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Abstract
RISC-V is an open-source Instruction Set Architecture that offers a simple, modular, and scalable de-
sign. Its extensions allow for customization and optimization based on specific execution workloads.
One of these workloads could be quantum computing, which exploits the concepts of superposition
and entanglement to manipulate qubits and perform computations that would be infeasible for classi-
cal computers. The customization offered by RISC-V presents a remarkable opportunity to develop
specialized architectures that can efficiently address the execution of quantum algorithms, bridging the
gap between classical and quantum computation.

In this thesis work, a RISC-V 32-bit instruction set extension called qRV32 is developed to address
the control of diamond qubits, based on an existing QISA. The architecture defines the encoding syn-
tax for the machine-level instructions and the exchange protocol for control and data in the system.
Accordingly to this specification, the hardware of a control core processing the ISE has been designed.
Custom functional units and necessary peripherals have been added to the base core CV32E40P in
order to implement the desired control functionalities.

The thesis also proposed additional work to ease the complete design and functionality of the sys-
tem. In particular, an assembler targeting qRV32 has been developed, enabling the automated transla-
tion of assembly instructions to machine-level code. Furthermore, an experimental model is developed
to evaluate the parallelism of the system.

The resulting architecture is eventually tested and evaluated. Software simulations are used to test
the functionality of the control core and the custom components. Eventually, a simplified version of the
model is used to estimate the parallelism of the core, which can control 23605 network nodes when
operating at fclk = 55MHz.
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1
Introduction

Quantum computing, a revolutionary field of study at the intersection of physics and computer science,
has garnered significant attention and excitement in recent years. Unlike classical computers that
operate based on bits, quantum computers harness the fundamental principles of quantum mechanics
to process information using quantum bits, or qubits.

The journey of quantum computing can be traced back to the early 1980s when physicist Richard
Feynman envisioned the possibility of harnessing quantum systems to perform calculations more ef-
ficiently than classical computers [17]. In the mid-1990s, Peter Shor developed a groundbreaking
quantum algorithm for integer factorization [41], highlighting the immense computational advantage of
quantum computers in certain areas, such as cryptography. In 1998, Isaac Chuang and Neil Gershen-
feld at the IBM Almaden Research Center demonstrated the first 2-qubit quantum computer [7]. IBM’s
127-qubit Eagle [23], Rigetti’s 80-qubit Aspen-M-2 [8], and Google’s 53-qubits Sycamore [27] are the
three most advanced quantum computers currently available.

1.1. Thesis Project
Despite the fact that these computers employ qubits to perform quantum operations, control electronics
play a vital role in manipulating and maintaining the delicate quantum states, ensuring coherence and
enabling complex quantum operations. A collection of analog-operating classical electronics, such as
lasers and microwave generators, and a layer of digital control logic, that manages the electronics,
need to be included in a quantum computer.

This thesis project aims to build a prototype of the global control electronics required by diamond-
based quantum computers, guaranteeing flexibility through the use of an instruction-set architecture
(ISA) that captures the actions of the digital controller without putting any restrictions on the underlying
hardware. To ensure compatibility with the most cutting-edge open hardware currently on the market,
the Global Controller (GC) control core was chosen to be implemented as a RISC-V 32-bit core.

1.2. Research Question
The research question can be formulated as the following:

Can the control of a diamond-based quantumcomputer be addressed using the
inherent extendable architecture structure of the RISC-V ISA?

In order to answer the question, the following goals in the development of the global controller have
been set:

1. Define custom RISC-V instructions based on the available Quantum ISA (QISA)
2. Define a communication protocol between GC and the rest of the control plane
3. Implement Functional Units to address the execution the said instructions

1
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1.3. Methodology
A number of actions must be carried out in order to accomplish the objectives. This will guarantee a
thorough understanding of the functionality of quantum computers based on diamond NV qubits, which
the core must control, and of the scalability of the RISC-V ISA, which the core will implement.

1. Understanding of the existing system definition and requirements
A control plane has already been initially defined. At the moment of starting the thesis, a system
simulator and a compiler to address the Global Controller have been developed.

2. Profiling of the existing QISA and creation of RISC-V-compliant encoding
QISA instructions, defined at assembly-level, model the operations to be performed by the quan-
tum computer. They are then mapped to machine-level following the RISC-V guidelines.

3. Design and implementation of the Global Controller core and SoC
From an existing RV 32-bit core, functional units and communication interface must be designed
to create the GC hardware.

4. Development of a custom assembler
An assembler must be developed to translate the outputs of the compiler into the novel qRV32
ISA format.

5. Design validation and evaluation
Simulations must be used to verify the design of the controller. Its control ability are then evalu-
ated.

1.4. Report Overview
The structure of this thesis is now presented. Chapter 2 delves into Quantum Information Theory, NV
Center QuantumComputers, and the RISC-V Instruction Set Architecture, providing crucial background
knowledge to support our research. Transitioning to Chapter 3, our focus shifts to the modeling of the
control plane, where we thoroughly explore the concept of parallelism. Advancing further, Chapter 4
takes a closer look at the qRV32 Instruction Set Extension. As we proceed to Chapter 5, we showcase
the hardware implementation, which includes conducting a survey of 32-bit RISC-V cores, designing
the Global Controller and the System on Chip. Within Chapter 6, we delve into the intricacies of the
qRV32 Assembler and the development steps involved. Subsequently, Chapter 7 unfolds the results,
encompassing software simulations and model evaluations. Ultimately, Chapter 8 brings the thesis to
a conclusion, summarizing key findings and presenting potential future research directions.



2
Background information

The ideas of quantum computing and qubits were introduced in the preceding chapter, along with a
mention of the system specification of the quantum computer stack. Given that they are essential for
fully comprehending the thesis work, these topics are presented in this chapter.

Section 2.1 presents an overview of Quantum Information Theory. Section 2.2 focuses on NV
center quantum computers, discussing their fundamental principles and the analog (Sec.2.2.2) and
digital (Sec.2.2.3) control required. Eventually, Section 2.3 delves into the essential aspects of RISC-V,
including its features and properties.

2.1. Quantum Information Theory
Quantum information theory investigates the principles and limitations of transmitting classical and
quantum information over quantum channels, utilizing concepts from quantum mechanics and informa-
tion theory to develop advanced communication protocols and quantum technologies [14].

A brief review of quantum information theory will be provided in this section. It will introduce quantum
bits (qubits) and describe how they differ from conventional bits. The definition of Diamond Quantum
Computers and their purpose will also be covered in this section. The notions of quantum algorithms
and quantum gates will be introduced at the end of the section.

2.1.1. Quantum bit
Qubits, the fundamental units of quantum information, lie at the heart of quantum computing. In contrast
to traditional bits, which represent information as either 0 or 1, qubits exploit the principles of quantum
mechanics to exist in a linear superposition of states [26]. Qubits are represented by the braket notation,
introduced by P. Dirac and commonly used in quantum mechanics.

The two orthogonal states are represented as |0⟩ ≡

(
1

0

)
and |1⟩ ≡

(
0

1

)
, while a superposition

state ψ is described by Equation 2.1.

|ψ⟩ = α|0⟩+ β|1⟩ ≡

(
α

0

)
+

(
0

β

)
=

(
α

β

)
(2.1)

In the equation, α and β are complex numbers called probabilistic amplitudes [26]. They represent
the probability of the state collapsing into one of the orthogonal states of the measurement basis. In
particular, during measurement, the qubit always collapses into the |0⟩ or the |1⟩ state, with probabilities
|α|2 and |β|2 respectively [26]. Consequently |α|2 + |β|2 = 1.

Moreover, the state of a qubit can be visually represented using the concept of the Bloch sphere
[6], depicted in Figure 2.1. The state of the qubit, characterized by the polar angle θ ∈ [0, π] and the
azimuthal angle ϕ ∈ [0, 2π], can be mathematically expressed by Equation 2.2.

|ψ⟩ = cos θ
2
|0⟩+ eiϕ cos θ

2
|1⟩ (2.2)

3
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Figure 2.1: Bloch phere [6] of a qubit.

This visualization is particularly useful to grasp the concept of single-qubit operations, as they can be
modeled as rotations along the sphere over a specified axis.

2.1.2. Quantum gates
Qubits are the basic unit of information in a quantum system. The manipulation of qubits states is per-
formed by quantum gates (unitary, reversible operations) on any number of qubits. Using the vector
notation, quantum gates can be represented by a matrix. These matrixes can be used to calculate the
state of the qubit after the quantum gate by multiplying them with the quantum state vector, producing
an output vector.

Single Qubits
A Bloch vector is a unit vector [cos(ϕ)sin(θ), sin(ϕ)sin(θ), cos(θ)] used in quantum mechanics to repre-
sent the state of a two-level quantum system, such as a qubit, on a Bloch sphere [29]. A quantum gate
applied on a single qubit ‘rotates’ the Bloch vector at some angle along a specified axis.

For example, the commonly used Pauli-X, -Y and -Z gates (Figure 2.2) perform a rotation of π
radians over the specified axis, equivalent to flipping the bit around the sphere over their respective
axis [31]. The possibility for intricate and interconnected quantum computations increases as we move
from the domain of single-qubit quantum gates to multiple-qubit quantum gates.[

0 1

1 0

]

(a) Pauli-X

[
0 −i
i 0

]

(b) Pauli-Y

[
1 0

0 −1

]

(c) Pauli-Z

Figure 2.2: Pauli-X, Pauli-Y and Pauli-Z gates matrices

Multiple Qubits
While a single-qubit rotation is completely independent of any other external condition, it is also possible
to create rotations based on the state of a second qubit. These multi-qubit gates are called controlled
gates. The prototypical controlled operation is the controlled-NOT (Figure 2.3a), a quantum gate with
two input qubits, known as the control qubit and target qubit [32].

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(a) Controlled-X


1 0 0 0

0 1 0 0

0 0 0 −i
0 0 i 0


(b) Controlled-y


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


(c) Controlled-Z

Figure 2.3: Controlled-X (CNOT), Controlled-Y and Controlled-Z gates matrices
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Entanglement
Quantum computing’s fundamental qubit entanglement phenomenon is crucial to achieving computa-
tional advantages over classical systems [1]. When two or more qubits exhibit a quantum correlation
that makes their states interdependent and entangled, this is referred to as entanglement.

Entangled qubits have a combined state that can not be broken down into the individual states
of the individual qubits. The concurrence is an entanglement measure [9] of a multi-qubit state (Eq.
2.3), and it is useful as a separability criterion. The value of the concurrence C ∈ [0, 1] can be used
to determine if two qubits are maximally entangled and can be calculated with equation 2.4. Maximal
entanglement is reached when the concurrence is 1. The probability amplitudes are indicated by the
parameters α00, α01, α10, α11.

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩ (2.3)

C(|ψ⟩) ≡ 2|α00α11 − α01α10| (2.4)

In particular, characteristics of a maximally entangled state, such as |ψ⟩ = |01⟩ + |10⟩, include non-
locality, which allows measurements on one qubit to instantly change the state of another, regardless
of their spatial separation. In fact, measuring the first qubit will cause it to collapse onto either the |0⟩ or
|1⟩ state; however, if the second qubit is measured afterward, the outcome will be identical to the first.

2.1.3. Qubits operations
A quantum system can change the state of a qubit or a group of qubits by employing either unitary or
non-unitary gates. Unitary gates are reversible and preserve the information in the quantum system.
On the contrary, non-unitary gates are irreversible and destroy a portion of the current qubit state. This
section will present operations that involve non-unitary gates as they allow us to measure and reset
qubits.

Initialization
An essential step in quantum computing is qubit initialization, which involves setting up qubits in specific
quantum states to facilitate subsequent quantum operations. The goal of the qubit initialization process
is to set up the quantum system so that the qubits are in a superposition of the known states |0⟩ and
|1⟩. Due to the fact that initialization is an irreversible process that forces the qubit into a specific state
regardless of its previous state, it is not a unitary quantum gate.

For qubit initialization, a number of methods have been developed, including electron spin reso-
nance, microwave-based approaches and optical pumping [18]. These techniques use specific gate
sequences and meticulously controlled external fields to manipulate the qubits into the desired initial
state. For performing trustworthy quantum computations and obtaining precise results, the capacity to
initialize qubits accurately is crucial.

Measurement
The measurement operation is a fundamental component of quantum computing that allows the ex-
traction of information from qubits. Qubit measurement entails performing a measurement in a specific
basis, typically the computational basis represented by |0⟩ and |1⟩, in order to determine the state of a
qubit. With a probability determined by the coefficients in the superposition, the measurement process
collapses the entangled or superposition state of the qubit into one of the basis states. The state of the
qubit can be inferred probabilistically from various measurement results.

Different measurement methods have been developed, including non-projective methods like weak
measurement [25] and quantum non-demolition measurement [43] as well as projective methods [42]
using quantum logic gates. For obtaining trustworthy results and validating the outcomes of quantum
computations, accurate qubit measurement is essential.

2.2. NV Center Quantum Computers
Different technology for quantum computations have been developed over the past decades, such
as silicon’s phosphorous qubits [20] or superconducting qubits. The latter technology was made re-
cently scalable by Google [27], however, it shows relatively short coherence times [13], while nitrogen-
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Figure 2.4: NV center representation [28]. N identifies the nitrogen atom and V the vacancy.

vacancy (NV) centers are known for their longer coherence times [33]. This technology is the focus
of this thesis, and it will be presented in this section.

2.2.1. Qubits
The optimal condition to build a quantum computer is to ensure system isolation and individual qubit
control, a scenario that happens in an atom trap [24]. A diamond Nitrogen-Vacancy center is formed in
a diamond crystal from which two carbon atoms are missing, 1 of them replaced with a Nitrogen atom
(Figure 2.4). This point defect center can be compared to an atom in a trap because the defect-free
isotopic 12C diamond crystal, with its large bandgap of 5.4 eV, has properties resembling those of a
vacuum [35]. The negatively charged NV− state can be artificially created by capturing an additional
electron from the environment using lasers.
Specifically, one of the qubit states is associated with the electron spin of the NV center, while the
additional Carbon-13 isotopes can also be used as qubits. The e− qubit is easily controllable by
electromagnetic fields and photons, but it is also susceptible to noise; by contrast, 13C qubits are less
susceptible to noise and decoherence but cannot be controlled directly. Therefore, from an architectural
point of view, the first ones are suitable to perform operations, while the latter model data memory.

2.2.2. Analog control
Direct control of the electron spin qubit in an NV center can be achieved using electromagnetic fields
and photons [40], providing a pathway to realize the quantum operations described in Sections 2.1.2
and 2.1.3.

Manipulation of the NV center’s single-qubit rotations, particularly the e− qubit, can be achieved
through the magnetic field. The 13C qubit can also be rotated in controlled and uncontrolled ways, as
demonstrated by [4]. Initialization of the qubit is achieved through charge pumping [18] in which the NV
center is continuously hit with photons. Measurement is achieved in a process where the absorption
of photons indicates the qubit state. Moreover, photons can be employed to entangle two distinct NV
centers by using electron-photon pair creation [15].

This plethora of ways to interface with the qubits creates the foundation of theQuantum-to-Classical
layer, which employs various analog actuators for its implementation. One such actuator is the Mi-
crowave Arbitrary Waveform Generator, which generates micro- or radio-frequency waves for the ro-
tation of electron and carbon nuclei. Additionally, lasers and switches are utilized to illuminate the
diamond and deliver photons, while a photon detector counts the emitted photons and stores the count
value in a register.

These analog actuators pave the way for exploring digital control techniques, unlocking new possi-
bilities for enhanced precision and scalability in qubit operations.

2.2.3. Digital control
The analog control hardware described must be coordinated in order to ensure the correct execution
of a quantum program. In order to achieve this, the layered digital control architecture proposed in [40]
and refined in [16] is employed in this work. This architecture consists of two layers: the lower layer
comprising Local Controllers (LCs), dedicated to individual NV centers, and the upper layer comprising
of single a Global Controller (GC) responsible for the entire system. Figure 2.5 provides a visual
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Figure 2.5: Overview of the envisioned hardware architecture [16].

depiction of this hierarchical structure.
The local controller plays a vital role in activating and controlling the underlying analog electronics

used for NV center operations. It employs a Local Micro-instruction Set Architecture (uQISA) [16] and
comprehends registers and ports used to control the underlying Quantum-to-Classical layer. A detailed
design of such controllers is out of the scope of this work.

By leveraging the localized control, NV centers across the network have the potential to operate in
parallel when addressed by the Global Controller. Furthermore, their entanglement scheme based on
photons facilitates on-chip interaction between neighboring NV centers.

Global Controller
Object of this thesis work and main component of the control plane, the Global Controller is responsible
for the execution of quantum algorithms.

The Global Controller utilizes a Quantum Instruction Set Architecture (QISA) to comprehensively
handle algorithm execution. This architecture incorporates custom instructions that explicitly capture
all required parameters. An example of such a structured QISA can be found in [47]. Moreover, further
advancements will be explored in the current study.

In addition to program execution, the GC plays a crucial role in coordinating local controllers to
achieve parallelism and managing data transfers to and from the lower layers. Efficiently addressing
the local controllers is essential for achieving parallel processing and ensuring seamless data flow.

2.3. RISC-V Instruction Set Architecture
RISC-V is an open and extensible instruction set architecture that has gained significant popularity in
recent years due to its simplicity, modularity, and scalability. By adopting the RISC-V ISA, the project
aims to leverage its flexibility and robustness to design and implement the GC, enabling efficient and
effective control over the lower layers of the system. This section provides an introduction to the RISC-V
ISA and its relevance in the context of this work.

2.3.1. History of RISC-V
The RISC-V instruction set architecture (ISA) has emerged as a prominent and influential open-source
standard in the field of computer architecture. Its history dates back to the early 2010s when re-
searchers at the University of Berkeley, recognized the need for an open and customizable ISA to
drive innovation in processor design. The RISC-V project was initiated under the leadership of Prof.
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Krste Asanović and Prof. David Patterson, resulting in the development of an ISA that offers simplicity,
modularity, and extensibility [45].

The aim of creating RISC-V was to address the drawbacks of closed and proprietary ISAs, which
limit access to the underlying architecture and obstruct experimentation and research. By offering an
open-source ISA, RISC-V fosters industry-wide innovation, academic research, and collaboration. It
provides a flexible platform for academia, business, and individuals to create, implement, and modify
processors in accordance with their unique needs, enabling novel approaches and ideas to be explored
without proprietary constraints. The implications are far-reaching: a wide range of applications, from
embedded systems to high-performance computing, have quickly adopted and used the RISC-V ISA.
Notably, the open-source nature of RISC-V has led to the establishment of the RISC-V Foundation, a
consortium of organizations driving the development and standardization of the architecture [39].

Importantly, the RISC-V ISA has seen the creation of a number of illustrious processors. The Univer-
sity of Berkeley developed the first-ever RISC-V processor, known as the Rocket core, which served as
the model for later improvements to the architecture [2]. On the other hand, the SweRV EH1 core, de-
veloped by Western Digital, is recognized as one of the most performant RISC-V processors, delivering
high clock frequencies and efficient execution [3].

2.3.2. Characteristics
The RISC-V ISA is designed with a modular and extensible structure, offering flexibility and customiza-
tion options to meet diverse computing requirements. The base RISC-V ISA provides a minimal set
of instructions necessary for building a functional processor. This simplicity allows for easy adoption
and implementation of the architecture.

With a base integer instruction set that is subsequently expanded by optional standard extensions,
the RISC-V ISA adopts a layered design strategy. The base set is available in four variants: 32-bit
(RV32I), 64-bit (RV64I), 128-bit (RV128I), and embedded 32-bit (RV32E). The standard extensions
include modules for integer multiplication and division [M], atomic instructions [A], floating-point opera-
tions [F], and more. By choosing the proper extensions, designers can modify the RISC-V instruction
set to meet their unique requirements. This encourages a scalable method of processor design, where
extra capability can be added as needed, without extra complexity or overhead.

One of the most intriguing characteristics of the ISA is its modularity. The architecture allows for
the creation of unique extensions in addition to the standard ones, providing unequaled flexibility for
particular computing workloads. The RVV vector extension is one such addition that adds vector pro-
cessing capabilities for effective parallel data processing tasks, which are frequently utilized in scientific
computing and multimedia applications [37]. The RVC cryptography extension is another noteworthy
addition. It offers hardware acceleration for cryptographic operations, improving security-related com-
putations in embedded devices and communication [38]. Accordingly, the goal of this thesis project is
to create a RISC-V Instruction Set Extension (ISE) to handle the control of NV center diamond quantum
computers.

2.4. Conclusion
In conclusion, this chapter presented the background knowledge required to comprehend the thesis
work. Beginning with an explanation of quantum computing and qubits, it detailed the physics behind
this technology. Quantum bits, quantum gates, and qubit operations were some of the subjects cov-
ered in the discussion of quantum information theory. Furthermore, the chapter looked into NV Center
Quantum Computers, exploring the key components of qubits and the control mechanisms involved,
including analog and digital control. Finally, a summary of the RISC-V Instruction Set Architecture was
given, emphasizing its background and salient features. This foundation lays the groundwork for the
subsequent chapters, which explore in depth how control electronics are implemented in contemporary
quantum computers.



3
Modeling the Control Plane

In this chapter, we present a mathematical model aimed at determining the allocation of local controllers
to global controllers within the Digital Control Layer. By developing this model, we can establish guide-
lines for achieving an optimized and scalable control structure that attempts to minimize idle states and
maximize the overall system efficiency.

This chapter explores the modeling of the control plane, starting with the execution of instructions
(Section 3.1). Time diagrams are then discussed, considering ideal cases (Section 3.2.1) and account-
ing for processing (Section 3.2.2) and communication (Section 3.2.3). The chapter concludes with the
definition of the model (Section 3.3).

3.1. Instruction Execution
In order to develop an accurate mathematical model, the initial step involves identifying the compre-
hensive sequence of actions required for a complete quantum instruction execution within the layer,
spanning from the Global Controller to the Local Controller. To accomplish this, a high-level flow chart
illustrating the execution process is presented in this section, providing a visual roadmap. Following the
flow chart, a more precise definition and profiling of each step are presented, allowing for a thorough
understanding of the intricate processes involved in the execution sequence.

3.1.1. Flowchart
Figure 3.1 visualize a high-level flow chart of the execution. This representation aims to offer a func-
tional and hardware-agnostic perspective, providing insights into the elaboration and communication
data flow.

Figure 3.1: The high-level flowchart of the digital control plane. Here are represented the execution steps: on the left in the
GC, while on the right in the LC

9
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Figure 3.2: Classification of the parameters based on the origin of latency generation

3.1.2. Profiling
The provided flowchart can be used as a basis for starting a more detailed investigation of the system’s
execution steps. In particular, in this section, the emphasis is on determining each latency interval
needed and parameterizing them uniquely. Table 3.1 presents a description and defines a symbol
for each identified parameter, while Figure 3.2 classifies them based on the hardware components
responsible for introducing latency.

Name Description Symbol

Pre-processing latency Data conversion and management
needed to execute the instruction(i)

α · TpeG(i)

Calculation latency Calculation of actuator control values,
based on the parameters

β · TcL(i)

Round Trip Time (RTT) Latency that models the master-slave
γ ·RTTC(j)round communication (to node j)

Propagation delay Latency that models the intra-slaves
δ · TpdC(j, k)communication (from node j to node k)

Phisical layer latency Latency needed by the actuators
ε · TactL(i)(mw generator, lasers, etc.) to get activated

Quantum execution latency Quantum gate or qubit operations execution
TqexL(i)(measured experimentally)

Write back latency Writing the results from the physical sensors
to the appropriate registers

ξ · TwbL

Post-processing latency Data management to correctly store
the execution results

ζ · TpoG(i)

Table 3.1: Profiling of the execution parameters

In the above table, particular notations have been used to define the symbols:

• The coefficients α, β, γ, δ, ε, ζ ∈ 0, 1 are added to exclude specific variables, making the module
simpler if needed.

