

## Transdisciplinary complexity science deepening system understanding for sustainability

de Jager, Lynn A.; Bal, Michèle; Baudena, Mara; van den Broek, Karlijn L.; Davis, Natalie; Dijkstra, Henk A.; Dorresteijn, Ine; Kamphuis, Carlijn B.M.; Lykourentzou, Ioanna; Mayor, Angeles G.

**DOI**

[10.1057/s41599-025-05548-7](https://doi.org/10.1057/s41599-025-05548-7)

**Publication date**

2025

**Document Version**

Final published version

**Published in**

Humanities and Social Sciences Communications

**Citation (APA)**

de Jager, L. A., Bal, M., Baudena, M., van den Broek, K. L., Davis, N., Dijkstra, H. A., Dorresteijn, I., Kamphuis, C. B. M., Lykourentzou, I., Mayor, A. G., Omodei, E., Alvial Palavicino, C., Stok, M., van Bruggen, A. R., Wieners, C. E., Zimmermann, S., & Dermody, B. J. (2025). Transdisciplinary complexity science: deepening system understanding for sustainability. *Humanities and Social Sciences Communications*, 12(1), Article 1384. <https://doi.org/10.1057/s41599-025-05548-7>

**Important note**

To cite this publication, please use the final published version (if applicable).  
Please check the document version above.

**Copyright**

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

**Takedown policy**

Please contact us and provide details if you believe this document breaches copyrights.  
We will remove access to the work immediately and investigate your claim.



## REVIEW ARTICLE

<https://doi.org/10.1057/s41599-025-05548-7>

OPEN

 Check for updates

# Transdisciplinary complexity science: deepening system understanding for sustainability

Lynn A. de Jager<sup>1,2,3✉</sup>, Michèle Bal<sup>4</sup>, Mara Baudena<sup>5,6,7</sup>,  
Karlijn L. van den Broek<sup>1,8</sup>, Natalie Davis<sup>9</sup>, Henk A. Dijkstra<sup>5,10</sup>,  
Ine Dorresteijn<sup>1</sup>, Carlijn B. M. Kamphuis<sup>4</sup>, Ioanna Lykourentzou<sup>11</sup>,  
Ángeles G. Mayor<sup>12</sup>, Elisa Omodei<sup>13</sup>, Carla Alvial Palavicino<sup>14</sup>, Marijn Stok<sup>4</sup>,  
Anne R. van Bruggen<sup>2</sup>, Claudia E. Wieners<sup>10</sup>, Silja Zimmermann<sup>1</sup> &  
Brian J. Dermody<sup>1</sup>

The complex and contextual nature of sustainability challenges demands an approach that integrates quantitative complexity science with transdisciplinary approaches to create an integrated understanding of system change. We present a systematic literature analysis from an emerging field we term Transdisciplinary Complexity Science for Sustainability and derive best practices for how this research approach can foster learning and action for sustainability. Based on our analyses, we identify key areas for future research and provide concrete recommendations for carrying out Transdisciplinary Complexity Science for Sustainability.

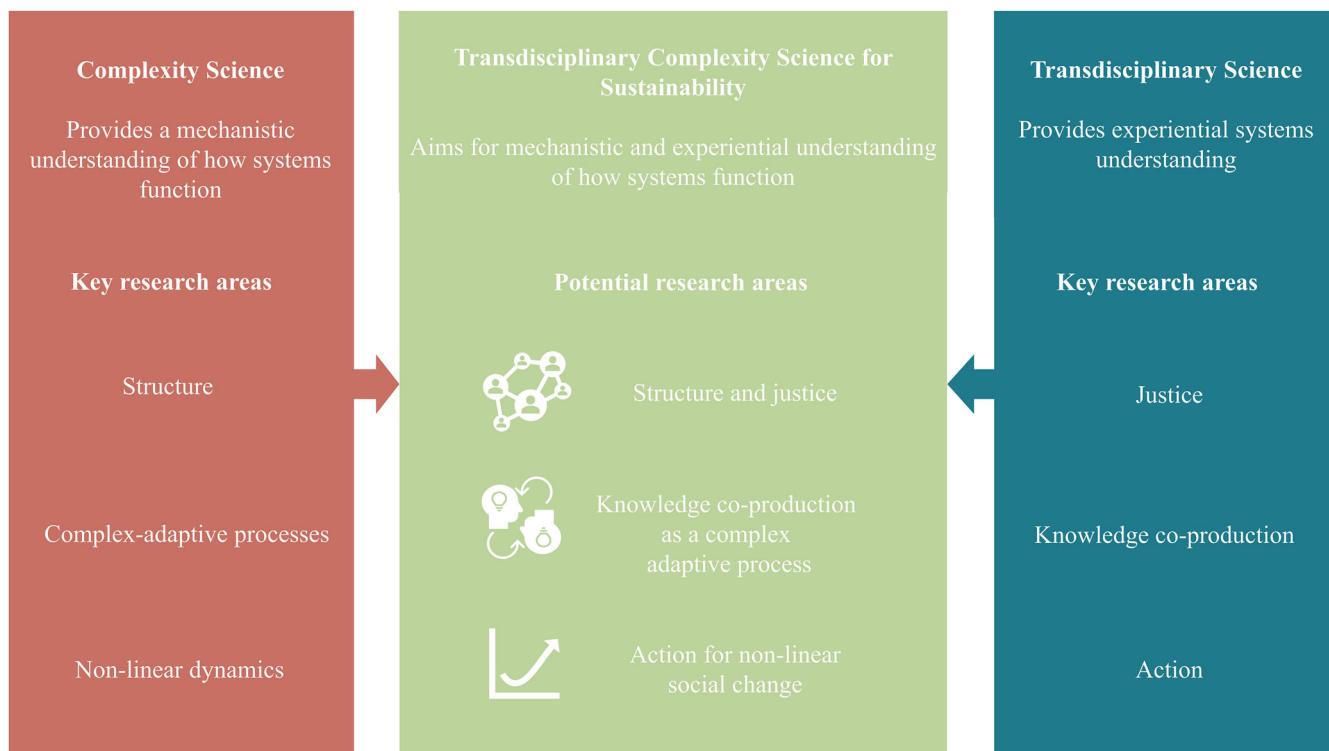
## Introduction

Achieving sustainability requires reorganising our societal systems so that they meet the needs of the present without compromising the ability of future generations to meet theirs (Brundtland, 1987). The complexity of achieving sustainability is manifest in the breadth and interdependency of the Sustainable Development Goals (SDGs) (Pradhan et al., 2017). System understanding is thus key to enabling action towards sustainability. Complexity science and transdisciplinary science are well-developed approaches that create insight into how complex systems function and are experienced, respectively, with transdisciplinary science often focused on translating insights into action. By systematically analysing literature that combines complexity science and transdisciplinary methods, we aim to understand how their integration may foster system understanding that can be translated into action towards sustainable systems.

<sup>1</sup>Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands. <sup>2</sup>Dutch National Institute for Public Health and the Environment, Bilthoven, the Netherlands. <sup>3</sup>Faculty of Technology, Policy, and Management, Delft University of Technology, Delft, The Netherlands. <sup>4</sup>Department of Interdisciplinary Social Science, Utrecht University, Utrecht, The Netherlands. <sup>5</sup>Centre for Complex Systems Studies, Department of Physics, Utrecht University, Utrecht, The Netherlands. <sup>6</sup>Institute of Atmospheric Sciences and Climate, National Research Council, Roma, Italy. <sup>7</sup>National Biodiversity Future Centre, Palermo, Italy. <sup>8</sup>Research Centre for Environmental Economics, Heidelberg University, Heidelberg, Germany. <sup>9</sup>Institute for Environmental Studies, Free University Amsterdam, Amsterdam, The Netherlands. <sup>10</sup>Institute for Marine and Atmospheric research, Utrecht University, Utrecht, The Netherlands. <sup>11</sup>Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands. <sup>12</sup>Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain. <sup>13</sup>Department of Network and Data Science, Central European University, Vienna, Austria. <sup>14</sup>EIT Climate KIC, Amsterdam, The Netherlands. ✉email: [lynn.de.jager@rivm.nl](mailto:lynn.de.jager@rivm.nl)

Complexity science is a set of theories and methods for developing mechanistic understanding of complex phenomena across social and natural systems and has shown promise in helping to realise the SDGs (Mitchell and Toroczkai, 2010; Omodei et al., 2022). In this paper, we focus on quantitative complexity methods such as system dynamics modelling, network analysis, and agent-based modelling, each of which has greatly improved our understanding of the structure and dynamics of systems in the last decades (Domenico and Sayama, 2019). For example, system dynamics modelling has revealed non-linear tipping points in complex biophysical systems (Rietkerk et al., 2021; Schlueter et al., 2019). Network analysis has revealed the structures of social and natural systems and how these structures constrain system change (Bodin et al., 2019). Agent-based modelling has allowed us to understand how complex adaptive systems, such as coupled human-nature systems, emerge through self-organisation processes (An, 2012). In doing so, it has revealed how large-scale patterns like bird flocks or economic markets emerge from small-scale interactions among adaptive individuals (Dermody et al., 2011; Farmer and Foley, 2009).

Transdisciplinary science is an approach that aims to understand how systems are experienced by involving academic and non-academic stakeholders who collaboratively co-produce knowledge to address a challenge (Funtowicz and Ravetz, 1993; Lang et al., 2012; Pohl et al., 2017). This collaboration reshapes the knowledge of all stakeholders, improves their system understanding, improves research legitimacy, and increases the likelihood that the research findings will address the given sustainability challenge in a just way (Aminpour et al., 2020; Horcea-Milcu et al., 2022; Morton et al., 2015; Norström et al., 2020). Transdisciplinary science has been demonstrated to address issues of (in)justice around sustainability by providing a platform to integrate marginalised voices within the research process (Huang and London, 2016; Norström et al., 2020). A key focus has been on how the transdisciplinary learning process


itself facilitates co-learning and knowledge co-production among participants (Knickel et al., 2019; Norström et al., 2020). An idealised transdisciplinary research process engages stakeholders with the aim of empowerment and in all study phases, from initiation, problem identification, to knowledge production, and knowledge reintegration with the aim of taking joint action (Horcea-Milcu et al., 2022; Lang et al., 2012). Achieving stakeholder participation in all phases and understanding the role of the scientific experts with policymakers is, nevertheless, often challenging (Brandt et al., 2013; van Bruggen et al., 2019).

We define Transdisciplinary Complexity Science for Sustainability (TCSS) as an approach that engages academic and non-academic stakeholders in the application of quantitative methods from complexity science to take action for complex sustainability issues (Fig. 1). TCSS opens the possibility for deepening system understanding by integrating mechanistic and experiential understandings of complex systems. TCSS can improve the societal relevance of complexity research by helping align complexity research with sustainability challenges in a given context. Equally, engaging stakeholders in complexity science can foster system learning and provide stakeholders with system knowledge to create action for sustainability.

In order to identify best practices for an emerging field of TCS for sustainability, we carry out a systematic literature review focusing on previous academic articles that combine quantitative complexity science methods with transdisciplinary approaches to address sustainability. From our analysis, we draw important lessons about how complexity science can be best integrated into transdisciplinary research and what is needed to allow this emerging field to grow and contribute to deepening our understanding of sustainability.

## Methods

The data collection process of this systematic literature review was guided by the “Preferred Reporting Items for Systematic



**Fig. 1 Conceptual framework for Transdisciplinary Complexity Science for Sustainability.** Integrating knowledge from complexity science and transdisciplinary science can open up new knowledge on themes such as structure and injustice, co-learning as a complex adaptive process, and action for non-linear social change.

**Table 1** The applied search strategy.

| Item                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Research question                          | How has previous research on sustainability combined transdisciplinary and quantitative complexity science methodologies?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Search terms for complexity science        | Complexity science*, differential equat*, complex network*, discrete event model*, system dynamic*, dynamic* system, agent-based*, graph theor*, cellular aut*, multi-agent*, game theor*, informat* theo*, fixed point*, mathematical model*, computational model*, dynamic* model, stochastic process*, statistical mechanic*, statistical physic*, evolution* dynamic*, complex* model, jacobian, bifurcati*, chao*, non-equilibrium, random walk*, stability analysis*, swarm optimi*, colony optimi*, *network analys*, *network science, network motif*, *random graph*, reaction diffusion*, *ising model*, genetic algorithm*, information theor*, logistic map, markov chain, information theor*, maximum likel?hood*, entrop* |
| Search terms for transdisciplinary science | Transdiscipl*, knowledge co-product*, knowledge co-creat*, knowledge co-design*, knowledge co-construct*, knowledge co-disseminat*, co-learn*, post-normal*, community-engag*, community-cent*, community-focus*, participat*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Search terms for sustainability            | Sustainab*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Search within                              | Article title, Abstract, Keywords                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Inclusion criteria                         | Transdisciplinarity: applied a transdisciplinary approach<br>Complexity: applied a complexity science method<br>Sustainability: studied an SDG<br>Type: peer-reviewed original scientific articles written in English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Reviews and Meta-Analyses” (PRISMA) framework (Appendix A) (Page et al., 2021). To answer the research question *How has previous research on sustainability combined transdisciplinary and quantitative complexity science methodologies?*, a search string (Appendix B) was devised with all co-authors to yield papers that combine transdisciplinary and complexity science in a sustainability context (Table 1). This search string was refined with a scoping exercise and iterative discussions among the co-authors (LdJ, BJD, EO, IL, ID, SZ, CW, MB, AvB, and KB) to ensure the inclusion of relevant search terms.

It should be noted that other articles that meet the general scope may have been missed with our search string, as they don't match the specific search terms in Table 1. For example, research on social-ecological systems has pioneered our understanding of complex systems in relation to sustainability challenges. However, those papers often emphasise system resilience and use that term, rather than the term sustainability (e.g., Levin, 1998; Preiser et al., 2018; Schlüter et al., 2019). The potential of modelling has long been valued in social-ecological systems science, and there is a growing recognition of the need to further integrate transdisciplinary approaches into social-ecological systems modelling (Folke et al., 2016; Horcea-Milcu et al., 2020; Schlüter et al., 2019; Steger et al., 2021). We are aware of these overlaps and reference relevant literature in our discussion. However, the scope of our paper is limited to papers that use the term sustainability explicitly in the title, abstract, or keywords.

The search string was applied to the Scopus database on July 6th, 2022, and returned 912 articles. In line with the Cochrane Handbook for Systematic Reviews of Interventions, the abstracts of the articles were screened for eligibility. Articles that did not meet the inclusion criteria were excluded. Only the remaining articles that passed the initial screening were subjected to a full-text assessment.

The abstracts were screened for eligibility on three successive levels. First, co-authors with expertise in complexity science (BJD, EO, MB, CW, AvB) screened the abstracts and excluded articles that did not employ a complexity methodology (512 excluded). Second, one of the authors (LdJ) excluded articles that did not employ a transdisciplinary approach. Hence, all articles that discuss transdisciplinary approaches but do not apply them were excluded (323 excluded). The screening of abstracts on transdisciplinarity was cross-checked by another co-author (AvB). Third, articles that did not relate to any of the Sustainable Development Goals (SDGs) were excluded (20 articles).

The final set of articles was coded with attention to the SDGs covered by the research, the complexity method(s) applied, and the phase of transdisciplinary research in which the methods were applied. In all cases, multiple entries were possible if an article used multiple complexity methods and addressed multiple phases of transdisciplinary research or multiple SDGs.

The transdisciplinary phase was deductively coded, ranging from initiation to implementation, using the joint framework of Lang et al. (2012) and Horcea-Milcu et al. (2022). This framework was selected for its systematic approach to distinguish between four research phases in which a transdisciplinary approach can be applied. Co-authors with expertise in transdisciplinary science (SZ, ID, BV, AGM, AvB, CAP) cross-checked the coding and resolved any inconsistencies in categorising the transdisciplinary phases through discussion.

The complexity-associated method of each article was inductively coded by two co-authors (BJD, LdJ) and cross-checked by a subset of co-authors with complexity science expertise (EO, MB, CW, AvB). The resulting codes were grouped into complexity methods based on similarities in their conceptual foundations. Where there was a disagreement, the coding was discussed and the disagreement was resolved by two co-authors (LdJ, BJD).

Finally, the most relevant SDGs addressed in the papers were deductively coded by one of the authors (LdJ). The SDGs served as a framework to differentiate between various types of sustainability research, highlighting where TCSS research has been most widely applied and highlighting gaps in its application across different sustainability challenges.

### Transdisciplinary complexity science in past research

Our systematic search returned 912 articles, of which 56 met the inclusion criteria (see Appendix A for PRISMA flowchart of the screening process). TCSS was most often applied to address SDG 15 ( $N = 21$ ), focused on promoting the sustainable management of terrestrial ecosystems (Fig. 2).

The main complexity methods applied in the identified literature were system dynamics modelling ( $N = 26$ ), agent-based modelling ( $N = 19$ ), and network analysis ( $N = 11$ ), with some papers combining the latter two approaches ( $N = 2$ ) (Giordano et al., 2021; Hennessy et al., 2020). System dynamics modelling was generally used to explore complex biophysical processes by implementing knowledge of stakeholders living within and/or managing a local ecosystem. This process often took place in



**Fig. 2** Alluvial diagram showing the relative distribution of papers across SDGs, transdisciplinary research phases, and complexity science methods.

group model-building workshops where stakeholders co-developed system maps, such as causal loop diagrams, together with researchers. The researchers formalised these maps into system dynamics models with additional empirical data and shared the outcomes in follow-up workshops (Alizadeh et al., 2022; Beall et al., 2011; Chen et al., 2014; Inam et al., 2017; Kumar et al., 2016; Richardson et al., 2021; Schmitt Olabisi et al., 2010; Shi et al., 2019; Videira et al., 2009; Weeks et al., 2020).

Agent-based modelling, which represents systems through the behaviour and interactions of individual actors, was mostly applied to understanding social processes, such as the effect of decision-making on a local environmental problem (Barnaud et al., 2008; Campo et al., 2009; Castella et al., 2007; Catarino et al., 2021; Delmotte et al., 2016; Dieguez Camerón et al., 2014; Giordano et al., 2021; Le Page et al., 2015; Montalto et al., 2013; Rojas et al., 2022; Ruankaew et al., 2010; Smajgl, 2010; Smetschka and Gaube, 2020; Steger et al., 2022). Agent-based modelling was often performed using the companion modelling approach (Etienne, 2013) to cultivate a shared understanding of multi-stakeholder decision-making processes (van Bruggen et al., 2019).

Network analysis was often combined with participatory methodologies, such as workshops and participatory network mapping, but with a focus on system structure rather than dynamics (Bowditch et al., 2020; Boyle et al., 2021; Chuvileva et al., 2017; Cottafava and Corazza, 2021; Delgado-Serrano et al.,

2015; Flynn et al., 2021; Gerhardinger et al., 2022; Kratzer, 2018; Starkl et al., 2013; Tringali et al., 2017).

In terms of the phase of the transdisciplinary research process in which complexity research is applied, a limited number of articles reported that stakeholders participated in preparatory activities prior to the initiation of research, such as stakeholder selection or expectation management (TD0,  $N = 6$ ). In roughly half of the papers, the research engaged stakeholders in problem identification (TD1,  $N = 24$ ). Knowledge co-production was present in all papers (TD2,  $N = 56$ ), in the form of collaboratively developing agent-based models, system dynamics models, or constructing networks with stakeholders. Many papers reintegrated the co-produced knowledge (TD3,  $N = 38$ ), for instance, by collaboratively developing scenarios and pathways to be explored in the models, or by providing stakeholders with co-created tools that facilitate decision-making processes.

Some SDGs were well represented (SDG 2/Zero hunger, 6/Clean water and sanitation, 11/Sustainable cities and communities, 14/Life below water, 15/Life on land), while others were underrepresented (SDG 3/Good health and well-being, 7/Affordable and clean energy, 8/Decent work and economic growth, 12/Responsible production and consumption, and 13/Climate action) or not studied at all (SDG 1/No poverty, 5/Gender equality, 9/Industry, innovation, and infrastructure, 10/Reduced inequalities, 16/Peace, justice, and strong institutions, and 17/Partnership for the goals). Agent-based modelling was frequently

applied to study SDG 15 (Life on land,  $N=20$ ) and SDG 2 (Zero hunger,  $N=8$ ), while system dynamics modelling was often used to study SDG 11 (Sustainable cities and communities,  $N=13$ ), SDG 6 (Clean water and sanitation,  $N=10$ ), and SDG 14 (Life below water,  $N=10$ ). These approaches were most often used during the knowledge co-production (TD2) and reintegration of knowledge (TD3) phases of transdisciplinary research.

