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ARTICLE INFO ABSTRACT

Keywords: Nitrogen (N) is crucial for crop and ecosystem health in agricultural settings. Traditional remote sensing (RS)
Agricultural monitoring methods, using regression models and indices like NDVI, face challenges in transferability across time and
N'itmge“ content space. This study aims to enhance in-season N concentration assessment by integrating RS data with a hybrid
Ylelfi . . approach, combining the PROSPECT-PRO and 4SAIL models to create PROSAIL-PRO. This Radiative Transfer
i:;c(l)l;;rf transfer modeling Model (RTM) excels in parsing leaf protein, crucial for accurate crop N content estimation. PROSAIL-PRO forms

Gaussian processes the basis for a robust learning database, guiding the training of Gaussian Process Regression (GPR) models—

Sentinel-2 Bayesian-based machine learning known for precision and insights into uncertainties. The Gezira irrigation
scheme in Sudan serves as a case study. Using Sentinel-2 bands, this research informs agricultural resource
management and assesses crop health in the scheme. Fertilizer application data and yield records drawn from
three farms within the Gezira scheme to form the basis for validation. Wheat, the primary crop in this context,
experienced varying fertilizer application scenarios across these farms during the 2021-22 cropping season
resulting in varying yields. Similar results were found in the crop N content and biomass estimation. GPR
models, trained on PROSAIL-PRO, effectively predict above ground N content and biomass. Validation against
field records shows promising outcomes, with GPR models exhibiting an RMSE of 7.9 kg/ha for N content and
0.54 tonnes/ha for yield estimation. Moreover, the model’s spatiotemporal scalability was assessed, showing an
RMSE of 1.01 tonnes/ha at the Nimra level and 1.6 tonnes/ha at the farm level, highlighting the applicability of
this approach to larger areas. A significant correlation (0.7) was found between estimated N concentration and
actual recorded yield at the field level, further corroborated by an 0.83 correlation at the Nimra level. These
results emphasize the robustness of this hybrid modeling approach, particularly in linking nitrogen dynamics to
primary productivity, as evidenced by stronger correlations between NPP and nitrogen content than between
N content and fAPAR. This study therefore highlights the benefits of adoption hybrid modeling, based on
PROSAIL-PRO, in global agricultural monitoring. The synergy found between remote sensing, radiative transfer
modeling, and real-world dynamics promises a sustainable future for agriculture applications.

1. Introduction sustain food security persists as a critical endeavor for both present and
future generations (Safi et al., 2022).

The challenge of ensuring food security is becoming increasingly Agriculture serves as the fundamental backbone of human existence
pressing due to rising demands for food and freshwater supplies, along- and exerts considerable influence on economic dynamics (Ennouri
side the backdrop of climate variability and change. This interdepen- and Kallel, 2019). Consequently, it becomes paramount to carefully
dence between water resources and food security has been underscored track the state of crops throughout their developmental stages. This
by the Food and Agricultural Organization of the United Nations (FAO), involves evaluating a spectrum of factors including nutritional param-
recognizing that actions taken in one domain can profoundly affect the eters, soil moisture content, plant vigor, and susceptibility to stressors
other. Such efforts are vital for enhancing human well-being, alleviat- stemming from both abiotic (e.g., humidity, temperature) and biotic
ing poverty, and fostering sustainable development (FAO, 2014). Thus, (e.g., pests and diseases) sources (Ennouri and Kallel, 2019). Any depar-
the imperative to continuously enhance water and land productivity to ture from the optimal parameters during each growth phase can have
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adverse effects on crop development, leading to reduced production
and productivity.

Nitrogen (N) holds pivotal significance in agriculture, being indis-
pensable for the well-being of plants, animals, and soil ecosystems.
Within the soil, nitrogen exists in diverse forms, undergoing frequent
transformations from one form to another (Science of Agriculture,
2017). N deficiency can exert a substantial impact on various aspects
of plant physiology, including leaf chlorophyll content and photo-
synthesis rate, thereby influencing plant development and ultimately
reducing biomass production (Mu and Chen, 2021). The decline in leaf
photosynthesis rate attributed to N deficiency primarily stems from
decreased stomatal conductance, rather than a diminished capacity for
carboxylation within the leaf structure (Zhao et al., 2005).

Precision agriculture (PA) stands out for its emphasis on augmenting
farmers’ comprehension of their fields and crops, offering substan-
tial benefits in terms of heightened productivity and optimized input
employment (Gebbers and Adamchuk, 2010). Complementing PA, Vari-
able Rate Technology (VRT) plays a pivotal role by enabling the tar-
geted application of farm inputs, such as fertilizer and water, at varying
rates across the field, guided by site-specific data (He, 2022). Further
refining this approach, Variable Rate Fertilization (VRF) emerges as
an advanced PA technique, leveraging embedded high-speed comput-
ers, remote sensing (RS) technologies, Geographic Information Sys-
tems (GIS), precise Global Positioning System (GPS) receivers, soil
maps, alongside real-time crop characteristics measurement and predic-
tion capabilities through electronic sensors and actuators (Schumann,
2010). VRF methodologies harbor the potential to augment fertilizer
use efficiency, mitigate environmental impacts, and refine both crop
quality and yield outcomes (Gao and Li, 2022).

