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Abstract. In this paper we studied a least squares estimation parameters of the Generalized Space Time AutoRegressive
(GSTAR) model and its properties, especially in consistency and asymptotic normality. We use R software to estimate the
GSTAR parameter and apply the model toward real phenomena of data, such as an oil production data at volcanic layer.
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INTRODUCTION

1.1 The Generalized STAR Model

The space time models such as Space Time Autore-
gressive (STAR) introduced by [2] and [6]. It ap-
peared at about 1970s when [4] introduced the mul-
tivariate time series as an expansion for univariate
time series model from [3]. These model are part of
stochastic processes. Stochastic process is the set of
a given sequence of random variables [5], for exam-
ple the sequence of time, space, or a combination
of space and time. The STAR model from [2] and
[6] just only applicable for homogeneous locations,
because all of locations have a same value of time
series and space time parameters.
In this paper, we studied a least squares proper-
ties of an estimator parameters of the General-
ized STAR (GSTAR) model, especially on consis-
tency and asymptotic normality. The GSTAR model
is proposed by [2] based on oil production phe-
nomenon volcanic layer in Jatibarang Field, West
Java Indonesia. The GSTAR model is a natural gen-
eralization of STAR models, allowing the autore-
gressive parameters to vary per location, so the
GSTAR model is applicable for heterogeneous char-
acteristic of sample locations. The GSTAR(λk, p)
model is written as:

z(t) =
p

∑
k=1

λk

∑
l=0

ΦklW(l)z(t− k)+ e(t) (1)

where,
z(t) : (N×1) of observation vector at time t

λk : spatial order of the kth autoregressive
term

Φkl : the diagonal matrices with the diag-
onal elements as autoregressive and
the space time for each location(

Φ(1)
kl , · · · ,Φ(N)

kl

)
e(t) : the white noise with mean vector 0 and

variance-covariance matrix σ2I
The GSTAR(1;1) model which both of parameters
Φ(i)

0 and Φ(i)
1 are changing is presented:

z(t) = Φ0z(t−1)+Φ1W z(t−1)+ e(t) (2)

where the Φ0 is the diagonal matrices with the di-
agonal elements as the autoregressive parameters of
lag time 1 for each location

(
Φ(1)

0 , · · · ,Φ(N)
0

)
. The

Φ1 is the diagonal matrices with the diagonal ele-
ments as the space time parameters in the lag spatial
1 and lag time 1 for each location

(
Φ(1)

1 , · · · ,Φ(N)
1

)
.

The GSTAR(1;1) can be written as the vector au-
toregressive order one model or VAR(1):

z(t) = Φz(t−1)+ e(t) (3)

Φ = [Φ10 +Φ11W]
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1.2 Least Squares Estimator of GSTAR(1;1)

Consider the GSTAR(1;1 ) model defined through
(2). Suppose we have a linear model for GSTAR:

Yi = Xiβ +ui

where,

Yi =

⎡
⎢⎢⎢⎣

Zi(2)
Zi(3)

...
Zi(T )

⎤
⎥⎥⎥⎦ ,Xi =

⎡
⎢⎢⎢⎣

Zi(1) Vi(1)
Zi(2) V(i)(2)

...
...

Zi(T −1) Vi(T −1)

⎤
⎥⎥⎥⎦ ,

ui =

⎡
⎢⎢⎢⎣

ei(2)
ei(3)

...
ei(T )

⎤
⎥⎥⎥⎦ (4)

and Vi(t) = ∑N
j=1 wi jZ j , for i �= j.

Consequently, the model equations for all locations
simultaneously follow the linear model structure.
Note that for each site i = 1,2, · · · ,N we have a
separate linear model Yi = Xiβi +ui, which means
that for each site the least squares estimator for βi

can be computed separately. However, the value of
the estimator does depend on the values of Zi(t) at
other sites , because the form of Vi(t).
For later theoretical purposes we bring in some
additional structure to separate the deterministic
weights wi j from the random variables Zi(t). If, for
each i = 1,2, · · · ,N , we define

Mi =

[
0 · · · 0 1 0 · · · 0

wi1 · · · wi,i−1 0 wi,i+1 · · · wiN

]
(5)

then Xi can be written as

Xi = Mi

[
Z(0) Z(1) · · · Z(T −1)

]
(6)

and we can wrote

X’ = M
(
I⊗ [

Z(0) Z(1) · · · Z(T −1)
])

(7)

where M = diag(M1, · · · ,MN).
Here A⊗B denotes the block matrix with blocks
ai jB. We conclude that the least squares estima-
tor βT for β satisfies the usual normal equations
XtXβT = X’u, with X and u described above, and
can be determined uniquely as soon as the matrix
X’X is nonsingular.