• The index (i) indicates the influence of the executed instruction on the parameter value.
• The indexes (j,k) indicate the influence of the positions of the nodes on the parameter value.
• The subscripts ”G”, ”L” and ”C” indicate the origin of latency generation, the GC, the LC, or the
communication infrastructure.

Having analyzed the execution profiling of the system, we now turn our attention to the generation of
time diagrams. Those are helpful to correlate the presented parameters and formulate an accurate
model that captures the execution dynamics effectively.
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3.2. Time Diagrams
In this section, time diagrams are generated and analyzed using the previously identified parameters.
By considering different levels of idealities, incorporating additional parameters, and varying the work-
load of controllers with send, receive and mixed operations, we can gain valuable insights into the
temporal dynamics of the system. These time diagrams provide a comprehensive and intuitive repre-
sentation of the system’s behavior, enabling us to optimize performance and make informed decisions
for system design and resource allocation.

The aim of this analysis is to determine the maximum achievable parallelism of Local Controllers
for a specific instruction (i). To estimate this, we create and analyze workload scenarios designed to
present limitations and extreme cases, which help in identifying the boundaries of the parallelism. The
focus is on the relative values of the latency parameters rather than on their representativity of real
workloads.

Note that, in the study proposed, the Global Controller is constrained to address Local Controller
LC#1 immediately upon completing its execution, thereby preventing any idle state. By doing this, the
maximum parallelism of LCs can be estimated.

3.2.1. Ideal case
The first case accounts only for the processing time: namely send and receive processing on the GC
and execution time on the LCs. Table 3.2 sums up the latency values for a workload dominated by the
local execution time and with equal communication delays, expressed in clock cycles tclk.

GC t_send 1 · tclk
GC t_receive 1 · tclk
LC t_execute 5 · tclk

Table 3.2: Parameters used in the ideal case.

• Scenario 1: The GC sends data and control to as many LCs until the first needs to send its results
back (Figure 3.3). The parallelism #LCs = 5 can be calculated as:

#LCs = t_execute
t_send

=
5

1
= 5 (3.1)

Figure 3.3

• Scenario 2: The GC sends data and control to LC#1 and addresses as many LCs until LC#1
needs to send its results back (Figure 3.4). The parallelism #LCs = 5 can be calculated as:

#LCs = t_execute
t_receive

=
5

1
= 5 (3.2)
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Figure 3.4

In this simplified scenario, the parallelism is solely determined by the execution latencies of the con-
trollers. Furthermore, both workloads yield the same parallelism value since the latencies for sending
and receiving processing are equal. However, this simplistic representation does not accurately model
real-world scenarios, and thus, additional flexibility is introduced in the subsequent case.

3.2.2. Accounting for processing
The second case presents a difference in the processing times in the GC, as described in Table 3.3. In
this scenario, t_send is different than t_receive, in order to study any difference in parallelism created
by this inequality. To highlight this, a mixed workload is also analyzed.

GC t_send 2 · tclk
GC t_receive 1 · tclk
LC t_execute 5 · tclk

Table 3.3: Parameters used in the second case.

• Scenario 1: The GC sends data and control to as many LCs until the first needs to send its results
back (Figure 3.5). The parallelism #LCs = 2 can be calculated as:

#LCs = ⌊ t_execute
t_send

⌋ = ⌊5
2
⌋ = 2 (3.3)

Figure 3.5
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• Scenario 2: The GC sends data and control to LC#1 and addresses as many results until LC#1
needs to send its results back (Figure 3.6). The parallelism #LCs = 5 can be calculated as:

#LCs = t_execute
t_receive

=
5

1
= 5 (3.4)

Figure 3.6

• Scenario 3: The GC sends data and control to LC#1 and addresses as many LCs until LC#1
needs to send its results back (Figure 3.7). The parallelism is measured as: #LCs = 4.

Figure 3.7

This study case offers interesting insights about the boundaries of parallelism. In particular, the slower
send processing time corresponds to the lower boundary, while the faster receive processing time
identifies the upper boundary. Accordingly, the mixed workload corresponds to a parallelism value
within the boundaries.

3.2.3. Accounting for communication
By incorporating communication delays, a more general expression can be formulated to calculate the
parallelism, considering latencies beyond the Global and Local Controllers. Despite the small value of
the delay, its impact is already significant and greatly influences the overall result. This highlights the
importance of accurately accounting for external latencies when evaluating the system’s parallelism.
Figure 3.8 presents the same scenario as in the ideal case, with the addition of the t_latency parameter,
specified in Table 3.4. The parallelism is now increased to #LCs = 6 due to the communication delay,
which gives more time to the GB to address additional LCs. It can be calculated as:

#LCs = t_execute+ 2 · t_latency
t_receive

=
6

1
= 6 (3.5)
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GC t_send 2 · tclk
GC t_receive 1 · tclk
LC t_execute 5 · tclk

Comm. t_latency 0.5 · tclk

Table 3.4: Parameters used in the third case.

Figure 3.8

In this section, various workloads of the control plane were examined, and their corresponding paral-
lelism was evaluated through the analysis of time diagrams. These findings shed light on the interplay
between latencies and workload types, providing valuable insights into the system’s performance. The
next section focuses on the development of a complete model, which will encapsulate the collective
understanding of execution profiling, time diagrams, and instruction execution, aiming to provide a
mathematical formulation that accurately represents the system’s behavior and characteristics.

3.3. Model definition
Once the execution has been completely profiled in Section 3.1 and its parallelism has been estimated
in Section 3.2, the goal is now to create a comprehensive model that uniquely defines the parallelism
of the control plane.

From the time diagram analysis, we observed that the parallelism of the Local Controllers is always
bounded between the two extremes defined by the send and receive operations while it is incremented
by the communication latency. The relationship can be therefore expressed as follows:

t_executeL + t_latency
max(t_sendG, t_receiveG)

≤ #LCs ≤ t_executeL + t_latency
min(t_sendG, t_receiveG)

(3.6)

Equation 3.6 lays the initial foundation for the module’s development, serving as a starting point for fur-
ther improvements. The next step is to establish the precise definition of each quantity by incorporating
the execution parameters outlined in Section 3.1. The following equivalences hold true:

• t_executeL ≡ β · TcL(i) + TqexL(i) + ε · TactL(i) + ξ · TwbL
• t_latency ≡ γ ·RTTC(j) + δ · TpdC(j, k)
• t_sendG ≡ α · TpeG(i)
• t_receiveG ≡ ζ · TpoG(i)

Consequently, including these definitions in Eq.3.6 we obtain the following equations:

#LCs ≤ β · TcL(i) + TqexL(i) + ε · TactL(i) + ξ · TwbL + γ ·RTTC(j) + δTpdC(j, k)

min(α · TpeG(i), ζTpoG(i))
(3.7)
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#LCs ≥ β · TcL(i) + TqexL(i) + ε · TactL(i) + ξ · TwbL + γ ·RTTC(j) + δTpdC(j, k)

max(α · TpeG(i), ζ · TpoG(i))
(3.8)

For the rest of the analysis, the focus will be on Equation 3.7, but equivalent results can be derived
with analog rationale for Equation 3.8. It is worth noting that the parameter values used in the prece-
dent section were just example quantities, and the actual analysis is only valid when the latencies are
representative of the real system.

Based on the dependency of the parameters on the instruction executed (i) and on the physical
location of the nodes involved (j,k), it can be inferred that also the parallelism is dependant on the
same variables. Consequently, a more correct relationship is defined in Equation 3.9.

#LCs(i, j, k) ≤ β · TcL(i) + TqexL(i) + ε · TactL(i) + ξ · TwbL + γ ·RTTC(j) + δ · (j, k)
min(α · TpeG(i), ζTpoG(i))

(3.9)

Based on this intermediate outcome, the maximum achievable parallelism for controlling Local Con-
trollers in parallel during each QISA instruction is already determined. To further generalize and con-
struct the final general model, a few additional considerations need to be taken into account. These
deliberations will contribute to refining the model and capturing a holistic representation of the system’s
behavior:

1. Remove the physical dependency from the parallelism value, by accounting for worst-case sce-
narios. Call #LCs(i) the result of Eq.3.9 for each instruction.

2. Define wi as a weight representing the statistical frequency of the instruction i to appear in a given
workload

3. DefineM as the total number of QISA instructions creating the workloads

The complete final model calculating the control plane parallelism can be then defined as the weighted
average of the parallelism of each instruction:

#LCs =

∑M
i=1 #LCs(i) · wi∑M

i=1 wi

(3.10)

By defining the comprehensive and unified model shown in Equation 3.10, the control plane’s achiev-
able parallelism can now be accurately calculated, providing valuable insights into the system’s perfor-
mance and optimization potential.

3.4. Conclusion
In this chapter, we focused on modeling the control plane of the system to understand its behavior
and performance. We began by analyzing the instruction execution process, presenting a detailed
flowchart and profiling of the steps involved. This provided valuable insights into the sequence and
timing of instructions. With the help of time diagrams, different workload scenarios and their impact on
parallelism have been evaluated.

This served as a foundation for the definition of a model that provides a unified framework to calcu-
late the achievable parallelism of the control plane, taking into account various factors and parameters.
In this thesis work, we will eventually utilize this model to evaluate the design of the global controller.
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qRV32 Instruction Set Extension

This chapter represents our first step in transitioning the focus of the work toward the operation of
the global controller within a diamond-based color-center quantum computer. As we shift our focus, we
embark on designing an instruction extension following the RISC-V standard and tailored to a Quantum
Instruction Set Architecture (QISA) for NV-center quantum computing. This extension will allow us to
incorporate the essential functionalities required for efficient control and coordination of the quantum
computing system into an existing industry-level ISA. By encoding these additional instructions, we
pave the way for the realization of the global controller.

Throughout this chapter, we will explore the intricacies of the qRV32 set extension and its design
considerations and trade-offs. Firstly, RISC-V extensions (Section 4.1) and the Diamond QISA (Section
4.2) are introduced. The focus then shifts to the qRV32 Instruction Set Extension (Section 4.3), cov-
ering instructions encoding (Section 4.3.1) and communication with LCs (Section 4.3.2). The chapter
concludes with a summary (Section 4.4).

4.1. RISC-V Extensions
The RISC-V ISA is based on a modular instruction set architecture design, which natively welcomes In-
struction Set Extensions (ISE), particularly supporting the design of domain-specific central computing
units. Implementing RISC-V extensions requires careful consideration of various factors, in particular,
the compatibility with the existing RISC-V standard must be ensured to maintain interoperability.

As described in the RISC-V Instruction Set Manual [46], the ISA provides a flexible framework for
incorporating both standard and custom extensions. The base ISA, either RV32I or RV64I, can be
combined with selected standard extensions, such as IMAFD, Zicsr, and Zifencei, to form a ”general-
purpose” ISA denoted as RV32G or RV64G. In addition to supporting general-purpose software de-
velopment, RISC-V also aims to provide a foundation for specialized instruction-set extensions and
customized accelerators. The instruction encoding spaces and optional variable-length instruction en-
coding facilitate leveraging the standard ISA toolchain when designing customized processors.

The major opcodes for the RISC-V general-purpose ISA, or RVG, are presented in Table ??, where
Major opcodes with 3 or more lower bits set are reserved for instruction lengths greater than 32 bits.
Custom-0 and custom-1 opcodes are intended for use by custom instruction-set extensions, while
custom-2/rv128 and custom-3/rv128 opcodes are reserved for future use in RV128. It is important to

inst[4:2] 000 001 010 011 100 101 110
inst[6:5]

00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32
01 STORE STORE-FP custom-1 AMO OP LUI OP-32
10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/rv128
11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128

Table 4.1: RISC-V base opcode map, inst[1:0]=11 [46]

16
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avoid using reserved opcodes to ensure compatibility with future standard extensions.
Each instruction encoding space represents a specific number of instruction bits used to encode a

base ISA or an ISA extension. RISC-V supports varying instruction lengths, and even within a single
length, different encoding space sizes are available. For example, the base ISA is defined within a 30-
bit encoding space (bits 31-2 of the 32-bit instruction), while the atomic extension ”A” fits within a 25-bit
encoding space (bits 31-7). The term ”prefix” refers to the bits to the right of an instruction encoding
space, and it is stored at earlier memory addresses in little-endian instruction fetch order. The base ISA
prefix is the two-bit ”11” field (bits 1-0), while the atomic extension ”A” prefix is the seven-bit ”0101111”
field (bits 6-0) representing the AMO major opcode.

To ensure compatibility and coexistence of various instruction encoding spaces, a standard-compatible
global encoding allocates a unique non-conflicting prefix for each included space, targeting one or more
available opcode spaces of Table ??. This allows the base ISA, standard extensions, and non-standard
extensions to be part of the global encoding. Non-standard extensions can be included as long as they
do not conflict with standard extensions and can use standard prefixes if the associated standard ex-
tensions are not included. This approach enables a common toolchain to target the standard subset of
any RISC-V standard-compatible global encoding.

4.2. Diamond QISA
The control hardware architecture [16] for the system is structured into layers, as illustrated in Figure 4.1.
At the core of this architecture is the Global Controller, serving as the central component responsible for
overseeing the entire system. It receives input in the form of a program written in the Quantum Instruc-
tion Set Architecture. Using these instructions, the global controller performs necessary computations
and issues commands to the local controllers accordingly.

Figure 4.1: Schematic of the layered digital control adopted .

The literature provides multiple versions of Instruction Set Architectures specifically tailored for NV
centers quantum computing. An initial version is presented in [47], followed by a more accurate and
enhanced alternative described in [40] and [16].

For the purpose of this work, the QISA proposed in [16] is adopted as the reference. It offers a clear
separation of functionalities between the Global and Local controllers, along with improved instruction
specificity. While a partial listing of the QISA instructions can be found in Appendix A, further details,
currently under embargo, are out of the scope of this project.

4.3. qRV32 Instruction Set Extension
In this section, we delve into the design of the Instruction Set Extension. Our objective is to create
a RISC-V standard-compatible global encoding that can effectively handle the complete range of
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functionalities offered by the QISA and its associated parameters. Furthermore, we address the crucial
aspect of establishing a communication standard between the Global and Local Controllers.

4.3.1. Instructions encoding
The qRV32 ISE targets the Global Controller of a diamond-based quantum computer, and it must grant
classical instruction for communication and data management on top of correctly mapping the structure
of the QISA. Specifically, it must includememory operations (load, store), immediate operations, and
move operations, because it is envisioned that the GC hardware will employ a separate register file,
called QREG, to store the parameters of the QISA. Eventually, the architecture is envisioned to grant
Direct Memory Access (DMA) to the LCs to write back their results, therefore avoiding the need for
send and receive instructions.

A fundamental aspect of the process is the analysis of the instruction parameters. Due to the limited
encoding space of 32bits instructions, not all the parameters can be expressed in immediate fields and
may need to be preemptively stored in the QREG. Therefore a study of their nature and possible values
is now presented. More information about this can be found in Table B.1 of Appendix B.

• The ”preserve” and ”dir” parameters used in qgate- instructions represent binary values, and can
therefore be expressed using 1 bit

• The ”basis” used during the swap instruction can be either x, y, z, therefore can be expressed
using 2 bits

• While the entanglement process and the network structure are still not completely defined, a
”direction” parameter is used to indicate the relative position of NV centers. A 3-bit binary number
is used to represent 8 different directions

• Up to 32 registers are anticipated in the LCs, therefore 5 bits must be used to address them
• The ”phase” and ”angle” parameters used in qgate- instructions represent fractions of π. There-
fore a fixed point <16,14> binary number is used to represent angles with accuracy of π/16384

• The frequencies ”sweepStart”, ”sweepStep”, ”sweepStop” for the detectCarbon and magbias in-
structions can be expressed as 16-bit unsigned numbers

• Similarly, the times ”sweepStart”, ”sweepStep”, ”sweepStop” for the rabicheck instruction are also
16-bit unsigned numbers

It looks clear that, among all the parameters, only ”preserve”, ”dir”, ”basis”, ”phase” and ”angle” can
actually be expressed in immediate fields and still leave space for the actual encoding. Eventually, the
parameters ”NV” (number of NV centers per GC) and ”C13” (number of 13C qubits per NV center), as
well as the depth of the QREG file, need to be maximized during the encoding process. The target for
the number of NV centers per GC is set at 1000, while at least 10 13C qubits are planned per NV center.

It is worth noticing that the encoding process involves a trade-off between the number of addressable
elements and the size of instruction identification fields. Increasing the number of bits used to identify
specific elements, such as NV centers, reduces the available bits for identifying individual instructions,
and vice-versa. As a result, the Instruction Set Extensionmay require additional major encoding spaces
to accommodate the growing number of instructions.

The rest of the section presents three different encoding schemes for the qrv32 ISE. A complete
listing of the encodings, comprehending all the instructions, can be found in Tables B.2, B.3, B.4 of
Appendix B.

Encoding A
The first encoding presented in this work does not employ any optimization. It aims to encode all the
instructions of the QISA in a single RISC-Vmajor opcode, custom-0, and can be seen as a starting point
for the design. The instructions can be divided into subgroups, accounting for similarities in functionality
and parameters. Their encodings are presented in the following list.

1. G-type instructions comprehend the qgate- instructions and also set and entangle. The 3-bit
parameter field can be used to express single-bit flags, like dir and preserve.

2. N-ype instructions comprehend the remaining qubit operations. The field function-4 ((f4) provides
a unique identification for the instructions included. The 5-bit parameter field is used for entan-
glement direction or swap basis.
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31 - 30 29 - 27 26 - 23 22 - 19 18 - 16 15 - 10 9 - 7 6 0
f2 par. QRS2 QRS1 C13 NVNode $ID 0 0 0 1 0 1 1

31 - 29 28 — 23 22 —- 19 18 - 16 15 —– 10 9 - 7 6 0
f4 x QREG C13 NVNode $ID 0 0 0 1 0 1 1

3. C-type instructions comprehend the calibration functions, such as detectCarbon, magbias and
rabicheck. Those instructions require up to 4 QREGs to correctly store all the needed parameters,
which are not immediates.

31 — 28 27 — 24 23 — 20 19 — 16 15 —- 10 9 - 7 6 0
QREG 4 QREG 3 QREG 2 QREG 1 NVNode $ID 0 0 0 1 0 1 1

4. The instructions move, qld and qst present in their encodings space to specify either one 4-bit
QREG and one gpREG field, or two 4-bit QREG fields. The immediate field function-2 (f2) is used
to distinguish among these 4 instructions. The memory operations supported, use the available
encoding space for the offset parameter (11-bit) passed as immediate.

31 ————- 21 20 - 19 18 —– 14 13 —–10 8 - 7 6 0
immediate [11:0] f2 QREG2 QREG1 $ID 0 0 0 1 0 1 1

5. The qldi instruction is used to load a 16-bit wide immediate value into a QREG.

31 ———————————– 16 15 - 14 13 — 10 8 - 7 6 0
immediate [14:0] x QREG1 $ID 0 0 0 1 0 1 1

While the encoding scheme enables the representation of quantum elements and instructions, it is
important to acknowledge that the current implementation falls significantly short of the desired targets.
Specifically, the architecture allows for a maximum of 8 13C qubits per NV center, 64 color centers per
GC, 16 quantum registers, and supports 16-bit immediate loads. It is clear that these values fall well
below the desired targets, and is therefore crucial to address the problem.

Encoding B
It is clear, from encoding A, that the 25-bit space is limiting the number of addressable elements. To
overcome such limitations, an additional instruction NV-choose is introduced to set which node is going
to be addressed. As for the previous encoding scheme, subgroups are now listed.

1. The NV-choose instruction provides a 13-bit wide field to specify the NV node address. This
allows the system to increase the number of color centers per GC.

31 — 27 26 ——————————— 14 13 - 10 9 - 7 6 0
1 1 1 1 1 NV node x $ID 0 0 0 1 0 1 1

2. In encoding B, the Q-type subgroup comprehends all the quantum operations, from gates to
initialization. This is achieved by employing the encoding space earned by the removal of the NV
center address to specify QREGs, parameters and a function-5 field.

31 — 27 26 - 24 23 — 19 18 — 14 13 - 10 9 - 7 6 0
f5 param. QRS2 QRS1 C13 $ID 0 0 0 1 0 1 1
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31 - 30 29 — 25 24 — 20 19 — 15 14 — 10 9 - 7 6 0
f2 QREG 4 QREG 3 QREG 2 QREG 1 $ID 0 0 0 1 0 1 1

3. The C-type (calibration) subgroup, comprehending detectCarbon, magbias and rabicheck, still
employs 4 QREGs to store all the parameters. The newly available encoding space allows in-
creasing the address fields up to 5-bit.

4. The instructionsmove, qld and qst and qldi present the same encoding discussed in the previous
paragraph.

Encoding B completely mitigates the limitations created by encoding A. In fact, the architecture allows
for 16 13C qubits per NV center, 8000 color centers per GC and 32 quantum registers while still offer-
ing a 16-bit immediate load. Unfortunately, the architectural separation between NV-choose and the
quantum operation instructions can create a non-negligible overhead in the compilation and execution
of algorithms.

Encoding C
This last encoding format tackles the limitations of encoding A with another solution: the QREG file
structure is modified, and each register is envisioned to be 48-bit wide, which each 16-bit chuck as
an independently loadable subregister. This reduces the portion of encoding space needed to declare
multiple quantum registers, like in C-type instructions. Once again, instruction types are listed below:

1. G-type instructions comprehend all the quantum gates available. Within the parameter field, C13
(4-bit) and a single-bit flag can be specified.

31 - 29 28 - 24 23 — 19 18 ——————- 9 8 - 7 6 0
f3 param. QREGs NV node $ID 0 0 0 1 0 1 1

2. The remaining quantum operations belong to the Q-type instructions. The 6-bit parameter field
can be used to specify QREG and LREG addresses (5-bit), C13, basi (2-bit), or direct (3-bit).

31 30 - 27 26 ————— 19 18 —————— 9 8 - 7 6 0
f1 f4 parameters NV node $ID 0 0 0 1 0 1 1

3. The move instruction, available in two flavors (move from and move to) based on the value of f1,
does not use additional parameters

31- 30 29 28 — 24 23 — 19 18 —————— 9 8 - 7 6 0
1 0 f1 gpREG qREG x $ID 0 0 0 1 0 1 1

4. As usual, qld and qst use the available encoding space for the offset parameter (11-bit) passed
as immediate.
Ex. qst rs2 $rs1(imm)

31- 30 29 —– 24 23 — 19 18 –— 14 13 —– 9 8 - 7 6 0
f2 imm [10:5] QREG2 QREG1 imm [4:0] $ID 0 0 0 1 0 1 1

5. The qldi instruction is used to load an immediate value in a sub-register. Once again the immedi-
ate is 16-bit wide, and the sel parameter identifies which sub-register will be loaded.

31 ————— 24 23 —- 19 18 - 17 16 ————— 9 8 - 7 6 0
immediate[15:8] QREGd sel immediate[7:0] $ID 0 0 0 1 0 1 1
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Figure 4.2: Global to Local communication packet

By adopting Encoding C, the limitations introduced by Encoding A are effectively mitigated. This en-
hanced architecture now supports up to 16 13C qubits per NV center, 1000 color centers per GC, 32
quantum registers, and retains the 16-bit immediate load capability, all without requiring any archi-
tectural modifications. However, it is important to note that this advancement comes at the cost of
increased hardware complexity within the QREG structure.

