
Delft University of Technology
Master of Science Thesis in Computer and Embedded Systems Engineering

Embedded Firmware Debugging and
Telemetry

Ojasvi Kumar

Embedded
Systems





Embedded Firmware Debugging and Telemetry

Master of Science Thesis in Computer and Embedded Systems
Engineering

Embedded Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Van Mourik Broekmanweg 6, 2628XE Delft, The Netherlands

Ojasvi Kumar
okumar@student.tudelft.nl

22nd June 2024

mailto:okumar@student.tudelft.nl


Author
Ojasvi Kumar 
 Title
Embedded Firmware Debugging and Telemetry 

MSc Presentation Date
26th June 2024

Graduation Committee
Georgi Gaydadjiev Delft University of Technology
Przemyslaw Pawelczak Delft University of Technology



Abstract

In the rapidly evolving realm of embedded systems, debugging is a critical com-
ponent in the lifecycle of embedded firmware development, especially given the
high demands of performance in real-time systems. Debugging embedded sys-
tems is inherently challenging and time-consuming due to limited internal sys-
tem observability. Many modern processors, specifically those based on the
ARM architecture, are equipped with debugging features such as Coresight com-
ponents and debug registers to aid the debugging process. However, most debug-
ging solutions rely on external hardware, which is often removed or disabled in a
production system. Furthermore, existing software/hardware debug platforms
do not support co-debug capabilities for multicore and multiprocessor debug-
ging. This research aims to tackle the challenges developers face due to limited
resources, strict real-time constraints, and the complex nature of debugging in
embedded systems. The focus is on enhancing code efficiency and ensuring sys-
tem responsiveness within stringent timing constraints. This thesis introduces a
software library solution for debugging and profiling firmware, leveraging trace
infrastructure and debug registers for multicore and multiprocessor ARM-based
SoCs, facilitating comprehensive system analysis across ARM R5, M4, and M33
series processors. The library supports performance measurement, profiling,
hardware breakpoints and watchpoints, synchronous breakpoints in multicore
systems, and inter-processor communication. Furthermore, integrating Embed-
ded Trace Macrocell and Micro Trace Buffer allows for detailed tracing across
all processors, significantly enhancing system observability and debugging effi-
ciency. Notably, the library is designed to be user-friendly, hardware-agnostic,
and easily expandable to other ARMv7, and ARMv8 series processors. Com-
parative results documented in this study highlight the library’s low overhead
and latency. This thesis advances technical capabilities in debugging embedded
systems and strategically enhances design decisions and process optimizations,
ultimately contributing to more robust and efficient embedded solutions.
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“If debugging is the process of removing software bugs, then programming must
be the process of putting them in.” – Edsger Dijkstra
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Chapter 1

Introduction

Embedded systems are integral to a myriad of applications, from simple house-
hold devices to complex automotive and aerospace controls. Each application
demands rigorous standards for performance, reliability, and safety. However,
the very nature of these systems, characterized by their tight coupling with
hardware, limited resources, and real-time operational requirements, presents
substantial challenges in firmware development, particularly in the areas of de-
bugging and profiling [33].
Debugging embedded systems is notoriously difficult due to their constrained

resources and limited visibility into running processes[53, 59]. Traditional de-
bugging methods often rely heavily on external hardware, such as Joint Test
Action Group(JTAG [31]) or in-circuit emulators which, while useful during
development, are not viable in the final product stages [37]. This poses a signi-
ficant problem in environments where systems must be debugged and optimized
post-deployment without intrusive hardware [59]. Moreover, the existing plat-
forms lack support for co-debugging in multicore and multiprocessor systems,
further complicating the debugging process [64, 65].
The ARMv7 and ARMv8 architectures, which power many modern embedded

systems, provide built-in debugging features [62, 43]. However, the potential of
these features is not fully harnessed in many existing tools, particularly in the
context of multicore and multiprocessor configurations.
This thesis aims to address these shortcomings by introducing a novel software

library solution for debugging and profiling firmware in ARMv7 and ARMv8-
based systems on Chip (SoCs). The proposed solution leverages the Trace In-
frastructure and debug registers available in these systems, providing a compre-
hensive system analysis across various ARMv7 series processors.
The library is designed to be user-friendly, hardware-agnostic, and easily ex-

pandable, offering features such as performance measurement, profiling, hard-
ware breakpoints and watchpoints, synchronous breakpoints in multicore sys-
tems, and inter-processor communication. The library significantly enhances
system observability and debugging efficiency by integrating the Embedded
Trace Macrocell (ETM [55]) and Micro Trace Buffer (MTB [46]).
Figure 1.1, as presented in the research paper ”ARMV8 debug and trace ar-

chitectures [62]” depicts the evolution of ARM architecture, highlighting the
progression from early cores like ARM7TDMI, which supported basic ETM™
Trace and had a stopped clock for debugging[62], through to more advanced
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Figure 1.1: Evolution of ARM debug Architecture(from left to right)
[62] and Software Library’s particular emphasis on the and ARMv7
and ARMv7-M Debug

cores like ARM9 and ARM9E™ with enhanced debug monitor support and ad-
vanced Embedded Trace Macrocell ETMv3 [55] features. ARM10™ further im-
proved flexibility with running clocks and software programmability of clocks.
In the architecture section, ARMv6 introduced foundational debug features,
while ARMv7 and ARMv8 cores, highlighted in green, showcased significant
advancements such as TrustZone and CoreSight™ technology, providing robust
security and comprehensive system visibility [62].

The focus of the debug library on ARMv7, ARMv7-M, and ARMv8-M cores
is driven by their widespread adoption and versatility in many real-time and
embedded applications. These cores are integral to various consumer electron-
ics, industrial automation, and other embedded systems, making them a crucial
target for a robust debugging tool. ARMv7, ARMv8, and ARMv7-M provide
advanced debugging features, such as Data and Watchpoint Trace Unit (DWT)
to apply watchpoints, Flash Patch and Breakpoint Unit (FPB) for the support
of breakpoints, Performance Measurement Unit (PMU), and CoreSight™, en-
abling efficient diagnosis and resolution of system issues while optimizing for
performance and power efficiency in resource-constrained environments.

While the scope of the library proposed in this is currently limited to only
ARMv7, ARMv7-M, and ARMv8-M cores, with minor modifications, the library
can be extended to support other ARM cores having similar debugging features,
ensuring its utility across a broader range of platforms and future-proofing it
against advancements in ARM technology. This targeted approach allows for a
deep and effective implementation of a working system while maintaining the
flexibility to extend the support when needed.
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1.1 Problem Statement

While effective during the development phase, external hardware-based debug-
ging tools often cannot be integrated into the final product due to cost, space, se-
curity, and power constraints. This leads to significant challenges in maintaining
observability, particularly after deployment, thereby complicating maintenance
and debugging.
The need for a software-based debugging approach that effectively utilizes

ARM’s debugging capabilities is evident, especially one that can adapt to the
architecture’s evolution, enhance the system’s observability in the production
phase, and support a wide range of ARM processors.

1.2 Thesis Objectives

This thesis aims to address the challenges through the following objectives:

• To design and implement a versatile, software-only debugging library
tailored for ARM-based multicore and multiprocessor SoCs. This library
will utilize ARM’s built-in Trace Infrastructure and debug registers to en-
able detailed observation and control over system operations without the
need for external hardware.

• To ensure that the debugging library is hardware-agnostic, capable of sup-
porting a wide array of ARM processors including the AM R5, M4, and
M33 series, and easily extendable to other ARMv7 and ARMv8 series pro-
cessors. This goal aims to future-proof the tool against the rapid evolution
of embedded processor technologies.

• To optimize the debugging library and to ensure it introduces minimal
overhead and maintains low latency, making it suitable for use in real-
time embedded systems where performance is critical.

• To conduct comprehensive testing and analysis against existing hardware-
based debugging methods to validate the effectiveness, efficiency, and ad-
vantages of the software-based approach. This will include detailed per-
formance measurements, profiling capabilities, and real-world usability.

• To leverage the insights gained from the advanced debugging features to
aid in design decisions, bottleneck identification, and performance optimiz-
ation, ultimately contributing to the enhancement of the overall reliability
and efficiency of embedded systems.

1.3 Thesis Structure

The structure of this report is as follows. Chapter 2 provides an in-depth back-
ground, discussing the fundamental concepts, existing technologies, and the
challenges faced in embedded system debugging. Chapter 3 delves into the ar-
chitecture and system design, outlining the core components, their interactions,
and the overall design of the embedded debug library. Chapter 4 focuses on
the technical implementation, detailing the sequence diagrams, API function-
alities, and the practical steps involved in integrating the library with various

3



systems. Chapter 5 transitions into porting on hardware, where the library is
adapted to specific development kits, showcasing the setup, configuration, and
validation processes. Chapter 6 presents the evaluation and results, thoroughly
analyzing the library’s performance, effectiveness, and outcomes of various tests
conducted on different hardware platforms. Chapter 7 concludes the thesis by
summarizing the key findings, contributions, and overall impact of the research.
Finally, Chapter 8 discusses the limitations of the current implementation and
proposes directions for future work.
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Chapter 2

Background

Debugging plays a pivotal role in the development lifecycle of embedded firm-
ware, especially in the context of high-performance systems [37, 60]. It serves
as the linchpin for ensuring the reliability, functionality, and performance of
the firmware. The intricate nature of embedded systems, often constrained by
limited resources and real-time requirements, underscores the significance of ef-
fective debugging methodologies [57]. Identifying and rectifying errors in the
code ensures the proper functioning of the firmware and contributes to the em-
bedded system’s overall efficiency [49]. Debugging is the key to unveiling latent
issues, optimizing code for resource utilization, and fine-tuning algorithms to
meet stringent performance criteria. It facilitates the discovery of bottlenecks,
enables swift resolution of issues, and streamlines the development process, ul-
timately creating robust, high-performance embedded systems.

2.1 Introduction to Debugging

Embedded firmware development encompasses various software issues across
environments such as Real-Time Operating Systems (RTOS), bare metal ap-
plications, and systems with advanced multicore architectures. This section
explores various types of bugs typical in these setups and highlights differences
in their emergence during development versus production phases. Some of the
common bugs are as follows:

2.1.1 Bare Metal Bugs

Bare metal bugs refer to the issues that arise when programming at the hardware
level without an operating system’s abstraction layer. Some of these bugs are
as follows:

• Interrupt Handling Bugs: Issues occur when interrupts are not man-
aged correctly, leading to missed interrupts or incorrect interrupt service
routines (ISR) handling [53].

• Resource Allocation Errors: Without an OS managing hardware re-
sources, manual errors in allocation can lead to conflicts or inefficient
resource use [37].
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• Timing Errors: Mistakes in timing calculations can result in failures to
meet hardware interaction timings or clock synchronization problems [57].

2.1.2 RTOS-Specific Bugs

This section discusses specific bugs that can occur in a Real-Time Operating
System (RTOS). Some of the common bugs are as follows:

• Task Synchronization Bugs: These arise when tasks do not synchron-
ize properly through semaphores or mutexes, leading to race conditions or
deadlocks[33, 53].

• Priority Inversion: Occurs when a higher priority task is indirectly
preempted by a lower priority task holding a shared resource, due to in-
termediate priority tasks taking CPU time.

• Memory Corruption: Happens due to improper management of shared
resources or buffer overflows, common in multitasking environments. [20]

2.1.3 Concurrency Bugs

Concurrency bugs are errors that occur when multiple processes are executing
concurrently. They include:

• Race Conditions: Occur when the outcome depends on the non-deterministic
ordering of events, such as accessing shared data without proper locking[50].

• Deadlocks: Arise when two or more processes block each other by holding
a resource the other needs [65].

• Livelocks: Situations where tasks continuously change states in response
to other tasks without making progress [45].

• Heisenbugs: These errors seem to disappear or alter when one attempts
to study them, often due to timing or environmental changes[67, 20]. At-
taching a debugger disturbs the timing of a parallel program, easily mask-
ing errors. [22]

2.1.4 Multicore and Multiprocessor Bugs

Multicore and multiprocessor bugs are issues that arise when programming sys-
tems with multiple cores or processors. They include:

• Cache Coherency Issues: These problems occur when multiple pro-
cessors have inconsistent views of shared data, leading to incorrect pro-
gram execution [42].

• Thread Migration Issues: Bugs can happen when threads are moved
between cores, leading to inefficiencies or incorrect behavior if not man-
aged correctly.

• Synchronization Challenges: Advanced synchronization techniques
are required to manage access to shared memory across multiple cores,
often leading to complex bugs[50, 18].
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2.2 Components and Requirements of a Typical
Debugging System

A fully-fledged debugging system encompasses a range of tools and features to
facilitate efficient and comprehensive debugging of software applications. The
requirements for such a system can vary based on the complexity of the software,
the target platform, and the development environment. Components provide
the necessary tools and capabilities to interact deeply with the hardware and
software of the target system, while requirements ensure that these tools per-
form optimally under various constraints and scenarios. This comprehensive
approach ensures that the debugging system can handle the complexity of mod-
ern embedded systems, providing developers with powerful and intuitive tools
to identify, diagnose, and resolve issues swiftly and effectively. Here are the key
components and requirements for a robust debugging system:

2.2.1 Components

Components refer to the elements of the debugging system. These are essential
for establishing the framework within which debugging activities are performed.

Low-Level Debugging

The system provides essential hardware interface support, including Joint Test
Action Group(JTAG [31]) and Serial-Wire Debug (SWD [54]), which are pivotal
for direct and intricate hardware interactions necessary for precise control and
observation of system states[44]. These interfaces enable low-level access to the
processor, allowing developers to set breakpoints, perform single-step debugging,
and inspect or modify memory and registers[59, 37]. Real-time debugging cap-
abilities are also incorporated, allowing developers to perform diagnostics and
make adjustments without halting the system, crucial in environments where
system downtime can lead to significant disruptions or data loss such as debug
monitor mode[31]. Watchpoints, which monitor specific memory locations, are
also supported, enabling the detection of unexpected changes in critical data
areas, further aiding in the diagnosis of complex issues [52].

Trace and Logging

Tracing is capturing data that illustrates how the components in a design are
operating, executing, and performing for example Instruction Trace generates
information about the instruction execution of a core [62]. Advanced trace
capabilities, such as those provided by the Embedded Trace Macrocell (ETM),
offer detailed and comprehensive analysis capabilities with minimal impact on
system performance[48]. This is crucial for tracking down elusive bugs that
manifest under specific conditions [59]. The integration with logging systems
ensures that runtime data is continuously collected, providing valuable insights
during debugging and retrospective analysis sessions.
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Multicore Debugging

With support for multicore processors, the system addresses the increased com-
plexity and concurrency issues found in contemporary embedded systems [50].
This component is complemented by provisions for additional debugging hard-
ware integration, facilitating enhanced analysis and diagnostics in highly paral-
lel operational settings [34]. The ability to set synchronous breakpoints across
multiple cores allows for coordinated debugging, ensuring that the interactions
between different processors can be thoroughly examined and understood [64].
Mechanisms to manage a range of issues such as thread interaction, control of
timers, semaphores, and mutexes, IPC message passing, event handling among
different cores should also be a part of the system [57].

Performance Optimization

The system includes performance monitoring tools, such as Performance Meas-
urement Units (PMUs), which play a critical role in identifying performance
bottlenecks and optimizing software execution [13, 45]. Profiling tools are in-
tegrated to provide detailed insights into the execution flow and resource usage,
helping developers optimize their code effectively [19]. The system also inter-
faces with memory to monitor and manage usage, ensuring that performance
metrics reflect real operational conditions accurately.

2.2.2 Requirements

Requirements reflect the functional needs and conditions that the debugging
system must meet to be effective in various environments and scenarios.

1. Resource-Constrained Environments: The debugging system is de-
signed to maintain minimal resource overhead to ensure that it can operate
effectively within the tight constraints typical of embedded environments
such as having minimum latency and memory footprint[59]. Efficient
memory inspection capabilities allow for quick checks and modifications of
system memory without significant performance degradation, an essential
feature in systems with limited memory capacity.

2. Interface Limitations: To manage the challenges posed by low-bandwidth
interfaces, the system employs data encoding and compression techniques
to maximize the efficiency of data transmission. This includes buffering
and flow control strategies that optimize the use of interface bandwidth,
ensuring effective communication even under restricted conditions.

3. Integration with Design Decisions: The debugging system provides
critical insights that inform design decisions regarding the configuration
of CPUs and their clock speeds within an SoC [53, 47]. This strategic
guidance is vital for optimizing both system performance and power con-
sumption.

4. Ease of Use: A user-friendly interface is a key feature of the debugging
system, making it accessible and easy to operate for firmware developers
[31]. This simplifies the debugging process, enabling efficient and effective
troubleshooting without requiring extensive training.
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5. Security Considerations: Security features are integrated into the de-
bugging system to protect sensitive data and maintain the integrity of the
debugging process[44]. This is particularly crucial in environments dealing
with confidential or safety-critical data [66].

6. Documentation and Training: Comprehensive documentation and ro-
bust training resources are provided with the debugging system. This
ensures that all users can fully leverage the debugging tools’ capabilities,
enhancing the debugging process’s effectiveness and reducing the learning
curve for new users.

7. Compatibility with SoCs: The debugging system is designed to be
compatible with a wide range of System-on-Chips consisting of ARMv7
and ARMv8 processors. This ensures broad applicability across different
platforms, making it a versatile tool in various hardware environments.

2.3 Current Solutions in the Field

The landscape of debugging solutions in the market is diverse and continually
evolving, driven by the increasing complexity of embedded systems and the
need for efficient fault detection and resolution. These solutions range from
traditional debugging tools, such as JTAG and SWD debuggers, to advanced
telemetry systems that provide real-time insights into system performance [52].
Additionally, software-based solutions like GDB and Open-OCD offer powerful
features for code-level debugging. This comprehensive exploration delves into
the key categories of debugging solutions: hardware-focused, software-focused,
and simulation debugging, providing insights into their functionalities, use cases,
and essential interactions [16]. However, each of these solutions comes with its
own set of advantages and limitations, necessitating a careful evaluation based
on specific debugging requirements. This section will delve into the details of
these current market solutions, providing a comprehensive overview of their
functionalities, use cases, and comparative analysis.

2.3.1 Hardware-Focused Debugging Tools

Hardware-focused debugging tools are essential for developers requiring direct
interaction with the system’s physical components. These tools enable deep
access to the system’s core at a hardware level, facilitating real-time diagnostics
and modifications critical in tightly controlled or high-stakes environments. The
most common hardware-focused debugging tools currently used in the industry
are as follows:

JTAG (Joint Test Action Group)

JTAG is a standardized interface for on-chip debugging that enables access to
various debugging and testing features. JTAG is a vital hardware interface
for on-chip debugging, providing low-level access for inspecting and modifying
memory, halting the processor, and single-stepping through code, which is indis-
pensable for boundary scan testing and real-time debugging [44, 43]. Despite its
comprehensive capabilities, JTAG requires additional hardware support on the
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chip and may encounter bandwidth limitations in high-performance systems.
Implementing JTAG involves designing the chip with JTAG support, connect-
ing a JTAG debugger hardware such as SEGGER J-Link or ARM DSTREAM,
and utilizing debugging software like GDB or IDEs such as Keil or IAR.

SWD (Serial Wire Debug)

SWD is designed as a two-wire, lower pin-count alternative to JTAG [54]. Its
reduced pin count simplifies hardware design but is limited to Cortex-M micro-
controllers. To implement SWD, developers need to integrate SWD support in
the chip design and connect with debuggers like Segger J-Link or CMSIS-DAP
compliant debuggers.

