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A CrambRao Lower Bound for Complex Parameters 

A. van den Bos 

Abstract-An expression is derived for a Cramer-Rao lower bound on 
the variance of unbiased estimators of complex parameters. 

I. INTRODUCTION 
In signal processing, the Cram&-Rao lower bound (CRLB) on 

the variance of unbiased estimators is widely used as a measure 
of attainable precision of parameter estimates from a given set of 
observations. It is observed that up to now, most of its applications 
are concerned with the estimation of real parameters. However, 
recent publications such as [ 11 show the usefulness of extending the 
CRLB to include the estimation of complex parameters. The results 
described in [ 11 are specialized to the CRLB for the parameters of 
superimposed signals corrupted by normally distributed errors, and 
the complex parameters are the amplitudes of these signals. The 
purpose of this correspondence is to derive a CRLB for complex 
parameters applicable to any distribution and model of the observa- 
tions. The derivation is analogous to the derivation of the CRLB for 
real parameters in [2]. 

11. DERIVATION OF THE CRAM~R-RAO 
LOWER BOUND FOR COMPLEX PARAMETERS 

Suppose that a vector of possibly complex scalar observations 
is available described by w = (w1 . . . W N ) ~ .  In addition, suppose 
that the probability density function (pdf) of the observations is 
g ( - J ; a , , 3 ) ,  where the elements of the N x 1 vector J! correspond 
to those of the vector w .  The elements of the I< x 1 vectors N and 
P are the real and imaginary parts of the elements 7 k  = N k  + j 8 k  
of a vector of complex parameters y with j = J - 1. 

The pdf g(d; a ,  3 )  may be transformed into a reparameterized 
version f(d;O) with 

Q =  (~ l? ; . . . ? rc -Y;c) r  (1) 

by substituting (;! + ? * ) / 2  and -j(y - 7 * ) / 2  for N and ,9, respec- 
tively, where y* is the complex conjugate of y. It will he assumed that 
f ( w :  6 ' )  is analytic with respect to the elements of 0. Next, define the 
L x 1 vector p as 

P = ( p l ( 0 ) " ' p L ( Q ) ) T  (2) 

where the possibly complex functions p~ ( 6 ' )  are assumed analytic 
with respect to the elements of 0. If r (  U ) )  is any unbiased estimator 
of p,  then 

where n is the sample space. It is easy to see that under suitable 
regularity conditions 
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In this expression, the elements of the 1 x 2K vector df/dBT are 
equal to df / @ k ,  where f = f(d; 0 ) .  Furthermore, in (4), the (a ,  k)th 
element of the L x 2K matrix dp/dOT is equal to dpe/%'k .  By 
definition s, f(w; 0)  dw = 1 

and hence 

where 0 is the 1 x 2 K null vector. From (4) and (6), it is concluded 
that 

(7) 

is equal to the covariance matrix of the L x 1 vector r (w ) and the 2K 
x 1 vector (8  In f / d 1 9 ~ ) ~ ,  where H denotes the complex conjugate 
transpose. Therefore, the autocovariance matrix of the partitioned 
(L  + 2 K) x 1 vector 

is equal to 

where cov(r, r )  

[[$]"I 
dp cov(r, T )  

s the autocovariance matrix of T = ~ ( w ) .  

(9) 

Since the matrix (9) is an autocovariance matrix, it is positive 
semidefinite. Hence, so is 

where 

- = E [ [ F ] H q  d l n  f 
(11) 

and I is the identity matrix of order L. Carrying out the multiplica- 
tions in (10) shows that 

cov(r, r )  - - M-' [:TI" - 
d P  

is positive semidefinite. Therefore, the CRLB for unbiased estimation 
of functions p is described by 

H $ M-' [ $4 
From this expression, it follows that the CRLB for unbiased 

estimation of the complex parameters 6' is equal to M-' since in 
this case, d p / d B T  is the identity matrix. 
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