Comparison
In this section, we explored three different encoding approaches for integrating the QISA into the RISC-
V standard. Encoding A served as the initial design, fulfilling the required functionalities but falling short
of meeting the design targets. Encoding B and Encoding C were proposed as alternative solutions to
address the limitations. While Encoding B offered a straightforward approach, it introduced challenges
in the quantum stack. In contrast, Encoding C appeared to overcome this limitation by increasing
the complexity of the qreg. Ultimately, Encoding C emerged as the optimal and final solution, as the
hardware overhead it introduced was manageable and easily implementable.

4.3.2. Communication with LCs
The preceding section provided an in-depth explanation of the instruction encoding design, which es-
tablished a clear syntax for communication with the Global Controller. However, once the GC decodes
and processes the instructions, it needs to transmit the appropriate control signals and instruction data
to each Local Controller. Therefore, a communication standard between the GC and LCs must also be
defined.

This communication packet must encompass the quantum operation to be executed, as well as
all the immediate and register parameters required for its execution. Figure 4.2 visually illustrates the
message and its individual components. The register parameters occupy a width of 64 bits and directly
correspond to an entry in the Quantum Register File. The instruction opcode consists of a 5-bit code
that uniquely identifies the QISA instructions, following the encoding table B.5 provided in Appendix B.
Lastly, the immediate parameters field encompasses all the possible parameters expressed as imme-
diate values at the instruction level.

Notably, the immediate parameters field varies for each executed instruction, making its encoding
more complex. The remaining part of this section will present two potential encodings and compare
them, taking into account their physical effects and trade-offs.

Fixed-length packet
The immediate parameters can be encoded using a fixed-length packet, which offers a simpler ap-
proach. In this method, each instruction sends 15 bits within the communication message to transmit
the value of each possible immediate parameter. If a parameter is not utilized, the corresponding bits
are set to zero. Since the order of the parameters remains constant, the decoding logic in the local
controller is straightforward. An illustration of the fixed-length packet representation is provided below.

14 0
C13 p/d basis direct LREG

Variable-length packet
Alternatively, a variable-length packet can be employed to transmit only the parameters required by
the instruction. This can be achieved by maintaining a fixed order of possible parameters but sending
out only those that are actually used. This approach reduces the message length since the packet
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is always smaller than 6 bits. Two examples of such encoding, one for the swapEC instruction and
another for the qgateUC instruction, are demonstrated below.

5 0
swapCE C13 basis

4 0
qgateUC C13 p

Comparison
The two encoding schemes, fixed-length and variable-length packets, have different tradeoffs and con-
siderations in terms of decoding logic, power consumption, and overall efficiency.

• Decoding Logic on LC: In the fixed-length packet scheme, the decoding logic in the Local Con-
troller is relatively simple since the order of the parameters is always the same. Each parameter
has a fixed position in the packet, making it easier to extract and interpret the values. On the
other hand, the variable-length packet requires additional logic to determine which parameters
are present in the message and their respective positions. This increases the complexity of the
decoding process in the LC.

• Transmission Power Consumption: The transmission power consumption is influenced by the
width of the communication message and the distance it needs to travel. In the fixed-length
packet scheme, all 15 bits are transmitted regardless of whether a parameter is used or not.
This results in a wider message and potentially higher power consumption during transmission,
especially when considering longer distances or operating at different temperatures. In contrast,
the variable-length packet only transmits the necessary parameters, reducing the width of the
message and potentially lowering power consumption.

The variable-length packet scheme offers advantages in terms of energy efficiency and logic power
overhead. By transmitting only the required parameters, it minimizes the energy consumed during
transmission. Additionally, the power consumption in the LC at T = 4K remains similar to room tem-
perature, and the decoding process only requires a few logic levels on top of the logic already used
to translate the instructions to µcode. In contrast, the fixed-length packet scheme may result in higher
power consumption due to its wider message width which requires a wider bus and therefore additional
capacitance.
Considering the tradeoffs and benefits, the variable-length packet scheme emerges as amore favorable
option and is therefore chosen for this work. The final structure of the communication message, with
the variable-length packet encoding, consists of 75 bits in total, including the necessary instruction
opcode, register parameters, and immediate parameters.

Overall, the variable-length packet scheme provides a more efficient approach for transmitting the
required parameters within the communication message, balancing power consumption and decoding
complexity.

4.4. Conclusion
In this chapter, we explored the integration of the diamond QISA proposed in [16] into the qRV32
architecture, focusing on the instruction encodings and communication packet syntax. We began by
discussing the RISC-V extensions and the importance of incorporating the QISA functionality into the
existing architecture.

Subsequently, we then delved into the details of the qRV32 Instruction Set Extension, which forms
the core of our design. We examined the encoding of instructions, considering three different options:
Encoding A, Encoding B, and Encoding C. Each encoding had its strengths and limitations, and we
carefully analyzed their tradeoffs in terms of hardware complexity, addressing elements, and instruction
identification fields.

Furthermore, we discussed the communication protocol between theGlobal Controller and the Local
Controllers. We described the structure of the communication message, which includes the quantum
operation to be performed, register parameters, and immediate parameters. We explored two different
approaches for encoding the immediate parameters: fixed-length packets and variable-length packets.
We compared these approaches based on decoding logic, power consumption, and overall efficiency.
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Taking into account the considerations regarding instruction encodings and communication packet
syntax, we have reached a conclusion. Firstly, Encoding C emerged as the best among the prosed
solution. It overcomes the encoding space limitation by introducing an increased complexity to the
QREG file. Despite the hardware overhead associated with this encoding, it remains the preferred
choice, effectively addressing the limitations and providing a robust solution for the desired functionality.
Secondly, the variable-length packet scheme, despite introducing some additional complexity in the
decoding process, emerged as the more favorable option. It offers energy efficiency in transmission,
minimizing power consumption, and avoids significant logic power overhead in the LCs. With the final
structure of the communication message incorporating the variable-length packet encoding, we have
achieved a well-balanced design.

In conclusion, the integration of the Diamond QISA into the qRV32 architecture, with careful consid-
eration of instruction encodings and communication packet syntax, provides an effective and efficient
framework for quantum computing. The qRV32 architecture, with its instruction set extension and
optimized communication protocol, lays the foundation for quantum computing tasks and opens new
possibilities in the field of quantum information processing.



5
Hardware Implementation

This chapter focuses on the hardware implementation phase following the design of the qRV32 Instruc-
tion Set Extension in the previous chapter. It begins with a survey of 32-bit RISC-V cores (Section 5.1),
followed by a comparison (Section 5.1.1). The design of the Global Controller is discussed (Section
5.2), including ISE execution (Section 5.2.1), architecture (Section 5.2.2), and qRV32 functional units
(Section 5.2.3). System on Chip design is then covered (Section 5.3), encompassing system mem-
ory (Section 5.3.1), UART (Section 5.3.2), and SoC (Section 5.3.3). The chapter concludes with the
implementation results (Section 5.4) and a summary (Section 5.5).

5.1. 32-bit RISC-V Cores Survey
To address the choice for the Global Controller base processor core, the existing comparative litera-
ture [21]-[22] has been examined. Specifically, our goal is to identify and compare the best available
open-source 32-bit RISC-V cores. Additionally, only cores that offer a native SoC architecture and are
intended for FPGA implementation have been taken into account.

The subsequent portions of the section will show, examine, and evaluate four RISC-V-based cores
to determine which one is the best fit for the project. The ability to execute the qrv32 instruction will
subsequently be added to the selected core in the next section.

PicoRV32
PicoRV32 [36] is a 32-bit CPU core designed to support the RV32I[M][C] or RV32E instruction set. The
core’s high fmax capability enables seamless integration into existing designs, eliminating the need
for cross-clock domain communication. Furthermore, PicoRV32 demonstrates robust timing charac-
teristics, even at lower frequencies, ensuring compatibility with diverse design requirements without
compromising timing closure.

VexRiscv
VexRiscv is a feature-rich RISC-V CPU implementation utilizing a 5-stage in-order pipeline architecture
[44]. It serves as a versatile foundation that allows for the seamless integration of optional plugins to
augment its functionality. The core fully supports the RV32I[M][A][F][D][C] instruction set and offers
the flexibility to customize the number of pipeline stages, ranging from 2 to 5. Notably, VexRiscv is
specifically designed for FPGA implementations, making it independent of any vendor-specific IP blocks
or primitives.

NeoRV32
The NEORV32 CPU [30] architecture offers a unique approach that combines elements of both tra-
ditional pipelined and conventional multi-cycle architectures, resulting in a distinct trade-off between
performance and size. NEORV32 fully supports the RV32I[B][C][M][U][X] ISA and expands upon it
with additional features. One notable feature of NEORV32 is its ability to incorporate custom RISC-V
instructions through the inclusion of a Custom Functions Unit for CPU-internal custom instructions and
a Custom Functions Subsystem for tightly-coupled co-processors within the core.

24
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CV32E40P
CV32E40P [11] is a CPU core that belongs to the CV32E family developed by OpenHW Group. It is de-
signed based on the RISC-V ISA, specifically targeting the RV32IMC instruction set variant. The core
offers a balance between performance and efficiency, making it suitable for a wide range of embed-
ded applications. It features a pipelined architecture with 4 stages for instruction execution, including
fetch, decode, execute, and writeback stages. The CV32E40P core also supports non-standard Xpulp
instructions. A detailed description of the core is available at [19].

5.1.1. Comparison
Having explained the characteristics of the cores, is now possible to perform a comparison. Com-
mon evaluation metrics, such as area and performance, are presented in relative comparison, and the
strengths and weaknesses of each core are discussed. Metrics and evaluations are taken from the
official documentation cited before.

Area and performance
Figures 5.1 and 5.2 visualize the comparison of the four cores in area, maximal execution frequency,
and performance/MHz using the CoreMark benchmark [10]. In particular, by comparing the Core-
Mark/MHz values, one can gain insights into how efficiently each core performs computations relative
to its clock frequency, enabling a more meaningful assessment of its overall performance.

In terms of performance and area, the comparison reveals interesting findings. The picoRV core
exhibits a significantly higher operating frequency (714MHz), nearly 14 times that of the CV32E40P
core(55MHz), while occupying less than half the area when implemented on Artix-X7 FPGAs. On the
other hand, the CV32E40P core showcases exceptional performance per MHz, boasting an impressive
3.19CoreMarks/MHz, while picoRV set the lowest result at 0.4CoreMarks/MHz. Moving on to VexRiscV
and NeoRV32, these cores demonstrate more average profiles in terms of area and frequency. How-
ever, VexRiscV grants more than twice the performance of NeoRV32 on the CoreMark benchmark at
the price of less than twice the area utilization.

Figure 5.1: Performance comparison of the four cores analyzed.

Figure 5.2: Area comparison of the four cores analyzed implemented on Artix X7 series FPGAs.
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Features
Each core has its unique approach to custom processing. The picoRV32 core offers a native co-
processor interface, allowing for the seamless integration of custom co-processors. In contrast, the
VexRiscv provides flexibility in extending the instruction set via the plugin system, with complete support
for custom instructions. The NeoRV32 core embodies a limited native custom instruction co-processor,
enabling the addition of instructions with predefined encoding. Lastly, the CV32E40P core provides
native support only to the Xpulp extension, for signal processing.

When it comes to System On Chip (SoC) architecture and available peripherals, picoRV32 offers
the PicoSoC, which is a limited SoC solution. VexRiscv provides the Pinsec SoC, which includes
essential peripherals such as UART, GPIO, and timers. NeoRV32 goes further by offering a complete
microcontroller-like SoC, with additional features like SPI and I2C, making it suitable for a wide range
of embedded applications. Among them, CV32E40P stands out with its PULPissimo SoC, which offers
advanced features like DMA (Direct Memory Access), making it the most comprehensive option in
terms of SoC architecture and available peripherals.

Discussion
Upon careful evaluation of the four cores, namely picoRV, vexRV, NeoRV32, and cv32e40p, each core
exhibits distinct features and trade-offs that influence their suitability for the project.

The picoRV core exhibits solid performance and efficient area utilization, making it a desirable op-
tion in terms of resource efficiency. However, its limited SoC capabilities hinder its potential for more
complex applications. Additionally, picoRV lacks support for custom instructions, which could limit its
adaptability to specific task requirements.

The VexRiscv core, in contrast, stands out for its thorough support for instruction extensions, en-
abling customization of the instruction set. The SoC capabilities of the VexRiscv, however, are rather
constrained, and there are only a few peripherals offered. Additionally, developers may experience a
learning curve when using SpinalHDL, a more complicated hardware description language.

The NeoRV32 core offers a complete microcontroller-like SoC with a comprehensive range of pe-
ripherals. However, it lacks a key feature, DMA, which can significantly impact its efficiency in handling
data transfers. Additionally, the existing custom instruction co-processor severely limits the design
freedom in instruction encoding. Eventually, the core’s overall performance-area trade-off is at best
average compared to the other options.

In terms of the CV32E40P core, it emerges as a highly compelling choice. It not only provides a
feature-rich SoC design but also offers native support for custom ISA extensions. This inherent native
support for the Xpulp ISE makes its architecture naturally adaptable to accommodate other custom
instructions. With appropriate modifications, the core can be configured to execute the instructions
specific to the qRV32 architecture using part of the decoding logic designed for Xpulp. Furthermore,
the CV32E40P core demonstrates good performance metrics and provides a more comprehensive
SoC architecture, including valuable features like DMA, which enhances its versatility and efficiency in
handling data-intensive tasks.

Considering these factors, the CV32E40P core presents themost favorable combination of a feature-
rich SoC design, support for custom extensions, and strong performance metrics. Its architecture,
which already implements the desired extension, provides a solid foundation for easy customization
and integration. Therefore, based on these assessments, the CV32E40P core is the designed choice
for the hardware implementation of the Global Controller.

5.2. Global Controller Design
The hardware implementation of the global controller is a critical component in the overall design of a
system, as it plays a vital role in coordinating and controlling various modules and subsystems. In this
section, we focus on the intricate details of the global controller design, aiming to develop an efficient
and robust solution. Our primary objective is to present the architectural choices and considerations
made during the design process, ensuring seamless integration with the target system. Additionally,
we thoroughly examine the instruction pipeline, which forms the backbone of the controller’s opera-
tion. Furthermore, we pay special attention to the specific functional units tailored to support the qrv32
Instruction Set Extension, ensuring the successful execution of its unique instructions and function-
alities. Through a comprehensive exploration of these aspects, we aim to achieve a well-designed,
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Figure 5.3: Different Implementation approaches: 1. Dedicated Accelerator, 2. Custom Coprocessor, 3. In-Pipeline. Deep
integration can limit inter-core portability. Off-chip designs may affect latency, throughput, and hardware cost. [12]

high-performance global controller that effectively orchestrates a diamond-based quantum computer
control layer.

5.2.1. ISE Execution
When it comes to implementing the execution of custom instructions in the Global Controller, several ar-
chitectural approaches can be considered, each with its own set of advantages and drawbacks. These
approaches include the use of a co-processor, in-pipeline execution, or a custom accelerator. Figure
5.3 represents the different approaches in a high-level diagram.

• Tightly embedding the custom execution within the pipeline stages offers the advantage of maxi-
mizing throughput and optimizing hardware resource utilization. However, this approach requires
a higher level of design effort and may face challenges in terms of scalability.

• On the other hand, employing a custom co-processor provides better scalability and facilitates
the use of standard communication protocols. However, it may incur additional area and timing
costs, and there may be limitations in terms of custom control-flow.

• Alternatively, implementing the custom instruction execution in a custom accelerator can intro-
duce latency penalties and limited throughput. Additionally, it often comes with higher area and
power costs.

Based on the specific requirements of the control core in the control layer, the decision has been made
to implement the execution of the ISE using an in-pipeline architecture. This choice is driven by the
need to effectively coordinate multiple LCs and maximize throughput, while also minimizing latency.
By embedding the custom instruction execution within the pipeline stages, we can achieve efficient
instruction execution and control over the LCs, resulting in improved overall system performance. Fur-
thermore, the in-pipeline architecture allows for better utilization of hardware resources and offers a
balanced trade-off between throughput and latency.

5.2.2. Architecture
The previous section defines the way of implementing the custom instruction execution in an existing
core design. Accordingly, the resulting modified four-stage core pipeline can be observed in Figure 5.4.
The execution flow has been modified to include qrv32 functional units, identified in the picture by filled
rectangles.

Figure 5.4: GC modified architecture pipeline. Filled rectangles identify the custom additional functional unit and register file.
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The architecture of the global controller, including the CV32E40P core and the integrated qrv32 units,
can be understood by analyzing the instruction flow through different stages. Figure 5.5 provides a
clear visual representation of this architecture. As the fetched instruction enters the decode stage, it
is processed by the decoder, which, in addition to identifying instruction operands, also distinguishes
between custom and standard instructions. To accommodate these different types, separate register
files are utilized for storing the corresponding data. After decoding, the instruction operands are passed
to the execute stage, where they are processed either by the ALU and MULT units or assembled into a
packet by the qrv32 packet manager. The resulting data is then written back to the data memory using
the Load/Store Unit (LSU) or back to the register files through the writeback logic.

Figure 5.5: GC architecture. In grey, native components of the CV32E40P core; in blue, additional units required for the
execution of qRV32 ISE

The decode and execute stages of the CV32E40P core form the central components for efficiently
processing instructions, therefore they have undergone substantial modifications with the inclusion of
qrv32 units and logic.

During the decode stage, the fetched instruction is decoded by a combination of instruction de-
coders and control logic. The instruction decoders are responsible for identifying the opcode and other
essential fields of the instruction, while the control logic generates control signals required for the sub-
sequent stages. An immediate decoder completes the identification of instruction operands started
in the decoder. Eventually, each operand is fed to the multiplexed ports OperandA, OperandB and
OperandC, which are responsible for passing meaningful data onto the execute stage.

The decoded instruction is then passed on to the execute stage, which consists of multiple functional
units, including an Arithmetic Logic Unit and a Multiplier. The ALU handles various arithmetic and
logical operations, such as addition, subtraction, bitwise AND, and OR. On the other hand, the MULT
unit executes multiplication operations, providing essential support for arithmetic-intensive tasks. In
addition to that, the qrv32 packet manager is in charge to assemble the communication message to
LCs, incorporating the variable-length packet.

5.2.3. qRV32 Functional Units
In this subsection, we finally delve into the design of the custom hardware blocks, responsible for
addressing qrv32 instructions. These specialized hardware blocks are specifically designed to address
the unique requirements and functionalities of the qrv32 instruction set. To provide a comprehensive
understanding of their purpose and operation, we will explore each custom hardware block in detail,
outlining their individual contributions to the overall system architecture.

QDecoder
The decoder plays a crucial role in identifying the opcodes of instructions. It serves as the initial step
in the decoding process, enabling the accurate interpretation of instructions and distinguishing among
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various instruction parameters. In the case of CV32E40P, which supports both standard RISC-V IMC
instructions and custom Xpulp instructions, modifications are necessary to accommodate qrv32 in-
structions. To ensure the availability of opcode space for qrv32 instructions, certain overlapping Xpulp
instructions that utilize the same encodings need to be removed. This task is specific to the CV32E40P
core and requires minimal additional effort. The freed opcodes encompass a range of instructions,
including BIT-MANIPULATION instructions, custom MULT instructions, and HW-LOOP instructions.

In addition to opcode management, new decoding logic must be implemented to correctly handle
qrv32 instructions. To address this requirement, a dedicated Quantum (Instruction) Decoder, referred
to as the QDecoder, is incorporated within the decoder stage. The qRV32 custom instructions are
identified by the custom-0 opcode and are decoded based on the specifications provided in Table B.4.
For detailed snippets of the design code related to the QDecoder implementation, refer to Listing C.1
in Appendix C.

QREG File
29 //Read port R1
30 input logic [ADDR_WIDTH-1:0] raddr_i,
31 output logic [DATA_WIDTH_R-1:0] rdata_o,
32

33 // Write port W1
34 input logic [ADDR_WIDTH-1:0] waddr_i, // write address
35 input logic [1:0] wsel_i, // write sub-reg select
36 input logic [DATA_WIDTH_W-1:0] wdata_i, // write data
37 input logic we_i, // write enable
38

39 //Read port R2 (32bit)
40 input logic [ADDR_WIDTH-1:0] raddr_mem_i,
41 output logic [DATA_WIDTH_M-1:0] rdata_mem_o,
42

43 //Read port R3 (32bit)
44 input logic [ADDR_WIDTH-1:0] raddr_mem2_i,
45 output logic [DATA_WIDTH_M-1:0] rdata_mem2_o,
46

47 //Write port W2 (32bit)
48 input logic [ADDR_WIDTH-1:0] waddr_mem_i,
49 input logic [DATA_WIDTH_M-1:0] wdata_mem_i,
50 input logic we_mem_i

Listing 5.1: QREG file ports - qRV_register_file_ff.sv

The design of the QREG file, an integral hardware component in the qRV32 architecture, takes into
consideration the specific requirements of the instruction set encoding proposed in Section 4.3.1.

The QREG file module consists of 32 registers, each with a width of 64 bits. These registers are
further divided into four 16-bit sub-registers, allowing for independent write operations. With one read
port, which operates combinatorially, the QREG file enables concurrent access to the register contents.
The read port is 64 bits wide, facilitating the retrieval of an entire register entry in a single operation,
as described in Listing 5.1. For write operations, the QREG file features a sequential write port that is
16 bits wide. This allows for selective modification of the sub-registers within a register, granting fine-
grained control over data updates. In addition, the QREG file includes two dedicated ports for memory
instructions, providing a 32-bit wide read port and a 32-bit wide write port. These specialized ports
streamline the execution of instructions involving data transfers between registers, such as load, write
and move.

In summary, the QREG file design custom read and write ports address the specific requirements of
qRV32 instructions. For further details on the QREG file module, including the complete SystemVerilog
code implementation, please refer to Listing C.2 in Appendix C.

Packet Manager
The Packet Manager within the Global Controller is designed to assemble communication messages
for the Local Controllers, adhering to the specific requirements of the qRV32 ISA extension on Global-
to-Local communication.

It generates a quantum message which employs the variable-length format presented. In the case
of the qRV32 ISA extension, the Packet Manager assembles packets with a total length of 75 bits.
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This ensures consistent and compatible communication between the Global Controller and the Local
Controllers, facilitating efficient data transfer and control signals. For more detailed information on the
packet format and the operations performed by the Packet Manager, refer to Appendix C.

Minor Modifications
548 //qRV immediate extraction
549 assign imm_qmem_type = {{20{instr[29]}}, instr[29:24], instr[13:9]}; //bottom 11

bits is the immediate value
550 assign imm_qldi_type = {16'b0, instr_rdata_i[31:24], instr_rdata_i[16:9]}; //bottom 16

bits is the immediate value
Listing 5.2: qRV immediate extraction - cv32e40p_id_stage.sv

To accommodate additional control and data signals, as well as additional ports, several modifications
were made to the original designs of the stages. This subsection focuses on highlighting the non-trivial
changes implemented within the decoding stage to accommodate the custom immediate fields and
other requirements.

One notable modification is related to the syntax differences between qRV32 memory instructions
and standard instructions. These differences impact the width of immediate fields, necessitating the
design of new logic to handle these variations. The specific implementation details of this logic can be
found in Listing 5.2.

Furthermore, the forwarding logic underwent modifications to meet the specific requirements of the
qRV32 instructions. The forwarding logic includes multiple levels of multiplexers that determine which
data should be passed to subsequent stages based on the decoded instruction. In the context of
memory operations, OperandA and OperandC are utilized to forward the read data from the QREG file.
Additionally, OperandB is employed to handle the immediate parameters of the qldi instruction. The
control logic is accordingly adjusted based on the opcode of the instruction. For detailed insights into
the modifications made to the forwarding logic, please refer to Listings C.4 and C.5 in Appendix C.