ARM DSTREAM

The DSTREAM unit, an integral part of the ARM development environment,
includes a debugger, performance analyzer, and system profiler. It is designed to
support multicore debugging, trace analysis, and performance optimization for
ARM-based systems. The DSTREAM unit, when integrated with the DS-5 De-
bugger and ETM (Embedded Trace Macrocell) support, provides an advanced
debugging environment [45]. One of its key advantages is its ability to sup-
port multicore debugging and trace analysis. However, it does require the DS-5
Debugger for advanced trace and debugging capabilities. Additionally, being
a proprietary tool, it may incur potential licensing costs. To fully implement
the DSTREAM unit support, it needs to be integrated into the development
environment. Following this, the DSTREAM unit should be connected to the
ARM processors to facilitate advanced debugging and trace analysis. This setup
provides a comprehensive solution for debugging and performance optimization
of ARM-based systems.

CORESIGHT Debug

Figure 2.1 illustrates a CoreSight-based debugging architecture for ARM sys-
tems, showing the interaction between various components involved in the de-
bugging process. PC-based debugging tool interfaces with the target system
using JTAG or Serial Wire (SW). This connection feeds into a Debug Access
Port, which serves as the gateway for all debugging communications.
Within the target system, the ARM processor includes built-in debug logic

that connects to the CoreSight capture system via trace components like ETM
(Embedded Trace Macrocell)[45] and trigger units [44]. Embedded Trace Mac-
rocell (ETM) offers detailed analysis of program execution through instruction
and data trace capabilities, providing high-level insights into software execution
and performance analysis without significantly impacting system performance
[62, 65]. The CoreSight capture system collects trace data and is directly linked
to a Trace Port Analyzer, which sends the captured data back to the PC-based
debugging tool for analysis.
ETM’s implementation, however, requires Coresight hardware support in the

chip and external hardware for decoding trace data at high speeds [3]. Tools
like ARM’s DS-5 Debugger and Lauterbach TRACE32 are commonly used to
enhance ETM’s capabilities, providing advanced trace and debugging features.
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Figure 2.1: Coresight Debug Architecture and Program Flow [4]

2.3.2 Software-Focused Debugging Tools

Software-focused debugging tools provide powerful capabilities for source-level
debugging and are particularly beneficial in environments where hardware ac-
cess is constrained or non-intrusive methods are preferred. The most common
software-focused debugging tools currently used in the industry are as follows:

GDB (GNU Debugger)

GDB is a cornerstone in the software debugging landscape, supporting various
ARM architectures and offering extensive debugging capabilities across both
bare metal and operating system environments [34]. While GDB can function
independently, it often utilizes JTAG or SWD interfaces for low-level hardware
interaction and is typically used with a GDB server for remote debugging over
a network.

OpenOCD (Open On-Chip Debugger)

OpenOCD supports a range of on-chip debugging protocols, including JTAG and
SWD, and is noted for its versatility and open-source nature[33, 24]. Although
powerful, OpenOCD requires careful configuration and setup. It is frequently
used alongside GDB to provide a comprehensive debugging environment, par-
ticularly for ARM processors.

Logging System

A logging system involves systematically recording events, messages, or data
during the execution of a program [55]. This recorded information is stored
in log files or some memory location, transferred over some interface, and can
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include variable values, function calls, and custom messages. Logging systems
are crucial for capturing detailed runtime data, enabling post-mortem analysis,
and aiding in root cause discovery. These systems are highly customizable and
function independently of hardware, focusing instead on the strategic insertion
of logging statements within the software to capture critical diagnostic inform-
ation. If well-architected, logging creates a small and deterministic intrusion.
But, depending on the architecture, logging might also completely change the
system’s behavior [55].

2.3.3 Simulation Debugging

Simulation debugging involves using software tools to emulate hardware or an
entire system, allowing developers to execute and analyze their code in a con-
trolled environment [20]. This method is highly beneficial for early stages of de-
velopment when physical hardware might not be available, for complex systems
where setting up real-world scenarios is impractical, or in educational settings
where cost and accessibility are factors[22].
Simulation debugging offers several advantages such as it is usually non-

intrusive, unlike hardware probes and debuggers that might alter the system’s
behavior. It provides complete control over the execution environment, includ-
ing the ability to pause, inspect, and modify the state at any point. Simulated
environments can be deterministic, which simplifies the reproduction of bugs.
Features such as reverse debugging [21, 17] and deterministic replay allow de-
velopers to step back in time to understand how the system reached a certain
state and to rewind the program’s state to any previous point in its execution
history, respectively. These features are invaluable for examining the sequence
of events leading to a bug. Reverse debugging also enables developers to inspect
variables, memory, and processor states at any point in the execution timeline,
offering insights into the cause-and-effect relationships that led to a fault[22].
However, simulation debugging also has its disadvantages. The accuracy of

the simulation model can lead to scenarios where bugs are missed because they
don’t manifest in the simulation or, conversely, where issues appear in the simu-
lation that wouldn’t occur in reality[20, 12]. Simulation often runs significantly
slower than real-time, especially in full-system emulation. This performance
overhead can make debugging time-consuming, particularly for large applica-
tions or systems that require real-time or near-real-time performance[63, 32, 19].
It can also obscure timing-related issues that only appear under real operational
loads. Setting up a simulation environment, especially for complex systems, can
be a daunting task requiring significant computational resources [42]. Simulated
environments might not be able to fully emulate the nuances of interaction with
the physical world, such as sensor inputs interference. Despite these challenges,
simulation debugging remains a critical component of the software development
process. The most widely used simulation software packages include:

QEMU

QEMU is a versatile open-source machine emulator and virtualizer that can
run operating systems and programs made for one machine on a different ma-
chine. It operates in two modes: full system emulation and user-level emulation.
QEMU’s dynamic translation feature ensures efficient execution, and it provides
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a rich set of device models, making it versatile for various simulation needs [12].
However, achieving high-speed execution can sometimes come at the cost of re-
duced accuracy in simulating hardware behavior. While QEMU supports a wide
range of devices and architectures, its ability to simulate specific peripherals or
proprietary hardware accurately might be limited [20].

Simics

Simics is a full-system simulator by Intel that allows the creation of a virtual
platform of an entire system, including processors, devices, and network com-
ponents [42]. It enables developers to simulate any target hardware, facilitating
debugging, testing, and system analysis [2]. Simics excels in system-level simu-
lation with high fidelity and advanced features like reverse debugging. However,
as a commercial product, accessing Simics can involve significant costs. While
offering detailed simulation capabilities, the execution speed in Simics can be
slower compared to running on actual hardware, which might affect its suitab-
ility for performance-critical debugging scenarios.

2.3.4 Comparison of Current Solutions

Components JTAG SWD
ARM
DSTREAM

Coresight
Debug

GDB OpenOCD
Logging
System

QEMU Simics

Breakpoint Yes Yes Yes Yes Yes Yes No Yes Yes
Synchronous Breakpoint Limited No Yes Yes No No No No No
Core Dump No No Yes No Yes Yes Yes Yes Yes
Watchpoint Yes Yes Yes Yes Yes Yes No Yes Yes
Dependency on
External Hardware

Yes Yes Yes Yes Limited Limited No No No

Performance
Measurement
Unit (PMU)

No No Yes Yes Limited Limited No No No

Multicore Support Limited No Yes Yes Limited Limited No Yes Yes
Trace Buffer Support Limited No Yes No No No Yes No No
Reverse debugging No No No Limited Yes No No Yes Yes

Table 2.1: Table comparing the key features of various debugging solu-
tions, including traditional hardware-focused tools, software-focused
tools, and simulation debugging tools

Table 2.1 compares key features across various debugging solutions, encom-
passing traditional hardware-focused tools, software-focused tools, and simu-
lation debugging tools. Each solution is evaluated based on its capability to
handle crucial debugging tasks such as breakpoints, synchronous breakpoints,
core dumps, watchpoints, dependency on external hardware, performance meas-
urement units (PMUs), multicore support, and trace buffer support.
JTAG and SWD are prominent hardware-focused debugging tools that provide

extensive support for breakpoints, and watchpoints. Both JTAG and SWD re-
quire external hardware, which can be a limiting factor in some environments.
JTAG offers limited multicore support and no support for performance meas-
urement units (PMUs), whereas SWD does not support multicore systems as
well as PMUs.
ARM DSTREAM and Coresight ETM stand out for their advanced capabil-

ities in multicore systems and performance measurement. These tools also sup-
port core dumps, and trace buffers, making them suitable for high-performance
debugging tasks. However, ARM DSTREAM and Coresight ETM are reliant
on proprietary hardware and may involve additional costs.
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GDB and OpenOCD are software-focused debugging tools that provide ex-
tensive capabilities for breakpoints and watchpoints having a limited depend-
ency on external hardware. Both tools offer limited support for performance
measurement and multicore systems, which may restrict their effectiveness in
complex debugging scenarios.
Logging systems focus on capturing detailed runtime data for post-mortem

analysis and do not rely on hardware, making them highly customizable and
suitable for software-based diagnostics. However, they lack real-time debug-
ging capabilities and do not support breakpoints, synchronous breakpoints, or
watchpoints.
QEMU and Simics are powerful simulation debugging tools that offer a non-

intrusive environment for comprehensive system emulation. They provide core
dump capabilities and support for multicore systems, with Simics additionally
offering reverse debugging features. However, simulation debugging lacks hard-
ware debugging capabilities.
In summary, each debugging solution presents a unique set of strengths and

limitations. Hardware-focused tools like JTAG and SWD provide deep hardware
access but require external hardware. Advanced tools like ARMDSTREAM and
Coresight ETM offer robust performance measurement and multicore support
but are more complex and costly. Software-based tools like GDB and OpenOCD
are versatile and hardware-independent but limited in advanced performance
features. Simulation tools like QEMU and Simics offer comprehensive system
emulation but lack direct hardware debugging capabilities.

2.4 Challenges with Current Methods

Debugging embedded systems, particularly those based on complex architec-
tures like multicore or multiprocessor setups running an RTOS or bare metal
configurations, poses several significant challenges. The limitations of current
debugging tools and methods are often exacerbated by the inherent properties
of embedded environments, including real-time operation, resource constraints,
and the necessity for non-intrusive debugging techniques. Here are some of the
key challenges faced:

Limited System Observability

One of the primary challenges in debugging embedded systems is the limited sys-
tem observability. Many traditional debugging tools require halting the system
to inspect the state or implement breakpoints, which is not feasible in real-time
systems where stopping might disrupt critical operations. This intrusiveness
can lead to significant operational disruptions. Additionally, these tools often
provide insufficient insights into the internal state of the firmware, interactions
between threads or processes, and the handling of asynchronous events.

Complexity in Multicore/Multiprocessor Systems

Debugging tools often struggle to handle the inherent complexity of multicore
and multiprocessor systems. Concurrency issues such as race conditions and
deadlocks are particularly challenging to address, as they occur across multiple
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cores or processors. Synchronization of data collection across different execu-
tion threads without causing performance bottlenecks or data corruption re-
quires sophisticated mechanisms. [36] These complexities necessitate advanced
debugging tools that can manage concurrent operations efficiently and provide
accurate diagnostic information without introducing significant overhead.

Real-Time Constraints

Embedded systems often operate under stringent real-time constraints, where
the timing accuracy of debugging tools is critical. Tools that introduce addi-
tional latency can alter the system’s behavior, leading to the ”observer effect”
where the act of debugging changes the system’s performance [35]. Additionally,
there is a need for real-time data analysis and feedback, which many traditional
debugging tools do not support. The inability to perform real-time analysis lim-
its the effectiveness of these tools in diagnosing and resolving issues in systems
that require continuous and precise operation [53].

Dependence on External Hardware

Many powerful debugging features require additional hardware like JTAG or
trace probes, which may not be available in the production or testing environ-
ment. The dependency on such hardware adds to the cost and complexity of the
debugging process [62]. Moreover, debugging capabilities that rely on hardware
are often stripped in production to save cost and space, reducing the ability to
perform post-deployment diagnostics. This dependence on external hardware
limits the flexibility and scalability of debugging tools, making it difficult to
perform effective diagnostics and maintenance in deployed systems.

2.5 Motivation for a Comprehensive Debugging
Library

Given the challenges associated with current debugging methods for embedded
systems, there is a clear and pressing need for an advanced, efficient, and flexible
debugging solution such embedded debug library. Traditional debugging tools,
such as JTAG and SWD, although powerful, often require halting the system to
inspect its state, which is impractical for real-time systems. Additionally, they
rely heavily on external hardware, which may not be available in production en-
vironments and can be removed for security reasons or to save costs and space,
severely limiting post-deployment diagnostics. Current software-based tools like
GDB and OpenOCD, while providing source-level debugging, often fall short in
handling the complexities of multicore and multiprocessor environments. They
also struggle with providing real-time analysis and feedback, essential for sys-
tems operating under stringent timing constraints. Furthermore, the existing
tools lack sufficient observability of the system’s internal state and interactions
between processes, making it difficult to diagnose and resolve issues efficiently.
For more insight Coresight technology is present, but it’s not used to its poten-
tial because of its dependency on hardware such as DSTREAM.

The embedded debug library presented in this thesis will address the above
limitations by integrating a comprehensive suite of tools designed to provide
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deep insights into the system’s operations without the need for external hard-
ware. By leveraging advanced features such as synchronous breakpoints, inter-
processor communication, and performance measurement units (PMUs), the
software library will ensure minimal resource overhead and support real-time
debugging, crucial for maintaining system performance and reliability. The in-
clusion of core dump capabilities and watchpoints will further enhance the abil-
ity to capture and analyze system states accurately, facilitating quick identific-
ation and resolution of bugs. Moreover, the library’s user-friendly interface and
seamless integration with existing development environments will reduce the
complexity of the debugging process, making it accessible even to developers
with limited expertise in hardware-level debugging. This combination of ad-
vanced features and ease of use will position the proposed library as an essential
tool for developers, enabling them to navigate the complexities of modern em-
bedded systems efficiently and effectively.
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Chapter 3

Architecture and System
Design

This chapter outlines the architecture and system design of the proposed soft-
ware library for debugging and profiling ARM-based multicore and multipro-
cessor system-on-chips (SoCs). The design aims to leverage the ARM archi-
tecture’s existing capabilities such as Trace Infrastructure and debug registers,
enhancing them with a software layer that provides extensive debugging func-
tionalities without external hardware dependencies. This chapter details the
conceptual framework, design considerations, and architectural components of
the library, providing a comprehensive understanding of how the library ad-
dresses the challenges associated with embedded system debugging.

Figure 3.1 illustrates the Host PC interaction with the Target SoC and a
high-level System Design of the SoC’s debugging components already present
and supported by Hardware.

The Host PC serves as the development and debugging station, equipped with
essential tools such as an Integrated Development Environment (IDE), compiler,
JTAG, SWD, GDB, and a DS-STREAM trace decoder. These tools interface
with the target device via debugging protocols (JTAG or SWD) through an
Interface Unit, allowing developers to set breakpoints, monitor system states,
and trace program execution in real time. This setup provides a powerful and
user-friendly environment for embedded system development and debugging.

The Target Device SoC comprises several key components that work together
to facilitate debugging. The Debug Access Port (DAP) acts as the central in-
terface for external hardware debug access through the APB bus, connecting
to various debug components within the SoC. The DAP serves as the gateway
for all debugging communications between the Host PC and the SoC, ensuring
seamless data exchange. Figure 3.1 highlights three specific ARM Cortex cores,
each with dedicated debug support: the M4 Debug setup includes the Flash and
Breakpoint Unit (FPB), Debug and Watchpoint Trace Unit (DWT), Embed-
ded Trace Macrocell (ETM), and a ROM Table, enabling detailed monitoring
and control of the Cortex-M4 core; the R5 Debug setup features CoreSight de-
bug, Performance Measurement Unit (PMU), ETM, and a ROM Table, provid-
ing comprehensive debugging and performance monitoring capabilities for the
Cortex-R5 core; the M33 Debug setup includes FPB, DWT, ETM, and a ROM
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Figure 3.1: Architecture of Debugging in Target SoC illustrating the
interaction and components of Embedded Software Debugging Lib-
rary with the ARM cores and hardware components

Table, similar to the M4, but tailored for the Cortex-M33 core with additional
security features like TrustZone. As mentioned in 1 the scope of this library is
limited to these cores but can be easily tailored to support similar ARM Cores.
The SoC also includes various memory components such as Flash, ROM,

SRAM, Shared Memory, DDR, and Trace Buffer, all managed by the Memory
Controller. The SoC memory map is accessed through the system bus, allowing
for efficient data management and storage during debugging sessions.
The core of this architecture is the Embedded Debug Software Library, which

integrates seamlessly with the hardware components to provide a comprehensive
debugging solution.

3.1 Proposed Architecture

Figure 3.1 also illustrates the comprehensive architecture of the Embedded De-
bug Software Library, showcasing its integration with ARM Cortex cores within
a System-on-Chip (SoC) environment.
The library consists of several key modules. The Core Components include

functionalities for Breakpoint, Synchronous Breakpoint, Core Dump, andWatch-
point. These components allow developers to set breakpoints, halt execution
across multiple processors simultaneously, capture system states, and monitor
specific memory locations for changes. The Flash Patch and Breakpoint Unit
(FPB) manages breakpoints in flash memory, enabling precise control over code
execution and facilitating debugging of code stored in non-volatile memory. The
Debug and Watchpoint Trace Unit (DWT) monitors data access and provides
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detailed trace information, helping to identify and resolve data-related issues
within the system.
Performance monitoring is managed through the Performance Measurement

Unit (PMU) and profiling tools, which track various performance metrics and
help optimize system performance by identifying bottlenecks. Trace and logging
functionalities utilize the Embedded Trace Buffer (ETB) and Micro Trace Buffer
(MTB) to capture detailed execution traces, providing insights into the system’s
behavior over time. These traces are invaluable for diagnosing elusive bugs
and understanding the flow of execution. The Inter Processor Communication
(IPC) module manages communication between multiple processors, ensuring
synchronized operations and efficient data exchange in multicore systems.
The Embedded Debug Software Library is designed to be highly functional

even without the continuous presence of the Host PC. The library compon-
ents can operate independently, saving profiling data, performance measurement
data, and ETM trace data in dedicated memory locations. This data can be
extracted later for postmortem analysis, allowing for comprehensive diagnostics
and optimization after the system has experienced an issue.
The following sections detail the main components of the Embedded Debug

Software Library, explaining their functionalities and how each of the hardware
components present in SoC are leveraged :

3.2 Targeted ARM Cores

This section supports the various ARM cores and their components that are
supported by the Software Debug. As discussed in Chapter 1, the Embedded
Debug Library primarily focuses on ARMv7, ARMv7-M, and ARMv8-M pro-
cessors, specifically targeting the R5, M4, and M33 cores. This emphasis is due
to the library’s thorough testing and adaptation of hardware featuring these
cores. These processors are widely used in various embedded and real-time ap-
plications, making them an ideal focus for the library. Despite this targeted
approach, the library is designed with flexibility in mind and can be readily
extended to support other ARM cores with similar components, requiring only
minor modifications. This adaptability ensures that the library can evolve to
meet the needs of a broader range of applications and hardware configurations.

ARM Cortex-R5 Architecture

Figure 3.2 illustrates the ARM Cortex-R5 architecture [7], based on the ARMv7-
R architecture. The Cortex-R5 is designed for high-performance real-time ap-
plications and includes features like ECC (Error Correction Code) for both
memory and bus, multiple TCMs (Tightly Coupled Memories), and various
cache options (D cache, I cache). It also integrates a robust memory protec-
tion unit (MPU) and a floating-point unit (FPU). For debugging, it includes
CoreSight multicore debug and trace capabilities, making it suitable for com-
plex, real-time embedded systems.

