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A B S T R A C T

In the coming decade, the Dutch government plans to broadly ex-
pand its wind farm real estate over the North Sea region. This is
a significant undertaking because, from literature, it is understood
that wind turbines can affect the local environment. These impacts
include, but are not limited to, changes in variables such as wind
speed and turbulent kinetic energy. To accurately capture these ef-
fects and improve power forecast accuracy, weather prediction mod-
els numerically represent the physical effects of a wind farm (i.e., a
wind farm’s behaviour as a momentum sink and a source of turbu-
lent kinetic energy) by incorporating a wind farm parameterization
in the model. This study looked at two simulations (with and without
a wind farm parameterization) from HARMONIE-AROME, an opera-
tional weather model, and assessed the performance of the wind farm
parameterization by using the simulation results for the Belgian wind
farm zone in the North Sea, and comparing it with observational
data from Sentinel-1 SAR, floating LiDARs, measured power as well
as results from a large-eddy simulation. The data was also compos-
ited based on wind direction and atmospheric stability and analysed.
Most importantly, it was found, after comprehensive analysis, that
the wind farm parameterization caused a marked improvement in
the results of the model especially in the region downwind of a wind
farm where the effects are most severely experienced. Specifically, the
simulation with the wind farm parameterization reduced the overall
wind bias to -0.028 m/s from 0.602 m/s when compared with obser-
vational data for the selected region. The overall power bias was also
found to be approximately 1.92%. Several hypotheses based on exist-
ing literature were also tested, and along with the composite analysis,
indicated that the simulation with the wind farm parameterization
performed well in most stability regimes with the exception of stable
conditions. It was recommended that this be further explored to de-
termine the cause. Recommendations for expanding the study to look
at wind farm effects on surface fluxes in offshore regions have also
been made.
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1
I N T R O D U C T I O N

In this chapter, a succinct discussion of the field of research is presented. The
relevance of the research, its broader implications and the main objectives are
addressed. It also concisely outlines the contents of this document.

1.1 topic and relevance

From time immemorial, mankind has always taken a keen interest in
predicting the future. Whether it is looking up at the stars or look-
ing down at our palms, numerous disciplines have evolved from this
primary urge. Out of all these, only some fields have achieved the
mathematical and scientific rigour necessary to be taken seriously
and among these is weather forecasting.

This outcome is a result of years of development of a myriad of
mathematical models and simulations. Some of which has allowed us
to look at climatology, others short-range forecasts and so on and so
forth. These models provide us with data on different things related
to the weather at different levels of temporal and spatial resolutions:
atmospheric variables such as daily wind speeds or temperature as
well as more complex long-term reports such as the carbon dioxide
concentration over several decades. The latter , after close monitoring
by the Intergovernmental Panel on Climate Change (IPCC) for several
years has been the catalyst for the steady shift towards renewable en-
ergy consumption which includes solar, wind and other such energy
production.

As on date, the Netherlands is fortunately poised to capitalise on
such a shift since it has already launched plans to install wind farms,
particularly in the North Sea , with the interest of meeting the de-
mands of the Paris agreement. Thus, with more projects in the pipeline,
wind farms are becoming a significant feature in our horizon both lit-
erally and figuratively (Borssele Wind Farm Site V, Innovation Site |
RVO.nl).
Furthermore, to aid a better understanding of the wind resource on
the North Sea, a weather atlas, namely the Dutch Offshore Wind At-
las (the atlas is the data output by HARMONIE-AROME - a model
that was developed by the ALADIN-HIRLAM consortium and which
is used operationally in ten countries) by the Royal Netherlands Mete-

1
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orological Institute (KNMI), was released in early 2019 (KNMI, 2019).
Currently, the region of interest in the North Sea already has several
wind farms that are operated by various wind operators who supply
electricity to Belgium’s power grid (see Figure 1).

Figure 1: The proposed Dutch wind farms and Belgian wind farms.
Adapted from RVO.nl (Offshorewind.rvo.nl) The red, green, and
pink zones are already commissioned wind farms by Belgium. The other
colours are wind farms that are yet to be commissioned. The Borssele
Wind Farm Zone is adjacent to the Belgian wind farms shaded in grey.

This information is important to consider when performing a wind
resource assessment since literature studies [Fitch, Lundquist, and Ol-
son (2013) and Roy, Pacala, and Walko (2004)] show that wind farms
have a significant effect on atmospheric flow with practical impli-
cations such as energy extraction by upwind turbines affecting the
power output of downwind turbines. Specifically, Figure 2 illustrates
the wind farm projects that have been planned by the Dutch gov-
ernment. They are placed adjacent to Belgian wind farms that have
already been fully commissioned and hence will have an impact on
the future Dutch wind farms. To appropriately assess the Borssele
wind farm region, floating LiDAR observations by Fugro were dis-
patched in the region. However, point measurements need to be sup-
plemented with model data. Additionally, as Roy, Pacala, and Walko
(2004)’s work rightly demonstrates, there are advantages of mesoscale
modelling as a source of valuable information especially since it not
being as computationally expensive as higher resolution models, i.e.
Large-Eddy Simulation (LES).

Thus, the Dutch Offshore Wind Atlas needs to account for the atmo-
spheric effects of the wind farms and this has been done by including
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a set of equations in the (HARMONIE-AROME) model which will
mathematically represent the physical effects of a wind farm (this
will be elaborated in detail in a following section). This thesis is an
attempt to validate the model output against meteorological and tur-
bine power data from the Belgian wind farms.

Figure 2: The proposed Borssele Wind Farm Zone and fully com-
missioned Belgian wind farm. Adapted from RVO.nl (Off-
shorewind.rvo.nl) A closer look at the region of interest with the different
wind operators of the Belgian wind farm highlighted in different colours
and the proposed sites within the Borssele Wind Farm Zone.

1.2 research questions and methodology

Primarily, the validation is structured to answer the following ques-
tions:

• How does the wind farm parametrization (WFP) in HARMONIE-
AROME perform? This question will be answered by evaluat-
ing model results with observational data-sets which include
wind speed, power production, as well as comparisons with a
data-set generated by a Large-Eddy Simulation (LES).

• How can the current WFP in HARMONIE-AROME be fur-
ther improved? The results of the model vs observations com-
parisons will provide insights on model performance. Further-
more, composite analysis based on atmospheric stability, wind
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direction and aerial wake samples will highlight the exact ar-
eas of improvement and aspects of the model that need to be
fine-tuned or indicate an overall bias that requires a correction
factor.

• What are the meteorological insights one can gain from

the simulation results? This is an open-ended question which
will be answered by collating the model performance results
and connecting it to existing literature to either corroborate or
contradict previous results. Primarily, once the model is vali-
dated, model behaviour in various atmospheric stability regimes
can provide additional understanding of the various atmospheric
effects of wind farms.

A detailed methodology of research is elaborated in a following
section.

1.3 organisation of thesis

This thesis comprises of five chapters (excluding this one) and fol-
lows a standard thesis format. Chapter 2 provides key background
concepts to grasp the literature on wind farm parameterizations pro-
vided in the chapter. It also presents results from literature studies
that have been conducted on similar scenarios and from which cer-
tain hypotheses or expectations for this thesis’ results have been de-
veloped. This is followed by Chapter 3 which extensively details the
methodology adopted for the performance evaluation to ensure that
results are reproducible by third parties. Chapter 4 and 5 present the
results of the work done by the author along with a discussion section
where the results are placed in context of existing literature. Since,
many of the results are pictorial in nature and to avoid cluttering the
main text, appendices with figures have also been attached.
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L I T E R AT U R E R E V I E W

This chapter provides a concise background on the field of study by reviewing
fundamental concepts such as the workings of a numerical weather predic-
tion model, important terms and definitions in atmospheric physics. It also
addresses what a wind farm parameterization is and how it has been devel-
oped and the results of incorporating it in a model according to literature.

2.1 background

In this section, a limited overview of what numerical weather predic-
tion models are and the mechanism of representing complex atmo-
spheric processes in a simplified manner within a model (parameter-
ization) is presented. It also discusses a relevant atmospheric physics
concept of atmospheric stability and the meteorological indices used
to describe it.

2.1.1 Numerical Weather Prediction Models

The HARMONIE-AROME model that is being validated for its new
parameterization in this thesis is an operational mesoscale Numerical
Weather Prediction (NWP) model. In simpler terms, it is a type of
weather prediction model that is a) in use, b) has a resolution that is
between 1 - 10 km and c) is used to forecast weather by numerically
approximating fundamental equations that are used to describe the
atmospheric dynamics.

Such models are crucial to studying the atmosphere and the mesoscale
impacts of various phenomenon. This is because there exist few reli-
able observational data sets. This is particularly true for observational
data that record atmospheric impacts of wind farms (Fitch et al., 2012).
Consequently, this implies that if the model behaviour is validated, it
can be later utilised to provide a fresh perspective on local impacts
of wind farms as well. A mesoscale model is a sub-category of NWP
models. The equations that are used in a NWP prognose atmospheric
variables such as temperature, humidity, wind etc whereby the initial
state is usually arrived at by data assimilation (Haupt et al., 2017).
Weather prediction, in general, is difficult since these atmospheric
equations do not have an analytical solutions. Hence, NWPs, as the

5
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name suggests, numerically approximate the solutions. There are two
key parts to an NWP: a dynamic solver and physical parametriza-
tion schemes (Haupt et al., 2017). The dynamic solver, by algebraic
approximation, solves for the advection, pressure gradient, Coriolis
force and other terms. This is done either by finite difference meth-
ods or by spectral methods (Haupt et al., 2017).

The simplest models are diagnostic in nature but a NWP more
often than not contains prognostic variables. In such models, there
are often more unknowns than equations. Therefore, to solve for
unknown variables, a mathematical technique known as a closure
scheme is employed (Warner, 2011) where the remaining unknown
terms are parameterized by representing them as some function of
the known variables.

A closure scheme’s order is identified by the degree of the moment
of a predictive (or prognostic) equation. In other words, if there ex-
ists an equation for a mean variable such as temperature θ and the
covariance term for temperature ( w ′θ ′) is in turn parameterized, this
implies that the covariance is expressed in terms of θ and it is known
as a first order closure (Warner, 2011). Mathematically, the equation
for covariance of temperature is parameterized as:

w ′θ ′ = −KH
∂θ

∂z
(1)

Where KH is the diffusivity term. This allows us to solve for an
equation such as (Warner, 2011):

∂θ

∂t
= ... −

∂w ′θ ′

∂z
(2)

This is the most basic closure scheme for predicting variables like
vertical fluxes (Holtslag, 2015). Thus, it follows from this that in a
second order closure scheme, prognostic equations for both the mean
variable θ and its covariance ( w ′θ ′) exist and only a triple correlation
is parameterized ( w ′w ′θ ′) (Warner, 2011).

This can be summarized as follows as adapted from Warner (2011):

Order of Closure Unknowns

Zero θ

First w ′θ ′

Second w ′w ′θ ′

An interesting scenario exists according to Warner 2011 when:

“in a prognostic equation for the first moments, some sec-
ond moments on the right side may be parameterized
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while others are predicted. If all the second moments are
predicted, the closure would be second order. If they are
all parameterized, it would be first order. Thus, in this
case ...(wherein some of the terms in a particular moment
category are parameterized and some are explicitly pre-
dicted)... it would be referred to as a 1.5 order method."

A 1.5 order closure scheme is the minimum mandatory require-
ment for prognosing Turbulent Kinetic Energy (TKE) (Holtslag, 2015).
This can be understood by looking at the TKE equation (Equation (3))
for small scale fluctuations in the next section where e is prognosed
in terms of turbulent heat and momentum fluxes.

2.1.2 Parameterizations

The part of the NWP that is most relevant to this study are the pa-
rameterizations that along with a dynamic solver, form a NWP. As
stated earlier, the purpose of a physical parameterization scheme is
to represent the effects of processes that are not explicitly resolved in
the model. In model terminology, the phrase “resolved” often refers
to processes that do not need to be parameterized and these are often
the primary inputs for parameterizations. Note that parameterization
schemes can be incorporated either algorithmic-ally or statistically
(Haupt et al., 2017).

Furthermore, much like how the physical processes in the real
world interact with each other and are interdependent, parameteri-
zation schemes should not be developed completely independently.
These interactions determine the realistic accuracy of models (Haupt
et al., 2017). In summary, parametrization schemes are incorporated
in NWPs to model physical processes that cannot be resolved and/or
are not well understood (Haupt et al., 2017).This includes radiation,
land-surface interaction, turbulent mixing, convective clouds, micro-
physics and other such processes (Haupt et al., 2017).

2.1.3 Obukhov Length and Atmospheric Stability

In preceding sections and in the upcoming chapters, the phrase ‘at-
mospheric stability’ has been and will be used liberally. This section
provides a limited recapitulation of this concept.

To understand ‘atmospheric stability’, it is necessary to review the
equation for turbulent kinetic energy.

∂e

∂t
= −u ′w ′

∂u

∂z
+
g

θv
w ′θ ′v − ... − ... − ε (3)

Where,



8 literature review

u ′w ′ is the turbulent momentum flux in m2s−2

−u ′w ′
∂u

∂z
is the shear production term in m2s−3 (Let this be

referred to as Term I)

w ′θ ′v is the is the turbulent heat flux in m2s−2

g
θv
w ′θ ′v is the buoyancy term in m2s−3 (Let this be referred to

as Term II)

ε is the dissipation of TKE due to molecular diffusion at the
small scales in m2s−3

(...) are two omitted transport terms that are not relevant here
but represent redistribution of TKE in space

The first term, −u ′w ′
∂u

∂z
,in the budget equation is a production

term for TKE and the last term, ε, is a loss term for TKE. On the
other hand, buoyancy, g

θv
w ′θv, can either be a production or a loss

term based on its sign.
The ratio of the buoyancy production term to the shear produc-

tion term (Term II and Term I) is known as the Richardson (flux-
Richardson) number and this gives us a measure of atmospheric sta-
bility by characterising the role of buoyancy in the production of tur-
bulence (Moene and Dam, 2014):

Rif = −
buoyancy production

shear production
=

g
θv
w ′θ ′v

u ′w ′
∂u

∂z

(4)

Specifically, four broad states have been distinguished as per Moene
and Dam (2014): a neutral regime where there is no buoyancy produc-
tion, an unstable regimes where TKE is produced by both the shear
term and the buoyancy term (refer Equation (3)), a stable regimes
where buoyancy destroys TKE produced by the shear term, and a
very unstable or a very stable regime wherein the effect of shear pro-
duction is dominated entirely by the effect of buoyancy.