Remote sensing (RS) products have a critical role in the develop-
ment of decision support tools for PA and VRF, employing sophisticated
sensor and analysis tools to enhance crop yields and facilitate man-
agement decisions (Singh et al., 2020). Recent advancements have
seen the integration of PA technologies based on RS into commercial
farming practices (Sishodia et al., 2020). The integration of VRF with
prescription maps is recognized as a promising strategy for achieving
targeted top-dressing fertilization, thereby enhancing nitrogen appli-
cation efficiency (Basso et al., 2016). To facilitate this, variable rate
maps can be generated by leveraging various thematic layers as inputs
for classical or unsupervised clustering algorithms, thereby delineating
site-specific management zones (Fridgen et al., 2003).

RS techniques offer a versatile means to estimate various parame-
ters, ranging in complexity, which serve as indicators of the nitrogen
status of crops. N content in plants often exhibits correlations with
wavelengths similar to those of chlorophyll (Chl) (Rubo and Zinker-
nagel, 2022). Notably, as water content decreases, reflectance tends
to increase, with significant information regarding water content being
encoded in key wavelengths such as 1450, 1940, and 2500 nm (Jacque-
moud and Ustin, 2019). The significant absorption resulting from water
in the reflectance spectra of fresh leaves can obscure the relatively
weaker absorption associated with plant biochemical components, such
as nitrogen absorption features (Kokaly, 2001).

Many models have been developed to simulate the propagation of
electromagnetic radiation through both the atmosphere and vegetation
canopies, taking into account the structural and inherent properties of
crops to accurately forecast the transmission of radiation (Chen et al.,
2017). The utilization of such models typically entails either directly
employing the retrieved variables as input for the model (e.g., LAL dry
mass, and leaf chlorophyll content) or simulating the variable within
the model (e.g., green fraction, photosynthetically active radiation
(PAR) - fraction absorbed by green vegetation (fAPAR)) (Weiss et al.,
2020). Radiative Transfer Models (RTM), which are physically-based
models, have been leveraged for nitrogen retrieval (Berger et al., 2018;
Li et al., 2018, 2019; Wang et al., 2018). RTMs explain the interaction
of photons with the biophysical and biochemical attributes of plants
and find extensive applications in remote sensing, encompassing the
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inversion of parameters from satellite bands, the development of para-
metric and nonparametric regression techniques, and the integration
of machine learning (ML) regression methods with RTM simulations in
hybrid regression approaches (Verrelst et al., 2019).

While conventional methodologies, such as regression models de-
veloped using indices like NDVI and in-situ crop biophysical data,
have been widely applied, their transferability across different temporal
and spatial contexts is often limited (Kang et al., 2016; Ali et al.,
2016). Recent studies have highlighted these challenges (Mridha et al.,
2021), emphasizing the need for more robust alternatives. This study,
therefore, focuses on a novel approach that addresses these limitations
by leveraging physical models based on RTM, which have been proven
to be more robust, transferable, and accurate in retrieving crop bio-
physical and biochemical parameters (Mridha et al., 2014; Sehgal et al.,
2013, 2016; Upreti et al., 2019; Bacour et al., 2006). The major limi-
tations of this approach include the ill-posed problem, where different
combinations of biophysical and biochemical parameters can produce
similar reflectance values, and the relatively slow computational speed
compared to other methods.

This research aims to assess nitrogen concentration in agricultural
fields throughout the cropping season by leveraging RS data and RTMs.
The integration of these technologies offers a novel approach to esti-
mate crucial variables related to soil fertility and crop nutrition. The
specific objectives include exploring the potential of capturing key
variables using satellite data, evaluating the accuracy of nitrogen level
retrieval and biomass estimation for a selected crop through a machine
learning model trained on simulated reflectance at the canopy level,
assessing the impact of nitrogen levels on crop yield at the season’s con-
clusion, and testing the spatiotemporal transferability of the produced
models. By addressing these objectives, this study seeks to contribute
valuable insights into the application of remote sensing and machine
learning for precision agriculture, bridging existing knowledge gaps in
the utilization of these techniques for optimizing crop management
practices. Given the importance of the Gezira Scheme as one of the
largest irrigation initiatives globally—historically contributing to 60%
of Sudan’s total wheat production from 1980 to 1990 (Elsayed et al.,
2019), this research is especially relevant for promoting sustainable
practices within extensive irrigation systems.

2. Materials and methods
2.1. Study area

The Gezira Scheme, situated south of Khartoum, the capital of
Sudan, encompasses Al Gezira State. As depicted in Fig. 1, the scheme
is divided into four main divisions. Nestled between the Blue Nile and
White Nile rivers, the Gezira Scheme constitutes a significant agricul-
tural area boasting extensive irrigation infrastructure. The Sennar dam
and reservoir in the Blue Nile serve as the command level for the
scheme’s gravity flow-based irrigation canals. Managed by a singular
governing body, the scheme stands as one of the world’s largest irriga-
tion projects (Hussein et al., 2002). Covering approximately 882,400
hectares (2.1 million feddans), the Gezira Scheme surpasses the com-
bined size of all projects in the Blue Nile river basin, such as Asalaya
and Rahad. Wheat emerges as one of the primary crops cultivated
within the scheme, typically sown in early to mid-November and
harvested 110-120 days post-sowing, with an estimated yield ranging
from 0.85 to 1.0 tonnes/feddan (2.02-2.38 tonnes/ha) (Elkhidir, 2019).

This study focused on three wheat-cultivating farms located in the
southern sector of the Gezira Scheme, within the Musalamia admin-
istrative unit of the project area (Fig. 2). Fieldwork was carried out
during the 2021-22 cropping season, and the selection of farms was
guided by the availability of relevant data. A key consideration in the
selection was that the farmer had implemented an experimental trial
during the season, applying three separate fertilization regimes across
the three farms (details provided in Table 1). The final yield achieved
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Fig. 2. The three wheat farms in southern part of Gezira Scheme.

at the end of the season served as the main criterion for determining
the most effective fertilization strategy.

In this experiment, the process started with land ploughing at the
beginning of October, preparing the ground for the subsequent sowing
period (which occurred after 45 days). During this phase, varying levels
of Di-ammonium Phosphate (DAP) were applied across the three farms
(as detailed in Table 1). Notably, Farm-1 utilized Single Super Phos-
phate (SSP) in conjunction with DAP. Following these initial stages,
the first irrigation was typically applied between the 15th and 20th of
November. As the season progressed, a total of eight irrigation events
were administered, each spaced 12 days apart. Urea application took
place from the second to the fifth irrigation, with each application

amounting to 59.5 kg/ha. Ultimately, the crop reached maturity 100
days after the first irrigation, indicating its readiness for harvest.

To test the Spatiotemporal transferability of the trained models an
analysis was conducted for a different subzone in the Gezira scheme,
namely called Wad-Hilal area, more specifically, the focus was on eight
tertiary units (named hereafter as Nimras) during the 2022-23 Winter
season (see Fig. 3). During that season, these eight Nimras had a total
of 214 Wheat-cultivating farms all of which had a record of the final
yield collected by HRC as part of Elnour (2023) research.

2.2. Experimental setup

Fig. A.16 provides an overview of the methodology employed in this
study. The core analysis for the study covered a wider area, demarcated
by the yellow boundary in Fig. 2, which included the three farms of
interest.

2.2.1. RTM

The process of radiative transfer modeling begins with the random
generation of 21,000 distinct points, each comprising a set of 14 bio-
physical and biochemical variables (BV) values representing PROSPECT
and SAIL parameters. These input points were independently created
outside the model and thoroughly designed to align with the specified
statistical properties of the parameters and their relationship with LAL
Before proceeding with further steps, a sensitivity analysis was con-
ducted to evaluate the connection between the simulated reflectance
and various factors, including LAI, Cp, sun zenith angle (SZA), viewing
zenith angle (VZA), and Relative Sensor-Solar Azimuth Angle (psi). The
selection of relevant Sentinel-2 (S2) bands was based on the outcomes
of this sensitivity analysis. Subsequently, the fraction of absorbed pho-
tosynthetically active radiation (fAPAR) and canopy reflectance were
simulated across all input configurations. The simulated canopy re-
flectance values were then adjusted to match S2-specified bands using
the Sentinel-2 Spectral Response Function (S2-SRF).
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Fig. 3. Wad Hilal subzone and the eight tertiary units.

Table 1

Farm management strategies during the 2021-22 season.
Parameter Farm-1 Farm-2 Farm-3
Area in Feddan (Hectare) 6 (2.52 ha) 6 (2.52 ha) 6 (2.52 ha)
Sowing amount (kg/ha) 143 143 143
Land Preparation Fertilizer (kg/ha) 119 DAP + 119 SSP 119 DAP 178 DAP
Urea (kg/ha) 238 238 238
Yield (tonnes/ha) 3.4 2.9 4.2

2.2.2. Machine learning

The aforementioned process yielded an extensive database, which
was subsequently divided into two subsets for training and validation
purposes. Each subset comprised paired data, consisting of simulated
reflectance and nitrogen content for training the nitrogen Gaussian Pro-
cess Regression (GPR) model, and simulated reflectance and fAPAR for
the fAPAR GPR model. The choice of GPR was further supported by the
findings of Upreti et al. (2019), who compared various machine learn-
ing algorithms and concluded that Gaussian Processes outperformed
others during cross-validation for estimating classical biochemical and
biophysical variables. The decision to generate 21,000 points for this
database was informed by insights from available literature and a
systematic trial-and-error approach. Of the total 21,000 points, 14,000
were allocated for training, a number deemed sufficient to achieve
robust training performance, surpassing the minimum requirement of
10,000 points suggested for a medium complexity problem by Weiss
and Baret (2016). This approach aimed to strike a balance between data
size and time efficiency for both training and prediction tasks.