ARM Cortex-M4 Architecture

Figure 3.3 depicts the architecture of the ARM Cortex-M4 core [6], which falls
under the ARMv7-M architecture. The Cortex-M4 features a range of compon-
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Figure 3.2: ARM Cortex-R5 Architecture with supported modules [7]

Figure 3.3: ARM Cortex-M4 Architecture with supported modules[6]
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ents essential for embedded systems, including a CPU based on the Armv7-M
architecture, a nested vectored interrupt controller (NVIC), and a wake-up in-
terrupt controller. It also includes a Memory Protection Unit (MPU), a digital
signal processor (DSP), and a floating-point unit (FPU). For debugging and
tracing, it supports ITM trace, ETM trace, data watchpoints, and breakpoint
units, alongside interfaces such as JTAG and serial wire [11].

ARM Cortex-M33 Architecture

Figure 3.4: ARM Cortex-M33 Architecture with supported modules
[5]

Figure 3.4 showcases the ARM Cortex-M33 architecture [5], an ARMv8-M
processor. The Cortex-M33 builds on the M4 with additional features like
TrustZone for enhanced security. It retains similar components such as the
NVIC, wake-up interrupt controller, MPU, DSP, and FPU, while introducing
a coprocessor interface and enhanced trace capabilities including MTB (Micro
Trace Buffer). This architecture supports advanced debugging features such
as ITM trace, ETM trace, data watchpoints, breakpoint units, and JTAG and
serial wire interfaces.
The specific debugging components supported by each core are explained in

the further sections.

3.3 Breakpoints and Watchpoints

Breakpoints allow developers to halt program execution at specific points, en-
abling them to inspect the system state, examine variable values, and under-
stand the control flow of the application [66]. Watchpoints, on the other hand,
monitor specific data addresses for read, write, or read/write operations [62].
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3.3.1 Debug Register Interface - Cortex-R5

Offset (hex) Register number Access Mnemonic Description
0x000 c0 R DBGDIDR CP14 c0, Debug ID Register
0x18 c6 RW DBGWFAR Watchpoint Fault Address Register
0x01C c7 RW DBGVCR Vector Catch Register
0x028 c10 RW DBGDSCCR Debug State Cache Control Register.
0x080 c32 RW DBGDTRRXext Data Transfer Register.
0x084 c33 W DBGITR Instruction Transfer Register.
0x088 c34 RW DBGDSCRext CP14 c1, Debug Status and Control Register.
0x08C c35 RW DBGDTRTXext Data Transfer Register.
0x090 c36 W DBGDRCR Debug Run Control Register.
0x100-0x11C c64-c71 RW DBGBVR Breakpoint Value Registers.
0x140-0x15C c80-c87 RW DBGBCR Breakpoint Control Registers.
0x180-0x19C c96-c103 RW DBGWVR Watchpoint Value Registers.
0x1C0-0x1DC c112-c119 RW DBGWCR Watchpoint Control Registers.

Table 3.1: Debug Memory-Mapped Registers for Cortex-R5 [40]

The debug registers in ARM Cortex-R5 occupy a 4KB region of the memory
map, and their base address must be aligned to a 4KB boundary in physical
memory. To access the debug memory map of the Cortex-R5, one must use
the memory-mapped registers accessible through the Advanced Peripheral Bus
(APB) slave interface. The debug memory-mapped registers are detailed in
table 3.1. These registers include various control and status registers essential
for debugging tasks, such as the Debug Identification Register (DBGDIDR),
Breakpoint Value Registers (DBGBVR), Breakpoint Control Registers (DBG-
BCR), Watchpoint Value Registers (DBGWVR), and Watchpoint Control Re-
gisters (DBGWCR) [40].
The Cortex-R5 processor contains an EmbeddedICE logic unit that supports

up to eight breakpoints and eight watchpoints. The exact number of break-
points and watchpoints available is configured during the implementation of the
processor and can be verified by reading the Debug ID Register (DBGDIDR).
These breakpoints and watchpoints can be programmed through their respective
value and control registers.

3.3.2 Hardware Breakpoints

Hardware breakpoints are integrated into the chipset being used. At the silicon
level, these breakpoints function as comparators that evaluate the instruction
being fetched against an instruction configured in a peripheral register. When a
match is detected, the hardware triggers a debug event, either halting the core
or generating an exception. There is a limited number of hardware breakpoints
available on any given chip.
For ARM Cortex-R5, hardware breakpoints are achieved by setting the values

on DBGBVR and DBGBCR as shown in table 2.1 and figure 3.5.
Based on the Reference Manual of R5 [40] each Breakpoint Value Register

(DBGBVR) is associated with a corresponding Breakpoint Control Register
(DBGBCR) 3.5. Specifically, DBGBCRy is the control register for DBGBVRy.
Together, a Breakpoint Value Register and its associated Control Register form
a Breakpoint Register Pair (BRP), such as DBGBVR0 paired with DBGBCR0
to create BRP0, up to DBGBVR7 and DBGBCR7 forming BRP7. The value in
a DBGBVR can correspond to an instruction address or a context ID, allowing
breakpoints to be set based on an instruction address, a context ID value, or
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Figure 3.5: DBGBCR Registers bit assignments [40]

a combination of both. When breakpoints are set using an instruction address
and context ID pair, two BRPs must be linked. A debug event is triggered only
when both the instruction address and the context ID match simultaneously.
For ARM Cortex-M MCUs, hardware breakpoint functionality is exposed via

the Flash Patch and Breakpoint Unit (FPB) and is explained in section 3.8

3.3.3 Software Breakpoints

Software breakpoints, in contrast, are managed by the debugger itself. They
operate by modifying the code to be executed, replacing it with an instruction
that triggers a debug event. This is often achieved by inserting a breakpoint
instruction or, if not supported, by injecting an instruction that causes a fault to
halt the core [66]. Software breakpoints can theoretically provide an unlimited
number of breakpoints. However, they come with their own set of challenges:

• Not all code regions are patchable, such as Read-Only Memory (ROM).

• If the debugger crashes, the code may be left in an altered state, with the
patched instruction remaining instead of the original code.

To apply a software breakpoint in code using assembly, you can insert a
breakpoint instruction (bkpt) directly into the program.

1. Inserting the Breakpoint: In the application code, insert the soft-
ware breakpoint using the assembly instruction asm(”bkpt #0”);. This
instruction is used to trigger a breakpoint exception when the processor
encounters it during execution.

2. Execution of Breakpoint Instruction: When the processor executes
the bkpt instruction, it generates a breakpoint exception. This instruction
causes the processor to halt normal execution and transfer control to the
exception handler.

3. Triggering the Exception Handler: The processor looks up the ad-
dress of the breakpoint exception handler in the vector table and jumps
to this address. The exception handler is a predefined function that gets
executed in response to the breakpoint exception.

3.3.4 Watchpoints

Watchpoints are embedded within the chipset used for debugging purposes. At
the silicon level, these watchpoints operate as comparators that monitor specific
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memory addresses against values configured in dedicated peripheral registers.
When a match is detected, indicating that a particular memory address has been
accessed or modified as specified, the hardware triggers a debug event, either
halting the core or generating an exception. Similar to hardware breakpoints,
there is usually a limited number of hardware watchpoints available on any given
chip, which can lead to constraints when setting multiple watchpoints during a
debugging session.

For ARM Cortex-R5, hardware watchpoints are achieved by setting the values
on DBGBVR and DBGBCR as shown in table 2.1 and figure 3.6.

Figure 3.6: DBGWCR Registers bit assignments [40]

Based on the Reference Manual of R5 [40], each Watchpoint Value Register
(DBGWVR) is associated with a corresponding Watchpoint Control Register
(DBGWCR), with DBGWCRy being the control register for DBGWVRy. To-
gether, a DBGWVR and its associated DBGWCR form a Watchpoint Register
Pair (WRP), such as DBGWVR0 paired with DBGWCR0 to create WRP0,
up to DBGWVR7 and DBGWCR7 forming WRP7. The value contained in a
DBGWVR corresponds to a data address and can be configured to trigger on
either a data address alone or a data address paired with a context ID. When
setting a watchpoint on a data address and context ID pair, the WRP must be
linked with a Breakpoint Register Pair (BRP) that has context ID comparison
capability. A debug event is triggered when both the data address and the
context ID match simultaneously, enabling precise monitoring and debugging of
memory accesses in the system.

For ARM Cortex-M MCUs, watchpoint functionality is exposed via the Data
and Watchpoint Trace Unit (DWT) and is explained in section 3.7

3.4 Inter Processor Communication(IPC)

Figure 3.7 illustrates the inter-processor communication (IPC) mechanism using
mailboxes between two cores, Core 1 and Core 2 [58]. Each core can send and
receive messages through dedicated hardware registers, known as mailboxes,
which are mapped to shared memory. Each core runs applications that send
and receive messages through a local queue (Rpmsg as referred in 3.7). The
process begins with Core 1’s application sending a message via Rpmsg send().
This message is written to a virtual ring buffer (VRing-0) and stored in the
mailbox associated with Core 1. The mailbox then triggers an interrupt in
Core 2, indicating that a message has been received [51]. Core 2’s application
retrieves the message from VRing-0 via Rpmsg recv(), processes it, and sends
a response through its local queue. This response is written to VRing-1 and
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Figure 3.7: Inter Processor Communication Flow using Mailbox Mech-
anism provided by Texas Instruments[58]

stored in the mailbox for Core 2, which then triggers an interrupt in Core 1.
Core 1 reads the response from VRing-1, completing the communication cycle.
This IPC mechanism is crucial for efficient data exchange between processors
in a multi-core system, ensuring synchronization and message integrity [51].

The IPC mechanism depicted in figure 3.7 is based on the Texas Instru-
ments (TI) Software Development Kit (SDK). The hardware kit used to test
the embedded debug library is also from TI, which includes drivers for this IPC
mechanism. Although the library is tailored for TI’s mailbox mechanism, it
is designed to be adaptable with minor modifications for any System-on-Chip
(SoC) that employs a similar mailbox-based IPC mechanism. This flexibility
ensures the library’s applicability across various platforms, enhancing its utility
in diverse embedded system environments.

3.5 Synchronous Breakpoint

In embedded systems, particularly those involving multicore processors, achiev-
ing synchronized debugging can be crucial for identifying and resolving complex
issues that span multiple cores. Synchronous breakpoints are a sophisticated
debugging technique designed to ensure that all relevant processor cores halt
execution simultaneously when a breakpoint is triggered on any one of them.
This coordination is achieved by integrating the functionalities of both break-
point handling and inter-processor communication (IPC).
Multicore processors often run parallel tasks that interact with each other.

These interactions can lead to intricate bugs, such as race conditions and dead-
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locks, which are challenging to diagnose if only one core is halted. Synchronous
breakpoints ensure that when a breakpoint is hit on one core, all other relevant
cores are also halted simultaneously. This coordinated halting allows developers
to inspect the state of the entire system at the same point in time, providing a
comprehensive view of the interactions and helping to pinpoint the root cause
of complex bugs. When debugging multicore systems, capturing a consistent
system state snapshot is vital. If only one core is halted, other cores might con-
tinue executing, potentially altering the system state and making it difficult to
reproduce and analyze bugs. Synchronous breakpoints freeze all specified cores
at the ”same” moment, preserving the state of the system. This consistency is
crucial for accurate debugging and for understanding how different parts of the
system interact and affect each other.

Figure 3.8: Synchronous Breakpoint Architecture using Inter Pro-
cessor Communication IPC Notify API

The process begins when a breakpoint is triggered on one of the processor
cores, in this example referred to as Core1. This breakpoint could be either a
hardware or software breakpoint, configured to halt execution at a specific point
in the application code. When the application on Core1 hits this breakpoint,
the Core2 breakpoint handler will be invoked. The primary role of this handler
is to notify the other processor cores about the breakpoint event.

To accomplish this notification, the breakpoint handler on Core1 uses the
IPC Notify API, a lightweight and low-latency communication mechanism. The
handler sends an IPC Notify message through the mailbox mechanism to the
other cores in the system, such as Core2 and Core3. This notification includes
a message ID that indicates the occurrence of a breakpoint event.

Upon receiving the IPC Notify message, each of the other cores’ mailboxes
triggers an interrupt, which invokes their respective breakpoint handlers. These
handlers then execute the same breakpoint routine, causing Core2 and Core3
to halt execution at their corresponding points in the code. This synchronized
halting ensures that all cores stop consistently, which is essential for accurately
analyzing the system’s behavior and diagnosing issues involving interactions
between the cores.
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3.6 Core Dump

A core dump is a crucial feature in embedded software debugging that involves
capturing the memory and register state of a microcontroller at a specific point
in time, typically when a system crash or fault occurs. This snapshot includes
the contents of the program counter, stack pointer, general-purpose registers,
and relevant portions of memory, providing developers with invaluable insights
into the system’s state at the moment of failure. Analyzing a core dump allows
for post-mortem debugging, helping identify the root cause of the crash and
facilitating the development of more robust and reliable software.

The current scope of the library for Core Dump functionality is limited to
Cortex-M cores. This limitation is due to the extensive number of registers
in the Cortex-R5 core, including co-processors and memory-mapped registers,
which require significant time and effort to implement and thoroughly test,
which wasn’t there due to deadlines. Consequently, the Core Dump function-
ality for the R5 core has not been included in this implementation but can be
implemented by dumping the necessary registers for Cortex-R5.

Figure 3.9: A Block Diagram of 21 registers in the Cortex-M4 Core
[11]

Figure 3.9 illustrates an ARM Cortex-M microcontroller’s critical registers
and status registers, which are essential for performing a core dump. In the
context of embedded software debugging, a core dump involves capturing the
state of the system at the moment of a fault or crash. This image highlights
the 13 general-purpose registers (R0-R12), the stack pointer register (R13), the
link register (R14), and the program counter (R15). Additionally, it shows the
program status registers (APSR, EPSR, IPSR) and other control registers such
as XPSR, PRIMASK, FAULTMASK, BASEPRI, and CONTROL [11, 41].

When a fault occurs, the values stored in these registers provide a snapshot
of the system’s state, allowing developers to understand the exact conditions
that led to the fault. The stack pointer (R13) indicates the current stack loc-
ation, while the link register (R14) holds the return address for function calls.
The program counter (R15) points to the next instruction to be executed. The
program status registers (PSR) indicate the current state of the processor, in-
cluding application, execution, and interrupt states. Together, these registers
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provide comprehensive information necessary for post-mortem analysis, facilit-
ating effective debugging and resolution of issues in the embedded software.

3.7 Data Watchpoint and Trace Unit (DWT)

The Data Watchpoint and Trace (DWT) unit in Cortex-M series microcontrol-
lers provides essential functionality for debugging, particularly when applying
watchpoints. The DWT unit is a part of the CoreSight debug architecture
and offers hardware support for monitoring data accesses without significantly
impacting system performance.
When a watchpoint is set using the DWT, the unit leverages hardware com-

parators to monitor memory addresses during data operations continuously.
Specifically, the DWT contains several watchpoint comparators that can be con-
figured to trigger on specific memory addresses for read, write, or read/write
accesses. Each comparator can be programmed with an address value and an
access type. As the processor executes instructions, any data access is compared
in real-time against these configured values.
When the address of a data access matches the value set in a DWT com-

parator, the comparator generates a debug event. This event can halt the
processor, allowing the debugger to take control and inspect the system’s state
when the watchpoint condition is met. This capability is crucial for identifying
issues such as unintended modifications to critical variables, stack overflows, or
unauthorized reads from sensitive memory regions.
The hardware implementation ensures that the comparison operation occurs

in parallel with the normal execution flow, introducing no additional execution
overhead unless a watchpoint condition is met. This efficiency is vital in real-
time systems where maintaining performance is critical.
The primary registers involved in setting up a watchpoint are the DWT Com-

parator Registers (DWT COMPn), the DWT Mask Registers (DWT MASKn),
and the DWT Function Registers (DWT FUNCTIONn). Each comparator re-
gister (DWT COMPn) holds the address value that will be monitored for data
access. The mask register (DWT MASKn) associated with each comparator
specifies the address range to be monitored, allowing for flexibility in the size
of the monitored region. This is particularly useful for setting watchpoints on
entire data structures or memory blocks.
The DWT CTRL 3.10 register tells how many hardware watchpoints are sup-

ported. Notably,

• NUMCOMP: The number of watchpoint comparators implemented or
0 in the case the DWT is not included in the hardware.

The primary registers involved in setting up a watchpoint are the DWT Com-
parator Registers (DWT COMPn), the DWT Mask Registers (DWT MASKn),
and the DWT Function Registers (DWT FUNCTIONn) 3.11. Each compar-
ator register (DWT COMPn) holds the address value that will be monitored
for data access. The mask register (DWT MASKn) associated with each com-
parator specifies the address range to be monitored, allowing for flexibility in the
size of the monitored region. This is particularly useful for setting watchpoints
on entire data structures or memory blocks [39].
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Figure 3.10: DWT Control Register, DWT CTRL, 0xE0001000 [39]

Figure 3.11: Comparator Function Register DWT FUNCTIONn,
0xE0001028 + 16n
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The function register (DWT FUNCTIONn) determines the type of access
that will trigger the watchpoint. This register can be configured to detect read
accesses, write accesses, or both, providing detailed control over the conditions
that generate debug events. For example, setting the DWT FUNCTIONn re-
gister to monitor write operations enables the detection of any modifications to
the specified memory address.

3.8 Flash Patch and Breakpoint Unit (FPB)

The Flash Patch and Breakpoint (FPB) unit in Cortex-M series microcontrol-
lers is a critical component for debugging, specifically designed to facilitate the
setting of breakpoints in both flash and RAM. The FPB unit provides hard-
ware support for up to six instruction comparators and two literal comparators,
allowing developers to set hardware breakpoints efficiently without altering the
normal execution flow of the program.

When a breakpoint is set using the FPB unit, the process typically involves
configuring the FPB control and comparator registers. Each instruction compar-
ator in the FPB unit can be programmed with an address in the flash memory
where the breakpoint should occur. When the processor fetches an instruction
from this address, the FPB unit compares the address with the values stored
in its comparators. If a match is found, the FPB unit generates a breakpoint
exception, halting the processor and transferring control to the debugger. This
hardware-based approach ensures that breakpoints can be set and managed with
minimal overhead and maximum reliability.

The FPB unit also supports literal comparators, which are used to monitor
access to specific data values in the memory. This is particularly useful for
debugging read operations on constants and other literal values stored in the
flash memory. By using comparators, the FPB unit can trigger breakpoints on
data reads, providing a powerful tool for monitoring data access patterns.

The configuration of the FPB unit involves several key registers. The FP CTRL
register controls the overall operation of the FPB unit, enabling or disabling its
functionality. The FP REMAP register allows the remapping of flash addresses
to RAM, facilitating the redirection of instruction execution for debugging pur-
poses. Each comparator is configured through FP COMP registers, which hold
the addresses to be monitored and control bits that specify the type of compar-
ison (instruction or literal).

Figure 3.12: Flash Patch Control Register, FP CTRL, 0xE0002000 [39]
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The FP CTRL 3.12 tells how many hardware breakpoints are supported and
enables the FPB.