PROPERTIES OF THE LEAST SQUARES
ESTIMATOR OF GSTAR PARAMETER

The model (2) can be seen as a multiple linear regression
model with random covariates:

yt = xtβ + εt t = 1,2, · · · ,n (8)

where β is a (k1) vector of parameters, xt = (xt1, · · · ,xtk)
is a (1k) vector of explanatory variables, and
ε1,ε2, · · · ,εn are random variables. The behavior of
the least squares estimator in such models, in particular
the behavior of

n

∑
t=1

xtixt j and
n

∑
t=1

xtiεt for i, j = 1,2, · · · ,n (9)

has been of interest to many authors [7] (e.g. see
Cristopeit and Helmes, 1980 and Lai and Wei, 1982, who
also provide further references to the statistical and engi-
neering literature; see also White, 1984, for references
to the econometrics literature). Strong consistency and
asymptotic normality of the least squares estimator is es-
tablished by these authors under relatively mild condi-
tions. However, their results do not directly apply to our
situation.

In the GSTAR model, the sequence is formed by all
ei(t) values, for i = 1,2, · · · ,N and t = 1,2, · · · ,T for
which at a fixed time t, the elements e1(t), · · · ,eN(t) of
the error vector e(t) still can be correlated. We will as-
sume a martingale difference array structure for the vec-
tors e(t), but this does not imply a similar structure for the
entire sequence of individual components ei(t). White
(1984) in [7] treats linear regression models with matrix-
valued xt and vector-valued εt , but requires either mix-
ing, stationary ergodicity, or asymptotic independence of
the sequences {xt } and {εt }. This is stronger than nec-
essary in our specific setup, where we only Alternatively,
one may attempt to apply existing results for vector au-
toregressive models, since the GSTAR model (2) can be
written as a VAR model.

We use the specific structure of the matrix A = Φ0 +
Φ1W directly and formulate the GSTAR model as a
linear model in such a way as to avoid the ’restricted LS
reasoning’.

The properties of consistency and asymptotic normal-
ity of least squares estimator of GSTAR has been proved
[7]. We assume that the observations are centered, i.e.
E[Z(t)] = 0 and that:

(C1) the characteristic roots of the matrix Φ0+Φ1W are
less than one in absolute value.

Assumption (C1) ensures that the GSTAR(1;1) model
has a causal stationary solution. We establish the sta-
tistical properties of the least squares estimator under
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the assumption that the sequence {e(t)} forms a vector-
valued dmartingale difference array with respect to an
increasing sequence of C-fields {Ft}, i.e.

(C2) e(t) is Ft-measurable and E [e(t)|Ft−1] = 0.

A similar setup is considered by Lai and Wei (1982)
and White (1984) in linear regression models, and by
Anderson and Taylor (1979), Duflo et al. (1991), and
Anderson and Kunitomo (1992) in VAR models [7].
Because condition (C1) implies causality of the solution
of (2), i.e. Z(t) is a linear combination of the current
and past disturbances e(s),s ≤ t, it suffices to assume
moment conditions on e(t) only. We assume:

(C3) E [e(t)e(t)′|Ft−1] = ∑t a.s, T−1 = ∑T
1 ∑t converges

in probability to a constant matrix ∑.

(C4) supt≥1E [e(t)te(t){e(t)te(t)> a}|Ft−1] converges
to zero in probability, as a goes to infinity.

Finally, we define

Γ =
∞

∑
j=0

A j ∑(A′) where A = Φ0 +Φ1W (10)

Theorem 1 establishes weak consistency of the least
squares estimator, the proof is given at [7].

Theorem 1 Let β = (φ01,φ11,φ02,φ12, · · · ,φ0N ,φ1N)
′ be

the vector of parameters in the GSTAR(1;1) model and
let Γ be defined in (10). If Γ is nonsingular, then un-
der conditions (C1)-(C4), the least squares estimator βT

converges to β in probability.

Asymptotic normality can be established under condi-
tions (C1)-(C4) and

(C5) For all r,s = 1,2, · · · ,N

T−1 ∑N
t=maxr,s+2 ∑t⊗e(t−1− r)e(t−1− s).

Theorem 2 Let β = (φ01,φ11,φ02,φ12, · · · ,φ0N ,φ1N)
′ be

the vector of parameters in the GSTAR(1;1) model, let βT

be the corresponding least squares estimator, and let Γ
be as defined in (10). If Γ is nonsingular, then under con-
ditions (C1)-(C5),

√
T (βT −β ) converges in distribution

to a 2N-variate normal distribution with mean zero and
covariance matrix

(M(I⊗ r)M′)−1
M(I⊗ r)M′ (M(I⊗ r)M′)−1

where M = diag(M1,M2, · · · ,MN) with Mi defined in (5).