Moreover, specific modifications were introduced to address the unique requirements of move in-
structions. Detailed information regarding these modifications can be found in the appendix.

5.3. System on Chip Design
The System On Chip design section focuses on the hardware components designed to facilitate the
interaction and functionality of the Global Controller Core. While the presented design does not en-
compass a comprehensive and finalized SoC, it serves as a minimal configuration capable of enabling
the core’s functionality. Key components included in this design are the system memory and a simple
UART interface, which serves as the interface for communication. By incorporating these essential
elements, the SoC design provides a foundation for the proper operation and integration of the Global
Controller Core.

5.3.1. System Memory
Instruction and data memory are fundamental parts of the system and are required to guarantee the
functionality of the GC. To enable seamless operation, a ROM is incorporated into the SoC to provide a
reliable mechanism for storing instructions and initiating the core’s execution. Furthermore, a dedicated
RAM component is included in the SoC design to support the scalability and efficient functioning of the
control plane. This RAM serves as a versatile storage medium for critical data, ensuring its availability
and facilitating smooth control operation execution.

By incorporating both the Boot ROM and RAM, the SoC design establishes a solid foundation for
the Global Controller’s functionality. This comprehensive approach ensures that the core receives
the necessary instructions and data resources, enabling it to effectively perform its control tasks in a
scalable and efficient manner.

ROM
The design of the Read Only Memory for the SoC incorporates a single-port memory block with a
capacity of 32×256 bits, resulting in a 1KB ROM. Each word in the memory consists of 4 bytes. Since
the memory is byte addressable - as from the RISC-V standard - the two least significant bits of the
address are ignored during operations. The read access is combinatorial, providing instant access to
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the stored instructions. At simulation time t = 0 or during synthesis, the memory is flashed with the
instructions retrieved from the specified file indicated by the instr_path parameter. Write operations
are not allowed in the ROM as it functions as read-only storage. Additionally, to accommodate the
requirements of the core, additional ports are added to mimic the PCI protocol ports. These ports serve
to establish the necessary communication interfaces for the core’s functionality. The full SytemVerilog
module is provided in Listing C.8 in Appendix C.

RAM
The RAM memory design in the SoC employs a single-port memory block with a capacity of 32 × 256
bits, resulting in a 1KB RAM block. Similar to the ROM, the RAM operates in a byte-addressable
manner, consequently, the two least significant bits of the address are ignored during read operations.
Moreover, the memory design takes into consideration the byte-addressability, utilizing a dedicated
byte enable signal to determine the specific portion of the word to be stored.

Read access to the memory is combinatorial, ensuring instantaneous retrieval of the stored data.
In contrast, write operations are sequential, allowing for the sequential updating of memory locations.
Additionally, during simulation, a reset signal is employed for testing purposes, as the RAM implemen-
tation relies on FPGA block RAMs that do not require an explicit reset signal in synthesis. Eventually,
to meet the requirements of the core’s integration, supplementary ports are added also to the RAM
module to mimic the PCI protocol ports. The complete module implementation is shown in Listing C.9
in Appendix C.

5.3.2. UART
In the context of the minimal SoC design, a UART interface is utilized for the communication of the
75-bit instruction message and the 10-bit NV center address. While the control plane implementation
may require a custom bus interface between the local and global controller, this simplified SoC design
relies on the UART interface for its communication requirements.

To accommodate the conversion of the total 85 bits required for transmission, specialized hardware
is employed. Specifically, a sequencer module is responsible for handling the transmission process
and operates with various inputs and outputs. It takes inputs such as the clock signal, the 85-bit in-
put data to be transmitted, and the start control signals for initiating transmission. It provides outputs
for buffer readiness, the start of transmission, and the serialized data transmitted in 8-bit chunks. The
sequencer incorporates internal registers for tracking the position within a byte and managing the ongo-
ing transmission. It ensures efficient and reliable data transmission within the SoC design. An always
block triggered on the positive edge of the clock signal is utilized to handle the transmission process.

Considering the UART interface as the potential bottleneck in the design due to its low baud rate
compared to the operating frequency, a FIFO (First-In-First-Out) structure is implemented. This FIFO
has a size of 85x128 and employs a read enable signal to record only meaningful core data outputs,
ensuring that no data is lost while the interface is busy.

Finally, the UART interface follows the standard communication protocol available in the literature
[34], with specific attention given to the baud_rate and clk_freq parameters. These Verilog parameters
must be properly configured to match the actual hardware parameters for a functional implementation
on an FPGA platform. For detailed insights into the UART design, please refer to Listings from C.10 to
C.14 in Appendix C.

5.3.3. SoC
The overall SoC design module serves as a central entity that defines the system’s main input and
output ports, clock frequency, and baud rate parameters. It plays a crucial role in connecting all the
components of the system together. In this simplified SoC design, a bus is not implemented, and the
peripherals (memory and UART) are directly connected to one or more ports of the core based on their
respective functionality. A complete view of the elaborated design on Xilinx Vivado is shown in Figure
5.6.

5.4. Synthesis results
TheGlobal Controller and SoC design was synthesized using Vivado FPGA tools, targeting the Kintex-7
FPGA family. The synthesis results showed amaximal operating frequency of 100MHz, and the design
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WSN TSN WSH Failed Routes LUT FF BRAM URAM DSP IO
0.276 0.000 0.107 0 7157 4630 1.5 0 5 4

Table 5.1: Syntehsis results from Xilinx Vivado

utilized 7157 Look-Up Tables (LUTs). Additional synthesis results obtained on Vivado are summarized
in Table 5.1.

It is crucial to note that the frequency reported in Section 5.1.1 cannot be directly compared to this
result. The nominal frequency (55MHz) represents the standard operating frequency at which the
core is designed to work under typical conditions. On the other hand, the maximal operating frequency
obtained from synthesis represents the highest frequency at which the design can function without
violating the timing constraints.

Furthermore, the synthesized design utilizes nearly double the number of Look-Up Tables (LUTs)
compared to the base core. This increase in LUTs is mainly due to the incorporation of memory and
UART peripherals, rather than the additional core functional units. The addition of these peripherals
enhances the functionality and capabilities of the Global Controller and SoC design, enabling it to
interact with the memory system and external devices efficiently.

5.5. Conclusion
In this chapter, we have explored the hardware implementation of the Global Controller, which serves
as the control plane for our RISC-V-based system. We began by surveying various 32-bit RISC-V cores
to understand their features and capabilities, providing a basis for our design choices.

The Global Controller design was then presented, focusing on its execution within the Instruction
Set Extension. We examined the architecture of the Global Controller, including its functional units
specifically tailored for the qRV32 ISE.

Furthermore, we delved into the design of the System on Chip to address the crucial aspects of
instruction feeding and data memory management. The inclusion of dedicated system memory and
UART interface ensures the smooth operation and scalability of the control plane.

Through this hardware implementation journey, we have demonstrated the integration of the Global
Controller with the necessary peripherals, allowing for efficient communication and interaction within
the system. The SoC design presented here provides a minimal yet functional setup for the Global
Controller Core.

In conclusion, the hardware implementation chapter has provided valuable insights into the design
and construction of the Global Controller and the associated components. The next chapter will focus
on the software stack, where we will explore the development of an assembler targeting qRV32 in order
to realize a fully functional RISC-V system.
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Figure 5.6: System On Chip elaborated design view on Vivado



6
qRV32 Assembler

This chapter focuses on the development of a custom assembler to target qRV32 instructions. The
design of an assembler is a critical component in the creation of a functional system and allows thorough
testing of the Global Controller hardware. The main goal of the assembler is to translate the quantum
algorithms compiled at QISA level [16] to actual machine-level instructions. This involves parsing the
assembly instructions, identifying the corresponding opcode and operands, and producing the binary
representation.

By the end of this chapter, readers will have a comprehensive understanding of the assembler’s
purpose, design, and functionality. They will gain insights into the intricacies of translating assembly
code into machine instructions, enabling them to write efficient and optimized programs for the system.

The chapter starts with the analysis of assembly-level instructions (Section 6.1). The development
steps are then described in Section 6.2, including opcode identification (Section 6.2.1), substitution of
pseudo-instructions (Section 6.2.2), register management (Section 6.2.3), and parameter translation
(Section 6.2.4). The chapter discusses the assembler outputs (Section 6.3) and concludes with a
summary (Section 6.4).

6.1. Assembly-level instructions analysis
1 qgatee q0 1.5707963267949 1.5707963267949
2 qgatecc q1 1 0.0 3.1415926535898
3 qgateuc q2 2 0.0 3.1415926535898 1
4 qgatedir q3 3 1.5707963267949 1.5707963267949 0
5 qgateze q4 1.5707963267949
6 qgatezc q5 5 1.5707963267949
7 initialize q4
8 measuree q5
9 crc q6
10 detectCarbon q7 100 5000 200 10000
11 magbias q8 1500 5000 200 10000
12 rabicheck q9 100 5000 200 10000
13 swapec q10 6
14 swapce q11 7 2
15 set_local q12 r15 0
16 nventangle q13 010
17 move_to r20 qr12
18 move_from qr30 r11
19 qld r24 0xF5(r20)
20 qst r5 0xF6(r20)

Listing 6.1: Example list of all QISA instructions, assembled

Listing 6.1 provides a comprehensive view of the complete set of instructions for diamond-based quan-
tum computers, represented in QISA format. Familiarity with the syntax of these instructions is crucial
for the accurate development of an assembler. Analyzing the structure of the instructions, it becomes
evident that each instruction begins with a string that denotes the type of instruction. Subsequently,
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the NV center specification follows, providing the unique address details about the targeted node. Fi-
nally, the instruction parameters are presented, adhering to the prescribed order as outlined in Table
A.1. By closely examining this listing, one can gain a comprehensive understanding of the syntax and
organization of the instructions, which serves as a foundation for developing a robust assembler for
diamond-based quantum computers.

6.2. Development steps
The development of an assembler for the diamond-based quantum computer architecture involves sev-
eral crucial steps. This section provides an in-depth exploration of these development steps, focusing
on the key aspects required to transform QISA instructions into executable machine code and how to
implement them in Python. The following subsections outline the fundamental stages of the assembler
development process. The complete implementation code of the assembler and helper functions can
be found in Appendix D.

6.2.1. Opcode Identification
The first step in the assembler development process is opcode identification. This involves analyzing
the instruction set architecture and recognizing the specific opcodes associated with each instruction.
By correctly identifying the opcodes, the assembler can map each instruction to its corresponding ma-
chine code representation. This is achieved by dictionaries linking the string keyword to the corre-
sponding binary opcodes.

"qgatee": "000001011",
"qgatecc": "000001011",
"qgateuc": "000001011",
"qgatedir": "000001011",
"qgateze": "000001011",
"qgatezc": "000001011",
...

Listing 6.2: Portion of opcode identification dictionaries - qRV32_assembler.py

6.2.2. Pseudo-instructions Substitution
Pseudo-instructions, also known as macro instructions, provide a higher-level representation of com-
plex operations. In this step, the assembler substitutes pseudo-instructions with the corresponding
sequences of native instructions using the following function:
def pseudo_instruction_substitutor(opcode, asm_instruction):

This substitution ensures that the assembler can accurately translate these higher-level instructions
into the appropriate machine code. Here is an example of the addition of load-immediate instructions
insertions to correctly map the qgatee instruction:

if opcode == "qgatee":
#find the next available register to load the parameters
parameter_register = find_next_available_register()
#1st qldi
asm_instruction_list.append(["qldi_a", "r"+str(parameter_register), str(subreg), str(

arguments[1])])
subreg += 1
#2nd qldi
asm_instruction_list.append(["qldi_a", "r"+str(parameter_register), str(subreg), str(

arguments[2])])
#Qgate instruction
asm_instruction_list.append([opcode, str(arguments[0]), "r"+str(parameter_register)])

Listing 6.3: Example of a pseudo-instruction substitution - qRV32_assembler.py

6.2.3. Register Management
Correct register management is crucial for code generation. In this step, the assembler handles the
allocation and management of registers, as shown in the following snippet:
def find_next_available_register():

# Find the first free register
destination_register = -1 # Set to an invalid value as a fallback
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for i, status in enumerate(register_status):
if status == 0:

destination_register = i
register_status[i] += 1 # Increment the register status value
break

# If no free registers are available, select the earliest used register
if destination_register == -1:

min_used_time = max(register_status) + 1 # Set to an invalid value as a fallback
min_used_index = -1 # Set to an invalid value as a fallback
for i, status in enumerate(register_status):

if status < min_used_time:
min_used_index = i
min_used_time = status

# If a register with the minimum value is found, set it as the destination register
if min_used_index != -1:

destination_register = min_used_index
register_status[min_used_index] += 1 # Increment the register status value

return destination_register
Listing 6.4: Function for register management - qRV32_assembler.py

The assembler assigns appropriate registers to store intermediate values, avoids register dependen-
cies, and ensures complete utilization of available registers. Proper register management is crucial to
ensure reliable mapping between assembly and machine-level code.

6.2.4. Parameters Translation
The translation of instruction parameters is another vital aspect of the assembler development process.
Instructions often contain parameters that need to be translated into their appropriate machine code
representation. This step involves converting these parameters, such as immediate values or memory
addresses, into a suitable binary format that the target architecture can interpret correctly. In particular,
immediate values need to be represented accordingly to Table B.1. This is achieved by the following
helper function.
def float_to_fixed_point(num):

# Multiply the floating point number by 2^14 to shift the decimal point 14 bits to the
left.

# This converts the floating point number to a fixed point number with 14 fractional bits
.

fixed = int(round(num * (2 ** 14)))

# Convert the fixed point number to a binary string with 16 bits (including 14 fractional
bits).

binary = bin(fixed)[2:].zfill(16)

return binary
Listing 6.5: Parameter translation function - helper_functions.py

6.3. Assembler outputs
The Listing below (6.6) shows an example of a diamond-based compliant quantum circuit compiled at
QISA level. The circuit is the Hadamard Gate (H-gate) [5], which turns |0⟩ into (|0⟩+ |1⟩)/2 and |1 into
(|0⟩+ |1⟩)/2.

1 initialize q0
2 swapec q0 0
3 qgateuc q0 0 1.5707963267949 1.5707963267949 1
4 qgateuc q0 0 0.0 3.1415926535898 1

Listing 6.6: Hgate circuit, an example of quantum algorithm

Using the developed assembler, the quantum algorithm source code is compiled, resulting in the
machine-level binary code provided in Listing 6.7. Notably, a nop instruction is added at the begin-
ning of the algorithm and a ebreak instruction is added at the end to better isolate the execution during
simulation.
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1 00000000000000000000000000010011 //nop
2 10100111111110000000000010001011 //initialize q0
3 11000000011110000000000010001011 //swapec q0 0
4 01100100000000010001000110001011 //qldi_a r0 0 1.5707963267949
5 01100100000000110001000110001011 //qldi_a r0 1 1.5707963267949
6 01010000000000000000000000001011 //qgateuc q0 0 r0 1
7 00000000000010000000000110001011 //qldi_a r1 0 0.0
8 11001001000010100010000110001011 //qldi_a r1 1 3.1415926535898
9 01010000000010000000000000001011 //qgateuc q0 0 r1 1
10 00000000000100000000000001110011 //ebreak

Listing 6.7: Hgate circuit translated to machine-level qRV32 instructions

The compiled binary code accurately represents the corresponding QISA instructions in machine-level
format. Each line of the binary code represents a translated instruction, with the opcode and associated
parameters encoded in binary form. A comparison with the syntax defined in Table B.4 confirms its
correctness.

The successful generation of the binary code from the QISA source code demonstrates the function-
ality and reliability of the assembler in translating quantum algorithms into executable machine code.
By comparing the original QISA source code with the resulting binary code, it is evident that the assem-
bler effectively performs the necessary translations, ensuring the accurate representation of quantum
instructions in machine code format.

6.4. Conclusion
The development and evaluation of the assembler have provided valuable insights into the process
of translating quantum algorithms from the QISA level to machine-level binary code. Through the
identification of opcodes, substitution of pseudo-instructions, management of registers, and translation
of parameters, the assembler successfully converts QISA instructions into executable machine code
for the diamond-based quantum computer architecture.

The assembler has demonstrated its ability to perform the necessary translations, ensuring the
faithful representation of quantum instructions in binary format. By examining the compiled binary code
and comparing it with the original QISA source code, we can confidently conclude that the assembler
is a reliable tool for converting quantum algorithms into executable machine code.

In conclusion, the assembler plays a crucial role in bridging the gap between the high-level represen-
tation of quantum algorithms and the low-level machine code required for their execution. Its successful
implementation highlights its importance as a key component in the development and deployment of
quantum stack, facilitating the realization of complex quantum computations on diamond-based quan-
tum computers.
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Results and Discussion

This chapter presents the results and analysis of the Global Controller architecture and of the control
plane. Through software simulations andmodel evaluations, the functionality of the design is thoroughly
examined.

The first result presented in Section 7.1 is the outcome of the core’s architecture simulations. In
particular, using Xilinx Vivado the behavior of Global Controller SoC is evaluated. Section 7.2 presents
an evaluation of the controller and system performance, making use of the model discussed in Chapter
3. It provides an assessment of critical aspects such as timing and scalability.

The chapter concludes with discussions on the implications of the results, highlighting the strengths
and limitations of the Global Controller (Section 7.3). These insights contribute to a deeper under-
standing of the system’s performance and pave the way for future research in the field of quantum
computing.

7.1. Software Simulations
The output generated by the assembler in the form of object files serves as a direct input for the Global
Controller core, enabling the thorough testing of its behavior and functionality through logical simula-
tions. In order to facilitate comprehensive simulations, two additional ports have been added to the
SoC, allowing the direct recording of the NV center address and the communication packet generated
for each instruction.

The generated output of the core when loaded with H-gate instructions (List. 6.6, 6.7) is presented
below. This outcome serves as a valuable reference for future comparisons with alternative simulation
approaches, such as the simulator developed in [40], as well as potential hardware realizations of the
Global Controller.
boot_instr = D:/User/Documenti/TuDelft/Thesis/qrv_assembler/outputs/hgate_bin.txt

packet # 1
NVnode = 0
quantum_pack = 000000000000000000c

packet # 2
NVnode = 0
quantum_pack = 600000000000000000f

packet # 3
NVnode = 0
quantum_pack = 2000000000c910c9103

packet # 4
NVnode = 0
quantum_pack = 2000000001922000003

Listing 7.1: Post-implementation simulation results for the H-gate circuit

Furthermore, listing E.1 of Appendix E showcases the core’s example outputs for each qRV32 instruc-
tion. These simulations provide an accurate representation of the core’s behavior, closely resembling
its real hardware counterpart. For additional simulation results, please refer to Appendix E.
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7.2. Model evaluations
The model introduced in Chapter 3 offers a means to gauge the efficacy of the Global Controller by pro-
viding a metric. While the model’s primary purpose is to assess the entire control plane, it can provide
a partial evaluation of the system’s parallelism based on the characteristics of the Global Controller.

While the relationship among the latency parameters (Table 3.1) has been defined in Equation 3.10,
by only considering pre-processing time, write-back time, and quantum execution time, one can gener-
ate an early estimation of the system’s parallelism. This implies disregarding the remaining parameters
by setting to zero their respective coefficients. Accordingly, by employing Equation 7.1, a simplified ver-
sion of Equation 3.8, the parallelism is calculated as described above.

#LCs(i) ≥ TqexL(i) + TwbL
TpeG(i)

(7.1)

For the analysis, it is assumed that both Global and Local Controllers operate at the nominal operating
frequency achievable by the base core, which has been reported as 55MHz in Section 5.1.1. Further-
more, it is assumed that the Local Controllers require only one clock cycle to write back results to their
internal registers. The measured quantum execution times are reported in table A.2 of Appendix A,

The graph below illustrates the available data and corresponding results for a subset of the QISA,
specifically the subset for which the quantum execution times have been measured and excluding
calibration instructions (magbias, detectCarbon and rabicheck). By employing Equation 7.1, the par-
allelism is calculated as described in the paragraph above. The resulting value for each instruction is
depicted on the vertical axis.

Figure 7.1: Achievable parallelism by the GC for QISA instructions, at fclk = 55MHz

It is evident that the quantum execution time varies significantly among the listed instructions. Slower
instructions such as QgateCC and SwapEC exhibit high parallelism, while faster ones like QgateE and
initialise necessitate the GC to address them in the subsequent clock cycle. Without considering the
statistical frequency of each instruction, the model suggests that an initial average of 23605 LCs can be
simultaneously addressed by the GC, a result that exceeds the design target of 1000 LCs technically
addressable by the encoding format (Sec.4.3). To obtain an optimized architecture in line with the re-
quirements, two critical factors, namely operating frequency and communication delay, must be further
analyzed.

Firstly, the presented simplified formula disregards communication delays, failing to account for the
significant latency of the system. By introducing a fixed and explanatory 1µs Round-Trip Time delay
time, it becomes evident that instructions with exceptionally swift execution times (Tqex) can enhance
their parallelism. In this scenario, the instruction initialise reaches a parallelism of 56 LCs.

Secondly, the tuning of operating frequencies for both the Global and Local Controllers allows the
adjustment of parallelism value. In particular, the parallelism value is directly proportional to the GC
frequency, allowing for flexible scaling of parallelism for each instruction. For example, reducing the
GC clock frequency to 5.5MHz allows the same architecture to control 2364 LCs concurrently. Addi-
tionally, tuning the LC frequency leads to a secondary effect that particularly impacts the parallelism of
instructions with extremely fast execution times. For instance, lowering the LCs frequency to 100KHz,
for example to limit their power consumption, results in an increased average parallelism of 23971 LCs.
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In conclusion, the model provides valuable insights into the efficacy of the Global Controller and the
system’s parallelism. Selecting appropriate values for all these parameters is imperative in the final
system design to meet the parallelism requirement, either considering the entire QISA with the average
as a target or ensuring parallelism ≥ 1000 for each instruction.

7.3. Conclusion
This chapter presented the evaluation of the proposed Global Controller architecture, which aims to
provide a scalable and efficient solution for the coordination of multiple Local Controllers in a distributed
system. The evaluation consisted of two parts: software simulations and model evaluations.

The software simulations were performed using Vivado, and they tested the functionality of the de-
sign under different scenarios and parameters. The results showed how the core behaves when loaded
with different instructions and demonstrated the robustness of the controller. The model evaluations,
on the other hand, offered a more abstract view of the system’s performance, estimating its parallelism.
The partial results suggest a potentially significant achievable parallelism for the GC, but that it can be
tuned by considering factors such as communication delays and clock frequency in the system.

In conclusion, this chapter validated the feasibility and effectiveness of the proposed global controller
architecture and provided some insights into its strengths and weaknesses. This analysis can be used
to further improve the design and pave the way for future research in quantum computing. The next
chapter will discuss future work and possible extensions of this research.



8
Conclusion

The last chapter of this thesis concludes the work. In Section 8.1, a summary of each chapter will
be provided. Section 8.2 presents the main contribution of the thesis. Eventually, Section 8.3 lists
suggestions for future work.

8.1. Summary
This section provides a summary of the proposed work.

• Chapter 2 provides essential background knowledge for understanding the thesis work. It covers
Quantum Information Theory (Sec.2.1), including principles of quantum computing. NV Center
Quantum Computers (Sec.2.2) are explored, focusing on qubits and control mechanisms like
analog (Sec.2.2.2) and digital control (Sec.2.2.3). The chapter also introduces the RISC-V In-
struction Set Architecture (Sec.2.3). This foundation enables subsequent chapters to delve into
the implementation of control electronics in quantum computers.

• Chapter 3 develops a mathematical model for optimizing the allocation of local controllers to
global controllers in the Digital Control Layer. It explores control plane modeling, including in-
struction execution (Sec.3.1) and time diagrams for ideal, processing, and communication sce-
narios (Sec.3.2.1 - 3.2.3). This model will be utilized in the subsequent thesis work to evaluate
the design of the global controller and its performance.

• Chapter 4 integrates the diamond QISA into the qRV32 architecture. It introduces RISC-V exten-
sions (Sec.4.1) and theDiamondQISA (Sec.4.2). The qRV32 ISE is explored, covering instruction
encodings (Sec.4.3.1) and communication with Local Controllers (Sec.4.3.2). Three encoding op-
tions are analyzed, considering factors like hardware complexity. The communication protocol
between the Global Controller and the Local Controllers is discussed, highlighting the structure
of the communication message and encoding approaches. Encoding C and the variable-length
packet scheme are selected for the design.

• Chapter 5 delves into the hardware implementation phase, which follows the design of the qRV32
ISE discussed in the previous chapter. It surveys various 32-bit RISC-V cores (Sec.5.1) and
presents the design of the Global Controller (Sec.5.2), including its architecture (Sec.5.2.2) and
tailored functional units (Sec.5.2.3). The chapter also covers the design of the Soc (Sec.5.3), ad-
dressing aspects such as system memory (Sec.5.3.1) and UART interface (Sec.5.3.2). Through
this hardware implementation journey, the integration of the Global Controller with the necessary
peripherals is achieved. The SoC design presented here provides a minimal yet functional setup
for the GC Core.

• Chapter 6 describes the development of a custom assembler for qRV32 instructions, translating
quantum algorithms from the QISA level to machine-level code (Sec.6.1). It analyzes assembly-
level instructions and describes the development steps including opcode identification 6.2.1, the
substitution of pseudo-instructions (Sec.6.2.2), register management (Sec.6.2.3), and parameter
translation (Sec.6.2.4). The assembler’s successful implementation highlights its importance in
the quantum stack, enabling the execution of complex quantum computations on diamond-based
quantum computers (Sec.6.3).
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• Chapter 7 evaluates the proposed Global Controller design for coordinating multiple Local Con-
trollers in a distributed system. It includes software simulations using Vivado to assess the be-
havior of the Global Controller SoC (Sec.7.1), as well as model evaluations (Sec.7.2) of system
performance based on the control plane model (Ch.3). The results provide valuable insights into
the strengths and weaknesses of the Global Controller, facilitating further design enhancements
and future research in the field of quantum computing. The chapter concludes by discussing the
implications of the evaluation results (Sec.7.3), paving the way for future work and extensions in
this area.

8.2. Main contributions
In this section, the main contributions of this work are presented:

1. Developed a mathematical experimental model to estimate the achievable parallelism of
the control system. The model takes into account all the elements of the layered control system.
It is fundamental to estimate the capabilities of the system and allows evaluation of future design
choices.

2. Designed a RISC-V-compliant Instruction Set Extension for the control of a Diamond-based
quantum computer. To meet the first goal of this work, the structure and content of the QISA
proposed in [16] have been transposed into a novel RISC-V ISE, called qRV32. The final encoding
ensures compatibility with the requirements listed in Section 4.3.1. Three different encodings
have been explored and evaluated.

3. Defined a communication standard between GC and LC of the system: Local Controllers
are the final target of the QISA, as they control the NV centers. To correctly send controls and
data to the LCs, a 75-bit message has been structured, comprehending instruction parameters
and opcode. This met the second goal set for this thesis.

4. Designed the first version of the GC hardware, based on the CV32E40P core: A control
core and relative SoC have been designed to address the execution of qRV32 instructions. The
in-pipeline execution of custom instruction is achieved by the design of functional units, such as
the QDecoder, achieving the third objective of this work. The minimal SoC comprises instruction
and data memories, fundamental for the correct execution of quantum programs.

5. Developed a functional assembler targeting the qRV32 ISE: A functional assembler that trans-
lates assembly-level QISA instructions into machine-level qRV32 binary instructions has been de-
veloped in Python. The assembler plays a crucial role in bridging the gap between the high-level
representation of quantum algorithms and the low-level machine code required for their execution.

8.3. Future work
Despite the proposed ISE and the control core do meet the design goal set, future work can be done.

System On Chip
The proposed work only describes the initial step in the design of the complete Global Controller archi-
tecture, and additional work is required for the completion of the System On Chip. In particular, part of
the reason for choosing CV32E40P as the base core is its compatibility with the PULP project and its
SoCs. The GC core can, in fact, be integrated as part of the PULPissimo Micro-controller Unit (MCU)
to exploit the native DMA interface available.

Moreover, specific hardware must be designed to connect the GC and the LCs network. This can be
achieved by custom BUS or router systems, which can directly connect to the ports provided on the GC
core. In designing such structure, particular attention must be given to latency and power consumption,
due to the high number of elements and the size of the communication packet.

Assembler
The assembler currently employs a naive implementation that achieves the basic requirements of as-
sembling assembly code into machine code. However, several crucial areas remain to be addressed
to enhance the assembler’s overall performance and functionality.
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Firstly, optimizations must be explored and implemented to improve the efficiency of the translation
process, enabling the assembler to generate machine code more quickly and effectively. Addition-
ally, support for advanced features such as macros, conditional assembly, and modular programming
should be incorporated to enhance code reusability and maintainability. Furthermore, error handling
and reporting mechanisms need to be strengthened to provide more informative and user-friendly error
messages, aiding developers in debugging their assembly code effectively. Lastly, rigorous testing
and validation procedures are necessary to ensure the correctness and reliability of the assembler,
including the ability to handle edge cases and adhere to the specifications of the target architecture.

By addressing these areas, the assembler can evolve into a robust and high-performance tool,
offering developers a comprehensive and efficient solution for assembling assembly code to qRV32.

Toolchain
The integration of the assembler and the compiler developed in [16] poses an essential step in creating
a comprehensive software toolchain capable of generating object files from a high-level representation
of quantum algorithms. To accomplish this integration, a series of steps must be followed.

Initially, the compiler needs to be seamlessly integrated into the toolchain, necessitating the cre-
ation of a command-line interface or API that enables programmatic invocation of the compiler while
also defining the desired output format. As for the main assembler component, an open-source RISC-V
assembler must be selected, and its corresponding command-line interface or API identified for smooth
integration. Additionally, the qRV32 assembler, being a custom component, necessitates the develop-
ment of a command-line interface. Furthermore, the toolchain must be configured to pass the assembly
code generated by the standard assembler to the custom assembler for further processing. Lastly, the
object file generation process entails implementing a mechanism to merge or combine the output object
files generated by both the standard and custom assemblers into a single object file. Additionally, steps
need to be taken to address any conflicts that may arise concerning symbols or memory addresses
between the standard and custom assembly code.

By following these steps, a cohesive and powerful software toolchain can be created, enabling
efficient object file generation from a high-level quantum algorithm representation.
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A
QISA Instructions

This appendix contains the QISA proposed in [16] [40] and the relative measured quantum execution
times.

Instruction Parameters
set NV, register, value
qgateE NV, phase, angle
qgateZE NV, angle
qgateZC NV, C13, angle
qgateCC NV, C13, phase, angle
qgateUC NV, C13, phase, angle, preserve
qgateDIR NV, C13, phase, angle, dir
initialize NV
measureE NV
swapEC NV, C13
swapCE NV, C13, basis
entangle NV, direction
detectCarbon NV, sweepStart, sweepStep, sweepStop, measMax
magbias NV, sweepStart, sweepStep, sweepStop
rabicheck NV, sweepStart, sweepStep, sweepStop, measMax
crc NV

Table A.1: Proposed Quantum Instruction Set Architecture [16] [40]
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Instruction Quantum Execution time [s]
QgateE 2.70E-10
QgateCC 2.90E-03
QgateUC 1.45E-03
QgateDIR 1.45E-03
SwapEC 1.50E-03
initialise 6.00E-09
measureE 6.00E-09
magBias 5.00E-05
detectCarbon 7.40E-04
rabiCheck 6.27E-09
crc 5.00E-08

Table A.2: Measured quantum execution times. These preliminary values where provided by Folkert de Ronde (TU Delft,
QCE) at the start of the thesis project, and are taken as a reference.



B
qRV32 figures

B.1. qRV32 Parameters Analysis
The following table contains the description of the qrV32 parameters units and their order of magnitude.

Instruction Paramer Encoding Unit

qgate- phase < 16, 14 > unsigned π

angle < 16, 14 > unsigned π

magbias
sweepStart 16 bit unsigned MHz

sweepStep 16 bit unsigned KHz

sweepStop 16 bit unsigned MHz

detectcarbon

sweepStart 16 bit unsigned KHz

sweepStep 16 bit unsigned Hz

sweepStop 16 bit unsigned KHz

measAmt 16 bit unsigned -

rabicheck

sweepStart 16 bit unsigned ns

sweepStep 16 bit unsigned ps

sweepStop 16 bit unsigned ns

countMax 16 bit unsigned -

Table B.1: qrV32 parameters units and order of magnitude
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B.2. qRV32 Encoding Tables
This section presents the three different qrV32 encoding tables proposed in this report.

Table B.2: qRV32 Encoding A

31 - 30 29 - 27 26 - 23 22 - 19 18 - 16 15 - 10 9 - 7 6 0
0 0 x QRS2 QRS1 x NVNode 0 0 0 0 0 0 1 0 1 1 qgateE
0 1 x QRS2 QRS1 C13 NVNode 0 0 0 0 0 0 1 0 1 1 qgateCC
1 0 p QRS2 QRS1 C13 NVNode 0 0 0 0 0 0 1 0 1 1 qgateUC
1 1 d QRS2 QRS1 C13 NVNode 0 0 0 0 0 0 1 0 1 1 qgateDIR
0 0 x QRS2 QRS1 x NVNode 0 0 1 0 0 0 1 0 1 1 zgateE
1 1 x QRS2 QRS1 C13 NVNode 0 0 1 0 0 0 1 0 1 1 zgateCC

31 - 28 27 — 23 22 —- 19 18 - 16 15 —– 10 9 - 7 6 0
1 0 0 0 x QREG x NVNode 0 0 1 0 0 0 1 0 1 1 set
1 0 0 1 direction QREG x NVNode 0 0 1 0 0 0 1 0 1 1 entangle
1 0 1 0 x x x NVNode 0 0 1 0 0 0 1 0 1 1 initialize
1 0 1 1 x x C13 NVNode 0 0 1 0 0 0 1 0 1 1 measureE
1 1 0 0 x x C13 NVNode 0 0 1 0 0 0 1 0 1 1 swapEC
1 1 0 1 basis x C13 NVNode 0 0 1 0 0 0 1 0 1 1 swapCE
1 1 1 0 x x C13 NVNode 0 0 1 0 0 0 1 0 1 1 crc

31 — 28 27 — 24 23 — 20 19 — 16 15 —- 10 9 - 7 6 0
QREG 4 QREG 3 QREG 2 QREG 1 NVNode 0 1 0 0 0 0 1 0 1 1 detectC13
QREG 4 QREG 3 QREG 2 QREG 1 NVNode 0 1 1 0 0 0 1 0 1 1 magbias
QREG 4 QREG 3 QREG 2 QREG 1 NVNode 1 0 0 0 0 0 1 0 1 1 rabicheck

31 ————- 21 20 - 19 18 —– 14 13 —–10 8 - 7 6 0
immediate [11:0] 0 0 QREG2 QREG1 1 0 1 0 0 0 1 0 1 1 qld
immediate [11:0] 0 1 QREG2 QREG1 1 0 1 0 0 0 1 0 1 1 qst

x 1 0 gpREG QREG 1 0 1 0 0 0 1 0 1 1 move from

x 1 1 gpEG2 QREG 1 0 1 0 0 0 1 0 1 1 move to

31 ———————————– 16 15 - 14 13 — 10 8 - 7 6 0
immediate [14:0] x QREG1 1 1 1 0 0 0 1 0 1 1 qldi
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Table B.3: qRV32 Encoding B

31 — 27 26 ——————————— 14 13 - 10 9 - 7 6 0
1 1 1 1 1 NV node x 0 0 0 0 0 0 1 0 1 1 NV-choose

31 — 27 26 - 24 23 — 19 18 — 14 13 - 10 9 - 7 6 0
0 0 0 0 0 x QRS2 QRS1 x 0 0 0 0 0 0 1 0 1 1 qgateE
0 0 0 0 1 x QRS2 QRS1 C13 0 0 0 0 0 0 1 0 1 1 qgateCC
0 0 0 1 0 p QRS2 QRS1 C13 0 0 0 0 0 0 1 0 1 1 qgateUC
0 0 0 1 1 d QRS2 QRS1 C13 0 0 0 0 0 0 1 0 1 1 qgateDIR
0 0 1 0 0 x QRS2 QRS1 x 0 0 0 0 0 0 1 0 1 1 zgateE
0 0 1 0 1 x QRS2 QRS1 C13 0 0 0 0 0 0 1 0 1 1 zgateCC
0 0 1 1 0 x QRS2 QRS1 x 0 0 0 0 0 0 1 0 1 1 set
0 0 1 1 1 direct x x x 0 0 0 0 0 0 1 0 1 1 entangle
0 1 0 0 0 x x x x 0 0 0 0 0 0 1 0 1 1 initialize
0 1 0 0 1 x x x C13 0 0 0 0 0 0 1 0 1 1 measureE
0 1 0 1 0 x x x C13 0 0 0 0 0 0 1 0 1 1 swapEC
0 1 0 1 1 basis x x C13 0 0 0 0 0 0 1 0 1 1 swapCE
0 1 1 0 0 x x x x 0 0 0 0 0 0 1 0 1 1 crc

31 - 30 29 — 25 24 — 20 19 — 15 14 — 10 9 - 7 6 0
0 0 QREG 4 QREG 3 QREG 2 QREG 1 1 0 0 0 0 0 1 0 1 1 detectC13
0 1 QREG 4 QREG 3 QREG 2 QREG 1 1 0 0 0 0 0 1 0 1 1 magbias
1 0 QREG 4 QREG 3 QREG 2 QREG 1 1 0 0 0 0 0 1 0 1 1 rabicheck

31 ————- 21 20 - 19 18 —– 14 13 —–10 8 - 7 6 0
immediate [11:0] 0 0 QREG2 QREG1 1 0 1 0 0 0 1 0 1 1 qld
immediate [11:0] 0 1 QREG2 QREG1 1 0 1 0 0 0 1 0 1 1 qst

x 1 0 gpREG QREG 1 0 1 0 0 0 1 0 1 1 move from

x 1 1 gpEG2 QREG 1 0 1 0 0 0 1 0 1 1 move to

31 ———————————– 16 15 - 14 13 — 10 8 - 7 6 0
immediate [14:0] x QREG1 1 1 1 0 0 0 1 0 1 1 qldi
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Table B.4: qRV32 Encoding C

31 - 29 28 27 —– 24 23 ——– 19 18 ————————– 9 8 - 7 6 ———– 2 1 0
0 0 0 x x QREGs NVNode 0 0 0 0 0 1 0 1 1 QgateE
0 0 1 x C13 QREGs NVNode 0 0 0 0 0 1 0 1 1 QgateCC
0 1 0 P C13 QREGs NVNode 0 0 0 0 0 1 0 1 1 QgateUC
0 1 1 D C13 QREGs NVNode 0 0 0 0 0 1 0 1 1 QgateDIR
1 0 0 x x QREGs NVNode 0 0 0 0 0 1 0 1 1 ZgateE
1 0 1 x C13 QREGs NVNode 0 0 0 0 0 1 0 1 1 ZgateCC

31 30 —– 27 26 – 24 23 ——– 19 18 ————————– 9 8 - 7 6 ———– 2 1 0
1 0 0 0 1 x QREGs NVNode 0 1 0 0 0 1 0 1 1 detectC13
1 0 0 1 0 x QREGs NVNode 0 1 0 0 0 1 0 1 1 magBias
1 0 0 1 1 x QREGs NVNode 0 1 0 0 0 1 0 1 1 RabiCheck
1 0 1 0 0 x NVNode 0 1 0 0 0 1 0 1 1 initialise
1 0 1 0 1 x NVNode 0 1 0 0 0 1 0 1 1 measureE
1 0 1 1 0 x NVNode 0 1 0 0 0 1 0 1 1 crc
1 1 1 1 1 x NVNode 0 1 0 0 0 1 0 1 1 escape

31 30 —– 27 26 —– 23 22 21 20 19 18 ————————– 9 8 - 7 6 ———– 2 1 0
1 0 1 1 1 C13 basis x NVNode 0 1 0 0 0 1 0 1 1 swapCE
1 1 0 0 0 C13 x x NVNode 0 1 0 0 0 1 0 1 1 swapEC

31 30 29 28 27 26 – 24 23 ——– 19 18 ———————– 9 8 7 6 ——— 2 1 0
0 0 1 x direct x NVNode 0 1 0 0 0 1 0 1 1 entangle
0 0 0 LREG QREGs NVNode 0 1 0 0 0 1 0 1 1 set

31 30 29 28————24 23 ——— 19 18 ——————— 9 8 7 6 ——— 2 1 0
1 0 0 gpREGs QREGd x 1 0 0 0 0 1 0 1 1 move to
1 0 1 gpREGd QREGs x 1 0 0 0 0 1 0 1 1 move from

31 30 29 ———— 24 23 ——– 19 18 —– 14 13 ———– 9 8 7 6 ——— 2 1 0
0 0 imm[10:5] QREGd QREGs imm[4:0] 1 0 0 0 0 1 0 1 1 qld rd
0 1 imm[10:5] QREGs2 QREGs1 imm[4:0] 1 0 0 0 0 1 0 1 1 qst rs2

31 ——————— 24 23 —— 19 18 17 16 ——————– 9 8 7 6 ——— 2 1 0
immediate[15:8] QREGd sel immediate[7:0] 1 1 0 0 0 1 0 1 1 qldi
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B.3. qRV32 Global To Local Communication
This section explicates the encoding utilized in the global-to-local communication package.

Instruction Binary Encoding
qRV_reset_op 00000
qRV_escape 11111
qRV_QgateE 00001
qRV_QgateCC 00010
qRV_QgateUC 00011
qRV_QgateDIR 00100
qRV_ZgateE 00101
qRV_ZgateCC 00110
qRV_set 00111
qRV_ent 01000
qRV_detectC 01001
qRV_magBias 01010
qRV_RabiCheck 01011
qRV_init 01100
qRV_measurE 01101
qRV_crc 01110
qRV_swapEC 01111
qRV_swapCE 10000
qRV_ld 10001
qRV_st 10010
qRV_mv_to_q 10011
qRV_mv_from_q 10100
qRV_ldi 10101

Table B.5: qRV32 opcode-field encoding



C
GC & SoC HDL design

C.1. Global Controller
This section contains snippets of SystemVerilog code that describes the Global Controller hardware.

QDecoder
3051

3052 ///////////////////////////////////////////////
3053 ///////////////////////////////////////////////
3054 // qRV32 custom instructions //
3055 ///////////////////////////////////////////////
3056 ///////////////////////////////////////////////
3057

3058 OPCODE_CUST0: begin
3059 //decoding of the first 2 bits of the instruction
3060 unique case (instr_rdata_i[8:7])
3061 2'b00: begin
3062 //routing fixed parts of the instruction
3063 NVnode = instr_rdata_i[18:9]; //node address
3064 qReg_rAddr = instr_rdata_i[23:19]; //quantum register address
3065 //decoding of the last 3 bits of the instruction
3066 unique case (instr_rdata_i[31:29])
3067 3'b000: begin //instruction 1: QgateE
3068 qOP = qRV_QgateE; //internal operation code
3069 end
3070 3'b001: begin //instruction 2: QgateCC
3071 qOP = qRV_QgateCC;
3072 qParameters = instr_rdata_i[29:24];
3073 end
3074 3'b010: begin //instruction 3: QgateUC
3075 qOP = qRV_QgateUC;
3076 qParameters = instr_rdata_i[29:24];
3077 end
3078 3'b011: begin //instruction 4: QgateDIR
3079 qOP = qRV_QgateDIR;
3080 qParameters = instr_rdata_i[29:24];
3081 end
3082 3'b100: begin //instruction 5: ZgateE
3083 qOP = qRV_ZgateE;
3084 end
3085 3'b101: begin //instruction 6: ZgateCC
3086 qOP = qRV_ZgateCC;
3087 qParameters = instr_rdata_i[29:24];
3088 end
3089 default: begin
3090 illegal_insn_o = 1'b1;
3091 end
3092 endcase
3093 end
3094 2'b01: begin

54
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3095 //routing fixed parts of the instruction
3096 NVnode = instr_rdata_i[18:9];
3097 //decoding of the last bit of the instruction
3098 unique case (instr_rdata_i[31])
3099

3100 1'b0: begin
3101 //decoding of bits 29 to 30 of the instruction
3102 unique case (instr_rdata_i[30:29])
3103 2'b00: begin //instruction 7: set
3104 qOP = qRV_set;
3105 qReg_rAddr = instr_rdata_i[23:19];
3106 qParameters = instr_rdata_i[29:24];
3107 end
3108 2'b01: begin //instruction 8: entangle
3109 qOP = qRV_ent;
3110 qParameters = instr_rdata_i[29:24];
3111 end
3112 default: begin
3113 illegal_insn_o = 1'b1;
3114 end
3115 endcase
3116 end
3117 1'b1: begin
3118 //routing fixed parts of the instruction
3119 NVnode = instr_rdata_i[18:9];
3120 //decoding of bits 27 to 30 of the instruction
3121 unique case (instr_rdata_i[30:27])
3122 4'b0001: begin //instruction 10: detectC13
3123 qOP = qRV_detectC;
3124 qReg_rAddr = instr_rdata_i[23:19];
3125 end
3126 4'b0010: begin //instruction 11: magneticBiasing
3127 qOP = qRV_magBias;
3128 qReg_rAddr = instr_rdata_i[23:19];
3129 end
3130 4'b0011: begin //instruction 12: RabiCheck
3131 qOP = qRV_RabiCheck;
3132 qReg_rAddr = instr_rdata_i[23:19];
3133 end
3134 4'b0100: begin //instruction 13: initialise
3135 qOP = qRV_init;
3136 //no additional parameters
3137 end
3138 4'b0101: begin //instruction 14: measureE
3139 qOP = qRV_measurE;
3140 //no additional parameters
3141 end
3142 4'b0110: begin //instruction 15: crc
3143 qOP = qRV_crc;
3144 //no additional parameters
3145 end
3146 4'b0111: begin //instruction 16: swapCE
3147 qOP = qRV_swapCE;
3148 qParameters = instr_rdata_i[26:21];
3149 end
3150 4'b1000: begin //instruction 17: swapEC
3151 qOP = qRV_swapEC;
3152 qParameters = instr_rdata_i[26:21];
3153 end
3154 4'b1111: begin //instruction 19: escape
3155 qOP = qRV_escape;
3156 //leave empty
3157 end
3158 endcase
3159 end
3160 default: begin
3161 illegal_insn_o = 1'b1;
3162 end
3163

3164 endcase //instr_rdata_i[31]
3165 end // minor opcode = 01
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3166 2'b10: begin
3167 //decoding bits 31 and 30 of the instruction
3168 unique case ({instr_rdata_i[31:30]})
3169 2'b00: begin //instruction 20: qld
3170 qOP = qRV_ld;
3171 data_req = 1'b1; //communication requested with memory
3172 data_sign_extension_o = 2'b00; //no sign extension on red data
3173 data_type_o = 2'b00; //load word
3174 data_load_event_o = 1'b1; //load event
3175

