
Raising
awareness of

citizens by
interactively

providing
environmental

data

Final report 30-06-2017

Synthesis Project
MSc Geomatics TU Delft
SensingTheCity@tudelft.nl

N. Bebelaar
C. M. Kleijwegt
R. W. E. Meulmeester
G. Michailidou
N. Salheb
E. L. D. Vaissier

Pilot of a static sensor network
 in Delft

2

Sensor City Delft

DID-C1 Final Report

By:

Niek Bebelaar 4619609 N.Bebelaar@student.tudelft.nl

Cathelijne Kleijwegt 4218469 C.M.Kleijwegt@student.tudelft.nl

Roeland Meulmeester 4175417 R.W.E.Meulmeester@student.tudelft.nl

Gina Michailidou 4624785 G.Michailidou@student.tudelft.nl

Nebras Salheb 4622715 N.Salheb@student.tudelft.nl

Noortje Vaissier 4206479 E.L.D.Vaissier@student.tudelft.nl

Coaches:

Stefan van der Spek S.C.vanderSpek@tudelft.nl

Wilko Quak C.W.Quak@tudelft.nl

Teun Verkerk T.J.Verkerk@tudelft.nl

Rob Braggaar R.C.Braggaar@student.tudelft.nl

Sabine de Milliano S.DeMilliano@spingsmart.nl

3

Preface
During the MSc Geomatics for the Built Environment at the TU Delft a Synthesis Project is conducted.

This is a group project which brings together all the knowledge of the first year of the programme. The

Academic Year 2016/2017 has two main subjects for the synthesis project: Internet of (every)Things

(IoT) and Point Clouds. Three groups are part of the point cloud subject and two groups of the IoT subject

among which this project. This is the ‘static’ IoT group, where the focus is on doing measurements with

a static sensor network; the other group is the ‘dynamic’ group, that uses sensors on moving platforms

to do measurements. The projects takes place at the end of the first year of the Master programme and

takes 9 weeks all together.

This project is called Sensor City Delft and is a pilot of a sensor network in the city center of Delft. The

aim is to raise local environmental awareness by interactively providing environmental data using a

sensor network.

N. Bebelaar, C. M. Kleijwegt, R. W. E. Meulmeester,

G. Michailidou, N. Salheb, E. L. D. Vaissier

Delft, June 2017

4

Acknowledgements

During the last nine weeks we had an intensive time working on this project. We had ups and downs,

some setbacks but also some big highlights. At the end we are very pleased with what we accomplished

and proudly present the outcomes of the research.

Many people contributed to the completeness of the Sensor City Delft project with their support and

guidance at critical moments being of great value. As a team and individually, we would like to thank all

the people who supported us over the last 9 weeks. We would like to thank the supervisors and mentors

of the Synthesis Project of MSc Geomatics for the Built Environment of TU Delft, Dr. Ir. Stefan van der

Spek and Drs. Wilko Quak, for giving useful suggestions and remarks through the whole project and for

offering us the opportunity to broaden our knowledge on the IoT field.

In addition, Teun Verkerk and the Science Center Delft for providing us with all the hardware, equipment

and space needed to work on this project and also for teaching us how to use them. Special thanks to

Rob Braggaar and Aidan Wyber for their valuable help on the technical parts of this project.

We are also pleased to acknowledge the cooperation and support of Sabine de Milliano from Sping

Smart. Her input during the first days of our project when our decision-making process took place, but

also her support for the rest of the time until the completion of this project were highly important and

appreciated. Additionally we want to thank Dr. Ir. Martijn Meijers of TU Delft for helping us on the

technical aspect of the project and for being available when that was needed.

Last but not least, we would like to thank the stakeholders, the Municipality and citizens of Delft for

supporting this project by giving their feedback and embracing the sensors in the implementation stage.

5

Table of contents
Preface 3
Acknowledgements 4
Table of contents 5
Reading Guide 7
Executive summary 8
Chapter 1 – Introduction 13

1.1 Research Goal 13
1.2 Project Plan 14
1.3 Research Question 17

Chapter 2 – Literature research 19
2.1 Internet of Things (IoT) 19
2.2 Scenarios & Personas 23
2.3 Conclusion literature research 26

Chapter 3 – Method 27
3.1 Hardware 27
3.2 Area of study: location and sensor placement 59
3.3 Casing 61
3.4 Data 65
3.5 Feedback mechanism 71

Chapter 4 - Analyzing Data & Results 76
4.1 Locations 76
4.2 Temperature and humidity 79
4.3 Noise measurements 89
4.4 Air quality 91

Chapter 5 - Conclusion 101
Chapter 6 – Recommendations 103
References 105
List of figures 110
List of tables 113
List of maps 114
List of abbreviations 115
Appendices 117

Appendix A: Organizational Breakdown Structure 117
Appendix B: Work Breakdown Structure 119
Appendix C: Work Package Description (WPD) 120
Appendix D: Schedule of the GSP (GANTT chart) 122
Appendix E: Media outreach strategy 129
Appendix F: Stakeholders and experts 135
Appendix G: MoSCoW priority management 136
Appendix H: Boundary Conditions 139
Appendix I: Functional, non-functional and killer requirements 141
Appendix J: MicroPython script main.py 145
Appendix K: Sensor locations – facades 147
Appendix L: Sensor locations – trees and lanterns 154
Appendix M: Casing 161
Appendix N: System overview 162
Appendix O: LoRa JSON message 163
Appendix P: Sensor billboard 165
Appendix Q: Sensor flyer 166

6

Appendix R: Twitterbot code 167
Appendix S: LoRa encryption 174
Appendix T: Test script MAX9814 176
Appendix U: Test script AM2302 177
Appendix V: Graphs and tables for AM2302 measurements 178
Appendix W: Graphs and tables for air quality measurements 200
Appendix X: Node-RED node codes 215

7

Reading guide

This document provides an overview of the main elements of the GSP that have been accomplished. It

describes both the organizational and technical features of the project. The first part of this report is

the executive summary.

Chapter 1 provides an introduction to the present research. Furthermore, the research question

together with the sub questions are presented. It then focuses on the project plan including the

management strategy, planning, media outreach, the involved stakeholders, requirements, and

boundary conditions.

Chapter 2 outlines the literature research that is done regarding Internet of Things (IoT). After this

research, three distinct scenarios are introduced. For every subject that will be investigated a scenario

is described. These scenarios function as primary assumptions of the project.

Chapter 3 elaborates on the method that is applied during the project. This chapter describes the

hardware, the casing, and the locations that are chosen for placing the sensors. The data management

is also explained in this chapter. Finally, the feedback mechanism is described.

Chapter 4 provides the data analyses together with a discussion on the measurement results. For every

subject, there is an in-depth discussion on the meaning of the data and the implications of these results.

In Chapter 5 the conclusions regarding the research question and the sub-questions are stated. Finally,

there are recommendations made for future research.

Chapter 6 contains the practical recommendations for researchers who will continue this project. These

- mainly practical - recommendations are stated for future student groups, who want to build further

on this pilot project

Throughout the document there will be referred to the citizens of Delft and the visitors of the city as:

the citizens of Delft.

Sensor City Delft: An interactive static sensor network in
the center of Delft

N. Salheb, C. Kleijwegt, R. Meulmeester N. Bebelaar, N. Vaissier, G. Michailidou

June 30, 2017

Abstract

This synthesis project is focused on implementing an Internet of Things (IoT) network to
measure environmental data in the city of Delft. This network consists of sensor platforms that
are placed in the urban environment. Each sensor platform is mounted on fixed locations and
it is not moved during the measurement time. The aim is to raise community’s environmental
awareness to improve the quality of the environment.

Recent developments in technology made it possible to fabricate small, efficient, and reliable
sensors boards which are the base of these sensors platforms and making them efficient and
reliable. Sensor boards like Arduino, Raspberry Pi, and LoPy are some examples of these small
sensor boards. In this project, the LoPy is used which is a sensor board that is equipped with
Bluetooth Low Energy, Wifi and a LoRa radio. This last one is a communication technology
that makes longer communication distances possible.

The sensor network measures four different environmental indicators that will be dis-
tributed to the public: temperature, humidity, noise and air quality. The network then com-
municates via LoRa this data to one centralized server where the data is stored, processed
and sent back to the citizens. This data is made publicly accessible to academia, citizens and
the stakeholders alike. The network is also made interactive, people who pass by can interact
with the sensors and request specific environmental data in real time.

The sensor network has been build and deployed in the city. During the uptime of the
network it succeeded to provide the data to the citizens via the feedback mechanisms: a
website with a dashboard and an automated twitter account. Local differences have been
measured with temperature and humidity sensors. With regard to the noise sensor and air
quality sensors no definitive conclusions could be drawn.

1 Introduction
Sensor City Delft is a project conducted by six students of the TU Delft MSc Geomatics track for
the duration of 9 weeks. This research project focused on raising local environmental awareness
by interactively providing environmental data using a static sensor network. The sensor network
has been installed in the City Center of Delft. The specific area of study is the Choorstraat, the
Voldersgracht and the Oude Langendijk (see figure IV). These three streets are chosen because
they have different profiles and are all located in the vicinity of the stakeholders. The project has
been conducted in partnership with the Municipality of Delft, Science Center, SpingSmart and TU
Delft.

This research serves as a pilot project of Internet of Things (IoT), the deployed sensor network
serves as a proof of concept. The research has to be continued by future students or graduates.
The innovative part of the project is that the network is fine-grained, i.e. it has a relatively high
density of low cost sensors. This can provide a detailed picture of environmental indicators on a
large scale. Moreover, the sensor platforms that are created can be deployed relatively easily in
the built environment. Finally, an innovative aspect of the project is that it is interactive with
citizens and actively involves them.

2 Aim
The aim of the Sensor City Delft research is to raise awareness about three main topics:

8

Smart City: A smart city is defined as a city that engages its citizens and connects its infras-
tructure electronically. A smart city has the ability to integrate multiple technological solutions,
in a secure fashion, to manage the city’s assets [1]. To inform citizens about this concept in a
practical way, visible sensor platforms are deployed throughout the city center of Delft.

Local environment : A fine grained network of sensor platforms connected to the Internet en-
ables research on local differences in the environment. Usually, this type data is generated from
interpolation from distant platforms.

TU Delft academia vs Citizens: About 20% of the population of Delft is affiliated with the TU
Delft [2]. To show what the TU Delft researched, and that the research also can benefit citizens,
this project raises awareness of the presence of the TU Delft in Delft.

Raising awareness about these three topics at the same time has been done by making the
network visible in the city and encouraging the citizens to interact with it. Therefore the research
question of this paper is:

How to raise local environmental awareness by interactively providing environmental data using
a static sensor network?

This research has been conducted with a case study which is the pilot of deploying a static
sensor network in the city center of Delft. To be able to answer the research question the following
sub questions are formulated:

1. How to make a static sensor network interactive?

2. What environmental data to collect and how to process it?

3. What environmental data is to be provided to the citizens to raise awareness?

4. Where to install the sensors?

5. How to build the sensor platforms?

6. How to ensure data quality?

By answering the sub questions, a complete picture of this project is shown.

2.1 Interactivity and visibility
Online and offline awareness is raised using visible sensor platforms, billboards, flyers, a website,
local media and social media. The sensors were placed in eyesight on lamp posts and trees in the
City Centre of Delft. Billboards and flyers were distributed in the nearby area, informing passersby
about this project and how to retrieve data. The sensor platform is made interactive in two ways:
Firstly, by equipping the billboards with QR-codes which link to the website www.scdelft.nl. This
website contains general information on the project, news and a dashboard with the latest readings
of the sensors and time series of the data coordinated per street (see figure I).

The second way of interactivity is using a twitterbot. This is a computer program that uses
Twitter (@SensorCityDelft) and responds to users who tweet at it. The twitterbot is capable of
reading tweets and distinguish between different environmental data that is requested by users.
By looking at hashtags with both the street name and the environmental characteristic, a reply is
given (see Figure II).

2.2 Environmental Data
The gathered data consists of temperature, humidity, noise levels and air quality. These were chosen
because they are known to have serious health effects on people. These data are measurable with
low cost sensors and are of most interest to all stakeholders.

9

Figure I: Dashboard of the latest read-
ings

Figure II: Exemplary Twitterbot re-
sponse

2.3 System Design
For the Sensor City Delft project, sensor platforms were created; each one having three types of
sensors mounted on them. The air quality sensors are both the PMS5003 and PPD42NS, the noise
sensor is the MAX9814 and the temperature and humidity sensor is the AM2302.

After a couple of test rounds, it seemed that not from every type of sensor reliable information
could be expected. The PMS5003 and AM2302 can be regarded as reliable, but the PPD42NS
is wind-sensitive and the MAX9814 sensor is in fact an indoor microphone, instead of a decibel
meter. With these remarks taken into account, the sensors are used though.

The communication protocol that is used to send the measured values from the sensor boxes
to a database on a server is LoRaWAN. The underlying modulation technique is LoRa, which
allows the sender to send a message with low power, also when noise is high and distances are
big [3]. In the deployed solution, every platform in the implemented sensor network, measures
the environmental values once in every 15 minutes. Then, these values are sent to an application
server over the KPN LoRa network. These intervals are chosen due to limitations of the LoRaWAN
network and energy saving on the sensor platform.

The measured data is sent from the sensor platforms to an application server which makes use
of Node-RED and PostgreSQL. Node-RED is a browser-based flow editing programming interface
for connecting Internet of Things devices. PostgreSQL is an open source object-relational database
tool. The Node-RED environment serves as the central location to manage data flows.

The data flows origin from the sensor platforms. The messages are send encrypted over the
LoRaWAN network and decrypted on the application server. After decryption the data is parsed
and processed to make it ready for storage. The data is stored in a PostgreSQL database.

Two other important aspects of the system are also originating from the application server:
the twitterbot and the dashboard on www.scdelft.nl. The twitter retrieves stored data from the
database and so does the dashboard. Node-RED includes easy setup for data dashboards, the
website embeds these dashboards. An overview of the system as described in the former paragraph
can be seen in figure III.

2.4 Implementation
The sensor platforms placed in the City Center of Delft were measuring for one week. During this
week, the twitterbot replied to several people who requested data. The website has been providing
live data on a dashboard in this time. Historic data is also shown on the website.

2.5 Ensuring Data Quality
Ensuring data quality is important to draw reliable conclusions. At first, the sensors need to be
reliable and of good quality. For this reason, they are tested in an indoor environment, where
weather influences are minimized. After this, being critical on the data output is very important:

10

Figure III: System Overview

outliers, systematic errors or decay of hardware are still possible. Placing the sensors at a fixed
location which does not influence the measurements is also important for good data quality.

Furthermore, in this project in total five sensors platform are placed; two streets with two
devices and one street with one. To draw better and more reliable conclusions, redundancy of data
is needed, therefore more sensor platforms should be placed.

2.6 Sensor Locations
To ensure a maximum amount of people is being reached, the locations are chosen because they
are visited by many citizens and tourists. Likewise, the different areas of interest have different
patterns and environments to detect differences if present. Therefore, the Voldersgracht, Oude
Langendijk and Choorstraat are good locations to place the sensors.

The sensors are placed on trees and lanterns in these streets, out of reach for people to prevent
theft or vandalism (see figure IV). This way of placing the sensors has affected the measurements,
which is caused by exposure of direct sunlight and wind.

Figure IV: Sensor locations (left), sensor and billboard (right)

2.7 Data Analyses
The measured data in the streets showed local differences in humidity and temperature. These
differences have been accredited to the fact that some street were receiving more sun than others.
The noise levels had no viable conclusions due to coding errors and the type of the sensor: it is a
microphone. One type of the air quality sensors was receptive for wind which led to skewed results
in air quality measurements.

11

3 Conclusions
The main aim of this project of raising the environmental awareness was done by successfully
installing an interactive static sensor network that provides environmental data. Measuring the
amount of awareness that has been raised among citizens is hard however. But the entire technical
system has been set up in this project, and serves as a proof of concept for future projects on
interactive static sensor networks. The sensor network has been built, it gathered data and was
interactive.

Shortcomings of not having data of high quality did not affect the concept of the project.
The sensor network was working as intended, and if high quality sensors would have been used,
the measurements would have also been of higher quality. Moreover, the experiences with the
LoRaWAN communication protocol is that it is a reliable communication technique. That is
mainly because the LoRa network that is used is relatively saturated in the study area.

Relative to the short span of the project it reached citizens. Via Facebook 60 people are
reached (with ‘likes’), the project is covered in two local newspapers, the sensor billboards have
been displayed in the streets of Delft for a week, and the project is pitched in front of a crowd of
(international) students. Multiple citizens also interacted with the system using twitter and the
website and were able to acquire the environmental data they asked for.

3.1 Future Research
To improve and continue this research, the following steps have to be taken. First, the measuring
time should be extended over longer period, for example 1 year. During this period, the measure-
ments should be more reliable. Furthermore, the number of sensor platforms should be raised to
detect more local differences. Finally, the data should be communicated and processed according
to an (open) standard; the OGC Sensor Web Enablement standard.

To be able to measure for a year, there are improvements in the hardware and casing needed.
This means that the battery should last longer, which can be done by installing the solar panels
on the sensor platforms, or by connecting the sensor platforms to the electrical grid of the city.
Another way is to reduce power consumption by the microcontroller itself. In the case of the LoPy
this would mean using a ‘deepsleepshield’: a component that was not yet available during the
course of the project time.

To make the measurements more reliable, a longer testing and calibration phase of the sensor
is needed. Systematic errors of the sensors will then be detected. Moreover, the casing needs an
improvement by adding a separate component to the sensor casing. With this extra component
the air quality data will be more reliable since it is not affected by wind.

Finally, the psychological effect of implementing a sensor network can be researched. The cur-
rent situation of environmental awareness of the citizens should be measured before implementing
the sensor network (ex ante). Then, after implementing the sensor network in the city the envi-
ronmental awareness should be evaluated, to see the effect of the sensor network (ex post). To
conclude, different city centres of different cities can also result in interesting findings about the
environmental issues of the cities.

References
[1] Musa, M., 2016. Smart Cities: A road-map for development. Accessed at 19/06/2017 via

http://www.academia.edu/21181336/Smart_City_Roadma1

[2] TU Delft, 2017. De studentinstroom aan de TU Delft is dit jaar licht gestegen. Nieuws
26 oktober 2016. Accessed at 19/06/2017 via https://www.tudelft.nl/2016/tu-delft/
instroom-tu-delft-stijgt-licht/

[3] Lora Alliance, 2017. LoRa AllianceTM, 2017. LoRa AllianceTM Technology. Accessed at
19/05/2017, via https://www.lora-alliance.org/What-Is-LoRa/Technology

12

http://www.academia.edu/21181336/Smart_City_Roadma1
https://www.tudelft.nl/2016/tu-delft/instroom-tu-delft-stijgt-licht/
https://www.tudelft.nl/2016/tu-delft/instroom-tu-delft-stijgt-licht/
https://www.lora-alliance.org/What-Is-LoRa/Technology

13

Chapter 1 – Introduction

Collecting environmental data from the city can be done in many ways. One option for this is to create

a ‘smart city’. This means that a sensor network is applied to a city and many elements can communicate

with each other, does measurements and save these to a relational database. This smart city way of

working using Internet of Things (IoT) is developing at the moment.

This report informs about a project from the master of Geomatics at the TU Delft. Internet of Things

and collecting data using a sensor network is the central subject of this project. The sensor network will

be static (i.e. located in one place in the city center and not moving) and interactive. This last element

means that the citizens can request the data of the sensors.

1.1 Research goal

The project has two parts from different sources that both have their own goals. The first one is the goal

of the course from the MSc Geomatics programme, which is, as described in the Course Catalogue of

the university:

“The Synthesis project aims at the application of knowledge and skills gained in the core programme.

During the Synthesis project students have to:

- define an innovative project, developing new knowledge on novel geomatics subjects;

- apply the knowledge from the core courses in a project, from data acquisition, processing,

storage and validation to visualization, analysis and conclusions and show controlling the

subject;

- be able to systematically report on the conducted research, covering the research process and

the outcomes;

- show the ability to work together in a project team.”

The other part of the project that have goals set is the stakeholder part. The stakeholders invest time

and money in this project, have certain expectations of the outcomes of it and reasons on why to be

involved in this project. The goals from the stakeholders are:

- Get evidence of the environmental issues and status of the city center.

- Bridge the gap between the TU Delft and the citizens of the city Delft

i.e. communicate the research and development of the university to the citizens.

14

1.2 Project plan

Each project has an organisational element in it. Because of this element, the actors know what to do,

appointments are met and the goal will be reached. The different elements of the organisational aspect

of this project are described below.

1.2.1 Overall approach, management and planning, media outreach

As the synthesis project is part of the MSc Geomatics programme there is a limited amount of time, this

is related to the academic calendar and the amount of time reserved for the project. The project will

run over a period of 9 weeks, i.e. from the 21st of April 2017 to the 23rd of June 2017. For the successful

completeness of the project, this time needs to be spent efficiently and all group members should know

what to do and when deadlines are set. These managemental aspects are described later in this

document.

Besides time as an important aspect of this project, all team members will have roles and tasks assigned

to them at the beginning of the project. While the project proceeds roles can be changed and tasks can

be added. The project plan consists of a couple of documents which the team members agreed upon.

The different roles of the team members are described in the Organizational Breakdown Structure (OBS)

(see Appendix A). Next to that, in order to provide a clear overview of the different tasks a Work

Breakdown Structure (WBS) is constructed (Appendix B). The Work Package Description (WPD)

(Appendix C) is a detailed description of the tasks that are mentioned in the WBS. The description of the

project planning can be found in Appendix D, where a GANTT chart is included. All work that is done on

the synthesis project will be documented in the log that is part of the DIDs (Deliverables Items

Descriptions). To have a fast glance at the project planning, figure 1 below is a simplified workflow of

the project, to show the parallel processes.

15

Figure 1: Aggregated workflow

Another managerial task is the media outreach, which is a major task in the project since the goal of the

Sensor City Delft project is to raise environmental awareness of the citizens of Delft by proactively

providing environmental data. Therefore, the citizens must be informed via media. A strategy for

reaching the media is given in Appendix E.

1.2.2 Stakeholders, boundary conditions and requirements

A project is a continuous cycle that can change while it is on the run. The stakeholders and experts who

are involved in this project are briefly described in Appendix F. The priority management plan

(‘MoSCoW’) is placed in Appendix G. MoSCoW is a project management technique that aids in

understanding and managing priorities (Verbree, 2017; Agile Business Consortium, 2017). It is an

acronym for Must, Should, and Could have, and Will not have this time, and helps the project group

staying focused on the most important tasks regarding the project.

In appendix H are boundary conditions of this project described: it focuses on the context in which this

group project takes place. Appendix I is an exhaustive description of the top down requirements for the

Sensor City Delft project. These requirements are derived from the project description of the

programme, the request of both the actors and stakeholders, and from the goals of the project team. It

is the basis upon which the project is built and describes the agreement with the stakeholders. In general

the following requirements and boundaries are set:

- The project should be interactive

16

- The project should be completed within the set timespan (nine weeks)

- A maximum amount of sensors is set to 40

- Only data of interest will be processed

- As much as possible different data will be collected

The Project Logic Diagram in figure 2 shows the overview of the to be delivered product in one image.

To express the centrality of the sensor placement and usage, a house is the center of the image. Around

this house, three elements of the project are described: the hardware, software, and the connection.

Figure 2: Project Logic Diagram

17

1.3 Research questions

After having described the research goals and considered the aims of the stakeholders the following

research question can be derived:

How to raise local environmental awareness by interactively providing environmental data using a static

sensor network?

Case study: a pilot in the city center of Delft

To be able to answer this research question the next six sub questions are formulated:

1. How to make a static sensor network interactive?

To make a sensor network interactive many things have to be researched. First of all is how to reach the

target audience. And secondly how to provide the collected information to the audience in an

approachable and meaningful way. The storage of the data is also an important aspect that is covered

with this sub question.

2. What environmental data to collect and how to process it?

Since there are too many phenomena to be sensed all at once in the city, decisions have to be made

about what to sense exactly. These environmental values have to be measurable with low cost

equipment. Besides technical aspects of measuring, the interests of stakeholders also play an important

role. During a planned stakeholder meeting their points of interest can be defined.

3. What environmental data is to be provided to the citizens to raise awareness?

A good way to define what data to collect is to create scenarios that will describe different personas

that are part of the target audience. The scenarios will be based on the interests of the stakeholders,

but should also be relatable to the average person in the city center of Delft.

4. Where to install the sensors?

Sensor platforms will be placed at locations within the city center of Delft that have different profiles.

Therefore different results are expected within the area of study and local differences might be present.

Since the sensor network is interactive, the locations of the sensors need to be visible to the target

audience.

18

5. How to build the sensor platforms?

Research has to be conducted on several components of the sensors platforms. This includes the

sensors, the microcontroller, the casing and the means of communication of the data.

6. How to ensure data quality?

Exhaustive testing and calibration of the sensors have to be conducted before deployment in order to

provide reliable data. Sensor placement might also affect the quality of data.

19

Chapter 2 – Literature research

This chapter covers the literature research that is carried out for this project. The first paragraph focuses

on the Internet of Things concept. In the second paragraph is argued for three scenarios that are

relevant with respect to the Sensor City Delft project.

2.1 Internet of Things (IoT)
Internet of Things (IoT) is considered as a technological and economic wave in the global information

industry (Chen et al, 2014). The aim of IoT is to achieve intelligent identifying, locating, tracking,

monitoring, and managing of things (Stankovic, 2014). This will expand an Internet-based network from

human-human to human-things and things-things communication, promoting the harmonious

interaction between humans, societies, and smart things (Guo et al, 2013; Zhong et al, 2013; Chen et al,

2014). The availability of different types of data, collected by a pervasive urban IoT, may be exploited to

increase the transparency and promote the actions of the local government toward the citizens,

enhance the awareness of people about the status of their city, stimulate the active participation of the

citizens in the management of public administration, and also stimulate the creation of new services

upon those provided by the IoT (Zanella & Vangelista, 2014).

2.1.1 Elements

As described by Gubbi et al (2013), three components are required for Internet of Things:

1) hardware, i.e. the sensors, actuators and embedded communication hardware;

2) software, i.e. the on demand storage and computing tools for data analysis, and

3) presentation, i.e. the visualization and interpretations tools which should be designed by

different applications and can be widely accessed on different platforms (Gubbi et al, 2013).

Hardware

The hardware consists of two main technologies: the sensors and the ways of communication. The most

used way of communication is Radio Frequency IDentification (RFID), for the sensors these are Wireless

Sensor Networks (WSN). The former is well established for low cost identification and tracking. The

latter, however, brings IoT applications more capabilities for sensing, providing low-cost data acquisition

and actuation. Today, WSN’s cover a wide range of applications, mainly used to monitor physical or

environmental conditions. A combination of WSN and RFID can result to a better tracking of the status

of locations, temperature, movements etc. (Lee & Lee, 2015).

20

Software

Two types of IoT software are used for the deployment of successful products and services: the

middleware and cloud computing. The middleware is a software layer interposed between software

applications that allow developers to perform in easier ways, that handles communication and controls

input/output of devices. The middleware is useful when the simplification of the development of an IoT

applications is required, for example in a complex distributed infrastructure of IoT with several

heterogeneous devices (Lee & Lee, 2015). The cloud computing model provides an ideal back-end

solution for the processing of massive amounts of data streams in real-time.

Presentation

Today, only a small number of mainly human-centered IoT applications allow both the visualization of

information and the interaction with the environment. With the introduction of the touch screen

technologies and the use of smartphones and tablets, this interaction became intuitive, easy to

understood and meaningful for the end users (Gubbi et. al., 2013). However, the cases where IoT

applications where the visualization and interaction of the data are both critical and required are limited.

2.1.2 Challenges

In a hyper-connected world, the lack of appropriate standardization of applications, security and

privacy, as well as the implementation of complex communicating systems can result to chain reactions

with unwanted or even disastrous results (Lee & Lee, 2015). This part provides the four main challenges

that need to be concerned by enterprises in the IoT development. These are the data mining, data

management, privacy, and policy challenges. According to Gartner (2014); “the enormous number of

devices, coupled with the sheer volume, velocity and structure of IoT data, creates challenges,

particularly in the areas of security, data, storage management, servers and the data center network, as

real-time business processes are at stake” (Gartner, 2014). The four challenges are further discussed

below.

Data mining

IoT sensors are generating massive amounts of data that need to be processed and stored. However,

the current architecture of data centers is not able to support the heterogeneous nature and the volume

of the personal and enterprise data (Gartner, 2014). Following this, the enterprises should be able to

invest in data storage in order to support all the IoT data collected from their networks (Lee & Lee,

2015). In addition to this data centers should improve processing efficiency and response time for the

21

IoT devices that widely used and consume more bandwidth.

Sensor platform OGC Standardization

The number of internet-connected sensors is rapidly growing around the world (Ericsson AB, 2016). To

be able to combine and compare the data from these sensors, standardization is a key requirement.

The Sensor Web Enablement (SWE) standards framework by the Open Geospatial Consortium (OGC)

meets this requirement. Implementing this standard in the project will make it easy to integrate

information regarding sensor locations into geospatial applications that implement the OGC's other

standards (OGC 2017a). This will also make the network discoverable, accessible and useable via the

Web (OGC 2017b). An example of the OGC Standards in the SWE framework is the SOS standard.

Implementing SOS will make the sensors data manageable in an interoperable way. This standard can

define a Web service interface which allows querying observations, sensor metadata, as well as

representations of observed features. Further, this standard defines means to register new sensors and

to remove existing ones. Also, it defines operations to insert new sensor observations (SOS, OGC 2017c).

Data management

In addition to the demand of investment in data storage and processing, the massive amount of data

requires the use of data mining tools. The data is a combination of discrete and streaming data

associated with location, movement, temperature, humidity, among others. These unstructured data

need to be analyzed and understood using mathematical and computer models, that the traditional

data mining techniques are unable to provide. Furthermore, both the addressing of operational issues

and the information of the enterprises about the changes in customer’s preferences require advanced

data mining tools and expertized data analysts (Lee & Lee, 2015).

Security and privacy

Security and privacy is becoming one of the biggest challenges for the success of IoT (Babar et. al, 2010).

Wireless devices are expected to be the platform of choice for launching attacks targeting the Internet.

Furthermore, problems like confidentiality, authenticity, and integrity of data sensed (such as address

and names) and exchanged by “things” have become apparent. The most important parameter

associated with wireless networks is location and so location information provided by the network

should be trustworthy (Hu & Wang, 2006). According to the 2016 edition of the Vormetric Data Threat

Report, the protection of sensitive data and the privacy of things has ranked as the top concern of the

most enterprises (Vormetric, 2016).

http://www.opengeospatial.org/standards

22

2.1.3 Applications

Between the numerous applications of IoT, ‘smart cities’ is one of the most promising application fields

(smart-cities.eu, 2015). However, the Smart City market has not taken off due to political, technical and

financial barriers. According to the smart cities European project, five service sectors of smart cities can

be introduced, the Smart Governance, Smart Mobility, Smart Utilities, Smart Buildings and Smart

Environment. These service sectors can be defined as indicators for ranking the ‘smartness’ of European

cities (smart-cities.eu, 2015).

Several services can be defined regarding smart cities: the maintenance of historical buildings, waste

management, air quality and noise monitoring, traffic congestion, city energy consumption, smart

parking, smart lighting, and automation of public buildings (Zanella & Vangelista, 2014). The practical

realization of most of these services is not hindered by technical barriers but by the lack of a widely

accepted communication architecture that can provide harmonized access (Zanella & Vangelista, 2014).

In the following parts are some examples of implementations of the smart city concept described.

Padova Smart city project

The Padova Smart city is a web-based project implemented on the island of Padova. The project was

interconnected with the data network of the city municipality. The aim was to discuss a general

reference framework for the design of the IoT services, as well as related protocols and technologies. In

addition, it was aimed to provide a discussion on both the suitability of the proposed framework for a

Smart City environment and the solutions regarded technical issues of the application (Cenedese et al,

2014).

SmartSantander project

SmartSantander is one of the projects developed by the European Commission, in the context of the

Future Internet Research and Experimentation initiative. The project represents a city-scale

experimental research facility. It is aimed to provide both a description of the testbed architecture and

the deployment issues and experiences of its implementation.

For this project, four different uses cases were considered. The Parking Space Management use case

aimed on the development and deployment of a service that enables monitoring the occupancy of

outdoor parking spaces on the streets of Santander city center. The data could be subscribed by mobile

applications. The Precision Irrigation was aimed to monitor the plants’ requirements in water,

augmenting the existing irrigation system along the parks and gardens. The Augmented Reality use case

was aimed to provide essential location information such as Points of Interest (POI) to citizens and

23

tourists, using NFC tags. The Participatory Sensing use case was aimed to give the ability to users to

monitor location or environmental data by transforming their smartphones into sensors (Sanchez et al,

2013).

Conclusion IoT

Internet of Things (IoT) is one of the most promising fields in the global information industry, targeting

to the intelligent identification, location, tracking, monitoring and management of things. For the

implementation of an IoT system, 3 different components are required: the hardware, the software and

the presentation / visualization of the data. Among the numerous advantages for the society and the

economy, an IoT system could lead to the transparency of the governance and improve the awareness

and communication between citizens and the city (Crump & Brown, 2013). In this way, an IoT system

could expand the current Internet-based network from humans-humans to humans-things and things-

things communication. However, challenges like the lack of the appropriate 1) standardization, 2)

privacy, and 3) security of these applications, together with 4) the lack of tools for mining and analyses

of the big data could act as barriers in this success. Furthermore, IoT systems could be applied to cities,

leading to the notion of the ‘smart cities’. ‘Smart cities’ is one of the most rapid growing application

topic, with the most small- or large- scale applications being related to a city’s infrastructure systems

and energy fields.

2.2 Scenarios & Personas

As described in the previous section, it becomes clear that within the scope of IoT there are a lot of

different subjects to do research on. To limit these options and define some experiments three

scenarios are written for this particular project. The scenarios are measuring air quality, noise levels,

temperature and humidity. On these scenarios several decisions are made like types of sensors and

interval of measuring. To make the scenarios more ‘alive’, there are three fictional ‘stories’ described

in the following parts.

2.2.1 Air quality at Oude Langendijk

Peter owns a lunch-cafe at Oude Langendijk, in the center of Delft (figure 3). As time passes by, Peter is

getting more and more concerned about the health of his small business. His cafeteria attracts less

customers and, thus, Peter decided to learn why. After discussions with customers and several

experiments on the menu and internal decoration, Peter realized that the main reason why customers

did not choose his cafeteria anymore was the crowded street where it was located. Buses and scooters

24

were producing lots of noise and odor. The quality of the outside environment was not the same as it

used to be. Peter is now trying to find out whether the daily traffic affects the air quality of his street

and those nearby (Choorstraat, Voldersgracht). However, he understands he does not have the

knowledge and permission to do that.

Figure 3: Personality of Peter

Air quality will be expressed in a measure called Particulate Matter (PM), which is categorized in three

types: PM1, PM2.5 and PM10. Particles that belong to the PM10 category are smaller than 10

micrometer and larger than 2.5 micrometer. These are large organic particles like coarse dust, sand,

leaves or hairs. PM2.5 particles include particles such as pollen and spoors. These particles are smaller

than 2.5 micrometer and larger than 1 micrometer. PM1 particles are the smallest particles: smaller

than 1 micrometer and larger than 0.3 micrometer. To this category belong particles such as dust,

combustion particles, bacteria and viruses. Fine particles such as PM2.5 and PM1 have been found to

play a significant role in health issues, climate change and pollution problems (Vecchi et al., 2004).

2.2.2 Noise level at the Choorstraat

Eline has been working at the municipality of Delft for 3 years (figure 4). Being responsible for the

external communication, Eline is communicating with citizens to be updated about how citizens

perceive their daily lives in the city of Delft. She decided to start this research when she received

complaints about the loud noise produced by a bar/restaurant at Choorstraat. Citizens reported that

25

the problem was even bigger when parties or other events were taking place at this bar. Eline had to

take actions to solve this problem but she did not know if the magnitude of noise was dangerous for

health of residents (Haines et al, 2001). She also did not know how to find the data she needed to answer

her questions or compare the situation in the Choorstraat to other streets in the neighborhood.

Figure 4: Personality of Eline

2.2.3 Temperature and humidity at Voldersgracht

Richard was always curious about environmental issues (figure 5). Recently, Richard went shopping at

the Choorstraat, in the center of Delft. On his way back home, Richard passed by the Voldersgracht

where he immediately felt a temperature drop and rise in humidity levels. He found this strange but he

thought that such differences might be normal and caused by the presence of canals and trees along

the street. He continued walking. At the end of the street he had to turn right into the Oude Langendijk

to get the bus from the bus stop. After a few minutes of walking at the Oude Langendijk he unzipped

his jacket. He immediately realized that he did this without thinking, just because he felt again a rise in

temperature. It was true that the street was generally very busy, with busses and cars driving up and

down, but his actual feeling was not wrong. The air was warmer and less humid, Richard thought. This

shopping day at the center of Delft was the first trigger for him to look further into the temperature and

26

humidity differences which are found at certain streets and search for factors which might cause them.

Is it possible that the traffic or the canals or the trees affect the temperature of certain areas so much?

If yes, to what extend and when in time?

2.3 Conclusion literature research
In this chapter a literature research was presented regarding Internet of Things. In this context, the

definitions, elements, challenges and IoT applications of Smart Cities were discussed. Furthermore,

three different scenarios and personas were introduced with an important role in the project’s decision-

making process. As can be read in the literature research there are many topics that will be covered in

this research. In Chapter 4 the three scenarios will be analyzed. But first, in the next chapter a design

for this project is researched and elaborated, where the middleware and cloud computing are covered.

Figure 5: Personality of Richard

27

Chapter 3 – Method

This chapter describes the technical system of the project. It is subdivided into 8 sections, each of which

is described in a separate paragraph. The flow and accessory paragraphs can be seen in figure 6. The

sensor platform is described in paragraphs 3.1, 3.2 and 3.3. This is subdivided in the internal hardware

of the sensor platform, the placement of the platforms in the city, and the casing of the sensor platform.

Paragraph 3.4 describes the data storage and analysis part of the system. Finally, the feedback

mechanism is treated in paragraph 3.5.

Figure 6: Flow of the technical system

3.1 Hardware

In this paragraph is the hardware that is going to be used for the Sensor City Delft system described.

The hardware parts of the sensor platforms are the sensors themselves, development boards (including

communication over LoRa), and the charging of the sensor platforms. They are first described

separately, and then the assembly of the sensor platforms is described.

3.1.1 Introduction sensors

The sensors are the devices that pick up the environmental data in the first place. The sensors that will

be used are the sound sensor MAX9814, the air quality sensors PMS5003 and PPD42NS, and the

temperature and humidity sensor AM2302. Scripts are created for reading the data from the sensors

which are connected to the LoPy development board. These scripts are included in Appendix T, U and F

of this report. The scripts can also be found in the SensorCityDelft GitHub repository

(https://github.com/NiekB4/SensorCityDelft).

28

3.1.2 Air quality sensor 1 (PMS5003)

To gather data for the first use case is an air quality sensor needed, which will be the PMS5003 sensor,

see figure 7. The PMS5003 is a digital particle concentration sensor. It can be used to obtain the number

of dangling particles in the air, and therefore it can give an indication of the concentration of particles

(Yong, 2016).

Figure 7: PMS5003 air quality sensor (source: Yong, 2016)

The laser scattering principle is used for this sensor. This technique produces scattering by using a laser

that radiates dangling particles in the air, then the scattering light is collected, and consequently the

curve of scattering light change with time is obtained. After that, the number of particles with a certain

particle diameter per unit volume are calculated with a microprocessor mounted on the PMS5003

(Yong, 2016). For an overview of the different modules in the PMS5003, see figure 8, image left.

The output of the sensor is in digital format, so it needs a digital input on the LoPy. An UART connection

protocol is used to connect this sensor to the LoPy. This protocol requires at least two available Pins on

the LoPy. For the connection circuit to the LoPy, see figure 8, image right.

Figure 8: PMS5003 schematic overview (left) and circuit (right) (source: Yong, 2016)

The MicroPython language features an UART library to read the data from the sensor (MicroPython,

2017).

Volt booster

Since the PMS5003 air dust sensor needs an input voltage of 5 volts, while the LoPy is able to give only

29

3.3 volts output, a step-up converter (‘volt booster’) is needed. The MT3608 is an appropriate one,

which is able to work with input voltages ranging from 2 volts to 25 volts (Aerosemi Technology Co,

2017). The output of the booster is set at 5 volts. Next to powering the air quality sensors is the step-up

converter a useful device to extend the duration of the battery charge: the battery output can drop to

2 volts minimum and the devices will still work.

PMS5003 quality sensor 1: wire connections

This sensor is connected to the perfboard with 6 cables. See table 1 for the cables and the related PINS

of the LoPy module.

PIN Perfboard PIN air quality Abbreviation Cable color Description

Power + PIN 1 VCC Red Positive power 5V

Power - PIN2 GND Black Negative power

P11 PIN3 SET Yellow Set PIN

P8 PIN4 RX Green Serial port receiving PIN

P9 PIN5 TX Blue Serial port receiving PIN

P10 PIN6 RESET White Module reset signal

- PIN7/8 No connection - -

Table 1: PMS5003 pins and connections

VCC is connected via the volt booster module, GND is connected to both the GND of the volt booster as

well as the GND of the perfboard (which is connected to the battery GND).

Air quality sensor 1: data calibration

The PMS5003 sensor provides data about particles in the air. The particles that are measured are PM1.0,

PM2.5 and PM10 (PM = Particulate Matter). See the literature research for a discussion on Particulate

Matter. PM data is provided under normal circumstances and under atmospheric environment.

Therefore, there are six types of PM data in total, they are all provided per cubic foot (CF). Next to PM

data is also the number of particles of a certain diameter per 0.1 Liter of air provided by the PMS5003,

however they are not send to the database. See figure 9 for an overview of the data provided by the

PMS5003.

30

Figure 9: PMS5003 data output (source: Yong, 2016)

A ventilator inside the sensor sucks the air into the sensor case. The internal microcontroller of the

PMS5003 measures the time that the laser reflector is emitted and the time that it is not emitted. The

time that the reflector is emitted by light results in the value for high bits; the time that the reflector is

not emitted by light results in the value for the low bits. This data needs to be processed to bytes and

then integers by the microcontroller of the user of the PMS5003, i.e. the LoPy.

Data calibration PMS5003

Before the PMS5003 is deployed, the sensor is tested in three environments: inside a ‘clean’ room

(windows wide open), inside a ‘dirty’ room (windows closed and smoke), and outside. The sensor is

tested with the script in Appendix Y. See the table 2 and figure 10 for the results for the inside (‘clean’)

room.

Inside (Science Center, windows wide open) ‘clean’ air, 09-06-2017 afternoon

PM1 PM2.5 PM10 PM1.0
env

PM2.5
env

PM10
env

Data 7 Data 8 Data 9 Data
10

Data 11 Data
12

#1 3 5 5 3 5 5 930 256 46 2 0 0

#2 4 10 10 4 10 10 0 0 0 0 0 0

31

#3 3 6 7 3 6 7 855 250 44 3 0 0

#4 3 6 7 3 6 7 858 252 40 4 2 1

#5 2 5 6 2 5 6 813 223 42 4 1 1

#6 3 5 5 3 5 5 924 249 41 1 1 0

#7 4 8 10 4 8 10 897 248 59 11 3 2

#8 3 5 6 3 5 6 945 246 33 7 2 1

#9 3 7 8 3 7 8 987 274 55 8 0 0

#10 3 6 6 3 6 6 918 251 41 2 0 0

Avg: 3,1 6,3 7,0 3,1 6,3 7,0 812,7 224,9 40,1 4,2 0,9 0,5

Table 2: PMS5003 data calibration, inside, 'clean' air

And the graph, where only PM1, PM2.5 and PM10 values are plotted:

Figure 10: Plot of the PMS5003 test, inside, 'clean' air

The values can be considered relatively stable. Only the seventh measurement can be considered as an

outlier and should therefore be removed from the dataset. During the seventh measurement were the

values for Data 7 to Data 12 all NULL. So when this happens, the PM values may be unreliable. The

software should raise an exception when this happens.

However, the software in the deployed platforms does not take account when this exception happens,

so when the received PM values are remarkably high they can be considered as outliers due to this

problem. A recommendation is therefore to implement a script that only sends the messages over LoRa

when the measurements for values for Data 7 to Data 12 are not NULL. When these values are NULL,

the PMS5003 measurements should be redone.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

P
ar

ti
cl

e
s

(o
f

 µ
g/

m
3

)

Measurement (#)

PMS5003 test, inside, 'clean' air

PM1.0 PM2.5 PM10

32

For comparison, the Particulate Matter in the air in a room with ‘dirty’ air is measured. The air can be

considered ‘dirty’ since for the testing the windows are closed the whole day and there was smoke in

the room. After a couple of measurement the windows were opened, an event that can be recognized

in the graph. The values can be found in table 3 and are plotted in figure 11.

Inside (appartment, windows whole day closed, smoke) ‘dirty’ air, 08-06-2017 late evening

PM1.0 µg/m3 PM2.5 µg/m3 PM10 µg/m3 PM1.0 env
µg/m3

PM2.5 env
µg/m3

PM10 env
µg/m3

#1 174 281 317 115 187 211

#2 164 254 358 108 168 238

#3 175 284 335 116 189 223

#4 179 286 332 119 190 220

#5 170 274 314 113 182 209

#6 177 280 318 118 186 211

#7 144 256 300 94 170 198

#8 172 272 313 114 181 208

#9 66 110 130 54 88 114

#10 84 126 134 62 94 116

Average: 150,5 242,3 285,1 101,3 163,5 194,8

Table 3: Plot of the PMS5003 test, inside, 'dirty' air

Figure 11: Plot PMS5003 test, inside, 'dirty' air

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10

P
ar

ti
cl

e
s

(o
f

 µ
g/

m
3

)

Measurement (#)

PMS5003 test, inside, 'dirty' air

PM1.0 PM2.5 PM10

33

From the PM values of the second testing round can be concluded that the measurement location was

indeed a ‘dirty’ location. In fact, the European PM2.5 norm (25 µg/m3) on this place is violated nearly

ten times (European Parliament and of the Council, 2008).

The third test round with the PMS5003 sensor was in an outside environment. For this test the

stabilization of the sensor was investigated. The first measurement was outside, and during the second

measurement the sensor was exposed to (cigarette) smoke. The third measurement gave an even

higher PM value, although there was no new smoke added, so it needs time before the smoke left the

sensor. In the next three rounds was the sensor stabilized again. Then, the PMS5003 sensor was kept

(very) close to the exhaust of a car (gasoline). After this measurement, the car removed and the PM

values dropped relatively fast (see table 4 and figure 12).

Outside, two events, 09-06-2017, afternoon

PM1.0 PM2.5 PM10 PM1.0 env PM2.5 env PM10 env

#1 3 6 7 3 6 7

#2 (smoke) 129 366 498 85 243 331

#3 171 643 1187 113 428 791

#4 33 67 84 27 48 66

#5 13 23 32 13 23 32

#6 13 20 25 13 20 25

#7 (exhaust car) 514 734 794 342 488 528

#8 (exhaust car) 17 26 28 17 26 28

#9 11 20 23 11 20 23

#10 13 20 25 13 20 25

Table 4: Plot of the PMS5003 test, outside

34

Figure 12: Plot PMS5003 test, outside

Conclusion PMS5003

To conclude, the PMS5003 sensor can detect cigarette smoke and fine dust particles from car exhausts.

The sensor is able to react to the values relatively fast. Therefore, the sensor will be implemented on

the sensor platform.

3.1.3 Air quality sensor 2 (Sharp Dust Sensor)

Next to the PMS5003 there is another dust sensor that can be used: the Sharp GP2Y1010AU0F, also

known as the ‘Sharp Dust Sensor’ (figure 13). It is a dust sensor that uses the optical sensing technique.

With this technique, particles in the air are emitted with an infrared emitting diode and a

phototransistor. The first former emits the light and shines upon the particles, the latter receives the

reflected light (Sharp Corporation, 2006). With a 100msec interval are the dust particles measured.

When compared to the PMS5003, this device does not feature a ventilator that suction the air into the

device, so this device must be placed outside of the sensor platform box. According to the product

specification, the objects that this device is able to detect are house dust and cigarette smoke (Sharp

Corporation, 2006). It should be tested if it is able to detect vehicle emission.

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10

P
ar

ti
cl

e
s

(o
f

µ
g/

m
3

)

Measurement (#)

PMS5003, outside

35

Figure 13: Sharp Dust Sensor

The output of the Sharp Dust Sensor is in digital format and shows a voltage proportional to micrograms

per cubic meter. To connect this device to the LoPy there are a resistor of 150Ω and a capacitor of 220uF

needed. The connection to the LoPy will be according to the scheme in figure 14.

Figure 14: Sharp Dust Sensor connection to LoPy (source: Sharp Corporation, 2016)

After the reflected light from the particles, and thus the amount of dust, is calculated, the device gives

an analog output to the LoPy. This analog signal value needs to be transformed in a digital value on the

LoPy. The output value has a small delay: 0.28ms after the LED in the device is turned on. So the

producer of the device recommends to configure the microcontroller so that it reads the output 0.28ms

after the LED emission too (Sharp Corporation, 2016). Next to that, the producer specifies that the time

before the device is ready to detect dust is 1 second. The particles in the air are shown as a Voltage

value (ΔV):

𝛥𝑉 = 𝑉𝑜 − 𝑉𝑜𝑐

Where Vo is the monitor value, and Voc is output voltage at no dust. The Voc value is stored in the

memory of the LoPy, and if this value is relatively low for a long time, then the Voc value is replaced by

this new Voc.

Conclusion Sharp Dust Sensor

36

The LoPy features an analog to digital conversion Pin, which can be used to read analog voltages and

then convert them to a digital value. The MicroPython library for doing this is the ‘machine.adc’ module

(George & Sokolovsky, 2017). Although there is a Sharp Dust Sensor available, the sensor is not tested

nor used, since there were several bad reviews about the device and due to time limitations. Instead,

the air quality sensor 3 is used as an alternative to the PMS5003 sensor.

3.1.4 Air quality sensor 3 (Shinyei PPD42NS)

A third alternative is the PPD42NS dust sensor, manufactured by Shinyei. The light-scattering principle

is also used. This sensor works with an electrical 100mΩ resistor placed inside that warms up and

‘attracts’ the air with particles in it and then these particles are counted. The resistor is driven at 5 Volts,

with a current of 50 milliamperes, so it uses 0.25 Watt (Allen, 2013). Within the sensor the particles are

directed through a place that is emitted with an infrared LED light beam. Light that is scattered by the

particles is picked up by a photodiode. The 5 Volt power supply must be very stable, since fluctuations

in the power supply voltage will directly translate into fluctuations in light output from the LED, which

will then affect the measurements. Therefore, the MT3608 step-up converter is used and set at 5 Volts.

Figure 15: PPD42NS air dust sensor

The two blue pots on the front of the sensor (figure 15) are factory-calibrated. The part that is covered

with the blue stickers is where the particle flow will be directed through.

The output voltage of the sensor is normally high (above 4 Volts), since in a normal situation the air flow

will be ‘clean’. When a particle passes the sensing component, the voltage ‘goes low’. The amount of

time that the voltage is low is tracked, and expressed in the so-called ´Lo Pulse Occupancy (LPO)’. From

the LPO the PM concentration can be determined (Tan, 2014; Fonolossa, 2016). So in short, LPO is

proportional to particle count concentration. With this technique, the PPD42NS is able to detect

particles which have a minimum size of 1 micrometer (µm). Data from this sensor is sent over one digital

37

connection. The modulated output unit of the sensor is pcs/0.01cf (cf = cubic foot) which relates to

pieces/283ml. The number that is shown is then the number of particles with a minimum size of 1µm in

the air (Seeed, 2017).

A voltage divider is needed to make sure that the LoPy device does not receive too much volts from the

PPD42NS. When the 5 Volts from the sensor are directed to a data input Pin on the LoPy this Pin can be

damaged. The LD1117AV33 voltage divider is used, which brings the voltage down to 3.3 Volts (ST

Microelectronics, 2013). The voltage divider has the pin connections as can be seen in figure 16.

Figure 16: LDD1117AV33 voltage divider (source: ST Microelectronics, 2013)

Since the PPD42NS has no built-in option to switch the device off, the sensor will be activated the whole

time by default when it is connected to a battery. The 100mΩ resistor will always use 50 milliamperes,

which drains the battery. Moreover, since for the application of this project the measurement will be

done with a 15 minutes interval, there is no need for the sensor to be kept on. Therefore, a transistor is

added which turns the device on when needed and off when measurements are done. The 2N3004 NPN

transistor in combination with a 1000Ω resistor is used, and the transistor is connected to output Pin 3

on the LoPy device to switch the PPD42NS on and off.

Data calibration PPD42NS

Findings from the testing by Tan (2014) are that the sensor is able to detect cigarette smoke, that the

sensor goes gradually down when the conditions change, so the device can be regarded as reliable.

However, Tan (2014) did not test the sensor outside.

With the PPD42NS dust sensor three tests are done. The sensor is tested inside under stable

circumstances (with a closed box), to make sure that the data fluctuates not too much. Then is it tested

inside with an open box, so inside air flows can affect the measurements, and then finally the sensor is

tested outside in a green environment. See table 5 and figure 17 for the results.

38

Inside and outside, 13-06-2017, afternoon. Unit: pcs/0.01cf (cf = cubic foot)

 Inside, open box Inside, closed box Outside, park environment

#1 1,7409 3,1764 2,1306

#2 5,0959 0,9364 3,4783

#3 1,4387 25,0958 2,1025

#4 3,8665 2,3745 3,7201

#5 1,5640 9,2586 6,2140

#6 1,8296 3,5771 4,6176

#7 1,2923 6,3345 2,7359

#8 2,2838 3,4172 7,8645

#9 1,3807 6,4268 2,9212

#10 1,4175 10,6047 3,5185

#11 1,5928 11,7328 3,5880

#12 1,3183 28,1408 7,0021

#13 1,8700 16,3216 10,0172

#14 1,1048 9,6844 3,1045

#15 2,1596 3,9915 6,3850

#16 0,8694 29,0757 2,4866

#17 1,3720 8,1929 2,1293

#18 0,9622 4,4224 1,3649

#19 1,2199 8,3300 6,5895

#20 0,8111 3,1753 2,3503

#21 0,6547 1,8521 9,0970

#22 1,3523 3,0262 1,8006

#23 1,3098 4,8078 5,6989

#24 1,9368 3,2657 4,2180

#25 2,6682 2,3903 5,5103

#26 2,2324 1,5360 7,9867

#27 1,3372 4,0016 3,1580

#28 2,1509 1,8826 3,0841

#29 2,1975 5,0593 4,9903

#30 1,6344 4,2861 5,7389

average 1,7555 7,5459 4,5201

Table 5: PPD42 tests

39

Figure 17: PPD42NS tests plot

The first peak in the second measurement round (inside, open box) is because the device was moved

slightly, the second and third peaks occurred because there were relatively hard blows of wind into the

room.

Conclusion PPD42NS

From the test results of the PPD42NS can be concluded that the values will fluctuate relatively much

due to weather conditions (wind). Therefore, precautions should be taken with the design of the box:

the sensor should be protected against strong wind currents and the whole sensor box should not be

placed in a relatively windy area. When these precautions are taken, the results can be regarded as

reliable. Therefore, the PPD42NS will be implemented on the sensor platform.

In the previous sub-paragraphs are three possible air dust sensors described, which all can be used to

measure the air quality which is needed for the first use case that this report focuses on. In the project

only device 1 and 3 will be implemented, i.e. the PMS5003 and the PPD42NS sensors.

3.1.5 Sound sensor: MAX9814

For the second use case that is described information about the sound levels in the streets needs to be

achieved. This will be done with the MAX9814 sound sensor, see figure 18.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30P
ar

ti
cu

la
te

 m
at

te
r

(p
cs

/0
.0

1
cf

)

Measurement (#)

PPD42NS test measurements

Inside, closed box Inside, open box Outside

40

Figure 18: MAX9814 sound sensor

According to the manufacturer, the MAX9814 is a “low-cost, high-quality microphone amplifier that has

automatic gain control (AGC) and a low-noise microphone bias” (Maxim Integrated, 2016). The output

amount of decibels of the sensor can be configured by the user, by connecting the preamplifier and

output amplifier.

Further, this sensor will be connected to the LoPy according to the OneWire protocol, since the sound

level that is measured is transferred to the development board over a single channel (mono). A digital

input Pin of the LoPy is used to connect this sensor to. Between the output of the sensor and the digital

input pin of the LoPy is a capacitor of 1 micro Farad (1µF) needed (Adafruit, 2015). For a schematic

overview of the connections on the sensor see figure 19. The MicroPython programming language

provides a OneWire library, which will be used to read the sensor data (Pycom, 2016).

Figure 19: Schematic overview of the MAX9814 sound sensor (source: Adafruit, 2016)

MAX9814 data calibration

Although the MAX9814 gives an indication of the intensity of noise at a certain moment, it is not really

41

a device meant for detecting sound levels. The purpose of this sensor is to pick up a sound and amplify

it. It therefore has a built-in Automatic Gain Control chip, that ‘locks onto’ the input signal, and makes

sure that gradual changes in the amplitude of the input signal has minimal effect on the output signal.

The amplification of the sound is not a purpose of this project, however the picked up sound intensity

can result in a useful indication of sound levels at a location.

In the graph of figure 20 are the results of a test with this sensor shown. The test is executed at six

different types of locations, as can be seen in the legend of the graph. For every 10 seconds are the

average and median values plotted in the figure. The thick lines represent the outside measurements,

near a road where there was a relatively continuous flow of cars. There is a difference visible in the data,

so, in theory, it should be possible to see these patterns in the city too.

42

Figure 20: Graph of test measurements with the MAX9814

The test code can be found in Appendix T. Although it is possible to see patterns, the deployed sensor

platforms have a script that sends only one value for every 15 minutes (not averaged). This is because

the LoRaWAN communication protocol that will be used does not allow to send big amounts of data.

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

V
o

lt
ag

e
 in

d
ic

at
io

n
 (

n
o

 u
n

it
)

Measurement (#)

Noise level measurements with MAX9814 microphone

Average 'office like' Median 'office like'

Average 'discussion' Median 'discussion'

Average 'outside, side of road' Median 'outside, side of road'

Average, side of road, bushes in between Median, side of road, bushes in between

Average, courtyard Median, courtyard

Average, silent part museum Median, silent part museum

43

Moreover, output of the MAX9814 will be a voltage level that relates to the loudness of a phenomenon.

The way the sound sensor is used in this project seemed not to be useful to be able to answer the

research question. A recommendation is to change the software such that more measurements are

executed, whereby maximum and minimum values are stored as well as an average sound level. This

can give more insight in the ‘loudness’ on a location than only one single measurement.

3.1.6 Temperature & humidity

The third use case that is described focuses on the temperature distribution on the measurement

locations. Temperature is calculated with the basic, low-cost digital temperature and humidity sensor

AM2302 (figure 21). The temperature is measured with a thermistor that measures the surrounding air,

and gives a calibrated digital output signal on the data pin, so there are not analog input pins needed

(Liu, year unknown).

Figure 21: AM2302 temperature and humidity sensor

An 8 bit microcontroller does the conversion from the measured temperature value to the digital output

of the device. An exhaustive description of the single-bus communication protocol that is scripted on

the microprocessor of the AM2302 can be found in Liu (year unknown). For now it is important that the

temperature error as specified by the producer is shown in figure 22, so with the Dutch weather

conditions an error of around 0.25 degrees Celsius can be expected.