3.9 Hadware support for Profiling

In the context of the embedded software debugging library discussed in this
thesis, profiling involves the systematic measurement and analysis of various
performance metrics to understand the behavior and efficiency of the firmware.
For the ARM Cortex-M series, profiling can be achieved using the Data

Watchpoint and Trace (DWT). The DWT unit provides hardware support for
performance monitoring by counting CPU cycles, capturing data watchpoints,
and generating events based on specific conditions. These events can include
memory accesses, exceptions, and sleep cycles, which are invaluable for gaining
insights into the system’s performance.

Figure 3.13: DWT Control Register, DWT CTRL, 0xE0001000 [39]

The DWT CTRL 3.13 register is a 32-bit register that controls various fea-
tures of the DWT unit. For profiling purposes, the most relevant bits are:

• CYCCNTENA (Bit 0): This bit enables the cycle counter. When this
bit is set to 1, the cycle counter starts counting the number of cycles the
CPU has executed. This is essential for measuring the performance of
code segments.

• EXCEVTENA (Bit 18): Enables events for the cycle count when ex-
ceptions occur. This bit is useful if you want to profile the impact of
exceptions on performance.

• SLEEPEVTENA (Bit 19): Enables events for the cycle count when
the CPU enters sleep mode. This is not required for simple cycle counting
but can be useful for power profiling.

• CYCEVTENA (Bit 22): Enables events for the cycle counter overflow.
This can be useful to detect when the cycle counter overflows, especially
in long-running profiling sessions.
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3.10 Performance Measurement Unit (PMU)

The Performance Measurement Unit (PMU) in the ARM Cortex-R5 processor
is a sophisticated hardware feature designed to facilitate the monitoring and
analysis of system performance. The PMU provides a set of counters and con-
trol registers that allow developers to track various performance metrics, such as
the number of executed instructions, cache hits and misses, and branch predic-
tions. This capability is crucial for optimizing system performance, as it enables
detailed profiling and identification of performance bottlenecks.
The performance monitoring registers are as follows:

• Performance Monitor Control Register, PMCR

• Count Enable Set Register, PMCNTENSET

• Count Enable Clear Register, PMCNTENCLR

• Overflow Flag Status Register, PMOVSR

• Software Increment Register, PMSWINC

• Performance Counter Selection Register, PMSELR

• Cycle Count Register, PMCCNTR

• Event Type Selection Register, PMEVTYPERx

• Event Count Registers, PMEVCNTRx

• User Enable Register, PMUSERENR

• Interrupt Enable Set Register, PMINTENSET

• Interrupt Enable Clear Register, PMINTENCLR

The Performance Measurement Unit (PMU) in the ARM Cortex-R5 pro-
cessor includes three event counting registers, one cycle counting register, and
12 CP15 registers for controlling and interrogating the counters. These per-
formance monitoring registers are accessible in Privileged mode, with the User
Enable (PMUSERENR) register allowing access to all but the Interrupt Enable
Set (PMINTENSET) and Interrupt Enable Clear (PMINTENCLR) registers in
User mode. The three event counters are read and written through the same
CP15 register, with the Performance Counter Selection (PMSELR) register de-
termining which counter is accessed. Each counter has its Event Selection re-
gister, also accessed via a single CP15 register. Control registers allow enabling
or disabling individual event counters, and reading or resetting their overflow
flags. Counters can assert an interrupt request output, nPMUIRQm, on over-
flow. In the Debug halt state, the PMU does not count events, events are
not visible on the ETM interface, and the Cycle Count (PMCCNTR) register
is halted. The PMU counts events only when non-invasive debug is enabled
(with DBGENm or NIDENm asserted), except the PMCCNTR register, which
is always enabled unless the DP bit of the PMCR register is set [40].
The Count Enable Set Register(PMCNTENSET) Enables the Event Count

Registers. To access the PMCNTENSET Register, read or write CP15 with:
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Figure 3.14: PMU Count Enable Set Register [40]

• MRC p15, 0, <Rd>, c9, c12, 1 ; Read PMCNTENSET Register

• MCR p15, 0, <Rd>, c9, c12, 1 ; Write PMCNTENSET Register

Similarly, other PMU registers can be read and written to.

3.11 Embedded Trace Buffer (ETB)

CoreSight provides features that allow for continuous collection of system in-
formation for later off-line analysis. Execution trace macrocells (ETM) exist for
use with processors, software can be instrumented with dedicated trace genera-
tion, and some peripherals can generate performance monitoring trace streams.

Figure 3.15: Multiple Trace Sources Combined with a CoreSight Trace
Funnel and sending data to ETB [9]

The Embedded Trace Buffer (ETB) is a vital on-chip debugging and tracing
component in many advanced ARM microcontrollers. The ETB captures and
stores trace data generated by the Embedded Trace Macrocell or other trace
sources, recording detailed information about the program execution, including
instruction addresses and data accesses. By analyzing this data, developers can
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identify performance bottlenecks, trace faults, and debug complex issues that
might be difficult to reproduce in a non-embedded environment. One of the key
advantages of the ETB is that it allows for continuous tracing without the need
for large external trace memory, as the buffer size is fixed and on-chip.

When the ETB reaches its capacity, it typically overwrites the oldest data,
maintaining a circular buffer of the most recent execution history [9]. This ap-
proach ensures that the most relevant and recent execution information is always
available, making it an efficient solution for ongoing performance monitoring.
The system bridge mode supports interrupt and event notification capabilit-
ies that support integration with device-level CPUs and/or DMAs to support a
variety of use cases, including, e.g., relocation of trace data to DDR and off-chip
export over USB [30].

Offset Name Type Reset Description
0x004 RDP RO 0x00000000 ETB RAM Depth Register
0x00C STS RO 0x00000008 ETB Status Register
0x010 RRD RO 0x00000000 ETB RAM Read Data Register
0x014 RRP RW 0x00000000 ETB RAM Read Pointer Register
0x018 RWP RW 0x00000000 ETB RAM Write Pointer Register
0x01C TRG RW 0x00000000 ETB Trigger Counter Register
0x020 CTL RW 0x00000000 ETB Control Register
0x024 RWD WO 0x00000000 ETB RAM Write Data Register

Table 3.2: ETB registers in offset order from the Base Address [9]

The Embedded Trace Buffer (ETB) in ARM microcontrollers is managed
through a series of specialized registers that control its operation and provide
access to the stored trace data [9]. These registers include the ETB Control
Register (ETB CTL), the ETB Status Register (ETB STATUS), the ETB Data
Register (ETB DATA), the ETB RAM Write Pointer Register (ETB RWP),
the ETB RAM Read Pointer Register (ETB RRP), and the ETB RAM Depth
Register (ETB RDP). The ETB Control Register (ETB CTL) is used to enable
or disable the ETB and to configure various operational parameters. The ETB
Status Register (ETB STATUS) provides status information, such as whether
the buffer is full or empty, and whether the ETB is currently active.

The ETB Data Register (ETB DATA) is used to read the trace data stored in
the buffer. This register provides sequential access to the data captured during
program execution, allowing developers to reconstruct the execution flow. The
RAM Write Pointer Register (ETB RWP) indicates the current write position
in the ETB, effectively pointing to where the next trace entry will be stored.
Conversely, the RAM Read Pointer Register (ETB RRP) indicates the current
read position, showing which trace entry will be read next. Together, these
pointer registers facilitate the management of the circular buffer, ensuring that
the most recent trace data is accessible.

The RAM Depth Register (ETB RDP) specifies the total size of the trace
buffer, allowing developers to configure the ETB according to the available on-
chip memory and the needs of their application. By appropriately setting and
reading these registers, developers can control the ETB’s behavior, monitor its
status, and retrieve trace data efficiently.

34



3.12 Micro Trace Buffer(MTB)

The Micro Trace Buffer (MTB [46]) provides a lightweight and efficient method
for tracing program execution without significantly impacting system perform-
ance. Unlike traditional trace systems that rely on external hardware and can
be intrusive, the MTB leverages on-chip circular buffer memory to record pro-
gram flow, making it ideal for resource-constrained environments. The MTB
collects information on non-sequential Program Counter changes to a dedicated
area of SRAM whereas the ETB collects full Instruction Trace including data
memory access along with time stamps.

Figure 3.16: The main interfaces on the MTB [46]

The MTB works by capturing instruction addresses as the program executes,
storing these addresses in a configurable circular buffer in SRAM. When the
buffer fills up, it overwrites the oldest data, ensuring continuous logging with
minimal memory usage. This data can then be used to reconstruct the program’s
execution path, allowing developers to analyze the system’s behavior, identify
performance bottlenecks, and debug complex issues that are hard to reproduce.
The execution trace packet consists of a pair of 32-bit words that the MTB

generates when it detects the processor PC value changes non-sequentially(i.e.
a branch is taken or an exception occurs). A non-sequential PC change can
occur during branch instructions or exception entry.
The first 4 bytes of the packet are where the code was prior to branching (the

“source address”) and the next 4 bytes are the address which was branched to
(the “destination address”).
Figure 3.17 shows the MTB execution trace packet format when it’s stored

in the internal SRAM.
Note: the SRAM here mentioned is the internal SRAM around address

0x2000 0000, so MTB will share the same address range as the processor core.
The MTB trace buffer range should not be used by application code to store
global variables, heap or stack by changing the linker script and dedicating
memory in SRAM for MTB.

ARM Cortex-M33 design may have an optional MTB integrated. Table 3.3
shows the registers that need to be examined and updated for enabling MTB
on arm cortex M-33.
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Figure 3.17: MTB Trace Packet Format [46]

Address Name Description
0xE0043000 MTB POSITION Holds current MTB write pointer offset
0xE0043004 MTB MASTER Used to enable the MTB and configure its size
0xE0043008 MTB FLOW Controls MTB behavior when full (default is to wrap and overwrite)
0xE004300C MTB BASE Read only, reveals SRAM address where MTB packets are stored

Table 3.3: Registers for MTB implementation on the Cortex-M33
(MTB-M33) [38]
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Chapter 4

Technical Implementation

The Technical Implementation chapter delves into the practical aspects of the
embedded software debugging library, focusing on the sequence diagrams, APIs,
and their functionalities. This chapter, in continuation to chapter Architecture
and System design 3, provides a comprehensive overview of how each component
of the library is implemented, offering insights into the intricate mechanisms
that enable efficient debugging and performance analysis in ARM Cortex-M
and Cortex-R5 series microcontrollers.
The sequence diagrams illustrate the step-by-step execution flow of various

debugging operations, such as setting breakpoints, watchpoints, and profiling.
Additionally, the chapter details the API functions provided by the debugging
library. Each API is thoroughly explained, covering its purpose, usage, and the
underlying operations it performs.

4.1 Breakpoint and Watchpoint

This section provides a detailed look into how breakpoints and watchpoints are
implemented within the debugging library, offering a granular level of control
for debugging tasks.

4.1.1 Hardware Breakpoint

To apply a hardware breakpoint on the Cortex-R5, the following sequence of
steps is used, which is illustrated by figure 4.1. First, the breakpoint being set
is disabled by writing 0x0 to the debug register. Next, the address is written to
the Debug Base Address Value Register (DBGBVR). The byte address select
value is then determined based on the instruction set architecture (ISA) being
used. If the ISA is Thumb, the byte address select value is set to 3 shifted by
the result of the address and 2. If the ISA is ARM, the byte address select value
is set to 15. Finally, the mask and control register are written to enable the
breakpoint, combining the byte address select value with the control settings.

1 void SetSimpleBreakpoint(int break_num , uint32_t address);

Listing 4.1: Setting a Simple Breakpoint on Cortex-R5
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Figure 4.1: Sequence Diagram for Hardware Breakpoint in R5 Core

SetSimpleBreakpoint()

This function demonstrates how to set a breakpoint at a specified address

4.1.2 Software Breakpoint

To apply a software breakpoint using assembly, use the following sequence 4.2.
This example shows how to set a software breakpoint and define the correspond-
ing exception handler:

Figure 4.2: Sequence Diagram for Software Breakpoint in ARM Core

Exception Handler Code: In the exception handler, you can save the current
context (such as register values), perform necessary debugging actions (like log-
ging the state or inspecting variables), and then restore the context. Finally, the
handler can return control back to the point where the breakpoint was triggered,
allowing the program to continue execution.
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4.1.3 Watchpoint

Figure 4.3: Sequence Diagram for Hardware Watchpoint in R5 Core

To apply a hardware watchpoint on the Cortex-R5, the function ‘SetSimple-
AlignedWatchpoint‘ 4.3 follows a sequence of steps to configure the necessary
debug registers. First, the watchpoint being set is disabled by writing ‘0‘ to
the corresponding Watchpoint Control Register (DBGWCR). Next, the desired
address is written to the Watchpoint Value Register (DBGWVR). The byte
address select value is then determined based on the size of the watchpoint,
using a switch statement to set the appropriate value for 1, 2, 4, or 8 bytes. Fi-
nally, the watchpoint is enabled by writing the control bits and the byte address
select value to the Watchpoint Control Register (DBGWCR). This configura-
tion allows the hardware watchpoint to monitor specific memory addresses for
read/write operations, triggering a debug event when the specified conditions
are met, thereby facilitating efficient debugging and memory monitoring.

1 void SetSimpleAlignedWatchpoint(int watch_num , uint32_t address ,

int size)

2 }

Listing 4.2: Setting a Simple Aligned Watchpoint on Cortex-R5

SetSimpleAlignedWatchpoint()

This function demonstrates how to set a watchpoint at a specified address.

4.2 Inter Processor Communication(IPC)

Texas Instruments (TI) provides two primary APIs for inter-processor commu-
nication (IPC) between CPUs: IPC RP Message and IPC Notify. The IPC
RP Message API allows CPUs to send messages as packet buffers to a logical
endpoint on another CPU. These packet buffers reside in shared memory ac-
cessible by both CPUs. When a packet is placed in shared memory, the sending
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CPU triggers a hardware interrupt to notify the receiving CPU of the new
packet. The message packet size varies: with Linux on one end, the size is
fixed at 512 bytes, while with RTOS/NORTOS on both ends, the minimum size
is 4 bytes and the maximum recommended size is 512 bytes. Larger packets
require more shared memory. Logical endpoints can be defined up to RPMES-
SAGE MAX LOCAL ENDPT count. On the other hand, IPC Notify is a sim-
pler mechanism where a CPU interrupts another CPU using a low-level hard-
ware interrupt, sending a 28-bit message ID. This approach is highly efficient
and low-latency but less flexible than RP Message. IPC Notify supports up to
IPC NOTIFY CLIENT ID MAX logical endpoints or client IDs.

Figure 4.4: Inter Processor Communication API’s Flow and Sequence

The sequence diagram above 4.4 illustrates the inter-processor communication
(IPC) mechanism using both the IPC RP Message API and the IPC Notify API,
focusing on shared memory buffers between CPU1 and CPU2:

1 int32_t IpcNotify_init(const IpcNotify_Params * params)

2 int32_t RPMessage_init (const RPMessage_Params *params)

3 }

Listing 4.3: API’s for IPC

RPMessage init()

1. The application on CPU1 writes a message to the shared memory buffer.

2. The shared memory buffer notifies the mailbox on CPU1 that the write
operation is complete.

3. The mailbox on CPU1 triggers an interrupt on CPU2, notifying the ap-
plication on CPU2.

40



4. The application on CPU2 reads the message from the shared memory
buffer.

5. After processing, the application on CPU2 writes a response to the shared
memory buffer.

6. The shared memory buffer notifies the mailbox on CPU2 that the write
operation is complete.

7. The mailbox on CPU2 triggers an interrupt on CPU1, notifying the ap-
plication on CPU1.

8. The application on CPU1 reads the response from the shared memory
buffer, completing the communication cycle.

IpcNotify init()

1. The application on CPU1 sends a notification using the IPC Notify API,
including a 28-bit message ID.

2. The mailbox on CPU1 triggers a notify interrupt on CPU2.

3. The application on CPU2 handles the notify interrupt, processing the
received message ID.

4.3 Synchronous Breakpoint

The synchronous breakpoint mechanism effectively combines the features of
the traditional breakpoint handling section and the IPC section. Breakpoints
provide the capability to halt execution at precise locations within the applic-
ation code, while IPC Notify ensures that this halting is communicated across
multiple cores efficiently and with minimal delay. By leveraging both these
functionalities, synchronous breakpoints enable coordinated debugging, making
it easier to identify and resolve issues that could be missed if only one core is
halted.

Figure 4.5: Synchronous Breakpoint Flow and Sequence using Inter
Processor Communication API’s

In the context of a synchronous breakpoint mechanism as shown in sequence
diagram 4.5, the following sequence of actions occurs:
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1. The application on CPU1 triggers a breakpoint, which invokes the break-
point handler.

2. The breakpoint handler on CPU1 sends an IPC Notify message to the
mailbox to notify other cores (CPU2 and CPU3) about the breakpoint.

3. The mailbox forwards the IPC Notify message to the corresponding hand-
lers on CPU2 and CPU3.

4. Upon receiving the IPC Notify message, the breakpoint handlers on CPU2
and CPU3 execute the breakpoint, causing each core to halt and enter their
respective breakpoint handlers.

This process ensures that all cores are synchronized and halt execution at the
specified breakpoint, allowing for coordinated debugging across multiple cores.

4.4 Core Dump

Figure 4.6: Sequence Diagram for storing Core Dump in ARM Cortex-
M

The sequence diagram 4.6 demonstrates the process of handling a hard fault
in an ARM Cortex-M microcontroller by capturing a core dump. This process
involves several key steps, which are illustrated in the sequence diagram above.

1. HardFault Occurrence: When a hard fault occurs in the system, the
processor automatically invokes the HardFault Handler function.

2. Determine Stack Pointer: Within the HardFault Handler, assembly
instructions are executed to determine which stack pointer (Main Stack
Pointer (MSP) or Process Stack Pointer (PSP)) was in use at the time of
the fault. This is done using the TST and ITE instructions to test the
EXC RETURN value in the Link Register (LR) and select the appropriate
stack pointer.

3. Invoke Core Dump Handler: The determined stack pointer is then
passed to the core dump handler function, which captures the core dump.
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4. Capture Register Values: The core dump handler function extracts
the values of the general-purpose registers (R0, R1, R2, R3, R12), the
Link Register (LR), the Program Counter (PC), and the Program Status
Register (PSR) from the stack.

5. Save Stack Pointer: The current value of the stack pointer is saved.

6. Capture Stack Memory: The contents of the stack are captured and
stored in the core dump structure for further analysis.

7. Store Core Dump: Optionally, the core dump data can be stored in an
external memory or signaled to a debugger for post-mortem analysis.

8. Halt System: Finally, the system is halted to prevent any further exe-
cution, allowing for a thorough analysis of the captured core dump data.

4.5 Debug and Watchpoint Trace Unit(DWT)

Figure 4.7: Sequence Diagram for applying a Watchpoint using DWT
in ARM Cortex-M

The sequence diagram 4.7 depicts the process of setting a watchpoint in an
ARM Cortex-M series microcontroller using the provided code. The process
begins with the application enabling the Data Watchpoint and Trace (DWT)
unit by setting the appropriate bit in the Debug Exception and Monitor Con-
trol Register (DEMCR). Next, the application checks the number of available
comparators in the DWT unit by reading the CTRL register and extracting the
number of comparators. After validating the specified comparator ID against
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the number of available comparators, the application proceeds to configure the
comparator. This involves setting the COMP register with the address to be
monitored, configuring the MASK register to specify the address range, and
finally setting the FUNCTION register to define the type of data access (read,
write, or read/write) that should trigger the watchpoint. The configuration of
the FUNCTION register enables the comparator, to complete the process of
setting a watchpoint.

1 void dwt_dump(void);

2 void dwt_reset(void);

3 void dwt_install_watchpoint(int comp_id , uint32_t func , uint32_t

comp , uint32_t mask);

Listing 4.4: Data Watchpoint and Trace (DWT) API Functions

dwt dump()

This function is used to dump the current configuration of the DWT unit,
including all comparators and their settings. It logs the state of the DWT
control register and each comparator’s function, comparison value, and mask.

dwt reset()

This function resets all DWT comparators by setting their function, comparison
value, and mask registers to zero. This effectively disables all watchpoints.

dwt install watchpoint()

This function installs a watchpoint on a specified comparator by configuring its
function, comparison value, and mask registers. It first enables the DWT unit
by setting the appropriate bit in the DEMCR register.
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4.6 Flash Patch and Breakpoint Unit (FPB)

Figure 4.8: Sequence Diagram for applying a Breakpoint using FPB in
ARM Cortex-M

The sequence diagram 4.8 illustrates the process of configuring a breakpoint
using the Flash Patch and Breakpoint (FPB) unit in an ARM Cortex-M micro-
controller. Initially, the application interacts with the FPB unit to dump the
current breakpoint configuration. This process involves reading the FP CTRL
register to determine the control and status of the FPB unit, including the num-
ber of available hardware breakpoints and whether the FPB unit is enabled. The
application then iterates through each comparator, reading the FP COMP re-
gisters to retrieve the configuration details such as whether the comparator is
enabled and the address it monitors. These details are logged for debugging
purposes, providing a comprehensive snapshot of the FPB unit’s current state.

Subsequently, the process of setting a new breakpoint is initiated. The ap-
plication validates the instruction address to ensure it is within the permissible
range. It then enables the FPB unit by setting the appropriate bits in the
FP CTRL register. After enabling the FPB unit, the application configures
the specified comparator by writing the instruction address and control bits to
the FP COMP register. This configuration enables the comparator, allowing it
to monitor the specified address and trigger a breakpoint when the address is
accessed during program execution.

1 void fpb_dump_breakpoint_config(void);

2 bool fpb_set_breakpoint(size_t comp_id , uint32_t instr_addr);

Listing 4.5: Flash Patch and Breakpoint (FPB) API Functions
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fpb dump breakpoint config()

This function dumps the current configuration of the Flash Patch and Break-
point (FPB) unit. It logs the state of the FPB control register and all configured
comparators, including their enabled status and the addresses they monitor.

fpb set breakpoint()

This function configures a breakpoint on a specified comparator by setting its
comparison value in the FP COMP register. It first enables the FPB unit by
setting the appropriate bits in the FP CTRL register.

4.7 Profiling

Figure 4.9: Sequence Diagram for Profiling a Function using Cycle
Counter in DWT in ARM Cortex-M

The sequence diagram 4.9 illustrates the process of profiling code execution
on an ARM Cortex-M microcontroller using the DWT (Data Watchpoint and
Trace) cycle counter and logging the cycle count. This process begins with
the user starting the application, which triggers the DWT Init() function to

46



enable the cycle counter by setting the appropriate bits in the DWT control
registers. After initialization, the main application enters a loop where it profiles
a specific code segment. At the beginning of each iteration, the cycle counter
(DWT CYCCNT) is reset to zero to ensure consistent measurements. The
application then reads the start cycle count, executes the code segment to be
profiled, and reads the end cycle count upon completion. The elapsed cycles are
calculated by subtracting the start count from the end count. This cycle count
is logged using a function that formats the message and outputs it, crucial for
recording profiling data for later analysis.

1 void enable_cycle_counter(void)

2 uint32_t read_cycle_counter(void)

Listing 4.6: Enabling the DWT Cycle Counter

enable cycle counter()

The enable cycle counter function enables the cycle counter of the Data Watch-
point and Trace (DWT) unit in the ARM Cortex-M microcontroller. It does
this by setting the CYCCNTENA bit in the DWT CTRL register. This action
allows the cycle counter to begin counting the number of CPU cycles, which is
fundamental for profiling purposes. By enabling the cycle counter, developers
can measure the execution time of specific code segments in terms of CPU cycles.

read cycle counter()

The read cycle counter function reads and returns the current value of the cycle
counter from the DWT CYCCNT register. This value indicates the number of
CPU cycles that have elapsed since the counter was last reset or enabled. By
capturing the cycle count at the start and end of a code segment, developers
can calculate the total number of cycles consumed by that segment.

4.8 Performance Measurement Unit(PMU)

The sequence diagram 4.10 illustrates the interaction between the main applic-
ation, the PMU (Performance Measurement Unit) driver, and the PMU hard-
ware in an ARM Cortex-R5 environment, focusing on profiling code execution.
This process begins with the user starting the application, which triggers the
PMU init(cfg) function. During initialization, the PMU driver sets up the pro-
file object, configures the PMU registers, enables user mode access, configures
event and cycle counters, disables counter overflow interrupts, resets counters,
and enables all counters. Once initialized, the application enters a loop that
profiles specific code segments.

In each iteration, the profiling starts by calling PMU profileStart(name),
which resets the counters and reads the initial counter values. The main applica-
tion then executes the code segment to be profiled. After execution, PMU profile
End(name) is called to read the final counter values and calculate the elapsed
counts, which are essential for performance analysis. The profiling data is logged
by calling PMU profilePrintEntry(name).
This sequence is repeated for each code segment being profiled, allowing for

continuous performance monitoring. When the user stops the application, the
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Figure 4.10: Performance Measurement Unit Sequence Diagram
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main application calls PMU disableAllCounters(numCounters) to disable all
and specific counters.

1 int32_t PMU_init(PMU_Config *cfg)

2 int32_t PMU_profileStart(const char *name)

3 int32_t PMU_profileEnd(const char *name)

4 void PMU_profilePrintEntry(const char *name)

5 void PMU_profilePrint(void);

Listing 4.7: API’s for PMU

PMU init()

This function initializes the Performance Measurement Unit (PMU) with the
specified configuration settings. It sets up the profile object, configures the PMU
registers, enables user mode access, configures the event counters and the cycle
counter, disables counter overflow interrupts, resets the counters, and enables
all counters. This function ensures that the PMU is properly set up for profiling
code execution.

PMU profileStart()

This function starts profiling for a profile point. It resets the PMU counters
and reads the initial counter values. This function is called before executing the
code segment to be profiled, marking the beginning of the profiling interval.

PMU profileEnd()

This function ends profiling for a named profile point. It reads the final counter
values and calculates the elapsed counts by subtracting the initial values re-
corded by PMU profileStart(). This function is called after executing the code
segment to be profiled, marking the end of the profiling interval.

PMU profilePrintEntry()

This function prints the profiling data for a specific named profile point. It
retrieves the profile point data from the profile object and logs the cycle count
and event counts. This function allows for detailed analysis of a particular
profile point.

PMU profilePrint()

This function prints all profiling data stored in the profile object. It iterates
through all recorded profile points and logs their cycle counts and event counts.
This function provides a comprehensive overview of the profiling data collected
during the execution of the application.

4.9 Embedded Trace Buffer(ETB)

The sequence diagram depicts 4.11the process of initializing, enabling, using,
disabling, retrieving data from, and closing the Embedded Trace Buffer (ETB)
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Figure 4.11: Embedded Trace Buffer Sequence Diagram
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within an embedded system, showcasing the interactions between the main ap-
plication, the ETB driver, and the ETB hardware. Initially, the user configures
the ETB by resetting the write pointer, disabling formatting, and setting up
the trigger counter. This sets up the ETB for tracing, and the function.
The ETB driver resets both the read and write pointers and writes to the

control register to enable the ETB. It then verifies the ETB’s enable status by
reading the control register and checking the appropriate bit. Upon successful
enabling, the main application proceeds to execute the code, with the ETB
capturing trace data during this period.
After code execution, the main application stops the ETB. The ETB driver

performs a manual flush, disables the ETB via the control register, and verifies
the disable status. The application then enters a loop to retrieve the trace data.
This function reads the start and end pointers to determine the available data,
resets the read pointer, and transfers the trace data into the provided buffer,
returning the size of the retrieved data.
This sequence highlights the comprehensive workflow for managing ETB op-

erations, emphasizing the key function calls and hardware register interactions
essential for trace data collection, which is critical for debugging and optimizing
embedded systems.

1 int etb_open(struct etb_handle_t *etb_handle);

2 void etb_close(struct etb_handle_t *etb_handle);

3 int etb_enable(struct etb_handle_t *etb_handle);

4 int etb_disable(struct etb_handle_t *etb_handle);

5 int etb_status(struct etb_handle_t *etb_handle);

6 ssize_t etb_retrieve(struct etb_handle_t *etb_handle , void *buf ,

size_t bufsize);

Listing 4.8: API’s for ETB

etb open()

The etb open function initializes the Embedded Trace Buffer (ETB) and pre-
pares it for operation. This function maps the ETB base address, unlocks the
ETB hardware, resets the write pointer (ETB RWP), disables the formatting
(ETB FFCR), and sets up the trigger counter (ETB TRIG). Upon successful
configuration, the function returns 0. If the initialization fails, it returns an
error, which is handled by the application to abort further operations.

etb close()

The etb close function cleans up and releases resources associated with the ETB.
It unmaps the ETB base address and sets the handle to NULL, effectively closing
the ETB. This function ensures that all resources are properly freed and that
the ETB is left in a clean state after use.

etb enable()

The etb enable function enables the ETB to start capturing trace data. It
unlocks the ETB hardware, resets both the read pointer (ETB RRP) and the
write pointer (ETB RWP), and then writes to the control register (ETB CTL)
to enable the ETB. The function includes a verification step where it reads

51



back the ETB CTL register to ensure that the ETB is enabled. If the ETB is
successfully enabled, the function returns 0; otherwise, it returns an error.

etb disable()

The etb disable function stops the ETB from capturing trace data. It unlocks
the ETB hardware, performs a manual flush by setting a bit in the formatting
control register (ETB FFCR), and disables the ETB by writing to the control
register (ETB CTL). The function verifies the disablement by reading back the
ETB CTL register to ensure that the ETB is no longer active. Upon successful
disablement, the function returns 0.

etb status()

The etb status function is designed to read and display the current status of the
Embedded Trace Buffer (ETB). This function provides valuable information
about the state and configuration of the ETB.

etb retrieve()

The etb retrieve function reads the trace data captured by the ETB into a
provided buffer. It unlocks the ETB hardware, reads the start pointer (ETB RRP)
and the end pointer (ETB RWP) to determine the amount of data available,
resets the read pointer (ETB RRP), and then reads the trace data into the
buffer. The size of the retrieved data is returned. If the size is less than 0, it
indicates an error in data retrieval.

4.10 Micro Trace Buffer(MTB)

The sequence diagram 4.12 depicts the interaction between the main application,
the MTB driver, and the MTB hardware during the enabling and disabling of
the Micro Trace Buffer. Initially, trigger the mtb enable(mtb size) function to
enable MTB tracing. The MTB driver first validates the mtb size to ensure it
is at least 16 bytes and has a power of 2. If the size is valid, it scrubs the MTB
SRAM by setting all bytes to zero, making it easier to identify which parts have
been written to.
Next, the MTB driver disables the MTB by calling mtb disable(), ensuring

it can be safely reconfigured. This involves setting the MASTER register to
disable tracing. The position counter is then reset to zero, and the MASTER
register is configured to enable tracing with the specified buffer size.
After the setup, the main application executes its code, during which the

MTB continuously traces the program execution, writing the addresses to the
circular buffer. Finally, when tracing needs to be stopped, the main application
calls mtb disable() again to turn off the MTB by clearing the enable bit in the
MASTER register.

1 int mtb_enable(size_t mtb_size)

2 int mtb_disable(void)

Listing 4.9: API’s for MTB
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Figure 4.12: Micro Trace Buffer Sequence Diagram
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mtb enable()

The mtb enable function is designed to initialize and start the MTB with a
specified buffer size. This involves setting the most significant bit to enable the
trace and setting the lower bits to define the size of the buffer.

mtb disable()

The mtb disable function, on the other hand, stops the tracing by clearing the
enable bit in the MASTER register. This action halts the recording of execution
addresses into the trace buffer, effectively pausing the MTB’s tracing capability.
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Chapter 5

Porting on Hardware

This chapter details the process of porting the embedded software debugging
library to various hardware development kits. The objective is to validate and
demonstrate the functionality of the debugging library across different plat-
forms, ensuring its versatility and robustness. The selected hardware platforms
for this porting process include the Texas Instrument’s TMDS64EVM, Adafruit
Grand Central M4 Express featuring the SAMD51, and the Renesas DA14695-
00HQDEVKT-U. Each of these development kits offers unique features and
capabilities, making them ideal candidates for testing the various components
of the debugging library.

Each section below will provide an overview of the development kits, describe
the setup process, a base code as a part of the application running on each core,
and validate the functionality of each component of the software debug library
on these platforms. A base code is implemented on each hardware platform to
effectively test and validate the debugging library. By incorporating real-world
application scenarios, the base code simulates typical use cases that developers
might encounter. This includes inter-processor communication, handling inter-
rupts, performing periodic tasks, and more. Testing the debugging library in
these real-world scenarios helps ensure that it will perform reliably in actual
development environments. This systematic approach ensures that the library
is versatile, capable of operating effectively across different hardware environ-
ments.

5.1 Texas Instrument’s TMDS64EVM

The TMDS64EVM development kit [28] is equipped with an AM64x System-on-
Chip (SoC) [29], which integrates a versatile combination of processing cores and
advanced debugging features as shown in figure 5.1, making it an ideal platform
for embedded system development and debugging. The AM64x SoC includes
two ARM Cortex-A53 cores, four ARM Cortex-R5F cores, a single ARM Cortex-
M4 core, and two PRU-ICSSG cores, providing a robust and flexible architecture
for a wide range of applications [27]. This kit supports real-time processing,
industrial communication, and decentralized motor drives, enhanced by three
RJ45 Ethernet ports, a high-speed expansion connector, and onboard power
measurement capabilities.
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Figure 5.1: Texas Instruments TMDS64EVM-AM64x Cores and Com-
ponents Architecture

For software development, the Processor-SDK-AM64X offers a unified plat-
form with mainline Linux, Long-Term Stable (LTS) kernel support, FreeRTOS,
and No-RTOS options for ARM Cortex-R5F, and a variety of integrated demos
and examples. Debugging is facilitated through the XDS110 on-board emulator,
which supports automatic selection between on-board and external emulation,
along with a 20-pin JTAG connection. The kit also features comprehensive
memory options, including 2GB DDR4, 16GB eMMC Flash, and multiple EE-
PROM types. The inclusion of debug interfaces like UART to USB, multiple
I2C ports, and user-configurable push buttons ensures detailed monitoring and
troubleshooting capabilities, aligning perfectly with the objectives of the em-
bedded software debugging library detailed in this report.
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5.1.1 Base Code

Figure 5.2: TMDS64EVM-AM64x Base Code System Design

The provided system design in figure 5.2 outlines the base code running on
the evaluation module, showcasing a mix of FreeRTOS and bare-metal imple-
mentations to simulate a comprehensive range of functionalities typically used
in the industry. This approach thoroughly validates the software debug library,
covering diverse scenarios encountered in real-world applications. Each core is
tasked with different functionalities, integrating both real-time operating sys-
tem (RTOS) environments and bare-metal operations based on the Technical
Reference Manual [30]. For instance, Core R5F0 0 runs FreeRTOS handling
ADC, GPIO interrupts, and LED blinking, while Core R5F0 1 operates in a
bare-metal environment focusing on MMCSD and DDR ECC. Similarly, Core
R5F1 0, also running FreeRTOS, handles task switching, and Core M4F0 0 and
Core RF1 1 operate with IPC communication for various tasks. The subsequent
subsections will elaborate on the detailed implementation and validation of the
code running on each core. This setup ensures the software debug library is rig-
orously tested across a broad spectrum of real-time and bare-metal applications,
affirming its robustness and versatility.
The following sections illustrate the flow of applications executing on each

core programmed in the base code:
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R5F0 0-FreeRTOS

Figure 5.3: TMDS64EVM-AM64x Core R50 0 FreeRTOS Application

The R5F0 0 5.3 core runs a FreeRTOS-based application demonstrating inter-
processor communication (IPC), GPIO interrupt handling, and ADC single-shot
conversions. The main CPU (R5F0 0) sends multi-byte messages to remote
CPUs (R5F0 1 and M4F0 0) using RP Message APIs. A GPIO pin is con-
figured to generate an interrupt on a rising edge, toggling an LED and printing
the button press count. The ADC is configured to convert all eight input chan-
nels in single-shot mode, averaging 16 samples per conversion. Results are
stored in FIF0 and displayed on the console. A medium-priority task manages
the ADC conversions, ensuring efficient handling without interrupting higher-
priority tasks. This application showcases the multi-core communication and
peripheral handling of TMDS64EVM in a real-time environment.
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R5F0 1-BareMetal

The R5F0 1 5.4 core operates a bare metal application that includes inter-
processor communication (IPC), ECC error handling for DDR, and eMMC
Flash Raw IO operations. The CPU (R5F0 0) sends multi-byte messages to
remote CPUs using RP Message APIs. The R5F0 1 core, acting as a remote
CPU, echoes the messages received by the main CPU. The ECC error handling
section simulates both single-bit (1b) and double-bit (2b) ECC errors in DDR
memory. The application modifies values at specific DDR addresses to intro-
duce errors and attempts to trigger error-handling mechanisms. Single-bit er-
rors are detected and corrected, while double-bit errors are detected and logged.
Also, the application performs basic read and write operations to eMMC Flash
memory. Known data is written to a specific offset in the eMMC and then read
back. The read data is compared with the written data to verify correctness.
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Figure 5.4: TMDS64EVM-AM64x Core R50 1 BareMetal Application
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R5F1 0-FreeRTOS

The R5F1 0 5.5 core runs a FreeRTOS application that demonstrates semaphore-
based task switching through a ping-pong mechanism and inter-processor com-
munication (IPC) for message exchange. The main CPU, R5F1 1, sends multi-
byte messages to the remote CPU, R5F1 0, using the RP Message APIs. The
R5F1 0 core, acting as a remote CPU, receives the messages and echoes them
back to the main CPU. A task is created to handle incoming messages from
the remote cores and send them back, ensuring continuous communication and
validation of the IPC mechanism. Also, two semaphores are created in this
application, and two tasks, ping and pong, are established. These tasks signal
each other using semaphores and task notifications to simulate a task-switching
environment. The ping task is triggered by a hardware interrupt service routine
(ISR), demonstrating how tasks can be signaled from ISRs in a real-time sys-
tem. The tasks alternate execution by giving and taking semaphores and the
task delay API is used to manage task timing and execution flow.
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Figure 5.5: TMDS64EVM-AM64x Core R51 0 FreeRTOS Application
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R5F1 1-BareMetal

The R5F1 1 5.6 core runs a bare-metal application that showcases various func-
tionalities such as I2C communication for temperature reading, OLED display,
CRC computation, and inter-processor communication (IPC) for message ex-
change. The application demonstrates how to interface with an I2C temperature
sensor and an OLED display. The system initializes the I2C communication,
reads temperature data from the sensor, and displays the temperature on the
OLED screen. This process involves taking multiple samples, printing the data
to the console, and updating the OLED display continuously. The CRC (Cyclic
Redundancy Check) functionality is implemented to verify data integrity. The
application configures the CRC parameters, initializes the memory with refer-
ence data, and calculates the CRC signature for a data frame stored in memory.
The computed CRC signature is then compared with a pre-calculated reference
value to ensure data correctness. The CPU, R5F1 1, sends multi-byte messages
to remote CPUs using the RP Message APIs. The remote CPUs receive these
messages and echo them back to the main CPU.
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Figure 5.6: TMDS64EVM-AM64x Core R51 1 BareMetal Application
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M4F0 0-FreeRTOS

Figure 5.7: TMDS64EVM-AM64x Core M40 0 FreeRTOS Application

The M4F core runs a FreeRTOS-based application that demonstrates inter-
processor communication using RPMsg and the utilization of POSIX APIs over
FreeRTOS. The main CPU, R5F0 0, sends messages to remote CPUs, including
R5F0 1 and M4F0 0, using the RPMsg APIs. The remote CPUs then echo
back the same messages to the main CPU. This functionality is encapsulated
within a task that handles receiving messages from remote cores and sending
back the same messages. The application demonstrates the use of POSIX APIs
with FreeRTOS running underneath the POSIX layer. The code includes the
creation of POSIX threads and message queues. The main tasks involved are:

• Creating Worker Message Queues and Worker Threads: The applica-
tion initializes multiple message queues and worker threads. Each worker
thread waits for messages in its respective queue.

• Creating a Dispatcher Thread: A dispatcher thread sends messages to the
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worker message queues. It sends work messages to each queue, prompting
the worker threads to process these messages.

• Task Distribution and Termination: After distributing tasks for a certain
number of iterations, the dispatcher thread sends exit messages to the
worker threads. Upon receiving an exit message, the worker threads com-
plete their tasks and terminate. The main thread waits for all the threads
to finish their execution before concluding the application.

5.1.2 Validation of Embedded Debug Library Compon-
ents

Components Cores Validation method
Hardware Breakpoint R5 Verified through JTAG that the processor halts
Hardware Watchpoint R5 Verified through JTAG that the processor halts
Inter Processor Communication R5, M4 Verified through Logs
Synchronous Breakpoint R5, M4 Verified through Logs and JTAG
Core Dump M4 Verified through Logs Comparison with CPU registers in IDE
Data Watchpoint and Trace Unit(DWT) M4 Verified the Unit functionality through JTAG
Flash Patch and Breakpoint Unit(FPB) M4 Verified the Unit functionality through JTAG
Performance Measurement Unit (PMU) R5 Verified through Logs
Profiling M4 Verified through comparing cycle count with delay function
Micro Trace Buffer No Support in Hardware
Embedded Trace Buffer No Support in Hardware

Table 5.1: Validation of Embedded Debug Software Library Compon-
ents on TMDS64EVM

The table 5.1 summarizes the validation methods used for various components
of the Embedded Debug Software Library on the TMDS64EVM platform, which
includes both FreeRTOS and Baremetal configurations. Each component is
listed alongside the cores it was tested on and the validation method employed.
Hardware Breakpoints and Hardware Watchpoints were validated on the R5

core using JTAG to confirm that the processor halts as expected. Inter Pro-
cessor Communication (IPC) was tested on both the R5 and M4 cores, with
successful validation through log outputs. The Synchronous Breakpoint func-
tionality, which combines breakpoints and IPC, was also validated on the R5
and M4 cores using both logs and JTAG.
For the Core Dump functionality on the M4 core, logs were compared with

CPU registers in the Integrated Development Environment (IDE) to ensure ac-
curacy. The Data Watchpoint and Trace Unit (DWT) and Flash Patch and
Breakpoint Unit (FPB) on the M4 core were validated by verifying their func-
tionalities through JTAG. The Performance Measurement Unit (PMU) on the
R5 core was validated through logs.
Profiling on the M4 core was confirmed by comparing the cycle count with a

known delay function. However, the Micro Trace Buffer (MTB) and Embedded
Trace Buffer (ETB) could not be validated as it is not supported in the hardware.
This comprehensive validation ensures that the debug library components

function correctly across different cores and configurations on the Texas Instru-
ments’ TMDS64EVM platform.
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5.2 Adafruit Grand Central M4 - ATSAMD51

Figure 5.8: Adafruit Grand Central M4-SAMD51 Cores and Compon-
ents Architecture [26]

The Adafruit Grand Central M4 [1] Express featuring the SAMD51 5.9 is a
powerful development board tailored for complex embedded applications. At
its core, it houses a 120MHz ARM Cortex-M4 processor with floating point
support and Cortex-M4 DSP instructions, ensuring robust performance and
versatility. The board adopts the Arduino Mega form factor, providing many
pins for extensive functionality.

For debugging, the Grand Central M4 includes native USB support, allowing
it to operate as a serial device without requiring an additional USB-to-serial con-
verter. Key specifications and core functionality include 1MB of flash memory,
256KB of RAM, 70 GPIO pins, dual 1MSPS DACs, dual 1MSPS ADCs, and
eight hardware SERCOMs configurable as I2C, SPI, or UART. Additionally,
the integrated crypto engines provide enhanced security features.

5.2.1 Base Code

The Base code aims to enable and verify the functionality of the Embedded
Trace Buffer (ETB) in the Adafruit Grand Central M4 featuring the SAMD51
microcontroller [25]. This is accomplished by initializing the system, as per the
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SAMD51 datasheet [25] setting specific control registers, and reading memory
regions to ensure the ETB is correctly configured.

Figure 5.9: Adafruit Grand Central M4-SAMD51 Flow to Enable ETB

The processor reads the current configuration (CFG) register value, modifies
it to set the ETBRAMEN bit (bit 4), and writes the updated value back to the
CFG register. This step is essential as it enables the ETB RAM, allowing it
to function correctly. In addition to modifying the CFG register, the processor
also writes control values to the Peripheral Access Controller (PAC) registers
to configure access control. This includes setting a specific key and peripheral
ID in the PAC register and clearing the PAC event register.

For further verification, the processor reads and prints the statusB register
value and the modified CFG register value to ensure that the changes were
successfully applied.

The Base code also includes a section for reading and printing 32KB of SRAM.
This is done by iterating over the SRAM addresses, reading each value, and
printing it to the serial monitor.

Moreover, the base code has a loop function that contains a simple LED
blinking sequence. It turns the LED connected to pin 13 on and off with a one-
second delay in between. This part of the code demonstrates basic functionality
and is verified by decoding the ETB data.
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5.2.2 Validation of Embedded Debug Software Library Com-
ponents on Adafruit - M4

Components Cores Validation method
Hardware Breakpoint Verified in M4 through FPB
Hardware Watchpoint Verified in M4 through DWT
Inter Processor Communication Single core
Synchronous Breakpoint Single core
Core Dump Can’t be verified due to absence of Debugger Support in Hardware
Data Watchpoint and Trace Unit(DWT) Can’t be verified due to absence of Debugger Support in Hardware
Flash Patch and Breakpoint Unit(FPB) Can’t be verified due to absence of Debugger Support in Hardware
Performance Measurement Unit (PMU) No Support in Hardware
Profiling M4 Verified through comparing cycle count with delay function
Micro Trace Buffer No Support in Hardware
Embedded Trace Buffer M4 Verified through decoding ETB data for a simple loop

Table 5.2: Validation of Embedded Debug Software Library Compon-
ents on Adafruit M4

Table 5.2 provides an overview of the validation methods used for different
components of the Embedded Debug Software Library on the Adafruit Grand
Central M4. The validation focuses primarily on the Cortex-M4 core, reflecting
the core capabilities and limitations of the hardware.
Hardware Breakpoints and Hardware Watchpoints were verified on the M4

core using the Flash Patch and Breakpoint (FPB) unit and the Data Watchpoint
and Trace (DWT) unit, respectively. Inter Processor Communication (IPC) and
Synchronous Breakpoints were not validated due to the single-core nature of the
M4 setup.
The Core Dump feature could not be verified due to the absence of debug-

ger support in the hardware. Similarly, the Data Watchpoint and Trace Unit
(DWT) and Flash Patch and Breakpoint Unit (FPB) functionalities could not
be fully validated for the same reason. The Performance Measurement Unit
(PMU) and Micro Trace Buffer (MTB) features are not supported by the hard-
ware.
Profiling was successfully validated by comparing the cycle count with a

known delay function, ensuring accurate performance measurement. The Em-
bedded Trace Buffer (ETB) was verified by decoding ETB data for a simple
loop, confirming the trace capabilities of the library on the M4 core.

5.3 Renesas DA14695-00HQDEVKT-U

The DA14695 USB Kit [15] from Renesas provides a compact and cost-effective
platform for software development and debugging for the DA14695 Bluetooth
Smart SoC [14]. The board integrates a variety of features that facilitate easy
connectivity and development, including JTAG and UART interfaces for pro-
gramming and debugging, a QSPI flash memory for data storage, and vari-
ous GPIOs accessible through MikroBUS slots as shown in figure 5.10. The
kit is designed to connect directly to a PC USB port, offering power options
through USB, an onboard LDO, or an external battery. Key debugging capab-
ilities are enhanced by a dedicated Segger processor that manages the USB-to-
JTAG/UART functions, allowing seamless communication between the devel-
opment environment and the SoC.
The DA14695 SoC [14] itself is a highly integrated solution combining an ARM
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Figure 5.10: Renesas DA14695 - Cores and Components Architecture
[14]

Renesas

Cortex-M33 CPU, power management, memory, and a configurable Bluetooth
Low Energy MAC engine with a radio transceiver. It supports both 32 MHz
and 32.768 kHz crystals, enabling precise timing for various operations. The
kit includes various features for enhanced development and debugging, such as
reset circuits, user-controllable LEDs, and robust power management systems.

5.3.1 Base Code

The MTB stores the addresses of executed instructions in a circular buffer, which
can be useful for post-mortem analysis after a crash or unexpected behavior.
The MTB position register indicates the current write position in the buffer.
For validating the functionality of Micro Trace Buffer the base code flow 5.11
is kept very simple. It initializes the system, configures a GPIO pin to drive an
LED, and blinks the LED on and off in a loop.

5.3.2 Validation of Embedded Debug Software Library Com-
ponents on Renesas DA14695

The table 5.3 details the validation methods employed for different components
of the Embedded Debug Software Library on the Renesas DA14695, focusing
primarily on the Cortex-M33 core. Each component is evaluated on FreeRTOS
as well as BareMetal configuration.

Hardware Breakpoints and Hardware Watchpoints were verified on the M33
core using the Flash Patch and Breakpoint (FPB) unit and the Data Watchpoint
and Trace (DWT) unit, respectively. These verifications were performed using
JTAG to ensure the CPU halts as expected.
Inter Processor Communication (IPC) and Synchronous Breakpoints could

not be validated on the Renesas DA14695 due to its single-core nature, which
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Figure 5.11: Renesas DA14695 - SAMD51 Micro Trace Buffer Flow

Components Cores Validation method
Hardware Breakpoint Verified in M33 through FPB
Hardware Watchpoint Verified in M33 through DWT
Inter Processor Communication Single core
Synchronous Breakpoint Single core
Core Dump M33 Verified through Logs Comparison with CPU registers in IDE
Data Watchpoint and Trace Unit(DWT) M33 Verified through JTAG that the CPU halts
Flash Patch and Breakpoint Unit(FPB) M33 Verified through JTAG that the CPU halts
Performance Measurement Unit (PMU) No Support in Hardware
Profiling M33 Verified through comparing cycle count with delay function
Micro Trace Buffer M33 Verified through decoding MTB data and matching with assembly
Embedded Trace Buffer No Support in Hardware

Table 5.3: Validation of Embedded Debug Software Library Compon-
ents on Renesas DA14695
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does not support these multi-core synchronization features.
The Core Dump feature was successfully verified by comparing logs with

CPU register values obtained from the IDE, ensuring accurate capture of the
processor state during faults. The Data Watchpoint and Trace Unit (DWT)
and Flash Patch and Breakpoint Unit (FPB) functionalities were also validated
through JTAG, confirming their operational integrity.
The Performance Measurement Unit (PMU) is not supported by the hard-

ware, hence it could not be validated. Profiling was successfully validated by
comparing cycle counts with a known delay function, ensuring precise perform-
ance measurement.
The Micro Trace Buffer (MTB) was verified by decoding MTB data and

matching it with assembly instructions, confirming its tracing capabilities. How-
ever, the Embedded Trace Buffer (ETB) is not supported by the hardware, and
hence it could not be validated.
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Chapter 6

Results and Evaluation

The Results and Evaluation chapter comprehensively analyzes the Embedded
Debug Software Library’s functionality, performance metrics, and use cases.
This chapter is structured to validate the library’s various components and
evaluate its performance across multiple dimensions. Each section and subsec-
tion will detail the methodologies used for validation and measurement, as well
as present the results obtained from these evaluations.

6.1 Functionality Validation

The Functionality Validation section focuses on verifying that each component
of the Embedded Debug Software Library performs as expected.

6.1.1 Breakpoints and Watchpoints

For R5 Cores the Breakpoints and Watchpoints are validated through JTAG and
the IDE. The validation is done by checking that the CPU is halted whenever
a Breakpoint or Watchpoint occurs and the address of the instruction is also
validated.

Figure 6.1: TMDS64EVM -R4 Debug Register Interface

Figure 6.1 illustrates the validation of the debug register interface on the
Cortex-R5 processor by comparing the console output generated by a custom
program with the values displayed in the debugger interface. On the left side,
the console output shows the DBGDIDR register value as 0x77040013, indic-
ating the processor’s debug capabilities. The parsed output reveals that the
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processor supports 8 breakpoint comparators (BRPs), 1 of which supports con-
text matching, and 8 watchpoint comparators (WPs). On the right side, the
debugger interface displays the contents of various debug registers, confirm-
ing the values seen in the console output. The REG DIDR value matches the
DBGDIDR value from the console, verifying the accuracy of the register read
operation. Additionally, other registers such as BPWP NUM BP AVAILABLE,
BPWP NUM BP WITH CONTEXT, and BPWP NUM WP AVAILABLE con-
firm the number of available breakpoints and watchpoints, as well as the context
support. The number of breakpoints and watchpoints are also validated through
the Technical Reference Manual of TMDS64EVM.

6.1.2 Performance Measurement Unit(PMU)

The functionality of the PMU is tested to ensure it accurately measures per-
formance metrics such as cycle counts, and other critical parameters.

Figure 6.2: TMDS64EVM -R4 PMU Console

The total CPU cycles taken for a delay function of 5 seconds on R5 are shown
in figure 6.2. To verify the accuracy of profiling, total execution time of the delay
function can be calculated. Total code execution time = (1/CPU Frequency) x
Total Cycles where the CPU frequency of R5 is 800MHz.
Therefore theTotal code execution time = (1/800 MHz) * 3999230440

= 4.9990 seconds.
As shown in figure 6.2 the PMU also displays different bus events such as

ICACHE MISS, DCACHE MISS, etc.

6.1.3 Inter-Processor Communication

This subsection verifies the IPC mechanisms, particularly focusing on the RP
Message APIs. Tests are conducted to ensure reliable message exchange between
different CPUs, with logs used to confirm correct operation.
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Figure 6.3: TMDS64EVM - Inter-Processor Communication Output

Figure 6.3 shows the latency of IPC RPMsg for 100 messages. Once the 100
messages sent by a core to remote cores are echoed back then only the tests are
passed.

6.1.4 Synchronous Breakpoint

Figure 6.4: TMDS64EVM - Synchronous Breakpoints Output

Figure 6.4 demonstrates the console output for validating the synchronous
breakpoint functionality using IPC Notify on the TMDS64EVM. The logs in-
dicate the initiation of message exchanges by the main core, followed by the
issuance of a breakpoint command. Further down, the logs from the remote
cores (M4F0-0 and R5F0-1) indicate the successful reception of the breakpoint
command with timestamps, validating the synchronous nature of the break-
point.

6.1.5 Data and Watchpoint Trace (DWT)

For Cortex - M Cores the Watchpoints are validated through JTAG and the
IDE. The validation is done by checking that the CPU is halted whenever a
Watchpoint occurs and the address of the instruction is also validated.

Figure 6.5 presents the console output for the DWT validation. The console
output begins by showing the DWT control register value, indicating that the
DWT is enabled, and it provides the number of comparators available, which is
four (NUMCOMP=0x4). For each comparator, the output displays the config-
uration registers: FUNCTION, COMP, and MASK. The number of watchpoints
is also validated through the Technical Reference Manual of TMDS64EVM. For
Comparator 0, the COMP register is set to the address of a variable to watch, in-
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Figure 6.5: TMDS64EVM - M4 DWT Dump after applying a watch-
point

dicating an active watchpoint configuration. The other comparators (1 through
3) are shown with zeroed configurations, meaning they are not actively used.

6.1.6 Flash Patch and Breakpoint (FPB)

For Cortex - M Cores the Breakpoints are validated through JTAG and the
IDE. The validation is done by checking that the CPU is halted whenever a
breakpoint occurs and the address of the instruction is also validated.

Figure 6.6: TMDS64EVM - M4 FPB Dump after applying a Break-
point

Figure 6.6 shows the console output for the FPB validation. The console
displays the FPB configuration, revealing the revision number, whether the
FPB is enabled, and the number of hardware breakpoints available, which is six
in this case. The number of breakpoints is also validated through the Technical
Reference Manual of TMDS64EVM. The console output further details the state
of each FPB comparator. FPB Comparator 0 is enabled and is set to address
of a variable. The other comparators (1 through 4) are shown as disabled with
no addresses configured. This output indicates that the FPB unit is functioning
correctly, allowing breakpoints to be set and managed via the comparators.

6.1.7 Profiling

Profiling functionality is validated by comparing cycle counts obtained from the
profiling API with known delay functions. This ensures the accuracy of the
profiling data.
The total CPU cycles taken for a delay function of 5 seconds on M4 are shown

in figure 6.7. To verify the accuracy of profiling total execution time of the delay
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Figure 6.7: TMDS64EVM -M4 Profiling Cycles Console

function can be calculated. Total code execution time = (1/CPU Frequency) x
Total Cycles where the CPU frequency of M4 is 400MHz.

Therefore theTotal code execution time = (1/400 MHz) * 1999762133
= 4.9994 seconds.

Similar validation is done for M33 as well.

6.1.8 Micro Trace Buffer (MTB)

The MTB’s operation is tested by configuring it to store execution traces and
verifying the trace data against the expected execution flow. This validates the
MTB’s integration with the library.

Figure 6.8: Renesas DA14695 - SAMD51 Disassembly

Figure 6.8 shows the Disassembly of a simple code running on M33 on Renesas
DA14695 - SAMD51 development code.
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Figure 6.9: Renesas DA14695 - SAMD51 MTB Buffer Decoded Data

Figure 6.9 shows the output of a basic MTB decoder implemented to extract
Micro Trace Buffer Data and display the instructions. It can be observed by
comparing the figures 6.8 and 6.9 that the instructions extracted from the MTB
are the same as those of the disassembly validating the functionality of Traces
stored in Micro Trace Buffer.

6.1.9 Embedded Trace Buffer (ETB)

Figure 6.10: TMDS64EVM - Embedded Trace Buffer Output

Figure 6.10 illustrates the Embedded Trace Buffer (ETB) validation process
on the TMDS64EVM platform. The left side displays the console output after
reading the ETB memory map, which consists of a 4KB register space. The
register values are printed after performing regional address translation on the
R5 core. The console output includes key ETB registers such as the RAM Depth
Register, RAM Width Register, Status Register, RAM Write Pointer Register,
and Trigger Counter Register.
The XDS110 debug probe output on the right side shows the ETB registers

as read from the DebugCell SOC ETB bus. This includes detailed register
values such as the Device ID Register, RAM Depth Register, Status Register,
and various pointer registers (Read Pointer, Write Pointer). The consistency
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between the console output and the debug probe output confirms that the ETB
is correctly mapped and accessible.
This validation process verifies the ETB functionality by ensuring that the

ETB registers are correctly read and mapped. Additionally, while the library
includes functionality to read data from the ETB buffer, decoding this data is
currently outside the scope due to its complexity and the time required but can
be done using hardware trace decoders such as [61]. Nonetheless, the ability
to access and read the ETB registers establishes a foundation for future work
in decoding and utilizing ETB data for detailed performance analysis and de-
bugging. This validation underscores the library’s capability to interface with
core debug components effectively, reinforcing its utility in embedded system
development and debugging.