CASE STUDY

For case study we use oil production data at volcanic
layer Jatibarang, West Java Indonesia for 60 monthly

data set for 3 oil wells. Because the volcanic is a hetero-
geneous layer, so the GSTAR model is suitable for this
dataset. We built script file using R software to estimate
the parameter of GSTAR(1;p). Part of our programming
is following command in R or S-Plus software:

GSTARfit<-function(z,W,p){
# z is a matrix containing a multivariate time series
# columns are locations; rows are time
# W is a weight matrix; rowsums are 1; diagonal

contains only zeros
# p is the temporal order
N.obs<-nrow(z) # note that rows 1,2,...,n.obs

correspond to times 0,1,2,...,n.obs-1
N.loc<-ncol(z)
#
# preparation of lists
#
y<-list()
X<-list()
beta<-list()
Phi0<-list() # list of diagonals of matrices phi_s0

for each time lag s=1,2,...,p
Phi1<-list() # list of diagonals of matrices phi_10

for each time lag s=1,2,...,p
ls.fit<-list() # list of ls.fit for each linear model

of the ith location
se.beta.ls<-list()
# centering the input series
z.bar<-t(matrix(colMeans(z),ncol=N.obs,nrow=N.loc))
cz<-z-z.bar
# computing vectors v(t)=wz(t)
cV<-t(W%*%t(cz))
#
# setting up the linear model for gstar and

compute ls estimates
Etc.

—

For running the script file, we use command:

>GSTARfit(z,W,p)
p<-1
z<-jtb60
GSTARfit(z,W,p)$Phi0
GSTARfit(z,W,p)$Phi1

> W
#spatial weight matrix

[,1] [,2] [,3]
[1, ] 0.000 0.605 0.395
[2, ] 0.657 0.000 0.343
[3, ] 0.566 0.444 0.000
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And then we got the least squares estimator of
GSTAR(1;1) as following Table 1.

Table 1. Least Squares Estimator of GSTAR(1;1)
Well φ i

0 φ i
1 AIC

Well1 0.614 0.247
Well2 0.609 0.165 755.231
Well3 0.810 -0.034

For the GSTAR(1;2) means the model with the first
lag in space and the second lag in time, we have the
result as Table 2.

Table 2. Least Squares Estimator of GSTAR(1;2)
Well φ i

10 φ i
11 φ i

20 φ i
21 AIC

Well1 0.486 0.088 0.118 0.221
Well2 0.590 0.003 -0.001 0.256 764.665
Well3 0.542 -0.084 0.332 -0.0053

From above example we can explain that the leasts
squares estimator of the GSTAR(1;1) and GSTAR(1;2)
using spatial weight have a fit the oil production model,
which the GSTAR(1;1) model has a minimum AIC.
For both of GSTAR models there are significantly
differences in parameters values at different locations.
For all pairs of locations, we tested the parameters. The
estimator of GSTAR are significantly different to zero.

SUMMARY

In this paper we studied the least squares estimator of
GSTAR model. The estimator has properties of consis-
tensy and asymptotic normality through the Theorem 1
and Theorem 2.

We built a script file using R software to estimate the
parameter using least squares method. It should be done,
because not yet space time software which can be used
to estimate the parameters.

For case study to apply the GSTAR model to oil pro-
duction data, we can summaries that the choice of tem-
poral lag is more interesting than the choice of spatial
lag.

REFERENCES

1. B. N. Ruchjana, (2002), The Generalized Space
Time Autoregressive Order One Model and Its
Application to Oil production Data, Unpublished
Dissertation, Department Mathematics, Institut
teknologi Bandung, Bandung.

2. A. D. Cliff and J. Ord, (1975), Model building and
the analysis of spatial pattern in human geography,

Journal of the Royal Statistical Society, Series B 37,
297-348.

3. G. E. P. Box and G. M. Jenkins, (1976), Time series
analysis: forecasting and control, Holden- Day Inc.
San Francisco.

4. Hannan, E. J. (1970), Multiple time series, John
Wiley & Sons, New York.

5. N. Cressie, (1993), Statistics for Spatial Data, John
Wiley & Sons., Inc., New York.

6. P. E. Pfeifer and S. J. Deutsch, (1980), A three
stage iterative procedure for space-time modeling,
Technometrics 22, 35-47.

7. S. Borovkova, H. P. Lopuhaa, and B. N. Ruchjana,
(2008), Consistency and Asymptotic Normality of
Least Squares Estimators of Generalized STAR
models, Statistica Neerlandica, 62, nr 4, p. 482-508.

64

Downloaded 31 May 2012 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions


