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Introduction

* Greenhouse gas (CO2) 1s a major

contributor to global warming;

* Burning fossil fuels emit CO2 in to the
atmosphere.

* Ships emit about 1 billion tonnes of CO2
annually.
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* IMO has adOPted Cﬂefgy-efﬁCieﬁCY Shaft power 12K98ME/MC Standard engine version

output48.3%  gMCR : 68,640 kW at 94.0 r/min

measures. : o
1SO ambient reference conditions

* They have set a series of baselines (EEDI)
to be met by ships.

D’ Lubricating oil
cooler 2.9%

* By 2025, all new ships will be 30% more e
energy efficient than those built in 2014. cooler 5.2%

¢ ShlpS' energy consumption and CO2 Exhaust gas
emissions could be reduced by up to 75%
by applying operational measures and

implementing existing technologies. ) Heat radiation

0.6%
Fuel 100%

(171 g/kWh)

* Waste heat recovery systems (WHRS) is one

of those technologies and a promising one.
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Review:
* Several WHRS technologies are available.

Generator

o

Turbine

* Organic Rankine cycle (ORC) is one the
most promising system.

Evaporator Condenser
* Plant simplicity, net efficiency and fluid
choice flexibility.

* ORC has several advantages over
water/steam system.

Challenges:
* Design and operation limitation factors.

* Oft-design conditions.

* Engine dynamics.
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Objective

Fluid screening:
* Screening methodology is devised to find a suitable fluid and plant layout.
* Influence of low temperature condenser cooling fluid on ORC plant and performance.

Modelling:

* Build a dynamic simple-ORC plant model by modification from an existing dynamic SRC
model.

* Develop a dynamic recuperative-ORC plant model from the simple-ORC plant model.

* Build and implement a dynamic pump element into the ORC plant models.

* Comparison of dynamic ORC plant models to Cycle-Tempo ORC plant models.

Off-design performance analysis:
* Off-design performance analysis of ORC-WHRS plant models to off-load conditions.

Dynamic and sensitivity analysis:

* Sensitivity analysis of ORC plant model.
* Analyse the dynamic behaviour of the ORC plant model.

cium

]
TUDelft Objective



Fluid Screening

Considerations:

* Sub-critical ORC plant.

* Exhaust gas data (product guide).

* Sea water as cooling fluid.

* Turbine inlet pressure of 30 bar.

* Power density as selection parameter.
* Isentropic and dry organic fluids.

* Simple & recuperative-ORC plants.
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wor Functioning Fluids
Acetone H113
701 Fvaporator Turbine Generator BUtEnE Ft 114
@iﬂ

Engine 1-Butene R123
Reeuperator, : I5-2- R141B
: Cyclohexane R23gea
L c0ndense — () Cyclopentane Re245ca
4 o S & |sobutane R245f3
Atmosphere conomuser 7 | . |buiz ne R365mfc
A & |pentane R4363
oo S.W. Pump [Methylcyclnhexane] R436D
e Neopentane T2Butene
Pentane | Toluene
R11

* Sutable for dry type fluids.

L * Not all fluids may be suitable.
* Increases boiler inlet temperature.

* Few are restricted for use by law.
* Increases thermal efficiency.
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* Suitable fluid were analysed in simple-ORC and recuperative-ORC plants.

* Analysis performed for three load points for engine in diesel and gas modes.

Generator Power for Turbine Inlet Pressure of 30 Bar - Simple ORC

Load [%]

Generator Power for Turbine Inlet Pressure of 30 Bar - Recu.ORC
50 : r . . r .

500 : : :
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AP 550 | —-&-— CcyH.Die.
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Load [%]
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Power Density [kKW/m?]

Power Density - Turb.Pr=30Bar - Recu.ORC

o

ket
Ln

—i— Ace . Gas. |
—-2-— Ace.Die.

—i=— Meth.Gas.
— - - — Meth.Die.
—&— CyH.Gas.
=g CyH. Dla.” [T
—&— CyP.Gas.
—-G-—CyP.Dia. |-+
—o— Tol.Gas.
—-5-— Tol.Die.

o S

Load [%]

* Acetone based simple-ORC plant.
* Cyclopentane based recuperative -ORC plant.
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Influence of Cooling fluid Temperature
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Temperature-Entropy Diagram of Working Fluids
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Tank \ S | Condenser ) Engine

* Increase in net power/net energy efficiency by 39%.
* Decrease in plant volume by 25%.

C3IMT * Increase in plant power density by 82%.
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Dynamic Plant Modelling
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* Volume element for heat exchangers.

* Resistance element for pumps and turbine.

* Moditied from an existing SRC model.

Modelling
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Comparison for Acetone based Simple-ORC Plant

Comparison

450 ' ' ' ' ' ' , * Both models verified
—=— Gen.Mode-CycleTempo b . .
400 L| — © — Gen Mode-Simulink ¢ Design points from 25 to 100%.
—&— Prop.Mode-CycleTempo f”?_ D B del d
— & — Prop.Mode-Simulink e
350 - rop.iiode-simulin ] 1€S¢ modce .ata.
* Acetone based Simple-ORC.
300 .
s
= 250 .
%
E 200 - / i
z ol Design Point 100%
. Cycle- Error
ool Comparison Tempo Model (%]
Peen [kW] 420.53 404.53 -3.80
20r Ppoump [KW] | 20.35 20.30 -0.25
0 | | | | N Psw.pump | [KW] | 3.84 277 -27.86)
20 30 40 50 60 70| G, [ka/s] | 3.38 3.37 -0.32
Load [%] Brm.sw [kg/s] | 43.16 43.02 -0.33
Devap [bar] | 30.00 29.92 -0.26
Peond [bar] | 0.57 0.57 0.00
Teg—out.evap | [°C] | 325.43 325.68 0.08
Teg—out.ccon | [°C] 165.00 165.82 0.50
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Oft-design Performance Analysis

* Engine load points of 25, 50, 75, 85 and 100 are considered.

* These load point data for both generator load and propeller load are considered of
SWD Engine.

Acetone-Simple Cyclopentane -
ORC Recuperative ORC
Generator Load X X

Propeller Load X
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* Engine load from 25 to 100%

* Turbine design pressure is 30

bar.

* Plants of higher design
points generate more power
for a wider engine load.

* Opvershoot into critical point
for plant designed at low

loads.

* By-pass line may be required.
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* By-pass line may be use
Way soonet.

* Pump power 1s significant
for plants of higher design
points on high off-loads.

* Sea water cooling fluid
mass flow rate limit.
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* Plants of lower design
points have better power
density for a wider engine

load.

* Off-design analysis should
be extended with SFC and
operational profile.
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Net Power Density [kW/ms]

Net Power Density-Acetone-Prop.Mode
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Sensitivity Analysis

* This  analysis is  to
understand uncertainties.

* Acetone based simple-ORC
plant model used.

* Analysed for varying exhaust
pressure, temperature and

550

mass flow.
250 ; ;
350 400 450 500
Temperature [ C]
* Sea water cooling fluid mass flow rate limit.
* High pump power required.
C3MTI
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Dynamic Analysis

* Engine load points of 25, 50, 75, 85
] b) b) b) \ noU
and 100% are considered. Ioﬂtptut
* Acetone based simple-ORC 1s used.
. . 2 5
* Load-drop/tise step function. = §
§ 5
* J.oad between 25% — 100%b. % %
5 3
* Step duration 0 — 120 sec. 5% to §.T.-— oS
1% t0 8.T.—ggr-— A
* 5,1 and 0.1% to stabilisation.
S.T.-Stabilization
Time
C3MTI
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Load Step Drop from 50 to 25

1350
* Plants for different design points. 1300
* Same engine load drop from 50 td?°V
25%. — 1200
.
£ 1150
* Step duration 0 — 120 sec. = \
S 1100
e ©
* 5 to stabilisation used. 2 4050 k |
S
S 9 1000 F -
* Stabilisation is faster for longer step
durations. 950 —%— DP100% | ]
—k— DP85%
900 M\\ —¥k— DP75% |-
* Plants of lower design points have ——#— DP50%
. 850 1 1 1 1 1 _\““-—-—*
relatively faster response to same 0 20 40 60 80 100 120
engine load variation. Step Duration [s]
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Load Step of 25 for Design Point(DP) 100%

1400
* Plant designed for 100% engine 4
point. 1200 -
. -y $——
* Engine load step of 25%. — 1000 1 N
S —%—50 — 25
= — ¥ —25-50
* Step duration 0 — 120 sec. = 80T ety el
2 —— 100 — 75N
L B 600 (S 100
* 5 to stabilisation used. = %
I *¥-r——- ————k———— :I
U) hhhhh
o 400 | ]
* Load rise is faster than load drop of
sSame Step- 200 @ ———————— T j
* Time difference between load rise 0 - - ' - -
0 20 40 60 80 100 120

and load drop increases as the initial Step Duration [s]

load decreases.
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/3500

* Plant designed for 100% engine
point.

3000

* Load-drop step function. 2500
@
. ]

* Step duration 60 sec. £ 2000
c
.

* 5% and 1% to stabilisation used. § 1500
E
8
0

* Initial load of 100%. 1000

* Stabilisation time is longer as the 500

load drop is larger.

* Time difference between 5% and 1%
increases as the load drop is larger.

cium

]
TUDelft

0

Design Point(DP): 100%; Initial Point(IP): 100%

—¥— 5% to Saturation
— 3 — 1% to Saturation

10 20 30 40 50 60 70
Load Drop [%]

Dynamics
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Design Point(DP): 100%; Initial Point(IP): 25%

* Plant designed for 100% engin%om
. e —3k— 5% to Saturation
point. 1800 [ ST % — % — 1% to Saturation
. . 1600
* Load-rise step function.
7 1400
. @
* Step duration 60 sec. £ 1200
i=
[
o S 1000
* 5% and 1% to stabilisation used. @
= 800
@
* Initial load of 25%. 9 600
. . . . . 400
 Stabilisation time is longer for load-
rise to 50% than to 100%o. 200
0 | 1 " 1 | 1 | | "
0 10 20 30 40 50 60 70

Load Rise [%]
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Conclusions:

* Acetone may be the most suitable fluid for marine application based on PD.

* Acetone - net fuel saving of about 3.0%.

* Using LNG — increased net fuel saving from 3.0 to 4.1% and PD from 7.4 to 13.3 kW /m3.
* Methylcyclohexane - net fuel saving of about 4.3%.

* Plants of lower design points have better power density for a wider engine load.

* Cooling water mass flow rate and the pump power are the limiting parameters.
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Recommendations:

Include other selection parameters.

* Investigate the application of LNG.

« Validate the ORC plant models with real plant data.
* Include operational profile of the vessel.

« Investigate capex and opex.

* Investigate into energy storage device.
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