Another such index used to classify the atmosphere into different
regimes is the Obukhov length (L) and is later used in this thesis to
parse data into different atmospheric regimes.The Obukhov length is
the height below which shear dominates TKE production and above
which buoyancy dominates TKE production (Moene and Dam, 2014).
When the Obukhov length scale is used to scale the height above the
ground z, we obtain the dimensionless parameter z/L.

Mathematically, adapted from Moene and Dam (2014):

z/L = −zκ
g

θv

w ′θ ′v
ρCp

1

u3*
(5)

Where,
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z is the height above the ground in m

κ is the von Karman constant historically considered to be 0.40

(although Moene and Dam (2014) argue that its value in the
atmospheric surface layer is a point of contention)

g
θv

is the buoyancy parameter where g (in ms−2) is the acceler-
ation due to gravity and θv is the virtual potential temperature
(in K)

w ′θ ′v is the kinematic heat flux, Cp (in J/(kg K)) is the specific
heat of moist air, ρ is the density (in kgm−3)

u* is the friction velocity which is equal to
√
τ
ρ where τ (in Pa)

is the surface shear stress or momentum transported towards
the ground

Figure 3: The relationship between stability parameters (z/L) and at-
mospheric variables. Adapted from Moene and Dam (2014) As
the figure indicates, z/L close to 0 indicates neutral regimes, positive val-
ues imply stable regimes and negative values indicate unstable regimes.
In the latter regime, low wind speeds but a positive sensible heat flux is
expected. In the former, a negative sensible heat flux is expected. Neutral
regimes are usually well-mixed with high wind speeds.

What is relevant here is that when z/L is positive, it indicates sta-
ble conditions or a suppression of turbulence by buoyancy whereas
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negative values imply unstable conditions or an enhancement of tur-
bulence by buoyancy. Simultaneously, when z/L = 0, it implies that
we have neutral conditions where buoyancy does not play any role.
This is explicitly illustrated in Figure 3 along with wind speed be-
haviour for associated classes (Moene and Dam, 2014).

The shape and thickness of the arrows indicate the effect of sta-
bility on turbulent motion and intensity of turbulent motion respec-
tively. The ‘H’ represents the sensible heat flux and below that, the
representative wind speeds in the regimes are provided (Moene and
Dam, 2014). Thus, it is expected that the model wind speed outputs,
when classified according to stability, will agree with the magnitude
of wind speeds expressed here.

2.2 studies on wind farm parameterization

Wind energy extraction is based on the principle of transforming ki-
netic energy of the wind into electricity - which is carried out by wind
turbines. This is possible because of the forces that act on a turbine
blade. From an aerodynamic perspective, there are two components
of the force that is exerted by the wind on a wind turbine blade: the
lift and drag forces. They act perpendicular and parallel to the wind
direction respectively (see Figure 4.) The lift force is used to overcome
gravity and allows the mass to be lifted up from the ground (Hansen,
2008).

Lift	Force

Drag	Force

Airflow

Wind	Turbine
Blade

Figure 4: An illustration of lift and drag forces on a wind turbine

blade The lift force allows the turbine blade to be lifted and the drag
force is exerted in the direction parallel to the flow of the wind.

In theory, one can calculate the maximum amount of power that
can be extracted based on the wind speed. Practically, the actual
power that can be generated is deduced with a a coefficient, called
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the power coefficient or CP which is the ratio of the actual power
obtained from a turbine to the maximum power available:

CP =
P

1
2ρV

3
oA

(6)

Where,

ρ is the air density in in kgm−3

Vo is the upstream wind speed in ms−1

A is the area of the rotor in m2

This coefficient is important since it plays an integral role in the
parameterization of a wind farm. In some other words, CP is also re-
ferred to as the ratio of the power output to the kinetic energy flowing
through the rotor (Hansen, 2008).

There is also another recurring coefficient: CT or the thrust coeffi-
cient which requires discussion. The thrust is the axial force applied
by the wind on the rotor and consequently, by Newton’s first law of
mechanics, the axial force applied by the wind turbine on the wind
(Hansen, 2008). Mathematically, the thrust coefficient is the ratio of
the force used to necessary to slow down the wind speed (to extract
energy) to the ideal thrust:

CT =
T

1
2ρV

2
oA

(7)

Where the other terms hold the same meaning as Equation (6).

Figure 5: An illustration of power and thrust curves of a Vestas 112

wind turbine as functions of wind speed The x-axis is the wind
speed and the y-axis shows the values for the the thrust and power coeffi-
cients. These curves are often provided by wind turbine manufacturers.

What is important is that both coefficients need to be highly accu-
rate so that realistic results are generated. Usually all wind turbine
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types have a unique power output curve which is provided by the
manufacturer and expresses the power that can be generated as a
function of wind speed at rotor hub height. An example is provide in
Figure 5.

Theoretically, the maximum CP value is 0.59. This is known as the
Betz limit (Roy, Pacala, and Walko, 2004). This limit is the maximum
efficiency of a wind turbine (in terms of power production) according
to literature. However, in practice, as seen from Figure 5 this value is
usually closer to 0.5.

2.2.0.1 Wind Farm Wake Effects on Local Meteorology

In offshore wind energy-wind speed studies (and this thesis), the
most interesting aspect of a wind farm is the region immediately
behind the turbine rotor blades is known as a wake. As Vermeer,
Sørensen, and Crespo (2003)’s work states, normally, the turbine wake
is divided into a near and a far wake. The near wake is the area just
behind the rotor up to 1 rotor diameter distance. In this region, prop-
erties of the rotor can be discriminated. The far wake is the region
beyond the near wake, beginning between 1 and 3 rotor diameters
(Vermeer, Sørensen, and Crespo, 2003). More often than not, wind
farms are structured in such a way that turbines that are not at the
edges are situated in the wake region of a turbine in front of them.
As a result, downstream turbines experience slower winds and ad-
ditional turbulence (Vermeer, Sørensen, and Crespo, 2003). This is
because a percentage of the energy that upstream turbines are unable
to transform into electricity, becomes turbulent kinetic energy. At the
same time, wind turbines transform the energy into electricity by re-
moving the momentum of the wind (Vermeer, Sørensen, and Crespo,
2003). Thus, these wake losses hamper the power predicted in wind
farms and are an import area of research. Once we are sufficiently
downstream, though, turbulent diffusion removes both the momen-
tum deficit and the increase in TKE but these are dependent on the
atmospheric stability conditions for most part and even during the
best conditions, wake losses within a wind farm persist due to the
spacing of turbines (Vermeer, Sørensen, and Crespo, 2003).

Aside from the impact of wake losses on power production, a lot
of studies on the effects of wind farms on the local weather have
been conducted. Among these, some papers quantify effects on lo-
cal wind, turbulence, temperature, or moisture flux. For example, in
the study conducted by Roy, Pacala, and Walko (2004), it was found
that wind farms significantly reduce the wind speed at the turbine
hub-height level and turbulence generation can cause mixing which
in turn affects the shear profiles of variables such as temperature, hu-
midity, surface sensible and latent heat fluxes. Furthermore, due to
the nocturnal low-level jet, these impacts were found to be strongest
at dawn or earlier. This is because the nocturnal boundary layer is
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largely stable with large vertical gradients of wind speed, humidity
and temperature. Hence, any mixing during this period has a more
pronounced effect than in a well-mixed boundary layer. (Roy, Pacala,
and Walko, 2004)

Regarding non-local effects, Keith et al. (2004)’s analysis suggests
that wind farms do have significant impacts but to quantify and con-
firm this hypothesis, further research is required.

2.2.1 Wind Farm Parameterization Development in Literature

From literature, it was identified that there are two popular methods
to parameterize wind farms in meso- or large-scale models. In the
first method, they are modelled as an increase in roughness length
and in the second they are represented as an elevated momentum
sink and source of turbulence (Abkar and Porté-Agel, 2015a). The for-
mer approach works well with coarse vertical resolution atmospheric
models but it has a drawback: it is often difficult to estimate the effec-
tive roughness length. In contrast, the latter method can be employed
in any type of atmospheric model as long as the lowest grid point is
below the turbine hub height. It considers the fact that wind turbines
generate ‘wake losses’. In aerodynamics, wake losses are losses of en-
ergy due to its transformation into turbulent kinetic energy (TKE).
(Abkar and Porté-Agel, 2015a) This second method is most recently
employed in numerical weather prediction models.

Roy, Pacala, and Walko (2004)’s method was one of the earliest pro-
posals based on this concept. This was shortly followed by Blahak
et. al who developed the early method to parameterize wind turbine
induced drag forces as a feedback into the atmospheric system in a
mesoscale weather model. This scheme is specifically developed for
a situation where several layers of the model intersect the rotor area
of the wind turbines and where the wind farm may span several
adjacent model grid columns (Blahak, Goretzki, and Meis, 2010). In
Blahak, Goretzki, and Meis (2010)’s paper, the parameterization mod-
ifies the one proposed by Roy, Pacala, and Walko (2004) by assuming
that the TKE added by turbines is proportional to the extracted ki-
netic energy of the turbine. The derivation is not presented here but
mathematically, the TKE source equation (in m2/s3) is written as (for
a model such as an LES),

∂TKE

∂t
= ntα

1
2CP〈ũr〉3kAk
zk+1 − zk

(8)

Where,

nt is the local number of wind turbines per area (inside a grid
cell): Nt

∆xgrid×∆ygrid
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α is the additional kinetic energy conversion from grid scale to
sub-grid scale and is empirically set to 0.2

CP is the power coefficient

〈ũr〉k is the grid-cell horizontal velocity magnitude at hub height
where the over-bar and angle brackets denote time and spatial
averaging respectively in m/s (The tilde denotes the LES filter-
ing operation at scale δ̃ and is not relevant for HARMONIE-
AROME)

Ak is the cross sectional rotor area of one wind turbine within
the model level k and k + 1 in the grid cell in m2

k, k+1 are grid box notations (representing lower and upper
heights of the grid cell)

z is the height in m

Additionally, since the turbines also behaved as a momentum sink,
the equation (in m2/s3) was written as:

〈fi〉 = nt(1+α)
1
2CP〈ũr〉k〈ũi〉kAk

zk+1 − zk
(9)

Where,

〈ũi〉k is the grid-cell velocity in ms−1

The other terms hold the same meaning as in Equations (8).
In 2012, Fitch et al., 2012 improved on Blahak, Goretzki, and Meis,

2010’s parameterizations by quantifying the fraction of kinetic energy
extracted from the atmosphere (previously (1+ α)*CP) as CT or the
thrust coefficient (see Equation (7)).

Therefore, the momentum sink tendency (in m2/s3) is given by:

〈fi〉 = nt
1
2CT 〈ũr〉k〈ũi〉kAk

zk+1 − zk
(10)

This can also be written, as mentioned in Fitch et al., 2012, as the
rate of loss of kinetic energy (in a grid cell) which is given by (in
kg m2/s3):

∂KEdrag

∂t
= −

1

2
nt ∆x ∆y CT ρ 〈ũr〉3kAk (11)

Furthermore, Fitch et al., 2012 states that the fraction of the ex-
tracted energy converted into electrical energy is denoted as Cp (the
power coefficient, see Equation (6)). Thus, the power extracted by the
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turbine which is converted to useful electric energy is given by (in
kg m2/s3 or in W):

P =
1

2
nt∆x∆yCP ρ 〈ũr〉3kAk (12)

Where, ρ is the air density (in kg/m3)
Finally, the difference, CT −Cp, is consumed as losses or contributes

to the production of TKE such that CTKE = CT −Cp (Fitch et al., 2012).
Therefore, the TKE source (the power extracted that is not converted
into electricity and converted to TKE (in m2/s3)):

∂TKE

∂t
= nt

1
2CTKE〈ũr〉3kAk
zk+1 − zk

(13)

Where, the terms hold the same meaning as in Equations (8) to
(9). (All equations have been adapted from Fitch et al. (2012) and
Abkar and Porté-Agel (2015a)’s papers). In Chapter 3, the method
of incorporating Equations (13) and (10), which form the core of the
wind farm parameterization in the model, will be elaborated upon.

2.2.2 Relevant Outcomes from Previous Wake Studies

The early 2000s had a lot of work that primarily focused on under-
standing the factors that affect wind farm wakes strongly.

Christiansen and Hasager (2005): In Christiansen and Hasager
(2005)’s paper, for example, an analysis of velocity deficits show that
there are three factors that have an impact on the wake effects from
wind farms: the free stream velocity, the atmospheric stability and
the number of turbines in operation. In their work, they use Syn-
thetic Aperture Radar (SAR) data to create two transects - one cross-
ing the wind farm and the other 8km parallel to the first transect
(with no wind farms) as a reference. The velocity deficit from the
transect across the wind farm is denoted as VD whereas the velocity
deficit from the reference transect is VDref. Both these terms are pos-
itive when the measured wake wind speed is below the free stream
velocity.Mathematically, velocity deficit is defined as:

VD (in %) =
Ufreestream −Uwake

Ufreestream
∗ 100 (14)

where the freestream wind (Ufreestream) is the undisturbed mean
wind speed far upstream of a wind farm and wake wind (Uwake) is
the wind speed measured in the wake of a wind farm.

From Figure 6, it can be determined that the average VD increases
over the wind farms for offshore conditions albeit slower than on-
shore. Overall, a maximum of 3% deficit is observed where wind
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farms end. It must be noted here that during the SAR overpasses, it
was confirmed that more than a third of the wind turbines were opera-
tional - indicating that this is a factor that may affect wakes. However,
a relationship between the velocity deficit and number of operational
turbines could not be established (Christiansen and Hasager, 2005).

As for wake dependence on stability (shown in Figure 7), during
the SAR passes, the atmospheric regime was mostly an unstable or a
near neutral regime, and the former resulted in wind speeds that re-
covered over a downstream distance of 5km (to 2% of the free stream
velocity) and the latter resulted in a 20km recovery distance. Overall,
an average drop of 8-9% was observed in the SAR data as the wind
passed through a wind farm.

Figure 6: Average velocity deficit for reference and wake transect

for onshore and offshore winds. Adapted from (Chris-
tiansen and Hasager, 2005) The shaded region indicates the location
of the wind farm. Areas in the graph to the left and to the right are up-
stream and downstream distance respectively.
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Figure 7: Velocity deficit from SAR data during unstable and

near-neutral conditions. Adapted from (Christiansen and

Hasager, 2005) The shaded region indicates the location of the wind
farm. Areas in the graph to the left and to the right are upstream and
downstream distance respectively.

In mid to late 2000s, more investigative studies on wakes were per-
formed:

Fitch, Lundquist, and Olson (2013): In 2013, a more quantita-
tive study of the mesoscale influences of onshore wind farms by
Fitch, Lundquist, and Olson (2013) produced the following conclu-
sions. Due to strong mixing in the daytime thanks to an unstable
boundary layer, it was observed that the momentum deficit is dis-
sipated throughout the depth of the boundary layer and hence, a
smaller drop in wind speed is observed. In numbers, a (maximum)
reduction of 10% in the magnitude of wind speeds at hub height
was observed during the day, which increased three-fold at night, to
30% since the nighttime stable layer results in lesser mixing due to
stratification and leads to shallower wakes with higher wind speed
reductions (See Figure 8).

Abkar and Porté-Agel (2015b): Abkar and Porté-Agel (2015b) also
conducted an exhaustive large eddy simulation investigation on the
influence of atmospheric stability on wind turbine wakes. Their re-
sults pointed out that atmospheric stability has a significant effect on
three characteristics of a wake: the mean velocity deficit in terms of
its spatial distribution, turbulence in the wake region and the mean-
dering of the wake itself. Classifying atmospheric stability broadly as
unstable, stable and neutral, the paper concludes qualitatively that
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Figure 8: Horizontal wake structure in the morning and evening.
Adapted from (Fitch, Lundquist, and Olson, 2013) The struc-
ture of the wake is visible during the labelled time periods at hub height
depicting the difference in wind speed between a wind farm and no-wind
farm case.On the top row, a) 0530 local time b) 0600 local time c) 0630 lo-
cal time. On the bottom row, a) 1600 local time b) 1800 local time c) 2300
local time.

the wakes recover faster in convective conditions as compared to neu-
tral and stable cases as illustrated in Figure 9.

Abkar and Porté-Agel (2015b) also stated that wake meandering
was found to be stronger in convective conditions. It is to be noted
here that according to (Larsen, 2007),

“The downstream advection of a wake from the emitting
turbine describes a stochastic pattern known as wake me-
andering. It appears as an intermittent phenomenon, where
winds at downwind positions may be undisturbed for part
of the time, but interrupted by episodes of intense turbu-
lence and reduced mean velocity as the wake hits the ob-
servation point."

Interestingly, Abkar and Porté-Agel (2015b) also discovered that tur-
bulence production and dissipation reached a peak around the upper
edge of the wake. This was attributed to the presence of higher wind
shear and turbulent fluxes in that region.

Lee and Lundquist (2017): Finally, in Lee and Lundquist (2017) ’s
most recent work (a paper evaluating a wind farm parameterization),
a Weather Research and Forecasting (WRF) model with Fitch et al.
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Figure 9: Time-averaged wind speed contours in m/s sliced horizon-
tally at the turbine hub height for different stability condi-
tions. Adapted from (Abkar and Porté-Agel, 2015b) The x axis
is normalised downwind distance, y axis is normalised lateral distance.
The topmost plot is for a Convective Boundary Layer (CBL) condition,
the middle plot is for a Neutral Boundary Layer (NBL) and the lowest
plot is for a Stable Boundary Layer (SBL)

(2012)’s WFP was evaluated for a period of 24th to 27th August 2013.
Although the goal of this evaluation was to quantify the far-wake
impacts of multiple rows of turbines in staggered and aligned grid
formations, some of their results are pertinent to this study.

In their paper, the WRF model setup simulated a central Iowa wind
farm with 200 turbines and a total nameplate capacity of around 300

MW, and was compared to a profiling LiDAR, a scanning LiDAR, and
a surface flux station. Their results concluded that in windy, stable
and less turbulent conditions, the wake effects seemed to be overesti-
mated in the model and hence the power production was underesti-
mated.

These results indicate that an analysis of the model outputs in
terms of atmospheric stability would provide insightful information
on the latter’s parameterization performance.

2.3 construction of hypotheses

Based on reviewed literature and our expectations from the wind
farm parameterization, certain hypotheses were constructed and specif-
ically tested during the data analysis.

To determine the pure effect of the incorporation of the wind farm
parameterization a benchmark evaluation between HARMONIE-AROME
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with wind farm parameterization and HARMONIE-AROME without
wind farm parameterization was conducted and it was expected to
yield the following results:

• The undisturbed model results (HRM) at the near LiDAR will
not account for wake effects unlike HRM-WF

• In a no-wind farm or an undisturbed region, for example, Cabauw,
the two model runs’ wind speed results will be nearly identical

Since a succinct comparison between HRM-WF and WRF was per-
formed as a sanity check (Stratum et al., 2019), it was reasonable to
assume that the results of Lee and Lundquist (2017) ’s evaluation may
have a bearing for the performance study of HRM-WF. Therefore, it
was hypothesised that:

• In stable regimes, HRM-WF’s power production (and/or wind
speed) will be underestimated.

Other results in literature enabled to construct the following hy-
potheses:

• The wind farm will have an effect on the TKE/mixing

• The wind farm will cause a slowing down of wind speeds at
hub height

• Turbulence generation can cause mixing which in turn affects
atmospheric variables and will have the strongest impact during
the early hours of the day (Roy, Pacala, and Walko, 2004)

• Wakes will recover faster in convective conditions compared to
neutral and stable conditions

The hypotheses and the outcomes will be explicitly addressed at the
end of Chapter 4.



3
M E T H O D O L O G Y

In this chapter, the methods used in conducting research are described and
justified. Specifically, information on the data-sets and the various ways they
were processed to help in evaluating the performance of the wind farm pa-
rameterization is provided. A list of hypotheses and the limitations and as-
sumptions that have affected this work have also been discussed.

3.1 data-sets

3.1.1 Observational Data-sets

• Fugro LiDAR: Fugro has conducted met-ocean measurement
campaigns by deploying two floating LiDARs in the Borssele
Wind Farm Zone. The data-sets are not continuous and include
gaps due to irregular servicing needs. The locations of the two
LiDARs are:

LiDAR
Longitude

(in E)

Latitude

(in N)

Distance from

Belgian

wind farms (in km)

Lot 1 (far-lidar) 3.019157 51.71556 approx. 17.63

Lot 2 (near-lidar) 2.9422162 51.650032 approx. 6.4

Table 2: The locations of the two floating LiDARs (Offshorewind.rvo.nl)
The ‘far-lidar’ is referred to as Lot 1 in official documentation and is around
17.63 km from the Belgian wind farms. The ‘near-lidar’ is Lot 2 and 6.4 km
away.

The data provided by Fugro include wind speed, wind direc-
tion, wind gust and turbulent intensity every 10 minutes at 30m
, 40m and then up to 200m at 20m intervals. According to an
analysis report on these Fugro LiDARs, (Dhirendra and Crock-
ford, 2016), the uncertainty of measurements at hub height is
around 0.45%.

21
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• Sentinel-1 SAR: The Sentinel - 1 is a radar mission by Coper-
nicus EU. It provides images in the C-band and has a high
20 m resolution with a wide swath of 250 km. Satellite Aper-
ture Radar (SAR imagery) allows us to observe wakes qualita-
tively and provides a good representation of the wind turbine
effects on the local environment(User Guides - Sentinel-1 SAR -
Overview - Sentinel Online). A sample is attached in Figure 10.
To obtain SAR imagery for the relevant time period, Google
Earth Engine was employed to examine snapshots where wind
farm wakes were observable. The data for the selected dates
were downloaded from Denmark Technical University (DTU)’s
portal for Satellite Winds. The data provided by (Methodology -
Synthetic Aperture Radar (SAR)) are SAR wind maps that show
the equivalent neutral wind speeds at 10 m above the sea sur-
face. The wind retrieval is performed by several geophysical
model functions that have been purposefully developed empir-
ically for ocean wind retrieval from radar measurements. It is
also noted that these functions are built on the assumption that
wind speed increases logarithmically with height. While this
is valid for neutrally stratified atmospheric stability regimes, a
disclaimer is provided that for stable stratification an underesti-
mation is observed while in unstable regimes an overestimation
is expected.(Methodology - Synthetic Aperture Radar (SAR))

Figure 10: SAR data retrieved using Google Earth Engine (The Google

Earth Engine code to extract the relevant data was pro-
vided as a courtesy by Dr. S.L.M. (Stef) Lhermitte) (User
Guides - Sentinel-1 SAR - Overview - Sentinel Online) This snapshot
shows the wakes from the Belgian wind turbines as captured by Sentinel-
1 and displayed on the Google Earth Engine viewer

The SAR images were parsed for wakes and then the following
dates were selected since they captured the wakes. A sample
visual representation is provided in Figure 11:

– 5th February 2016
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Figure 11: Sample wake image from the SAR data-set The colorbar indicates
wind speed in m/s. This figure illustrated is for 5th February 2016.

– 5th March 2016

– 12th March 2016

– 24th March 2016

– 4th June 2016

– 12th June 2016

• Elia Power Production: Belgium’s transmission operator, Elia,
provides measured and forecast-ed power data for the entire
year of 2016 with no data gaps. The power output is reported ev-
ery 15 minutes and measured in MW. In the power production
data-sets, negative power values of around -1.17 MW were ob-
served irregularly across the data-set. This strange anomaly was
removed so as to avoid any effect on the statistical analysis. The
corresponding timestamps in the models were also removed to
ensure uniformity. This data-set was also converted from its lo-
cal time to UTC (Coordinated Universal Time) before any com-
parison was conducted. The website from where the data was
downloaded is: https://www.elia.be/en/grid-data/power-generation/wind-
power-generation
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3.1.2 Models

3.1.2.1 HARMONIE-AROME (with and without a wind farm parameter-
ization)

The HARMONIE-AROME model is an operational mesoscale numeri-
cal weather prediction model that was made available in 2012. Specifi-
cally, the model serves to develop short-range forecasts for important
European cooperation projects. The original ERA5-HARMONIE do-
main comprises of 789x789 points but we will be using a sub-domain
of 217x234 points. As for the the vertical resolution of the model, a
hybrid sigma vertical grid is used. This consists of 65 vertical levels
and a tapering spacing such that near the surface the grid spacing is
around 20m subject to terrain, height, surface pressure etc. [(Simmons
and Burridge, 1981; Untch and Hortal, 2004); (van Stratum, personal
communication, October 28, 2019)].

Figure 12: The Dutch Offshore Wind Atlas domains (along with the

previous version of the atlas: KNW (is not relevant to this

thesis) Adapted from (KNMI, 2019) The area shaded in red was the
model output that was used for this work and further zoomed in to focus
on just the Borssele wind-farm region in the North Sea.

These model details regarding domain and resolution apply to both
versions of HARMONIE-AROME used in this thesis: with and with-
out the wind farm parameterization (which was used to contrast
the effect of the parameterization). This model, without the wind
farm parameterization, is referred to, henceforth, as HRM and the
HARMONIE-AROME run with the wind farm parameterization will
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be referred to as HRM-WF. HRM was obtained from the Dutch Off-
shore Wind Atlas data-set which provides hourly data for all the
grid points in the given region. The temporal resolution of the out-
puts of these models is hourly with a spatial resolution of 2.5 km.
Specifically, HRM runs are labelled as ‘HARMONIE-AROME Cycle
40h1.2.tg2’ and HRM-WF runs are labelled as ‘HARMONIE-AROME
Cycle DOWA_40h12tg2_fERA5_WF2019’ in KNMI’s documentation
(KNMI, 2019). It is important to note that the data in this thesis rep-
resented as HRM and HRM-WF runs are reanalyses, with a 3-hourly
3D-var data assimilation cycle (which is different from a HARMONIE
forecast). The reanalysis is initialised with ERA5 data (at the start of
2016 for the run) and then consequently it provides information at
the lateral boundaries of the model every hour (KNMI, 2019).

According to Bengtsson et al. (2017), both runs use “a framework
with a prognostic equation for the turbulent kinetic energy (TKE) combined
with a diagnostic length scale". The TKE equation includes source and
sink terms due to wind shear (sink), buoyancy (source), transport and
dissipation of TKE (sink) as presented in Equation 3.

3.1.2.2 Incorporation of the wind farm parameterization in HARMONIE-
AROME

The wind farm parameterization in (Fitch et al., 2012) considers wind
turbines to be momentum sinks and sources of turbulent kinetic en-
ergy (see Equations (13) and (10) in Chapter 2). In HARMONIE-
AROME, this is encoded by introducing a subroutine called ‘WIND-
FARM’ (Stratum et al., 2019). This subroutine calculates the tenden-
cies of U and V due to drag by wind turbines/farms, and TKE pro-
duction due to efficiency losses

Algorithmically, SUBROUTINE WINDFARM:

• Calculates absolute wind speed at hub height

• Interpolates the power and thrust curves to the wind speed at
hub height

• Calculates the difference between power production based on
the mean wind speed at hub-height and the vertical integral
wind speed over the wind turbine. This is a correction factor
that has been included and is not part of (Fitch et al., 2012)’s
WFP

• Calculates the corrected wind speed (u and v) tendencies (af-
ter calculating turbine area). The corrected tendencies for wind
speed account for drag by having a term that removes momen-
tum and the TKE tendency term accounts for additional TKE
due to the wind farm.
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It must be noted that this simulation incorporated not just the Bel-
gian wind turbines near the Borssele Wind Farm Zone but several
wind farms in the North Sea as Figure 13 illustrates.

Westermost Rough LiDAR

Borssele LiDARs

FINO1 tower

Figure 13: Wind Farm Zones in the North Sea. Provided by Bart van

Stratum. (van Stratum, personal communication, October

21, 2019) The red points indicate wind farm areas. The arrows point
to observation locations.Out of the three, only the Borssele LiDARs are
utilised in this study.