### Deepening system understanding for sustainability

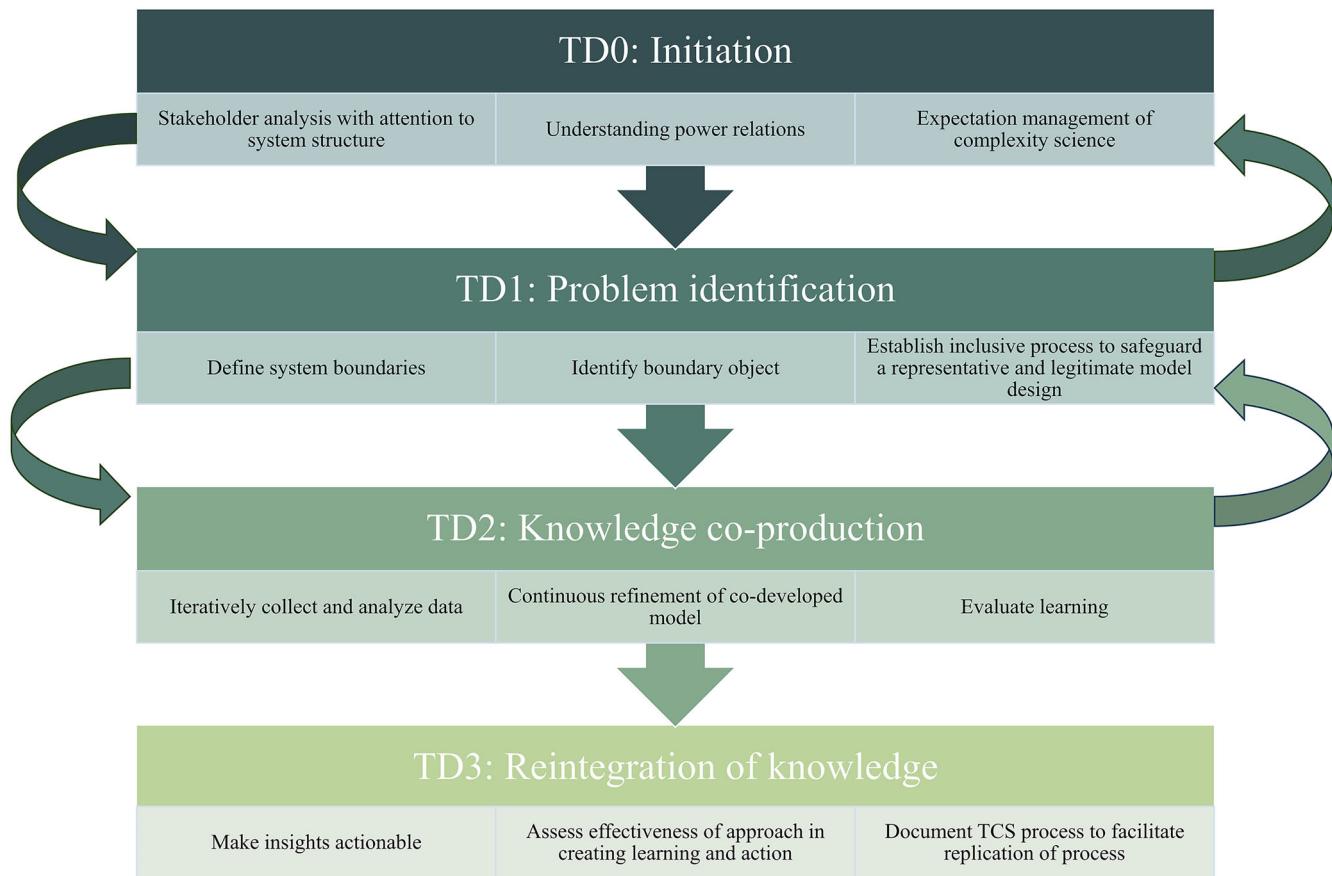
The integration of complexity and transdisciplinary methods was found to improve stakeholders' learning of system complexity in certain cases. For example, Martínez-Fernández et al. (2021) and Richardson et al. (2021) reported that stakeholders learned about non-linear ecosystem processes through the application of system dynamics modelling. In Campo et al. (2009), stakeholders were reported to better understand emergent processes through the application of companion modelling within an agent-based model. Network analysis was also reported to help stakeholders understand how systemic factors like governance structures affected their ability to make sustainable changes (Delgado-Serrano et al., 2015). Formal evaluation of the advancement in system understanding was rarely done; nevertheless, Lee et al. (2021) measured learning outcomes of a marine ecosystem game with a survey, test, interviews, and participant observations and found that the collaboration of multiple teams improved participants' behavioural engagement and learning achievements.

Crucially, stakeholders reported that being included in the co-development of the research increased their trust in the quantitative models ( $N=7$ ) (Campo et al., 2009; Dieguez Camerón et al., 2014; Gourmelon et al., 2013; Le Page et al., 2015; Rojas et al., 2022; Shi et al., 2019; Smetschka and Gaube, 2020). Equally, the focus of many articles on representing stakeholder knowledge was found to improve the relevance of complexity methods ( $N=7$ ) (González-Rosell et al., 2020; Gourmelon et al., 2013; Kumar et al., 2016; Martínez-Fernández et al., 2021; Olivar-Tost et al., 2020; Tringali et al., 2017). For example, Olivar-Tost et al. (2020) used a transdisciplinary approach to derive values of the relative importance the community gave to different variable classes within a system dynamic model for green project prioritisation.

Systematic empirical validation of the efficacy of TCSS in enabling action for sustainability was lacking. Nonetheless, support for the efficacy is provided across the reviewed studies. In Chen et al. (2014), co-developing a system dynamics model of a wetland system in Taiwan improved stakeholder understanding of dynamics in the system and was shown to empower stakeholders to sustainably manage the wetland system. In Austria, farmers adopted sustainable agricultural practices after participating in a research project where an agent-based model was co-developed to explore the influence of farmer decision-making on the local environment (Smetschka and Gaube, 2020). Another example is presented by Shi et al. (2019), where stakeholders co-developed a system dynamics model of urban traffic restriction policies in China. Citizens were involved in all phases of the research process and given a voice in decision-making procedures, which was reported to increase the social support for urban planning projects. The proposed urban traffic restriction policy was found to reduce local traffic and environmental problems.

### Practical challenges for transdisciplinary complexity science

Based on our analyses, we highlight some practical challenges for TCSS related to (1) introducing complexity science methods to non-academic stakeholders, (2) maintaining participation in model development, (3) integrating a diversity of stakeholder views within models, and (4) the validation of models. But these


challenges also provide opportunities to advance this emerging field in productive directions.

Firstly, introducing complexity science methods to non-academic stakeholders can be challenging due to the specific knowledge type required for understanding and applying complexity science methods. Addressing this challenge requires strong facilitation skills that enable the translation of scientific methods to non-academic language. Community-based system dynamics is a tool that facilitates participatory system dynamics modelling, where a community facilitator is invited to act as a bridge between the scientific and non-scientific stakeholders (Hovmand, 2014; Kumar et al., 2016). For example, in Kumar et al. (2016), employees of a local partner agency that have been working with the local community for many years were invited as community facilitators in the research project. The community facilitators introduced participants to the research team and project and helped to communicate the participants' perceptions of the sustainability issue to the research team.

A second challenge for TCSS is that quantitative model development often takes time, and thus can be impacted by changes in participants across phases of the transdisciplinary process. Castella et al. (2007) highlight that a declining participation rate and changing group composition threatened the modelling process as it led to uncertainties about what had been discussed in previous workshops. Here, providing participants with a summary of previous workshop results proved to be an effective strategy. This dependence on stakeholder participation emphasises the importance of an inclusive and diverse participatory process around defining a conceptual framework in phase 1 of the transdisciplinary process, which provides a representative and legitimate framework for model development, despite changing personnel (Steger et al., 2021).

Thirdly, transdisciplinary approaches face the challenge of building a shared understanding of a system when often stakeholders hold diverse and often conflicting perspectives. This challenge may be amplified when integrating transdisciplinary approaches with complexity science, as quantitative models demand simplifications to capture key aspects of complex systems relevant to the research question. Group-based approaches such as group model building or companion modelling provide well-developed frameworks for integrating diverse knowledge and perspectives within the transdisciplinary process. However, often the research goal may require retaining diverse perspectives rather than integrating them, and as such, group processes may not be the best approach (Turnhout et al., 2020). Equally, group processes are sensitive to groupthink and power dynamics, which can lead to premature convergence on a suboptimal solution (Fiore et al., 2001; van den Broek, 2018). Here, complexity methods such as network analysis or agent-based modelling combined with individual interviews, role-playing games, focus groups, or surveys can be powerful ways to retain diverse and marginal knowledge and perspectives within the transdisciplinary model-building process.

Finally, while models are conventionally validated by comparing simulated and observed data, this approach can be difficult to apply to models that were produced in a transdisciplinary setting. For Barnaud et al. (2008), validation was described as a process to build stakeholder confidence in the model in the sense that it accurately represents stakeholder perspectives of the system. This involved actively engaging stakeholders in the early phases of the transdisciplinary process, such as soliciting their feedback on whether any key dynamics were absent from the model. In this way, validation becomes an iterative process incorporating model design and model output, and makes the final model a more accurate representation of reality, allowing more effective action.



**Fig. 3 The four phases of the Transdisciplinary Complexity Science for Sustainability process.** The first 3 phases are reflexive and iterative.

### Recommendations for developing transdisciplinary complexity science for sustainability

We recommend the following steps per study phase to further develop TCSS (Fig. 3). While in-depth instructions are beyond the scope of this paper, these suggestions are starting points to further the integration of transdisciplinary and complexity science approaches, both in empirical applications and methodological work to advance the field.