3176 qReg_mem_we = 1'b1; //w_en to qReg
3177 qReg_mem_wAddr = instr_rdata_i[23:19]; //write address to qReg mem port (

destination register)
3178 qReg_mem_rAddr = instr_rdata_i[18:14]; //read address to qReg mem port (memory

base address)
3179

3180 //using existing hardware paths to the WB stage (LSU)
3181 alu_op_a_mux_sel_o = OP_A_REGA_OR_FWD;
3182 //operand_a_fw_mux_sel = SEL_QREGFILE; //this comes from the controller
3183 imm_b_mux_sel_o = IMMB_QREG; //send immediate field to LSU
3184 alu_op_b_mux_sel_o = OP_B_IMM;
3185 alu_operator_o = ALU_ADD;
3186 end
3187 2'b01: begin //instruction 21: qst
3188 qOP = qRV_st;
3189 data_req = 1'b1; //communication requested with memory
3190 data_we_o = 1'b1; //write to memory
3191 data_type_o = 2'b00; //store word
3192

3193 qReg_mem_rAddr = instr_rdata_i[23:19]; //read wdata from qReg2
3194 qReg_mem2_rAddr = instr_rdata_i[18:14]; //read memory base address from qReg1
3195

3196 alu_op_a_mux_sel_o = OP_A_REGA_OR_FWD; //send address to LSU (
qReg_mem2_rAddr)

3197 //operand_a_fw_mux_sel = SEL_QREGFILE;
3198 imm_b_mux_sel_o = IMMB_QREG; //send immediate field to LSU
3199 alu_op_b_mux_sel_o = OP_B_IMM;
3200 alu_op_c_mux_sel_o = OP_C_REGC_OR_FWD; //send write data to LSU (

qReg_mem_rAddr)
3201 //operand_a_fw_mux_sel = SEL_QREGFILE;
3202 alu_operator_o = ALU_ADD;
3203 end
3204 2'b10: begin //instruction 18: move
3205 unique case (instr_rdata_i[29])
3206 1'b0: begin //move to qReg: 18a
3207 qOP = qRV_mv_to_q;
3208 //read from regfile B port and send data to EX stage for qReg
3209 //done at id stage level
3210 //send address and we to EX stage for qReg
3211 qReg_mem_we = 1'b1;
3212 qReg_mem_wAddr = instr_rdata_i[23:19];
3213 //route the data to the output port of ID stage: opA = 0, opB = regfile port

B rData
3214 alu_op_a_mux_sel_o = OP_A_IMM;
3215 imm_a_mux_sel_o = IMMA_ZERO;
3216 alu_op_b_mux_sel_o = OP_B_REGB_OR_FWD;
3217 //operand_b_fw_mux_sel = SEL_REGFILE; //this comes from the controller
3218 alu_operator_o = ALU_ADD;
3219 end
3220 1'b1: begin //move from qReg. 18b
3221 qOP = qRV_mv_from_q;
3222 //read from qReg mv port and send data to EX stage for regfile
3223 qReg_mem_rAddr = instr_rdata_i[23:19]; //32bit data
3224 //send address and we to EX stage for regfile
3225 regfile_alu_we = 1'b1;
3226 //route the data to the output port of ID stage: opA = 0, opB = qReg_mv_rData
3227 alu_op_a_mux_sel_o = OP_A_IMM;
3228 imm_a_mux_sel_o = IMMA_ZERO;
3229 alu_op_b_mux_sel_o = OP_B_REGB_OR_FWD;
3230 //operand_b_fw_mux_sel = SEL_QREGFILE; //this comes from the

controller
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3231 alu_operator_o = ALU_ADD;
3232 end
3233 default: begin
3234 illegal_insn_o = 1'b1;
3235 end
3236 endcase
3237 end
3238

3239 default: begin
3240 illegal_insn_o = 1'b1;
3241 end
3242 endcase
3243

3244 end
3245 2'b11: begin //instruction 22: qldi
3246 qOP = qRV_ldi;
3247 qReg_wAddr = instr_rdata_i[23:19];
3248 qReg_sel = instr_rdata_i[18:17]; //selecting the sub-qReg to write on
3249 qReg_we = 1'b1;
3250 alu_op_a_mux_sel_o = OP_A_IMM;
3251 alu_op_b_mux_sel_o = OP_B_IMM;
3252 imm_a_mux_sel_o = IMMA_ZERO;
3253 imm_b_mux_sel_o = IMMB_QLDI;
3254 alu_operator_o = ALU_ADD;
3255 end
3256 default: begin
3257 illegal_insn_o = 1'b1;
3258 end
3259 endcase
3260

3261 end // case: OPCODE_CUST0
Listing C.1: QDecoder logic - cv32e40p_id_stage.sv

QREG File
1

2 ////////////////////////////////////////////////////////////////////////////////
3 // Engineer: Jacopo Costantini - j.costantini@student.tudelft.nl //
4 // //
5 // //
6 // Design Name: qRV register file //
7 // Project Name: qRV ISA extension //
8 // Language: SystemVerilog //
9 // //
10 // Description: Register file with 32x 64-bit wide registers, made of 4 //
11 // sub-registers each, independently writeable. //
12 // Is suggested to always perform 4x 16-bit ldi operations. //
13 // One read port, 64-bit wide; one write port 16-bit wide. //
14 // Two additional ports are provided for mv instructions //
15 // (one read, one write, 32-bit wide). //
16 // This register file is based on flip-flops. //
17 // Read is combinational, write is sequential. //
18 // //
19 ////////////////////////////////////////////////////////////////////////////////
20

21 module qRV_qregister_file #(
22 parameter ADDR_WIDTH = 5,
23 parameter DATA_WIDTH_R = 64, // 64-bit wide read port
24 parameter DATA_WIDTH_W = 16, // 16-bit wide write port
25 parameter DATA_WIDTH_M = 32 // 32-bit wide ports for move instructions
26 ) (
27 // Clock and Reset
28 input logic clk,
29 input logic rst_n,
30

31 //Read port R1
32 input logic [ADDR_WIDTH-1:0] raddr_i,
33 output logic [DATA_WIDTH_R-1:0] rdata_o,
34

35 // Write port W1
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36 input logic [ADDR_WIDTH-1:0] waddr_i, // write address
37 input logic [1:0] wsel_i, // write sub-reg select
38 input logic [DATA_WIDTH_W-1:0] wdata_i, // write data
39 input logic we_i, // write enable
40

41 //Read port R2 (32bit)
42 input logic [ADDR_WIDTH-1:0] raddr_mem_i,
43 output logic [DATA_WIDTH_M-1:0] rdata_mem_o,
44

45 //Read port R3 (32bit)
46 input logic [ADDR_WIDTH-1:0] raddr_mem2_i,
47 output logic [DATA_WIDTH_M-1:0] rdata_mem2_o,
48

49 //Write port W2 (32bit)
50 input logic [ADDR_WIDTH-1:0] waddr_mem_i,
51 input logic [DATA_WIDTH_M-1:0] wdata_mem_i,
52 input logic we_mem_i
53

54

55 );
56

57 // number of integer registers
58 localparam NUM_WORDS = 2 ** (ADDR_WIDTH); //2^5 = 32 registers
59

60 // integer register file
61 logic [NUM_WORDS-1:0][DATA_WIDTH_R-1:0] mem; // 32x 64-bit wide registers - "mem"
62

63 // masked write addresses
64 logic [ADDR_WIDTH-1:0] waddr; // masked write address - "waddr"
65 logic [ADDR_WIDTH-1:0] waddr_mem; // masked write address for 32bit ports - "

waddr_mem"
66

67 // write enable signals for all registers
68 logic [NUM_WORDS-1:0] we_dec; // write enable signals for all registers - "

we_dec"
69 logic [NUM_WORDS-1:0] we_mem_dec; // write enable signals for all registers -

"we_mem_dec"
70

71

72 //-----------------------------------------------------------------------------
73 //-- READ : Read address decoder RAD
74 //-----------------------------------------------------------------------------
75 assign rdata_o = mem[raddr_i];
76 assign rdata_mem_o = mem[raddr_mem_i][31:0]; // read out only lower 32 bits of the

register
77 assign rdata_mem2_o = mem[raddr_mem2_i][31:0]; // read out only lower 32 bits of the

register
78

79

80 //-----------------------------------------------------------------------------
81 //-- WRITE : Write Address Decoder (WAD), combinatorial process
82 //-----------------------------------------------------------------------------
83

84 // Mask top bit of write address to disable fp regfile
85 assign waddr = waddr_i;
86 assign waddr_mem = waddr_mem_i;
87

88 genvar reg_index;
89 generate
90 for (reg_index = 0; reg_index < NUM_WORDS; reg_index++) begin : gen_we_decoder
91 assign we_dec[reg_index] = (waddr == reg_index) ? we_i : 1'b0;
92 assign we_mem_dec[reg_index] = (waddr_mem == reg_index) ? we_mem_i : 1'b0;
93 end
94 endgenerate
95

96 genvar i;
97 generate
98 //-----------------------------------------------------------------------------
99 //-- WRITE : Write operation
100 //-----------------------------------------------------------------------------
101
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102 // all 32 registers
103 for (i = 0; i < NUM_WORDS; i++) begin : gen_rf
104

105 always_ff @(posedge clk, negedge rst_n) begin : register_write_behavioral
106 if (rst_n == 1'b0) begin // reset
107 mem[i] <= 64'b0;
108

109 end else begin // normal operation
110 if (we_dec[i] == 1'b1)
111 unique case (wsel_i)
112 2'b00:
113 mem[i][15: 0] <= wdata_i;
114 2'b01:
115 mem[i][31:16] <= wdata_i;
116 2'b10:
117 mem[i][47:32] <= wdata_i;
118 2'b11:
119 mem[i][63:48] <= wdata_i;
120 endcase
121

122 // write to the register for mem instruction
123 else if (we_mem_dec[i] == 1'b1)
124 mem[i] <= {32'b0, wdata_mem_i}; // write to the lower 32 bits of the register
125

126 end
127 end
128

129 end
130

131 endgenerate
132

133 endmodule
Listing C.2: QREG file - qRV_register_file_ff.sv

Packet manager
1

2 ////////////////////////////////////////////////////////////////////////////////
3 // Engineer: Jacopo Costantini - j.costantini@student.tudelft.nl //
4 // //
5 // //
6 // Design Name: qRV imm_params manager //
7 // Project Name: qRV ISA extension //
8 // Language: SystemVerilog //
9 // //
10 // Description: Quantum imm_params manager, assembler and router of data //
11 // imm_paramss to the NV nodes. Uses the OBI adapter. //
12 // //
13 ////////////////////////////////////////////////////////////////////////////////
14

15 module qRV_master
16 import cv32e40p_pkg::*;
17 import cv32e40p_apu_core_pkg::*;
18 import qRV_pkg::*;
19 #(
20 parameter nodes = 1024,
21 parameter ADDR_WIDTH = $clog2(nodes),
22 parameter DATA_WIDTH = 75,
23 parameter words = 19
24 ) (
25

26 input logic clk,
27 input logic rst_n,
28

29 //inputs from the EX stage
30 input logic [63:0] reg_params_i,
31 input logic [ 5:0] imm_params_i,
32 input qRV_op opcode_i,
33 input logic [ 9:0] node_addr_i,
34
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35 //output to the bus interface
36 output logic slave_en_o,
37 output logic [ 9:0] node_addr_o,
38 output logic [74:0] packet_o
39

40 );
41

42 ///////////////////////////////// PACKET ASSEMBLER /////////////////////////////////
43 logic [75:0] packet;
44 logic [ 5:0] imm_params;
45 logic slave_en;
46

47 always @ (opcode_i)
48 begin
49 if (opcode_i == qRV_ldi || opcode_i == qRV_st || opcode_i == qRV_ld || opcode_i ==

qRV_mv_to_q
50 || opcode_i == qRV_mv_from_q || opcode_i == qRV_reset_op) begin
51 packet = '0;
52 slave_en = 1'b0;
53

54 end else begin
55 slave_en = 1'b1;
56 unique case (opcode_i) //some (default) cases are just included for

completetness
57 qRV_QgateE: begin
58 imm_params = 5'b00000;
59 packet = {imm_params, reg_params_i, opcode_i};
60 end
61 qRV_QgateCC: begin
62 imm_params = {2'b00, imm_params_i[3:0]}; //C13
63 packet = {imm_params, reg_params_i, opcode_i};
64 end
65 qRV_QgateUC: begin
66 imm_params = {1'b0, imm_params_i[4], imm_params_i[3:0]}; //P,C13
67 packet = {imm_params, reg_params_i, opcode_i};
68 end
69 qRV_QgateDIR: begin
70 imm_params = {1'b0, imm_params_i[4], imm_params_i[3:0]}; //D,C13
71 packet = {imm_params, reg_params_i, opcode_i};
72 end
73 qRV_ZgateE: begin
74 imm_params = 5'b00000;
75 packet = {imm_params, reg_params_i, opcode_i};
76 end
77 qRV_ZgateCC: begin
78 imm_params = {2'b00, imm_params_i[3:0]}; //C13
79 packet = {imm_params, reg_params_i, opcode_i};
80 end
81

82 qRV_swapEC: begin
83 imm_params = {imm_params_i[1:0], imm_params_i[5:2]}; //basis,

C13
84 packet = {imm_params, reg_params_i, opcode_i};
85 end
86 qRV_swapCE: begin
87 imm_params = {2'b00, imm_params_i[5:2]}; //C13
88 packet = {imm_params, reg_params_i, opcode_i};
89 end
90

91 qRV_set: begin
92 imm_params = {1'b0, imm_params_i[4:0]}; //local

register
93 packet = {imm_params, reg_params_i, opcode_i};
94 end
95 qRV_ent: begin
96 imm_params = {3'b000, imm_params_i[2:0]}; //ent

direction
97 packet = {imm_params, reg_params_i, opcode_i};
98 end
99

100 default: begin //detectC13, magBias, RabiCheck, init, measureE, crc, escape...
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101 imm_params = 5'b00000;
102 packet = {imm_params, reg_params_i, opcode_i};
103 end
104 endcase //end case
105 end //end if
106 end; //packet assemblers
107

108 ///////////////////////////////// PACKET ROUTER /////////////////////////////////
109 always_ff @(posedge clk or negedge rst_n) begin
110 if (~rst_n) begin
111 node_addr_o <= 10'b0;
112 packet_o <= 75'b0;
113 slave_en_o <= 1'b0;
114 end else begin
115 node_addr_o <= node_addr_i;
116 packet_o <= packet;
117 slave_en_o <= slave_en;
118 end
119 end
120

121

122

123 endmodule

Listing C.3: qRV32 Packet Manager - qRV_master.sv

Forwarding logic
670

671 ////////////////////////////////////////////////////////
672 // ___ _ _ //
673 // / _ \ _ __ ___ _ __ __ _ _ __ __| | / \ //
674 // | | | | '_ \ / _ \ '__/ _` | '_ \ / _` | / _ \ //
675 // | |_| | |_) | __/ | | (_| | | | | (_| | / ___ \ //
676 // \___/| .__/ \___|_| \__,_|_| |_|\__,_| /_/ \_\ //
677 // |_| //
678 ////////////////////////////////////////////////////////
679

680 // ALU_Op_a Mux
681 always_comb begin : alu_operand_a_mux // alu_operand_a_mux is the input to the ALU for

operand A
682 case (alu_op_a_mux_sel) // alu_op_a_mux_sel is the control signal for the

mux
683 OP_A_REGA_OR_FWD: alu_operand_a = operand_a_fw_id; //alu_operand_a = operand a

forwarded
684 OP_A_REGB_OR_FWD: alu_operand_a = operand_b_fw_id; //alu_operand_a = operand b

forwarded
685 OP_A_REGC_OR_FWD: alu_operand_a = operand_c_fw_id; //alu_operand_a = operand c

forwarded
686 OP_A_CURRPC: alu_operand_a = pc_id_i; //alu_operand_a = program counter
687 OP_A_IMM: alu_operand_a = imm_a; //alu_operand_a = immediate
688 default: alu_operand_a = operand_a_fw_id;
689 endcase
690 ; // case (alu_op_a_mux_sel)
691 end
692

693 always_comb begin : immediate_a_mux // immediate_a_mux is the input to the ALU for
operand A (for the immediate)

694 unique case (imm_a_mux_sel) // imm_a_mux_sel is the control signal for the mux
695 IMMA_Z: imm_a = imm_z_type; //imm_a = immediate z
696 IMMA_ZERO: imm_a = '0; //imm_a = 0 for load immediate instructions
697 endcase
698 end
699

700 // Operand a forwarding mux
701 always_comb begin : operand_a_fw_mux // operand_a_fw_mux is the input to the ALU for

operand A (for the forwarding)
702 case (operand_a_fw_mux_sel) // operand_a_fw_mux_sel is the control signal for

the mux
703 SEL_FW_EX: operand_a_fw_id = regfile_alu_wdata_fw_i; //forward alu result
704 SEL_FW_WB: operand_a_fw_id = regfile_wdata_wb_i; //forward writeback result
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705 SEL_REGFILE: operand_a_fw_id = regfile_data_ra_id; //forward register file
read data port A

706 SEL_QREGFILE: operand_a_fw_id = qReg_mem2_rData_id; //forward qregister file
read data port MEM

707 default: operand_a_fw_id = regfile_data_ra_id;
708 endcase
709 ; // case (operand_a_fw_mux_sel)
710 end
711

712 //////////////////////////////////////////////////////
713 // ___ _ ____ //
714 // / _ \ _ __ ___ _ __ __ _ _ __ __| | | __ ) //
715 // | | | | '_ \ / _ \ '__/ _` | '_ \ / _` | | _ \ //
716 // | |_| | |_) | __/ | | (_| | | | | (_| | | |_) | //
717 // \___/| .__/ \___|_| \__,_|_| |_|\__,_| |____/ //
718 // |_| //
719 //////////////////////////////////////////////////////
720

721 // Immediate Mux for operand B
722 always_comb begin : immediate_b_mux
723 unique case (imm_b_mux_sel)
724 IMMB_I: imm_b = imm_i_type;
725 IMMB_S: imm_b = imm_s_type;
726 IMMB_U: imm_b = imm_u_type;
727 IMMB_PCINCR: imm_b = is_compressed_i ? 32'h2 : 32'h4;
728 IMMB_S2: imm_b = imm_s2_type;
729 IMMB_BI: imm_b = imm_bi_type;
730 IMMB_S3: imm_b = imm_s3_type;
731 IMMB_VS: imm_b = imm_vs_type;
732 IMMB_VU: imm_b = imm_vu_type;
733 IMMB_SHUF: imm_b = imm_shuffle_type;
734 IMMB_CLIP: imm_b = {1'b0, imm_clip_type[31:1]};
735 IMMB_QREG: imm_b = imm_qmem_type;
736 IMMB_QLDI: imm_b = imm_qldi_type;
737 default: imm_b = imm_i_type;
738 endcase
739 end
740

741 // ALU_Op_b Mux
742 always_comb begin : alu_operand_b_mux
743 case (alu_op_b_mux_sel)
744 OP_B_REGA_OR_FWD: operand_b = operand_a_fw_id;
745 OP_B_REGB_OR_FWD: operand_b = operand_b_fw_id;
746 OP_B_REGC_OR_FWD: operand_b = operand_c_fw_id;
747 OP_B_IMM: operand_b = imm_b;
748 OP_B_BMASK: operand_b = $unsigned(operand_b_fw_id[4:0]);
749 default: operand_b = operand_b_fw_id;
750 endcase // case (alu_op_b_mux_sel)
751 end
752

753

754 // scalar replication for operand B and shuffle type
755 always_comb begin // operand_b_vec is the replicated operand B
756 if (alu_vec_mode == VEC_MODE8) begin // VEC_MODE8 is 8-bit vector mode
757 operand_b_vec = {4{operand_b[7:0]}};
758 imm_shuffle_type = imm_shuffleb_type;
759 end else begin // VEC_MODE16 is 16-bit vector mode
760 operand_b_vec = {2{operand_b[15:0]}};
761 imm_shuffle_type = imm_shuffleh_type;
762 end
763 end
764

765 // choose normal or scalar replicated version of operand b
766 assign alu_operand_b = (scalar_replication == 1'b1) ? operand_b_vec : operand_b;
767

768 // Operand b forwarding mux
769 always_comb begin : operand_b_fw_mux
770 case (operand_b_fw_mux_sel)
771 SEL_FW_EX: operand_b_fw_id = regfile_alu_wdata_fw_i;
772 SEL_FW_WB: operand_b_fw_id = regfile_wdata_wb_i; // regfile_wdata_wb_i is the

write data for the writeback stage
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773 SEL_REGFILE: operand_b_fw_id = regfile_data_rb_id;
774 SEL_QREGFILE: operand_b_fw_id = qReg_mem_rData_id;
775 default: operand_b_fw_id = regfile_data_rb_id;
776 endcase
777 ; // case (operand_b_fw_mux_sel)
778 end
779

780

781 //////////////////////////////////////////////////////
782 // ___ _ ____ //
783 // / _ \ _ __ ___ _ __ __ _ _ __ __| | / ___| //
784 // | | | | '_ \ / _ \ '__/ _` | '_ \ / _` | | | //
785 // | |_| | |_) | __/ | | (_| | | | | (_| | | |___ //
786 // \___/| .__/ \___|_| \__,_|_| |_|\__,_| \____| //
787 // |_| //
788 //////////////////////////////////////////////////////
789

790 // ALU OP C Mux
791 always_comb begin : alu_operand_c_mux
792 case (alu_op_c_mux_sel)
793 OP_C_REGC_OR_FWD: operand_c = operand_c_fw_id;
794 OP_C_REGB_OR_FWD: operand_c = operand_b_fw_id;
795 OP_C_JT: operand_c = jump_target;
796 default: operand_c = operand_c_fw_id;
797 endcase // case (alu_op_c_mux_sel)
798 end
799

800

801 // scalar replication for operand C and shuffle type
802 always_comb begin
803 if (alu_vec_mode == VEC_MODE8) begin
804 operand_c_vec = {4{operand_c[7:0]}};
805 end else begin
806 operand_c_vec = {2{operand_c[15:0]}};
807 end
808 end
809

810 // choose normal or scalar replicated version of operand b
811 assign alu_operand_c = (scalar_replication_c == 1'b1) ? operand_c_vec : operand_c;
812

813

814 // Operand c forwarding mux
815 always_comb begin : operand_c_fw_mux
816 case (operand_c_fw_mux_sel)
817 SEL_FW_EX: operand_c_fw_id = regfile_alu_wdata_fw_i;
818 SEL_FW_WB: operand_c_fw_id = regfile_wdata_wb_i;
819 SEL_REGFILE: operand_c_fw_id = regfile_data_rc_id;
820 SEL_QREGFILE: operand_c_fw_id = qReg_mem_rData_id;
821 default: operand_c_fw_id = regfile_data_rc_id;
822 endcase
823 ; // case (operand_c_fw_mux_sel)
824 end

Listing C.4: Forwarding multiplexers - cv32e40p_id_stage.sv

1363 // Forwarding control unit
1364 always_comb
1365 begin
1366 // default assignements
1367 operand_a_fw_mux_sel_o = SEL_REGFILE;
1368 operand_b_fw_mux_sel_o = SEL_REGFILE;
1369 operand_c_fw_mux_sel_o = SEL_REGFILE;
1370