44

Figure 22: Maximum temperature error (source: Liu, year unknown)

Further, the device is connected to the LoPy according to the OneWire protocol (see figure 23)

MicroPython features libraries that can read data from digital temperature and humidity sensors such

as the AM2302. The MicroPython library is in the ‘dht’ module (George & Sokolovsky, 2017).

Figure 23: AM2302 pin assignment (source: Liu, year unknown)

AM2302 tests

On the afternoon of 27-05-2017 the temperature and humidity sensor is tested on five different

locations: inside in a living room, in a hobby room, and in a cellar; and outside on a terrace in the shadow

of a tree and on a location exposed to the sun. With the temp_hum.py script (see Appendix U) the values

for the locations measured. In this script are for each 5 seconds the temperature and humidity values

given. When moving to another location, the sensor is first placed on that location for a minimum of 5

minutes to adapt to the environment. Then the measurement are conducted during 5 minutes. See

table 6 for the results.

45

Location Temperature (in degree C) Humidity (in %)

Inside: living room 23.9 55.0

Inside: cellar 14.2 87.1

Inside: hobby room 17.9 87.4

Outside: terrace, shadow of a tree 29.4 40.2

Outside: terrace, full sun 36.2 27.8

Table 6: AM2302 tests, five locations

In addition to these measurements two devices are located close to each other and compared to an

Auriol temperature and humidity measuring device. For a period of 15 minutes are the values calculated,

and the results are shown in table 7.

Location AM2302 #1 AM2302 #2 Comparison device
Auriol

 Temperature Humidity Temperature Humidity Temperature Humidity

Average 15 minutes 22.3 57.6 21.7 60.3 22.0 55.0

Average 15 minutes 22.3 58.2 21.7 61.6 22.0 55.0

Table 7: AM2302 calibration

So the accuracy of the device is about 0.3 degrees Celsius for temperature and 5% for humidity (when

the Auriol benchmark device is considered as being reliable).

The testing of the AM2302 concludes the description of the separate sensors that are used. The next

section elaborates on the development board.

3.1.7 Development board

The development board or microcontroller is the processing unit to which all sensors are connected.

This ‘platform’ also includes software that allows to read the data from the sensors, save it temporary,

preprocesses it by doing calculations, and sends it to a gateway (from where it is send to a database).

In this part the microcontroller that will going to be used is described: the Pycom LoPy.

Pycom LoPy

The PyCom LoPy is a microcontroller that features data communication over three networks: WiFi,

Bluetooth Low Energy, and LoRa. It has an on-board flash memory, features relatively high processing

speed, has a decent amount of RAM, when compared to its competitors (see table 8). The specifications

are retrieved from the specsheets of the products (Pycom, 2017; Arduino Corporation, 2017;

RaspberryPi, 2017).

46

Since the LoPy features a high amount of communication options, an onboard flash memory, and

relatively high processing power, and combines this with low energy usage, the LoPy is chosen.

Moreover, the LoPy features the LoRa communication technique, of which producers proclaim is being

a good solution for Internet of Things applications (LoRa Alliance, 2017).

 PyCom LoPy 1.0 Arduino Uno Raspberry Pi 3

Chipset Espressif ESP32 ATmega328P ARMv8

CPU 160 MHz 16 MHz 1.2 GHz

RAM 512 KB 2 KB 1 GB

Flash memory 32 MB 32 KB No flash, only micro-sd

Communication WiFi, Bluetooth Low
Energy, LoRa

WiFi, (LoRa possible with
Marvin LoRa development
board)

WiFi, Bluetooth Low
Energy, Bluetooth 4.1

Scripting language MicroPython C# Python

Table 8: Comparison of Pycom LoPy, Arduino Uno, and Raspberry Pi microcontrollers

3.1.8 LoRa and LoRaWAN

The LoPy features the LoRa modulation technology, a technique owned by Semtech that enables

Internet of Things by offering a cheap, long range and low power national network (KPN, 2017). Gateway

devices that receive the LoRa signal are very sensitive because the Chirp Spread Spectrum (CSS)

communication technique is used. CSS allows the sender to send message with low power, also when

noise is high and distance is big. See figure 24 for an schematic overview of how the LoRa message is

modulated over the signal. For a more detailed description of the LoRa technique and test results, we

refer to LoRa Alliance (2017), Petäjäjärvi et al (2015) and Aref & Sikora (2014).

Figure 24: LoRa modulation (source: KPN, 2017)

47

The LoRaWAN protocol sends small messages efficiently by using LoRa modulation: the size of such a

message has a maximum of 54 bytes. As opposed to the TCP/IP protocol, the LoRaWAN protocol allows

radio modules to sleep most of the time, because the connection does not have to remain open to be

synced in the LoRaWAN network. LoRaWAN enables devices to send uplink (from device to application

service) and downlink (from application server to device) messages.

The parameter that shows the quality of the received signal is the Spreading Factor (SF), where SF7 is

close to a gateway (‘good’) and SF12 is far away from a gateway (‘bad’). Placing a LoRa device outside

on a façade is beneficial for a higher SF, because there is higher chance of line of sight between the

device and a LoRaWAN gateway. LoRa uses more spreading, and repeating messages, when there is a

weak signal or a big amount of noise. The ideal SF is chosen by LoRaWAN itself, by using the Adaptive

Data Rate (ADR) technique. With ADR, first a message is send on SF12, where after the network

measures the signal strength, and then replies to the device which SF it should use from then onwards.

See figure 25 for SF and their characteristics.

Figure 25: LoRaWAN SF characteristics (source: KPN, 2017)

LoRa uses the license-free frequency spectrum in the 868 MHz band, which is an ISM band. This band is

divided in sub-bands ranging from 863 to 870 MHz. The relevant frequency bands are then the F, G, H,

and K1 bands, as defined by the Dutch Government (Agentschap Telecom, 2014). For LoRaWAN, the G

band is mostly used, ranging from 865.0 to 868.6 MHz. Users have to obey restrictions determined and

enforced by the government for these frequencies, such as a maximum power output of 14 dBm and a

limited allowed time-on-air (duty-cycle) of maximum 1% of an hour (KPN, 2017).

The messages (keys, payloads and addresses) that are broadcasted over LoRaWAN are encoded in

hexadecimal strings. To secure these messages, LoRa uses the Advanced Encryption Standard (AES). A

key of 128 bits, which is the same as 32 hexadecimal characters, is used for this encryption. Next to that,

network information is encrypted with a Network Session Key (NwkSKey), which needs to be shared

between the device and the KPN LoRa core network. Furthermore, the payload information is encrypted

48

with an Application Session Key (AppSKey), that must be shared between the device and the customer

application server. KPN delivers a Device Address (DevAddr) to the developer, which is a unique

identifier within a specific LoRa network. An End Device Unique Identifier (DevEUI) is defined globally.

It is unique for all LoRaWAN networks, and is administrated by the IEEE (KPN, 2017).

LoRa in the Netherlands: KPN versus The Things Network

Two initiatives that provide communication over a LoRa network are available in the Netherlands. One

initiative is by KPN, which covers most of the Netherlands with a network of more than 1000 LoRa

Gateways (KPN, 2017). Another initiative is by The Things Network, a community-driven initiative that

is building a global Internet of Things data network (The Things Network, 2016). In table 9 advantages

and disadvantages are described (source: authors). Thereafter, the LoRa networks of KPN and The

Things Network are compared.

 KPN The Things Network

Advantages + nationwide coverage (coverage in study area)

+ good web-debugger, where message payloads
can be retrieved

+ big community and online forum

+ free to use (unlimited number of devices can be
added)

+ possibility to add own LoRa gateway

+ two types of message decryptions (OTAA and ABP)

+ big community and online forum

Disadvantages - limited number of devices can be added for
free (maximum 10)

- problem with ABP message decryption, after
sending over LoRa

- no coverage in study area (can be overcome by
adding LoRa gateways)

- no web-debugger to see payloads

Table 9: KPN and The Things Network LoRa comparison

The Things Network research

The coverage of The Things Network (TTN) is tested in the study area. The closest active TTN gateway is

located at the TU Delft campus, at the Faculty of Electrical Engineering, Mathematics and Computer

Science, as shown in map 1.

49

Map 1: The Things Network coverage in Delft (source: The Things Network, 2017 (edited))

There is no coverage in the study area because only locations that have direct view of the above-

mentioned gateway have coverage (map 2). This might be due to the low energy of this gateway.

Map 2: The Things Network coverage test in the study area

50

The possibility of deploying Nano-gateways to extend the things network to cover the study area was

researched. These gateways are connected to the internet via DSL and uses LoPy to receive the LoRa

signal. However, these gateways were not used eventually because a large amount of them needed to

create un obstructed view with the sensors. Moreover, multiple collaborative citizens are needed to

place these gateways at their places and connect it to their internet. The possibility to use different

hardware was also not possible because of high expanses that are not possible within the context of this

project. Moreover, KPN provides a free account that was sufficient for the project and deploying these

Nano-gateways will cost unnecessary time and money.

KPN LoRa network research

KPN coverage is first tested in the study area, there were no issues found regarding the coverage. LoRa

signal was sent from the study area and received by KPN gateways, the study locations and the receiving

KPN gateways are shown in map 3.

Map 3: KPN LoRa connectivity test in the study area

When the message of LoRa via KPN is received it will be encrypted. Node-RED is used to decrypt the

message, which will be discussed in paragraph 3.4. The full decryption code is found in the Appendix S.

51

3.1.9 Software on the LoPy
LoPy software environment

The LoPy board works with Micropython, which is a Python 3.5 implementation optimized to work on

microcontrollers. There is a flash folder on the LoPy where it is possible to add and remove files. The

available RAM capacity is 512 KB for Python code while the storage capacity is 32 MB. When booting,

two files are executed automatically:

1. Boot.py: This is the first file to be executed automatically (as can be seen in figure 26), it contains

necessary information for the LoPy to boot.

2. Main.py: Is executed automatically after Boot.py. Here, the main.py file is programmed to

access the data collected from different sensors, process the data and send it through LoRa to

the gateway.

Figure 26: the default folder structure in the flash folder of LoPy

File structure of the LoPy sensors platform

The goal of the software architecture of the board is to efficiently acquire the data from different

sensors and send this data using to a LoRa Gateway using the LoRa component in the LoPy. To achieve

this goal the folder structure of the flash folder looks as following (figure 27).

Figure 27: the folder structure in the flash folder of LoPy for each LoRa platform

These MicroPython files will have the following functions:

- boot.py: left almost unchanged. Only one line is added to it to change the password of the LoPy

to prevent other people from accessing and making changes to the software;

52

- main.py: It will import the data from all the sensors and send the data using LoRa ABP

(Activation by Personalization) protocol;

- config.py: will add the following an ABP authentication parameters:

o DEV_ADDR = Device address

o NWKS_KEY = network shared key

o APPS_KEY =applications shared key

- the folder lib contains the library related to the temperature and humidity sensor.

Software architecture of main.py

The main.py program is where most of the software functions will happen. Two versions of this file are

used depending on the AQ sensor used: PMS5003 or PPD42NS (see appendix J for the whole program).

When the main.py program is executed the following workflow as shown in figure 28 will run.

In the workflow are first all the important libraries for the program to function properly loaded. Most of

these libraries are already defined on the LoPy. Other libraries are added to the flash folder which are:

- config: which contains the unique authentication parameters, and

- DTH function from the dth library which will read the temperature and humidity.

Next the watchdog timer (WDT) is set to 32 minutes to restart the program if it failed to completely run

within this time frame. Then the send with LoRa parameters are defined. Afterwards, the different read

from sensors functions are defined. These read from sensors functions contains which Pin provides the

sensor data and other sensor specific functionalities. Next, a While True loop will run indefinably if the

hardware is running properly. In this loop, the readings from sensors functions will run and will give

output values.

During the while loop, the output values are formatted to be efficient for sending by LoRa. This is done

by converting the values into hexadecimals. And then splitting the values into bytes, so that every value

will not take more than one byte. For example, in temperature and humidity the numbers on the left of

the comma are sent separately from the numbers on the right of the comma. These values are then

combined back in Node-Red.

53

Figure 28: Workflow of main.py (PMS5003 on the left and PPD42NS on the right)

54

After formatting the values, they are combined in one list of 13 bytes/value and this list is sent as a LoRa

message. Next a WDT is fed which will inform that the program is running properly. Next the program

will be placed to sleep for 12 minutes and then for a deep sleep for 30 seconds, where after the program

is started again.

Program design

The above-mentioned design was made in a way that will fulfil the aim of the sensor platform in a simple

and efficient way. It also takes into consideration the limitation of LoRa and LoRa regulation policies as

mentioned described in paragraph 3.1.3, which limits the data each end-device can send.

To decrease the size of the LoRa massage, there has been decided not to include a unique id of the

device and not to add a timestamp to the sensed data. Because when a LoRa massage is sent and

received by the database, the message will automatically be time stamped by the gateway and a unique

id of the device will be also included. This information will later be included in the database. Therefore,

the time of receiving the massage will be considered the same as the time of collecting the data.

Temperature and humidity readings do not need to be as frequent as the noise and AQ readings.

However, according to the LoRa policy mentioned above it is not possible to send the high frequency

and big size messages that noise and AQ ideally requires. Moreover, creating different readings

frequencies has the following disadvantages:

- it will require different time stamping;

- it will create an unnecessary complexity in the database, and

- more energy consumption.

Therefore, a high frequency has been chosen for all the sensors. And for every cycle, a reading is taken

from all sensors and sent to the gateway.

3.1.10 Charging of the sensor platform

Types of batteries, the charging module, and the solar panel charging solution are described in this

paragraph.

Batteries and charging

The sensor platforms get energy from batteries with a capacity of 5000 mAh. In the first four sensor

platforms only one battery is placed, while in two new sensor platforms there are two batteries placed

55

(in parallel).

The batteries are the GEB 905085 lithium-polymer batteries. These batteries have a capacity of

5000mAh and deliver around 3.7 Volts. When the batteries are totally charged, they deliver 4.17 Volts.

The batteries are rechargeable. These batteries are able to work between temperatures of -20℃ until

60℃ (General Electronics Battery Co, 2017). The batteries are shipped with a female connection cable,

only for the connection of this battery to the sensor perfboard is a lipo battery ‘male’ JST connector

needed with a pitch distance of 2 millimeter.

For the charging of the batteries are the Adafruit Lipo chargers used that is able to charge with a current

of 500mA. So charging a completely empty battery will take around 10 hours.

Solar panel system

To overcome the challenge of battery drainage the possibility of using solar panels system as a

sustainable charging method is explored. This system is then connected to the sensors platform which

provide sufficient electrical current for a single sensors platform. The components of the system are

shown in table 10.

Quantity Name Model Specifications
8 solar panels 70X35 2V , 35MA

1 lithium-polymer battery GEB 905085 5000mAh

1 Integrated System Load Sharing and
Battery Charge Management

MCP73871 Simultaneously Power the System and
Charge the Li-Ion Battery

Table 10: components for the solar panels system

To optimize the solar panels system, every two solar panels are connected as series. The

resulting four doubled solar panels are then connected on parallel to form one combined solar

panel that has a default specifications of 4v and 140mA. That is sufficient to power the sensors

platform with high energy consuming sensors such as the PPD42NS.

The resulting solar panel is then connected to the Load Sharing and Battery Charge

Management system which will charge the battery and provide a current of regular 3.7 V to the

sensors platform (see figure 29 and figure 30).

The system is then tested on a sensor platform equipped with a PPD42NS which has a high-

power consumption. This platform worked for a maximum 16 hours when connected to one

5000mAh battery. The same sensors platform worked for a maximum of 20 hours when

connected to the solar panel system that is equipped with the same battery. The increase of

56

work time is then 20%. However, this test is done while the solar panels system is inside in the

shadow. A higher result will be achieved if the system was under direct sun light.

Due to time limitations, further optimization was not performed on the solar panel system.

Based on the results so far, it is possible to create a self-sufficient sensors platform by using

solar panels system that has more solar panels and batteries capacity.

Figure 29: Solar panel system design

57

Figure 30: Charging the LoPy with solar panels

3.1.11 Creating the prototype

In the previous paragraph all the separate parts of the sensor platform are described. How they are

integrated on the sensor platform is described in this paragraph.

A perforated board (‘perfboard’, see figure 31) forms the basis of the sensor platform. They are chosen

instead of Printed Circuit Boards or Breadboards, because the number of available pins to connect

sensor cables to it is high. Connections between sensor pins and relevant holes on the perfboard can be

created easily, just by soldering and/or scratching away connections. Furthermore, the sensors can be

removed relatively easy from the perfboard since they are connected via ‘headers’. That is

advantageous for maintenance and re-use of sensors. Finally, perfboards are relatively cheap.

Figure 31: perfboard, with headers and a LoPy

58

Then, the LoPy, charging circuits, connection cables, and batteries are placed onto and close to the

perforated board. The sensors are not placed on the perforated board, since they need to measure the

‘outside’ air and are thus placed outside of the heavier protected compartment of the box.

3.1.12 Producing more sensor platforms

The final part of the hardware section now describes how more sensor platforms are produced. The

schematic design according to which the other sensor platforms are created is according to figure 32.

In this figure is shown which of the Pins on the LoPy are connected to Pins on sensors.

GND BAR – MAX9814 (-), AM2302 (-), PMS5003 (-), PPD42NS (-), BATTERY GND BAR

3.3V BAR – MAX9814 (+), AM2302 (+)

BATTERY GND BAR – Volt Booster (IN-)

BATTERY 3.7V BAR – Volt Booster (IN+)

 RST 5V Volt Booster - OUT +

 P0 GND GND BAR

 P1 3.3V 3.3V BAR

 P2 P23

AM2302 (DATA) P3 P22

PMS5003 (SET) P4 P21

 CLK P20

 MOSI P19

 MISO P18

PMS5003 (RESET) P8 P17

PMS5003 (TXD) P9 P16 MAX9814 (DATA)

PMS5003 (RXD) P10 P15

PPD42NS (DATA) P11 P14

 P12 P13

LoPy (5V), PMS5003 (+),
PPD42NS(+)

OUT + OUT - GND BAR

Battery 3.7V BAR IN + IN - Battery GND
Bar

Figure 32: Schematic overview of the sensor platform

59

3.1.13 Conclusion hardware

In this paragraph the different aspects of the hardware of the Sensor City Delft project are described.

The sensors themselves, the LoPy development board, communication over LoRa, software on the LoPy,

charging of the sensor platforms, and integrating all the components on the perfboard are covered. The

next paragraph focuses on the study area: where in the city center the sensor platforms are going to be

placed and how exactly.

3.2 Area of study: location and sensor placement

The sensor platforms are deployed in the city center of Delft. The streets for placing the sensors are the

Choorstraat, Voldersgracht and the Oude Langendijk (see map 4). Each street has its own profile. All

streets have shops, restaurants and cafes. The Choorstraat is the smallest of the tree streets. It is a

shopping street where mainly pedestrians and cyclist come. The Voldersgracht is meant for local traffic;

pedestrians and cyclist are also allowed. One side of the street has buildings while and on the other side

the canal is located. The Oude Langendijk is the busiest of the three streets as it allows pedestrians,

cyclists, cars, and public transport.

Map 4: The study area in red, scale 1:2381

3.2.1 Requirements for placing the sensor boxes

For the sensors placement in the streets several requirements are determined. Firstly, the sensors boxes

have to be mounted at a height at which people cannot reach it. This prevents people from taking or

60

breaking the sensor. Secondly, the location of the sensor boxes should be visible to pedestrians walking

by, in order to enable interactivity. Thirdly, the location of the sensor should make it possible to make

repairs when a part of the sensor box is broken.

Several options are investigated to which the sensor boxes can be attached. For attaching the sensors

to the facades research is conducted into suitable facades. In this research was looked at attributes

sticking out of the facade and overhangs at which the sensor boxes can be placed, this research can be

read in Appendix K.

Another option for sensor placement are the lanterns and trees in the streets. The specific trees and

lanterns that are considered for hanging the sensor boxes to are shown in appendix L. For attaching the

sensor boxes tie rips are used. For this option it was necessary to get in touch with the municipality to

ask for permission to place the sensor boxes. The project group contacted the Centre Manager of Delft

(Stichting Centrum Management Delft, 2017), who gave permission to hang the sensors on tree and

lanterns in the designated study area. In addition to the sensor boxes, also billboards and flyers are

distributed though the city center of Delft and in shops in order to raise awareness among citizens of

this project.

Figure 33: Deployed Sensor and Billboard at the Oude Langendijk (left) and Voldersgracht (right)

61

3.2.2 Conclusion

Five sensors have been deployed in the city center of Delft. Two at the Voldersgracht and the Oude

Langendijk, and one at the Choorstraat. The sensor platforms were tie ripped to both streets and

lanterns, out of reach of passersby. This was possible because the project got permission from the

Municipality of Delft to hang them there. See map 4 for the final sensor deployment locations and figure

33 for deployed sensors with billboards.

3.3 Casing

This paragraph presents the design requirements regarding the casing, i.e. the design of the sensor

boxes. The casing consists of two different parts: the inner box and the casing. Each of these parts is

used for a different purpose and, thus, it has distinct guidelines and design requirements. These design

requirements are introduced below, together with a discussion on the decisions taken. Finally, the end

product of this project is presented.

3.3.1 Casing design requirements

The casing is used for the protection of both the sensors and the hardware. The hardware and the

batteries were placed inside an inner box with the aim to ensure safety of the sensitive parts. The inner

box is a part of the casing which, as mentioned above, has distinct requirements that are further

described in a separate paragraph. For a successful design of the casing, it is important to ensure good

ventilation of the sensors and the inner box.

Furthermore, a possible obstruction of the sensors might affect the measurements taken and lead to

unwanted results. On the other hand, a complete exposure to the unexpected weather conditions of

the Netherlands could harm the sensors. The material of the casing needs to be durable in order to

withstand the various weather conditions of the whole implementation period. In addition to this, the

selected material(s) has to be corrosion-resistant and watertight. Based on these requirements, three

materials were introduced; acrylic, polypropylene and EVA cast. Other materials with IP65, IP67 & IP68

should also be considered for the particular project. Notably, the material selected had to be consistent

with the manufacturing technology.

To stimulate the interaction with the citizens and for aesthetic purposes, the design of the sensor needs

to be noticeable and appealing to the citizens. At the same time, the colors of the casing must not affect

62

the measurements of the temperature sensors. The logo of the project should also be included in the

casing design. Finally, essential contact information has to be shown on the casing, to avoid any

possibility that the sensor box gets stolen or lost. For a design of the 3D model that obeys the before

mentioned requirements, see figure 34.

Figure 34: Different views of a casing design concept

Inner box design requirements

Considering the sensitivity of the hardware to the weather conditions, the most important requirement

of the casing design is the inner box. The inner box houses all the hardware, i.e. the perforated board,

the batteries, and the LoPy. Important for a successful design and implementation is the protection of

the hardware from the rain and other weather conditions that could damage or destroy the hardware.

This protection could be achieved by placing the hardware in a watertight box. For making a watertight

box, two main things had to be taken into consideration, the material(s) of which the box is

manufactured and the way the inner box closes.

Furthermore, the inner box should contain enough space for the cables, since a connection between

the hardware and the sensors needs to be made. In addition, an opening should be included for the

connection between the LoPy and the LoRa antenna. Another factor that should be taken into

consideration is the cost of the inner boxes.

Regarding the box size selection, an appropriate size should be no larger than the one required for the

placing of the hardware and the cables. More space might result to a costly and time-consuming process

and, in the end, to the manufacturing of a bulky casing that could be difficult to be attached to the trees

or lanterns. Finally, a critical factor for the inner box selection is the need to open the inner box easily

63

in order to maintain the perforated board and replace the batteries when needed.

Considering these requirements and the time restrictions, two alternate inner boxes were taken into

consideration; a cable box and a lunch box. The inner box (together with the sensors) is placed inside

the casing for protection by the rain, wind and/or other weather conditions. Table 11 summarizes all

the above described requirements for the casing (including the inner box).

Inner box Casing

Watertight Watertight

1 compartment (battery & LoPy) Corrosion-resistant

Can be opened and closed Material (Perspex, polypropylene, EVA cast, IP)

Several holes for cables Attachment holes

LoRa antenna hole Tie-rips

Coating LoRa antenna hole

Table 11: casing requirements

3.3.2 Manufacturing method and materials

Both the lunch box and the cable box were appropriate choices for an inner box. A lunch box as this was

easier to open without harming the batteries or cables.

The laser cutting technology was used as the main manufacturing technology of the casing. However,

the use of this technology comes with restrictions regarding the materials that could be used. More

specifically, toxic materials such as polypropylene or EVA cast, were not allowed. For that reason, it was

decided to use the acrylic perspex. The advantages of using perspex are: a. the price is reasonable, b. it

is available in different colors which improves the design and, c. fulfills the pre-defined requirements.

Five different colors were used for the casing; lemon, light blue, blue, white mat and white transparent.

All 15 casings were manufactured (laser cut and assembled) within 28 hours.

For the ventilation pieces, a 3D model was created in Rhinoceros 5 and, later got 3D printed. Plastic was

used as the main material for the ventilation pieces, coming in three colors; grey, white and dark blue.

The total amount of time spent for the ventilation 3D printing was 8 hours.

64

3.3.3 End product

The final casing is presented in figure 35. Take into account the details of the casing, such as ventilation

pieces and icons on the right side of the sensor box. Figure 36 shows the cable box solution (left) and

the lunch box solution (right) for the inner box. Appendix M shows in detail the 2D view of the casing

and the dimensions for the manufacturing.

Figure 35: Final casing in 2 colors (left image). Ventilation piece and icons of measurements on the right

side of the sensor box (right image)

Figure 36: Cable box (left in image) and a lunch box (right in image) as inner boxes, and the sensors

used in the final casing

65

3.3.4 Conclusion casing

The casing of the sensors was an experimental process that was completed within one week. Perspex

and plastic were the main materials used for the manufacturing of the casing and the ventilation pieces,

respectively. Two different technologies were used for the completeness of the product design: the

laser cutting and the 3D printing. Lunch boxes were used as inner boxes after applying the required

actions in order to be functional. The parts that were created to support the inner box were also

manufactured with laser cutting and glued inside the casing. Additional changes in the final casing were

required and were relevant to the way that the various parts were assembled. In practice, the design of

the casing achieved its primary target to be appealing to the public, easy recognizable for the project

and to constitute part of the city center. After a week of deployment the sensor casings were still in

mint condition, so they can be reused.

3.4 Data

The previous paragraphs focused on the components of the Sensor City Delft system that are located in

the city. From this paragraph onwards, the components are located on the campus: on the virtual

machine of the TU Delft. In this paragraph the data storage in a database is described. The used tools

are Node-RED and PostgreSQL and will be introduced in paragraph 3.4.3. The data will also be processed

in the Node-RED environment, which is explained in the last subparagraph (3.4.4).

3.4.1 Data processing and storage

Database plan

This database plan is written as a guide to implement the database. It also acts as a functional

specification overview of the database. The amount of detail and the complexity of the database design

is subsidiary to the complexity of the data. In general a database plan follows the following steps:

1. Gather information.

2. Identify the objects.

3. Model the objects.

4. Identify the types of information for each object.

5. Identify the relationships between objects.

1. Gather information

What is expected from the functionality of the database?

- Store (raw) data of sensors

- Retrieve data for twitter bot

66

- Retrieve data for website

- Retrieve data for post-analysis

2. Identify the objects

What elements will be part of the database?

- Air quality data

- Noise data

- Temperature data

- Humidity data

- Device addresses

- Timestamps

3. Modelling the objects

After identifying the objects in the system they should be modelled, i.e. represent them visually. This

could be used as a reference to and visual presentation of the database.

Figure 37: Database system visualized

4. Identifying the types of information of each object

After defining the objects of the database it is important to identify the types of information that must

be stored into the database. These will eventually be the columns of the tables. There are four common

types of information defined:

1. Table of raw data

- All data collected by the sensors is send in JSON format to the database (in string

format). This JSON object contains all information of the send message, including the

67

information of the measurements, the device address and other information. See

Appendix L for an exemplary JSON object which is send to the raw data table.

2. Categorical columns

- Temperature (float)

- Humidity (float)

- Air Quality (integer)

- Air quality table with single measurement (PPD42NS sensor)

- Six measurements (PM1.0 etc.) (PMS5003 sensor)

- Noise level (float)

3. Identifier columns

- Every row in every table gets a unique ID based on the time of insertion

4. Relational or referential columns

- Device address (Variable Character Field)

The table in which the data is saved contains 12 columns as can be seen in table 12. When the PPD42NS

sensor is implemented on the sensor platform the ‘Air Quality’ column will have a value and the PM

values will have values 0. When the PMS5003 sensor is implemented the columns with ‘PM’ in the

heading will have a value, and the ‘Air Quality’ will not.

Device
address

Temp. Humi-
dity

Noise Air
Quality

PM1.0 PM2.5 PM10 PM1.0
(atm)

PM2.5
(atm)

PM10
(atm)

Timestamp

14203210 23.8 45.2 22 237 0 0 0 0 0 0 2017-06-09
18:11:09

1420366D 23.7 63.7 10 0 4 14 14 4 14 14 2017-06-09
21:38:04

Table 12: Database table with device addresses, measurements and timestamps

The raw data is saved in a table with one column (table 13), since the JSON object is saved as a string as

a single entry.