**TD0 phase: initiation.** The initiation phase of an ideal TCSS process should begin by managing expectations around the complexity science approach that will be used, performing a stakeholder analysis with attention to stakeholder diversity and an analysis of power asymmetries (Horcea-Milcu et al., 2022). Horcea-Milcu et al. (2022) emphasise the importance of understanding the case context and the premises for coming together in phase 0. In this step of a TCSS process, it is important to foster an open dialogue about what complexity models can and cannot do with relation to the context in order to manage stakeholder expectations (van den Broek et al., 2020). This is especially important when introducing complexity science methods, which are often unfamiliar to stakeholders involved (van Bruggen et al., 2019).

Even at this early stage in the research process, it may be useful to introduce complexity methods such as network analysis to safeguard the inclusion of diverse and peripheral stakeholders within the stakeholder selection process (Hubacek et al., 2006; Kirchherr and Charles, 2018; Paletto et al., 2015). As with any transdisciplinary process, ensuring a diverse group of participants is essential to gain a holistic system understanding and a

legitimate process. But this is particularly relevant in the early phase of TCSS, as model design decisions are not easily modified; thus, having a representative group of stakeholders from the beginning lowers the risk of neglecting crucial system components in the model design (Steger et al., 2021). Finally, power relations among participants can be better understood by a joint mapping of the values, perspectives, and interests of participants (Turnhout et al., 2020). This can inform the design of subsequent transdisciplinary processes with attention to power asymmetries.

**TD1 phase: problem identification.** The main aim of the TD1 phase is to collaboratively identify and frame the real-world problem and build a research team. In this phase, stakeholder engagement can be improved by translating the real-world challenge into a boundary object (Lang et al., 2012). Boundary objects are artifacts that can be interpreted differently by stakeholders while providing a point for collaboration (Star and Griesemer, 1989). Complexity models can be employed as boundary objects, as demonstrated in Steger et al. (2022), where stakeholders interpreted an agent-based model of local grasslands in accordance with their values and goals for conservation of the area. In creating a boundary object, the complexity method should be adapted to the problem, and not the other way around (Barnaud et al., 2013). Formalising the problem as a model also helps with defining the boundaries of the system to be studied and encourages stakeholders to think about what are key aspects that should be included in the model and what can be treated as external to the model (Purwanto et al., 2019). It is key to allocate sufficient time to the TD1 phase in order to enable inclusive processes that allow for diverse stakeholder participation.

Inclusive participation of stakeholders benefits the representativeness and legitimacy of the model design (Hansson and Polk, 2018).

**TD2 phase: knowledge co-production.** Central to the TD2 phase is an iterative process of collecting and analysing data using transdisciplinary complexity approaches that foster co-learning. It is important that equal emphasis is placed on both sharing insights from the model and gathering insights from stakeholders to improve the model. Existing approaches, such as group model building (Vennix et al., 1996) or companion modelling (Etienne, 2013), can be applied to guide the process of co-developing a model. In Videira et al. (2009), knowledge co-production was initiated by inviting stakeholders to share their understanding of the sustainability issue, for example, in a causal loop diagram. This framework then served as the foundation to identify relevant variables and dynamics to be incorporated in the model. Once the research team specified the model with scientific data, stakeholders evaluated and improved the model, ensuring that the model maintains practical relevance. This iterative process allows for continuous refinement of the model. Ideally, the co-learning that occurs should be evaluated at each step, but to the best of our knowledge, consistent frameworks for doing so are not yet available (see below).

Besides evaluating learning outcomes, the knowledge co-production phase offers the space for reflexivity. Academic and non-academic stakeholders can critically evaluate how the selected method or approach and underlying values or assumptions influence the research process. A reflexive approach to knowledge co-production in TCSS implies an iterative process of joint experimentation with methodologies and making adjustments where needed (Popa et al., 2015). The outcome, therefore, may require revisiting phases 0 and 1.

**TD3 phase: reintegration of knowledge.** Successfully engaging stakeholders in each phase of the research enables learning about system structure and dynamics, as well as contextual and subjective perceptions of how the system is experienced and what stakeholders would view as indicators for monitoring system improvement. The TD3 phase focuses on reintegrating the insights of the research and making them actionable. Exploring the influence of various solutions on the sustainability challenge should provide stakeholders with a basis for action, which includes quantitative data.

Alongside evaluating concrete outcomes toward sustainability challenges, it is important to evaluate the perceived learning and empowerment that have occurred among project participants at this stage. Therefore, we recommend future work to develop and apply assessment frameworks for specifically evaluating the effectiveness of combining complexity and transdisciplinary methods that focus on facilitating co-learning and action for sustainability. Existing frameworks that evaluate the contribution of transdisciplinary research to address sustainability issues can be adapted to also incorporate these dimensions (Plummer et al., 2022).

It will also be important to develop frameworks for describing the transdisciplinary process in TCSS studies to ensure future research is transparent, the method is reproducible, and that outcomes that claim action for sustainability can be assessed based on the process described. In this case, frameworks used from complexity science, such as the ODD protocol from agent-based modelling (Grimm et al., 2006, 2010), can be adapted to explain and justify how the transdisciplinary process informed model design.

## Conclusion

To achieve action towards sustainability, it is crucial to foster transdisciplinary learning in complex systems. Successfully engaging stakeholders in each phase of the research enables learning about system structure and dynamics as well as contextual and subjective perceptions of how the system is experienced and what stakeholders would view as indicators for system improvement. The body of research analysed here provides direction and inspiration for how this can be done.

There is great potential to exploit the benefits of TCSS in future studies, as there is a limited body of research that has integrated both approaches, and the SDGs have been unevenly addressed. We believe that TCSS can be a powerful way to foster system understanding and action for sustainability in these areas. A support base for action towards sustainability can be mobilised with tools that represent both the complexity and stakeholders' experience and understanding of systems.

In particular, future research can target SDGs that are currently underrepresented in TCSS studies. For example, SDG3 (Good health and well-being) can be addressed with agent-based or system dynamics models of disease spread or healthcare interventions. Integrating transdisciplinary approaches by engaging healthcare practitioners and communities ensures that these models account for relevant behavioural factors and improve intervention uptake. Similarly, SDG 5 (Gender inequalities) can benefit from network analysis combined with transdisciplinary approaches to reveal gendered power structures in social networks. This approach helps identify gender differences in access to opportunities and resources while ensuring that the research amplifies the perspectives of women and actively supports their empowerment.

Moreover, the integration of transdisciplinary processes is less prevalent in the initiation and problem-formulation phases of the research. To stimulate transdisciplinary complexity research further, sustainability journals and funding bodies should encourage authors to document how co-learning and action was facilitated within the research, and ideally, evaluate to what extent it was achieved. This allows the wider research community to reproduce research, and to learn which approaches show promise in different contexts.

## Data availability

The data is publicly available at Zenodo: <https://doi.org/10.5281/zenodo.10807910>.

Received: 26 April 2024; Accepted: 14 July 2025;

Published online: 23 August 2025

## References

- Alizadeh MR, Adamowski J, Inam A (2022) Integrated assessment of localized SSP–RCP narratives for climate change adaptation in coupled human–water systems. *Sci Total Environ* 823:153660. <https://doi.org/10.1016/j.scitotenv.2022.153660>
- Aminpour P, Gray SA, Jetter A, Introne J, Singer A, Arlinghaus R (2020) Wisdom of stakeholder crowds in complex social–ecological systems. *Nat Sustain* 3:91–99. <https://doi.org/10.1038/s41893-019-0467-z>
- An L (2012) Modeling human decisions in coupled human and natural systems: review of agent-based models. *Ecol Model* 229:25–36. <https://doi.org/10.1016/j.ecolmodel.2011.07.010>
- Barnaud C, Bousquet F, Trebuil G (2008) Multi-agent simulations to explore rules for rural credit in a highland farming community of Northern Thailand. *Ecol Econ* 66(4):4. <https://doi.org/10.1016/j.ecolecon.2007.10.022>
- Barnaud C, Le Page C, Dumrongrojwatthana P, Trébuil G (2013) Spatial representations are not neutral: Lessons from a participatory agent-based modelling process in a land-use conflict. *Environ Model Softw* 45:150–159. <https://doi.org/10.1016/j.envsoft.2011.11.016>
- Beall A, Fiedler F, Boll J, Cosenz B (2011) Sustainable water resource management and participatory system dynamics. case study: developing the palouse basin participatory model. *Sustain* 3(5):5. <https://doi.org/10.3390/su3050720>

Bodin Ö, Alexander SM, Baggio J, Barnes ML, Berardo R, Cumming GS, Dee LE, Fischer AP, Fischer M, Mancilla Garcia M, Guerrero AM, Hileman J, Ingold K, Matous P, Morrison TH, Nohrstedt D, Pittman J, Robins G, Sayles JS (2019) Improving network approaches to the study of complex social-ecological interdependencies. *Nat Sustain* 2(7):7. <https://doi.org/10.1038/s41893-019-0308-0>

Bowditch E, Santopuoli G, Binder F, del Rio M, La Porta N, Kluvankova T, Lesinski J, Motta R, Pach M, Panzacchi P, Pretzsch H, Temperli C, Tonon G, Smith M, Velikova V, Weatherall A, Tognetti R (2020) What is climate-smart forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. *Ecosyst Serv* 43:101113. <https://doi.org/10.1016/j.ecoser.2020.101113>

Boyle E, O Gallachóir B, Mullally G (2021) Participatory network mapping of an emergent social network for a regional transition to a low-carbon and just society on the Dingle Peninsula. *Local Env* 12(27):1431–1445. <https://doi.org/10.1080/13549839.2021.1936472>

Brandt P, Ernst A, Gralla F, Luederitz C, Lang DJ, Newig J, Reinert F, Abson DJ, von Wehrden H (2013) A review of transdisciplinary research in sustainability science. *Ecol Econ* 92:1–15. <https://doi.org/10.1016/j.ecolecon.2013.04.008>

Brundtland G (1987) Report of the world commission on environment and development: our common future. United Nations General Assembly Document A/42/427. Available at: <https://digitallibrary.un.org/record/139811?v=pdf> (Accessed on: 25 October 2024)

Campo PC, Mendoza GA, Guizol P, Villanueva TR, Bousquet F (2009) Exploring management strategies for community-based forests using multi-agent systems: a case study in Palawan, Philippines. *J Environ Manag* 90(11):11. <https://doi.org/10.1016/j.jenvman.2009.06.016>

Castella JC, Pheng Kam S, Dinh Quang D, Verburg PH, Thai Hoanh C (2007) Combining top-down and bottom-up modelling approaches of land use/cover change to support public policies: Application to sustainable management of natural resources in northern Vietnam. *Land Use Policy* 24(3):3. <https://doi.org/10.1016/j.landusepol.2005.09.009>

Catarino R, Therond O, Berthomier J, Miara M, Mérat E, Misslin R, Vanhove P, Villerd J, Angevin F (2021) Fostering local crop-livestock integration via legume exchanges using an innovative integrated assessment and modelling approach based on the MAELIA platform. *Agric Syst* 189:103066. <https://doi.org/10.1016/j.agsy.2021.103066>

Chen H, Chang YC, Chen KC (2014) Integrated wetland management: an analysis with group model building based on system dynamics model. *J Environ Manag* 146:309–319. <https://doi.org/10.1016/j.jenvman.2014.05.038>

Chuvileva IM, Reef L, Wilt GE, Shriber J, Aleman M, Smith B (2017) Impact of a participatory analysis of a campus sustainability social network: a case study of Emory University. *Sustain: J Rec* 10(3):3. <https://doi.org/10.1089/sus.2017.29104.iiec>

Cottafava D, Corazza L (2021) Co-design of a stakeholders' ecosystem: an assessment methodology by linking social network analysis, stakeholder theory and participatory mapping. *Kybernetes* 50(3):3. <https://doi.org/10.1108/K-12-2019-0861>

Delgado-Serrano M, Oteros-Rozas E, Vanwildeveld P, Ortiz-Guerrero C, London S, Escalante R (2015) Local perceptions on social-ecological dynamics in Latin America in three community-based natural resource management systems. *Ecol Soc* 20(4):4. <https://doi.org/10.5751/ES-07965-200424>

Delmotte S, Barbier JM, Mouret JC, Le Page C, Wery J, Chauvelon P, Sandoz A, Lopez Ridaura S (2016) Participatory integrated assessment of scenarios for organic farming at different scales in Camargue, France. *Agric Syst* 143:147–158. <https://doi.org/10.1016/j.agsy.2015.12.009>

Dermody BJ, Tanner CJ, Jackson AL (2011) The evolutionary pathway to obligate scavenging in gyre vultures. *PLoS ONE* 6(9):e24635. <https://doi.org/10.1371/journal.pone.0024635>

Dieguez Camerón FJ, Terra R, Tabarez S, Bommel P, Corral J, Bartaburu D, Pereira M, Montes E, Duarte E, Morales Grosskopf H (2014) Virtual experiments using a participatory model to explore interactions between climatic variability and management decisions in extensive grazing systems in the basaltic region of Uruguay. *Agric Syst* 130:89–104. <https://doi.org/10.1016/j.agsy.2014.07.002>

Domenico MD, Sayama H (2019) Complexity explained. <https://doi.org/10.17605/OSF.IO/TQGNW>

Etienne M (2013) Companion modelling: a participatory approach to support sustainable development. Éditions Quæ, Avignon

Farmer JD, Foley D (2009) The economy needs agent-based modelling. *Nature* 460(7256):685–686. <https://doi.org/10.1038/460685a>

Fiore SM, Salas E, Cannon-Bowers JA (2001) Group dynamics and shared mental model development. In: How people evaluate others in organizations. Psychology Press, pp 28

Folke C, Biggs R, Norström AV, Reyers B, Rockström J (2016) Social-ecological resilience and biosphere-based sustainability science. *Ecol Soc* 21(3):41, <https://www.jstor.org/stable/26269981>

Funtowicz SO, Ravetz JR (1993) Science for the post-normal age. *Futures* 25(7):739–755. [https://doi.org/10.1016/0016-3287\(93\)90022-L](https://doi.org/10.1016/0016-3287(93)90022-L)

Fynn JF, Jones J, Jones A (2021) A systems approach to the exploration of research activity and relationships within a local authority. *Health Res Pol Syst* 19(1):1. <https://doi.org/10.1186/s12961-021-00792-0>

Gerhardinger LC, Holzkämper E, de Andrade MM, Corrêa MR, Turra A (2022) Envisioning ocean governability transformations through network-based marine spatial planning. *Mar Stud* 21(1):1. <https://doi.org/10.1007/s40152-021-00250-1>

Giordano R, Mázquez Costa M, Pagano A, Mayor Rodriguez B, Zorrilla-Miras P, Gomez E, Lopez-Gunn E (2021) Combining social network analysis and agent-based model for enabling nature-based solution implementation: The case of Medina del Campo (Spain). *Sci Total Environ* 801:149734. <https://doi.org/10.1016/j.scitotenv.2021.149734>

González-Rosell A, Blanco M, Arfa I (2020) Integrating stakeholder views and system dynamics to assess the water–energy–food nexus in Andalusia. *Water* 12(11):11. <https://doi.org/10.3390/w12113172>