Considering that Gaussian Processes entail computationally inten-
sive processes, the training of both models N GPR and fAPAR GPR took
place within the Google Colab cloud environment, leveraging the com-
putational capacity of an NVIDIA A100 Tensor Core GPU with 40 GB
VRAM. Each model underwent 10,000 training iterations, followed by
validation using 7000 testing data points. During validation, metrics
such as Root Mean Square Error (RMSE) and R-squared (R2) were
computed to assess the models’ adherence to the dataset.

2.2.3. Prediction and validation

For this study, S2 images covering all of the 2021-22 cropping
season were acquired and subsequently clipped to the boundaries of
the study area. The trained GPR models were then applied to the ten
S2 bands to predict N and fAPAR across the entire study area, as
illustrated in Fig. 2. Subsequently, the fAPAR predictions were used to
calculate Net Primary Production (NPP) for the study area. Following
this prediction phase, the anticipated values underwent a comparative
validation assessment, wherein they were compared against the actual
field measurements recorded during the 2021-22 growing season for
the three farms under investigation. Finally, the time series of nitrogen
concentrations, along with the corresponding estimates of biomass,
were utilized in conjunction with a selected Wheat Nitrogen dilution
curve to determine the application rate of nitrogen fertilization and
assess its alignment with the crop’s needs throughout the growing
season.

2.2.4. Spatial and temporal transferability

To evaluate the model’s ability to operate across diverse locations
and timeframes, a spatiotemporal transferability assessment was con-
ducted during the 2022-23 winter season. This assessment involved
running the trained GPR models to predict N concentration and fAPAR
over the eight Nimras in the Wad Hilal unit (Fig. 3). Subsequently, the
correlation between the estimated nitrogen concentration and both the
modeled and actual recorded yield was computed.
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PROSAIL input parameterization for creating Sentinel-2 reflectance used for GPR training.

Parameter Abbrev. (unit) Distribution law  Min Max SD Mode Ref.
PROSPECT-PRO:
Leaf protein content C, (g/cm?) Gaussian 0.001 0.0025 0.0005 0.00175 Berger et al. (2020)
Leaf chlorophyll a + b content C,, (ng/cm?) Gaussian 20 920 30 45 Delloye et al. (2018)
Leaf structure parameter n (no dim.)  Uniform 1.3 2.5 - - Verrelst et al. (2016)
Equivalent water thickness C, (cm) Uniform 0.002  0.05 - - Rivera et al. (2013)
Leaf carotenoid content C.r (pg/cm?) Gaussian 0 15 3 7 Berger et al. (2020)
Leaf anthocyanin content Coin (g/cm?) Gaussian 0 2 0.3 1 Berger et al. (2020)
Brown pigment content Chprown (Mo dim.)  Gaussian 0 2 0.3 0 Delloye et al. (2018)
Carbon-based constituents Cpe (g/cm?) Gaussian 0.001 0.01 0.0015  0.005 Berger et al. (2020)
Leaf mass per area C, (g/cm?) Uniform 0.001 0.03 - - Rivera et al. (2013)
4SAIL:
Leaf area index LAIL (m?/m?) Gaussian 1 8 2 2 Rivera et al. (2013)
Average leaf inclination angle lidfa ©) Uniform 30 80 - - Delloye et al. (2018)
Hotspot parameter hspot (m/m) Uniform 0.05 0.5 - - Richter et al. (2011)
Soil brightness rsoil (no dim.) Uniform 0 1 - - Berger et al. (2020)
Soil moisture psoil (no dim.)  Uniform 0 1 - - -
Sun zenith angle SZA ) - 40° -
View zenith angle VZA ©) - 0° -
Sun-sensor azimuth angle psi ) - 0° -
2.3. Data Table 3
Statistical properties of the PROSAIL input parameters.
2.3.1. Generating the leaming database Parameter ~ Vmin(LAImin)  Vmax(LAImin)  Vmin(LAImax) Vmax(LAImax)
The selection of appropriate ranges for the biophysical and bio- c, 0.001 0.0025 0.0019 0.001
chemical variables (BV) is crucial for ensuring the accuracy of forward Cap 20 90 45 90
simulation in PROSAIL. Careful consideration of these ranges is es- n 1.3 2:5 L4 2
. . C, 0.002 0.05 0.004 0.05
sential to ensure that the simulated reflectance accurately captures C“ 0 15 01 05
meaningful features of the BV. Consequently, when creating the train- C:m 0 2 0 2
ing dataset for the Gaussian Process (GP) model, it is imperative to Chrown 0 2 0 2
choose parameter ranges that mitigate the potential ill-posed problem. Che 0.001 0.01 0.003 0.01
Therefore, for each input parameter, the typical range and distribution EZI 0.001 0.03 0.005 0.03
are determined (Table 2 lists the input parameters for the PROSAIL lidfa 30 80 55 65
model, along with notations, units, and the range of parameters). hspot 0.05 0.5 0.05 0.5
To establish a relationship between BV and LAI, we adopted a rsoil 0 1 0 0.2
concept introduced by Weiss and Baret (2016). According to this psoil 0 1 0 1