6.2 Performance Metrics

IPC performance

Main Core Remote Core Clock Remote Core(MHz) Average Message Latency (ns)
r5f0-0 m4f0-0 400 1490
r5f0-0 r5f0-1 800 707
r5f0-0 r5f1-0 800 766
r5f0-0 r5f1-1 800 848

Table 6.1: Average one-way message latency for Inter-Processor Com-
munication for 10,000 messages

Table 6.1 illustrates the average one-way message latency for Inter-Processor
Communication (IPC) across different core configurations. The table presents
the main core, the remote core, the clock speed of the remote core, and the
observed average message latency in nanoseconds for 10,000 messages. This data
is crucial for understanding the performance and efficiency of IPC mechanisms
in multi-core embedded systems.
The latency values highlight the time taken for a message to travel from the

main core to the remote core and be acknowledged. For instance, the mes-
sage latency between the main core (r5f0-0) and a remote core running at 400
MHz (m4f0-0) is approximately 1490 nanoseconds. In contrast, communication
between cores running at 800 MHz (r5f0-0 to r5f0-1, r5f0-0 to r5f1-0, and r5f0-0
to r5f1-1) exhibits lower latencies, ranging from 707 to 848 nanoseconds. The
difference in latencies is due to the clock of the M4F0 0 Core as well as the
sequence in which the messages are sent to the cores, for instance, the message
is first sent to r5f0 1 core hence it shows the lowest latency.
Several factors, including core clock speeds and the synchronization mechan-

isms employed, influence the performance of IPC. In the current setup, sema-
phores are used to manage the synchronization between cores. The system waits
for IPC messages to be echoed back before sending new messages, contributing
to the observed latencies. This approach, while ensuring message integrity and
synchronization, introduces additional wait times, which can be optimized to
enhance performance.
Implementing a more efficient synchronization mechanism or reducing sema-

phore dependency could lower the IPC latency. For example, leveraging non-
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blocking synchronization techniques or optimizing semaphore handling can lead
to faster message exchanges. Furthermore, the current setup serves as a form
of stress test, demonstrating the system’s ability to handle high-frequency IPC
messages and maintain stability under load.

Synchronous Breakpoint performance

Figure 6.11: TMDS64EVM - Synchronous Breakpoint Performance

Figure 6.11 illustrates the output for the synchronous breakpoint mechanism
in a multi-core system, highlighting the latency involved in this process. The
graph shows the sequence of events across different cores (M4F0 0, R5F1 1,
R5F1 0, and R5F0 0), beginning from the initial breakpoint/watchpoint hit on
the R5F0 0 core. Upon hitting the breakpoint, the R5F0 0 core sends an IPC
notification to all other cores, initiating the synchronization process. The time
taken from the IPC interrupt reception to entering the breakpoint handler on
each core is measured in cycles, with R5F0 0 taking approximately 100 cycles
to halt the CPU, and other cores (R5F1 1, R5F1 0, and M4F0 0) taking around
180 to 200 cycles.
This sequence illustrates that the synchronous breakpoint latency is the sum

of the IPC latency and the latency for each core to enter its breakpoint hand-
ler. The IPC latencies, provided in Table 6.1, show the average one-way mes-
sage latency for IPC notify across different cores. The synchronous breakpoint
latency can be reduced by optimizing the IPC latency, as it is a significant
component of the total latency.
Compared to current synchronous breakpoint solutions available in the mar-

ket, such as those implemented with GDB or JTAG, this method offers unique
advantages and trade-offs. While the latency of the proposed method might
be higher as compared to multicore debugging through ARM - DStream or
the approach for debugging in a single session GDB presented in [34], it does
not require any additional hardware, leveraging the existing IPC mechanism in
multi-core, multi-processor systems. Also in [34], the latency of synchronous
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breakpoints is not mentioned but it will be a considerable amount as scripting
is done in the GDB session to send breakpoint commands to each core and is
dependent on the debugger as well. So leveraging the IPC reduces the over-
all cost and complexity, especially in production environments where external
debuggers are often removed. Another alternate solution is to have separate
JTAG port interfaces for each core, which adds to the additional complexity of
chip designing and cost as well [36, 23].
Furthermore, this method provides greater flexibility and additional capabil-

ities. For instance, during the breakpoint handlers, it is possible to read ETB
data or perform a core dump, actions that are typically not feasible with external
debuggers. External debuggers also tend to be expensive and are not always
practical for use in production systems. This synchronous breakpoint mechan-
ism thus provides a more integrated and cost-effective solution for debugging
in complex multi-core systems, enabling advanced diagnostics and debugging
capabilities directly within the system.

Breakpoints and Watchpoints performance

Latency is a critical metric in embedded systems debugging [35], reflecting the
time delay between the triggering of an event, such as hitting a breakpoint or
watchpoint, and the actual halting of the CPU. Measuring latency is essential
for understanding the performance impact of debugging tools on the system.
In this context, a latency test was conducted to compare the performance of
breakpoints and watchpoints implemented using the Debug Watchpoint and
Trace (DWT) unit and the Flash Patch and Breakpoint (FPB) unit against
those implemented via JTAG.

Figure 6.12: TMDS64EVM - Breakpoint and Watchpoint Performance

The timing diagram 6.12 illustrates the sequence of events and the correspond-
ing CPU cycles for both scenarios. The upper part of the diagram represents
the DWT/FPB unit, while the lower part depicts the JTAG unit. The proced-
ure involved setting a breakpoint and a watchpoint on a variable in the code
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and measuring the number of CPU cycles from the moment the breakpoint or
watchpoint is hit until the CPU is halted. This comparison involved observing
the performance using both the DWT/FPB units and the JTAG interface.
The CPU halts almost instantaneously when a breakpoint or watchpoint is

hit using the DWT/FPB unit. The average latency observed is consistent, with
minor variations of 1-2 CPU cycles. On the other hand, the latency using the
JTAG unit depends significantly on the speed of the JTAG interface. While the
performance is generally stable, it can vary depending on the JTAG speed and
system load.
The slight variation of 1-2 CPU cycles observed with the DWT/FPB units

is negligible and does not impact the actual performance of the code. This
variation could be attributed to minor differences in the internal handling of
debug events by the core, but these differences are minimal. The DWT and
FPB units are core-based, meaning their operation is tightly integrated with
the CPU’s execution flow, ensuring low-latency responses when breakpoints or
watchpoints are hit. In contrast, JTAG-based debugging involves an external
interface, where the communication speed between the JTAG probe and the core
can influence the latency. This dependency can introduce additional variability
in the latency measurements.
The latency tests demonstrate that using DWT and FPB units for breakpoints

and watchpoints provides reliable and low-latency performance, with only minor
variations that are negligible in practical scenarios. However, this does not
significantly affect the overall debugging performance, as the primary use of
these units is during the debugging phase rather than in the actual operational
phase of the embedded system.

Profiling Performance

When profiling using the DataWatchpoint and Trace (DWT) unit’s cycle counter
on the Cortex-M4, it was observed that the cycle count obtained from the DWT
counter is, on average, 20 cycles higher than the count reported by the JTAG de-
bugger. Given a 400 MHz clock speed, this difference translates to an overhead
of merely 50 nanoseconds, which is negligible in most practical scenarios.
This slight discrepancy can be attributed to the method used to read the

DWT counter in the code. Specifically, the process of storing the start and end
values of the DWT counter involves additional instructions, which introduce
extra cycles. These instructions are necessary for capturing the counter values
but contribute to the observed overhead.
Despite this minor overhead, the impact on the overall system performance is

minimal. The DWT unit operates within the core and provides a highly efficient
means of profiling, with the introduced overhead being practically insignificant
for most real-time applications.

PMU Performance

The Performance Monitoring Unit (PMU) in the R5 processor core exhibits
significantly faster cycle counting performance compared to the cycle counter
available through the JTAG debugger. Specifically, the PMU counter records
around 1000 fewer cycles for the same operations, running at a clock speed of
800 MHz for the R5 core.
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This observed difference, despite the PMU’s implementation of start and stop
functions, can be attributed to several factors. The PMU is hardware-embedded
and operates at the core level i.e. it accesses the co-processor registers, enabling
it to capture performance metrics with minimal latency and overhead. In con-
trast, the JTAG cycle counter relies on external interfacing and communication
protocols as it doesn’t have direct access to co-processor registers, introducing
additional delays that contribute to the higher cycle count. The efficiency of
the PMU allows it to monitor performance metrics more precisely and quickly.
Also, the overhead of PMU is 0, hence PMU is a non-invasive debug compon-

ent that doesn’t affect the CPU performance which is also mentioned in Ninja-
a tool for malware analysis using trace features [45].
Beyond basic cycle counting, the PMU offers extensive event-tracking capab-

ilities that provide deeper insights into system performance. These include:

• Instruction Cache Miss (ICACHE Miss): Tracks the number of instruc-
tion cache misses, providing data crucial for optimizing instruction fetch
operations.

• Data Cache Miss (DCACHE Miss): Monitors the number of data cache
misses, which is essential for improving data access efficiency.

• Branch Mispredictions: Counts instances where the CPU’s branch predic-
tion mechanism fails, helping to fine-tune branch handling strategies.

• Load/Store Unit Stalls: Records stalls in the load/store unit, identifying
bottlenecks in-memory operations.

• Pipeline Stalls: Tracks stalls in the instruction pipeline, offering insights
into potential areas for pipeline optimization.

These capabilities extend far beyond what is typically available through JTAG,
which primarily offers basic cycle counting and limited debug functionalities.
The PMU’s detailed event tracking is invaluable for performance tuning and
optimization, providing a comprehensive view of the system’s operational effi-
ciency.

ETB Performance

The Embedded Trace Buffer (ETB) is an essential feature for capturing de-
tailed execution traces in embedded systems, providing significant insights for
debugging and performance optimization. While the overhead introduced by
the ETB is minimal (0 extra cycles), a comprehensive evaluation has not been
extensively performed due to the complexity involved in scripting and decoding
the compressed Embedded Trace Macrocell (ETM) data.
In typical usage, the ETB captures trace data with negligible impact on sys-

tem performance because it’s aided by hardware. This minimal overhead is a
considerable advantage, allowing continuous monitoring of the system without
significantly affecting its operation. However, the actual overhead may include
factors such as increased power consumption and potential latency introduced by
the trace compression and buffering mechanisms. These factors, while present,
are generally outweighed by the substantial benefits provided by the ETB.
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Moreover, the performance results after enabling the ETM match with the ex-
periment results of a Tracing tool, Ninja [45] which mentions that the overhead
introduced by ETM is less than 0.1%. Hence ETM is also a non-invasive debug
feature.

The benefits of using the ETB are manifold. It enables developers to capture
detailed execution traces, which are invaluable for post-mortem analysis in case
of system crashes or unexpected behavior. This trace data can help identify
the root causes of issues, understand the sequence of executed instructions, and
develop more effective corrective measures.

Although the ETB doesn’t support real-time analysis of traces like the ARM
D-Stream debugger, which costs around 3000 euros and requires extra trace
pins for sending out trace data, it remains highly valuable in certain scenarios.
The ETB has a limited capacity based on the size of the allocated buffer, but
it is extremely useful when a debugger can’t be used, such as in production
environments. It can be utilized for post-mortem analysis using the same ETM
trace stored. Additionally, the ETB supports a variety of use cases, including
the relocation of trace data to DDR and off-chip export over USB, enhancing
its utility beyond immediate debugging needs.

MTB Performance

When profiling a known function with the MTB enabled, it was observed that
the function executed with zero additional cycles compared to when the MTB
was disabled. This indicates that the overhead of using the MTB for profiling
is effectively zero because it’s aided by hardware and hence tracing is handled
by the processor itself.

The absence of overhead is a significant advantage, as it ensures that the
tracing does not interfere with the normal execution of the code. This charac-
teristic is particularly beneficial for real-time systems where maintaining precise
timing and performance is crucial. By enabling the MTB, developers can cap-
ture detailed execution traces without affecting the system’s behavior, thereby
obtaining accurate performance data.

Storing and reading MTB data can be immensely useful for post-mortem
analysis. In the event of a system crash or unexpected behavior, the trace data
stored in the MTB can provide a detailed record of the instructions executed
leading up to the event. This information can help developers identify the root
cause of the issue, understand the sequence of events, and implement corrective
measures. The ability to perform such detailed analysis without introducing
runtime overhead makes the MTB an indispensable tool for debugging and
optimizing embedded systems.

A known Function takes 0 extra cycles when executing with Micro Trace
Buffer enabled. Hence the overhead of MTB is 0, therefore MTB is another
non-invasive debug feature.

6.2.1 Memory Footprint

The images present memory usage snapshots for the R5 and M4 cores, both
with and without the embedded software debug library included. These snap-
shots provide insights into how the debug library impacts the memory footprint.
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Each image details the memory sections and their usage, highlighting important
segments like .text, .data, .bss, and stack memory.
Measuring the size of the software debug library is crucial as it impacts the

overall memory footprint of the application. This, in turn, affects the perform-
ance and resource utilization of the system. In resource-constrained environ-
ments, efficient memory usage is critical to ensure that there is sufficient space
for both application code and debug functionalities without exceeding the avail-
able memory.

Figure 6.13: TMDS64EVM - M4 Memory Allocation without Debug
Library

Figure 6.14: TMDS64EVM - M4 Memory Allocation with Debug Lib-
rary

Figure 6.15: TMDS64EVM - R5 Memory Allocation without Debug
Library
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Figure 6.16: TMDS64EVM - R5 Memory Allocation with Debug Lib-
rary

text data bss dec filename
815 0 0 815 SetWatchpoint.o (ex libemdebug.a)
472 0 0 472 Profiling.o (ex libemdebug.a)
244 0 0 244 HwBreakpointArmR5.o (ex libemdebug.a)
570 0 0 570 HwBreakpoint.o (ex libemdebug.a)
228 0 0 228 Mtb.o (ex libemdebug.a)
2,195 0 3,340 5535 Pmu.o (ex libemdebug.a)
336 0 0 336 ArmR5Pmu.o (ex libemdebug.a)
396 0 0 396 Debug Register R5.o (ex libemdebug.a)
268 0 0 268 HwWatchpointArmR5.o (ex libemdebug.a)
1,172 8 0 1180 etb.o (ex libemdebug.a)

Table 6.2: Sizes of the Embedded Debug Library Components in Bytes

The table 6.2 presents the size of various components of the embedded debug
library, with each component’s text, data, bss, and dec values listed. Analyz-
ing the results, it can be observed that the total size of the library is relat-
ively compact, indicating its efficiency. For the R5 cores, key components in-
clude SetWatchpoint.o (815 bytes), HwBreakpointArmR5.o (244 bytes), Pmu.o
(5535 bytes), ArmR5Pmu.o (336 bytes), Debug Register R5.o (396 bytes), and
HwWatchpointArmR5.o (268 bytes). The M cores utilize components like Pro-
filing.o (472 bytes), HwBreakpoint.o (570 bytes), Mtb.o (228 bytes), and etb.o
(1180 bytes).

The results demonstrate that the PMU component for the R5 cores is the
largest, primarily due to its extensive functionality in performance measure-
ment and its access to many co-processor registers. On the other hand, com-
ponents such as HwBreakpointArmR5.o and HwWatchpointArmR5.o are not-
ably smaller, reflecting their specialized but limited scope. For the M cores, the
components exhibit a balanced distribution in size, with none exceeding 1180
bytes.

Most of the code runs in SRAM in R5 and DRAM in M4, so the latencies and
size can be further reduced if the code base is set to TCM in R5 and SRAM in
M4. Additionally, as this library is a proof of concept, there is significant po-
tential for optimization. Through code refinement and efficiency improvements,
the library size can be further reduced, enhancing its suitability for resource-
constrained environments.

Since no software debug framework is available for ARM Cores, comparing it
with the Software-driven Debug Framework for RISC-V [37] which utilizes one
external interrupt, and 1.04KB of memory covering only stop interrupt and de-
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bug handler, this library maintains a competitive edge in terms of size, features
and efficiency. Also, other frameworks like the OpenOCD project [24] exhibit
larger footprints due to their extensive feature sets and broad compatibility re-
quirements. By focusing on core debugging functionalities and maintaining a
streamlined codebase, this library offers a lightweight alternative suitable for
embedded systems where memory and performance are critical considerations.
Also, debugging tools performing the same tasks can range anywhere between

€2900 to $17900 [18]. Whereas, the library is independent of any hardware tool
and is relatively simple with a minimum learning curve.

Figure 6.17: Memory Footprint with and without Debug Library Com-
ponents on various Cores

The bar graph 6.17 illustrates the increase in memory footprint when the
debug library components are included for various cores. The code sizes in the
RAM are of the base codes explained in previous chapters. The inclusion of
the debug library demonstrates a minimal increase in memory usage, showcas-
ing its efficiency and low overhead as well as the flexibility to choose different
components for different Cores as per the requirements.

6.3 Use Cases

The embedded software debug library offers a range of functionalities that go
beyond the capabilities of traditional JTAG debuggers. These additional fea-
tures provide critical advantages in both development and production environ-
ments, particularly where JTAG is not available. Here are some key use cases:

Watchpoints and Breakpoints in Non-RAM Regions:

Most JTAG debuggers can only set breakpoints and watchpoints in RAM. How-
ever, this library allows setting watchpoints and breakpoints in other memory
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regions, including Flash and peripheral registers, enabling more comprehensive
debugging.

Synchronous Breakpoints:

The library supports synchronous breakpoints across multiple cores without
requiring additional hardware. This is especially useful for debugging multicore
systems where coordinated halts are necessary. Unlike JTAG-based solutions,
this can be done without external dependencies.

Post-Mortem Analysis Using ETB:

When a fault occurs, the ETB can transfer trace data to DDR. This data can be
analyzed later to understand the sequence of events leading to the fault. This
capability is crucial in production environments where JTAG is not available,
allowing for effective debugging and issue resolution after the fact, particularly
with bugs that are non-deterministic and difficult to reproduce

Profiling and Performance Analysis:

Using the DWT and PMU, the library provides detailed profiling and perform-
ance analysis, including cycle counts and cache misses. This level of detail
is not typically available with standard JTAG debuggers and is invaluable for
optimizing performance and identifying bottlenecks.

Comprehensive ETM Trace:

The ETM trace provides insights into various complex issues that can be difficult
to diagnose otherwise [10]. These include:

• Pointer Problems: Identifying invalid pointer dereferences.

• Illegal Instructions and Data Aborts: Tracing how the system reaches
fault vectors due to misaligned writes or invalid operations.

• Code Overwrites: Detecting unexpected writes to Flash or peripheral re-
gisters.

• Corrupted Stacks and Out of Bounds Data: Diagnosing stack corruption
and buffer overflows.

• Uninitialized Variables and Arrays: Identifying the use of uninitialized
memory.

• Stack Overflows: Analyzing the causes of stack growth beyond expected
limits.

• System Timing Problems: Understanding timing issues within the system.