Gourmelon F, Chlous-Ducharme F, Kerbiriou C, Rouan M, Bioret F (2013) Role-playing game developed from a modelling process: a relevant participatory tool for sustainable development? A co-construction experiment in an insular biosphere reserve. *Land Use Pol* 32:96–107. <https://doi.org/10.1016/j.landusepol.2012.10.015>

Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pe'er G, Piou C, Railsback SF, Robbins AM, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. *Ecol Model* 198(1):115–126. <https://doi.org/10.1016/j.ecolmodel.2006.04.023>

Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol: a review and first update. *Ecol Model* 221(23):2760–2768. <https://doi.org/10.1016/j.ecolmodel.2010.08.019>

Hansson S, Polk M (2018) Assessing the impact of transdisciplinary research: the usefulness of relevance, credibility, and legitimacy for understanding the link between process and impact. *Res Eval* 27(2):132–144. <https://doi.org/10.1093/reseval/rvy004>

Horcea-Milcu AI, Leventon J, Lang DJ (2022) Making transdisciplinarity happen: phase 0, or before the beginning. *Environ Sci Policy* 136:187–197. <https://doi.org/10.1016/j.envsci.2022.05.019>

Horcea-Milcu AI, Martin-López B, Lam DPM, Lang DJ (2020) Research pathways to foster transformation: linking sustainability science and social-ecological systems research. *Ecol Soc* 25(1):13. <https://doi.org/10.5751/ES-11332-250113>

Hovmand PS (2014) Group model building and community-based system dynamics process. In: Hovmand PS (ed) *Community Based System Dynamics*. Springer, New York, pp 17–30. [https://doi.org/10.1007/978-1-4614-8763-0\\_2](https://doi.org/10.1007/978-1-4614-8763-0_2)

Huang G, London JK (2016) Mapping in and out of “messes”: an adaptive, participatory, and transdisciplinary approach to assessing cumulative environmental justice impacts. *Landsc Urban Plann* 154:57–67. <https://doi.org/10.1016/j.landurbplan.2016.02.014>

Hubacek K, Prell C, Reed M, Boys D, Bonn A, Dean C (2006) Using stakeholder and social network analysis to support participatory processes. *Int J Biodivers Sci Manag* 2(3):249–252. <https://doi.org/10.1080/17451590609618137>

Inam A, Adamowski J, Prasher S, Halbe J, Malard J, Albano R (2017) Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management – Part 1: model development. *J Hydrol* 551:596–618. <https://doi.org/10.1016/j.jhydrol.2017.03.039>

Kircherr J, Charles K (2018) Enhancing the sample diversity of snowball samples: recommendations from a research project on anti-dam movements in Southeast Asia. *PLoS ONE* 13(8):8. <https://doi.org/10.1371/journal.pone.0201710>

Knickel M, Knickel K, Galli F, Maye D, Wiskerke JSC (2019) Towards a reflexive framework for fostering co-learning and improvement of transdisciplinary collaboration. *Sustain* 11(23):23. <https://doi.org/10.3390/su11236602>

Kratzter A (2018) Biosphere reserves as model regions for sustainability transitions? Insights into the peripheral mountain area Grosses Walsertal (Austria). *Appl Geogr* 90:321–330. <https://doi.org/10.1016/j.apgeog.2017.04.003>

Kumar P, Chalise N, Yadama GN (2016) Dynamics of sustained use and abandonment of clean cooking systems: study protocol for community-based system dynamics modeling. *Int J Equit Health* 15(1):1. <https://doi.org/10.1186/s12939-016-0356-2>

Lang D, Wiek A, Bergmann M, Stauffacher M, Martens P, Moll P, Swilling M, Thomas C (2012) Transdisciplinary research in sustainability science: practice, principles, and challenges. *Sustain Sci* 7:25–43. <https://doi.org/10.1007/s11625-011-0149-x>

Le Page C, Bobo KS, Kamgaing TOW, Ngahane BF, Waltert M (2015) Interactive simulations with a stylized scale model to co-design with villagers an agent-based model of bushmeat hunting in the periphery of Korup National Park (Cameroon). *JASSS* 18(1):1. <https://doi.org/10.18564/jasss.2550>

Lee SW, Shih M, Liang J, Tseng Y (2021) Investigating learners' engagement and science learning outcomes in different designs of participatory simulated games. *Br J Educ Technol Syst* 52(3):3. <https://doi.org/10.1111/bjet.13067>

Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. *Ecosystems* 1(5):431–436. <https://doi.org/10.1007/s100219900037>

Martínez-Fernández J, Banos-González I, Esteve-Selma MÁ (2021) An integral approach to address socio-ecological systems sustainability and their uncertainties. *Sci Total Environ* 762:144457. <https://doi.org/10.1016/j.scitotenv.2020.144457>

Mitchell M, Toroczkai Z (2010) Complexity: a guided tour. *Phys Today* 63:47. <https://doi.org/10.1063/1.3326990>

Montalto FA, Bartrand TA, Waldman AM, Travaline KA, Loomis CH, McAfee C, Geldi JM, Riggall GJ, Boles LM (2013) Decentralised green infrastructure: the importance of stakeholder behaviour in determining spatial and temporal outcomes. *Struct Infrastruct Eng* 9(12):12. <https://doi.org/10.1080/15732479.2012.671834>

Morton L, Eigenbrode S, Martin T (2015) Architectures of adaptive integration in large collaborative projects. *Ecol Soc* 20:5. <https://doi.org/10.5751/ES-0778-200405>

Norström AV, Cvitanovic C, Löf MF, West S, Wyborn C, Balvanera P, Bednarek AT, Bennett EM, Biggs R, de Bremond A, Campbell BM, Canadell JG, Carpenter SR, Folke C, Fulton EA, Gaffney O, Gelcich S, Jouffray JB, Leach M, Österblom H (2020) Principles for knowledge co-production in sustainability research. *Nat Sustain* 3(3):3. <https://doi.org/10.1038/s41893-019-0448-2>

Olivar-Tost G, Valencia-Calvo J, Castrillón-Gómez JA (2020) Towards decision-making for the assessment and prioritization of green projects: an integration between system dynamics and participatory modeling. *Sustain* 12(24):24. <https://doi.org/10.3390/su122410689>

Omodei E, García-Herranz M, Paolotti D, Tizzoni M (2022) Complex systems for the most vulnerable. *J Phys: Complex* 3(2):021001. <https://doi.org/10.1088/2632-072X/ac60b1>

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamser L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, ... Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*, n71. <https://doi.org/10.1136/bmj.n71>

Paletto A, Hamunen K, De Meo I (2015) Social network analysis to support stakeholder analysis in participatory forest planning. *Soc Nat Res* 28(10):1108–1125. <https://doi.org/10.1080/08941920.2015.1014592>

Plummer R, Blythe J, Gurney GG, Witkowski S, Armitage D (2022) Transdisciplinary partnerships for sustainability: an evaluation guide. *Sustain Sci* 17(3):955–967. <https://doi.org/10.1007/s11625-021-01074-y>

Pohl C, Truffer B, Hirsch-Hadorn G (2017) Addressing Wicked problems through transdisciplinary research. In: *The Oxford Handbook of Interdisciplinarity*, Oxford University Press, Oxford, pp 319–331. <https://doi.org/10.1093/oxfordhb/9780198733522.013.26>

Popa F, Guillermin M, Dedeurwaerdere T (2015) A pragmatist approach to transdisciplinarity in sustainability research: from complex systems theory to reflexive science. *Futures* 65:45–56. <https://doi.org/10.1016/j.futures.2014.02.002>

Pradhan P, Costa L, Rybski D, Lucht W, Kropp JP (2017) A systematic study of sustainable development goal (SDG) interactions. *Earth's Fut* 5(11):1169–1179. <https://doi.org/10.1002/2017EF000632>