3.1.2.3 GRASP LES

GRASP LES (GPU-Resident Atmospheric Simulation Platform Large-
Eddy Simulation) is Whiffle’s own GPU-based (Graphical Processing
Unit) LES model. As Schalkwijk et al. (2015)’s work explains, a GPU
is a processor that allows parallel computing to take place and hence
has a massive computational advantage over a central processing unit
(CPU). In general, LES models perform many computations that are
nearly identical and this is handled by the (GPUs’) parallel processing
method as: firstly, any given equation solved for every grid node is
the same and second, the data is ordered in a structured manner
which allows each parallel GPU core to perform the same command
but on the successive data element.

The LES model that runs on Whiffle’s GPU core is based on the
Dutch Atmospheric Large Eddy Simulation (DALES). The simulation
used in this study has a domain of 512 × 512 points with 25 vertical
levels of 20m at the lower levels that increases to 30m by a height
of 550m. ERA5 has been used to set the initial conditions, the dy-
namic surface roughness at the bottom of the domain, and large-scale
boundary conditions (Appendix D of (Pondera et al., 2019)). However,
the large scale boundary conditions are prescribed only as tendencies
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and the model is usually run with periodic boundary conditions (Ap-
pendix B of (Pondera et al., 2019)).

The wind turbines in GRASP LES have been parameterized accord-
ing to the disk actuator method (Appendix B of (Pondera et al., 2019)).
The information required for this parameterization to work is: the
power curve, thrust curve, rotor diameter and hub height. The pa-
rameterization calculates the forces on a turbine blade (drag and ro-
tational) based on the information provided as well as the local wind
speed (Appendix B of (Pondera et al., 2019)). Since the simulation do-
main is small, re-circulation of wakes need to be avoided and this is
done by a running a simulation without wind farms whose bound-
aries are prescribed to the simulation with wind turbines. Further-
more, this allows for the development of wakes. This is illustrated in
Figure 14.

ERA	5	initial	conditions
ERA	5	hourly	boundary	conditions

LES	without	wind	farms	to
generate	turbulent	boundary
conditions	

LES	with	wind	farms	and
turbulent	boundary
conditions

Figure 14: Schematic setup of GRASP LES. Adapted from Appendix D of

(Pondera et al., 2019)

The LES data, much like in (Abkar and Porté-Agel, 2015a) could
provide insights on model behaviour when its performance is con-
trasted with HRM, HRM-WF. This is supported by recent work by
Ciaran et al., 2019 where the GRASP LES model was specifically eval-
uated at the Horns Rev I wind farm in Denmark and results indicated
that information from LES models, in tandem with standard models,
could be very useful in improving skill of the forecasts. For this the-
sis, the model data was provided in three NetCDF files; a horizontally
sliced data set provided the spatial wind field at two levels - at 10m
and at 92.90m for the selected time period in hourly time steps, a
power production data set that provided power in MW in 10 minute
intervals, a profile data-set at the two floating LiDAR locations that
provided wind speed in m/s at 10 minute intervals. The tower data
is originally sampled once per time step which is typically a cou-
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ple of seconds. These samples are averaged into 10-minute intervals
and the time stamp is placed at the end of each interval contains all
the samples that precede it up to 10 minutes. (e.g. time stamp 15.20

contains all samples between 15.10 and 15.20). (E. Wiegant, personal
communication, July 16, 2019 )

3.2 analysis procedure

The following steps were undertaken to produce the results reported
in the following chapter. The choices made have been justified with
references to literature. Firstly spatial and temporal delimitation was
imposed based on availability of observation data. This narrowed
down the indicators for the study. The data was processed for miss-
ing values and any other discrepancies as well as to make it com-
parable with one another. Finally, a set of checks and balances were
performed to ensure consistency across various results.

3.2.1 Delimitation of the Study (Spatial and Temporal Domain) and Indi-
cators

3.2.1.1 Temporal and Spatial Domain

Since HARMONIE-AROME’s domain is limited (being a mesoscale
model), the wind farm that met the criteria of having several usable
observational data-set and also being within the mesoscale domain
was the Borssele Wind Farm Zone. The Borssele Wind Farm Zone
(BWFZ) has, in close proximity, two observational data-sets from float-
ing LiDAR buoys that were dispatched by Fugro to two different lo-
cations in regular intervals to record various wind variables such as
speed, direction, gust and turbulent intensity. Furthermore, the power
grid connected to this region, run by the Belgian transmission opera-
tor, Elia, publishes verified data on the measured power output.

Over the BWFZ, available Sentinel-1 SAR data also provided useful
qualitative wake data despite the limited frequency of snapshots of a
single time-step once every few weeks.

The Borssele Wind Farm zone is comprised of wind turbines from
three different suppliers. In total, there are five types of wind turbines
with different cut in and cut out speeds:

The choice of the time period for any time series evaluation was
motivated by the availability of continuous LiDAR data. The location
of the LiDAR that is further away from the wind farm, position 1, had
buoys recording the variables on these dates:

Since the closer LiDAR at position 2 has data only from 2nd Decem-
ber to 22nd June 2016 (02.12.2016 - 22.06.2016), the subset of available
data from both LiDARs, the months from February to June in 2016,
was chosen as the time period for evaluating HARMONIE-AROME.
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Name

Hub Height

(in m)

Cut in

(m/s)

Cut out

(m/s)

Vestas 90 76 4 25

Vestas 112 72/84 3 25

Senvion 6.2M 95 4 30

Senvion 5M 94 4 30

Haliade 100 4 25

Table 3: Characteristics of operational Belgian wind turbines

(Offshorewind.rvo.nl). This table provides turbine data which is relevant
for discussion and interpretation of results from Chapter 4.

The LiDAR data had to be processed to remove the invalid (NaN)
values that occurred intermittently. In this analysis, March - May was
considered since it had the least data gaps. To ensure consistency and
ease of comparison, the same time period was selected for the power
production data-sets.

3.2.1.2 Selection of Evaluation Metrics

To evaluate the performance of the HARMONIE-AROME model with
the new parameterization, atmospheric variables that illustrated the
effect of a wind farm parameterization as well variables for which
it was possible to obtain observed data had to be chosen. As dis-
cussed in the previous sections, the impact of a wind farm is mostly
illustrated by changes in wind speed and the power production data.
Since these two variables are available in all the data-sets involved,
the primary indicators for the evaluation were narrowed down to
spatial wind speed fields that illustrate the wake signature, time se-
ries/shear profiles at the LiDAR locations and time series of power
production. Secondary indicators such as wind direction, turbulent
kinetic energy were also used to establish certain benchmarks or filter
the data. These variables were used to generate figures that provided
an overview as well as a composite view of the data. A composite
view of the data was created by classifying the data-sets into several
stability regimes based on Obukhov length as well as into wind direc-
tion sectors based on, evidently, the wind direction. This is elaborated
upon in a following sections.

3.2.1.3 Description of Figures

Specifically, to study ambient flow, time-height contours such as those
presented in Lee and Lundquist (2017)’s work were created. For a
closer look at the behaviour of the model at hub height in a short time
period, monthly time series of wind speed from both the models and
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Far-LIDAR (Lot 1)

4*Available Dates

11th June to 26th December 2015

(11.06.2015 - 26.12.2015)

12th February to 20th July 2016

(12.02.2016 - 20.07.2016)

20th July to 9th December 2016

(20.07.2016 - 09.12.2016)

12th December 2016 to 27th February 2017

(12.12.2016 - 27.02.2017)

Near-LIDAR (Lot 2)

Available Dates

2nd December 2015 to 22nd June 2016

(02.12.2016 - 22.06.2016)

Table 4: Floating LiDAR Data Availability (Offshorewind.rvo.nl) As de-
picted, an overlap of the two data-sets is present only in 2016.

the observational data-set was used. To study wake characteristics, a
spatial contour plot of the wind speed at 10m height at the time of the
SAR overpass was generated and compared with the satellite data. To
characterise the wakes further, a temporal average of spatial winds at
hub height was performed. It is pertinent to note that to establish the
working of the parameterization, HRM data was juxtaposed against
HRM-WF results in the Belgium Wind Farm zone as well a in a no-
wind farm region. Moreover, a spatial animation plot to show the
wake behaviour was constructed to better observe the behaviour of
the wind fields in the presence of a wind farm parameterization. To
check if the model truly represented real world behaviour, a compari-
son of the diurnal cycles was made. Diurnal shear profiles generated
also provided additional insights. As for the power production, time
series, scatter plots, and 2D histograms were used to determine the
performance of the parameterization.

For quantifying the performance of the model, a statistical analyses
was performed. Histograms and bias vs. root mean squared error
(RMSE) figures of the selected heights for the two key variables were
generated to illustrate the behaviour of the model at different heights.
Plots that represented the bias as a function of time and height were
also used to evaluate the model. To clarify, in this thesis, bias is the
difference between modelled data and observational data. For e.g., a
positive bias implies that the model overestimates and vice versa.
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Since the various data-sets were from different sources, with dif-
ferent resolutions, they required pre-processing before direct compar-
isons could be made. This is elaborated on in the upcoming section.

3.2.2 Data Processing

The wind speed variable in HRM/HRM-WF’s NetCDF files is pro-
vided as vectors: u and v of 4 dimensions each (y, x, height and time).
Thus, wind speed was calculated (|V | =

√
u2 + v2) and extracted for

heights from 40m to 200m at 20m intervals for comparisons with the
lidar. For spatial results, 10m and 100m heights were extracted. For
HRM, wind speed data was a scalar variable. For GRASP LES, the
spatial winds were provided at two heights: 10m and 92.90m (for
comparisons, the data was interpolated to 100m).

For the profile data, in HRM-WF and HRM, the coordinates closest
to the LiDAR coordinates was calculated using the Euclidean distance
method as:

distance =
√
(longitude array − target longitude)2 + (latitude array − target latitude)2 (1)

Note: the latitude and longitude variables are two dimensional ar-
rays thus making it necessary to calculate the distance to the nearest
point instead of locating the nearest point in the latitude and longi-
tude array independently.

This method was selected after exploring several other ways (i.e.
Orthodromic, Spherical) to calculate the smallest distance between
the target coordinates and the model coordinates. The Euclidean dis-
tance method resulted in the closest coordinate point and hence was
selected (see Figure 15). It is also consistent with the method em-
ployed by Whiffle to extract profile data from the LES model.
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Figure 15: Illustration of LiDAR locations and model grid points

used for comparison The top panel illustrates the grid lines of the
high LES resolution and the bottom panel illustrates the grid lines of
the coarser HARMONIE-AROME resolution. The legends indicate the
locations in the model that were closest to the actual LiDAR coordinates.
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For the time series and other profile plots, 9 heights were selected:
40, 60, 80, 100, 120, 140, 160, 180, 200. GRASP LES data was received
in non-standard heights and hence, the data was interpolated to these
heights.

In this work, the phrase ’hub height’ is used to refer to 100m since
a majority of the turbines in Table 3 are around this height and it is
one of the standard heights provided in the HRM/HRM-WF model.

For performing statistical analyses, the data-sets were averaged
into hourly time-steps, if the resolution was finer. There were two
ways this could be performed. An asymmetric or forward averaging
was the average of the 5 time-steps leading up to the next hour, i.e
wind speed at 16:00 is an average of the wind speeds from 16:00 to
16:50. A symmetric averaging method averaged the time-steps +/- 30

minutes for a given hour, i.e. wind speed at 16:00 would be the av-
erage of wind speeds from 15:30 to 16:30. The model data-sets were
also processed to remove timestamps that were invalid in the observa-
tional data-sets - this includes NaN values or negative power values.

For HARMONIE-AROME’s power production data, it was neces-
sary to calculate the sum of power per grid cell and this was done
by masking all the grid points outside of latitudes from 51.44 to 51.9
N and longitudes from 2.5 to 3.2 E followed by a summation of the
unmasked grid point power values.

For both HRM-WF and GRASP LES, it was necessary to account
for a curtailment of power production that was observed in the power
measurement data-sets. Several hypothesis to explain this have been
made but none have been confirmed. Nevertheless, this has been ac-
counted for in the selected time period. This was done by calculating
the active wind turbines from the Elia data-set. The ratio of maxi-
mum observed power with respect to maximum possible power was
calculated. Later, this fraction was multiplied with the nameplate ca-
pacity to derive the maximum power generated in the given month.
This value was used to parse the model data in such a manner that
any data points above this value would be capped to the maximum
observed power thus eliminating the bias that was observed due to
the model’s assumption that power production occurred at full capac-
ity whereas the measurements by the transmission operator indicated
that the wind farm was operating at sub-capacity. The following Table
5 illustrates the active wind turbine percentage during the relevant
months.

3.2.2.1 Generation of Composites based on Stability Regimes

To obtain a composite view of the data which would further aid in
assessing the performance of the wind farm parameterization, the
data-sets were binned into several stability regimes. As evidenced in
research by Abkar and Porté-Agel (2015a), atmospheric stability has
a strong influence on wake effects. The stability classification based
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Months March April May

Fraction of

Curtailed Power

0.946 0.961 0.957

Table 5: Ratio of curtailed power in the Belgian wind farm The ratio
of curtailed power production for the selected temporal domain has been
presented.

on Monin-Obukhov length that was used is based on M. Motta, R. J.
Barthelmie, and P. Vølund (2005) since the paper derived said classifi-
cation after observations from four offshore sites with air temperature
and wind sensors at various heights:

• Very Unstable : −200 < L < 0

• Unstable : −1000 < L < −200

• Neutral : | L |> 1000

• Stable : 200 < L < 1000

• Very Stable : 0 < L < 200

The Monin-Obukhov length variable was obtained from the New
European Wind Atlas (NEWA) data-set and it was chosen for two rea-
sons: since it directly provided Inverse Obukhov Length (1/L) values
which was relatively easier to use than computing it as well as be-
cause an unbiased, undisturbed stability variable would provide no
undue advantage to any of the models (as opposed to computing sta-
bility with the atmospheric variables generated by the model). On the
NEWA website, the Borssele/Belgian wind-farm region was selected;
an area of 14,821.94 km2, with the center at 51.67678 N, 3.00201 E.
(It is to be noted here that using a Python IDE may sometimes re-
sult in the inverse Obukhov length variable having its negative val-
ues masked and this needs to be corrected. This has, to the author’s
knowledge, no bearing on the results once the issue has been recti-
fied.)

For classifying the power production data-set, the near-LiDAR Obukhov
length values were utilised. The range of L over the region did not
vary extensively and hence, using a single point for the stability clas-
sification of the entire region was justified (See Appendix B). (Note
that, NEWA provides an undisturbed stability variable)

3.2.2.2 Generation of Composites based on Wind Direction

The data sets were also classified based on wind direction. Six wind
direction sectors, 60each, were chosen. The models were binned based
on direction measurements from the two LiDAR locations into North-
East (NE), East (E), South-East (SE), South-West (SW), West (W), North-
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West (NW) directions. They were also further classified per wind di-
rection sector into various stability classes as explained in the previ-
ous section.

3.2.2.3 Construction of a Wake Phase Diagram

An attempt to qualitatively categorise the length of the wakes based
on stability and wind speed was attempted since it was deemed use-
ful for further research. Two spatial plots for two different time steps
in every six hour period on a given day (00:00 - 6:00, 6:00 - 12:00, 12:00

- 18:00, 18:00 - 00:00) were collected. This implies that 8 samples per
stability class were used to make the assessment. It was ensured that
for the selected time-steps, winds originated from the South Westerly
direction for maximum wakes. Usually, it was preferred that consecu-
tive hours were selected. Furthermore, when no wakes were apparent,
the wind speed data point that was used represents the wind speed
around the wind farm. It must be noted here that when winds were
below cut in speed, any wakes that appeared were considered to be
due to the roughness of the wind turbines.

3.2.3 Checks and Balances

To justify the results and choice of data processing methods, several
internal consistency checks were applied. Since the volume of data
was quite large and the number of results that could be generated
even with a limited number of indicator variables equally volumi-
nous, it was important to ensure that the various results were consis-
tent with each other.

3.3 limitations , assumptions and range of validity

In performing this research, a number of general assumptions were
made. Firstly, it was assumed that the resampling does not corrupt
the data and that the comparisons are valid. The power and thrust
curves obtained from the manufacturers were assumed to be accu-
rate, the Inverse Obukhov Length variable obtained from the New
European Wind Atlas was also assumed to be accurate as is possible,
and that the WFP was incorporated correctly in GRASP LES. Finally,
blockage effects due to wind turbines (which is essentially a slow-
ing down of wind just upstream of wind turbines (Bleeg et al., 2018))
were ignored while making inferences based on wind direction com-
posite results.

Apart from assumptions, there were certain limitations to this anal-
ysis as well. The floating LiDARs had a large number of missing time
steps (even within the selected temporal period) that had to be ac-
counted for. Furthermore due to this short time period, the seasonal
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patterns could not be investigated. This is also linked to the number
of available SAR snapshots that allow comparison of spatial wind
contours. Additionally, due to the size of the data and the number
of data-sets, all the available model variables were not thoroughly
explored. This was compounded by the fact that there were no TKE
measurements available in the region. In the same vein, the power
production data from Elia had anomalies such as negative values that
had to be cleaned and the actual values for those data points remain
unknown.

Most importantly though, the curtailment of the power produc-
tion in the Belgian wind farms remains a point of concern. Elia, the
organisation, when approached (Vanhecke M., personal communica-
tion, 25th October 2019) state that they receive the power production
data from the individual wind farm operators and only oversee the
injection of electricity into the main grid and hence, to confirm any
hypothesis on the curtailment, the wind farm operators need to be
contacted. As a result, the statistical analysis on the power produc-
tion data must be accepted and interpreted keeping this in mind.



4
R E S U LT S

In this chapter, the results from the analysis conducted are published and
interpreted. Fundamentally, the chapter strives to answer the research ques-
tions and test the constructed hypotheses with the obtained results and
present the findings.

4.1 qualitative analysis : an overview

This qualitative overview analysis provides the different model re-
sults of the selected key indicator variables (wind speed and power
production) across the spatial and temporal domains that have been
selected.

4.1.1 HRM vs HRM-WF: A Benchmark Analysis

Before any comparisons between HRM-WF and observational data or
other models were made, it was necessary to establish that the wind
farm parameterization has been included correctly. The benchmark
analysis results aim to establish that the observed changes between
HRM and HRM-WF’s model output data can solely be attributed
to the wind farm parameterization. To this end, spatial wind con-
tour maps of hub height averaged wind speed, 2-D cross-sections of
TKE at various heights, and the hub height wind speed time series at
Cabauw (an undisturbed wind farm region) were produced.

An averaging of hub height wind speeds was performed to exclude
any effects due to the model’s sensitivity to initial conditions and
as Figure 16 depicts, there is indeed a parameterization effect repre-
sented by slowing wind speeds in the area where the Belgian wind
farm is located. Since a WFP is represented as a momentum sink in
the model (Fitch et al., 2012), it can be confidently stated that the
weakening of wind speeds in just that particular region is a parame-
terization effect.

37
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Figure 16: Hub-averaged wind speeds between HRM and HRM-WF on

5th Feb 2016 The top panel shows a spatial hub averaged wind speed
plot for HRM and the bottom panel shows the same for HRM-WF.The
Belgian wind farm location has noticeably weaker average wind speeds
(around 12 m/s).
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A complementary result is obtained when the wind speeds at hub
height for an undisturbed region (undisturbed by wind farm effects)
were analysed. For the Cabauw location, an onshore coordinate where
KNMI’s wind mast observatory is situated, it was hypothesised that
the HRM and HRM-WF results for hub height winds will be very sim-
ilar. When this analysis was performed, the hub height wind speeds
were not just very similar but nearly identical further satisfying the
benchmark analysis that any differences in wind speeds at BWFZ is
parameterization dependant (See Appendix B).

Finally, since the WFP acts not only as a momentum sink but also
as a source of TKE (Fitch et al., 2012), the TKE profile was anal-
ysed for differences between the two runs. In Figure 17, HRM shows
little to no TKE over the BWFZ as opposed to the HRM-WF run
which has clearly outlined TKE fingerprints at hub height confirm-
ing that the WFP was indeed behaving as a momentum sink and a
TKE source. Note that the maximum TKE in the colorbar was manip-
ulated to show the effects clearly. The regions in red have TKE values
of 0.25 m2/s2 or greater.

Figure 17: HRM vs HRM-WF: Spatial TKE profiles The top 2 rows show a
spatial TKE plot for HRM and the bottom 2 rows show the same for
HRM-WF. Note that the upper limit of the colorbar was adjusted to
clearly illustrate the increase in TKE over the BWFZ as we approach
hub height and subsequent decrease.
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4.1.2 Comparisons of HRM-WF and Measured Wind Data

One of the methods employed to ascertain the quality of HRM-WF
against observations was spatial maps. These allowed the study of
wind contours and wake signatures. Some of the other methods in-
clude the histograms for wind speed at hub height which will pro-
vide an insight into the difference between the two LiDAR locations.
The patterns observed in the diurnal cycle and shear profiles and the
model’s ability to reproduce the same will also be discussed.

4.1.2.1 Spatial Wind Contour Maps and Wake Signatures

The spatial wind contour maps were generated to validate whether
HRM-WF was able to represent the wakes qualitatively. Since SAR
imagery is sparse and only certain snapshots among those available
in any selected time period have indications of wakes, the temporal
domain adopted for LiDAR observations was abandoned and SAR
imagery from February and June is also considered.

Figure 18: Spatial Wind Contour Maps - 5th Feb 2016 The left panel shows
explicit wake trails from the Belgian wind farms captured at 10m height
in an image from SAR on 5th Feb 2016 at 6 AM. The right panel shows
the spatial wind contour map at 10m height by HRM-WF.The atmo-
sphere was stable at this time and date.

Since SAR images depict equivalent neutral wind speeds at 10m
height, it is important to consider that in any other atmospheric sta-
bility regime, the wind speed accuracy is reduced. In Figure 18, the
atmosphere is stable. According to the DTU SAR website (See Ap-
pendix A), underestimation is usually observed in stably stratified
atmospheres. Also, the land regions are masked with very high val-
ues for clarity.

From Figure 18, it is noted that HRM-WF captures the wind speed
contours with what appears to be a mild over estimation of about
1 m/s compared to SAR. Such a large bias can be duly accounted for
by both, an underestimation in the SAR data in a non-neutral, stable
regime, and model errors.

In this figure, it is also unclear whether the wakes that are explicitly
captured by SAR are also reproduced. Since the resolution of HRM-
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WF is much more coarser, the colorbar has been fine tuned to bring
out the wake fingerprints as depicted in Figure 19.
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Figure 19: Wake Signature at 10m captured by HRM-WF The wakes are
represented here in yellow. The black dots depict the wind farms and the
colour is unrelated to the colorbar.

In the area surrounding the wind farm (depicted here in blue), a
weak wake fingerprint is seen in yellow with a speed of 10.5 m/s. This
corresponds with the magnitude depicted by SAR. It is interesting to
note that SAR captures an acceleration at the center of the wake which
is not represented in HRM-WF. Furthermore, the length of the wake
in SAR is much more longer. This is plausible since literature shows
that stable regimes are prone to lesser mixing and wakes take longer
to dissipate (Abkar and Porté-Agel, 2015b). Since these images show
wind speed at a height much lower than hub height, it is hypothesised
that wind speeds at the center of wakes may accelerate as opposed to
decelerating as witnessed at hub height in Figure 16 due to increased
vertical mixing when the turbines are operational. This is yet to be
substantiated.

Figure 20: Spatial Wind Contour Maps - 5th Mar 2016 The leftmost panel is
a SAR image, the middle panel is HRM-WF with a colorbar comparable
to the SAR image and the last rightmost panel is HRM-WF with a
tweaked colorbar to highlight the wakes.
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Figure 21: Spatial Wind Contour Maps - 12th Mar 2016 The leftmost panel
is a SAR image, the middle panel is HRM-WF with a colorbar compa-
rable to the SAR image and the last rightmost panel is HRM-WF with
a tweaked colorbar to highlight the wakes.

Figure 22: Spatial Wind Contour Maps - 24th Mar 2016 The leftmost panel
is a SAR image, the middle panel is HRM-WF with a colorbar compa-
rable to the SAR image and the last rightmost panel is HRM-WF with
a tweaked colorbar to highlight the wakes.

Figure 23: Spatial Wind Contour Maps - 4th Jun 2016 The leftmost panel is
a SAR image, the middle panel is HRM-WF with a colorbar comparable
to the SAR image and the last rightmost panel is HRM-WF with a
tweaked colorbar to highlight the wakes.

Figure 24: Spatial Wind Contour Maps - 12th Jun 2016 The leftmost panel is
a SAR image, the middle panel is HRM-WF with a colorbar comparable
to the SAR image and the last rightmost panel is HRM-WF with a
tweaked colorbar to highlight the wakes.
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On 5th March, Figure 20 illustrates a very unstable atmospheric
regime. It also appears as though there is a discrete band dissecting
the map which could perhaps imply a meeting point of two fronts.
This is present in both the observations and the model. HRM-WF also
mildly underestimates winds but is able to capture, albeit coarsely,
the wind systems in the region. It is harder to make inferences based
on the wake signature plot but the wind speeds appear to be lower
than the cut in speed which indicates that the wind farm is not op-
erational and wind farm wakes due to rotating turbines will not be
present.

On 12th March, Figure 21 also depicts a very unstable regime. From
the HRM-WF plot, it is evident the wind contours are very well rep-
resented with a slight under-estimation in the magnitude. The wake
signature is also reproduced excellently and it is fair to expect wakes
since the wind speed moving towards BWFZ is slightly above cut in
speed (3-4 m/s).

In a neutral regime, Figure 22, HRM-WF overestimates the wind
speeds but a patch of higher wind speeds near the BWFZ is present
in both the SAR and HRM-WF plots. The wake signature plot shows
short wakes in the same direction as the ones that can be seen in the
SAR.

In yet another very unstable regime, SAR Figure 23 depicts medium
wakes towards the shore which are reproduced by HRM-WF. The
model does not seem to pick up on any of the wind speed systems
though. In the same month, a very stable regime captured by SAR on
Figure 24 shows a wind system that is lagging in HRM-WF resulting
in wind speeds near or below the average cut in speeds (3-4 m/s) and
thus accounting for the absent or minimum wakes.

4.1.2.2 Sample Wake Phase Diagram Construction

To summarise the wake signatures from HRM-WF, a qualitative as-
sessment on wake lengths was performed. The wakes were visually
classified in to short, medium and long wakes by eyeballing the num-
ber of degrees they spanned.

In Figure 25, HRM-WF’s spatial plot results (see Appendix A) were
sampled into different stability classes and the corresponding wake
lengths were recorded to identify existing patterns, if any. This qual-
itative appraisal yielded results that are consistent with HRM-WF’s
wake behaviour in preceding sections. The results establish that most
wakes occur in the 7.5 - 15 m/s wind speed range (which is also
within the cut in and cut out speeds of wind turbines), with most
wakes being short in length. Furthermore, wake lengths increase with
increase in wind speed magnitude. With respect to mixing, wake
lengths have more nuanced patterns. In general, very unstable regimes
have none to short wakes. Unstable regimes also have short wakes
even at medium wind speeds and medium wakes at higher wind
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Figure 25: Wake lengths (at 10m) categorised according to speed and

stability class.

speeds. Stable regimes have none to medium wakes within the same
wind speed range so any direct inferences about speed and mixing
are difficult to make. Very stable regimes appear to have a lot of short,
low wind wakes. Neutral regimes result in the most long wakes. Over-
all, this implies that a well-mixed, high wind speed boundary layer
may be the right combination for long wakes and that wind speed
may be a stronger factor in determining wake length than mixing.

4.1.2.3 Wind Speed at Hub Height (100m)

At the two LiDAR locations, wind speeds at hub height were com-
pared to establish the overall performance of the model.

20
16

-0
2-

29
20

16
-0

3-
01

20
16

-0
3-

15

20
16

-0
3-

29
20

16
-0

4-
01

20
16

-0
4-

15

20
16

-0
4-

29
20

16
-0

5-
01

20
16

-0
5-

15

20
16

-0
5-

29
20

16
-0

6-
01

Time

0

5

10

15

20

25

30

W
in

d
S

p
e
e
d

[m
/
s]

Wind Speed at hub height (100m) at Far LiDAR location (Mar, Apr, May)

Far LiDAR

HRM-WF

GRASP LES

Figure 26: Wind Speed at hub height (100m) at Far LiDAR location

From Figures 26 and 27 it can be stated that HRM-WF’s hub height
wind speeds in March, April, and May 2016 align closely with ob-
served as well as GRASP LES wind speeds. In general, there appears
to be a mildly positive or a mildly negative bias at several time steps
amounting to an overall bias ∼ 0.6 m/s. The two LiDARs have similar
wind speeds but there is a perceptible time shift, especially noticeable
if they are overlaid on top of each other The histograms quantify this
magnitude shift and is presented in the following section.
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Figure 27: Wind Speed at hub height (100m) at Near LiDAR location

4.1.2.4 Histograms of Wind Speeds at Hub Height
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Figure 28: Histograms of far-lidar and near-lidar The leftmost panel is
a histogram between the far and near LiDARs. The middle panel is a
histogram comparison of the models and the observational data-set for
the far-lidar. The rightmost panel is the histogram comparison between
the near-lidar observational data-set and the models.