concept, the dynamics of parameters vary linearly with LAI, and
these changes are constrained by new limits defined as Vmin(LAImin),
Vmax(LAImin), Vmin(LAImax), and Vmax(LAImax). These modified
limits are illustrated in Table 3, providing a clearer understanding
of how parameter values evolve in response to variations in LAI
compared to their original boundaries. Specifically, as LAI transitions
from LAImin to LAImax, the BV range undergoes adjustments within
linear upper and lower limits that extend from Vmax(LAImin) to
Vmax(LAImax) and from Vmin(LAImin) to Vmin(LAImax), respectively.
This approach enables a finer characterization of parameter behavior
across the entire LAI range, thereby enhancing the accuracy and
reliability of our modeling framework.

Following the generation of PROSAIL simulations, adjustments were
made to match the actual spectral response of Sentinel-2 (S2) using
the latest Sentinel-2 Spectral Response Function (S2-SRF). Additionally,
while fAPAR is not a primary input parameter, it was simulated by
running the same input parameters for all generated reflectance values.
Subsequently, the training database was divided into two segments:
two-thirds were designated for training the Gaussian Process (GP)
model, while one-third was allocated for validation.

2.3.2. Sentinel-2

The Copernicus Sentinel-2 (S2) mission provides spectral reflectance
data with frequent revisits every 5 days, fine spatial resolution (10 m),
comprehensive global coverage, and an open access policy (Gascon
et al., 2017). These attributes collectively position it as an invaluable
resource for the development of near-real-time operational agricultural
services (Delloye et al., 2018). In this study, the level two product (L2A)
of the multispectral instrument (MSI) was utilized to acquire the S2 mis-
sion tiles with relative orbit number 078 and tile number 36PWB across
the targeted cropping season from November 2021 to February 2022

(Table 4). The L2A data undergoes atmospheric correction through the
Sen2Cor processor, eliminating the need for additional correction steps
and enhancing the reliability of the reflectance values used in our anal-
ysis. Cloud cover for all images remained well below the 20% threshold.
Subsequently, the acquired L2A products were clipped to match the
study area (Fig. 2) and were transformed from digital numbers to
reflectance values at 10 m resolution using the semi-automatic classi-
fication plugin in QGIS (Congedo, 2021). This processing resulted in a
set of 10 bands that will serve as inputs for predicting nitrogen content
and fAPAR. The selection of these specific bands was guided by their
robust correlation with plant nitrogen content and biomass estimation.
Notably, prior research highlights the significance of certain bands in
these estimations. For instance, Guerif et al. (2007) demonstrated the
feasibility of assessing nitrogen concentration through spectral features
in visible and Red-edged bands, which are indicative of chlorophyll
content.

Similarly, Berger et al. (2020) advocated for the utilization of
the short-wave infrared (SWIR) spectral domain to estimate nitrogen
levels through the proxy of proteins. In this context, the results of the
sensitivity analysis, combined with insights from existing literature,
was leveraged to determine the optimal bands for estimating nitrogen
concentration and biomass.

2.4. PROSAIL-PRO configuration
2.4.1. N content estimation

In this study, a Python version of PROSAIL-PRO (Domenzain et al.,
2019) was employed to generate a lookup table (LUT) to serve as a
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Table 4
S2-MSI-L2A Acquired data for 2021-22 season.

Sensing date Platform Cloud cover %
2021-11-23 A 0.0
2021-11-28 B 0.0
2021-12-03 A 0.0
2021-12-08 B 0.0
2021-12-13 A 1.4
2021-12-18 B 0.0
2021-12-23 A 1.5
2021-12-28 B 0.0
2022-01-07 B 0.3
2022-01-12 A 2.9
2022-01-17 B 0.9
2022-01-22 A 3.4
2022-01-27 B 1.5
2022-02-01 A 0.0
2022-02-06 B 4.9
2022-02-11 A 2.7
2022-02-16 B 7.0
2022-02-21 A 0.0
2022-02-26 B 0.4

training database. Operating collaboratively, this coupled model sim-
ulates canopy-scale reflectance, predicted from a diverse set of bio-
physical parameters (such as Leaf Area Index (LAI) and average leaf
inclination angle) as well as leaf biochemical inputs (including leaf
Chlorophyll-a+b content (C,,), equivalent water thickness (C,), and
leaf carotenoid content (C,,). The direct calculation of leaf nitrogen
content (N,) from leaf protein content (C) is facilitated through the
protein-to-nitrogen conversion factor of 4.43 (Wang et al., 2018), as
established by Yeoh and Wee (1994) after studying 90 plant species.
This factor is utilized according to the equation below:

_ Gy g
“= 11 (ﬁ) D

Moreover, in the transition from the leaf level to the canopy scale,
LAI served as an upscaling parameter. This enabled the calculation
of above-ground nitrogen content from the entry points in the LUT,
utilizing LAI and leaf protein content (C,) for each input point, as
recommended by Berger et al. (2020), outlined as follows:

2
above ground N content (%) =N, <%> x LAI (m—z) % 10,000 (2)
m cme mr

2.4.2. fAPAR simulation

In the domain of canopy radiative transfer, the computation of
fAPAR encompasses multiple elements. This involves the direct ab-
sorption of radiation by the canopy (a;(4)), along with the fraction
reflected by the background and subsequently absorbed by the vege-
tation (ay(4)). Consequently, the total energy absorbed by the green
canopy can be expressed by the equation:

a() = a;(A) + ay(A) 3

Here, A denotes the wavelength. The determination of a;(4) rests
upon the assumption of negligible background reflectance (r,). In this
context, the instantaneous fAPAR can be expressed as:

Here, 4 denotes the wavelength. The calculation of a;(4) is predi-
cated on the assumption of negligible background reflectance (r,). In
this context, the instantaneous fAPAR can be formulated as:

0.7 ym

fAPAR = / a(A)dA @

0.4 ym

This concepﬂtual framework is adapted from (Fan et al., 2014). In the
core of the computation of fAPAR within this framework are a series of
critical parameters, which are either directly calculated or derived as
secondary quantities within the SAIL model. The SAIL parameter for the
fraction of diffuse incoming solar radiation (skyl) incorporates the Solar
Zenith Angle (SZA) (Francois et al., 2002), which is based on an average
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atmospheric condition representative of mid-latitudes. The calculation
of skyl is expressed as:

skyl = 0.847 — 1.61sin(90° — SZA) + 1.04 5in>(90° — SZA) 5)

The simulation process commenced with the computation of the
direct component of solar irradiance reaching the canopy (edir) and the
hemispherical diffuse component (edif), with es and ed representing the
solar irradiance spectra for direct and diffuse illumination, respectively.

Subsequently, leveraging insights from (Verhoef and Bach, 2007;
Zhou et al., 2017), a, and a,, indicating the absorbance of the isolated
canopy layer concerning solar and hemispherical diffuse incident flux,
were computed utilizing the internal parameters generated during
the execution of 4SAIL as a sub-process within PROSAIL-PRO. These
parameters encompassed tss (beam transmittance in the sun-target
path), tsd (canopy directional-hemispherical transmittance factor), rsd
(canopy directional-hemispherical reflectance factor), tdd (canopy bi-
hemispherical transmittance factor), and rdd (canopy bi-hemispherical
reflectance factor). Consequently, the parameters a,x and a,x, signi-
fying the canopy absorption for edir and edif, respectively, were also
derived by utilizing 4SAIL-generated parameters alongside the param-
eter dn, which represents the interaction with the background soil.
Finally, fAPAR simulation was accomplished by applying the equation:

30 (g - edir{i] + agy - edif{i])
% (edir(i] + ediffi])

The slicing factor was defined within the range of 0 to 300 to
compute these values, with consideration given only to wavelengths
between 400 and 700 nm.

Moreover, the estimated fAPAR was subsequently utilized to com-
pute Net Primary Production (NPP; gC/m?/day) using the following
equation (FAO, 2020):

fAPAR = (6)

NPP=S,.-R;- fAPAR-SM -, - €, & €0 EaR (@]

Where:

&(T,CO,) is a function derived from S, represents the scaling
factor from Dry Matter Production (DMP) to NPP (0.045).

R, denotes the total shortwave incoming radiation (GJ/ha/day)
(from ERA5-Land Hourly, ‘surface_solar radiation_downwards’).
€, signifies climate efficiency (0.48).

SM stands for Soil Moisture stress reduction factor (equal to 1).
£, is Light Use Efficiency (LUE) at optimum conditions (2.7
kgDM/GJPA for a C3 crop like Wheat).

£ 4 is the fraction retained after autotrophic respiration (0.5).

¢, denotes the normalized temperature effect (Estimated using
“ERAS Daily Avg Temperature” and the Wheat temperature func-
tion from (Durgun et al., 2016)).

£..o Tepresents the normalized CO, fertilization effect. Estimated
using the function proposed by Veroustraete (1994):

co,
f
coie

€))

£€co, =

Where:

- COQ"f represents the CO, mixing ratio for the reference year
1833, taken as 281 ppm.

- CO, was taken from the annual ‘spatial’ average of globally-
averaged (CO,) data from the NOAA-ESRL' (414.7 ppm for
2021, 417.07 ppm for 2022).