1371 unique case (qRV_op_i)
1372 qRV_mv_from_q: begin
1373 operand_b_fw_mux_sel_o = SEL_QREGFILE;
1374 end
1375 qRV_ld: begin
1376 operand_a_fw_mux_sel_o = SEL_QREGFILE;
1377 end
1378 qRV_st: begin
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1379 operand_a_fw_mux_sel_o = SEL_QREGFILE;
1380 operand_c_fw_mux_sel_o = SEL_QREGFILE;
1381 end
1382 default: begin
1383 // default assignements
1384 operand_a_fw_mux_sel_o = SEL_REGFILE;
1385 operand_b_fw_mux_sel_o = SEL_REGFILE;
1386 operand_c_fw_mux_sel_o = SEL_REGFILE;
1387 end
1388 endcase
1389

1390 // Forwarding WB -> ID
1391 if (regfile_we_wb_i == 1'b1)
1392 begin
1393 if (reg_d_wb_is_reg_a_i == 1'b1)
1394 operand_a_fw_mux_sel_o = SEL_FW_WB;
1395 if (reg_d_wb_is_reg_b_i == 1'b1)
1396 operand_b_fw_mux_sel_o = SEL_FW_WB;
1397 if (reg_d_wb_is_reg_c_i == 1'b1)
1398 operand_c_fw_mux_sel_o = SEL_FW_WB;
1399 end
1400

1401 // Forwarding EX -> ID
1402 if (regfile_alu_we_fw_i == 1'b1)
1403 begin
1404 if (reg_d_alu_is_reg_a_i == 1'b1)
1405 operand_a_fw_mux_sel_o = SEL_FW_EX;
1406 if (reg_d_alu_is_reg_b_i == 1'b1)
1407 operand_b_fw_mux_sel_o = SEL_FW_EX;
1408 if (reg_d_alu_is_reg_c_i == 1'b1)
1409 operand_c_fw_mux_sel_o = SEL_FW_EX;
1410 end
1411

1412 // for misaligned memory accesses
1413 if (data_misaligned_i)
1414 begin
1415 operand_a_fw_mux_sel_o = SEL_FW_EX;
1416 operand_b_fw_mux_sel_o = SEL_REGFILE;
1417 end else if (mult_multicycle_i) begin
1418 operand_c_fw_mux_sel_o = SEL_FW_EX;
1419 end
1420 end

Listing C.5: Forwarding multiplexers select control - cv32e40p_controller.sv

Move instruction
596 //-------------------------------------------------------------------------------
597 // source register selection regfile_fp_x=1 <=> CV32E40P_REG_x is a FP-register
598 //-------------------------------------------------------------------------------
599 assign regfile_addr_ra_id = {regfile_fp_a, instr[REG_S1_MSB:REG_S1_LSB]};
600

601 //assign regfile_addr_rb_id = {regfile_fp_b, instr[REG_S2_MSB:REG_S2_LSB]};
602 assign regfile_addr_rb_id = (qOP_id == (qRV_mv_to_q)) ?
603 {1'b0, instr[28:24]} : {regfile_fp_b, instr[REG_S2_MSB:REG_S2_LSB]};

Listing C.6: Source register selection - cv32e40p_id_stage.sv

596 //---------------------------------------------------------------------------
597 // destination registers regfile_fp_d=1 <=> REG_D is a FP-register
598 //---------------------------------------------------------------------------
599 //addiotinal qRV mux:
600 assign regfile_waddr_id = (qOP_id == (qRV_mv_from_q)) ?
601 {1'b0, instr[28:24]} : {regfile_fp_d, instr[REG_D_MSB:REG_D_LSB]}; //create a mux that

selects a different address if qOP = qRV_mv_from_q
Listing C.7: Destination register selection - cv32e40p_id_stage.sv

C.2. System on Chip
This section contains snippets of SystemVerilog code that describes the System on Chip hardware.
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C.2.1. Sytem Memory
Read Only Memory

0

1 ////////////////////////////////////////////////////////////////////////////////
2 // Engineer: Jacopo Costantini - j.costantini@student.tudelft.nl //
3 // //
4 // //
5 // Design Name: rom block //
6 // Project Name: qRV ISA extension //
7 // Language: SystemVerilog //
8 // //
9 // Description: Behavioral implementation of SoC memory, with additional //
10 // ports to mimic the PCI protocol. //
11 // //
12 ////////////////////////////////////////////////////////////////////////////////
13

14 module rom_sp #(
15 parameter ADDR_WIDTH = 32,
16 parameter DATA_WIDTH = 32,
17 parameter memory_depth = 256,
18 parameter instr_path = "D:/User/Documenti/TuDelft/Thesis/qrv_assembler/outputs/test_bin.

txt"
19 ) (
20 // Clock and Reset
21 input logic clk_i,
22

23 // Instruction interface
24 input logic inst_req_i,
25 input logic [ADDR_WIDTH-1:0] inst_addr_i,
26

27 output logic [DATA_WIDTH-1:0] inst_rdata_o,
28 output logic inst_rvalid_o,
29 output logic inst_gnt_o
30 );
31

32 //this ROM is 1KB (256 words of 4 bytes each)
33 //since the memory is byte addressable and the data width is 32 bits (4 bytes), the two

least significant bits of the address are ignored
34

35 //the full addressable space is 2^32 bytes (4GB) or 2^30 words
36

37 localparam NUM_WORDS = memory_depth;
38 (* rom_style = "block" *)
39 reg [DATA_WIDTH-1:0] memory [NUM_WORDS-1:0];
40

41 //-----------------------------------------------------------------------------
42 //-- READ : Read address decoder RAD
43 //-----------------------------------------------------------------------------
44 always_comb begin
45 inst_rdata_o = '0;
46 inst_rvalid_o = 1'b0;
47 inst_gnt_o = 1'b0;
48

49 if (inst_req_i) begin
50 inst_rdata_o = memory[inst_addr_i[ADDR_WIDTH-1:2]];
51 inst_rvalid_o = 1'b1;
52 inst_gnt_o = 1'b1;
53 end
54 end
55

56 //-----------------------------------------------------------------------------
57 //-- WRITE : Flash memory with instructions
58 //-----------------------------------------------------------------------------
59

60 // initial begin
61 // $readmemb(instr_path, memory, 0); //read the file and store it in the memory
62 // // set the words that havent been initialised by the file to 32'b0
63 // for (int i = 0; i < NUM_WORDS; i++) begin
64 // if ($isunknown(memory[i])) begin
65 // memory[i] <= 32'b0;
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66 // end
67 // end
68 // end
69

70 initial begin
71

72 // Initialize memory with zeros
73 for (int i = 0; i < NUM_WORDS; i++) begin
74 memory[i] = 32'b0;
75 end
76

77 // Read file and update memory with file contents
78 $readmemb(instr_path, memory, 0);
79 end
80

81 endmodule
Listing C.8: ROM Module - rom_sp.sv

Random Access Memory
0

1 ////////////////////////////////////////////////////////////////////////////////
2 // Engineer: Jacopo Costantini - j.costantini@student.tudelft.nl //
3 // //
4 // //
5 // Design Name: ram block //
6 // Project Name: qRV ISA extension //
7 // Language: SystemVerilog //
8 // //
9 // Description: Behavioral implementation of sp RAM block with additional //
10 // ports to mimic the PCI protocol. //
11 // //
12 ////////////////////////////////////////////////////////////////////////////////
13

14 module ram_sp #(
15 parameter ADDR_WIDTH = 32,
16 parameter DATA_WIDTH = 32,
17 parameter memory_depth = 256
18 ) (
19 // Clock and Reset
20 input logic clk_i,
21 input logic rst_ni,
22

23 // Data interface
24 input logic data_req_i,
25 input logic [ADDR_WIDTH-1:0] data_addr_i,
26 input logic data_we_i,
27 input logic [3:0] data_be_i,
28 input logic [DATA_WIDTH-1:0] data_wdata_i,
29

30 output logic [DATA_WIDTH-1:0] data_rdata_o,
31 output logic data_rvalid_o,
32 output logic data_gnt_o
33 );
34

35 //this memory is default to only use 1KB (256 words of 4 bytes each)
36 //since the memory is byte addressable and the data width is 32 bits (4 bytes), the two

least significant bits of the address are ignored
37

38 //the full addressable space is 2^32 bytes (4GB) or 2^30 words
39

40 localparam NUM_WORDS = memory_depth;
41 (* ram_style = "block" *)
42 reg [DATA_WIDTH-1:0] memory [NUM_WORDS-1:0];
43

44 //-----------------------------------------------------------------------------
45 //-- READ : Read address decoder RAD
46 //-----------------------------------------------------------------------------
47 always_comb begin
48 data_rdata_o = '0;
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49 data_rvalid_o = 1'b0;
50 data_gnt_o = 1'b0;
51

52 if (data_req_i) begin
53 data_rdata_o = memory[data_addr_i[ADDR_WIDTH-1:2]];
54 data_rvalid_o = 1'b1;
55 data_gnt_o = 1'b1;
56 end
57 end
58

59 //-----------------------------------------------------------------------------
60 //-- WRITE : Write operation
61 //-----------------------------------------------------------------------------
62 always_ff @(posedge clk_i) begin
63 //reset: only for simulation
64 /*if (rst_ni == 1'b0) begin
65 for (int i = 0; i < NUM_WORDS; i++) begin
66 memory[i] = 32'b0;
67 end
68 end else*/
69 if (data_we_i) begin //write operation
70 //memory[ADDR_WIDTH-1:2] <= data_wdata_i;
71 if (data_be_i[0] == 1'b1) begin
72 memory[data_addr_i[ADDR_WIDTH-1:2]][7:0] <= data_wdata_i[7:0];
73 end
74 if (data_be_i[1] == 1'b1) begin
75 memory[data_addr_i[ADDR_WIDTH-1:2]][15:8] <= data_wdata_i[15:8];
76 end
77 if (data_be_i[2] == 1'b1) begin
78 memory[data_addr_i[ADDR_WIDTH-1:2]][23:16] <= data_wdata_i[23:16];
79 end
80 if (data_be_i[3] == 1'b1) begin
81 memory[data_addr_i[ADDR_WIDTH-1:2]][31:24] <= data_wdata_i[31:24];
82 end
83 end // if
84 end
85

86 endmodule
Listing C.9: RAM Module - ram_sp.sv

C.2.2. UART
UART Interface

1 module uart_interface#(
2 parameter clk_freq = 100000000,
3 parameter baud_rate = 115200
4 )(
5 input logic clk_i,
6 input logic rst_ni,
7 input logic [84:0] tx_data_i,
8 input logic new_data_available_i,
9

10 //output logic ready_o,
11 output logic FIFO_read_en_o,
12 output logic tx_data_o
13 );
14

15 //signals
16 logic [7:0] tx_byte_data;
17

18 logic uart_tx_done;
19 logic uart_tx_start;
20 logic uart_tx_active;
21 //logic tx_data_stb;
22 //logic tx_ack_out;
23

24 logic sequencer_load;
25 logic sequencer_start;
26 logic sequencer_tready;
27 logic sequencer_ready;



C.2. System on Chip 68

28 logic sequencer_tactive;
29 logic sequencer_done;
30

31 logic ready_for_transmission;
32 logic data_processed;
33 logic [ 8:0] data_counter;
34

35 //assigments
36 //ready for transmission when there is data available in FIFO and the sequencer and the UART

are ready
37 assign ready_for_transmission = ((data_counter > 0) && sequencer_ready) ? 1'b1 : 1'b0;
38 assign uart_tx_start = sequencer_tactive;
39

40 //state machine
41 enum logic [5:0] {IDLE, START, LOAD_DATA, UART_TX, WAIT1, WAIT2} state, next_state;
42

43 //submodules
44 uart #(
45 .clk_freq(clk_freq),
46 .baud_rate(baud_rate)
47 ) uart (
48 .clk(clk_i),
49 .rst_n(rst_ni),
50 .tx_data_in(tx_byte_data),
51 .start(uart_tx_start),
52 .tx(tx_data_o),
53 .tx_active(uart_tx_active),
54 .done_tx(uart_tx_done)
55 ); //uart
56

57 //Sthefan Lung UART implementation:
58 //UART #(
59 // .CLOCK_FREQUENCY(clk_freq),
60 // .BAUD_RATE(baud_rate)
61 //) uart (
62 // .CLOCK(clk_i),
63 // .RESET_n(rst_ni),
64 // .DATA_STREAM_IN(tx_byte_data),
65 // .DATA_STREAM_IN_ACK(tx_ack_out),
66 // .DATA_STREAM_IN_STB(tx_data_stb),
67 // .DATA_STREAM_OUT(),
68 // .DATA_STREAM_OUT_STB(),
69 // .DATA_STREAM_OUT_ACK(),
70 // .TX(tx_out),
71 // .TX_ready(uart_tx_done),
72 // .RX()
73 //); //uart
74

75 uart_seq_transmitter sequencer(
76 .clk(clk_i),
77 .tbuf(tx_data_i),
78 .load_i(sequencer_load),
79 .start_i(sequencer_start),
80 .tready_i(sequencer_tready),
81 .ready_o(sequencer_ready),
82 .tcompleted_o(sequencer_done),
83 .tactive_o(sequencer_tactive),
84 .tbus(tx_byte_data)
85 );
86

87 //fsm
88 always_ff @(posedge clk_i) begin
89 if (~rst_ni) begin
90 state <= IDLE;
91 end else begin
92 state <= next_state;
93 end
94 end
95 always_comb begin : next_state_logic
96 //next_state = IDLE; //default state
97 case(state)
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98 IDLE:
99 if (ready_for_transmission) begin
100 next_state = START;
101 end else next_state = IDLE;
102 START: next_state = LOAD_DATA; //just wait for 1 clock cycle
103 LOAD_DATA: next_state = WAIT1;
104 WAIT1: if (sequencer_ready) begin
105 next_state = UART_TX;
106 end else next_state = WAIT1;
107 UART_TX:
108 next_state = WAIT2;
109 WAIT2:
110 if (uart_tx_done) begin
111 if (~sequencer_done) begin
112 next_state = UART_TX;
113 end else next_state = IDLE;
114 end else next_state = WAIT2;
115 default: next_state = IDLE;
116 endcase
117 end
118 always_comb begin : control_logic
119 //default values
120 FIFO_read_en_o = 1'b0;
121 sequencer_load = 1'b0;
122 sequencer_start = 1'b0;
123 data_processed = 1'b0;
124

125 case(state)
126 IDLE: begin
127 sequencer_tready = 1'b0;
128 end
129 START: begin
130 sequencer_tready = 1'b1;
131 FIFO_read_en_o = 1'b1;
132 end
133 LOAD_DATA: begin
134 sequencer_load = 1'b1;
135 data_processed = 1'b1;
136 end
137 WAIT2: begin
138 FIFO_read_en_o = 1'b0;
139 sequencer_load = 1'b0;
140 end
141 UART_TX:
142 sequencer_start = 1'b1;
143 WAIT2:
144 sequencer_start = 1'b0;
145 endcase
146 end
147

148 //FIFO read enable process
149 always_ff @(posedge clk_i) begin : data_cnt
150 if (~rst_ni) begin
151 data_counter <= 0;
152 end else if (new_data_available_i) begin
153 data_counter <= data_counter + 1;
154 end else if (data_processed) begin
155 data_counter <= data_counter - 1;
156 end
157 end
158

159 endmodule
Listing C.10: UART interface module - uart_interface.sv

UART Sequencer
1 //////////////////////////////////////////////////////////////////////////////////////////
2

3 //The module uart_seq_transmitter takes in the following inputs:
4
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5 // - clk: Clock signal for synchronization.
6 // - tbuf: The 85-bit input data to be transmitted.
7 // - start_i: Input signal to initiate transmission.
8 // - tready_i: Input signal indicating receiver readiness.
9

10 //The module provides the following outputs:
11

12 // - ready_o: Output signal indicating buffer readiness.
13 // - tstart_o: Output signal indicating the start of transmission.
14 // - tbus: Output signal representing the serialized data transmitted in 8-bit chunks.
15

16 //Internal registers:
17

18 // - counter: A 7-bit register used as a counter to keep track of the current position
19 // within a data byte.
20 // - data_remaining: An 84-bit register representing the number of bits remaining to
21 // be transmitted.
22 // - running: A 1-bit register indicating whether the transmission is ongoing.
23

24 //The module uses an always block triggered on the positive edge of the clk signal to
25 //handle the transmission process.
26

27 //When ready_o is high, indicating the receiver is ready to accept data, the module checks
28 //the following conditions:
29 // * If start_i is high and running is low, it initiates a new transmission. It sets
30 // data_remaining to 84 (indicating 84 bits remaining), sets tstart_o to high, and
31 // sets running to high.
32 // * If running is high, it transmits data byte by byte. It uses the counter to keep
33 // track of the current position within a byte and assigns the corresponding 8 bits
34 // from tbuf to tbus. It decrements data_remaining by 8 and decrements counter by 1
35 // until all 84 bits are transmitted.
36 // * If running is low, indicating the transmission is completed, it sets tstart_o to low.
37

38 //The assign statement assigns the complement of running to the ready_o signal,
39 //indicating buffer readiness.
40

41 //The module is inspired from the following source:
42 // https://github.com/Digilent/Genesys-2-Keyboard/blob/master/src/hdl/uart_buf_con.v
43

44 //~Jacopo Costantini, May 2023
45

46 //////////////////////////////////////////////////////////////////////////////////////////
47

48

49 module uart_seq_transmitter(
50 input clk,
51 input [84:0] tbuf,
52 input load_i,
53 input start_i,
54 input tready_i,
55 output ready_o,
56 output reg tcompleted_o,
57 output reg tactive_o,
58 output reg [7:0] tbus
59 );
60 reg [ 7:0] data_remaining = 7'd0;
61 reg running = 1'b0;
62 reg [84:0] internal_tbuf = 85'd0;
63 reg old_start = 1'b0;
64

65 always @(posedge clk) begin
66 old_start <= start_i;
67 if (tready_i) begin
68 if (start_i && ~running && data_remaining >= 8) begin
69 // Start a new transmission
70 data_remaining <= data_remaining;
71 tactive_o <= 1'b0;
72 running <= 1'b1;
73 tcompleted_o <= 1'b0;
74 end else if (old_start && running && data_remaining >= 8) begin
75 // Transmit data byte by byte
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76 case (data_remaining)
77 7'd88: tbus <= internal_tbuf[84:77];
78 7'd80: tbus <= internal_tbuf[76:69];
79 7'd72: tbus <= internal_tbuf[68:61];
80 7'd64: tbus <= internal_tbuf[60:53];
81 7'd56: tbus <= internal_tbuf[52:45];
82 7'd48: tbus <= internal_tbuf[44:37];
83 7'd40: tbus <= internal_tbuf[36:29];
84 7'd32: tbus <= internal_tbuf[28:21];
85 7'd24: tbus <= internal_tbuf[20:13];
86 7'd16: tbus <= internal_tbuf[12:5];
87 7'd8: tbus <= {internal_tbuf[4:0], 3'b0};
88 default: tbus <= 8'd0;
89 endcase
90 tactive_o <= 1'b1;
91 tcompleted_o <= 1'b0;
92 data_remaining <= data_remaining - 8;
93 end else if (~start_i && running && data_remaining >= 8) begin
94 //Trasmission is paused
95 data_remaining <= data_remaining;
96 tbus <= 8'd0;
97 tactive_o <= 1'b0;
98 tcompleted_o <= 1'b0;
99 end else if (data_remaining < 8) begin
100 //Transmission completed
101 tcompleted_o <= 1'b1;
102 tactive_o <= 1'b0;
103 tbus <= 8'd0;
104 running <= 1'b0;
105 // Load new data
106 if (load_i) begin
107 internal_tbuf <= tbuf;
108 data_remaining <= 7'd88;
109 end
110 end
111 end else begin
112 // Receiver not ready, wait for tready_i to become high
113 tactive_o <= 1'b0;
114 tcompleted_o <= 1'b0;
115 end
116 end
117

118 assign ready_o = ~running;
119

120 endmodule
Listing C.11: UART Sequencer module - uart_seq_transmitter.v

UART
1 /*
2 * Copyright (C) 2018 Siddharth J <www.siddharth.pro>
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 *
16 */
17

18 module uart(clk,rst_n,rx,tx_data_in,start,rx_data_out,tx,tx_active,done_tx);
19

20 parameter clk_freq = 15_000_000; //MHz
21 parameter baud_rate = 115200; //bits per second
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22

23 input clk,rst_n;
24 input rx;
25 input [7:0] tx_data_in;
26 input start;
27 output tx;
28 output [7:0] rx_data_out;
29 output tx_active;
30 output done_tx;
31

32

33 uart_rx
34 #(.clk_freq(clk_freq),
35 .baud_rate(baud_rate)
36 )
37 receiver
38 (
39 .clk(clk),
40 .rst(rst),
41 .rx(rx),
42 .rx_data_out(rx_data_out)
43 );
44

45

46 uart_tx
47 #(.clk_freq(clk_freq),
48 .baud_rate(baud_rate)
49 )
50 transmitter
51 (
52 .clk(clk),
53 .rst(rst),
54 .start(start),
55 .tx_data_in(tx_data_in),
56 .tx(tx),
57 .tx_active(tx_active),
58 .done_tx(done_tx)
59 );
60

61 endmodule
Listing C.12: UART module - uart.sv

1 /*
2 * Copyright (C) 2018 Siddharth J <www.siddharth.pro>
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 *
16 */
17

18 module uart_tx(clk,rst,start,tx_data_in,tx,tx_active,done_tx);
19

20 parameter clk_freq = 100_000_000; //MHz
21 parameter baud_rate = 115200; //bits per second
22 //parameter baud_rate = 1_000_000; //fake baud rate for simulation
23 input clk,rst;
24 input start;
25 input [7:0] tx_data_in;
26 output tx;
27 output tx_active;
28 output logic done_tx;
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29

30 localparam clock_divide = (clk_freq/baud_rate); //clock divide value: counts to this vaule
every bit time

31

32 enum bit [2:0]{ tx_IDLE = 3'b000, tx_START = 3'b001, tx_DATA = 3'b010, tx_STOP = 3'b011,
tx_DONE = 3'b100 } tx_STATE, tx_NEXT;

33

34 logic [11:0] clk_div_reg,clk_div_next;
35 logic [7:0] tx_data_reg, tx_data_next;
36 logic tx_out_reg,tx_out_next;
37 logic [2:0] index_bit_reg, index_bit_next; //index of bit to be transmitted
38

39 assign tx_active = (tx_STATE == tx_DATA);
40 assign tx = tx_out_reg;
41

42 always_ff @(posedge clk) begin
43 if(~rst) begin //reset
44 tx_STATE <= tx_IDLE;
45 clk_div_reg <= 0;
46 tx_out_reg <= 0;
47 tx_data_reg <= 0;
48 index_bit_reg <= 0;
49 end
50 else begin //next state update
51 tx_STATE <= tx_NEXT;
52 clk_div_reg <= clk_div_next;
53 tx_out_reg <= tx_out_next;
54 tx_data_reg <= tx_data_next;
55 index_bit_reg <= index_bit_next;
56 end
57 end
58

59 always @(*) begin //next state logic
60 tx_NEXT = tx_STATE;
61 clk_div_next = clk_div_reg;
62 tx_out_next = tx_out_reg;
63 tx_data_next = tx_data_reg;
64 index_bit_next = index_bit_reg;
65 done_tx = 0;
66

67 case(tx_STATE)
68

69 tx_IDLE: begin
70 tx_out_next = 1;
71 clk_div_next = 0;
72 index_bit_next = 0;
73 if(start == 1) begin
74 tx_data_next = tx_data_in;
75 tx_NEXT = tx_START;
76 end
77 else begin
78 tx_NEXT = tx_IDLE;
79 end
80 end
81