Raw Data
{"DevEUI_uplink":{"Time":"2017-06-
08T18:14:36.985+02:00","DevEUI":"0059AC00001807B8","FPort":"2","FCntUp":"1","MType":"2","FCntDn":"
1","payload_hex":"641a40d3bdf08b","mic_hex":"473e1648","Lrcid":"0059AC02","LrrRSSI":"-
105.000000","LrrSNR":"9.000000","SpFact":"7","SubBand":"G1","Channel":"LC2","DevLrrCnt":"1","Lrrid":"FF
010226","Late":"0","LrrLAT":"52.019737","LrrLON":"4.361882","Lrrs":{"Lrr":{"Lrrid":"FF010226","Chain":"0",
"LrrRSSI":"-105.000000","LrrSNR":"9.000000","LrrESP":"-
105.514969"}},"CustomerID":"100006356","CustomerData":{"alr":{"pro":"SMTC/LoRaMote","ver":"1"}},"Mo
delCfg":"0","InstantPER":"0.000000","MeanPER":"0.000000","DevAddr":"142037B9"}}

Table 13: Database table raw data, see Appendix L for more information

68

5. Identifying the relationship between objects

Every sensor has its own device address; this is a given address by KPN. Based on these device addresses,

different sensors can be identified. All the measurements of the sensors are put in two tables, the raw

data table and the measurements table. The geographical location of the sensors is not stored in the

database, since the sensors remain stationary after deployment and their location is known.

3.4.2 Inserting data in the database

To store the data collected by the sensors in a database it is send through LoRa as is described in chapter

3.1. This data is received in a programming tool called Node-RED. This program runs on the virtual

machine that is available on the Faculty of Architecture of the TU Delft

(https://geo1101.bk.tudelft.nl/iot/static/). Uptime of this domain after the project is not guaranteed. It

has 20 GB of storage which will be shared with the Dynamic IoT group of the GSP. Also, it has software

installed (like the Node-RED environment and PostgreSQL) and more processing power than usual

desktops or laptops. On this virtual machine the Node-RED process will be ran, and the collected data

will be stored on in a database using PostgreSQL.

3.4.3 Node-RED & PostgreSQL

What is Node-RED?

Node-RED is a visual programming tool that can wire the Internet of Things. This could be hardware

devices, APIs and online services. It is a browser-based editor that contains flows of nodes. These nodes

are predefined codes in JavaScript and contain certain, often used, functions. Examples of these

functions are http request, a trigger, join or PostgreSQL. Some of those functions are by default part of

the Node-RED environment, some functions have to be imported (as libraries) before use is possible.

https://geo1101.bk.tudelft.nl/iot/static/

69

Figure 38: User Interface of Node-RED environment

What is PostgreSQL?

PostgreSQL is used to store the collected data. PostgreSQL is a relational database and open source. It

supports (foreign) keys, joins, views, triggers, stored procedures and different datatypes. This database

system uses SQL queries to store and retrieve data. The SQL language is standardized according to the

ANSI-SQL:2008 standard.

The workflow

Figure 39: An overview of the workflow in Node-RED

The data collected by the sensors is sent to the KPN gateway, from this gateway the data can be received

by Node-RED through an HTTP request. In the Node-RED environment there is a node that takes care

of this retrieval, the endpoint address for the receiving of the messages is

https://geo1101.bk.tudelft.nl/iot/static/inputport. The request will be a POST method since KPN will

send the data in the body of the message. By doing a POST request not only the header of the message

will be returned but also the body.

https://geo1101.bk.tudelft.nl/iot/static/inputport

70

Figure 40: HTTP request to KPN gateway

After sending an HTTP request, an HTTP response needs to be sent as well to inform the gateway that

the message was sent correctly. Node-RED provides this function by default. The message that is

received from the HTTP request contains the data and metadata of the measurement as a JSON object.

This object is stored in classes and objects, and can be extracted by a JavaScript code. The code is written

in a function block that updates the message that is send to the next block. This function block also

contains processing of the data before it is inserted into the database. Another import aspect of the ‘Set

parameters’ block is the decryption of the payload; the actual message containing measurements of the

sensors. KPN encrypts the payload of the JSON object. To decrypt this payload a ‘decrypting’ library is

installed in the Node-RED environment. This decryption needs information provided by KPN, more

information about this can be found in Appendix S.

Figure 41: HTTP response and function block for extracting data

To insert the data into the database, an SQL query has to be formulated. This can be done in the ‘Set

parameters’ block, and the query will insert it into the right columns by sending the query to a

PostgreSQL block. The entire JSON object is also stored in the ‘raw data’ table in the database in the

‘Store raw data’ block.

Figure 42: Function blocks for SQL queries

Other blocks used in the workflow are for monitoring and testing, such as the ‘Debug’ nodes that

visualize the output of every block. An ‘Inject’ block with a dummy LoRa message is also used in the

development to test and debug the workflow without using the LoRa network. The entire code of every

block can be found in Appendix X.

71

3.4.4 Data processing

Most sensor values send over LoRa require one byte, since it contains decimals between 0 and 255. In

the air quality, sometimes numbers bigger than 255 can occur. These values are therefore split on the

LoPy. The values are glued back together in the Node-RED environment. For example: the number 4096

for example is send as 40 and 96 separately. In the Node-RED environment a string operation is carried

out to glue 40 + 96 = 4096 and not as 40 + 96 = 136.

Another processing activity is sending floating point numbers such as temperature and humidity. These

values are split on the LoPy in the number before the point and the number after the point. A value of

27.1 will therefore be send as 27 and 1, and put back together as 27.1 in the ‘Set parameters’ block (for

code see Appendix X).

3.5 Feedback mechanism

This section will cover the feedback system of the sensor network. The first part describes the Twitter

feedback mechanism and the second part covers the Sensor City Delft website. Both systems assume

all required data is stored in an online accessible PostgreSQL database. Several other possibilities exist

to implement a feedback system. This project focuses on Twitter and a website.

3.5.1 Twitter

Twitter is the second most popular social network. It is a real-time, public microblogging network known

for the 140-character limit (Moreau, 2017). In this project, Twitter will be used as the social media

medium to convey data. The data can be requested by tweeting at @SensorCityDelft. This paragraph

describes how the twitterbot works.

User experience and information

The idea of this feedback system is that the user tweets to @SensorCityDelft with a specific hashtag.

These hashtags are the streets of the study area: #Voldersgracht, #Choorstraat and #Oudelangendijk in

Delft. The Twitter account and hashtags are communicated to the user with billboards (Appendix P),

social media (Facebook account) and flyers (Appendix Q) distributed in the study area. The response of

this tweet is the latest available environmental data present in the database. These are the noise level,

temperature and humidity. The air quality is not tweeted, because this sensor started working in the

last two weeks of the project.

72

The values which are tweeted to the requestor from a single sensor. Averaging out multiple sensors per

street is a possibility, but for the majority if the project time only one sensor per street was deployed.

Figure 43: Twitterbot responds to the user

Technical System

Twitter has an Application Programming Interface (API) which can be used to program the twitterbot.

This Twitter API is fully integrated in the Node-RED environment: only credentials of the Twitter account

have to be provided in order to connect Node-RED to Twitter. Several authentication steps are taken

care of by Node-RED, which makes the programming more user friendly.

The twitter account is run autonomously by a JavaScript code. This code is written in function blocks on

Node-RED, the output of this block goes to the Twitter block. A specific flow in the Sensor City Delft

instance on Node-RED is called ‘Twitter Flow’, and takes care of the so called ‘twitterbot’. The flow exists

of six blocks (figure 44): they ‘listen’ for tweets, parse tweets, retrieve data from the database and create

tweets to send back to the data requester.

Figure 44: Node-RED flow of twitterbot

73

Listening block

The Node-Red listening block searches all public tweets directed to the @SensorCityDelft account.

When a message is found, it is passed to the next block as a full tweet object as defined by Twitter

(Twitter Developer Documentation, 2017)

Parse Tweet & Get Data

This function block parses the tweets using a JavaScript code. This code will look for the specific hashtags

of locations and text in the tweets. When one of the hashtags is encountered, or certain words like

‘temperature’, ‘noise’ or ‘humidity’ are part of the tweet, it will generate a text for the reply tweet. The

latest values of these measurements are fetched with SQL queries in the code of the block.

PostgreSQL block

A PostgreSQL block is used for retrieving the latest data from the database. The queries to fetch the

data stem from the ‘parse tweet and get data’ block.

Create Tweet block

This block creates the full text that will be sent on twitter. The main text is already generated by previous

blocks, but the tweet has to be sent to the requester. This is done in the ‘create tweet block’.

Twitter block

This block sends out the tweet on twitter using the Twitter API (integrated in Node-RED).

Drawbacks

The twitterbot can only search for public tweets. When a user has protected tweets, the bot will not be

able to respond. Another drawback is that people do not always use the right hashtags, the twitterbot

responds with a feedback telling the requester that his or her tweet was not correctly formulated. The

code of every block of the workflow can be found in Appendix R.

3.5.2 Website

The billboards and distributed flyers contain a QR-code which leads to www.scdelft.nl. This website

contains information on the project, such as news, the project team members, measurements and

measurement locations (see figure 45).

http://www.scdelft.nl/

74

Figure 45: Welcome page of the project website (www.scdelft.nl)

The measurements on the website are shown in a dashboard. This dashboard (figure 46) is

created in the Node-RED environment.

Figure 46: Dashboard on www.scdelft.nl

http://www.scdelft.nl/
http://www.scdelft.nl/

75

This dashboard shows live data. After the sensors are taken down, historic data will be shown

(figure 47). See Appendix R for the dashboard in the Node-RED environment.

Figure 47: Historic data on www.scdelft.nl

http://www.scdelft.nl/

76

Chapter 4 - Analyzing Data & Results

The sensors of this project are located as can be seen in figure 49. All sensors are equipped with a

temperature and humidity sensor and a noise sensor as described in chapter 3.1. Sensors 66D (Oude

Langendijk) and 981 (Choorstraat) are also provided with a PMS5003 sensor as described in chapter 3.1.

The three locations in which the sensors are located have different profiles and the situation of each

sensor is different. All three locations are briefly explained in the first paragraph of this chapter. In the

next paragraphs the scenarios that are introduced in chapter 2 will be analyzed and answered. All graphs

that are found in this chapter can also be found on a bigger scale in appendices V and W. Also some

information about the data like maximum, minimum, mean and standard deviation per time period of

four hours can be found in this appendix.

4.1 Locations

Figure 48: Locations of sensors in the City center of Delft

4.1.1 Voldersgracht

The Voldersgracht is a small street and has a canal next to it. In this street no cars are allowed, only

pedestrians, bikes and scooters. In this street sensor 073 and sensor 210 are mounted. The sensors are

77

mounted to trees which do not have many leaves and therefore do not cause much shade for the

sensors. Since this street is east/west oriented there are two periods of direct sunlight in the street.

According to SunCalc (http://suncalc.net) in the morning the sun will shine in the street between 5:30

and 8:30 o’clock. In the afternoon, there will be direct sunlight between 15:30 and 16:30 (figure 50).

Figure 49: Location of sensor 073 (left) and location of sensor 210 (right) at the Voldersgracht

Figure 50: Voldersgracht in SunCalc

4.1.2 Choorstraat

Choorstraat

At the Choorstraat only one sensor is deployed, this is sensor 981. The sensor is located at the far west

end of the street. The sensor is mounted to a tree and is mostly covered by the leaves of this tree as can

be seen in figure 51. Just like the Voldersgracht this street only allows pedestrians, bikes and scooters

to pass through and no cars are allowed. Different from the Voldersgracht it does not have a canal next

to it. This street is oriented east/west too, therefore it has two moments of direct sunlight. For the

morning sun, this is between 5:30 and 8:00 o’clock and the afternoon sun between 14:30 and 16:45

o’clock (figure 52).

http://suncalc.net/

78

Figure 51: Location of the sensor 981 (left) in Choorstraat. The sensor is covered by leaves of the tree

(right)

Figure 52: Choorstraat in SunCalc

4.1.3 Oude Langendijk

The Oude Langendijk is the street that is most busy of the three streets investigated. Cars and busses

are allowed to pass and it is expected that they cause a lot of noise, heat and pollution. But then again,

this street has a lot of big trees which cause a lot of shadow. Sensor 66D and 772 are located at this

street and are mounted to lamp posts (figure 53). Also this street is oriented east/west and therefore

has two periods of direct sunlight. The morning sun is in the street between 5:30 and 6:30 o’clock and

the afternoon sun between 15:00 and 17:15 o’clock (figure 54).

Figure 53: Location of sensor 772 (left) and location of sensor 66D (right) at Oude Langendijk

79

Figure 54: Oude Langendijk in SunCalc

4.2 Temperature and humidity

4.4.1 Introduction

The scenario introduced in sub-paragraph 2.2.3 describes a difference in temperature and humidity

between the three streets of interest. The profile of Richard describes the fact that he notices a

difference in temperature after doing his grocery shopping at the Choorstraat. His findings are that the

Voldersgracht is cooler than the Choorstraat and that the Oude Langendijk is even hotter than the

Choorstraat. In this paragraph, these findings are put to the test by analyzing the data that is collected.

4.4.2 Temperature

In general, for all streets, a pattern of day and night can be seen in the graphs of the data. Besides that,

some sensors had other patterns or noticeable events that will be discussed and declared in this

paragraph.

Voldersgracht

Like described above the pattern of day and night can be seen in the graph underneath (figure 55).

During the night the street cools down and during the day it heats up. The biggest difference between

the two sensors of this street can be seen between 16:00 and 18:00 o’clock. Just before this moment

the sensors had direct sunlight in the street so they could heat up. But the temperature of the sensor

210 continues to increase. This might have to do with the fact that this sensor has a longer exposure of

direct sunlight than the other one. It takes some time for the data to actually increase after an exposure

of heat and this is why the peak is just after the sun has shined upon the sensor platform.

80

At the Voldersgracht the maximum temperature is reached around 18:00 o’clock, for the first day this

is 31,3 ̊C and the second day 33,9 ̊C (both from the sensor 210 which has more direct sunlight). The

minimum temperature is reached at 6:00 o’clock, for the first day this is 15,2 ̊C and the second day 18,2

̊C (also both from sensor 210).

Figure 55: Graph of temperature at the Voldersgracht

Oude Langendijk

In general, at the Oude Langendijk both sensors describe the same pattern for the measured days (figure

56). Nevertheless, during the period between 7:00 and 10:00 o’clock a bigger increase of temperature

is seen for sensor 772. This is caused by the fact that this sensor platform is located at the most east

part of the street and therefore there is no shadow during the early morning sun. The other sensor

(66D) is in between trees from both east and west side and thus has shadow during the morning and

afternoon sun. After this the temperature increases less and this results in the values being around the

same of the other sensor.

The highest temperature measurements differ for the two days. The first day is measured at 15:00

o’clock (21,9 ̊C) and for the second day it is measured at 18:00 o’clock (25,9 ̊C). The moment of

measuring the lowest temperature is the same as at the Voldersgracht: 6:00 o’clock. On the 14th of June

this lowest temperature is 13,7 ̊C and at the 15th of June 17,0 ̊C.

0

5

10

15

20

25

30

35

40

Te
m

p
er

at
u

re
 ̊

C

Date

Temperature at the Voldersgracht

Voldersgracht 073 Voldersgracht 210

81

Figure 56: Graph of temperature at Oude Langendijk

Choorstraat

Only one sensor station has measured the values of the Choorstraat, so no differences between

different sensor platforms in one street can be drawn. This street has the same kinds of patterns as the

two streets described before (graph 57). At 18:00 o’clock the temperature is at its maximum (22,9 ̊C at

the 13th of June and 28,9 ̊C the 14th). Also, the minimum temperature is reached at 6:00 with a value of

15,3 ̊C and 19,1 ̊C. This sensor was most of the time in the shade of the tree. But during the period

where the maximum amount was reached the sunlight probably reached the sensor box between the

leaves since this value is rather high.

0

5

10

15

20

25

30

Te
m

p
er

at
u

re
 ̊

C

Date

Temperature at the Oude Langendijk

Oude Langendijk 772 Oude Langendijk 66D

82

Figure 57: Graph of temperature at Choorstraat

4.4.3 Humidity

Just like the temperature, humidity also shows a pattern for day and night. If the night falls, the

temperature drops and the humidity increases. During the day the temperature rises and the humidity

decreases. The location of the sensors and the condition of the direct environment has an influence on

the data. The remarkable incidents are discussed and clarified in this paragraph.

Voldersgracht

The two sensors that measured the humidity at the Voldersgracht show a same kind of pattern as they

did while measuring the temperature, but now inverse (graph 58). At the moment the 210 sensor

showed an increase of temperature after direct exposure to the sun, the humidity dropped.

The only difference is the moment of highest humidity. These differ slightly from the minimum value of

temperature and also have 4 hours of difference between the two measuring days. For the 14th of June

the highest humidity is measured at 6:00 o’clock (79,5%) which is the same moment of the highest

temperature. In contrast to this, the highest humidity measured at the 15th of June is at 2:00 o’clock

(72,2%) which is 4 hours prior to the lowest temperature. For the second day this is the case for both

sensors, so there is a consistency. For the first day there are only measurements of one sensor. The

0

5

10

15

20

25

30

35

Te
m

p
er

at
u

re
 ̊C

Date

Temperature at the Choorstraat

Choorstraat 981 Temp

83

early peak might be caused by the fact that between 4:00 and 7:00 o’clock the temperature is quite

constant and deviates only 0,5 ̊C and at 2:00 o’clock the temperature is 1 ̊C warmer than the lowest

value. Since a low temperature is reached at 2:00 o’clock the humidity is high as well. The lowest

humidity is measured, as expected, at 18:00 o’clock (27,6% and 23,6%).

Figure 58: Graph of humidity at Voldersgracht

Oude Langendijk

Since the Oude Langendijk has a lot of big trees which cause shade and therefore the temperature is

lower, this street has a higher humidity value. The pattern of the humidity value at the Oude Langendijk

can be found in graph 56. Sensor 66D has a higher humidity value than sensor 772. This is caused by the

same circumstance why sensor 66D reported lower temperature values in the morning than sensor 772.

Sensor 66D is in between trees and 772 is at the corner of the street. Trees do not only cause shade but

also a higher humidity value. At one moment in time the humidity value of 66D is very high (93%) the

explanation for this phenomenon is that there could have been condensation or fog at the sensor.

The lowest humidity value for the 13th of June is measured at 14:00 o’clock (50%) and at the 14th of June

at 20:00 o’clock (39%). This is very remarkable since these two values differ 6 hours. But this can be

explained by the fact that the temperature peak of the sensor for the 13th is at 15:00 o’clock and the

14th it is at 18:00 o’clock. The highest values of humidity at the Oude Langendijk are also not at the same

time for the two days. For the first day it is at 6:00 o’clock (93,2%) and the second day it is at 2:00 o’clock

0

10

20

30

40

50

60

70

80

90

H
u

m
id

it
y

%

Date

Humidity at the Voldersgracht

Voldersgracht 073 Voldersgracht 210

84

(87,2%). This deviation from the minimum temperature can be explained the same way as for the

Voldersgracht: the temperature is quite constant at that time. Between 2:00 and 6:00 o’clock the

temperature difference is only 1 ̊C (figure 59).

Figure 59: Graph of humidity at Oude Langendijk

Choorstraat

The sensor that is located at the Choorstraat shows the same kind of patterns as the humidity sensors

at the Voldersgracht and Oude Langendijk (figure 60). For the first night the maximum humidity is

reached around 6:00 o’clock (79,4%) and the second night around 2:00 o’clock (64,8%). This is for the

first night around the lowest temperature value but for the second night a couple of hours before that.

This is, like with other sensors, caused by the minimum spread of temperature values between 2:30 and

6:30 o’clock. The lowest humidity values are observed at 14:30 (42,2%) and 18:00 o’clock (31,6%). For

the 13th of June the deviation of the highest temperature at that day can be explained by the small

temperature deviation during this time period. The temperature is quite constant and therefore the

minimum humidity value is reached at this moment.

0

10

20

30

40

50

60

70

80

90

100

H
u

m
id

it
y

%

Date

Humidity at the Oude Langendijk

Oude Langendijk 772 Oude Langendijk 66D

85

Figure 60: Graph of humidity at Choorstraat

4.4.4 Conclusion temperature and humidity

After plotting the temperature data of all sensors in one graph as can be seen in figure 61 the main

differences are in the values and not in the pattern. The peaks fall all around the same time besides the

maximum temperature of the Oude Langendijk, which is prior to all other maximum values. This value

is detected by sensor 66D which is the one to the west (in between trees). After examining the data it

can be concluded that this was an early peak due to direct sunlight exposure. The sensor is placed in

between trees but has some gaps between the leaves and the street is wider than the other ones so the

sun reaches the sensor earlier than in the other streets.

0

10

20

30

40

50

60

70

80

90

H
u

m
id

it
y

%

Date

Humidity at the Choorstraat

Choorstraat 981 Hum

86

Figure 61: Temperature of all five sensors (note: the y-axis starts with 10 degrees C)

Examination of the numbers of the data as in table 14 exposes the consistency that for all streets the

second day was hotter than the first one. Focused on the maximum temperature it shows that the

Choorstraat has increased the most in temperature, after this the Oude Langendijk and the

Voldersgracht has increased the less in temperature in the two days.

 Voldersgracht Oude Langendijk Choorstraat
Temperature max 18:00 - 31,3 ̊C 15:00 - 21,9 ̊C 18:00 - 22,9 ̊C

18:00 - 33,9 ̊C 18:00 - 25,9 ̊C 18:00 - 28,9 ̊C

Temperature min 6:00 - 15,2 ̊C 6:00 - 13,7 ̊C 6:00 - 15,3 ̊C

6:00 - 18,2 ̊C 6:00 - 17,0 ̊C 6:00 - 19,1 ̊C

Table 14: Table with temperature values

Plotting all humidity data results in figure 62. This graph shows similar patterns for all streets

like the temperature did. Also like the temperature graph the main differences can be found in

the values of the measurements. Some peaks are found at different time slots but on average

10

15

20

25

30

35

13-6-2017 08:24 13-6-2017 20:24 14-6-2017 08:24 14-6-2017 20:24 15-6-2017 08:24

Te
m

p
er

at
u

re
 ̊C

Date

Temperature

Voldersgracht 073 Voldersgracht 210 Oude Langendijk 772

Oude Langendijk 66D Choorstraat 981

87

they are aligned. It is very clear that sensor 66D has the highest humidity overall. This one had

the lowest temperatures too and is located in between trees and therefore more humidity is

produced around the sensor.

Figure 62: Humidity of all five sensors (note: the y-axis starts with 20%)

Examination of the data of humidity as presented in table 15 shows the maximum and minimum values

of the humidity. The moment of the maximum values for the 14th of June are all at the same time, but

for the 15th of June this maximum value is measured at the Voldersgracht and Oude Langendijk four

hours earlier which is declared by the fact that the temperature between 2:00 and 6:00 o’clock is fairly

constant at those streets. The deviation for the minimum values is also explained by this phenomenon

of a period of fairly constant measurements around this time.

 Voldersgracht Oude Langendijk Choorstraat
Humidity max 6:00 - 79,5% 6:00 - 93,2% 6:00 - 79,4%

2:00 - 72,2% 2:00 - 87,2% 6:00 - 64,8%

Humidity min 18:00 - 27,6% 14:00 - 50% 14:30 - 42,2%

18:00 - 23,6% 20:00 - 39% 18:00 - 31,6%

Table 15: Table with humidity values

20

30

40

50

60

70

80

90

100

13-6-2017 08:24 13-6-2017 20:24 14-6-2017 08:24 14-6-2017 20:24 15-6-2017 08:24 15-6-2017 20:24

H
u

m
id

it
y

%

Date

Humidity

Voldersgracht 073 Voldersgracht 210 Oude Langendijk 772

Oude Langendijk 66D Choorstraat 981

88

After ordering the five sensors in the three streets from highest to lowest temperature overall and

taking into account the humidity of the streets the following list comes out:

1. Voldersgracht 210

2. Voldersgracht 073

3. Choorstraat 981

4. Oude Langendijk 66D

5. Oude Langendijk 772

This list indicates a different order than Richard expected. Richard expected the Voldersgracht to be the

coolest and Oude Langendijk to be the hottest which is completely opposite from this list. A clarification

for this unexpected outcome is that the surroundings of the sensors were not the same for the different

streets. The sensors at the Oude Langendijk were most of the time in the shade of the big trees that are

in that street and the sensor of the Choorstraat was in the shade of the tree as well. In contrast, the

trees on which the sensors at the Voldersgracht were placed did not have that many leaves and

therefore did not cause that much shade for the sensors. For this reason, the Voldersgracht came out

much higher than expected. For further research to make more reliable measurements all sensors

should be placed in the shade without any direct sunlight.

89

4.3 Noise measurements

In contrast to the temperature, humidity and air quality data analysis, the noise data analysis failed to

give a clear insight of the noise levels at the three streets chosen. This was mainly a result of the way

that the sound sensor works. Similarly to the temperature/humidity and air quality sensors, the sound

sensor were recording data every 15 minutes for 50 msec, being in deep sleep for the rest of the time.

This resulted to the generation of graphs with values that deviated from high picks of 60 to low picks of

10 after 15 minutes. Thus, the amount and quality of data was not sufficient to recognize noise patterns

during the time of implementation of a sensor. Furthermore, since the sound sensor constitutes a low-

cost microphone, the data received by the sound sensor was only an indication of dBa, it was not directly

measured in dBa units. All these together, including the difficulty to correlate the data to a real sound,

make it impossible to come to a conclusion related to which street and when in time has higher noise

levels.

Table 16 shows the results of data collected at various time points from the three selected streets. Note

the small differences in standard deviations (St. dev), average values (Lmean), maximum (Lmax) and

minimum (Lmin) values between the data obtained from each of the three streets.

 Category N Lmean Lmax Lmin St.dev

Total 884 34,9 60 2 19,16

Street Choorstraat 206 25,7 60 2 13,01

 Voldersgracht 279 42,3 60 2 12,13

 Oude Langendijk 399 29,87 60 2 12,6

Time of Day 06:01-10:00 77 37,53 60 4 14,2

 10:01-14:00 104 33,64 56 2 13,2

 14:01-18:00 138 35,5 60 2 15,06

 18:01-22:00 203 34,62 60 2 14,36

 22:01-02:00 204 30 60 2 13,28

 02:01-06:00 153 29,47 60 2 13,4

Table 16: Noise data for the three selected streets and during specific time slots

90

The minor differences observed do not allow us to draw safe conclusions. Based on these data we can

only report that the Voldersgracht shows the largest average noise value (average noise: 42.30), which

means it is the busiest street during the whole day and especially between 22:00-02:00 (average noise:

43.13, St. dev: 9.22; see table 17), b. the Oude Langendijk is the second busiest street (average noise:

29.87), and c. The Choorstraat is the most quiet street of all (average noise: 25.7). Notably, these results

are not consistent to our initial hypothesis (chapter 3) which means that further research and analyses

are needed. Quality of data is also an important aspect that has to be taken into account. For example,

the sound values from the two sensors placed in the Voldersgracht were very different to each other

although the recording time slots were the same (see figure 63). A similar problem is reported for the

data obtained from the two other streets.

Voldersgracht Category N Lmean Lmax Lmin St.dev

Total 279 42,3 60 2 12,13

Time of Day 06:01-10:00 18 48,84 60 30 10,72

 10:01-14:00 21 33,1 50 14 11,07

 14:01-18:00 43 42,76 60 2 12,82

 18:01-22:00 72 42,75 60 10 14,08

 22:01-02:00 71 43,13 60 24 9,22

 02:01-06:00 54 42,33 60 22 10,84

Table 17: Noise data of Voldersgracht during specific time slots

As an example, the noise that is sensed by two devices in the Voldersgracht is plotted in a graph (figure

63).

91

Figure 63: Graph of noise values from sensors in Voldersgracht

4.4 Air quality

4.4.1 Introduction

This section describes the data analysis of the measurements that have been gathered by the PMS5003

dust sensor and the PPD42NS dust sensor at the Oude Langendijk, Choorstraat and Voldersgracht. This

data is analyzed to provide an answer to the story concerning the air quality at the Oude Langendijk. In

this story Peter, a small business owner, wants to find out whether the daily traffic affects the air quality

of his street and those nearby.

In order to provide an answer to this question two sensors were installed: the PPD42NS and the

PMS5003 sensor. The Choorstraat had one PMS5003 sensor installed which gathered data from June

13th till June 15th. At the Voldersgracht the PPD42NS sensor was installed which worked from 18:11 on

the 9th of June until 10:36 on the 12th of June, conducting in total only 32 measurements. In order to

be able to compare the different streets to each other, measurements taken in the same time slot are

compared.

First, the measurements of the PMS5003 sensor at the Oude Langendijk and Choorstraat are analyzed

and compared. Second, the measurements from the PPD42NS sensor at the Voldersgracht and

Choorstraat are discussed. Thirdly, the PMS5003 sensor is discussed. Afterwards, based on the analysis

the conclusion formulates the answer to the story.

92

4.4.2 Measurements with the PMS5003

The Oude Langendijk had two different kind of dust sensors implemented: PMS5003 and PPD42NS. First

the outcomes of the PMS sensor are discussed. The sensor platform with the PMS5003 sensor gathered

data from June 13th till June 15th. The PMS5003 sensor was used to gather measurements on fine

particulate matter (PM). Particulate Matter is already discussed in the theoretical framework (paragraph

2.2.1).

According to the data manual of the PMS5003 sensor the sensor measures three ranges PM10, PM2.5

and PM1. Fine particles such as PM2.5 and PM1 have been found to play a significant role in health

hazard, climate change and pollution problems (Vecchi et al., 2004). Therefore the main focus will be

on the PM2.5 and PM1 particles, which are emitted by motor vehicles such as buses and scooters (Keogh

& Sonntag, 2011).

Measuring air quality in the Oude Langendijk with PMS5003

The results of the measurements of PM2.5, PM1 and PM10 are shown in table 18. Figure 64 shows the

PM measurements conducted on the period of June 13th to June 15th at the Oude Langendijk. It shows

an increase of PM levels during the course of the night of June 13th to June 14th from 23:17 o’clock until

6.58 o’clock and the night of June 14th to June 15th from 4.54 till 10.24 o’clock in the morning. In the

next sections the possible causes for these increases are discussed.