The utility of studying the two observational locations is under-
lined in Fitch et al. (2012)’s paper which states that very few observa-
tional data-sets on the atmospheric impact of wind farms exist. From
Figure 28, it was noted that the differences between wind speeds at
the two LiDAR locations is minimal. The near-lidar’s histogram ap-
pears to be shifted slightly towards the left and this may be the result
of weakening winds originating in the South-West or West as they
cross the BWFZ.



46 results

The second plot in Figure 28 illustrates the histogram for the far-
lidar. The models have a higher value than the observational data in
the 6 - 12 m/s range. HRM-WF, HRM, and GRASP LES have per-
formed similarly in this scenario.

In contrast, the third plot in Figure 28’s results tell a different story.
There is a marked difference between the histograms of HRM-WF
and HRM. HRM has a higher count of wind speeds in the 7-10 m/s
bins since it does not account for the presence of a wind farm.

4.1.2.5 Diurnal Cycle of Wind
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Figure 29: Diurnal Cycle at far-lidar The panels depict data from top to
bottom in the following order: LiDAR, GRASP LES, HRM-WF, HRM.

The diurnal wind speed cycle over the region is not larger than
around 2 m/s at either lidar locations. Furthermore, in Figure 29,
a pattern is noticeable where the wind speeds pick up after noon
steadily rising up to 21:00 hrs after which the speed drops again.
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Figure 30: Diurnal Cycle at near-lidar The panels depict data from top to
bottom in the following order: LiDAR, GRASP LES, HRM-WF, HRM.

The maximum wind speed at the far-lidar location is well after dusk.
This behaviour is picked up by HRM-WF as well as HRM but the
latter overestimates the magnitude considerably. GRASP LES accu-
rately captures the magnitude but does not represent the mixing at
higher heights. HRM-WF also loses the mixing at higher heights com-
pared to HRM and the observations. It should be noted that HRM-WF
also successfully captures the maximum wind speed around 21:00

hrs and the following sharp dip. Since the far-lidar has lesser undis-
turbed winds, HRM and HRM-WF have comparable performances
with HRM capturing the overall shape better than HRM-WF. As we
move closer to the wind farms, HRM loses this ability as is seen in
Figure 30.

At the near-lidar location, Figure 30, there seems to be less pro-
nounced mixing at higher heights and this is satisfactorily captured
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by GRASP LES and HRM-WF. HRM performs less satisfactorily but
this is an expected outcome since it does not account for any wake ef-
fects. The stratification at higher heights as compared to the far-lidar
is an interesting development and it is uncertain whether it is only
due to the presence of the BWFZ but they seem to be correlated in
some way. There also seems to be a less sharp drop in wind speed
after 21:00 hrs with lower diurnally averaged wind speeds - it hardly
develops beyond 10 m/s. The LES also does not capture the dip in
wind speeds after 1 or 2 AM and is consistently positively biased
during that time period.

4.1.2.6 Diurnally-averaged Wind Speed Shear Profiles
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Figure 31: Wind Shear at the near and far LiDARs The panels depict wind
shear profiles for different hours of the day in the following order: 0000
hrs, 0600 hrs, 1200 hrs, 1800 hrs.

The diurnally averaged wind speed shear profiles provide another
perspective on the diurnal cycle and the model’s performance in that
category. Profiles for midnight, 6 AM, noon and 6 PM were selected
since they are evenly spaced and provide an idea of the shear profile
trends.

In Figure 31, at 00:00 hrs, HRM-WF and the far-lidar are nearly in
complete overlap which is desirable. HRM has the same shear profile
shape as HRM-WF but there is a consistent bias between the two that
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seem to have been eliminated by the inclusion of the WFP. At 6:00 AM,
the lower part of the shear profiles coincide well with the observations
but the models increasingly over-estimate the wind speed from 100m
and above. HRM has the largest bias at any given height. At noon, all
the shear profiles are less steep with a weaker wind speed at lower
heights compared to 12 AM and 6 AM. GRASP LES and the far-lidar
are also nearly identical. Interestingly, at 6 PM, HRM coincides the
most with the observational data-set. All the models also seem to
overestimate at the lowest level but the bias reduces at upper levels.

For the near-lidar location, the differences between HRM and HRM-
WF are a lot more drastic. Figure 31 illustrates this at all time steps.
HRM shows a very strong positive bias - overestimating wind speeds
- at all times and at all heights since it does not account for any wake
effects. HRM-WF performs well at 00:00 hrs and 6:00 hrs but overes-
timates the wind speed slightly at noon and at 18:00 hrs. It also does
not capture the shape at 18:00 hrs. Overall, GRASP LES and HRM-
WF’s results do not overlay the lidar observational data profiles but
the overall bias is minute - especially at hub height.

These results also provide an insight into the behavior of the wind
shear profile close to a wind farm zone. The observation profile at the
near-lidar is less curved and appears to have more mixing than the
one at the far-lidar. The range of wind speeds between 10m height
and 200m height also seem to be reduced. It is possible that a wind
farm zone not only damps the speed but also the natural mixing
tendencies of the upper levels of the atmosphere (at and above hub
height).

4.1.2.7 Power Production over BWFZ
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Figure 32: A time series of power production in the Belgian wind

farms from March - May 2016 for HRM-WF and actual

power

The models perform very well after accounting for the curtailment
of power as is evidenced by Figure 32 and Figure 33. Since the calcu-
lation of power in the models is dependant on the power and thrust
curves, it is crucial to have accurate data on them. Usually, it is the
wind turbines manufacturers who provide the data. As the figures
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Figure 33: A time series of power production in the Belgian wind

farms from March - May 2016 for GRASP LES and actual

power

illustrate, the models perform well with a mild bias within the 10-20

MW range.
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Figure 34: A 2D histogram of power production in the model and ob-
servational data-sets The left panel depicts HRM-WF vs Elia and
the right panel depicts GRASP LES vs Elia.

This hexbin plot (Figure 34) illustrates the correlation between mea-
sured and modelled power as well as the number of data points in a
certain bin. We find that most of the data during this time period lie
at the extremes - either the BWFZ is not operational or it is generat-
ing at full capacity. More insight into this is obtained when looking
at composite hexbin plots in the following section.

4.2 qualitative analysis : a composite view

4.2.1 Atmospheric Stability Composite Results

The stability regime that is predominant in the BWFZ during March
to May 2016 is the ‘very unstable’ regime according to Figure 35. Thus,
statistically, a model’s performance in this regime will skew its overall
performance.
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Figure 35: Proportions of various atmospheric stability regimes from

March - May 2016 The top panel is the stability percentages for the
far lidar location and the bottom panel represents the near lidar location.

4.2.1.1 Wind Speed Histograms for Hub Height

In Figure 36, very unstable near-lidar measurements have weaker
wind speeds than the far-lidar. This is captured by GRASP LES but
not HRM-WF. The model results are also more accurate for the far-
lidar histogram.

In the unstable regime, both near and far lidar measurements have
very different histograms with far-lidar having a prominent peak
around 10 m/s whereas the near-lidar measurements are more equi-
tably distributed across the bins. HRM-WF’s histogram is the closest
to the observational histogram for the far-lidar location while GRASP
LES’ histogram is the closest for the near-lidar location.

In stable regimes, far-lidar measurements have a peak further to the
right than near-lidar measurements indicating weaker wind speeds at
the latter location. This has been captured by the WFP in HRM-WF
than in HRM (second figure, Figure 38). As for the far-lidar, all of the
model’s histograms are very different to the observational histogram.

The model’s histograms at the near-lidar for very stable atmospheric
regimes are also quite different from the observational histograms.
Specifically, HRM-WF fails to capture the behaviour at the near-lidar.
The models do reasonably at the far-lidar.

In neutral regimes, the leftward shift of the near-lidar observations
is again predominant. The model histograms, at the near-lidar loca-
tion, fall short with the exception of GRASP LES. At the far-lidar,
there is no clear overlap between the models’ and observational his-
tograms. Overall, the models’ histograms vary significantly from ob-
served wind speed histograms especially at the near-lidar location.
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Figure 36: Histograms for ‘Very Unstable’ regime The leftmost panel is a
histogram between the far and near LiDARs. The middle panel is a
histogram comparison of the models and the observational data-set for
the near-lidar. The rightmost panel is the histogram comparison between
the far-lidar observational data-set and the models.
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Figure 37: Histograms for ‘Unstable’ regime The leftmost panel is a his-
togram between the far and near LiDARs. The middle panel is a his-
togram comparison of the models and the observational data-set for the
near-lidar. The rightmost panel is the histogram comparison between the
far-lidar observational data-set and the models.
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Figure 38: Histograms for ‘Stable’ regime The leftmost panel is a histogram
between the far and near LiDARs. The middle panel is a histogram
comparison of the models and the observational data-set for the near-
lidar. The rightmost panel is the histogram comparison between the far-
lidar observational data-set and the models.
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Figure 39: Histograms for ‘Very Stable’ regime The leftmost panel is a his-
togram between the far and near LiDARs. The middle panel is a his-
togram comparison of the models and the observational data-set for the
near-lidar. The rightmost panel is the histogram comparison between the
far-lidar observational data-set and the models.
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Figure 40: Histograms for ‘Neutral’ regime The leftmost panel is a his-
togram between the far and near LiDARs. The middle panel is a his-
togram comparison of the models and the observational data-set for the
near-lidar. The rightmost panel is the histogram comparison between the
far-lidar observational data-set and the models.

4.2.1.2 Diurnal Wind Speed Cycle

From Figures 41 to 44, it is observed that the neutral and stable
regimes have the highest wind speeds and variations on a daily ba-
sis. It can be discernibly noted that the models capture the mixing or
rather lack of mixing in the different stability regimes appropriately.
It is especially interesting to see that the peaks at around 3 AM in
a neutral regime and peaks around 7 and 10 AM in a stable regime
are represented accurately by HRM-WF. Furthermore, the WFP in
the HRM-WF model appears to have contributed to reduced mixing
at upper levels which matches the behaviour of the measurements in
certain conditions, i.e. in stable regimes.
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Figure 41: Far-LiDAR Diurnal Wind Speed Cycle The top left panel is the
diurnal cycle for a very unstable regime. The top right panel is the diur-
nal cycle for an unstable regime. The bottom panel is the diurnal cycle
for a neutral regime.



4.2 qualitative analysis : a composite view 55

0 10 20

10

15

HRM-WF

0 10 20

10

15

W
in

d
S

p
e
e
d

[m
/
s] GRASP LES

0 10 20

10

15

Far LiDAR

40m

60m

80m

100m

120m

140m

160m

180m

200m

0 10 20
Time

10

15

HRM

0 10 20

6

8

10

HRM-WF

0 10 20

10

15

W
in

d
S

p
e
e
d

[m
/
s] GRASP LES

0 10 20

10

15

Far LiDAR

40m

60m

80m

100m

120m

140m

160m

180m

200m

0 10 20
Time

10

15

HRM

Figure 42: Far-LiDAR Diurnal Wind Speed Cycle The top panel is the diur-
nal cycle for a stable regime. The bottom panel is the diurnal cycle for a
very stable regime.
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Figure 43: Near-LiDAR Diurnal Wind Speed Cycle The top left panel is
the diurnal cycle for a very unstable regime. The top right panel is the
diurnal cycle for an unstable regime. The bottom panel is the diurnal
cycle for a neutral regime.
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Figure 44: Near LiDAR- Diurnal Wind Speed Cycle The top panel is the
diurnal cycle for a stable regime. The bottom panel is the diurnal cycle
for a very stable regime.
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4.2.1.3 Diurnally-averaged Wind Speed Shear Profiles

The shear profiles provide an interesting insight into the behaviour
of wind speeds across different atmospheric regimes. In very unsta-
ble scenarios with potential for a lot of mixing, wind shear profiles
are limited to speeds of 6-8 m/s. In very stable scenarios, the shear
profiles at different hours of the day are not widely spread but the
profiles have strong gradients that change from hour to hour. Neu-
tral regimes see the most differences in magnitude from hour to hour.
HRM-WF captures the qualitative order of the shear profiles for differ-
ent hours of the day for unstable and neutrally stratified atmospheric
regimes at the far-lidar.

At the near-lidar, the observations do not differ for 18:00 and 00:00

hrs in an unstable regime but the models do not reflect this behaviour.
This is also the case for 6:00 and 12:00 hrs in stable regimes. This
indicates that night-time conditions do not vary much during unsta-
ble regimes and day-time conditions are consistent in stable regimes.
These trends are not reproduced in the models. In fact, HRM and
HRM-WF results instead show a confluence between results for 06:00

and 18:00 hrs in unstable and stable regimes and this pattern ought
to be investigated further.
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Figure 45: Far-LiDAR Diurnal Wind Shear Cycle The top left panel is the
diurnal shear for a very unstable regime. The top right panel is the
diurnal shear for an unstable regime. The bottom panel is the diurnal
shear for a neutral regime.
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Figure 46: Far-LiDAR Diurnal Wind Shear Cycle The top panel is the diur-
nal shear for a stable regime. The bottom panel is the diurnal shear for a
very stable regime.
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Figure 47: Near-LiDAR Diurnal Wind Shear Cycle The top left panel is
the diurnal shear for a very unstable regime. The top right panel is the
diurnal shear for an unstable regime. The bottom panel is the diurnal
shear for a neutral regime.
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Figure 48: Near-LiDAR Diurnal Wind Shear Cycle The top panel is the
diurnal shear for a stable regime. The bottom panel is the diurnal shear
for a very stable regime.
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4.2.1.4 Power Production over BWFZ

From Figures 36 and 39, it is evident that a good percentage of wind
speeds in these two regimes are often below 3 - 4 m/s which is the
cut in speed for the wind turbines to be operational. This explains
the large number of data points at 0 MW for these two regimes. For
unstable and neutral regimes, the bulk of the wind speed data points
fall within the operational range of the wind turbines (4 - 25 m/s)
thus we find most of the hexbin data points spread widely but also
accumulated mostly in the upper left corner - maximum capacity (
>600 MW). Figure 38 for stable regimes depicts two peaks: one be-
tween 5 -10 m/s and a smaller one at around 25 m/s which is the
cut out speed for four of the turbine types mentioned in Chapter 3.
This justifies the hexbin results for the stable regime: data points are
present across the range but the number is few.
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Figure 49: Hexbin Plots for Power Production The leftmost panel is for a
very unstable regime. The middle panel is for an unstable regime. The
rightmost panel is for a neutral regime. From top to bottom, the panels
are HRM-WF and GRASP LES.
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Figure 50: Hexbin Plots for Power Production The left panel is for a stable
regime. The right panel is for a very stable regime. From top to bottom,
the panels are HRM-WF and GRASP LES.