Following this, a basic linear interpolation was implemented to
estimate the cumulative values of NPP at the start and end of each
month, aiming to ascertain the total NPP at the conclusion of the

1 https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt
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growing season. Subsequently, the yield was estimated utilizing the
equation proposed by Mul and Bastiaanssen (2019):

NPP-(AOT -22.222 - f,)
1-Mc ’
Where: AOT represents the above over total biomass (0.85), f,
stands for the correlation factor for light use efficiency, Mc is the
moisture content in fresh biomass (0.15 for wheat), HI represents the
harvest index (taken as 0.4 for Wheat in Gezira estimated by the
Hydraulic Research Centre (HRC)), and NPP value here is the seasonal
estimate.

Yield = HI (C))

2.5. GP models configuration

2.5.1. Model structure

Constructing a GPR model entails crucial decisions regarding the
mean function and the kernel function, which essentially govern the
behavior of the model. In this study, the mean function was formu-
lated as a simple function that consistently yields the mean value of
observations (parameter values). To capture the diverse features of the
RTM simulated dataset, we employed the Exponentiated Quadratic co-
variance kernel provided by TensorFlow-Probability (tfp) (Dillon et al.,
2017) to train the GPR models. This process started with defining and
initializing the kernel’s hyperparameters, including the amplitude (rep-
resenting the overall variance) and length scale. Moreover, the number
of feature dimensions (feature_ndims) was specified as 1, given that
the training dataset comprises pairs of parameter values and reflection
values. Furthermore, the modeling process took into account observa-
tional noise by incorporating the observation_noise_variance parameter
of the TensorFlow Gaussian process model. This culminated in three
trainable hyperparameters: amplitude, length scale, and observation
noise variance.

2.5.2. Model optimization

The optimization process began with the definition of a mini-batch
data iterator, with a batch size set to 1000. This iterator was in-
stantiated using TensorFlow’s tf.data.Dataset functionality, facilitating
efficient data handling and memory usage during training. To introduce
randomness and mitigate overfitting, the data was shuffled with a
buffer size matching the total size of the training dataset, set at 14,000.

For optimization, the Adaptive Moment Estimation (ADAM) op-
timizer was selected and configured with a learning rate of 0.001.
ADAM was chosen due to its efficacy in dynamically adjusting learning
rates for each parameter throughout the training process. As detailed
by Kingma and Ba (2014), ADAM stands out for its computational ef-
ficiency, low memory footprint, robustness to gradient diagonal rescal-
ing, and suitability for managing high-dimensional data and parameter
spaces.

Moreover, a negative log-likelihood (NLL) loss function, denoted
as gp_loss_fn, was defined. This function encapsulated essential
aspects of the Gaussian Process (GP), including the mean function,
kernel function, index points (representing reflectance in this context),
and observation noise variance. The NLL loss function aimed to mini-
mize the negative log-likelihood of the model, thereby optimizing it to
make precise predictions while accommodating the inherent noise in
the observations.

These optimization procedures collectively contributed to enhanc-
ing the performance and reliability of the Gaussian Process Regression
(GPR) model for subsequent analyses. Following this, the model en-
tered a training loop, wherein batched NLL loss values were computed
and stored for plotting (batch_nlls), while full data NLL values
were periodically assessed to comprehensively evaluate model perfor-
mance (full_11). The training process extended over 10,000 itera-
tions (nb_iterations), with updates logged at every 20 iterations
(log_interval).

To preserve a trained GP model, the trained parameters, including
kernel hyperparameters and observation noise variance, were saved,
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along with the training dataset comprising reflectance values and corre-
sponding parameter values. This dataset facilitated the re-computation
of the mean function and subsequent estimation of the standard devia-
tion (STD) when making predictions on new data.

2.5.3. Posterior prediction

For conducting predictions through posterior inference (post-
training), the tfp.Distribution GPR class was employed. GPR models
were initiated using the trained kernel hyperparameters, observation
noise variances, and the training data specific to each model. These
GPR models were then used to predict the corresponding parameters
(N, fAPAR) and their associated standard deviations (uncertainties) for
each row in the acquired Sentinel-2 (S2) bands at the specified date
within the study area. Subsequently, these row-level predictions were
accurately mapped to their respective positions in the predicted maps
(Predicted_parameter map and Prediction_stdev_map).

3. Results and discussion
3.1. PROSAIL-PRO

3.1.1. Input data sets

Fig. 4 displays how the generated PROSAIL-PRO input variable, a
total of 14 of them, as specified in Tables 3 and 4, are interconnected
with LAI distribution, as highlighted in 2.3.1.

In these scatter plots, we can observe a clear linear relationship
between LAI and the Leaf structure parameter (n), Leaf chlorophyll
content (C,,), Leaf carotenoid content (C,,), Leaf water content (C,),
Leaf dry matter (C,,), and Soil brightness (r,,;;).