 Category N Mean Max Min Standard
deviation

Oude Langendijk

Total PM10 116 1.145299145 12 0 2.600613181

 PM2.5 114 14.5 34 0 6.966061346

 PM1 116 8.47008547 34 0 7.568734064

Choorstraat

Total PM10 126 2.1015625 38 0 5.391506654

 PM2.5 126 6.46875 24 0 5.350601556

 PM1 126 10.5234375 116 0 11.74798682

Table 18: Mean, maximum and minimum of PM10, PM2.5 and PM1

93

Figure 64: Graph of PMS measurements at Oude Langendijk, 13, 14 and 15 June 2017

Influence of humidity?

When looking at the temperature and humidity graph for this time period, the humidity also increases

during the night, as shown in figure 65. Figure 66 displays the PM levels together with the humidity

measured at the Oude Langendijk. The humidity level reaches at 6.14 o’clock in the morning of June

14th a peak of 93.2%. Also PM2.5 reaches a peak at 6.58 o’clock in the morning. At 1.24 o’clock in the

night on the 15th of June both humidity and PM2.5 reach a peak of respectively 87% humidity and 36

microgram PM2.5. The rise of PM levels and humidity during the night could indicate a correlation

between humidity and PM levels.

Figure 65: Humidity at Oude Langendijk

0

10

20

30

40

50

60

70

80
µ

m
/m

3

Date

PMS5003 measurements at Oude Langendijk

pm1 pm 2 pm 10

0
10
20
30
40
50
60
70
80
90

100

H
u

m
id

it
y

%

Date

Humidity

Humidity

94

Figure 66: Humidity and PM levels at Oude Langendijk

Wang and Ogawa (2015) conducted research into the connection between meteorological conditions

and pollutants. Concerning pollutants and humidity Wang and Ogawa state that when humidity is low,

the PM2.5 concentration increases because of hygroscopic growth.

When humidity reaches a certain high the particles become too heavy to stay in the air and fall to the

ground. The consequence is that the number of particles in the air decreases and the PM2.5

concentration also decreases. In addition, Afzali et al. (2015) also state that increased humidity is often

preceded by rain and therefore through wash-out processes of the particles the concentration of

pollutant in the air is reduced.

So, the existing research into the relationship between humidity and PM levels is not in accordance with

the measurements gathered by the sensor platform. In general the research conducted into the

correlation between humidity and PM concentrations in the air go more in depth into subjects such as

the chemical composition of the particles and meteorological circumstances at a certain location.

However, the research by Afzali et al. (2015) is conducted on a dataset that is collected over two years,

so the dataset will be more reliable than the dataset of this project. Next to that, in the scope of our

project there is no information available about the chemical composition of the measured particles and,

finally, detailed meteorological information at this specific place for the Oude Langendijk is unavailable.

Therefore, it is not possible to provide enough evidence for a link between increasing levels of humidity

and the increasing PM level.

0
10
20
30
40
50
60
70
80
90
100

0

10

20

30

40

50

60

70

80

H
u

m
id

it
y

%

µ
m

/m
3

Date

pm1 pm 2 pm 10 humidity

95

Influence of wind?

Another cause of the increasing PM levels during the night could be a correlation between wind speed

and PM levels. When looking at wind speed measurement in Hoek van Holland, the measurements show

that the wind speed was around three to four m/s throughout the day and night of June 13th and 14th.

The night of June 15th to 16th the wind speed was between four to five m/s, see figure 67.

Figure 67: Wind speeds on the 13th and 14th of June

The wind speed increased at a constant rate during both nights, therefore there could be a correlation

between the wind speed and PM levels. Wang (2015) states that in the case of low wind speed the wind

can blow away pollutants in a limited geographical range, yet when wind speed is high the wind can

carry large amounts of pollutants from far away. The effect is that the PM levels go up.

Nevertheless, there is no detailed information about the wind speed neither about the wind direction

at the Oude Langendijk: the measurements at Hoek van Holland are way too far away to be reliable, and

the local built environment can affect wind speeds and directions very easily. To investigate a relation

between wind speeds, wind directions and PM values in the air, a recommendation is to mount a wind

meter on the sensor platform. This knowledge is namely critical when making assumptions about the

link between wind and PM concentrations

Difference plots

In order to see the distribution of the three types of PM values difference graphs are plotted. In the first

difference plot in figure 68 PM2.5 is subtracted from PM10 which returns the particles that belong to

the PM10 category. The graph shows that 81 out of the 117 measurements appear to have measured

PM2.5 and no PM10. From this difference plot it can be concluded that PM10 levels are low compared

to PM2.5 at the Oude Langendijk.

96

Figure 68: Difference plot PM10 and PM2.5 (PM10 values shown)

The graph in figure 69 shows the difference graph of the particles belonging to PM2.5. PM1 is therefore

subtracted from PM2.5. The difference plot shows that only in 3 measurements more PM1 than PM2.5

was measured. It can be concluded that PM2.5 particles are the most present in the air at the Oude

Langendijk.

Figure 69: Difference plot PM2.5 and PM1 (PM2.5 values shown)

0

2

4

6

8

10

12
µ

m
/m

3

Date

Difference plot PM10 PM2.5

Difference PM10 PM2.5

0

5

10

15

20

25

30

35

µ
m

/m
3

Date

Difference PM2.5 and PM1

Difference PM2.5 PM1

97

The graph of figure 70 shows the PM1 values. It is shown that the PM1 values are going up during the

day: this can be an effect of the vehicles.

Figure 70: PM1 values

Choorstraat compared to Oude Langendijk

The PM values measured in the Choorstraat increase during the night of 14 to 15 June as can be seen

in figure 71. On June 15th a peak is shown at 19.45 o’clock in the evening. Another increase of PM levels

can be seen from 15 to 16 June. An outlier can be seen at the 14th of June at 19.45 o’clock in figure 71.

Figure 71: PMS measurements Choorstraat

0

5

10

15

20

25

30

35

µ
m

/m
3

Date

PM1

PM1

0
5

10
15
20
25
30
35
40
45
50

µ
m

/m
3

Date

PM values Choorstraat

pm1 pm2.5 pm10

98

When comparing the PM values of the Choorstraat to the Oude Langendijk, the assumption was that

the Oude Langendijk would have higher PM values than the Choorstraat. In figure 72, 73 and 74 the

difference plots of PM1, PM2.5 and PM10 values of the two streets are compared with each other. The

graphs show no clear evidence of the Oude Langendijk being more polluted than the Choorstraat.

Figure 72: PM1 measurements Choorstraat and Oude Langendijk

Figure 73: PM2.5 measurements Choorstraat and Oude Langendijk

0

5

10

15

20

25

µ
m

/m
3

Date

PM1 Choorstraat & Oude Langendijk

PM1 choor PM1 Oudelangen

0

5

10

15

20

25

µ
m

/m
3

Date

PM2.5 Choorstraat & Oude Langendijk

PM2.5Choor PM2.5 Oudelangen

99

Figure 74: PM10 measurements Choorstraat and Oude Langendijk

Consistency of the PMS5003 sensor

The data manual of the sensor pointed out that after 500 hours of storage in high temperature (70 ºC)

and humidity (90-95%) or cold storage (-30 ºC), the sensors has to be checked for consistency (Yong,

2016). Taking into account that the sensors were delivered after six weeks, it is unknown what

circumstances the sensor had to endure. Therefore, also storage could have been of influence on the

performance of the PMS5003 sensor. In addition the sensor is meant to be used for indoor use. In this

project the sensors where used in outdoor environments. Meteorological conditions can therefore have

influence on the measurements.

These remarks, plus the fact that the data is collected for only two days, result in the conclusion that

these measurements with the PMS5003 are not reliable enough to be able to answer the question

posed by Peter (paragraph 2.2.1).

4.4.3 Measurements with the PPD42NS

The PPD42NS sensor is also meant for indoor use. The test with this sensor, described in chapter 3.1.1,

made it clear that the measurements of the PPD42NS sensor were heavily influenced by wind. Therefore

the measurements conducted by the PPD42NS sensor are not used in the data analyses. See figure 75

for a plot of the values with the PPD42NS: they differ too much to conclude anything about it.

0
2
4
6
8

10
12
14

µ
m

/m
3

Date

PM10 Choorstraat & Oude Langendijk

PM10 Choor PM10 Oudelangen

100

Figure 75: Measurements with PPD42NS in Oude Langendijk

4.4.4 Conclusion air quality

In conclusion, it can be stated that the measured data from both the PMS5003 and the PPD42NS sensor

is not sufficient for making assumptions about the causes of the increase and decrease of the PM values

at the Oude Langendijk in order to provide an answer to the story. More measurements have to be

conducted over a longer period of time. In addition, there should be more detailed information about

the metereological situation at the Oude Langendijk to be able to draw conclusions. It therefore can not

be concluded that the buses and scooters are of influence on the air quality at the Oude Langendijk.

0

500

1000

1500

2000

2500

3000

13-6-2017 00:00 13-6-2017 12:00 14-6-2017 00:00 14-6-2017 12:00 15-6-2017 00:00 15-6-2017 12:00

PPD measurements

PPD from 13/6

101

Chapter 5 - Conclusion

The IoT world is growing rapidly and therefore research on this topic is done. In the introduction the

research question is defined as:

How to raise local environmental awareness by interactively providing environmental data using a

static sensor network?

Case study: a pilot in the city center of Delft

To answer this research question six sub questions are defined and will be answered in the following

paragraph.

1. How to make a static sensor network interactive?

To increase the awareness of citizens and pedestrians the static sensor network has been made

interactive. Two options that are implemented to reach this are a twitterbot that automatically replies

with data of the sensors on Twitter and a website with graphs of live data. To make sure the target

group is aware of this interactivity a media outreach is done including Facebook, billboards, flyers and

articles in local newspapers.

2. What environmental data to collect and how to process it?

For this project noise, air quality, temperature and humidity sensors are chosen. These four datatypes

are the most relatable for citizens. Besides that, these type of environmental phenomena are related to

health issues. Most stakeholders involved in this project are also interested in this data. The data is

processed by making graphs and metadata like mean, minimum and maximum values. These graphs

and numbers will be used for analyzing and searching for patterns.

3. What environmental data is to be provided to the citizens to raise awareness?

To raise the awareness of citizens relatable data (like described in sub question two) should be collected

and presented. Generally citizens are only interested in the current situation and therefore only the

latest data should be presented to them. If interested in more data, the citizen can find this on the

website of the project which has historic data.

4. Where to install the sensors?

To ensure a maximum amount of people is being reached, the location should be visited by many

citizens and tourists. Likewise, the different areas of interest should have different patterns and

102

environments to detect differences if present. Therefore the Voldersgracht, Oude Langendijk and

Choorstraat are good locations to place the sensors.

The location of the sensors in these streets should be out of reach to prevent vandalism but also visible

to support interactivity. In case the sensors are placed on private properties, permission of the owner

of the location should be arranged. In this project the sensors are placed on trees or street lanterns in

consultation with the Municipality of Delft. For future research it is important to take into account that

direct sunlight or sun has a big influence on the measured temperature.

5. How to build the sensor platforms?

Creating a sensor platform starts with deciding on which sensors and other hardware to use. After this

the code has to be written that will collect the data through the sensors. Then, a design has to be made

for casing and this one has to be build. At last the different elements of hardware and software should

be combined and deployed.

6. How to ensure data quality?

Ensuring data quality is important to draw reliable conclusions. At first the sensors themselves need to

be reliable and of good quality. They have to be tested and the outcome of the data calibrated. This has

to be done in a stable environment with reliable sensors. After this, being critical on the data output is

very important; outliers, systematic errors or decay of hardware is still possible. Placing the sensors in a

constant location which will not influence the data is important too for good data quality.

These sub questions all together answer the main research question. However concluding on the

increase of environmental awareness cannot be answered through this research. Further research on

the psychological effect of the implementation of this project has to be done.

Future research

Based on this research, new research can be done to explore the IoT world. Like mentioned above, the

psychological effect of implementing a sensor network can be researched. Also it is interesting to

increase the scale of the project and research the best way to make measurements of the whole city,

for example by using a dynamic sensor network. This can be done by equipping moving vehicles with

sensor platforms instead of having them on fixed locations. Comparing different city centers of different

cities can also result in interesting findings about the environmental issues of the cities.

103

Chapter 6 – Recommendations

The Sensor City Delft project was a pilot project whereby a sensor network is deployed in the city center

of Delft. This chapter provides a list of practical recommendations for students and other researchers

who also want to deploy a similar sensor network.

Hardware

- Solder very careful, one faulty wire can shut down the platform.

- The PPD42NS sensors continuously use power, switch them off with transistors.

- Make sure your noise sensor measures decibels, don’t use microphones for measuring decibel

levels.

- The LoRa antenna wires are fragile, be careful not to break the wiring by twisting them too

much.

- Take enough time for calibration and testing of sensors: in a controlled environment to make

sure that the sensors are sensing correctly.

- Use a windmeter (direction and speed) together with the PMS5003 and PPD42NS air dust

sensors, to be able to see the relation between wind and particles in the air.

- Extensively check LoPy’s network settings. By default it is on USA instead of NL. When installed

at USA, Pycom does not (yet) provide an option to change this to the Netherlands.

Casing

- Have an accessible enclosure box: one will have to make changes and do checks on the platform

continuously, and make the replacing of the batteries easily possible.

- If you want to assemble a self-made enclosure, make sure to schedule laser cutting or 3D-

printing time. Some groups in the Science Center make a reservations of an entire 08.00-22.00

week.

LoRa

- Understand the KPN LoRa encryption, it requires external tools to decrypt payloads (in Node-

RED: node-red-contrib-loradecrypt.

- Don’t expect KPN’s LoRa network to have reception all the time: take into account the placing

in the built environment and check reception beforehand multiple times. Even the locations

with reception sometimes have no reception.

104

- When using a KPN developer account: there are limitations on how many messages can be send.

Use a paid account which provides more messages per hour. Or use The Things Network, but

then make sure to create LoRa Gateways in the study area.

Software

- Put anti-crashing code in the LoPy (WatchDogTimer). The LoPy might be unstable with your

code, the WatchDogTimer makes sure it reboots if the LoPy becomes unresponsive.

- Implement exception for PMS5003 sensor. When Data 7 until Data 12 are 0 the PM values are

unreliable: then do the measurement again.

- Have noise measure a couple of times, do it a couple of times during an interval for more

accurate readings (for example: sample time = 50 ms, measure a couple of times, save values

in a list, get minimum, maximum, average and median).

105

References

Adafruit, 2015. Adafruit AGC Electret Microphone Amplifier – MAX9814, Wiring and Test. Accessed at 17-05-2017

via https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/wiring-and-test.

Aerosemi Technology Co, 2017. MT3608 High Efficiency 1.2 MHz 2A Step Up Converter. Accessed at 13-06-2017

via https://www.olimex.com/Products/Breadboarding/BB-PWR-3608/resources/MT3608.pdf

Afzali, A., Rashid, M., Sabariah, B., Ramli, M. (2014) PM10 Pollution: Its Prediction and Meteorological Influence

in PasirGudang, Johor. 8th International Symposium of the Digital Earth (ISDE8)

Agentschap Telecom, 2014. Vergunningsvrije radiotoepassingen. Accessed at 19-05-2017, via

https://www.agentschaptelecom.nl/sites/default/files/brochure-vergunningsvrije-radiotoepassingen.pdf.

Agile Business Consortium, 2017. MoSCoW prioritisation. Accessed on 04-05-2017, via

https://www.agilebusiness.org/content/moscow-prioritisation.

Allen, T. 2013. De-construction of the Shinyei PPD42NS dust sensor. EME Systems LLC. Accessed at 13-06-2017,

via http://takingspace.org/wp-content/uploads/ShinyeiPPD42NS_Deconstruction_TracyAllen.pdf

Arduino Corporation, 2017. Arduino & Genuino products, Arduino & Genuino UNO. Accessed at 19-05-2017, via

https://www.arduino.cc/en/main/arduinoBoardUno.

Aref, M. & Sikora, A. 2014. Free Space Range Measurements with Semtech LoRa™ Technology, IEEE International

Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing

Systems. 2nd edition, pp.19-23.

Babar, S., Mahalle, P., Stango, A., Prasad, N., & Prasad, R., 2010. Proposed Security Model and Threat Taxonomy

for the Internet of Things (IoT), Springer-Verlag Berlin Heidelberg. In: Meghanathan, N. et al. (Eds.): CNSA 2010,

CCIS 89, pp. 420–429.

Cenedese, A., Zanella, A., Vangelista, L. & Zorzi, M., (2014). Padova Smart City: An urban Internet of Things

experimentation, IEEE Internet Things J., vol. 1, no. 1.

Chen, S., Xu, H., Liu, D., Hu, B. & Wang, H., 2014. A Vision of IoT: Applications, Challenges, and Opportunities

With China Perspective. IEEE Internet Things J., vol. 1, no. 4.

Chung, L. & Do Prado Leite, J.C.S. 2009. On Non-Functional Requirements in Software Engineering, Lecture Notes

in Computer Science, volume 5600, pp. 363-379.

https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/wiring-and-test
https://www.agentschaptelecom.nl/sites/default/files/brochure-vergunningsvrije-radiotoepassingen.pdf
https://www.arduino.cc/en/main/arduinoBoardUno

106

Crump, J. & Brown, I. 2013. The societal impact of internet of things. Workshop report by Chartered Institute for

IT, 14 February 2013. Accessed via http://www.bcs.org/upload/pdf/societal-impact-report-feb13.pdf

European Parliament and of the Council, 2008. Directive 2008/50/EC, Official Journal of the European Union,

(152) pp 1-44.

EPA (Environmental Protection Agency), 2017. PM10, PM2.5, PM1 particles. Accessed at 19-06-2017, via

https://www.epa.gov/particle-pollution-designations

Ericsson AB, 2016. Ericsson Mobility Report: on the pulse of the networked society. Accessed via

https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf

Fonolossa, J. 2016. Test of Particle Sensor (PPD42NS, Shinyei) and integration with Arduino boards. Accessed on

13-06-2017, via https://jordifonollosa.files.wordpress.com/2015/01/dust_sensor.pdf

Gartner, 2014. Gartner Says the Internet of Things Will Transform the Data Center. Press release, Gartner:

Stamford. Retrieved from http://www. gartner.com/newsroom/id/2684616.

General Electronics Battery Co., 2017. GEB905085 Lithium Polymer Battery, 3.7V 5500mAh lipo battery. Accessed

on 26-05-2017 via http://www.chinaseniorsupplier.com/Electrical_Equipment_Supplies/Batteries/

60442165175/rechargeable_905085_3_7V_5500mAh_LED_Li_Po_batetry_with_high_cost_effective.html

George, D.P. & Sokolovsky, P. (and contributors), 2017. MicroPython Tutorial for ESP8266 -Temperature and

humidity. Accessed at 19-05-2017, via

https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/dht.html.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural

elements, and future directions. Future generation computer systems, 29(7), pp. 1645-1660.

Guo, B., et. al. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet

of things. Journal of networks and computer applications, vol. 36, Issue 6, pp. 1531-1539.

Haines, M.M., Stansfeld, S.A., Job, R.F.S., Berglund, B. & Head, J. (2001). Chronic aircraft noise exposure, stress

responses, mental health and cognitive performance in school children. Psychological Magazine, volume 31, pp.

265 – 277.

Hu, Y. & C., Wang, H.J. (2006). Location Privacy in Wireless Networks. In: Proceedings of the ACM SIGCOMM.

Jol, M. (2016a). Lora Decryption on Application Server. Forum post on https://zakelijkforum.kpn.com/lora-forum-

16/lora-decryption-on-application-server-8416.

Jol, M. (2016b). Encryption of LoRa messages. Forum post on https://zakelijkforum.kpn.com/lora-forum-

16/encryption-of-lora-messages-8321.

https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/dht.html

107

KPN, 2016. Beyond Telecom, LoRa. Accessed on 29-04-2017 via http://www.loranode.com/LoRa/.

KPN, 2017. KPN LoRa, advanced workshop, by Michiel Jol. Restricted access – contact authors.

Law on Noise Pollution, article 82. Accessed on 29-04-2017 via http://wetten.overheid.nl/BWBR0003227/2016-

04-14#HoofdstukVI.

Lee, I., Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises.

Business Horizons, vol. 58, pp. 431—440.

Liu, year unknown. Temperature and humidity module. AM2302 product manual. Accessed on 19-05-2017, via

http://akizukidenshi.com/download/ds/aosong/AM2302.pdf.

LoRa Alliance™, 2017. LoRa Alliance™ Technology. Accessed at 19-05-2017, via https://www.lora-

alliance.org/What-Is-LoRa/Technology.

Maxim Integrated, 2016. MAX9814. Accessed at 15/05/2017, via

https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf.

MicroPython, 2017. MicroPython Libraries, class I2C – a two-wire serial protocol. Accessed at 17-05-2017 via

http://docs.micropython.org/en/latest/wipy/library/machine.I2C.html.

OGC 2017a, SWE standards, http://www.opengeospatial.org/domain/swe#standards

OGC 2017b, Sensor Observation Service (SOS), OGC 2017, http://www.opengeospatial.org/standards/sos

OGC 2017c, Sensor Web Enablement (SWE), http://www.opengeospatial.org/ogc/markets technologies/swe

Petäjäjärvi, J., Mikhaylov, K., Roivainen, A., Hänninen, T. & Pettissalo, M. 2015. On the Coverage of LPWANs:

Range Evaluation and Channel Attenuation Model for LoRa Technology. International Conference on ITS

Telecommunications (ITST), 14th edition, pp 55-59.

Pycom, 2016. Docs, Tutorials and examples, One-wire driver. Accessed at 17-05-2017, via

https://docs.pycom.io/pycom_esp32/pycom_esp32/tutorial/includes/onewire.html.

Pycom, 2017. LoPy 1.0. Accessed at 19-05-2017, via https://www.pycom.io/wp-

content/uploads/2016/12/lopySpecsheet.pdf.

RaspberryPi, 2017. Raspberry Pi 3 Model B. Accessed at 19-05-2017, via

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

Sharp Corporation, 2006. Sharp GP2Y1010AU0F, Compact Optical Dust Sensor. Accessed at 19-05-2017, via

https://www.sparkfun.com/datasheets/Sensors/gp2y1010au_e.pdf.

http://docs.micropython.org/en/latest/wipy/library/machine.I2C.html
http://www.opengeospatial.org/domain/swe#standards
http://www.opengeospatial.org/standards/sos
https://docs.pycom.io/pycom_esp32/pycom_esp32/tutorial/includes/onewire.html
https://www.pycom.io/wp-content/uploads/2016/12/lopySpecsheet.pdf
https://www.pycom.io/wp-content/uploads/2016/12/lopySpecsheet.pdf

108

Smart-cities.eu, 2015. European Smart Cities 4.0 (2015). Accessed at 21-05-2017, via http://smart-

cities.eu/?cid=01&ver=4.

Sanchez, L., Muñoza, L., Galache, J.A, Sotresa, P., Santana, J.R., Gutierrez, V., Ramdhany, R., Gluhak, A., Krco, S.,

Theodoridise & E., Pfisterer, D. (2013). SmartSantander: IoT experimentation over a smart city testbed. Computer

Networks, Volume 61, pp. 217–238.

Seeed, 2017. Grove – dust sensor. Accessed at 13-06-2017, via http://wiki.seeed.cc/Grove-Dust_Sensor/

Stankovic, J.A. (2014). Research directions for the Internet of Things, IEEE Internet Things J., vol. 1(1), pp. 3–9.

ST Microelectronics, 2013. LD1117A - Low drop fixed and adjustable positive voltage regulators. Accessed on 14-

06-2017, via http://www.findic.us/ld1117av33-datasheet-pdf-en-pejZBaxle.html

Tan, D. (2014). Testing the Shinyei PPD42NS. Accessed at 13-06-2017, via http://irq5.io/2013/07/24/testing-the-

shinyei-ppd42ns/

The Things Network, (2017). Limitations: data rate, packet size, 30 seconds uplink and 10 messages downlink per

day Fair Access Policy (forum post). Accessed via: https://www.thethingsnetwork.org/forum/t/limitations-data-

rate-packet-size-30-seconds-uplink-and-10-messages-downlink-per-day-fair-access-policy/1300.

Twitter Developer Documentation, 2017. API Overview. Accessed via: https://dev.twitter.com/overview/api

Vecchi, R., Marcazzan, G., Valli, G., Ceriani, M., C, Antoniazzi, C. (2004). The role of atmospheric dispersion in the

seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy).

Atmospheric Environment. Volume 38, Issue 27, p. 4437-4446

Verbree, E. 2017. Presentation ‘Project Management’. Presentation for the GEO1101 Synthesis Project at TU

Delft.

Vormetric, 2016. Vormetric Data Threat Report, Trends in Enccryption and Data Security. Accessed at 20-05-2017,

via http://enterprise-encryption.vormetric.com/rs/480-LWA-970/images/Vormetric_2016_Data_

Threat_Report_Global_WEB.pdf

Wang, J., Ogawa S. (2015) Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan.

International Journal of Environmental Research and Public Health ISSN 1660-4601 p.9090-9101

Yong, Z. 2016. Digital Universal Particle Concentration Sensor, v2.3. Accessed at 17-05-2017 via

http://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-

3.pdf?sfvrsn=2.

Zanella, A. & Vangelista, L. (2014). Internet of Things for Smart Cities. IEEE Internet Things J., vol. 1(1).

https://dev.twitter.com/overview/api
http://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf?sfvrsn=2
http://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf?sfvrsn=2

109

Zhong, N. et. al. (2013). Research challenges and perspectives on Wisdom Web of Things (W2T). Springer, The

Journal of Supercomputing, Volume 64, Issue 3, pp 862–882.

110

List of figures

Figure 1: Aggregated workflow 15

Figure 2: Project Logic Diagram 16

Figure 3: Personality of Peter 24

Figure 4: Personality of Eline 25

Figure 5: Personality of Richard 26

Figure 6: Flow of the technical system 27

Figure 7: PMS5003 air quality sensor (source: Yong, 2016) 28

Figure 8: PMS5003 schematic overview (left) and circuit (right) (source: Yong, 2016) 28

Figure 9: PMS5003 data output (source: Yong, 2016) 30

Figure 10: Plot of the PMS5003 test, inside, 'clean' air 31

Figure 11: Plot PMS5003 test, inside, 'dirty' air 32

Figure 12: Plot PMS5003 test, outside 34

Figure 13: Sharp Dust Sensor 35

Figure 14: Sharp Dust Sensor connection to LoPy (source: Sharp Corporation, 2016) 35

Figure 15: PPD42NS air dust sensor 36

Figure 16: LDD1117AV33 voltage divider (source: ST Microelectronics, 2013) 37

Figure 17: PPD42NS tests plot 39

Figure 18: MAX9814 sound sensor 40

Figure 19: Schematic overview of the MAX9814 sound sensor (source: Adafruit, 2016) 40

Figure 20: Graph of test measurements with the MAX9814 42

Figure 21: AM2302 temperature and humidity sensor 43

Figure 22: Maximum temperature error (source: Liu, year unknown) 44

Figure 23: AM2302 pin assignment (source: Liu, year unknown) 44

Figure 24: LoRa modulation (source: KPN, 2017) 46

Figure 25: LoRaWAN SF characteristics (source: KPN, 2017) 47

Figure 26: the default folder structure in the flash folder of LoPy 51

Figure 27: the folder structure in the flash folder of LoPy for each LoRa platform 51

Figure 28: Workflow of main.py (PMS5003 on the left and PPD42NS on the right) 53

Figure 29: Solar panel system design 56

Figure 30: Charging the LoPy with solar panels 57

Figure 31: perfboard, with headers and a LoPy 57

Figure 32: Schematic overview of the sensor platform 58

Figure 33: Deployed Sensor and Billboard at the Oude Langendijk (left) and Voldersgracht (right) 60

Figure 34: Different views of a casing design concept 62

file:///C:/Users/Niek/Desktop/synthesis/did-c1%20-%20Final_report/reports_in_Word/Static_IoT_DID-D%20Final%20Report%20v8.docx%23_Toc486600739

111

Figure 35: Final casing in 2 colors (left image). Ventilation (right image) 64

Figure 36: Cable box (left in image) and a lunch box (right in image) as inner boxes 64

Figure 37: Database system visualized 66

Figure 38: User Interface of Node-RED environment 69

Figure 39: An overview of the workflow in Node-RED 69

Figure 40: HTTP request to KPN gateway 70

Figure 41: HTTP response and function block for extracting data 70

Figure 42: Function blocks for SQL queries 70

Figure 43: Twitterbot responds to the user 72

Figure 44: Node-RED flow of twitterbot 72

Figure 45: Welcome page of the project website (www.scdelft.nl) 74

Figure 46: Dashboard on www.scdelft.nl 74

Figure 47: Historic data on www.scdelft.nl 75

Figure 48: Locations of sensors in the City center of Delft 76

Figure 49: Location of sensor 073 (left) and location of sensor 210 (right) at the Voldersgracht 77

Figure 50: Voldersgracht in SunCalc 77

Figure 51: Location of the sensor 981 (left) in Choorstraat. The sensor is covered by leaves of the tree (right) 78

Figure 52: Choorstraat in SunCalc 78

Figure 53: Location of sensor 772 (left) and location of sensor 66D (right) at Oude Langendijk 78

Figure 54: Oude Langendijk in SunCalc 79

Figure 55: Graph of temperature at the Voldersgracht 80

Figure 56: Graph of temperature at Oude Langendijk 81

Figure 57: Graph of temperature at Choorstraat 82

Figure 58: Graph of humidity at Voldersgracht 83

Figure 59: Graph of humidity at Oude Langendijk 84

Figure 60: Graph of humidity at Choorstraat 85

Figure 61: Temperature of all five sensors (note: the y-axis starts with 10 degrees C) 86

Figure 62: Humidity of all five sensors (note: the y-axis starts with 20%) 87

Figure 63: Graph of noise values from sensors in Voldersgracht 91

Figure 64: Graph of PMS measurements at Oude Langendijk, 13, 14 and 15 June 2017 93