Preiser R, Biggs R, De Vos A, Folke C (2018) Social-ecological systems as complex adaptive systems: organizing principles for advancing research methods and approaches. *Ecol Soc* 23(4):46. <https://doi.org/10.5751/ES-10558-230446>

Purwanto A, Sušnjević J, Suryadi FX, de Fraiture C (2019) Using group model building to develop a causal loop mapping of the water-energy-food security nexus in Karawang Regency, Indonesia. *J Clean Prod* 240:118170. <https://doi.org/10.1016/j.jclepro.2019.118170>

Richardson RB, Olabisi LS, Waldman KB, Sakana N, Brugnone NG (2021) Modeling interventions to reduce deforestation in Zambia. *Agric Syst* 194:103263. <https://doi.org/10.1016/j.agysy.2021.103263>

Rietkerk M, Bastiaansen R, Banerjee S, Van De Koppel J, Baudena M, Doelman A (2021) Invasion of tipping in complex systems through spatial pattern formation. *Science* 374(6564):eabj0359. <https://doi.org/10.1126/science.abj0359>

Rojas R, Castilla-Rho J, Bennison G, Bridgert R, Prats C, Claro E (2022) Participatory and integrated modelling under contentious water use in semiarid basins. *Hydrol* 9(3):3. <https://doi.org/10.3390/hydrology9030049>

Ruankaew N, Le Page C, Dumrongjowattana P, Barnaud C, Gajaseni N, van Paassen A, Trébuil G (2010) Companion modelling for integrated renewable resource management: a new collaborative approach to create common values for sustainable development. *Int J Sustain Dev World Ecol* 17(1):1. <https://doi.org/10.1080/13504500903481474>

Schlüter M, Müller B, Frank K (2019) The potential of models and modeling for social-ecological systems research: the reference frame ModSES. *Ecol Soc* 24(1):31. <https://www.jstor.org/stable/26796919>

Schmitt Olabisi LK, Kapuscinski AR, Johnson KA, Reich PB, Stenquist B, Draeger KJ (2010) Using scenario visioning and participatory system dynamics modeling to investigate the future: lessons from Minnesota 2050. *Sustain* 2(8):2686–2706. <https://doi.org/10.3390/su2082686>

Shi J, Guo X, Hu X (2019) Engaging stakeholders in urban traffic restriction policy assessment using system dynamics: the case study of Xi'an City, China. *Sustain* 11(14):3930. <https://doi.org/10.3390/su11143930>

Smajgl A (2010) Challenging beliefs through multi-level participatory modelling in Indonesia. *Environ Model Softw* 25(11):1470–1476. <https://doi.org/10.1016/j.envsoft.2010.04.008>

Smetschka B, Gaube V (2020) Co-creating formalized models: participatory modelling as method and process in transdisciplinary research and its impact potentials. *Environ Sci Policy* 103:41–49. <https://doi.org/10.1016/j.envsci.2019.10.005>

Star SL, Griesemer JR (1989) Institutional ecology 'translations' and boundary objects: amateurs and professionals in Berkeley's museum of vertebrate zoology, 1907–39. *Soc Stud Sci* 19(3). <https://doi.org/10.1177/03631289019003001>

Starkl M, Brunner N, López E, Martínez-Ruiz JL (2013) A planning-oriented sustainability assessment framework for peri-urban water management in developing countries. *Water Res* 47(20):7175–7183. <https://doi.org/10.1016/j.watres.2013.10.037>

Steger C, Boone RB, Dullo BW, Evangelista P, Alemu S, Gebrehiwot K, Klein JA (2022) Collaborative agent-based modeling for managing shrub encroachment in an Afroalpine grassland. *J Environ Manag* 316:115040. <https://doi.org/10.1016/j.jenvman.2022.115040>

Steger C, Hirsch S, Cosgrove C, Inman S, Nost E, Shinbrot X, Thorn JPR, Brown DG, Grêt-Regamey A, Müller B, Reid RS, Tucker C, Weibel B, Klein JA (2021) Linking model design and application for transdisciplinary approaches in social-ecological systems. *Glob Environ Change* 66:102201. <https://doi.org/10.1016/j.gloenvcha.2020.102201>

Tringali C, Re V, Siciliano G, Chkir N, Tuci C, Zouari K (2017) Insights and participatory actions driven by a socio-hydrogeological approach for groundwater management: the Grombalia Basin case study (Tunisia). *Hydrogeol J* 25(5):1241–1255. <https://doi.org/10.1007/s10040-017-1542-z>

Turnhout E, Metze T, Wyborn C, Klenk N, Louder E (2020) The politics of co-production: participation, power, and transformation. *Curr Opin Environ Sustain* 42:15–21. <https://doi.org/10.1016/j.cosust.2019.11.009>

van Bruggen A, Nikolic I, Kwakkel J (2019) Modeling with stakeholders for transformative change. *Sustain* 11(3):825. <https://doi.org/10.3390/su11030825>

van den Broek K (2018) Illuminating divergence in perceptions in natural resource management: a case for the investigation of the heterogeneity in mental models. *J Dyn Decis Mak* 4(2):2. <https://doi.org/10.11588/ddm.2018.1.51316>

van den Broek KL, Luomba J, Onyango HO, Musobya M, Klein SA (2020) A framework for co-developing conservation research projects with stakeholders: a Lake Victoria case study. *Lakes Res Sci Policy Manag Sustain Use* 25(4):403–412. <https://doi.org/10.1111/lre.12342>

Vennix JAM, Akkermans HA, Rouwette EAJA (1996) Group model-building to facilitate organizational change: an exploratory study. *Syst Dyn Rev* 12(1):39–58. [https://doi.org/10.1002/\(SICI\)1099-1727\(199621\)12:1<39::AID-SDR94>3.0.CO;2-K](https://doi.org/10.1002/(SICI)1099-1727(199621)12:1<39::AID-SDR94>3.0.CO;2-K)

Videira N, Antunes P, Santos R (2009) Scoping river basin management issues with participatory modelling: the Baixo Guadiana experience. *Ecol Econ* 68(4):965–978. <https://doi.org/10.1016/j.ecolecon.2008.11.008>

Weeks MR, Lounsbury DW, Li J, Hirsch G, Berman M, Green HD, Rohena L, Gonzalez R, Montezuma-Rusca JM, Jackson S (2020) Simulating system dynamics of the HIV care continuum to achieve treatment as prevention. *PLoS ONE* 15(3):e0230568. <https://doi.org/10.1371/journal.pone.0230568>

## Acknowledgements

This research was funded by a "Complexity of Sustainability" grant from the Pathways to Sustainability strategic theme, Utrecht University, and the Centre for Complex Systems Studies, Department of Physics, Utrecht University. Additional funding was provided by the Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University.

## Author contributions

BJD, ID, ND, AGM, EO, IL, CBMK, CAP, MB, MS, SZ, MBau, AvB, and CW conceived the idea within a workshop setting. LdJ and BJD wrote the manuscript with contributions from ID, ND, AGM, IL, CBMK, MB, MS, SZ, MBau, CW, HD, AvB, and KB. Search string was developed by LdJ, BJD, EO, IL, ID, SZ, CW, MBau, AvB, and KB. Systematic literature review was carried out by LdJ with support from ID, AGM, MBau, EO, CAP, SZ, BJD, and AvB.

## Competing interests

The authors declare no competing interests.

**Ethical approval**

Ethical approval was not obtained as the study did not involve human participants.

**Informed consent**

Informed consent was not obtained as the study did not involve human participants.

**Additional information**

**Supplementary information** The online version contains supplementary material available at <https://doi.org/10.1057/s41599-025-05548-7>.

**Correspondence** and requests for materials should be addressed to Lynn A. de Jager.

**Reprints and permission information** is available at <http://www.nature.com/reprints>

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025