4.2.2 Wind Direction Composite Results

The model and observational data were composited into different di-
rections to identify if the wind direction had any influence on the
model bias and if any particular wind sector could be improved to
minimise the bias. This work will allow the model improvement to
happen in a focused manner.

Figure 51: Percentage of wind originating from various direction dur-
ing the March - May 2016 period. The left panel is for the far-lidar.
The right panel is for the near-lidar.

As Figure 51 represents, the majority of the wind systems origi-
nate to the west of the wind farm. This explain why most of the
wakes are in the North-East direction closely followed by wake trails
towards the South-East.The parsing of wind direction also allows us
to study the impact of the WFP at the far-lidar when undisturbed
North-Easterly winds arrive at that location.
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4.2.2.1 Wind Speed Bias per Direction
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Figure 52: Wind Speed Bias vs. Direction The top panel is for the far-lidar.
The bottom panel is for the near-lidar.

It can be said that for directions NE, E, and SE, the wind arriving at
the LiDARs is undisturbed (ignoring blockage effects) whereas for the
rest of the directions, the wind arriving at the LiDARs is disturbed by
wake effects of the wind turbines. With this presumption, Figure 52 il-
lustrates that the difference in wind speed bias per direction between
HRM and HRM-WF, for the far-lidar, is the maximum for the South
Westerly winds and minimum for the North Westerly winds. For the
latter, the difference in the bias is small as well as the absolute bias
itself (∼ 0 m/s). For the SW and W directions, HRM-WF has a lower
bias than HRM but GRASP LES has the least bias out of all three. This
is also the case for the NE and E directions. HRM also has a slightly
smaller bias than HRM-WF in the undisturbed direction sector (NE,
E) thus implying that the differences between the two models are
solely the result of the wind farm parameterization. HRM-WF also
performs the best for winds coming from the SE direction.

In Figure 52, the effect of wakes on the near-lidar winds is per-
ceivable when looking at the bias of HRM-WF and HRM for winds
emanating from the SW direction. A large difference also persists for
winds from the SE direction. In most cases, however, HRM-WF out-
performs HRM. With the exception of NE and E winds (which are
undisturbed winds), HRM performs better. Overall, GRASP LES has
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the best performance with the exception of W and NW cases. (Note
that in the NE case, GRASP LES and HRM are superimposed on one
another).

It is commendable however that the range of bias for HRM-WF is
limited to -0.6 to 0.6 m/s in both LiDAR locations whereas the range
of bias for HRM is -1.5 to nearly 2 m/s. Yet, GRASP LES has the
smallest bias range with values from -0.4 to 0.4 m/s.

To further evaluate the difference between HRM and HRM-WF, the
NE and SW originating wind speeds were classified into different sta-
bility regimes at the far-lidar location. Specifically, Figure 53 shows
the wind speed bias for the two wind directions for the very unsta-
ble and very stable regimes. It was presupposed that these regimes
would have maximum and minimum wake dissipation respectively.
This would provide an insight into the way disturbed and undis-
turbed winds are represented in the two models across the two dif-
ferent atmospheric stability classes.
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Figure 53: NE and SW Wind Speed Bias vs Regime for the far lidar

locations The top panel is wind speed bias vs regime for the NE wind
direction and the bottom panel is for the SW wind direction.

The most interesting result is that for disturbed SW winds at the far
lidar, HRM has lower bias compared to HRM-WF for very unstable
conditions. As for the very stable condition, HRM has a very large
bias compared to HRM-WF. These results posit that the wind speed
damping or the wake effect dissipates in very unstable conditions
before the far lidar is reached and vice versa for stable conditions.
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For undisturbed NE winds, the models have comparable biases for
both the stability classes. The bias for the very stable regime is much
higher than that for the very unstable regime. In the latter regime,
all the models seem to be make quite big underestimations. This is
evidently unrelated to the wind farm parameterization since HRM
has a large bias and that seems to be present in HRM-WF as well.
GRASP LES also exhibits this bias implying that perhaps the models’
other parameterizations may play a role in this.

4.3 quantitative analysis

To summarise the the performance of the models against observa-
tional data, a descriptive statistical analysis was carried out. The main
elements of this analysis includes evaluating measures of central ten-
dency, measures of variability as well as noting the extremes (min,
max). To illustrate the statistical advantage of including a wind farm
parameterization, bias vs. RMSE’ plots between HRM and HRM-WF
for both lidar locations were created.

For the far-lidar, the statistical advantage is limited, as depicted
in Figure 54. The bias at the lower levels up to 100m has changed
sign with no real reduction in bias or RMSE’ values. Above 200m, the
models seem to have lower bias in terms of magnitude but also seem
to be underestimating the wind speeds.

Figure 55 illustrates the advantage of including a WFP for loca-
tions impacted by wake effects - the near-lidar location. HRM has
a very high bias at all levels with the smallest bias being around
0.4 m/s at 200m height. In contrast, HRM-WF has close to 0 m/s bias
at hub height and an overall bias limited to -0.1 m/s to 0.1 m/s. This
not only shows the marked improvement when including a WFP in
HARMONIE-AROME but also that the current subroutine provides a
quantitative improvement compared to HRM as well as compared to
observations. The same figures were generated for GRASP LES and
have been presented in Appendix B.
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Figure 54: Bias vs RMSE’ diagram. The top panel is for HRM and the bottom
panel for HRM-WF at far-lidar location.
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Figure 55: Bias vs RMSE’ diagram. The top panel is for HRM and the bottom
panel for HRM-WF at near-lidar location.
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4.3.1 Descriptive Statistics: A Tabular Overview

4.3.1.1 Wind Speed - Far Lidar

In terms of overall bias at far-lidar location, HRM-WF fares better
than HRM but GRASP LES has statistically lower bias compared to
both. The models with the WFP have negative biases indicating that
they underestimate the wind speeds and this may be due to the un-
derestimation of wake recovery effects.

in m/s HRM-WF GRASP LES HRM FAR-LiDAR

Mean 8.89 8.93 9.101 8.96

Min 0.034 0.41 0.19 1.03

Max 28.56 28.82 29.05 26.15

Bias -0.074 -0.024 0.14 -

RMSE 1.38 1.46 1.46 -

Table 6: Descriptive statistical overview of model performance at far-
lidar for hub height.

4.3.1.2 Wind Speed - Near Lidar

in m/s HRM-WF GRASP LES HRM NEAR-LiDAR

Mean 8.47 8.59 9.09 8.49

Min 0.24 0.38 0.14 0.95

Max 27.84 28.76 28.904 26.18

Bias -0.028 0.094 0.602 -

RMSE 1.42 1.39 1.78 -

Table 7: Descriptive statistical overview of model performance at

near-lidar for hub height.

At the near-lidar location, as presented in Table 7, HRM-WF has
the least overall bias compared to other models against wind obser-
vations from Fugro’s LiDAR.The magnitude of the bias is also smaller
than 0.1 m/s which is consistent with other observed results and pat-
terns. Overall, HRM-WF successfully accounts for wake effects for
distances equivalent to the one between the wind farm and the near-
lidar.
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4.3.1.3 Power Production

Wind speed and power production are interlinked in the wind farm
parameterization and one can presuppose that better wind prediction
near the wind farm would translate into better power forecasts. This
is confirmed by the results presented in Table 8. HRM-WF, with the
lower bias at near-lidar location for wind speed also has a lower bias
in power production. Yet, the overall RMSE values are quite high
since the parameter is sensitive to outliers and certain conditions such
as ramp events (the simplest definition of a ramp is a a large increase
or decrease in energy output in a short time by Kamath (2010)) lead to
measured power dropping to 0 MW but modelled power remaining
at 600MW or more. This ability of models to capture ramp effects
would greatly reduce the statistical errors.

in MW HRM-WF GRASP LES ELIA

Mean 266.59 269.25 253.45

Min 0 0 0

Max 684.59 684.59 682.48

Bias 13.15 15.79 -

RMSE 81.47 81.68 -

Table 8: Descriptive statistical overview of model performance for

power production. The rated power of the wind farm is 684.59 MW.
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4.3.2 Descriptive Statistics: A Composite View
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Figure 56: Wind Speed Bias vs. Stability The top panel is for the far-lidar
location and the bottom panel for the near-lidar location.

4.3.2.1 Wind Speed - Far Lidar

In very unstable and very stable conditions, we find that HRM has a
lower bias than HRM-WF at the far-lidar (Figure 56). Hence, these two
stability regimes were explored in tandem with wind direction com-
posites to uncover any explanations. Between HRM-WF and GRASP
LES, they outperform each other in 2 cases: HRM-WF performs well
in unstable and neutral regimes whereas GRASP LES is able to per-
form well in stable and very stable regimes. This might indicate that
HRM-WF may not be able to represent wake effects on wind speed
for distances about 17km or above. In unstable and neutral regimes
where mixing or well-mixed scenarios perhaps cause wake dissipa-
tion, HRM-WF outperforms GRASP LES.

As for HRM outperforming HRM-WF, in conjunction with the wind
direction composites, an inference may be possible. Since the prevail-
ing atmospheric stability regime is very unstable, any large biases in
those regimes will have more weight-age in the overall bias. Accord-
ing to Figure 53, HRM has a lower bias than HRM-WF for disturbed
winds (originating in the SW) in the very unstable regime. It also
has an equivalently low bias for disturbed (originating in the NE)
winds in the very unstable regime. This explains HRM bias <HRM-
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WF bias in the very unstable regime. As for the very stable regime,
HRM and HRM-WF have equally large and equally negative biases
for NE (undisturbed) winds implying that this is an implicit model
bias that needs attention. As for SW (disturbed) winds, HRM has a
higher bias than HRM-WF but both are positive. It could be argued
that the highly positive and the highly negative biases cancel each
other out leaving overall HRM bias <HRM-WF bias for very stable
regimes. This may explain the results in Figure 56.

4.3.2.2 Wind Speed - Near Lidar

At the near-lidar location, HRM-WF performs the best in terms of
bias in the unstable and neutral regimes. This result was represented
by the spatial contour maps in Figure 22. GRASP LES, has the lowest
bias values less than 0.1 m/s for three out of five stability regimes.
HRM has the largest bias evidently because it does not represent any
wake effects.

4.3.2.3 Power Production

Very Unstable Unstable Neutral Stable Very Stable

Stability Class

0

2

4

6

8

P
o
w

e
r

B
ia

s
in

%

Power Bias Percentage vs Stability Class

HRM-WF

GRASP LES

Figure 57: Power Bias vs. Stability. The bias is expressed as a percentage of
nameplate capacity of the wind farm which is 684.59 MW. See Appendix
B for power bias in terms of MW.

For power production, HRM-WF performs poorly in the stable
regime compared to any other regime. Overall, the ranking of sta-
bility regimes in terms of wind bias at near lidar is valid here. Figure
57 demonstrates that GRASP LES and HRM-WF have comparable bi-
ases in most cases except for the stable regime. It is interesting to note
that HRM-WF has the least power bias in the very unstable regime
which accounts for majority of the state of the atmosphere and thus
influences the overall power bias as seen in Table 8.
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D I S C U S S I O N

5.0.1 Summary

From the results presented in this chapter, some of the key outcomes
have been summarised in this section.

5.0.1.1 Qualitative Overview

It was found from the results presented in Chapter 4 that HRM-WF
captures spatial wind contours and wakes only in certain conditions.
Next, it was confirmed that the hub height results between the model
outputs (LES, HRM-WF) and the observations match very well. It was
noticed that the Belgian wind farm seems to create enhanced mixing
at the near-lidar and this was evident when comparing the near-lidar
and far-lidar diurnal shear profiles. Finally, power production by the
wind farm was captured well by HRM-WF as well as GRASP LES.

5.0.1.2 Qualitative Composite View

In the diurnal cycle for stable regimes, it appears that the presence of
the WFP results in less mixing and as expected, HRM-WF’s results
correspond better with observations than those of HRM. It was also
observed that during unstable conditions, night-time and stable, day-
time conditions, there was not a lot of variation in the magnitude of
wind profiles. The histograms of the model’s wind speed data vary
significantly from observed wind speed data histograms especially
at the near-lidar location. However, HRM-WF successfully captures
the qualitative order of the shear profiles for different hours of the
day for unstable and neutrally stratified atmospheric regimes at the
far-lidar. Also, HRM-WF near-lidar results for disturbed winds (SW,
W) are better than HRM. On the other hand, HRM-WF’s results for
undisturbed winds (NE, E) at the near-lidar has a greater bias than
that of HRM. Finally, the wake effects at the far lidar for NE and
E (undisturbed winds) show comparable results for HRM-WF and
HRM but for SW and W winds (disturbed) at the far lidar, HRM-
WF’s performance is better than that of HRM.

75



76 discussion

5.0.1.3 Quantitative Overview

HRM-WF performs consistently well in unstable and neutral regimes
but the reason for HRM outperforming HRM-WF in very unstable
and very stable conditions needs to be explored. GRASP LES is statis-
tically a strong contender for it has very low wind speed bias overall
and across several stability regimes.

5.0.1.4 Hypotheses Testing

The hypotheses developed in Chapter 2 are addressed here and ei-
ther the null hypotheses are accepted or an alternate hypotheses if
possible is provided.