Figure 65: Humidity at Oude Langendijk 93

Figure 66: Humidity and PM levels at Oude Langendijk 94

Figure 67: Wind speeds on the 13th and 14th of June 95

Figure 68: Difference plot PM10 and PM2.5 (PM10 values shown) 96

Figure 69: Difference plot PM2.5 and PM1 (PM2.5 values shown) 96

Figure 70: PM1 values 97

Figure 71: PMS measurements Choorstraat 97

Figure 72: PM1 measurements Choorstraat and Oude Langendijk 98

112

Figure 73: PM2.5 measurements Choorstraat and Oude Langendijk 98

Figure 74: PM10 measurements Choorstraat and Oude Langendijk 99

Figure 75: Measurements with PPD42NS in Oude Langendijk 100

Figure 76: APPENDIX A - Organogram of the Organizational Breakdown Structure 117

Figure 77: APPENDIX B - Work Breakdown Structure 119

Figure 78: APPENDIX D - GANTT chart of the project 122

Figure 79: APPENDIX D - The aggregated workflow 127

Figure 80: APPENDIX E - Using Twitter as a feedback mechanism 130

Figure 81: APPENDIX E - news article about the Sensor City Delft project on AD.nl/delft 132

Figure 82: APPENDIX E - news article about the Sensor City Delft project in Delft op Zondag 133

Figure 83: APPENDIX L - Possible locations on trees 154

Figure 84: APPENDIX L - Possible locations in Voldersgracht 156

Figure 85: APPENDIX L - Possible locations in Oude Langendijk 159

Figure 86: APPENDIX M – Casing 161

Figure 87: APPENDIX N - Sensor City Delft system overview 162

Figure 88: APPENDIX P - Sensor billboard 165

Figure 89: APPENDIX Q - Flyers for the Sensor City Delft project 166

Figure 90: APPENDIX R - Node-RED flow of twitterbot 167

Figure 91: APPENDIX O - Data plotting interface in Node-RED 172

Figure 92: APPENDIX R - Dashboard flow in Node-RED 173

Figure 93: APPENDIX S - Device information KPN Developer Portal (screenshot from KPN website) 174

Figure 94: APPENDIX S - Decryption scheme example KPN LoRa message (Source: Jol, 2016a) 175

Figure 95: APPENDIX X: Node-RED flow of receiving and parsing LoRa messages 215

113

List of tables

Table 1: PMS5003 pins and connections 29

Table 2: PMS5003 data calibration, inside, 'clean' air 31

Table 3: Plot of the PMS5003 test, inside, 'dirty' air 32

Table 4: Plot of the PMS5003 test, outside 33

Table 5: PPD42 tests 38

Table 6: AM2302 tests, five locations 45

Table 7: AM2302 calibration 45

Table 8: Comparison of Pycom LoPy, Arduino Uno, and Raspberry Pi microcontrollers 46

Table 9: KPN and The Things Network LoRa comparison 48

Table 10: components for the solar panels system 55

Table 11: casing requirements 63

Table 12: Database table with device addresses, measurements and timestamps 67

Table 13: Database table raw data, see Appendix L for more information 67

Table 14: Table with temperature values 86

Table 15: Table with humidity values 87

Table 16: Noise data for the three selected streets and during specific time slots 89

Table 17: Noise data of Voldersgracht during specific time slots 90

Table 18: Mean, maximum and minimum of PM10, PM2.5 and PM1 92

Table 19: APPENDIX O - LoRa JSON abbreviations 164

114

List of maps

Map 1: The Things Network coverage in Delft (source: The Things Network, 2017 (edited)) 49

Map 2: The Things Network coverage test in the study area 49

Map 3: KPN LoRa connectivity test in the study area 50

Map 4: The study area in red, scale 1:2381 59

115

List of abbreviations

ADR Adaptive Data Rate

API Application Programming Interface

AppSKey Application Session Key

CF Cubic Foot

COP Common Operating Picture

CSS Chirp Spread Spectrum

DevEUI End Device Unique Identifier

DID Deliverables Items Descriptions

DSL Digital Subscriber Line

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPS Global Positioning System

HTTP HyperText Transfer Protocol

ICT Information and Communication Technology

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IOT Internet Of Things / Internet Of Everything

ISM bands Industrial, Scientific and Medical bands

JSON JavaScript Object Notation

KPN Koninklijke PTT Nederland

LED Light-Emitting Diode

LoRa Low Range (Low Power)

LoRaWAN Long Range Wide Area Network

LPO Lo Pulse Occupancy

MHz Megahertz

MSc Geomatics Master of Science Geomatics for the Built Environment

NwkSKey Network Session Key

OBS Organizational Breakdown Structure

OGC Open Geospatial Consortium

PM Particulate Matter

POI Point of Interest

QR-code Quick Response code

REPL Read-Evaluate-Print-Loop

RGB Red Green Blue

SF Spreading Factor

116

SQL Structured Query Language

SSH Secure Shell

TCP/IP Transmission Control Protocol / Internet Protocol

Telnet TELetype NETwork

TU Delft Delft University of Technology

UART Universal Asynchronous Receiver/Transmitter

WBS Work Breakdown Structure

WPD Work Package Description

MoSCoW Must have, Should have, Could have, Will not have

UART Universal Asynchronous Receiver/Transmitter

Wi-Fi Wireless Fidelity

117

Appendices

Appendix A: Organizational Breakdown Structure

In this research project several tasks and responsibilities are defined. These tasks and

responsibilities are fitted into different roles. Every member of the team is assigned to one or

more roles for which he or she is responsible or will assist. In this way, it is ensured that every

member will be able to contribute equally to the project. The Organizational Breakdown

Structure (OBS) in figure 44 shows the communication lines in this project. For every role a

short description is provided in the next section.

Figure 76: APPENDIX A - Organogram of the Organizational Breakdown Structure

Chairman (Roeland Meulmeester)

- Responsible for managing the overall process of Sensor City Delft

- Ensures the project stays on schedule

- Chair the meetings

Secretary (Noortje Vaissier)

- Keeps track of the agenda every week

- Sets the minutes during meetings

Software Engineer (Nebras Salheb)

- Responsible for making sure the code is working on all computers

Designer (Gina Michailidou assisted by Noortje Vaissier)

- Responsible for the design of the box containing the sensor

118

- Responsible for the logo and the uniform style of the lay-out of the report,

presentation and posters

Data manager (Cathelijne Kleijwegt assisted by Gina Michailidou)

- Responsible for maintaining and cleaning the collected data

Public relations (Cathelijne Kleijwegt)

- Responsible for keeping social media up to date

- Arranges meetings with coaches and clients

Quality assurance (Niek Bebelaar)

- Ensures the quality of the written products

Hardware engineer (Niek Bebelaar)

- Responsible for the hardware of the sensors

119

Appendix B: Work Breakdown Structure

In order to provide a clear overview of the different tasks a Work Breakdown Structure (WBS)

is constructed. In the WBS the different tasks are identified, this is shown in figure 45.

Figure 77: APPENDIX B - Work Breakdown Structure

In this structure the green boxes represent the general processes which include the initiation,

data collection, data processing and reporting phases. The initiation phase marks the start of

the process. In this phase the stakeholders are contacted and interviewed in order to gain

more knowledge about their wishes and needs. A concept for a feedback system which

interactively provides information is developed. Furthermore, information about sensors is

collected and system requirements are researched. The location of the sensors is determined

and the sensors are created and tested before their implementation.

In the data collection phase the data is collected and put into a database. Afterwards, the data

will be filtered in order to gain clean data.

In the processing phase the filtered data is used to analyze and visualize it. The information

generated from the processing can, then, be used for the feedback system.

The finalization phase includes the finishing of the report and the presentation. The

presentation will show all the achievements and results from the project.

120

Appendix C: Work Package Description (WPD)

This section consist of the phases of the process as shown in the WBS each containing a short

description.

Initiation

- Write a database plan

o Research into the requirements of the database that is going to be used.

o Detect the possibilities and limitations of the database.

- Stakeholder analysis

o A stakeholder meeting was organized in the first week of the project.

o The stakeholders included: municipality of Delft, citizens and shop owners.

- Requirement analysis

o Requirements of the project are described in chapter 4.4.

- Describe feedback mechanism

o Conduct research into feedback systems which provide interactive

information.

o The requirement for a feedback system are determined.

- Create sensors

o Conduct research into sensor hardware and into software.

o Put the sensors together.

- Build prototype sensor

o Build one prototype sensor to test if it works.

- Test interactivity

o Test interactive feedback system.

- Create sensor box

o Determine requirements for the design of the boxes.

o Design boxes in which the sensors will be placed.

- Test sensors

o Make multiple sensors and test whether they are fully functional.

o Calibrate sensors based on existing sensors in the city.

- Assemble sensor boards

121

o Place the sensors in the boxes.

- Find locations for sensors

o Conduct research into the places which are suitable for placing sensors.

- Implement sensors

o Place the casing with the sensors at the locations chosen.

Data collection

- Aggregate data

o Collecting the data in the database.

- Filter data

o Remove outliers from the datasets and clean up the data.

Processing

- Analyze data

o Conduct analysis on the filtered data.

o Generate relevant information from the data.

- Visualize data

o Make visualizations of the information to make it understandable for users.

- Data for feedback

o Use the generated data and visualized data for feedback.

Reporting

- Make presentation

o Compile results and achievements in the final presentation.

- Make report

o Finalize the report.

122

Appendix D: Schedule of the GSP (GANTT chart)

The exact project planning can be found in the GANTT chart.

Figure 78: APPENDIX D - GANTT chart of the project

123

124

125

126

To show in a more simplified way the general workflows exist, an aggregated workflow is

127

shown in Figure 79 and described in a few paragraphs.

Figure 79: APPENDIX D - The aggregated workflow

The simplified workflow shows that for the majority of the project four parallel but highly

interrelated workflows exist. During almost the entire project, general project tasks and

reporting takes place. These general project tasks are for example meetings with coaches,

workshops and other activities every group member takes part in. The Reporting part consists

of both writing the deliverables, logging and other secretarial tasks.

The three (roughly) parallel processes that take place are the software development, the data

connection and storage element and the hardware element. The majority of the software

tasks are developing a feedback system, like for example a Twitter bot. Also a website and

other social media need to be created and maintained. Another software task is writing code

to read and send the sensor data: this code is placed on the microcontroller on each sensor

platform.

The data connection element focuses on the connection and storage of the data the sensor

platforms deliver. The connection therefore is both the connection over LoRa as well as the

connection between the software and the data. This is one of the reasons these parallel

processes are highly interrelated.

The hardware element covers the building and deploying of the sensor platforms. The casing

128

of the sensor platforms are also part of this. Since the sensor platforms are controlled by a

microcontroller that sends over LoRa, this process is related to the ‘Data’ element in this

project.

The three processes come together in the sense that the resulting product is a working sensor

network that provides feedback to the user. In order to draw conclusions of both the

construction of the network and two it functions, at least one week of ‘uptime’ of the network

is favorable.

The Geomatics Day is the great finale of this project: the entire process and results are

presented on that day.

129

Appendix E: Media outreach strategy

Introduction
The main goal of the project Sensor City Delft is to raise environmental awareness of the

citizens of Delft by interactively providing environmental data. To achieve this goal media

outreach plays a major role. Media outreach is similarly important for bridging the gap

between the TU Delft and the city itself by making the efforts of the students their research

visible for the citizens. By communicating the project and its outcome clearly to the citizens

the research gets a broader public and it will also increase the visibility of TU Delft's Geomatics

program.

The audience

The main audience of the project’s media outreach are the citizens and visitors of the city of

Delft. Very often they do not have a clue what the students are doing at university whilst they

are very much interested in this. Often the living area of the citizens is being researched and

the citizens themselves can also benefit from these researches. Not only citizens can benefit

from research from TU Delft but also community organizations such as homeowners

associations or shopping owners associations are interested. Therefore the citizens, visitors

and community organisations are the audience for this media outreach.

The second audience target group is professionals. Reaching out to professionals is a good

way to profile the education of Geomatics in professional surroundings. They might be

interested in the project or the master programme. Likewise it is a good way for the students

to show what they are capable of to the professionals.

The message

It is aimed to encourage citizens and professionals to access the collected environmental data.

The idea behind it is that by allowing the citizens to know more about the environment in their

neighbourhood it will raise their environmental awareness. Eventually, this awareness can

even lead to an improvement in the environment. Hence the message should include what

the project is about and on how to access the data.

The media message also aims to inform the public about the fact that this is a pilot project

with space for improvement and expansion. Therefore, it should be communicated as being a

base where future student groups can build on.

130

Media outreach methods

Social Media

Facebook is used to keep the public updated with the latest news of the project. Both minor

and important news are included in order to keep the followers updated on the latest news

of the project. The Facebook page is shared with the IoT Dynamic group of the Synthesis

project.

Twitter is merely used to provide the data to whomever asks for it using the right hashtag with

the right text. In this stage it is not used to give other information because it is important to

be focused on the functionality itself. The idea of interacting with the sensors using Twitter

also encourages the user to retweet the incoming results or even take a picture of it (image

xxx[N1]).

Figure 80: APPENDIX E - Using Twitter as a feedback mechanism also encourages citizens to tweet about

the project

Billboards and flyers

Billboards are used to make the citizens aware of the project that is running in the street and

131

to intrigue the pedestrian to visit the website and the social media. It includes instructions on

how to obtain the data via Twitter. It also has a QR Code that will take the user directly to the

website.

In addition, flyers are placed in popular places such as cafes and shops. The flyers contain the

same information as the billboards including; Twitter feedback instructions, QR code of the

website URL, social media and website address. The flyers also include a short description of

the projects and the location of the sensors (appendix Q).

Website

The website URL of the project is www.scdelft.nl. The main functionality is that it provides

feedback to the users about the sensors data. It contains both the latest readings and a time

series of the readings within a time frame. The website also provides an insight about the

project itself in the form of different pages. Each page describes a specific aspect of the project

including an interactive map of the locations of all the sensors. An option that could have been

of good use but was only discovered in a later stage is the option to link the website to all

social media, which publishes a post on the website directly on different social media

including: Twitter Facebook, Instagram, Telegram and LinkedIn.

In addition, it contains a news section. The news published on the website is the same as the

posts on Facebook which tells the public the latest development in the progress of the project.

Likewise, the website aims to motivate the visitors to be engaged in the project. It encourages

them to contact the project team and provides the tools to do so.

To create the website Wordpress.org is used which provides a simple tool to create websites.

It was chosen because it provides different plugins with many functionalities. Such as,

embedding live google maps, efficient contact us forms and the ability to embed an a webpage

from other websites.

Interviews with local media

Interviews are made with two local newspapers. The first is AD Delft where an

article describing the project was published on 14-06-2017 (see figure 49). It explains very

well to the target group of citizens what the project is about and what the aim is of the project.

I was also published at the website of AD on 17-06-2017 (http://www.ad.nl/delft/tuktuk-en-

rondvaartboot-meten-temperatuur-en-luchtkwaliteit~a3b8dc82/).

http://www.scdelft.nl/
http://www.ad.nl/delft/tuktuk-en-rondvaartboot-meten-temperatuur-en-luchtkwaliteit~a3b8dc82/
http://www.ad.nl/delft/tuktuk-en-rondvaartboot-meten-temperatuur-en-luchtkwaliteit~a3b8dc82/

132

Figure 81: APPENDIX E - news article about the Sensor City Delft project on AD.nl/delft

The second article was published in Delft op Zondag (figure 50).

133

Figure 82: APPENDIX E - news article about the Sensor City Delft project in Delft op Zondag

Movie visiting professor Thomas H. Kolbe

The company OCVLVS FILM shoots a movie for the visiting professor of the faculty of

Architecture this year Thomas H. Kolbe. During the project the two IoT groups of the synthesis

project got approached to be in this movie too. Since this was in a late stage of the project the

shootings will take place after the end presentation at Geomatics day. Thomas H. Kolbe will

receive this movie as a thank-you present from the faculty and being in this movie will profile

the project on an international level.

134

Future media outreach

After the project has finished the abstract together with the executive summary will be spread

through four different media channels. Both documents will be shared with GIS magazine, a

magazine that publishes developments in spatial information and Geo-ICT. The abstract will

be posted on the Wordpress of Geomatics (https://delftgeomatics.wordpress.com/) and the blog

of the Science Centre (http://themakingof.weblog.tudelft.nl/). In a previous stage there was a reach

out to B nieuws (https://www.tudelft.nl/bk/actueel/magazines/bnieuws/) the magazine of the faculty

of Architecture. They did not seem interested but after the project has finished they will be

contacted again with some results. This will be together with Delta (http://www.delta.tudelft.nl/)

the online magazine of the TU Delft. To reach more professionals more magazines or even

scientific journals can be reached out to, this has not come under discussion since

professionals are not our main target group.

Recommendations

- Publish in scientific magazines to reach more specialized audience.

- Facilitating other social media methods is important such as; Instagram, Telegram and

LinkedIn. This can be accomplished by linking the website to all social media as mentioned

before.

https://delftgeomatics.wordpress.com/
http://themakingof.weblog.tudelft.nl/
https://www.tudelft.nl/bk/actueel/magazines/bnieuws/
http://www.delta.tudelft.nl/

135

Appendix F: Stakeholders and experts

Stakeholders

Municipality Delft: Provides financial support for the project. The Municipality wants to use

the project to improve the livelihood in the city center of Delft and wants this project as a base

for further development of similar projects in the city of Delft.

Science Centre TU Delft: Provides financial support for the project. The Science Centre also

provides work spaces and equipment for the project development.

Residents of Delft: Next to the Municipality Delft the residence are the main user of the project

where the sensors can interactively provide information to the citizens.

SpingSmart: SpingSmart is a technical consultancy firm which supports the team in both

project management, software development and data analysis.

Experts

Stefan van der Spek: Project team main supervisor.

Wilko Quak: Project team supervisor, main contact regarding ICT such as the project database

management.

Teun Verkerk: Project team supervisor, Developer Maker Education at the Science Centre

Delft. Provides support regarding the project management and technical details.

Martijn Meijers: Provides technical support regarding ICT of the project.

Sabine de Milliano: CEO of Sping Smart. Provides insight about the project specifications.

Rob Braggaar: Provides insight and support about the physical component of the project such

as; the sensors, LoPy and gateways.

Niels Stamhuis: A product designer working at the IoT Academy and the RDM Makerspace.

Niels helps the group with expert knowledge of the (KPN) LoRa network.

136

Appendix G: MoSCoW priority management

‘MoSCow’ is a project management technique that aids in understanding and managing

priorities (Verbree, 2017; Agile Business Consortium, 2017). ‘MoSCoW’ is an acronym for:

- Must Have

- Should Have

- Could Have

- Won’t Have this time

Here MoSCoW is based on the fact that the project is a pilot project. Hence, the project is an

initial prototype where minor and major glitches might not be addressed.

Must have

In order for the project to succeed it most interactively providing environmental information

to the citizens using the sensor network. Hence the minimum usable subset (Must) of

requirements which the project guarantees to deliver are:

- A LoRa network fixed in certain places in the city center of Delft. It should be able to

collect data from sensors and store this data in a central database. For these network

to be valid a minimum number of sensor platforms of 5 must be completed.

- The ability for the citizens to interactively and simply retrieve data from the network.

- One or more sensors fixed on each LoPy chip, that can collect data from the

environment and transmit this data using LoRa.

- A proper way of designing the sensors, and fixing them around the city center.

Should have

There are requirements that are important for the project. Even though the solution is still

viable without these requirements it is important for the project to include these

requirements. These requirements can still require some workaround or completion by the

end of the project time (Agile Business Consortium, 2017).

- The number of completed LoPy sensor platforms should be at least 15.

- The platforms are spread around three streets in the city center of Delft.

137

- Each LoPy chipset has a sensor connected to it that is able to collect information about

air quality.

- Each LoPy chipset has a sensor connected to it that is able to measure the noise in the

designated location.

- The ability for regular citizens to interact with the platform in two different ways; using

QR code (directing to a website) and Twitter.

- The platforms should be powered in a sustainable way by using solar panels in addition

to the built-in batteries.

- The boxing of the sensors should be designed in a way that is visually appealing, goes

well with the surrounding environment and stimulates the curiosity of the citizens to

interact with them.

Could have

These are the requirements that are less likely to be accomplished. Including these

functionalities would be mainly dependent on the possibility to deliver within the deadline.

- The sensor platforms could have sensors that measure Temperature and humidity.

- The sensor platforms could have GNSS sensors that helps accurately determining the

location of the sensors especially if the platforms are moved by stakeholders or simply

they were taken by people.

- Using the platform for tracking could be possible if the privacy issue was carefully

studied.

- All the possible 40 LoPy chips ideally could be used. Hence, the total number of

completed sensor platforms would be 40.

- The sensors locations are placed in a way that produce an ideal results. Hence some

additional streets might be included other than the ones that are already specified.

- Additional ways of the citizens to interaction with the sensor platforms could be added

by using the built in Wi-Fi and Bluetooth Low Energy.

- The results of the sensors measurements could be made visual by using LED lights. For

example, red light for low air quality and green light for good air quality.

Will not have this time

In order to focus the scope of the project and to manage the expectations the following

138

requirements will simply not make it into the deployed product. However, in the future these

requirements may be added to the product.

- More sensors can be used other than the ones mentioned above (Noise, air quality,

tracking people, Temperature, humidity), in order to provide a maximum use of the

already established platforms. Examples of such sensors are: Light and vibration

sensors.

- The information linkage would not extend to business, cars and public transportation.

- The project would not have a coverage for the whole city center of Delft.

- The project will not provide long time measurements. Because of the limited time

frame, it is only possible to provide measurements of one or two weeks in best case

scenario.

139

Appendix H: Boundary Conditions

Each project has its requirements and boundaries. Some are more obvious than others and

some will only become visible in a later stage of the project. For starters these are the

requirements and boundaries that are most obvious. Other requirements and boundaries will

become clear during the project and should be added to the list for the other team members

to make sure every team member is up to date to these requirements and boundaries.

The outcome of the project should be interactive, it should have good interaction with the

citizens and visitors of the city of Delft and should be clearly visible. Even though it is an

important part of the project the project should not fall or stand with this interactivity, in other

words: the project should not be dependent on the amount of response it gets from the

citizens and visitors.

One of the boundaries of this project is the timespan that is possible for the project. Because

of this maximum of nine weeks that is available for the project a limited amount of time is

available for taking the measurements in the city center. Together with the research, data

analysis and reporting there are only one (or at most two) weeks left to do the data collection

in the city center.

One other time limitation is the time of hardware shipment. For example ordering more

sensors will take about two weeks to arrive. Hence any other hardware needed should be

decided upon in early stages. Another boundary condition is the role of the municipality as

one of the main stakeholders. They have expressed their interest in the acquisition of a certain

type of data, particularly; noise levels, air quality, and on a lower level tracking of people. In

addition, they expressed their interest in three particular streets which are: Choorstraat,

Voldersgracht and Oude Langendijk. These requirements are not obligatory for the project but

they do form a boundary that should be considered.

A different boundary of the project is the amount of sensors that are used for measuring.

These sensors are already provided to the project and their amount is set to a maximum of 40

sensors. These sensors are placed in three streets of the city center of Delft that have a

different profile and different characteristics. The maximum of three streets is set to the

amount of sensors, this way 13 sensors will be installed in each street and one will be a spare

140

one. The initial intention is to build and test those 40 sensors in a week time and then to install

them. Since this is a short timespan it is possible that the aim of 40 sensors will not be reached,

this will end up in less sensors per street with a minimum of 5 sensors in each street. If it is

not possible to place 5 sensors in each street one street has to be eliminated from the list or

other actions should be taken.

There are many types of sensors that can measure different things. For this project only some

environmental data are of interest to collect. Only this data that is of interest to collect is

processed and used in the project and reported to the citizen that is interested in the

outcomes of the sensors. If it is possible that more data than only the data of interest is

collected (if there is enough space on the sensor platform) this will be collected and made

available for the TU Delft and other interested parties as raw (unprocessed) data.

141

Appendix I: Functional, non-functional and killer requirements

The requirements are the things that are wanted or needed in the framework of this project.

A functional requirement describes the behavior of the system, while a non-functional

requirement describes the non-behavioral aspects of a system, capturing the properties and

the constraints under which the system must operate (Chung & Do Prado Leite, 2009). So,

functional requirements states what the product that is created by this project should be able

to do, while a non-functional requirement describes a performance characteristic of the

system. A general overview of the parts in the system is included in Appendix D.

Functional requirements

The Sensor City Delft project should deliver a product that can do the things as described in

this section. In short, the end-product is a system consisting of a network of sensor platforms

placed in the city center of Delft that measures environmental data, transmitting that data to

a database, and the system must be able to respond to users who want to access the data via

a web service. To accomplish this are the following functional requirements defined:

- Every sensor platform in the network should be able to measure air quality, current

position, the local noise level, temperature and humidity on the place where the

sensor platform is located.

- The data collected by each sensor platform must be transmitted to a database that

runs on a server.

- The database must be accessible via a web service, where clients can sent requests to

the database and get the information they asked for (this information is as ‘real time’

as possible.

- With regard to the user, for a further description of the implications of the received

information, there must be a website where this context information is explained to

the user.

Non-functional requirements

As described above, these kind of requirements can be considered as performance

requirements of a specific characteristic of the system.

142

The sensor platforms themselves consist of the PyCom LoPy development board, an external

LoRa antenna, and an expansion board for upgrading the firmware. For every environmental

data type to investigate for this project there is a sensor attached to the board. For air quality

this is the ‘Plantower’ PMS5003 sensor, connected via UART. For sound is a microphone array

used, which is connected via UART, and for measuring global sound is the MAX9814 generic

microphone used, connected via OneWire. Temperature and humidity is measured with the

AM2302 device, connected to the sensor board via I2C. Further, the sensors are powered with

on-board batteries and it is possible to attach a solar panel to the sensor board for extra

energy. For operating and installing the sensor boards small electronic components such as

RGB LEDs, resistors, transistors, buttons and switches will be used. Arduino Unos and

Protoshields might be used when sensors from the Arduino collection are needed. The

software for operating the sensors is written in the MicroPython programming language, that

is used in the Atom development environment.

Further, the boxes in which these sensor boards are placed are 3D-printed boxes. For the best

measurement results of the sensors, such a box must have openings on the correct locations.

The boxes are placed in the city, so they must be suitable for use in an outdoor environment.

Moreover, with regard to theft they must be placed relatively high in the air (4 meter or

higher), and attached to a building or city object. It is preferred to place them on a window

with suction cups. For the construction of the sensor board boxes are the 3D printer Ultimaker

2, 3D print materials and Rhino 3D software needed.

The sensor boxes are located in three streets in Delft: Oude Langendijk, Voldersgracht and the

Choorstraat. These streets have their own characteristics regarding the type of use of the

buildings, the infrastructures in the street, crowdedness, and length of the street. For each

street is a typology made, based upon these characteristics. The number of sensor platforms

for each street are chosen in such a way that the distance between the sensor platforms is

around the same in all the streets.

Then, the local placement (height, distance to road, distance to building facades) of the sensor

platforms in the built environment can have an effect on the reliability of the data. Therefore,

the placement of the sensors must be done in a correct and justified manner for all locations,

and there is chosen for a placement of about 4 meters above street level, so on the first floor

143

of a building. The distance to the road must be the same amount of meters for every sensor

in a certain street. The distance to the building facades must be minimal, since the law on

noise pollution in the Netherlands sets standards for noise levels on building facades (Law on

Noise Pollution Article 82).

The data that is collected must be transmitted to the database in a way as efficient as possible,

taking into account the limited bitrate of the LoRa communication system. Therefore,

standards are needed for correct data transmission. It is a goal to offer the user who requests

the data the information as fast as possible, so as ‘real time’ as possible. Based upon the

maximum bitrate of LoRa is defined how ‘real time’ the information will be for the user. This

all depends on how much data will be transmitted and how many sensors are attached to the

sensor board.

From every LoRa sensor platform in the city is the data transmitted to the KPN LoRa service

(KPN, 2017). This service sends the data via the internet to our database which runs on a

server. Therefore, a free KPN LoRa developer account, a PostgreSQL database, and a server

that can store large amounts of data are needed.

The web service is the feedback part of the system. This web service must be easy to use by

the users, first of all by giving the user several possibilities to access the data, e.g. online via

Twitter or by scanning a QR-code, or offline by a LED-display that shows the values after a

request. Next to that, the information must be communicated effectively and efficiently to

the user. Effectively, because the user must understand the message as clear as possible.

Therefore, a web site is created, where additional information such as statistics about the

environmental values and how the values must be interpreted can be found. The information

must be communicated efficiently, because the information is limited to the 140 characters

of Twitter. For this part of the project are access to the development part of a website, a

Twitter account, and a QR code generator needed.

Killer requirements

Killer requirements can obstruct the feasibility of the project. They can be regarded as being

a risk to a successful end result.

- With regard to the placement of the 'sensor boxes' in the city: what if we cannot find

144

enough locations to place them? Then other streets then the initial three must be

investigated, maybe even streets of the group members themselves, or streets of

fellow students.

- Messages sent via LoRa will be affected by the distance between buildings, but it is not

yet sure how much. Maybe an amplifier is needed to transmit the data.

- The KPN LoRa service might be unavailable sometimes. That affects the quality of the

feedback service.

- With regard to security: how to deal with the possibility that the sensor boxes are

stolen? And how 'hackable' are the sensor boards?

- Will the QR code work during the night, when it is dark? When the QR code is

unavailable, another online way of communication is possible, namely via Twitter.

- It is not allowed to place sensor boards on old buildings (which are often monuments),

therefore suction cups are a good solution. These suction cups must be able to hold

the total weight of a sensor box.