• Profile Analysis and Code Coverage: Obtaining detailed execution profiles
and code coverage metrics, is essential for thorough testing and validation.
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Production-Ready Debugging:

In production environments, the library’s ability to operate without JTAG
makes it indispensable. Features such as transferring ETB data to non-volatile
memory upon faults ensure that debugging information is preserved and can be
analyzed post-mortem, facilitating robust fault analysis and system reliability.

Versatile Integration:

The library can be used with various debugging tools and interfaces:

• GDB Integration: It can be used with GDB through Python scripting,
allowing for powerful and customizable debugging workflows.

• JTAG Support: While it extends beyond the limitations of JTAG, it is
still compatible with JTAG for environments where JTAG is available.

• Command Line Interface: The library can be operated via command line,
providing a flexible and scriptable interface for debugging tasks.

• Independent Operation: It can function independently, making it suitable
for embedded systems that do not have access to external debugging tools.

By providing these advanced debugging capabilities, the embedded software
debug library not only enhances the development process but also ensures that
systems can be effectively monitored and debugged in production, leading to
higher reliability and performance.
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Chapter 7

Conclusions

The development of an embedded debugging and profiling library for ARM-
based systems presented in this thesis marks a meaningful contribution to the
field of embedded system diagnostics. This library addresses critical challenges
in debugging multicore and multiprocessor environments, particularly in scen-
arios where traditional hardware-based debugging tools are inadequate. The
primary objective was to design and implement a versatile, software-only de-
bugging library tailored for ARM-based multicore and multiprocessor SoCs.
This goal was successfully achieved by leveraging ARM’s built-in Trace Infra-
structure and debug registers, enabling detailed observation and control over
system operations without the need for external hardware.
The library was meticulously designed to be hardware-agnostic, supporting a

wide array of ARM processors including the ARM R5, M4, and M33 series. It is
also easily extendable to other ARMv7 and ARMv8 series processors, ensuring
its future-proofing against the rapid evolution of processor technologies.
In terms of performance, the library was optimized to introduce minimal over-

head and maintain low latency, making it suitable for use in real-time embedded
systems where performance is paramount. This objective was validated through
comprehensive testing and analysis against existing hardware-based debugging
methods. The results demonstrated the library’s capability to provide detailed
performance measurements, profiling, hardware breakpoints and watchpoints,
synchronous breakpoints, and inter-processor communication.
The integration of Embedded Trace Macrocell (ETM) and Micro Trace Buf-

fer (MTB) within the library enriches its ability to capture and analyze trace
data, facilitating thorough system analysis and post-mortem diagnostics. This
advanced feature set aids in design decisions, bottleneck identification, and per-
formance optimization, ultimately enhancing the overall reliability and efficiency
of embedded systems.
While the current scope of the library is limited to ARM7 and ARM8 pro-

cessors, with testing primarily conducted on R5, M4, and M33 cores, the ground-
work has been laid for future expansions. Potential future work includes extend-
ing support to other processor architectures like RISC-V, implementing step-
through debugging, and enhancing CLI and GDB scripting capabilities. Devel-
oping automated testing frameworks and real-time trace analysis tools would
further improve the robustness and efficiency of the library.
In conclusion, this thesis successfully fulfills its objectives by delivering a
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versatile, efficient, and comprehensive software library for embedded system
debugging. It stands as a significant contribution to the field, offering prac-
tical solutions for scenarios where traditional hardware-based debugging tools
fall short. This library represents a crucial step forward in providing robust
debugging capabilities for high-performance real-time embedded systems.
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Chapter 8

Limitations and Future
Work

This chapter delves into the limitations of the current implementation of the
embedded software debugging library and proposes recommendations for future
work. The objective is to provide a comprehensive overview of the challenges
encountered and potential enhancements that could significantly improve the
functionality, performance, and versatility of the library. By addressing these
limitations and incorporating the recommended future work, the embedded soft-
ware debugging library can be further optimized to meet the diverse needs of
modern embedded systems, ensuring robust and efficient debugging across vari-
ous platforms and applications. This chapter aims to guide future developments
and innovations that will extend the library’s capabilities and application scope.

8.1 Dedicated memory for ETB and MTB:

One significant limitation of the library is the handling of ETB (Embedded Trace
Buffer) and MTB (Micro Trace Buffer) traces. These traces are not decoded
in real-time, necessitating dedicated memory space within the design to store
them. Since ETB and MTB are stored on hardware, they require dedicated trace
buffers, and the size of these buffers is limited. Consequently, only recent traces
can be stored, which might not capture the entire execution history needed
for comprehensive analysis. The extraction and post-mortem analysis of these
buffers are crucial but add complexity and delay to the debugging process.
However, the ETB supports the relocation of trace data to DDR and off-chip
export over USB, enhancing its utility beyond immediate debugging needs.

8.2 Limited Scope and Testing:

• Current Scope: The library is designed for ARM 7 and ARM 8 processors,
specifically targeting ARM Cortex-R5, Cortex-M4, and Cortex-M33 cores.

• Proof of Concept: Presently, the library operates as a proof of concept.
Extensive testing and validation have been conducted only on the afore-
mentioned cores.
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• Future Work: To broaden its scope, the library should be tested on a
wider range of ARM processors. Automated testing frameworks should be
developed and implemented to ensure consistent validation across various
hardware platforms.

8.3 Step-Through Debugging :

• Current Limitation: The library does not yet support step-through de-
bugging, a critical feature for detailed code analysis and debugging.

• Future Work: Implementing step-through debugging will enhance the lib-
rary’s usability by allowing developers to inspect code execution line-by-
line. This feature would significantly aid in identifying and resolving bugs
more efficiently.

8.4 Expansion to RISC-V Processors:

• Current Limitation: The library is currently limited to ARM architecture.

• Future Work: Expanding the library to support RISC-V processors would
increase its applicability and adoption as done in [37]. Given the grow-
ing popularity of RISC-V, integrating support for this architecture would
future-proof the library and broaden its user base.

8.5 ETB and MTB Trace Decoding:

• Current Limitation: The library collects Embedded Trace Buffer (ETB)
and Micro Trace Buffer (MTB) data but does not decode these traces in
real time. This necessitates additional memory space for storing traces,
which are then extracted and analyzed later.

• Future Work: Implementing real-time decoding of ETB and MTB traces
would enhance the library’s efficiency and reduce the memory footprint us-
ing scripts as mentioned in [8]. This improvement would allow immediate
analysis and debugging, streamlining the debugging process.

8.6 CLI, GUI and GDB Scripting:

• Current Limitation: Command Line Interface (CLI) or Graphic User In-
terface (GUI) such as in [56]and scripting for GDB are not yet implemen-
ted, limiting the flexibility and automation capabilities of the library.

• Future Work: Developing a robust CLI and integrating scripting support
for GDB would provide users with powerful tools for automated debugging
and custom script execution. This enhancement would make the library
more versatile and user-friendly, particularly for advanced debugging scen-
arios.
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[24] Hubert Högl, Dominic Rath, Hubert Hoegl@fh-Augsburg, Dominic De,
Fachhochschule De, and Augsburg. Open on-chip debugger–openocd–. 01
2007.

[25] Microchip Technology Inc. Sam d5x/e5x family data sheet, 2017.

[26] Microchip Technology Inc. Adafruit grand central m4 dia-
gram, 2022. https://www.microchip.com/en-us/products/

microcontrollers-and-microprocessors/32-bit-mcus/

sam-32-bit-mcus/sam-e/_jcr_content/root/responsivegrid/

container_2034953330_60347119/image.coreimg.jpeg/

1646110556056/170619-mc32-diag-samd-e5x-7x5-no-title.jpeg.

[27] Texas Instruments. Am64x datasheet, 2023. https://www.ti.com/lit/

gpn/am6442.

96

https://www.renesas.com/us/en/document/dst/da1469x-datasheet?r=1606281
https://www.renesas.com/us/en/document/dst/da1469x-datasheet?r=1606281
https://www.renesas.com/us/en/products/wireless-connectivity/bluetooth-low-energy/da14695-00hqdevkt-u-smartbond-da14695-bluetooth-low-energy-52-usb-development-kit
https://www.renesas.com/us/en/products/wireless-connectivity/bluetooth-low-energy/da14695-00hqdevkt-u-smartbond-da14695-bluetooth-low-energy-52-usb-development-kit
https://www.renesas.com/us/en/products/wireless-connectivity/bluetooth-low-energy/da14695-00hqdevkt-u-smartbond-da14695-bluetooth-low-energy-52-usb-development-kit
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-e/_jcr_content/root/responsivegrid/container_2034953330_60347119/image.coreimg.jpeg/1646110556056/170619-mc32-diag-samd-e5x-7x5-no-title.jpeg
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-e/_jcr_content/root/responsivegrid/container_2034953330_60347119/image.coreimg.jpeg/1646110556056/170619-mc32-diag-samd-e5x-7x5-no-title.jpeg
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-e/_jcr_content/root/responsivegrid/container_2034953330_60347119/image.coreimg.jpeg/1646110556056/170619-mc32-diag-samd-e5x-7x5-no-title.jpeg
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-e/_jcr_content/root/responsivegrid/container_2034953330_60347119/image.coreimg.jpeg/1646110556056/170619-mc32-diag-samd-e5x-7x5-no-title.jpeg
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-e/_jcr_content/root/responsivegrid/container_2034953330_60347119/image.coreimg.jpeg/1646110556056/170619-mc32-diag-samd-e5x-7x5-no-title.jpeg
https://www.ti.com/lit/gpn/am6442
https://www.ti.com/lit/gpn/am6442


[28] Texas Instruments. Tmds64evm overview, 2023. https://www.ti.com/

tool/TMDS64EVM.

[29] Texas Instruments. Tmds64evm sdk, 2023.

[30] Texas Instruments. Tmds64evm technical reference manual, 2023. https:
//www.ti.com/lit/pdf/spruim2.

[31] Chengyan Jiang and Siyuan Wu. Design of a general embedded software
debug system. In 2010 2nd International Conference on Computer Engin-
eering and Technology, volume 3, pages V3–467–V3–470, 2010.

[32] Myoungsoo Jung, Jie Zhang, Ahmed Abulila, Miryeong Kwon, Narges
Shahidi, John Shalf, Nam Sung Kim, and Mahmut Kandemir. SimpleSSD:
Modeling Solid State Drives for Holistic System Simulation. IEEE Com-
puter Architecture Letters, 17(1):37–41, 1 2018.

[33] Karl UC Koscher San Diego, Tadayoshi Kohno, and David Molnar Mi-
crosoft. SURROGATES: Enabling Near-Real-Time Dynamic Analyses of
Embedded Systems. Technical report.

[34] Santosh Kumar, GP Potdar, Pravin Game, Pict Pune, and GS Lab Pune.
APPROACH FOR DEBUGGING IN A SINGLE SESSION GDB. Tech-
nical report.

[35] J. Langer, K. Koppenberger, C. Sulzbachner, and T. Nestler. Debug-tool
for embedded real time systems. In EUROCON 2005 - The International
Conference on ”Computer as a Tool”, volume 1, pages 599–602, 2005.

[36] R. Leatherman and N. Stollon. An embedding debugging architecture for
socs. IEEE Potentials, 24(1):12–16, 2005.

[37] Jimin Lee, Jae Min Kim, Junho Huh, and Jungwoo Kim. Software-driven
Debug Framework for Embedded RISC-V, that Transparently Emulates
the Industry Standard Debug Framework. In Digest of Technical Papers
- IEEE International Conference on Consumer Electronics, volume 2023-
January. Institute of Electrical and Electronics Engineers Inc., 2023.

[38] ARM Ltd. Arm cortex-m33 technical reference manual, 2023. https:

//developer.arm.com/documentation/100230/0100.

[39] ARM Ltd. Arm cortex-m4 technical reference manual, 2023. https://

developer.arm.com/documentation/100166/0001/.

[40] ARM Ltd. Arm cortex-r5 technical reference manual, 2023. https://

developer.arm.com/documentation/ddi0460/d/.

[41] ARM Ltd. Armv7 technical reference manual, 2023. https://developer.
arm.com/documentation/ddi0406/cd/.

[42] Peter Magnusson and Bengt Werner. Efficient Memory Simulation in SIM-
ICS. Technical report.

[43] Zhenyu Ning, Chenxu Wang, Yinhua Chen, Fengwei Zhang, and Jiannong
Cao. Revisiting ARM Debugging Features: Nailgun and its Defense. IEEE
Transactions on Dependable and Secure Computing, 20(1):574–589, 1 2023.

97

https://www.ti.com/tool/TMDS64EVM
https://www.ti.com/tool/TMDS64EVM
https://www.ti.com/lit/pdf/spruim2
https://www.ti.com/lit/pdf/spruim2
https://developer.arm.com/documentation/100230/0100
https://developer.arm.com/documentation/100230/0100
https://developer.arm.com/documentation/100166/0001/
https://developer.arm.com/documentation/100166/0001/
https://developer.arm.com/documentation/ddi0460/d/
https://developer.arm.com/documentation/ddi0460/d/
https://developer.arm.com/documentation/ddi0406/cd/
https://developer.arm.com/documentation/ddi0406/cd/


[44] Zhenyu Ning and Fengwei Zhang. Understanding the Security of ARM
Debugging Features. Technical report.

[45] Zhenyu Ning and Fengwei Zhang. Hardware-assisted transparent tracing
and debugging on arm. IEEE Transactions on Information Forensics and
Security, 14(6):1595–1609, 2019.

[46] NXP Semiconductors. Micro Trace Buffer, 2021. https://community.

nxp.com/pwmxy87654/attachments/pwmxy87654/kinetis%40tkb/752/

1/Micro%20trace%20buffer.pdf.

[47] Hyeongbae Park, Jingzhe Xu, Jeong-Hoon Ji, Jusung Park, and Gyun Woo.
Design methodology for on-chip-based processor debugger. Design Auto-
mation for Embedded Systems, 19, 04 2014.

[48] M. Pena-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y. Mor-
illa, and P. Martin-Holgado. Online error detection through trace infra-
structure in ARM microprocessors. IEEE Transactions on Nuclear Science,
66(7):1457–1464, 7 2019.

[49] Vasiliy Pinkevich and Alexey Platunov. Method for testing and debugging
flow formal specification in full-stack embedded systems designs. In 2020
9th Mediterranean Conference on Embedded Computing (MECO), pages
1–4, 2020.

[50] M Krish Ponamgi, Wenwey Hseush, and Gail E Kaiser. Debugging Multi-
threaded Programs with MPD. Technical report.

[51] Y T Poornima, Suresh Reddy Kalathuru, and Prerana Gupta Poddar. Mail-
box based inter-processor communication in soc. In 2017 2nd IEEE Inter-
national Conference on Recent Trends in Electronics, Information Com-
munication Technology (RTEICT), pages 1033–1037, 2017.

[52] Mondipalle Prathyusha and C.V. Ravi Kumar. A survey paper on debug-
ging tools and frameworks for debugging real time industrial problems and
scenerios. In 2019 International Conference on Vision Towards Emerging
Trends in Communication and Networking (ViTECoN), pages 1–4, 2019.

[53] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and soft-
ware design methodology for embedded systems. IEEE Design Test of
Computers, 18(6):23–33, 2001.

[54] Bhanu Singh and Sharath Patil. Single wire debug interface. In 2020 IEEE
63rd International Midwest Symposium on Circuits and Systems (MWS-
CAS), pages 814–817, 2020.

[55] Aaron Spear, Markus Levy, and Mathieu Desnoyers. Using tracing to solve
the multicore system debug problem. Computer, 45(12):60–64, 2012.

[56] Alan P Su, Jiff Kuo, Kuen-Jong Lee, Ing-Jer Huang, Guo-An Jian, Cheng-
An Chien, Jiun-In Guo, and Chien-Hung Chen. Multi-core software/hard-
ware co-debug platform with arm coresight™, on-chip test architecture and
axi/ahb bus monitor. In Proceedings of 2011 International Symposium on
VLSI Design, Automation and Test, pages 1–6, 2011.

98

https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/kinetis%40tkb/752/1/Micro%20trace%20buffer.pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/kinetis%40tkb/752/1/Micro%20trace%20buffer.pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/kinetis%40tkb/752/1/Micro%20trace%20buffer.pdf


[57] G. Tanyeri, T. Messiter, and Paul Beckett. Framework-based debugging
for embedded systems. pages 424–454, 01 2014.

[58] Texas Instruments. IPC Architecture, 2021. https://software-dl.ti.

com/processor-sdk-rtos/esd/docs/latest/rtos/index_device_drv.

html.

[59] Bart Vermeulen. Functional Debug Techniques for Embedded Systems.
Technical report.

[60] Bart Vermeulen and Kees Goossens. A network-on-chip monitoring in-
frastructure for communication-centric debug of embedded multi-processor
socs. In 2009 International Symposium on VLSI Design, Automation and
Test, pages 183–186, 2009.

[61] Matthew Edwin Weingarten, Nora Hossle, and Timothy Roscoe. High
throughput hardware accelerated coresight trace decoding. In 2024 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 1–6,
2024.

[62] Michael Williams. ARMV8 DEBUG AND TRACE ARCHITECTURES.
Technical report, 2012.

[63] Jin Xue, Renhai Chen, and Zili Shao. SoftSSD: Software-defined SSD De-
velopment Platform for Rapid Flash Firmware Prototyping. In Proceedings
- IEEE International Conference on Computer Design: VLSI in Computers
and Processors, volume 2022-October, pages 602–609. Institute of Electrical
and Electronics Engineers Inc., 2022.

[64] Baek Youngsik’) and Jin Sungil. IEEE TENCON ’93 / Bcijnn SOFTWARE
ABORT AND MULTIPROCESSOR DEBUGGING. Technical report.

[65] Seyed Mohammad Ali Zeinolabedin, Johannes Partzsch, and Christian
Mayr. Real-Time Hardware Implementation of ARM CoreSight Trace De-
coder. IEEE Design and Test, 38(1):69–77, 2 2021.

[66] Fengwei Zhang, Kevin Leach, Angelos Stavrou, Haining Wang, and Kun
Sun. Using hardware features for increased debugging transparency. In
Proceedings - IEEE Symposium on Security and Privacy, volume 2015-
July, pages 55–69. Institute of Electrical and Electronics Engineers Inc., 7
2015.

[67] Feng Zhu and Yiping Yao. A bug locating method for the debugging of par-
allel discrete event simulation. In Proceedings - 2012 ACM/IEEE/SCS 26th
Workshop on Principles of Advanced and Distributed Simulation, PADS
2012, pages 81–83, 2012.

99

https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_device_drv.html
https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_device_drv.html
https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_device_drv.html


100



Chapter 9

List of Abbreviations

Abbreviation Full Form
ADC Analog-to-Digital Converter
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
ARM Advanced RISC Machine
AXI Advanced eXtensible Interface
BP Breakpoint
CPU Central Processing Unit
DRAM Dynamic Random-Access Memory
DWT Data Watchpoint and Trace
ETB Embedded Trace Buffer
ETM Embedded Trace Macrocell
FPB Flash Patch and Breakpoint
GDB GNU Debugger
GPIO General-Purpose Input/Output
HW Hardware
IPC Inter-Processor Communication
IRAM Instruction Random-Access Memory
ITM Instrumentation Trace Macrocell
JTAG Joint Test Action Group
MTB Micro Trace Buffer
PMU Performance Measurement Unit
ROM Read-Only Memory
SRAM Static Random-Access Memory
SWD Serial Wire Debug
TCM Tightly Coupled Memory
TPIU Trace Port Interface Unit
TRM Technical Reference Manual
UART Universal Asynchronous Receiver-Transmitter

Table 9.1: List of Abbreviations
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