The undisturbed model results (HRM) at the near LiDAR will will not
account for wake effects unlike HRM-WF Accepted This is indeed
demonstrated from results in Figures 16, 54, 55, 56- 57, Tables 6-
8.

In a no-wind farm or an undisturbed region, for e.g. Cabauw, the two
runs will be nearly identical Accepted This is demonstrated by
the results in Appendix B.

In stable regimes, HRM-WF’s power production (and/or wind speed)
will be underestimated. (Lee and Lundquist, 2017) Rejected We
observe an overestimation in power production (positive power
production bias). However, it is true that HRM-WF does not
perform its best particularly in stable regimes (Figure 56)

The wind farm will have an effect on the TKE Accepted This is
established by the 2-D cross-section plots of TKE provided in
Figure 17

The wind farm will cause a slowing down of wind speeds at hub height
Accepted The weakening of wind speeds in the BWFZ is clearly
depicted in the HRM vs. HRM-WF hub-averaged wind speed
plots (Figure 16)

Turbulence generation can cause mixing which in turn affects atmo-
spheric variables and will have the strongest impact during the early
hours of the day (Roy, Pacala, and Walko, 2004) Partially Ac-
cepted In the diurnal cycle figures, we see that the greatest mix-
ing takes place between 5 AM and 10 AM (Figures 41 - 44) but
the effect on other atmospheric variables (such as the surface
fluxes) is not explored in this thesis.

Wakes will recover faster in convective conditions compared to neu-
tral and stable conditions Accepted Referring to Figure 56, for
very unstable regimes at the far-lidar, HRM and HRM-WF have
comparable biases compared to the biases for neutral and stable
conditions.
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Note: A very limited diurnal cycle was expected and that has been
corroborated by Figures 29 - 30. Although, it is interesting that the
diurnal cycle adopts certain temporal trends as noticed in the obser-
vational data which may be useful for further fine-tuning the models
to represent real-world situations.

5.0.1.5 Conditions with least and most bias

Least Bias

Conditions

HRM HRM-WF GRASP LES

Wind Speed Bias

in m/s
Far-Lidar, Very Unstable Far-Lidar, Neutral Near-Lidar, Stable

Power Bias

in MW
- Very Unstable Very Unstable

Most Bias

Conditions

HRM HRM-WF GRASP LES

Wind Speed Bias

in m/s
Near-Lidar, Stable Near-Lidar , Stable Near-Lidar, Neutral

Power Bias

in MW
- Stable Neutral

Table 9: Intra-model performance indicating least bias conditions

and most bias conditions. This table illustrates a model’s least and
most bias conditions when compared with its bias values for all the stability
regimes.

From Table 9, some very simple inferences can be made. Firstly,
HRM performs its best at the far-lidar during very unstable condi-
tions since this is possibly the closest to an undisturbed wind flow
condition. Both HRM and HRM-WF have quite large biases at the
near-lidar during stable conditions and the exact cause needs further
research. GRASP LES’ near-lidar neutral results have reflected in its
power performance as well but the LES model is able to capture near-
lidar stable winds unlike HRM-WF.





6
C O N C L U S I O N A N D R E C O M M E N D AT I O N S

6.1 research outcomes

• How does the wind farm parametrization (WFP) in HARMONIE-
AROME perform?

The wind farm parameterization is working as intended in HARMONIE-
AROME and sufficiently represents the physical impact of a
wind farm which includes an increased generation of TKE, a
reduction in wind speed in the wake of a wind farm, wake
signatures (to a limited extent), as well as closely matching ob-
servational wind speeds from the lidar (with an overall bias of
0.028 - 0.074 m/s (near and far lidar)) and consequently predict-
ing power production (after curtailment) with a bias of 1.92 %.

• How can the current WFP in HARMONIE-AROME be fur-
ther improved?

It is worth looking into the performance of the model during sta-
ble conditions since the bias was the largest for both wind and
power during this atmospheric regime (with HRM-WF having
a larger bias than HRM specifically for undisturbed winds from
the NE,E directions during stable regimes ). Furthermore, a bet-
ter wake fingerprint that captures really long wakes as observed
in SAR imagery would also improve in accurately assessing the
impact of the Belgian wind turbines on the upcoming Borssele
wind farm.

• What are the meteorological insights one can gain from

the simulation results?

From the far-lidar vs. HRM/HRM-WF comparisons, especially
for stable regimes, it is established that long wakes up to and
more than 17km are possible (determined by the difference be-
tween HRM and HRM-WF for the case for SW winds (since
the far-lidar is around 17km from the wind farm). Furthermore,
the reduction in wind speed and wake impacts are the largest
in the early hours of the day. Additionally, the diurnal cycle
of the wind speeds is limited as compared to onshore cycles.
Also, in the observational wind speed data-set, during unstable

79
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night-time (6 PM and 12 AM) and stable day-time (6 AM and 12

PM) conditions for the near-lidar, very little variation in wind
shear profiles was observed (and this was duly captured only
by the GRASP LES model). Finally, it appears that both wind
speed and stability regime in tandem play a role in determin-
ing wake length. For very stable regimes with low wind speeds,
only short wakes were observed but for an unstable regime with
a relatively high wind speed, medium wakes were still present.
This needs further exploration but these are the generic infer-
ences that can be made from Figure 25.

6.2 recommendations

The evaluation of a wind farm parameterization as well as using the
models to detect patterns and trends (where observational data is
absent) is a continuous process. In this thesis, while an effort to exam-
ine the most crucial model outputs was made, several potential areas
of research were uncovered. Some of them are touched upon in this
section.

Due to the limitation of the near-lidar data availability, seasonal
trends and the reproducibility of the model was not explored but this
is a potential area of study for another wind farm zone that has close
proximity lidar data available for a longer time period. On that note,
the hypotheses on the curtailment of power production needs to be
looked into by contacting individual wind farm operators who may
be able to confirm or deny the hypotheses regarding the same.

Among the assumptions that were made, blockage effects - a slow-
ing down of wind just upstream of wind turbines (Bleeg et al., 2018)
- were ignored and hence is a promising area that could perhaps be
analysed by looking at the near-lidar for winds coming in from the
North East. Additionally, wake meandering, which literature postu-
lates is a phenomenon where winds far downstream that appear to
undisturbed experience intense turbulence and reduced wind speeds
((Larsen, 2007), (Abkar and Porté-Agel, 2015b)), was not studied here
and could be explored with respect to the Belgian wind farm. A spa-
tial study on the relationship between wind speeds, atmospheric sta-
bility regimes and length of wakes seems to have potential for ex-
ploration (a succinct analysis was presented in this thesis in Chapter
4).

Finally, Baidya Roy (2011)’s work shows that wind farms have im-
pacts not only on wind speed but on air temperature, humidity, sur-
face fluxes which in turn affect the total water mixing ratio (and lapse
rates, equivalent potential temperature). In another work, one of his
experiments show, for onshore wind farms, that although impact on
evapo-transpiration rate is insignificant, there is a large impact on
the sensible heat flux (Roy, Pacala, and Walko, 2004) which in turn
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needs to be explored for offshore wind farms. Furthermore, these
effects are apparent downstream and not limited to the wind farm
zone (Roy, Pacala, and Walko, 2004). His study, (Baidya Roy, 2011),
also looks at dry and wet periods of the wind farm which would
be intriguing to look at in offshore wind farms as well. Therefore,
surface fluxes from the simulation data could be examined for wind
farm impacts on fluxes offshore. Finally, precipitation patterns, cloud
cover impacts, large-scale meteorological phenomenon impacted by
local scale changes, could also be explored.

Legenda Map

Dutch Wind Farms: 1,000 MW

Future Wind Farm Zones: 10,500 MW.
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Figure 58: Future Wind Farms in the North Sea. As the figure illustrates,
there are 6 upcoming wind farm projects in the pipeline including the
Borssele Wind Farm Zone which was the area of interest in this study.

It is worth mentioning that although these are relevant areas of
study since they have the potential to reduce our knowledge gaps,
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there is also a business interest regarding these kinds of studies. Cur-
rently, the Netherlands is planning several wind farm zones as de-
picted in Figure 58 (some of which even overlap existing wind farms)
and the impact of which is yet to be fully understood. Therefore, there
is not just a strong prospect for further research from a scientific point
of view but from a commercial point of view as well.
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D ATA S O U R C E S

a.1 access to model simulations

KNMI’s HARMONIE-AROME with wind farm parameteri-
zation (HRM-WF): Please contact KNMI

KNMI’s HARMONIE-AROME without wind farm parame-
terization (HRM): Instructions for downloading HARMONIE-
AROME (w/o the wind farm parameterization) is provided on
the website of the Dutch Offshore Wind Atlas. The data is located
at KNMI’s Data Centre (online: https://data.knmi.nl/datasets)

Whiffle’s GRASP LES: Please contact Whiffle Weather Fine-casting
by emailing info (at) whiffle.nl

Obukhov Length: Available online and to download from
https://map.neweuropeanwindatlas.eu

a.2 access to observational data-sets

SAR imagery: Available online and to download from
https://satwinds.windenergy.dtu.dk/

LiDAR observations: Available online and to download from
https://www.windopzee.net/en/borssele-bwz /data/index.html

Power production measurements for the Belgian wind farm

zone: Available online and to download from https://www.elia.be/en/grid-
data/power-generation/wind-power-generation
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S U P P L E M E N TA RY R E S U LT S

b.1 descriptive statistics : a tabular composite view

b.1.0.1 Wind Speed - Far LiDAR

Table 10: Very Unstable

in m/s HRM-WF GRASP LES HRM FAR-LIDAR

Mean 6.96 6.972 7.088 7.123

Min 0.0338 0.415 0.187 1.03

Max 18.85 20.08 17.882 18.122

Bias -0.158 -0.1502 -0.0344 -

RMSE 1.22 1.105 1.198 -

Table 11: Unstable

in m/s HRM-WF GRASP LES HRM FAR-LIDAR

Mean 10.93 11.055 11.0/2 10.854

Min 1.507 1.377 1.1704 2.243

Max 20.72 20.77 19.491 18.733

Bias 0.0766 0.201 0.227 -

RMSE 1.471 1.66 1.566 -
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Table 12: Stable

in m/s HRM-WF GRASP LES HRM FAR-LIDAR

Mean 11.61 11.14 11.975 11.204

Min 3.536 3.441 2.536 3.005

Max 28.56 28.815 29.052 26.15

Bias 0.405 -0.066 0.771 -

RMSE 1.34 1.83 1.612 -

Table 13: Very Stable

in m/s HRM-WF GRASP LES HRM FAR-LIDAR

Mean 8.398 8.56 8.773 8.673

Min 0.785 1.48 0.46 1.046

Max 19.6 19.552 19.783 20.05

Bias -0.274 -0.113 0.1002 -

RMSE 1.76 1.7501 1.899 -

Table 14: Neutral

in m/s HRM-WF GRASP LES HRM FAR-LIDAR

Mean 11.989 12.375 12.245 12.03

Min 2.968 2.394 2.457 1.86

Max 24.82 28.82 25.154 25.882

Bias -0.039 0.347 0.217 -

RMSE 1.135 1.409 1.177 -
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b.1.0.2 Wind Speed - Near LiDAR

Table 15: Very Unstable

in m/s HRM-WF GRASP LES HRM NEAR-LIDAR

Mean 6.7204 6.815 7.063 6.84

Min 0.243 0.377 0.145 0.954

Max 18.496 19.751 18.298 17.704

Bias -0.12 -0.0232 0.224 -

RMSE 1.1 1.055 1.23 -

Table 16: Unstable

in m/s HRM-WF GRASP LES HRM NEAR-LIDAR

Mean 10.745 10.89 11.314 10.686

Min 1.622 1.45 1.64 2.252

Max 20.969 20.46 21.66 18.959

Bias 0.06 0.211 0.627 -

RMSE 1.533 1.605 1.787 -
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Table 17: Stable

in m/s HRM-WF GRASP LES HRM NEAR-LIDAR

Mean 10.641 9.993 11.756 10.0034

Min 2.593 2.85 0.668 2.3102

Max 27.84 28.76 28.904 26.183

Bias 0.637 -0.0104 1.753 -

RMSE 1.529 1.648 2.623 -

Table 18: Very Stable

in m/s HRM-WF GRASP LES HRM NEAR-LIDAR

Mean 7.714 8.172 8.76 8.115

Min 0.7103 1.38 0.237 1.063

Max 18.25 19.302 19.513 19.905

Bias -0.4006 0.056 0.652 -

RMSE 1.828 1.601 2.191 -

Table 19: Neutral

in m/s HRM-WF GRASP LES HRM NEAR-LIDAR

Mean 11.704 12.01 12.44 11.442

Min 2.32 1.474 4.414 2.301

Max 24.32 28.36 25.082 25.34

Bias 0.261 0.568 0.997 -

RMSE 1.543 1.647 2.025 -
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b.1.0.3 Power Production

Table 20: Very Unstable

in MW HRM-WF GRASP LES ELIA

Mean 166.18 177.11 166.99

Min 0 0 0.104

Max 684.59 684.59 682.48

Bias -0.809 10.12 -

RMSE 56.006 58.8 -

Table 21: Unstable

in MW HRM-WF GRASP LES ELIA

Mean 403.115 409.48 381.41

Min 0 0 1.142

Max 684.59 684.59 678.874

Bias 21.71 28.07 -

RMSE 87.762 100.712 -
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Table 22: Stable

in MW HRM-WF GRASP LES ELIA

Mean 409.703 361.053 354.31

Min 0 0.982 1.76

Max 684.59 684.59 671.802

Bias 55.391 6.74 -

RMSE 112.902 106.81 -

Table 23: Very Stable

in MW HRM-WF GRASP LES ELIA

Mean 212.84 220.002 208.65

Min 0 7.75 0.28

Max 684.59 676.298 670.85

Bias 4.188 11.35 -

RMSE 102.265 86.58 -

Table 24: Neutral

in MW HRM-WF GRASP LES ELIA

Mean 439.83 442.543 406.11

Min 0.898 6.67 2.4

Max 684.59 684.59 678.12

Bias 33.72 36.44 -

RMSE 86.46 95.21 -
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b.2 inverse obukhov length from the new european wind

atlas

Right panel is the Belgian wind farm with other regions masked

b.3 spatial plots for wake phase diagram construction

Neutral
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b.4 additional figures

HRM and HRM-WF at Cabauw

Wind Speeds at 100m hub height for Cabauw
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