145

Appendix J: MicroPython script main.py

import time

from machine import Pin, Timer, UART, WDT

from network import LoRa

import socket

import binascii

import struct

import config

import machine

from dth import DTH

from math import log

import utime

from struct import unpack

import array

wdt = WDT(timeout=1920000)

#LoRa

lora = LoRa(mode=LoRa.LORAWAN)

create an ABP authentication params

dev_addr = struct.unpack(">l", binascii.unhexlify(config.DEV_ADDR))[0]

nwk_swkey = binascii.unhexlify(config.NWKS_KEY)

app_swkey = binascii.unhexlify(config.APPS_KEY)

join a network using ABP (Activation By Personalization)

lora.join(activation=LoRa.ABP, auth=(dev_addr, nwk_swkey, app_swkey))

create a LoRa socket

s = socket.socket(socket.AF_LORA, socket.SOCK_RAW)

set the LoRaWAN data rate

s.setsockopt(socket.SOL_LORA, socket.SO_DR, 5)

SET_PORT = 'P11' # LoPy SET port, communicates with the PMS SET port (P3)

RESET_PORT = 'P8' # LoPy RESET port, communicates with the PMS RESET port(P6)

STARTUP_TIME = 30 # 30 seconds of startup time (needed for ventilator). 5 is better for

debugging.

set_pin = Pin(SET_PORT, mode=Pin.OUT)

reset_pin = Pin(RESET_PORT, mode=Pin.OUT)

data_uart2 = UART(1, baudrate=9600, parity=None, stop=1, pins=('P9', 'P10'))

setup pin

th = DTH(Pin('P4', mode=Pin.OPEN_DRAIN), 1)

SAMPLE_WINDOW = 50 # Sample window width in ms (50 ms = 20Hz)

sample = 0

adc = machine.ADC(bits=10) # create an ADC object

apin = adc.channel(pin='P16') # create an analog pin on P16=G3

timing object for measuring low pulse

chrono = Timer.Chrono()

def fan_on():

 #print('Turning the PMS5003 fan on') # the fan is ON by default.

 set_pin.value(1)

def fan_off():

 #print('Turning the PMS5003 fan off')

 set_pin.value(0)

def reset():

 #print('Resetting the PMS5003 sensor')

 reset_pin.value(1)

def set_sensor():

 #print('Preparing the fan...')

 fan_on()

 #print('Wait 30 seconds...')

 time.sleep(STARTUP_TIME) # wait 30 seconds

146

 #print('Sensor is set')

while True:

 #temperature and humidity

 result=th.read()

 tempbeforecomma1=int((str(result.temperature/1.0).split("."))[0])

 tempaftercomma1=int((str(result.temperature/1.0).split("."))[1])

 humbeforecomma1=int((str(result.humidity/1.0).split("."))[0])

 humaftercomma1=int((str(result.humidity/1.0).split("."))[1])

 #noise

 # Measuring noise values. Measures only one moment.

 start_time = chrono.read_ms()

 peak_to_peak = 0 # initialize peak-to-peak level

 signal_max = 0 # maximum signal

 signal_min = 1024 # minimal signal

 chrono.start() # start the stopwatch

 while (chrono.read_ms() - start_time) < SAMPLE_WINDOW: # takes 50 ms

 sample = apin()

 if sample > signal_max:

 signal_max = sample

 elif sample < signal_min:

 signal_min = sample

 peak_to_peak = signal_max - signal_min

 if (peak_to_peak > 0):

 log_value = ((peak_to_peak/1024)+1)

 dB = 2 * int(round(100*(log(log_value, 10))))

 else:

 dB = 0

 chrono.stop() # stop the stopwatch

 chrono.reset() # reset the stopwatch

 set_sensor()

 d = data_uart2

 raw = d.read()

 unpacking = unpack('>16H', raw)

 pm1_u = int(unpacking[2])

 pm2_u = int(unpacking[3])

 pm10_u = int(unpacking[4])

 pm1_atm_u = int(unpacking[5])

 pm2_atm_u = int(unpacking[6])

 pm10_atm_u = int(unpacking[7])

 fan_off()

 hum = int(hex(humbeforecomma1))

 hum1 = int(hex(humaftercomma1))

 aq3 = int(hex(0))

 aq4 = int(hex(0))

 temp = int(hex(tempbeforecomma1))

 temp1 = int(hex(tempaftercomma1))

 noi = int(hex(dB))

 pm1 = int(hex(pm1_u))

 pm2 = int(hex(pm2_u))

 pm10 = int(hex(pm10_u))

 pm1_atm = int(hex(pm1_atm_u))

 pm2_atm = int(hex(pm2_atm_u))

 pm10_atm = int(hex(pm10_atm_u))

 s.setblocking(True)

 #send over lora

 s.send(bytes([aq3,aq4,temp,temp1,hum,hum1,noi,pm1,pm2,pm10,pm1_atm,

 pm2_atm,pm10_atm]))

 s.setblocking(False)

 wdt.feed()

 time.sleep(780)

 machine.deepsleep(90000)

147

Appendix K: Sensor locations – facades

In order to hang the sensor boxes to a façade, the residents and shop owners have to be

informed and asked for permission for hanging the sensor box. Because of uncertainty

whether or not they will agree with placing the sensors, two scenarios have been researched.

In the first scenario the residents and shop owners agree with putting up the sensor at their

facade. In this case it is necessary to determine at which place on the facade the sensors can

be hanged or attached. Hereby it is important to design the casing in such a manner that holes

in the facade are not needed. An option for implementing the sensor boxes without causing

damage to the facade is with using plastic tie-rips. Tie-rips are available in several sizes and

thicknesses and make it possible to tie the sensor boxes around objects. Another option is

using steel tie-rips.

The other scenario is that the residents and shop owners do not agree to attach the sensor

their building. In this case it is necessary to examine trees and lanterns. These objects provide

the possibility to hang the sensors at a sufficient height and have parts sticking out to attach

the sensor to.

In the table down below an overview is shown with the investigated facades with possibilities

to mount sensors and billboards.

Choorstraat Facade

Albert Heijn, number 35

● Suitable for interactive board

148

Restaurant Redjeki, number 52 to 56

Leonidas, number 3

Diamant Schaar, number 11

149

Trekpleister, number 10

● Suitable for interactive board

Ruisch Sports, number 2

Voldersgracht Facade

150

Restaurant puro, number 28

Knotten (Shop), number 23

Museum Vermeer, number 21

● Suitable for interactive board

151

Hostel, number 17

● Suitable for interactive board

Restaurant La Tasca, number 13 & 14

O.J.V. de Koornbeurs, number 5

● Suitable for interactive board

152

Oude Langendijk Facade

Kientz kunst, number 35

Jamin and Ziengs, number 15-16-17

● Suitable for interactive board

153

Resident building, number 23

Long John bodywear, number 4

Shop, Number 2

154

Appendix L: Sensor locations – trees and lanterns

Overview location scouting trees and street lanterns

Choorstraat

Trees

Figure 83: APPENDIX L - Possible locations on trees

155

Lanterns

Street Lantern

Choorstraat 31

Choorstraat 16

156

Choorstraat 2

Voldersgracht

Trees

Figure 84: APPENDIX L - Possible locations in Voldersgracht

157

Lanterns

Street Lantern

Voldersgracht 30

Voldersgracht 23

158

Voldersgracht 6

159

Oude Langendijk

Trees

Figure 85: APPENDIX L - Possible locations in Oude Langendijk

Lanterns

Street Lantern

Oude Langendijk 3

160

Oude Langendijk 18

Oude Langendijk 36

161

Appendix M: Casing

The 2d view of the end product with the dimensions and a brief explanation of its components

included.

Figure 86: APPENDIX M – Casing

162

Appendix N: System overview

Figure 87: APPENDIX N - Sensor City Delft system overview

163

Appendix O: LoRa JSON message

LoRa messages are send as JSON objects. An exemplary JSON object is shown below, on the
next page a table with abbreviations and explanations can be found. The measurements taken
from the Lopy are send in the payload_hex attribute. This is a hexadecimal message and is
encrypted by KPN. See Appendix S for more information about this encryption.

{
"DevEUI_uplink":

{

"Time":"2017-06-14T10:44:30.369+02:00"

"DevEUI":"0059AC00001807B8"

"FPort":"2"

"FCntUp":"1"

"MType":"2"

"FCntDn":"138",

"payload_hex":"304840d1b9fa8d97623c1201bd"

"mic_hex":"94454654"

"Lrcid":"0059AC02"

"LrrRSSI":"-110.000000"

"LrrSNR":"4.000000"

"SpFact":"7"

"SubBand":"G1"

"Channel":"LC3"

"DevLrrCnt":"1"

"Lrrid":"FF010226"

"Late":"0"

"LrrLAT":"52.019737"

"LrrLON":"4.361882"

"Lrrs":

{

"Lrr":

{

"Lrrid":"FF010226"

"Chain":"0"

"LrrRSSI":"-110.000000"

"LrrSNR":"4.000000"

"LrrESP":"-111.455406"

}

}

"CustomerID":"100006356"

"CustomerData":

{

"alr":

{

"pro":"SMTC/LoRaMote"

"ver":"1"

}

}

"ModelCfg":"0"

"InstantPER":"0.000000"

"MeanPER":"0.000000"

"DevAddr":"142037B9"

}

}

JSON Attribute Explanation
LrrSNR SNR (Signal Noise Ratio) measured by the best LRR.

Lrrid ID of the LRR (Gateway) that processed the packet.

SpFact SF (Spreading Factor) used by device

SubBand SUB BAND used by the device.

CustomerData ASCII customer data set by provisioning.

FPort LoRaWAN FPort used by the device for this packet.

Channel Radio Channel (LC) used by the device.

FCntUp The uplink counter for this packet.

Time LRR (Gateway) Timestamp for the packet.

164

DevEUI Device DevEUI.

payload_hex LoRaWAN payload in hexadecimal ASCII format.

CustomerID Customer ID associated to the Device Manager account.

LrrRSSI RSSI (Received signal strength indication) measured by the best LRR.

ADRbit ADRBit (Adaptive Data Rate on or off) set by the device.

ModelCfg ASCII ThingPark Cloud data set by provisioning.

mic_hex MIC in hexadecimal ASCII format.

LrrLON Longitude of the best LRR.

LrrLAT Latitude of the best LRR.

FCntDn The last downlink counter to the device.

Lrcid ID of the LRC (Core) that processed the packet.

DevLrrCnt Number of LRRs which received this packet.
Table 19: APPENDIX O - LoRa JSON abbreviations

165

Appendix P: Sensor billboard

An example of a billboard that is placed close to a sensor.

Figure 88: APPENDIX P - Sensor billboard

166

Appendix Q: Sensor flyer

Figure 89: APPENDIX Q - Flyers for the Sensor City Delft project

167

Appendix R: Twitterbot code

Figure 90: APPENDIX R - Node-RED flow of twitterbot

1: Search Tweets directed to @SensorCityDelft

2: Parse Tweet and Get Data

msg.queryParameters = {};

var O1 = "'142037B9'";
var V2 = "'14204140'";
var V3 = "'14203981'";

var C1 = "'14204073'";
var C2 = "'1420366D'";
var C3 = "'14203210'";

var V1 = "'14204772'";
var O2 = "'142042F7'";
var O3 = "'14204FD8'";

if ((msg.payload.includes("Temperature")) || (msg.payload.includes("temperature")) ||
(msg.payload.includes("temperatuur")) || (msg.payload.includes("Temperatuur"))){
 if (msg.payload.includes ("#Voldersgracht")){
 msg.payload = "Select temperature from public.data3 where (sid = "+V1+" and sensedtime =
(select max(sensedtime) from public.data3 where sid= "+V1+"))";}
 else if (msg.payload.includes ("#Choorstraat")){
 msg.payload = "Select temperature from public.data3 where (sid = "+C1+" and sensedtime =
(select max(sensedtime) from public.data3 where sid="+C1+"))";}
 else if ((msg.payload.includes ("#OudeLangendijk")) ||(msg.payload.includes("#Oudelangendijk"))){
 msg.payload = "Select temperature from public.data3 where (sid = "+O1+" and sensedtime =
(select max(sensedtime) from public.data3 where sid="+O1+"))";}
 else if (msg.payload.includes ("#Voldersgracht2")){
 msg.payload = "Select temperature from public.data3 where (sid = "+V2+" and sensedtime =
(select max(sensedtime) from public.data3 where sid="+V2+"))";}
 else if (msg.payload.includes ("#Choorstraat2")){
 msg.payload = "Select temperature from public.data3 where (sid = "+C2+" and sensedtime =
(select max(sensedtime) from public.data3 where sid="+C2+"))";}
 else if ((msg.payload.includes ("#OudeLangendijk2")) ||(msg.payload.includes("#Oudelangendijk2"))){
 msg.payload = "Select temperature from public.data3 where (sid = "+O2+" and sensedtime =
(select max(sensedtime) from public.data3 where sid="+O2+"))";}}
else if ((msg.payload.includes("Humidity"))|| (msg.payload.includes("humidity")) ||
(msg.payload.includes("vochtigheid")) || (msg.payload.includes("Vochtigheid"))){
 if (msg.payload.includes ("#Voldersgracht")){
 msg.payload = "Select humidity from public.data3 where (sid = "+V1+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+V1+"))";}
 else if (msg.payload.includes ("#Choorstraat")){
 msg.payload = "Select humidity from public.data3 where (sid = "+C1+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+C1+"))";}
 else if ((msg.payload.includes ("#OudeLangendijk")) || (msg.payload.includes("#Oudelangendijk"))){
 msg.payload = "Select humidity from public.data3 where (sid = "+O1+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+O1+"))";}
 else if (msg.payload.includes ("#Voldersgracht2")){
 msg.payload = "Select humidity from public.data3 where (sid = "+V2+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+V2+"))";}
 else if (msg.payload.includes ("#Choorstraat2")){
 msg.payload = "Select humidity from public.data3 where (sid = "+C2+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+C2+"))";}
 else if ((msg.payload.includes ("#OudeLangendijk2")) ||

168

(msg.payload.includes("#Oudelangendijk2"))){
 msg.payload = "Select humidity from public.data3 where (sid = "+O2+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+O2+"))";}}
else if ((msg.payload.includes("Noise"))||(msg.payload.includes("noise")) ||
(msg.payload.includes("Geluid"))||(msg.payload.includes("geluid"))){
 if (msg.payload.includes ("#Voldersgracht")){
 msg.payload = "Select noise from public.data3 where (sid = "+V1+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+V1+"))";}
 else if (msg.payload.includes ("#Choorstraat")){
 msg.payload = "Select noise from public.data3 where (sid = "+C1+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+C1+"))";}
 else if ((msg.payload.includes ("#OudeLangendijk"))||(msg.payload.includes("#Oudelangendijk"))){
 msg.payload = "Select noise from public.data3 where (sid = "+O1+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+O1+"))";}
 else if (msg.payload.includes ("#Voldersgracht2")){
 msg.payload = "Select noise from public.data3 where (sid = "+V2+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+V2+"))";}
 else if (msg.payload.includes ("#Choorstraat2")){
 msg.payload = "Select noise from public.data3 where (sid = "+C2+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+C2+"))";}
 else if ((msg.payload.includes ("#OudeLangendijk2"))||(msg.payload.includes("#Oudelangendijk1"))){
 msg.payload = "Select noise from public.data3 where (sid = "+O2+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+O2+"))";}}
else if ((msg.payload.includes("Air Quality"))||(msg.payload.includes("Air quality"))||
(msg.payload.includes("air quality")) || (msg.payload.includes("Lucht"))||
(msg.payload.includes("lucht"))){
 if (msg.payload.includes ("#Voldersgracht")){
 msg.payload = "Select airquality from public.data3 where (sid = "+V1+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+V1+"))";}
 else if (msg.payload.includes ("#Choorstraat1")){
 msg.payload = "Select airquality from public.data3 where (sid = "+C1+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+C1+"))";}
 else if ((msg.payload.includes ("#OudeLangendijk"))|| (msg.payload.includes("#Oudelangendijk"))){
 msg.payload = "Select airquality from public.data3 where (sid = "+O1+"and sensedtime = (select
max(sensedtime) from public.data3 where sid="+O1+"))";}
 else if (msg.payload.includes ("#Voldersgracht2")){
 msg.payload = "Select airquality from public.data3 where (sid = "+V2+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+V2+"))";}
 else if (msg.payload.includes ("#Choorstraat2")){
 msg.payload = "Select airquality from public.data3 where (sid = "+C2+" and sensedtime = (select
max(sensedtime) from public.data3 where sid="+C2+"))";}
 else if ((msg.payload.includes ("#OudeLangendijk2"))|| (msg.payload.includes("#Oudelangendijk2"))){
 msg.payload = "Select airquality from public.data3 where (sid = "+O2+"and sensedtime = (select
max(sensedtime) from public.data3 where sid="+O2+"))";}}
else {
 msg.payload = "Select temperature from public.data3 where sid = '00000000'";
}

return msg;

3: Database connection

PostgreSQL connection node

4: Create Tweet
msg.queryParameters = {};

data = msg.payload[0];

msg.test = msg.tweet.text;

if (msg.test.includes("#EN")){

 if ((msg.test.includes ("Temperature")) || (msg.test.includes("temperature"))){

 if (msg.test.includes ("#Voldersgracht1")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The temperature at the

Voldersgracht 1 is '+ data.temperature+'°C'; }

 else if (msg.test.includes ("#Choorstraat1")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The temperature at the

Choorstraat 1 is '+ data.temperature+'°C'; }

 else if ((msg.test.includes

("#OudeLangendijk1"))||(msg.test.includes("Oudelangendijk1"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The temperature at the Oude

Langendijk 1 is '+ data.temperature+'°C'; }

 else if (msg.test.includes ("#Voldersgracht2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The temperature at the

Voldersgracht 2 is '+ data.temperature+'°C'; }

 else if (msg.test.includes ("#Choorstraat2")){

169

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The temperature at the

Choorstraat 2 is '+ data.temperature+'°C'; }

 else if ((msg.test.includes

("#OudeLangendijk2"))||(msg.test.includes("Oudelangendijk2"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The temperature at the Oude

Langendijk 2 is '+ data.temperature+'°C'; }}

 else if ((msg.test.includes ("Humidity"))||(msg.test.includes("humidity"))){

 if (msg.test.includes ("#Voldersgracht1")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The humidity at the

Voldersgracht 1 is '+ data.humidity; }

 else if (msg.test.includes ("#Choorstraat1")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The humidity at the Choorstraat

1 is '+ data.humidity; }

 else if ((msg.test.includes

("#OudeLangendijk1"))||(msg.test.includes("#Oudelangendijk1"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The humidity at the Oude

Langendijk 1 is '+ data.humidity; }

 else if (msg.test.includes ("#Voldersgracht2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The humidity at the

Voldersgracht 2 is '+ data.humidity; }

 else if (msg.test.includes ("#Choorstraat2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The humidity at the Choorstraat

2 is '+ data.humidity; }

 else if ((msg.test.includes

("#OudeLangendijk2"))||(msg.test.includes("#Oudelangendijk2"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The humidity at the Oude

Langendijk 2 is '+ data.humidity; }}

 else if ((msg.test.includes ("Noise"))|| (msg.test.includes("noise"))){

 if (msg.test.includes ("#Voldersgracht1")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The noise level at the

Voldersgracht 1 is '+ data.noise+' dB'; }

 else if (msg.test.includes ("#Choorstraat1")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The noise level at the

Choorstraat 1 is '+ data.noise+' dB'; }

 else if ((msg.test.includes ("#OudeLangendijk1")) ||

(msg.test.includes("#Oudelangendijk1"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The noise level at the Oude

Langendijk 1 is '+ data.noise+' dB'; }

 else if (msg.test.includes ("#Voldersgracht2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The noise level at the

Voldersgracht 2 is '+ data.noise+' dB'; }

 else if (msg.test.includes ("#Choorstraat2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The noise level at the

Choorstraat 2 is '+ data.noise+' dB'; }

 else if ((msg.test.includes ("#OudeLangendijk2")) ||

(msg.test.includes("#Oudelangendijk2"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The noise level at the Oude

Langendijk 2 is '+ data.noise+' dB'; }}

 else if ((msg.test.includes ("Air Quality")) || (msg.test.includes("Air

quality"))||(msg.test.includes("air quality"))){

 if (msg.test.includes ("#Voldersgracht1")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The air quality at the

Voldersgracht 1 is '+ data.airquality; }

 else if (msg.test.includes ("#Choorstraat1")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The air quality at the

Choorstraat 1 is '+ data.airquality; }

 else if ((msg.test.includes

("#OudeLangendijk1"))||(msg.test.includes("#Oudelangendijk1"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The air quality at the Oude

Langendijk 1 is '+ data.airquality; }

 else if (msg.test.includes ("#Voldersgracht2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The air quality at the

Voldersgracht 2 is '+ data.airquality; }

 else if (msg.test.includes ("#Choorstraat2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The air quality at the

Choorstraat 2 is '+ data.airquality; }

 else if ((msg.test.includes

("#OudeLangendijk2"))||(msg.test.includes("#Oudelangendijk2"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' The air quality at the Oude

Langendijk 2 is '+ data.airquality; }}

 else {

 msg.payload = '@' + msg.tweet.user.screen_name + ' There has been a mistake, please

try a different request ';}}

else {

 if ((msg.test.includes ("Temperatuur")) || (msg.test.includes("temperatuur"))){

 if (msg.test.includes ("#Voldersgracht")){

170

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De temperatuur op de

Voldersgracht is '+ data.temperature+'°C'; }

 else if (msg.test.includes ("#Choorstraat")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De temperatuur op de Choorstraat

is '+ data.temperature+'°C'; }

 else if ((msg.test.includes

("#OudeLangendijk"))||(msg.test.includes("Oudelangendijk"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De temperatuur op de Oude

Langendijk is '+ data.temperature+'°C'; }

 else if (msg.test.includes ("#Voldersgracht2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De temperatuur op de

Voldersgracht 2 is '+ data.temperature+'°C'; }

 else if (msg.test.includes ("#Choorstraat2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De temperatuur op de Choorstraat

2 is '+ data.temperature+'°C'; }

 else if ((msg.test.includes

("#OudeLangendijk2"))||(msg.test.includes("Oudelangendijk2"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De temperatuur op de Oude

Langendijk 2 is '+ data.temperature+'°C'; }}

 else if ((msg.test.includes ("Vochtigheid"))||(msg.test.includes("vochtigheid"))){

 if (msg.test.includes ("#Voldersgracht")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De vochtigheid op de

Voldersgracht is '+ data.humidity; }

 else if (msg.test.includes ("#Choorstraat")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De vochtigheid op de Choorstraat

is '+ data.humidity; }

 else if ((msg.test.includes

("#OudeLangendijk"))||(msg.test.includes("#Oudelangendijk"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De vochtigheid op de Oude

Langendijk 1 is '+ data.humidity; }

 else if (msg.test.includes ("#Voldersgracht2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De vochtigheid op de

Voldersgracht 2 is '+ data.humidity; }

 else if (msg.test.includes ("#Choorstraat2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De vochtigheid op de Choorstraat

2 is '+ data.humidity; }

 else if ((msg.test.includes

("#OudeLangendijk2"))||(msg.test.includes("#Oudelangendijk2"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De vochtigheid op de Oude

Langendijk 2 is '+ data.humidity; }}

 else if ((msg.test.includes ("Geluid"))|| (msg.test.includes("geluid"))){

 if (msg.test.includes ("#Voldersgracht")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' Het geluidsniveau op de

Voldersgracht is '+ data.noise+' dB'; }

 else if (msg.test.includes ("#Choorstraat")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' Het geluidsniveau op de

Choorstraat is '+ data.noise+' dB'; }

 else if ((msg.test.includes ("#OudeLangendijk")) ||

(msg.test.includes("#Oudelangendijk"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' Het geluidsniveau op de Oude

Langendijk is '+ data.noise+' dB'; }

 else if (msg.test.includes ("#Voldersgracht2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' Het geluidsniveau op de

Voldersgracht 2 is '+ data.noise+' dB'; }

 else if (msg.test.includes ("#Choorstraat2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' Het geluidsniveau op de

Choorstraat 2 is '+ data.noise+' dB'; }

 else if ((msg.test.includes ("#OudeLangendijk2")) ||

(msg.test.includes("#Oudelangendijk2"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' Het geluidsniveau op de Oude

Langendijk 2 is '+ data.noise+' dB'; }}

 else if ((msg.test.includes ("Lucht")) || (msg.test.includes("lucht"))){

 if (msg.test.includes ("#Voldersgracht")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De luchtkwaliteit op de

Voldersgracht is '+ data.airquality; }

 else if (msg.test.includes ("#Choorstraat")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De luchtkwaliteit op de

Choorstraat is '+ data.airquality; }

 else if ((msg.test.includes

("#OudeLangendijk"))||(msg.test.includes("#Oudelangendijk"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De luchtkwaliteit op de Oude

Langendijk is '+ data.airquality; }

 else if (msg.test.includes ("#Voldersgracht2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De luchtkwaliteit op de

Voldersgracht 2 is '+ data.airquality; }

 else if (msg.test.includes ("#Choorstraat2")){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De luchtkwaliteit op de

171

Choorstraat 2 is '+ data.airquality; }

 else if ((msg.test.includes

("#OudeLangendijk2"))||(msg.test.includes("#Oudelangendijk2"))){

 msg.payload = '@'+ msg.tweet.user.screen_name + ' De luchtkwaliteit op de Oude

Langendijk 2 is '+ data.airquality; }}

 else {

 msg.payload = '@' + msg.tweet.user.screen_name + ' Er ging iets mis, probeer het

opnieuw';}}

return msg;

5: Tweet block

172

The Dashboard flow in Node-RED visualizes the data in graphs. It takes the last 2 hours of

measurements, coordinated per street. PostgreSQL fetches this data from the database. In

the function blocks the device addresses are linked to the right streets. Node-RED provides an

intuitive user interface to plot the data (figure 91). Function blocks have the code to fetch the

right data.

Figure 91: APPENDIX O - Data plotting interface in Node-RED

173

Figure 92: APPENDIX R - Dashboard flow in Node-RED

174

Appendix S: LoRa encryption

On the online forum of KPN (KPN Zakelijk) the explanation of the LoRa encryption is explained;
see the next two sections:

“KPN sends the payload of LoRa messages in an encrypted way. The LoRa payload is by default
encrypted with AES-128 bits encryption, based on the generic algorithm described in IEEE
802.15.4/2006 Annex B [IEEE802154] as described in the LoRaWAN specifications” (Jol,
2016a).

“Payload information is encrypted with an Application Session Key (AppSKey). This key needs
to be shared between device and customer Application Server. The AppSKey does not have to
be shared with the network operator, but developers can choose to share the AppSKey with
KPN to decrypt the payload and sent the decrypted payload over a secure https connection.”
(Jol, 2016b).

In the Node-RED environment a public library is installed (node-red-contrib-loradecrypt) to
take care of this decryption. The information that should be provided is the AppsKey and the
Device address. Both of which are provided by KPN (figure 93). An example of how the
encryption works is shown in figure 94.

Figure 93: APPENDIX S - Device information KPN Developer Portal (screenshot from KPN website)

175

Figure 94: APPENDIX S - Decryption scheme example KPN LoRa message (Source: Jol, 2016a)

176

Appendix T: Test script MAX9814

import machine

from math import log

import time

import pycom

SAMPLE_WINDOW = 50 # Sample window width in ms (50 ms = 20Hz)

sample = 0

adc = machine.ADC(bits=10) # create an ADC object

apin = adc.channel(pin='P16') # create an analog pin on P16=G3

timing object for measuring low pulse

chrono = machine.Timer.Chrono()

def median(data):

 sorteddata = sorted(data)

 dataLen = len(data)

 index = (dataLen - 1) // 2

 if (dataLen % 2):

 return(sorteddata[index])

 else:

 return(sorteddata[index] + sorteddata[index + 1])/2.0

def capriati():

 db_values = []

 while True:

 chrono.start()

 start_time = chrono.read_ms()

 peak_to_peak = 0 # peak-to-peak level

 signal_max = 0 # max signal

 signal_min = 1024 # min signals

 while (chrono.read_ms() - start_time) < SAMPLE_WINDOW: # 50 ms

 sample = apin() # read an analog value

 if sample > signal_max:

 signal_max = sample

 elif sample < signal_min:

 signal_min = sample

 peak_to_peak = signal_max - signal_min

 if (peak_to_peak > 0):

 log_value=((peak_to_peak/1024)+1)

 dB= 2 * int(round(100*(log(log_value,10)))) #calculate sound level

 else:

 dB = 0

 chrono.stop()

 chrono.reset()

 print(dB)

 if dB < 35: # lights based on sound levels (not necessary for test script)

 pycom.rgbled(0xff0000)

 elif 35 < dB < 40:

 pycom.rgbled(0x0000ff)

 elif dB > 50:

 pycom.rgbled(0x00ff00)

 db_values.append(dB)

 time.sleep(1)

 if len(db_values) == 10:

 avg = sum(db_values)/len(db_values)

 print('Average: ', avg)

 mediandB = median(db_values)

 print('Median: ', mediandB)

 break

def run():

 for x in range(0, 10):

 capriati()

177

Appendix U: Test script AM2302

"""

Test script for the Temperature and Humidity sensor AM2302

The DTH class that needs to be imported from the dth module is available at

https://github.com/JurassicPork/DHT_PyCom (the dth project is licensed under the terms of the

MIT license).