82 tx_START: begin
83 tx_out_next = 0;
84 if(clk_div_reg < clock_divide-1) begin
85 clk_div_next = clk_div_reg + 1'b1;
86 tx_NEXT = tx_START;
87 end
88 else begin
89 clk_div_next = 0;
90 tx_NEXT = tx_DATA;
91 end
92 end
93

94 tx_DATA: begin
95 tx_out_next = tx_data_reg[index_bit_reg];
96 if(clk_div_reg < clock_divide-1) begin
97 clk_div_next = clk_div_reg + 1'b1;
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98 tx_NEXT = tx_DATA;
99 end
100 else begin
101 clk_div_next = 0;
102 if(index_bit_reg < 7) begin
103 index_bit_next = index_bit_reg + 1'b1;
104 tx_NEXT = tx_DATA;
105 end
106 else begin
107 index_bit_next = 0;
108 tx_NEXT = tx_STOP;
109 end
110 end
111 end
112

113 tx_STOP: begin
114 tx_out_next = 1;
115 if(clk_div_reg < clock_divide-1) begin
116 clk_div_next = clk_div_reg + 1'b1;
117 tx_NEXT = tx_STOP;
118 end
119 else begin
120 clk_div_next = 0;
121 tx_NEXT = tx_DONE;
122 end
123 end
124

125 tx_DONE: begin
126 done_tx = 1;
127 tx_NEXT = tx_IDLE;
128 end
129

130 default: tx_NEXT = tx_IDLE;
131 endcase
132 end
133

134 endmodule
Listing C.13: UART TX module - uart_tx.sv

1 /*
2 * Copyright (C) 2018 Siddharth J <www.siddharth.pro>
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 *
16 */
17

18 module uart_rx(clk,rst,rx,rx_data_out);
19

20 parameter clk_freq = 50000000; //MHz
21 parameter baud_rate = 19200; //bits per second
22 input clk;
23 input rst;
24 input rx;
25 output [7:0] rx_data_out;
26

27 localparam clock_divide = (clk_freq/baud_rate);
28

29 enum bit [2:0] { rx_IDLE = 3'b000,
30 rx_START = 3'b001,
31 rx_DATA = 3'b010,
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32 rx_STOP = 3'b011,
33 rx_DONE = 3'b100 } rx_STATE, rx_NEXT;
34

35 logic [11:0] clk_div_reg,clk_div_next;
36 logic [7:0] rx_data_reg,rx_data_next;
37 logic [2:0] index_bit_reg,index_bit_next;
38

39

40 always_ff @(posedge clk) begin
41 if(~rst) begin
42 rx_STATE <= rx_IDLE;
43 clk_div_reg <= 0;
44 rx_data_reg <= 0;
45 index_bit_reg <= 0;
46 end
47 else begin
48 rx_STATE <= rx_NEXT;
49 clk_div_reg <= clk_div_next;
50 rx_data_reg <= rx_data_next;
51 index_bit_reg <= index_bit_next;
52 end
53 end
54

55 always @(*) begin
56 rx_NEXT = rx_STATE;
57 clk_div_next = clk_div_reg;
58 rx_data_next = rx_data_reg;
59 index_bit_next = index_bit_reg;
60

61 case(rx_STATE)
62

63 rx_IDLE: begin
64 clk_div_next = 0;
65 index_bit_next = 0;
66 if(rx == 0) begin
67 rx_NEXT = rx_START;
68 end
69 else begin
70 rx_NEXT = rx_IDLE;
71 end
72 end
73

74 rx_START: begin
75 if(clk_div_reg == (clock_divide-1)/2) begin
76 if(rx == 0) begin
77 clk_div_next = 0;
78 rx_NEXT = rx_DATA;
79 end
80 else begin
81 rx_NEXT = rx_IDLE;
82 end
83 end
84 else begin
85 clk_div_next = clk_div_reg + 1'b1;
86 rx_NEXT = rx_START;
87 end
88 end
89

90 rx_DATA: begin
91 if(clk_div_reg < clock_divide-1) begin
92 clk_div_next = clk_div_reg + 1'b1;
93 rx_NEXT = rx_DATA;
94 end
95 else begin
96 clk_div_next = 0;
97 rx_data_next[index_bit_reg] = rx;
98 if(index_bit_reg < 7) begin
99 index_bit_next = index_bit_reg + 1'b1;
100 rx_NEXT = rx_DATA;
101 end
102 else begin
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103 index_bit_next = 0;
104 rx_NEXT = rx_STOP;
105 end
106 end
107 end
108

109 rx_STOP: begin
110 if(clk_div_reg < clock_divide - 1) begin
111 clk_div_next = clk_div_reg + 1'b1;
112 rx_NEXT = rx_STOP;
113 end
114 else begin
115 clk_div_next = 0;
116 rx_NEXT = rx_DONE;
117 end
118 end
119

120 rx_DONE: begin
121 rx_NEXT = rx_IDLE;
122 end
123

124 default: rx_NEXT = rx_IDLE;
125 endcase
126 end
127

128 assign rx_data_out = rx_data_reg;
129

130 endmodule
Listing C.14: UART RX module - uart_rx.sv



D
Assembler code

This appendix provides the full code for the qRV32 custom assembler.

Assembler
from helper_functions import *

source_path = "D:/User/Documenti/TuDelft/Thesis/qrv_assembler/sources/hgate.nva"
output_path = "D:/User/Documenti/TuDelft/Thesis/qrv_assembler/outputs/hgate_bin.txt"

#initialize register status
global register_status
global source_pseudoinstruction
register_status = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0]
angle = True

#dictionaries
opcode_lsb = {

"qgatee": "000001011",
"qgatecc": "000001011",
"qgateuc": "000001011",
"qgatedir": "000001011",
"qgateze": "000001011",
"qgatezc": "000001011",

"detectCarbon": "010001011",
"magbias": "010001011",
"rabicheck": "010001011",
"initialize": "010001011",
"measuree": "010001011",
"crc": "010001011",

"swapec": "010001011",
"swapce": "010001011",

"nventangle": "010001011",
"set_local": "010001011",

"move_to": "100001011",
"move_from": "100001011",

"qld": "100001011",
"qst": "100001011",

"qldi": "110001011",
"qldi_a": "110001011",

"nop": "0010011",
}

opcode_msb = {

77
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"qgatee": "000",
"qgatecc": "001",
"qgateuc": "010",
"qgatedir": "011",
"qgateze": "100",
"qgatezc": "101",

"detectCarbon": "10001",
"magbias": "10010",
"rabicheck": "10011",
"initialize": "10100",
"measuree": "10101",
"crc": "10110",

"swapce": "10111",
"swapec": "11000",

"nventangle": "001",
"set_local": "000",

"move_to": "100",
"move_from": "101",

"qld": "00",
"qst": "01",

"qldi": None,
"qldi_a": None,
}

#helper functions
def opcode_lsb_gen(opcode):

for key, value in opcode_lsb.items():
if key == opcode:

return value

def opcode_msb_gen(opcode):
for key, value in opcode_msb.items():

if key == opcode:
return value

def find_next_available_register():
# Find the first free register
destination_register = -1 # Set to an invalid value as a fallback
for i, status in enumerate(register_status):

if status == 0:
destination_register = i
register_status[i] += 1 # Increment the register status value
break

# If no free registers are available, select the earliest used register
if destination_register == -1:

min_used_time = max(register_status) + 1 # Set to an invalid value as a fallback
min_used_index = -1 # Set to an invalid value as a fallback
for i, status in enumerate(register_status):

if status < min_used_time:
min_used_index = i
min_used_time = status

# If a register with the minimum value is found, set it as the destination register
if min_used_index != -1:

destination_register = min_used_index
register_status[min_used_index] += 1 # Increment the register status value

return destination_register

def pseudo_instruction_substitutor(opcode, asm_instruction):
arguments = asm_instruction[1:] #get the arguments to pass to new instructions
asm_instruction_list = []
parameter_register = 0
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subreg = 0

#GATE INSTRUCTIONS: decompose in 2 qldi and 1 Qgate
if opcode == "qgatee":

#find the next available register to load the parameters
parameter_register = find_next_available_register()
#1st qldi
asm_instruction_list.append(["qldi_a", "r"+str(parameter_register), str(subreg), str(

arguments[1])])
subreg += 1
#2nd qldi
asm_instruction_list.append(["qldi_a", "r"+str(parameter_register), str(subreg), str(

arguments[2])])
#Qgate instruction
asm_instruction_list.append([opcode, str(arguments[0]), "r"+str(parameter_register)])

elif opcode == "qgatecc":
#find the next available register to load the parameters
parameter_register = find_next_available_register()
#1st qldi
asm_instruction_list.append(["qldi_a", "r"+str(parameter_register), str(subreg), str(

arguments[2])])
subreg += 1
#2nd qldi
asm_instruction_list.append(["qldi_a", "r"+str(parameter_register), str(subreg), str(

arguments[3])])
#Qgate instruction
asm_instruction_list.append([opcode, str(arguments[0]), str(arguments[1]), "r"+str(

parameter_register)])
elif opcode == "qgateuc" or opcode == "qgatedir":

#find the next available register to load the parameters
parameter_register = find_next_available_register()
#1st qldi
asm_instruction_list.append(["qldi_a", "r"+str(parameter_register), str(subreg), str(

arguments[2])])
subreg += 1
#2nd qldi
asm_instruction_list.append(["qldi_a", "r"+str(parameter_register), str(subreg), str(

arguments[3])])
#Qgate instruction
asm_instruction_list.append([opcode, str(arguments[0]), str(arguments[1]), "r"+str(

parameter_register), str(arguments[4])])
elif opcode == "qgatezc":

#find the next available register to load the parameters
parameter_register = find_next_available_register()
#1st qldi
asm_instruction_list.append(["qldi_a", "r"+str(parameter_register), str(subreg), str(

arguments[2])])
#Qgate instruction
asm_instruction_list.append([opcode, str(arguments[0]), str(arguments[1]), "r"+str(

parameter_register)])
elif opcode == "qgateze":

#find the next available register to load the parameters
parameter_register = find_next_available_register()
#1st qldi
asm_instruction_list.append(["qldi_a", "r"+str(parameter_register), str(subreg), str(

arguments[1])])
#Qgate instruction
asm_instruction_list.append([opcode, str(arguments[0]), "r"+str(parameter_register)])

#CALIBRATION INSTRUCTIONS: decompose in 4 qldi and 1 original
elif opcode == "detectCarbon" or opcode == "magbias" or opcode == "rabicheck":

#find the next available register to load the parameters
parameter_register = find_next_available_register()
#1st qldi
asm_instruction_list.append(["qldi", "r"+str(parameter_register), str(subreg), str(

arguments[1])])
subreg += 1
#2nd qldi
asm_instruction_list.append(["qldi", "r"+str(parameter_register), str(subreg), str(

arguments[2])])
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subreg += 1
#3rd qldi
asm_instruction_list.append(["qldi", "r"+str(parameter_register), str(subreg), str(

arguments[3])])
subreg += 1
#4th qldi
asm_instruction_list.append(["qldi", "r"+str(parameter_register), str(subreg), str(

arguments[4])])
#original instruction
asm_instruction_list.append([opcode, str(arguments[0]), "r"+str(parameter_register)])

elif opcode == "set_local":
#find the next available register to load the parameter
parameter_register = find_next_available_register()
#qldi
asm_instruction_list.append(["qldi", "r"+str(parameter_register), str(subreg), str(

arguments[2])])
#original instruction
asm_instruction_list.append([opcode, str(arguments[0]), str(arguments[1]) ,"r"+str(

parameter_register)])

else: #no pseudo instruction found, return the original instruction
asm_instruction_list.append(asm_instruction)

return asm_instruction_list

def asm_to_bin(asm_instruction):
bin_instruction = []

opcode = asm_instruction[0]
arguments = asm_instruction[1:]

#msb opcode translation
if (opcode != "qldi" and opcode != "qldi_a" and opcode != "nop"):

bin_instruction.append(opcode_msb_gen(opcode)) #add the MSB opcode to the binary
instruction

#argument translation
if (opcode == "qgatee" or opcode == "qgateze"):

bin_instruction.append("11111") #don't care bits
bin_instruction.append(bin(int(arguments[1][1:]))[2:].zfill(5)) #add the

register address (5 bit binary number)
bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(10)) #add the NV

center address (10 bit binary number)
elif (opcode == "qgatecc" or opcode == "qgatezc"):

bin_instruction.append("1") #don't care bit
bin_instruction.append(bin(int(arguments[1]))[2:].zfill(4)) #add the c13

address (4 bit binary number)
bin_instruction.append(bin(int(arguments[2][1:]))[2:].zfill(5)) #add the

register address (5 bit binary number)
bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(10)) #add the NV

center address (10 bit binary number)
elif opcode == "qgateuc" or opcode == "qgatedir":

bin_instruction.append(int(arguments[3])) #add the
preserve/dir bit

bin_instruction.append(bin(int(arguments[1]))[2:].zfill(4)) #add the c13
address (4 bit binary number)

bin_instruction.append(bin(int(arguments[2][1:]))[2:].zfill(5)) #add the
register address (5 bit binary number)

bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(10)) #add the NV
center address (10 bit binary number)

elif opcode == "initialize" or opcode == "measuree" or opcode == "crc":
bin_instruction.append("11111111") #don't care bits
bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(10)) #add the NV

center address (10 bit binary number)

elif opcode == "detectCarbon" or opcode == "magbias" or opcode == "rabicheck":
bin_instruction.append("111") #don't care bits
bin_instruction.append(bin(int(arguments[1][1:]))[2:].zfill(5)) #add the

register address (5 bit binary number)
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bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(10)) #add the NV
center address (10 bit binary number)

elif opcode == "swapec":
bin_instruction.append(bin(int(arguments[1]))[2:].zfill(4)) #add the c13

address (4 bit binary number)
bin_instruction.append("1111") #don't care bits
bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(10)) #add the NV

center address (10 bit binary number)
elif opcode == "swapce":

bin_instruction.append(bin(int(arguments[1]))[2:].zfill(4)) #add the c13
address (4 bit binary number)

bin_instruction.append(bin(int(arguments[2]))[2:].zfill(2)) #add the basis
(2 bit binary number)

bin_instruction.append("11") #don't care bits
bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(10)) #add the NV

center address (10 bit binary number)

elif opcode == "set_local":
bin_instruction.append(bin(int(arguments[1][1:]))[2:].zfill(5)) #add the local

register address (5 bit binary number)
bin_instruction.append(bin(int(arguments[2][1:]))[2:].zfill(5)) #add the global

register address (5 bit binary number)
bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(10)) #add the NV

center address (10 bit binary number)

elif opcode == "nventangle":
bin_instruction.append("11") #don't care bits
bin_instruction.append(arguments[1]) #add the

entanglement direction (3 bit binary number)
bin_instruction.append("11111") #don't care bits
bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(10)) #add the NV

center address (10 bit binary number)

elif opcode == "move_to":
bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(5)) #source register

(general purpose register)
bin_instruction.append(bin(int(arguments[1][2:]))[2:].zfill(5)) #destination

register (quantum register)
bin_instruction.append("1111111111") #don't care bits

elif opcode == "move_from":
bin_instruction.append(bin(int(arguments[1][1:]))[2:].zfill(5)) #destination

register (general purpose register)
bin_instruction.append(bin(int(arguments[0][2:]))[2:].zfill(5)) #source register

(quantum register)
bin_instruction.append("1111111111") #don't care bits

elif opcode == "qld" or opcode == "qst":
immediate = bin(int(arguments[1][2:4], 16))[2:].zfill(11) #get the

immediate value and translate if from hex (11 bit binary number)
imm_lsb = immediate[6:11]
imm_msb = immediate[0:6]
#imm_msb = immediate[5:11]
#imm_lsb = immediate[0:5]

address_source_register = bin(int(arguments[1][6:8]))[2:].zfill(5) #get the source
register address (5 bit binary number)

bin_instruction.append(imm_msb) #add the
immediate mSB (5 bit binary number)

bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(5)) #add the
register address (5 bit binary number)

bin_instruction.append(address_source_register) #add the source
register address (5 bit binary number)

bin_instruction.append(imm_lsb) #add the
immediate lSB (5 bit binary number)

elif opcode == "qldi_a":
immediate = float_to_fixed_point(float(arguments[2])) #if the

instruction is a qgate, the immediate is a angle rotation
imm_lsb = immediate[8:16]
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imm_msb = immediate[0:8]

bin_instruction.append(imm_msb) #add the
immediate MSB (7 bit binary number)

bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(5)) #add the
register address (5 bit binary number)

bin_instruction.append(bin(int(arguments[1]))[2:].zfill(2)) #add the
subregister address (2 bit binary number)

bin_instruction.append(imm_lsb) #add the
immediate LSB (8 bit binary number)

elif opcode == "qldi":
immediate = bin(int(arguments[2]))[2:].zfill(16) #else, is a

integer number
imm_lsb = immediate[8:16]
imm_msb = immediate[0:8]

bin_instruction.append(imm_msb) #add the
immediate MSB (7 bit binary number)

bin_instruction.append(bin(int(arguments[0][1:]))[2:].zfill(5)) #add the
register address (5 bit binary number)

bin_instruction.append(bin(int(arguments[1]))[2:].zfill(2)) #add the
subregister address (2 bit binary number)

bin_instruction.append(imm_lsb) #add the
immediate LSB (8 bit binary number)

elif opcode == "nop":
bin_instruction.append('0000000000000000000000000') #add the nop

instruction (32 bit binary number)

#lsb opcode translation
bin_instruction.append(opcode_lsb_gen(opcode)) #add the MSB opcode to the binary

instruction

bin_instruction_string = ''.join(map(str, bin_instruction))
return bin_instruction_string
#return bin_instruction

def instructions_to_bin(asm_instruction_list):
bin_instruction_list = []
for asm_instruction in asm_instruction_list:

bin_instruction_list.append(asm_to_bin(asm_instruction))
return bin_instruction_list

#main function
asm_instruction_list = [] #list of instructions to be translated into binary
bin_instruction_list = [] #list of binary instructions
with open(source_path, "r") as source:

for line in source:
line = line.strip( ) #remove the newline character

asm_instruction = line.split( ) #split the line into a list of strings
opcode = asm_instruction[0]

asm_instruction_list.append(pseudo_instruction_substitutor(opcode, asm_instruction))

asm_instruction_list = [item for sublist in asm_instruction_list for item in sublist]
#flatten the list

#print(asm_instruction_list)
bin_instruction_list = instructions_to_bin(asm_instruction_list)
#print(bin_instruction_list)

asm_instruction_list_string = []
for sublist in asm_instruction_list:

# Use the join method to concatenate the elements in the sublist into a single string
sublist = ' '.join(sublist)
# Append the string to the list of strings
asm_instruction_list_string.append(sublist)

with open(output_path, 'w') as f:
#insert dummy instruction
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f.write('00000000000000000000000000010011   //nop\n')
# Loop through the lists and write each string to the file
for b, asm in zip(bin_instruction_list, asm_instruction_list_string):

f.write(b + '   ' + '//' + asm + '\n') # Add content after the string, separated by
a space

f.write('00000000000100000000000001110011   //ebreak\n') #insert ebreak instruction
Listing D.1: qRV32_assembler.py

Helper functions
def float_to_fixed_point(num):

# Multiply the floating point number by 2^14 to shift the decimal point 14 bits to the
left.

# This converts the floating point number to a fixed point number with 14 fractional bits
.

fixed = int(round(num * (2 ** 14)))

# Convert the fixed point number to a binary string with 16 bits (including 14 fractional
bits).

binary = bin(fixed)[2:].zfill(16)

return binary
Listing D.2: helper_functions.py



E
Simulation Results

The following appendix presents the recorded output of the Global Controller, at different levels of
simulation. Firstly, it includes the execution of the whole Instruction Set Extension, and secondly, the
realization of the H-gate circuit.

qRV32 ISE example instructions
00000000000000000000000000010011 //nop
01100100000000010000110110001011 //qldi_a r0 0 1.5707
01100100000000110001000110001011 //qldi_a r0 1 1.5707963267949
00011111000000000000000000001011 //qgatee q0 r0
00000000000010000000000110001011 //qldi_a r1 0 0.0
11001001000010100001111110001011 //qldi_a r1 1 3.1415535898
00110001000010000000001000001011 //qgatecc q1 1 r1
00000000000100000000000110001011 //qldi_a r2 0 0.0
11001001000100100010000110001011 //qldi_a r2 1 3.1415926535898
01010010000100000000010000001011 //qgateuc q2 2 r2 1
01100100000110010001000110001011 //qldi_a r3 0 1.570796367949
01100100000110110001000110001011 //qldi_a r3 1 1.57077949
01100011000110000000011000001011 //qgatedir q3 3 r3 0
01101101001000001001111110001011 //qldi_a r4 0 1.707963267949
10011111001000000000100000001011 //qgateze q4 r4
00100100001010010001000110001011 //qldi_a r5 0 0.5707963267949
10110101001010000000101000001011 //qgatezc q5 5 r5
10100111111110000001101010001011 //initialize q13
10101111111110000001111010001011 //measuree q15
10110111111110000010001010001011 //crc q17
00000000001100001100100110001011 //qldi r6 0 100
00010011001100110001000110001011 //qldi r6 1 5000
00000000001101011001000110001011 //qldi r6 2 200
00100111001101100010000110001011 //qldi r6 3 10000
10001111001100000111001010001011 //detectCarbon q57 r6
00000101001110011011100110001011 //qldi r7 0 1500
00010011001110110001000110001011 //qldi r7 1 5000
00000000001111011001000110001011 //qldi r7 2 200
00100111001111100010000110001011 //qldi r7 3 10000
10010111001110000111010010001011 //magbias q58 r7
00000000010000001100100110001011 //qldi r8 0 100
00010011010000110001000110001011 //qldi r8 1 5000
00000000010001011001000110001011 //qldi r8 2 200
00100111010001100010000110001011 //qldi r8 3 10000
10011111010000000111011010001011 //rabicheck q59 r8
11000011011111001011000010001011 //swapec q600 6
10111011110111001100011010001011 //swapce q611 7 2
11110001010010000100000110001011 //qldi r9 0 123456
00001111010011001100100010001011 //set_local q612 r15 r9
00111010111111001100101010001011 //nventangle q613 010
00000000000100000000000001110011 //ebreak
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Simulation outputs
boot_instr = D:/User/Documenti/TuDelft/Thesis/qrv_assembler/outputs/test_bin.txt
packet # 1
NVnode = 0
quantum_pack = 0000000000c910c90c1

packet # 2
NVnode = 1
quantum_pack = 0200000001921e00002

packet # 3
NVnode = 2
quantum_pack = 2400000001922000003

packet # 4
NVnode = 3
quantum_pack = 0600000000c910c9104

packet # 5
NVnode = 4
quantum_pack = 00000000000000da9e5

packet # 6
NVnode = 5
quantum_pack = 0a00000000000049106

packet # 7
NVnode = 13
quantum_pack = 0000000000c910c90cc

packet # 8
NVnode = 15
quantum_pack = 0000000000c910c90cd

packet # 9
NVnode = 17
quantum_pack = 0000000000c910c90ce

packet # 10
NVnode = 57
quantum_pack = 004e200190271000c89

packet # 11
NVnode = 58
quantum_pack = 004e20019027100bb8a

packet # 12
NVnode = 59
quantum_pack = 004e200190271000c8b

packet # 13
NVnode = 600
quantum_pack = 6c00000000c910c90cf

packet # 14
NVnode = 611
quantum_pack = 0e00000000c910c90d0

packet # 15
NVnode = 612
quantum_pack = 1e000000000001e2407

packet # 16
NVnode = 613
quantum_pack = 0400000000c910c90c8

Listing E.1: Behavioral simulation results
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