variable BK from this system, we
can continue this procedure and differentiating the Eq. (203), resulting in

...
A K =− (a +b)ȦK − (ab +pq)ȦK −ϕ(B̈K +aḂK )

=− (a +b)ÄK − (ϕ2ab +pq)ȦK −aϕ2 AK +ϕbḂK +ϕ(ab +pq)BK .
(205)

By substituting Eq. (204) into (205) and differentiating one final time leads to

A(4)
K =− (a +b)

...
A K − (ϕ2ab +pq)ÄK −aϕ2 ȦK +ϕbB̈K +ϕ(ab +pq)ḂK . (206)

Lastly, after substituting Eq. (204) into Eq. (206), we obtain

A(4)
K +2(a +b)

...
A K + (

ϕ2 + (a +b)2 +2(ab +pq)
)

ÄK

+ (
2aϕ2 +2(a +b)(ab +pq)

)
ȦK + (

ϕ2a2 + (ab +pq)2)AK = 0.
(207)

B.2

In this appendix, the intermediate steps between the system (167) and (168) are presented.
Where we have Eq. (167) given as

ȦK =−a AK −p
[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]− s
[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]
,

ḂK =−aBK +p
[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]− s
[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]
,

ȦN =−b AN +q
[
sin

(
ϕt1

)
AK −cos

(
ϕt1

)
BK

]
,

ḂN =−bBN +q
[
cos

(
ϕt1

)
AK + sin

(
ϕt1

)
BK

]
,

ȦK̃ =− c AK̃ + r
[
sin

(
ϕt1

)
AK +cos

(
ϕt1

)
BK

]
,

ḂK̃ =− cBK̃ − r
[
cos

(
ϕt1

)
AK − sin

(
ϕt1

)
BK

]
.

(208)
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differentiating the first equation of (208) yields to

ÄK =−a ȦK −p
[
sin

(
ϕt1

)
ȦN +cos

(
ϕt1

)
ḂN

]− s
[
sin

(
ϕt1

)
ȦK̃ −cos

(
ϕt1

)
ḂK̃

]
−ϕ{

p
[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]+ s
[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]}
=−a ȦK −pq AK +pb

[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]+ cs
[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]
− r s AK −ϕ{

p
[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]+ s
[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]}
.

(209)

Similarly, B̈K can be obtained as

B̈k =−aḂK −pqBK −pb
[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]+ cs
[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]
− r s AK −ϕ{

p
[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]− s
[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]}
.

(210)

Now differentiating Eq. (209) once again and using Eq. (210) results in

...
A K =−a ÄK −pq ȦK +pb

[
sin

(
ϕt1

)
ȦN +cos

(
ϕt1

)
ḂN

]+ cs
[
sin

(
ϕt1

)
ȦK̃ −cos

(
ϕt1

)
ḂK̃

]
− r s ȦK −ϕ2{p

[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]+ s
[−sin

(
ϕt1

)
AK̃ +cos

(
ϕt1

)
BK̃

]}
−ϕ{

p
[
cos

(
ϕt1

)
ȦN − sin

(
ϕt1

)
ḂN

]+ s
[
cos

(
ϕt1

)
ȦK̃ + sin

(
ϕt1

)
ḂK̃

]
+pb

[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]+ cs
[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]} (211)

=−a ÄK − (pq + r s)ȦK + (bpq + cr s)AK −b2p
[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]
− c2s

[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]−ϕ2(ḂK +aBK
)+ϕ{

(pq − r s)BK

+2bp
[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]+2cs
[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]}
.

(212)

Since, the detuned case must overlap with the pure resonance case for ϕ = 0, from comparing
Eq. (212) with Eq. (163), it is observed that the missing terms are−(b+c)

[
ÄK +a ȦK + (pq + r s)AK

]−
bc(ȦK +a AK ). If we substitute Eq. (209) into the expression for missing terms, we obtain

− (b + c)
[

ÄK +a ȦK + (pq + r s)AK
]−bc(ȦK +a AK )

=− (b + c)
{−(pq + r s)AK +pb

[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]
+ cs

[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]+ (pq + r s)AK

−ϕ{
p

[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]+ s
[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]}
−bc

{−p
[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]− s
[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]}
(213)

⇒−b2p
[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]− c2s
[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]
=− (b + c)

[
ÄK +a ȦK + (pq + r s)AK

]−bc(ȦK +a AK )

−ϕ{
bp

[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]+ cp
[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]
+bs

[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]+ cs
[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]}
.

(214)
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Substituting Eq. (214) into Eq. (212) leads to
...
A K =− (a +b + c)ÄK − (ab +ac +bc +pq + r s)ȦK − (abc + cpq +br s)AK

+ϕ{
(pq − r s)BK +2bp

[
cos

(
ϕt1

)
AN − sin

(
ϕt1

)
BN

]}
−bc

{−p
[
sin

(
ϕt1

)
AN +cos

(
ϕt1

)
BN

]− s
[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]}
+2cs

[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]−bp
[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]
− cs

[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]− cp
[
sin

(
ϕt1

)
AK̃ −cos

(
ϕt1

)
BK̃

]
−bs

[
cos

(
ϕt1

)
AK̃ + sin

(
ϕt1

)
BK̃

]}−ϕ2(ȦK +a AK
)

=− (a +b + c)ÄK − (ab +ac +bc +pq + r s)ȦK − (abc + cpq +br s)AK

+ϕ{
(b − c)ḂK + (ab −ac +pq − r s)BK

}−ϕ2(ȦK +a AK
)
.

(215)

Similarly,
...
B K can be obtained as

...
B K =− (a +b + c)B̈K − (ab +ac +bc +pq + r s)ḂK − (abc + cpq +br s)BK

−ϕ{
(b − c)ȦK + (ab −ac +pq − r s)AK

}−ϕ2(ḂK +aBK
)
.

(216)

Appendix C

C.1

In this section, we study the boundedness of the solution of (167). We assume that AK and BK

are stable and remaining variables AN , BN , AK̃ and BK̃ satisfies

ȦN =−b AN +q
[
sin

(
ϕt1

)
AK −cos

(
ϕt1

)
BK

]
,

ḂN =−bBN +q
[
cos

(
ϕt1

)
AK + sin

(
ϕt1

)
BK

]
,

ȦK̃ =− c AK̃ + r
[
sin

(
ϕt1

)
AK +cos

(
ϕt1

)
BK

]
,

ḂK̃ =− cBK̃ − r
[
cos

(
ϕt1

)
AK − sin

(
ϕt1

)
BK

]
.

(217)

We initially consider the first equation in Eq. (217). Using method of integration factor, with the
integrator factor being ebt1 , results in

AN (t1) =AN (0)e−bt1 +e−bt1

∫ t1

0
qebs(sin

(
ϕs

)
AK (s)−cos

(
ϕs

)
BK (s)

)
d s

⇒|AN (t1)| ≤|AN (0)|e−bt1 +e−bt1

∣∣∣∣∫ t1

0
qebs sin

(
ϕs

)
AK (s)d s

∣∣∣∣
+e−bt1

∣∣∣∣∫ t1

0
qebs cos

(
ϕs

)
BK (s)d s

∣∣∣∣
≤|AN (0)|e−bt1 +e−bt1 M

∣∣∣∣∫ t1

0
qebsd s

∣∣∣∣
=|AN (0)|e−bt1 + M |q|

b

(
1−e−bt1

)
≤|AN (0)|+ M |q |

b

(218)
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for t1 ≥ 0, with M
2 := max

{
sups∈[0,t ](AK (s)),sups∈[0,t ](BK (s))

}
. Hence, we can conclude that the

solution AN (t1) is bounded.
One can easily observe that, the same steps can be applied to BN , AK̃ and BK̃ as well. Simi-

larly as for AN (t1), BN , AK̃ and BK̃ are bounded for all t1 ≥ 0.

C.2

From the fact that AK and BK are solutions of a linear system with eigenvalues λi , i = 1, · · · ,n
such that Re(λi ) < 0, we consider the equation

ȦN =−b AN +q
[
sin

(
ϕt1

)
AK −cos

(
ϕt1

)
BK

]
(219)

in the form ȦN (t1) =−b AN (t1)+C (t1) with |C (t1)| ≤ ke−µt1 with b,k,µ being positive constants,
and µ< |λi |. We can apply the method of integrating factor and obtain

AN (t1) = AN (0)e−bt1 +e−bt1

∫ t1

0
ebsC (s)d s. (220)

If b̃ 6= µ̃ we can bound the solution by

|AN (t1)| ≤|AN (0)|e−bt1 +e−bt
∣∣∣∣∫ t1

0
ebsC (s)d s

∣∣∣∣
≤|AN (0)|e−bt1 +e−bt

∣∣∣∣∫ t1

0
ke(b−µ)sd s

∣∣∣∣
≤|AN (0)|e−bt1 + k

|b −µ|
∣∣∣e−µt1 −e−bt1

∣∣∣
(221)

and as t1 →∞, |AN (t1)|→ 0. If b =µ we can bound the solution by

|AN (t1)| ≤|AN (0)|e−bt1 +e−bt1

∣∣∣∣∫ t1

0
kd s

∣∣∣∣
≤(|AN (0)|+kt1)e−bt1

(222)

similarly, as t1 →∞, |AN (t1)| → 0. Thus, we can conclude that AN (t1) is stable. The stability of
other variables in Eq. (217) can be easily shown similarly.
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