"""

from dth import DTH

th = DTH(Pin('P4', mode=Pin.OPEN_DRAIN), 1)

def temp_hum():

 temperatures = []

 humidities = []

 while True:

 result = th.read()

 print(result, type(result))

 print(result.is_valid())

 # if result.is_valid():

 print("#", len(temperatures)+1)

 print('Temperature: {:3.2f}'.format(result.temperature / 1.0))

 print('Humidity: {:3.2f}'.format(result.humidity / 1.0))

 temperatures.append(result.temperature)

 humidities.append(result.humidity)

 if len(temperatures) == 10:

 sum_temp = sum(temperatures)

 avg_temp = sum_temp / 10.0

 print(" ")

 print("Summary about the last 20 seconds:")

 print(" ")

 print('The average temperature was: {:3.2f}'.format(avg_temp))

 print('The maximum temperature was: {:3.2f}'.format(max(temperatures)))

 print('The minimum temperature was: {:3.2f}'.format(min(temperatures)))

 temperatures = []

 if len(humidities) == 10:

 sum_hum = sum(humidities)

 avg_hum = sum_hum / 10.0

 print(" ")

 print('The average humidity was: {:3.2f}'.format(avg_hum))

 print('The maximum humidity was: {:3.2f}'.format(max(humidities)))

 print('The minimum humidity was: {:3.2f}'.format(min(humidities)))

 humidities = []

 time.sleep(5)

for x in range(0, 10):

 temp_hum()

https://github.com/JurassicPork/DHT_PyCom

178

Appendix V: Graphs and tables for AM2302 measurements

Temperature at the Voldersgracht

0

5

10

15

20

25

30

35

40

Te
m

p
er

at
u

re
 ̊

C

Date

Temperature at the Voldersgracht

Voldersgracht 073 Voldersgracht 210

179

Humidity at the Voldersgracht

0

10

20

30

40

50

60

70

80

90

H
u

m
id

it
y

%

Date

Humidity at the Voldersgracht

Voldersgracht 073 Voldersgracht 210

180

Temperature and humidity at the Voldersgracht

0

10

20

30

40

50

60

70

80

90

13-6-2017 00:00 13-6-2017 12:00 14-6-2017 00:00 14-6-2017 12:00 15-6-2017 00:00 15-6-2017 12:00

Te
m

p
er

at
u

re
 o

r
H

u
m

id
it

y

Date

Temperature and Humidity at the Voldersgracht

Humidity 073 Humidity 210 Temperature 073 Temperature 210

181

Temperature at the Oude Langendijk

0

5

10

15

20

25

30

Te
m

p
er

at
u

re
 ̊

C

Date

Temperature at the Oude Langendijk

Oude Langendijk 772 Oude Langendijk 66D

182

Humidity at the Oude Langendijk

0

10

20

30

40

50

60

70

80

90

100

H
u

m
id

it
y

%

Date

Humidity at the Oude Langendijk

Oude Langendijk 772 Oude Langendijk 66D

183

Temperature and humidity at the Oude Langendijk

0

10

20

30

40

50

60

70

80

90

100

13-6-2017 00:00 13-6-2017 12:00 14-6-2017 00:00 14-6-2017 12:00 15-6-2017 00:00 15-6-2017 12:00 16-6-2017 00:00

Te
m

p
er

at
u

re
 o

r
H

u
m

id
it

y

Date

Temperature and humidity at the Oude Langendijk

Humidity 772 Humidity 66D Temperature 772 Temperature 66D

184

Temperature at the Choorstraat

0

5

10

15

20

25

30

35

Te
m

p
er

at
u

re
 ̊C

Date

Temperature at the Choorstraat

Choorstraat 981 Temp

185

Humidity at the Choorstraat

0

10

20

30

40

50

60

70

80

90

H
u

m
id

it
y

%

Date

Humidity at the Choorstraat

Choorstraat 981 Hum

186

Temperature and humidity at the Choorstraat

0

10

20

30

40

50

60

70

80

90

13-6-2017 12:00 14-6-2017 00:00 14-6-2017 12:00 15-6-2017 00:00 15-6-2017 12:00 16-6-2017 00:00

Te
m

p
er

at
u

re
 o

r
H

u
m

id
it

y

Date

Temperature and Humidity at the Choorstraat

Choorstraat 981 Temp Choorstraat 981 Hum

187

Temperature all streets

0

5

10

15

20

25

30

35

40

13-6-2017 00:00 13-6-2017 12:00 14-6-2017 00:00 14-6-2017 12:00 15-6-2017 00:00 15-6-2017 12:00 16-6-2017 00:00

Te
m

p
er

at
u

re

Date

Temperature all streets

Voldersgracht 073 Voldersgracht 210 Oude Langendijk 772 Oude Langendijk 66D Choorstraat 981

188

Humidity all streets

0

10

20

30

40

50

60

70

80

90

100

13-6-2017 00:00 13-6-2017 12:00 14-6-2017 00:00 14-6-2017 12:00 15-6-2017 00:00 15-6-2017 12:00 16-6-2017 00:00

H
u

m
id

it
y

%

Date

Grafiektitel

Voldersgracht 073 Voldersgracht 210 Oude Langendijk 772 Oude Langendijk 66D Choorstraat 981

189

Temperature and humidity all streets

0

10

20

30

40

50

60

70

80

90

100

13-6-2017 00:00 13-6-2017 12:00 14-6-2017 00:00 14-6-2017 12:00 15-6-2017 00:00 15-6-2017 12:00 16-6-2017 00:00

Te
m

p
er

at
u

re
 o

r
h

u
m

id
it

y

Date

Temperature and humidity all streets

Temperature Vold 073 Temperature Vold 210 Temperature OL 772 Temperature OL 66D Temperature Choor 981

Humidity Vold 073 Humidity Vold 210 Humidity OL 772 Humidity OL 66D Humidity Choor 981

190

Metadata of sensor 981 Choorstraat

Temperature Amount Mean Max Min St Dev

10:01 - 14:00 1 32 32 32 0

14:01 - 18:00 12 22,367 23,9 20,5 0,822781682

18:01 - 22:00 13 20,592 21,6 18,7 1,009506099

22:01 - 02:00 11 17,555 18,5 16,7 0,569848465

02:01 - 06:00 14 15,85 16,6 15,3 0,361088099

06:00 - 10:00 8 17,625 19,7 15,3 1,802973734

10:00 - 14:00 7 22,28571429 24,9 20,6 1,630366596

14:00 - 18:00 5 28,9 32,2 27,4 1,920937271

18:00 - 22:00 14 26,2 27,7 24,3 1,022064276

22:00 - 2:00 13 22,12307692 23,9 20,7 1,095562143

2:00 - 6:00 13 19,96923077 20,7 19,4 0,363741244

6:00 - 10:00 10 21,05 23,1 19,1 1,522607413

10:00 - 14:00 7 24,71428571 24,9 24,4 0,177281052

Total: 128 21,26640625

Humidity Amount Mean Max Min St Dev

10:01 - 14:00 1 28,6 28,6 28,6 0

14:01 - 18:00 12 48,769 55,2 45,9 3,090950397

18:01 - 22:00 13 65,373 71,7 57,6 4,978773124

22:01 - 02:00 11 76,993 78,7 74 1,185466014

02:01 - 06:00 14 70,057 79,4 60,4 8,403344006

191

06:00 - 10:00 8 68,4875 79,4 57,5 8,957588563

10:00 - 14:00 7 47,88571429 53 42,1 4,423583981

14:00 - 15:00 5 31,9 35,5 27,4 2,917190429

18:00 - 22:00 14 36,12142857 46 32 4,24412328

22:00 - 2:00 13 57,75384615 65,2 46,9 6,872483222

2:00 - 6:00 13 56,62307692 64,4 54,5 2,949902215

6:00 - 10:00 10 54,75 57,3 51,9 2,054939848

10:00 - 14:00 7 53,7 55,1 52,3 1,160459679

Total: 128 54,45625

192

Metadata of sensor 073 Voldersgracht

Temperature Amount Mean Max Min St Dev

10:01 - 14:00 6 24,11666667 25,4 22,3 1,225425096

14:01 - 18:00 12 23,6 24,6 22,6 0,686228162

18:01 - 22:00 11 20,59090909 23,8 18,9 1,394599975

22:01 - 02:00 2 18,2 18,4 18 0,282842712

02:01 - 06:00 -- -- -- -- --

06:00 - 10:00 -- -- -- -- --

10:00 - 14:00 7 24,02857143 25,6 22 1,325033692

14:00 - 18:00 10 28,22 29,4 25,9 1,225470431

18:00 - 22:00 14 24,84285714 27,2 22,8 1,182379794

22:00 - 2:00 12 20,35 22,4 19 1,25589519

2:00 - 6:00 13 18,58461538 18,9 18,1 0,276424052

6:00 - 10:00 9 19,67777778 21,5 18,2 1,31318104

Total: 96 22,415625

Humidity Amount Mean Max Min St Dev

10:01 - 14:00 6 43,9 45,9 42,8 1,171324037

14:01 - 18:00 12 41,675 45,2 38,5 2,034754843

18:01 - 22:00 11 47,06363636 53,3 41,2 3,424404394

22:01 - 02:00 2 57,3 58,5 56,1 1,697056275

02:01 - 06:00 -- -- -- -- --

06:00 - 10:00 -- -- -- -- --

193

10:00 - 14:00 7 42,2 46,3 38,1 2,996108587

14:00 - 18:00 10 31,83 36,9 29 2,675007788

18:00 - 22:00 14 38,15714286 48,9 32,9 5,266835904

22:00 - 2:00 12 63,475 71,2 49,9 8,657642446

2:00 - 6:00 13 60,69230769 69,8 58,4 3,186550261

6:00 - 10:00 9 58 60,7 55,3 2,090454496

Total: 96 48,0875

194

Metadata of sensor 210 Voldersgracht

Temperature Amount Mean Max Min St Dev

10:01 - 14:00 4 23,2 23,6 22,8 0,40824829

14:01 - 18:00 15 26,12666667 31,2 22,8 2,757189736

18:01 - 22:00 14 21,82142857 29,5 19,1 3,325930424

22:01 - 02:00 13 17,88461538 18,7 16,9 0,468768162

02:01 - 06:00 15 15,83333333 16,7 15,3 0,489411697

06:00 - 10:00 8 16,5 17,6 15,2 1,094140237

10:00 - 14:00 9 23,63333333 25,5 22,2 1,198957881

14:00 - 18:00 12 29,2 33,9 25,5 3,172896583

18:00 - 22:00 14 25,41428571 30,2 22,7 2,318440173

22:00 - 2:00 17 20,67647059 22,4 19,3 1,043149924

2:00 - 6:00 12 18,9 19,6 18,2 0,388470193

Total: 134 21,70223881

Humidity Amount Mean Max Min St Dev

10:01 - 14:00 4 44,375 45,7 43,4 1,117661249

14:01 - 18:00 15 37,70666667 45,5 27,6 6,2094935

18:01 - 22:00 14 46,78571429 57,1 29,3 8,098989219

22:01 - 02:00 13 65,79230769 72,4 59,1 3,84739339

02:01 - 06:00 15 77,12 79 73,9 1,470276942

06:00 - 10:00 8 74,5125 79,5 70 4,200488917

10:00 - 14:00 9 45,27777778 49,1 40,1 3,015699661

195

14:00 - 18:00 12 31,325 39,8 23,6 6,27855296

18:00 - 22:00 14 38,67142857 52,4 25,4 8,486317365

22:00 - 2:00 17 65,04705882 72,3 53,6 6,898833022

2:00 - 6:00 12 61,65 71,4 59,6 3,210069385

Total: 134 53,55746269

196

Metadata sensor 771 Oude Langendijk

Temperature Amount Mean Max Min St Dev

10:01 - 14:00 12 19,55833333 20,7 18,7 0,803920319

14:01 - 18:00 15 20,72666667 21,2 20,1 0,371227052

18:01 - 22:00 17 19,37058824 20,4 17,9 0,749803896

22:01 - 02:00 14 16,42142857 17,6 15,1 0,73920807

02:01 - 06:00 10 14,25 15 13,7 0,377859468

06:00 - 10:00 5 15,92 19,1 13,8 2,296083622

10:00 - 14:00 8 22,6875 24,1 21,8 0,764269025

14:00 - 18:00 11 24,37272727 25,1 22,7 0,7630084

18:00 - 22:00 12 24,04166667 25 22 0,954852043

22:00 - 2:00 14 19,62142857 21,7 18,2 1,121934162

2:00 - 6:00 16 17,59375 18 17 0,382044936

6:00 - 10:00 5 19,84 22 17,2 2,018167486

Total: 139 19,57122302

Humidity Amount Mean Max Min St Dev

10:01 - 14:00 12 55,475 60,5 50,6 3,563737823

14:01 - 18:00 15 51,48666667 55,1 48,4 1,686020957

18:01 - 22:00 17 53,92941176 60,4 51,5 2,585479817

22:01 - 02:00 14 71,04285714 80,1 62,5 5,287389102

02:01 - 06:00 10 83,72 85,2 81,3 1,046475566

06:00 - 10:00 5 77,24 85,1 63,4 9,471958615

197

10:00 - 14:00 8 47,65 51,6 45,4 2,07639798

14:00 - 18:00 11 41,80909091 45,6 39,2 2,332575635

18:00 - 22:00 12 42,775 53,5 38,7 5,224091918

22:00 - 2:00 14 67,36428571 77,1 54,4 8,127503841

2:00 - 6:00 16 68,825 76,8 65,5 3,805872655

6:00 - 10:00 5 60,18 67,1 54,5 5,46781492

Total: 139 59,51366906

198

Metadata of sensor 66D Oude Langendijk

Temperature Amount Mean Max Min St Dev

10:01 - 14:00 5 20,94 21,7 20,6 0,439317653

14:01 - 18:00 13 21,04615385 21,9 20,4 0,411532471

18:01 - 22:00 7 19,74285714 20,4 19,1 0,534967734

22:01 - 02:00 7 16,82857143 17,9 15,8 0,701698619

02:01 - 06:00 6 14,75 15 14,6 0,151657509

06:00 - 10:00 10 16,07 17,7 14 1,291897829

10:00 - 14:00 --

14:00 - 18:00 9 25,7 26,1 25,4 0,254950976

18:00 - 22:00 17 24,49411765 26 22,3 1,128312118

22:00 - 2:00 14 20,00714286 21,9 18,7 1,122815339

2:00 - 6:00 11 17,99090909 18,4 17,5 0,338982435

6:00 - 10:00 11 20,14545455 23 17,4 2,09015006

10:00 - 14:00 7 23,98571429 24,3 23,7 0,234012617

Total: 117 20,5017094

Humidity Amount Mean Max Min St Dev

10:01 - 14:00 5 60,72 64,4 55,3 3,386295911

14:01 - 18:00 13 59,79230769 63,1 55,9 2,298355042

18:01 - 22:00 7 61,37142857 63 60,2 1,151396667

22:01 - 02:00 7 80,51428571 88 72,4 5,855034464

02:01 - 06:00 6 92,08333333 92,3 91,7 0,213697606

199

06:00 - 10:00 10 87,9 93,2 78,9 4,992883825

10:00 - 14:00

14:00 - 15:00 9 46,77777778 49,5 45,2 1,394433378

18:00 - 22:00 17 49,93529412 62,4 44,8 6,071237639

22:00 - 2:00 14 78,51428571 87,2 64,1 8,910741758

2:00 - 6:00 11 77,25454545 83,8 75,1 2,620444098

6:00 - 10:00 11 72,65454545 77,7 68 3,905986082

10:00 - 14:00 7 68 70,6 65,5 1,818424226

Total: 117 68,37350427

200

Appendix W: Graphs and tables for air quality measurements

PMS measurements at the Oude Langendijk

0

10

20

30

40

50

60

70

80

µ
m

/m
3

Date

PMS5003 measurements at the Oude Langendijk

pm1 pm 2 pm 10

201

Humidity and temperature at the Oude Langendijk

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

90

100

Te
m

p
er

at
u

re
 °

H
u

m
id

it
y

%

Date

Humidity and temperature at the Oude Langendijk

Humidity temperature

202

Humidity and PM levels at the Oude Langendijk

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

H
u

m
id

it
y

%

µ
m

/m
3

Date

Humudity and PM levels at the Oude Langendijk

pm1 pm 2 pm 10 humidity

203

Difference plot PM10 and PM2.5 at the Oude Langendijk

0

2

4

6

8

10

12

14

µ
m

/m
3

Date

Difference plot PM10 and PM2.5

Difference PM10 PM2.5

204

Difference plot PM2.5and PM1 at the Oude Langendijk

-30

-20

-10

0

10

20

30

40

µ
m

/m
3

Date

Difference PM2.5 and PM1

Difference PM2.5 PM1

205

PM1 measurements at the Oude Langendijk

0

5

10

15

20

25

30

35

40

µ
m

/m
3

Date

PM1

PM1

206

PMS5003 measurements at the Choorstraat

0

20

40

60

80

100

120

140

160

µ
m

/m
3

Date

PMS5003 measurements at the Choorstraat

pm1 pm2.5 pm10

207

PM1 measurements at the Choorstraat and Oude Langendijk

0

20

40

60

80

100

120

140

µ
m

/m
3

Date

PM1 at the Choorstraat & Oude Langendijk

PM1 Choorstraat PM1 Oude Langendijk

208

PM2.5 measurements Choorstraat and Oude Langendijk

-30

-20

-10

0

10

20

30

40

µ
m

/m
3

Date

PM2.5 levels at the Choorstraat & Oude Langendijk

PM2.5 Choorstraat PM2.5 Oude Langendijk

209

PM10 measurements at the Choorstraat and Oude Langendijk

0

5

10

15

20

25

30

35

40

µ
m

/m
3

Date

PM10 at the Choorstraat & Oude Langendijk

PM10 Choorstraat PM10 Oude Langendijk

210

PPD42NS measurements at the Oude Langendijk

0

2000

4000

6000

8000

10000

12000

13-6-2017 00:00 13-6-2017 12:00 14-6-2017 00:00 14-6-2017 12:00 15-6-2017 00:00 15-6-2017 12:00

Date

PPD42NS measurements at the Oude Langendijk

PPD from 13/6

Sensor 1420366D Oude Langendijk

 Category N Mean Max Min Standard

deviation

Total PM10 48 1.145299145 12 0 2.600613181
 PM2.5 47 14.5 34 0 6.966061346
 PM1 48 8.47008547 34 0 7.568734064

PM10 Amount Mean Max Min St Dev
10:01 - 14:00 5 0 0 0 0
14:01 - 18:00 13 1.076923077 10

0 2.752621128

18:01 - 22:00 7 0.857142857 6 0 2.267786838
22:01 - 02:00 7 2.571428571 10 2 4.720774755
02:01 - 06:00 6 2.833333333 6 0 3.125166662
06:00 - 10:00 10 2 12 0 4.320494
10:00 - 14:00 - - - - -
14:00 - 18:00 9 0.444444444 1 0 0.527046277
18:00 - 22:00 16 0.235294118 1 0 0.437237316
22:00 - 2:00 14 0.642857143 3 0 1.081817762
2:00 - 6:00 11 0.727272727 3 0 1.009049958
6:00 - 10:00 11 2.181818182 10 0 3.842347767
10:00 - 14:00 7 1.428571429 8 0 2.935821456
Total: 116

PM2.5 Amount Mean Max Min St Dev
10:01 - 14:00 5 3.2 4 0 1.095445115
14:01 - 18:00 13 2.5 6 1 1.977142106

18:01 - 22:00 7 2.166666667 2 1 0.98319208
22:01 - 02:00 7 6.571429 10 2 2.760262
02:01 - 06:00 6 13 24 2 7.848567
06:00 - 10:00 10 11.8 24 2 8.560893
10:00 - 14:00 - - - - -
14:00 - 18:00 9 4.888888889 18 1 5.418589402
18:00 - 22:00 16 2.294117647 10 0 2.46892451
22:00 - 2:00 14 5.714286 28 0 7.569459
2:00 - 6:00 11 5.272727 10 2 3.981777
6:00 - 10:00 11 11.27273 20 2 5.53337
10:00 - 14:00 7 15.85714 34 26 12.00595
Total: 114 6.582608696

PM1 Amount Mean Max Min St Dev
10:01 - 14:00 5 4 10 0 3.741657387
14:01 - 18:00 13 6.538462 28 2 6.740616

212

18:01 - 22:00 7 7.142857 28 2 9.511897
22:01 - 02:00 7 8 26 0 8.869423
02:01 - 06:00 6 13.33333 16 10 2.160247
06:00 - 10:00 10 14.2 32 2 9.354737
10:00 - 14:00 -
14:00 - 18:00 9 3.444444 8 2 1.878238
18:00 - 22:00 16 3.117647 10 1 2.057983
22:00 - 2:00 14 5.857143 14 2 3.324898
2:00 - 6:00 11 7.363636 16 2 3.981777
6:00 - 10:00 11 14.18182 22 2 6.539391
10:00 - 14:00 7 22.14286 34 12 6.693992
Total: 116 6.582608696

Sensor 14203981 Choorstraat

 Category N Mean Max Min Standard

deviation
Total PM10 43 2.1015625 38 0 5.391506654
 PM2.5 40 6.46875 24 0 5.350601556
 PM1 43 10.5234375 116 0 11.74798682

PM10 Amount Mean Max Min St Dev
10:01 - 14:00 - - - - -
14:01 - 18:00

12 0.166666667 1 0 0.389249472
18:01 - 22:00

13 0.923076923 6 0 1.705947364
22:01 - 02:00

12 0.416666667 2 0 0.668557923
02:01 - 06:00

13 7.538461538 26 0 8.922026906
06:00 - 10:00

8 5 38 0 13.34166406
10:00 - 14:00

7 0.857142857 6 0 2.267786838
14:00 - 18:00

8 2.625 12 0 4.307385684
18:00 - 22:00

11 0.181818182 20 1 0.404519917
22:00 - 2:00

13 0.923076923 8 0 2.177978362
2:00 - 6:00

13 0.769230769 4 0 1.235168
6:00 - 10:00

10 4.8 16 0 6.408327915
10:00 - 14:00

7 1.857142857 12 0 4.488079

213

Total: 126 2.1015625 5.391506654

PM2.5 Amount Mean Max Min St Dev
10:01 -
14:00

- - - - -

14:01 -
18:00 12 3.5 8 0 2.812311

18:01 -
22:00 13 2.923077 10 0 2.871165

22:01 -
02:00 12 6.833333 24 2 6.617241

02:01 -
06:00 13 12.07692 20 3 5.648916

06:00 -
10:00 8 7.25 12 1 4.367085

10:00 -
14:00 7 8 20 2 5.887841

14:00 -
18:00 8 5.125 14 0 4.882549

18:00 -
22:00 11 4.181818 20 1 5.600325

22:00 - 2:00
13 4.692308 10 0 3.750214

2:00 - 6:00
13 4.615385 12 2 2.930826

6:00 - 10:00
10 9.9 16 6 3.107339

10:00 -
14:00 7 12 24 6 5.887841

Total: 126 6.46875 5.350601556

PM1 Amount Mean Max Min St Dev
10:01 -
14:00

- - - - -

214

14:01 -
18:00 12 4.75 8 0 2.490893

18:01 -
22:00 13 5.846154 10 4 1.724633

22:01 -
02:00 12 9.75 16 6 3.048845

02:01 -
06:00 13 15.15385 19 6 3.508232

06:00 -
10:00 8 11.875 22 2 6.854352

10:00 -
14:00 7 4.285714 8 2 2.13809

14:00 -
18:00 8 6.25 20 2 6.18177

18:00 -
22:00 11 13.45455 116 0 34.2151

22:00 - 2:00
13 6.076923 11 1 2.928638

2:00 - 6:00
13 9.692308 14 6 2.287087

6:00 - 10:00
10 21.4 34 8 8.983936

10:00 -
14:00 7 22 26 18 2.581989

Total: 126 10.5234375 11.74798682

215

Appendix X: Node-RED node codes

This appendix shows the code that is used in every node in the NodeRED environment.

Figure 95: APPENDIX X: Node-RED flow of receiving and parsing LoRa messages

1: Inject
This node inserts a dummy LoRa message for testing purposes.

2: Input from sensors
This node has the endpoint for the LoRa messages to be send to
(https://geo1101.bk.tudelft.nl/iot/static/inputport)

3: http response
Informs the gateway that the message was sent correctly

4: Set parameters
Parsing the JSON object to make the values ready to be saved in the database

msg.queryParameters = {};

var lora_decrypt = global.get('loraModule')['lora_decrypt'];

payload_hex = msg.payload.DevEUI_uplink.payload_hex;

sequence_counter = msg.payload.DevEUI_uplink.FCntUp;

addr = msg.payload.DevEUI_uplink.DevAddr;

if (addr == "14203D86"){

 key = '6653a47d8eadf590a7cdb2e130ef0280';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "14203981"){

 key = '0063dfb6d720c5ca0842ac29e86e9690';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "142037B9"){ //V1

 key = 'e79cd3d3ad8b07ea607d6e37587564b2';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "14204140"){ //V2

 key = '8104d36a39d73b4a50875c0114952460';

https://geo1101.bk.tudelft.nl/iot/static/inputport

216

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "14203981"){ //V3

 key = '0063dfb6d720c5ca0842ac29e86e9690';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "14204073"){ //C1

 key = 'dd7bb1f82c74c3cac204c5bf7ed3f195';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "1420366D"){ //C2

 key = 'd3d8bdea795215b1b5344f4837923a6f';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "14203210"){ //C3

 key = '2650252ad0464f9d46464edc54d16bd1';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "14204772"){ //O1

 key = 'c489fc45ccd1962b3ff368ca488669a8';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "142042F7"){ //O2

 key = '7ce920520cf54a4017f1fd803c0b4602';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "14204FD8"){ //O3

 key = '6e6b7a73f99eed8cc9252e06d0fd8b3c';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "14203077"){ //Spare

 key = '91fa1a2ec3489aed063f35a220e36498';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else if (addr == "14203937"){ //Spare

 key = 'b4bd4ddabe32dc5bb76d45af9cefe688';

 value = lora_decrypt(payload_hex, sequence_counter, key, addr);

}

else{

 value = 'not working';

}

test = value;

aq1 = value[0];

airq1 = aq1.toString();

aq2 = value[1];

airq2 = aq2.toString();

aq = parseInt(airq1+airq2);

temp = value[2];

temp1 = value[3];

hum = value[4];

hum1 = value[5];

noi = value[6];

pm1 = value[7];

pm2 = value[8];

pm10 = value[9];

pm1_atm = value[10];

pm2_atm = value[11];

pm10_atm = value[12];

msg.payload.SensorID = addr;

msg.payload.Temperature = temp + '.' + temp1;

msg.payload.Humidity = hum + '.' + hum1;

msg.payload.Noise = noi;

msg.payload.AirQuality = aq;

msg.payload.Pm1 = pm1;

msg.payload.Pm2 = pm2;

msg.payload.Pm10 = pm10;

msg.payload.Pm1atm = pm1_atm;

msg.payload.Pm2atm = pm2_atm;

msg.payload.Pm10atm = pm10_atm;

val = msg.payload.DevEUI_uplink.Time;

217

timesarray = val.split("T");

part1 = timesarray[0];

timepart = timesarray[1];

timearray = timepart.split(".");

time = timearray[0];

timestamp = part1 + " "+ time;

msg.payload.Timestamp = timestamp;

return msg;

5: SQL query insert

msg.payload = "INSERT INTO public.data5

(sid, temperature, humidity, noise, airquality, pm1, pm2, pm10, pm1_atm, pm2_atm, pm10_atm,

sensedtime)

VALUES ('"+msg.payload.SensorID+"',

'"+msg.payload.Temperature+"',

'"+msg.payload.Humidity+"',

'"+msg.payload.Noise+"',

'"+msg.payload.AirQuality+"',

'"+msg.payload.Pm1+"',

'"+msg.payload.Pm2+"',

'"+msg.payload.Pm10+"',

'"+msg.payload.Pm1atm+"',

'"+msg.payload.Pm2atm+"',

'"+msg.payload.Pm10atm+"',

'"+msg.payload.Timestamp+"');";

return msg;

6: SQL create table statement

Not used, tables are created in PgAdmin 4.

7: SQL raw data insert

test = msg.payload;

data = JSON.stringify(test);

msg.payload = "INSERT INTO public.rawdata (rawdata) VALUES ('"+data+"');";

return msg;

8: Debug Nodes
Show information on output of nodes.

9: PostgreSQL connection
Connects to the PostgreSQL database.

218

Appendix Y: Test script PMS5003

import time

from machine import Pin, Timer, UART

from network import LoRa

import socket

import binascii

import struct

import config

import machine

from dth import DTH

from math import log

import utime

from struct import unpack

import array

SET_PORT = 'P11' # LoPy SET port, communicates with the PMS SET port (P3)

RESET_PORT = 'P8' # LoPy RESET port, communicates with the PMS RESET port(P6)

STARTUP_TIME = 30 # 30 seconds of startup time (needed for ventilator). 5 is better for

debugging.

set_pin = Pin(SET_PORT, mode=Pin.OUT)

reset_pin = Pin(RESET_PORT, mode=Pin.OUT)

data_uart2 = UART(1, baudrate=9600, parity=None, stop=1, pins=('P9', 'P10'))

def fan_on():

 print('Turning the PMS5003 fan on') # the fan is ON by default.

 set_pin.value(1)

def fan_off():

 print('Turning the PMS5003 fan off')

 set_pin.value(0)

def reset():

 print('Resetting the PMS5003 sensor')

 reset_pin.value(1)

def set_sensor():

 print('Preparing the fan...')

 fan_on()

 print('Wait 30 seconds...')

 time.sleep(STARTUP_TIME) # wait 30 seconds

 print('Sensor is set')

while True:

 set_sensor()

 d = data_uart2

 raw = d.read()

 unpacking = unpack('>16H', raw)

 pm1_u = int(unpacking[2])

 pm2_u = int(unpacking[3])

 pm10_u = int(unpacking[4])

 pm1_atm_u = int(unpacking[5])

 pm2_atm_u = int(unpacking[6])

 pm10_atm_u = int(unpacking[7])

 print('')

 print('big starting number: ', unpacking[0])

 print('frame length (2*13+2): ', unpacking[1])

 print('PM1.0 concentration, standard particle: ', unpacking[2])

 print('PM2.5 concentration, standard particle: ', unpacking[3])

 print('PM10 concentration, standard particle: ', unpacking[4])

 print('PM1.0 concentration, atmospheric env: ', unpacking[5])

 print('PM2.5 concentration, atmospheric env: ', unpacking[6])

219

 print('PM10 concentration, atmospheric env: ', unpacking[7])

 print('Data 7: ', unpacking[8])

 print('Data 8: ', unpacking[9])

 print('Data 9: ', unpacking[10])

 print('Data 10: ', unpacking[11])

 print('Data 11: ', unpacking[12])

 print('Data 12: ', unpacking[13])

 print('Data 13 (reserved):', unpacking[14])

 print('Check code: ', unpacking[15])

 print('')

 print('Finished!')

 fan_off()