The distribution of LAI values follows a Gaussian distribution with
most of them centered around LAI = 2, reported sd of 2. The range
of LAI was set between 1 to 8, as the expected LAI trend for Wheat
is from O to 4.5, the range was set in this way to limit the problem of
having out-of-range canopy reflectance simulations with low LAI values
(less than 0.8) which will eventually affect the trained GPR model’s
ability in estimating N and fAPAR in early stages of plant development.
Furthermore, having very high LAI values for training the model is
important for the GPR not to be over-saturated with high values (n the
normal limit) during training and for better performance with extreme
cases while predicting.

The artefacts observed in the distributions, such as the initial drop in
the Cm uniform distribution and the contrasting trends in the uniform
distributions of n and rsoil, can be attributed to the co-distribution con-
straints imposed with high LAI values. Similarly, the decreasing trend
in the Gaussian distributions of Cab also arises from these constraints.

After generating the input points, N was calculated using the equa-
tions in Section 2.4.1 from the values of LAI and Cp for each input
point. This resulted in a range of N values from 2.26 to 45.15 g/m?. The
histogram depicted in Fig. 5 showcases the distribution of N values.
In this histogram, each bar represents a specific range of N values,
and the height of the bars indicates the frequency of occurrence within
each range (with a total sum of 21,000 points). The highest bars in the
histogram correspond to the most frequent N values, providing a clear
visual representation of the data’s distribution.

The majority of N values are concentrated within the range of 5 to
20 g/m?, as evidenced by the prominent bars in this interval. This range
aligns well with the suitability for training a Gaussian Process Regres-
sion (GPR) model to predict Wheat’s N content, as it encompasses the
normal variation in N content within wheat leaves (2.4 to 13.2 g/m?)
during the growing season, as documented in previous research (Berger
et al., 2020).
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Fig. 4. PROSAIL-PRO input parameters co-distributions.

3.1.2. Distribution of simulated variables

After running PROSAIL-PRO using the generated dataset of 21,000
points, the process concluded with two simulated variables: top of
canopy reflectance from 400 to 2500 nm for each input point and
simulated fAPAR. In Fig. 6, the statistical characteristics, including the
mean, STD, and range, for all the generated reflectance values were
highlighted. It is important to note that PROSAIL-PRO is only capable of
generating canopy reflectance, the input data (especially the LAI range)
was set in a way that ensures the model only simulates reflectance data
from the budding growth stage (or the end of the vegetative stage)
onwards.

This particular configuration is chosen due to a limitation in RS.
From an RS perspective, obtaining valuable information during the
early stages of plant growth, especially during the vegetative stage
when the canopy is still forming, poses a significant challenge. This
challenge remains unless there is access to higher spatial and spectral
resolution data.

Subsequently, a statistical test was conducted to assess the poten-
tial presence of the ill-posed problem (having two similar reflectance

spectrums attributed to different parameter values) within the gen-
erated dataset. The result shows that there were no two reflectance
profiles found to be entirely identical, even following the application of
S2-SRF to derive band values and this can be attributed to two key
factors. Firstly, the reasonable selection of parameter ranges during
the generation process. These parameter ranges were defined to mimic
realistic vegetation scenarios. Secondly, co-distributing the parameters
with LAI significantly contributed to the uniqueness of the simulated
reflectance values.

Fig. 7 presents a histogram depicting the simulated fAPAR values.
Just as explained previously, the fAPAR values are predominantly
distributed above the 0.5 threshold to ensure that the trained GPR
model can accurately estimate these values, particularly during the
intermediate and advanced growth stages of vegetation.

This was driven by a particular consideration: during the early
stages of growth, Satellite RS data often faces challenges in capturing
accurate canopy reflectance values due to interference from water and
background soil reflectance.
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Fig. 5. Above ground nitrogen distribution calculated for each input point using leaf area index and leaf protein content.
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Fig. 7. PROSAIL-PRO simulated fraction of absorbed photosynthetically active
radiation distribution.

3.2. GPR models

3.2.1. Training

During the training process, a gradient-based approach, specifically
ADAM, was employed to minimize NLL. The complexity of the log
marginal likelihood pose a challenge, potentially leading to overfit-
ting of the data. To address this concern, the dataset was partitioned
into training (14,000) and validation (7000) sets. The model selection
process focused on identifying the best-fit models by evaluating their
performance on the validation set, thereby minimizing the risk of
overfitting and ensuring robust generalization to unseen data.

The N GPR model demonstrated the most robust performance
during training. This outcome can likely be attributed to the Gaussian
distribution of N values (depicted in Fig. 5), which is almost centered
and well-distributed. In contrast, the distribution of fAPAR values (Fig.
7) is right-skewed.

It is worth mentioning that the normal range of NLL typically falls
between zero and positive infinity. However, the occurrence of negative
NLL values during the training of the fAPAR model could indicate
potential over-fitting to the training data. Negative NLL values are
associated with likelihoods derived from probability density functions.
This was the case with fAPAR (Fig. 7), given that fAPAR values typically
range between O and 1. To assess this, it is essential to consider
the relative difference between the beginning and end of training.
Cross-validation, utilizing the validation data points, helps confirm the
significance of this difference.

RMSE and R? values for the N GPR model were 3.56 (g/mz) and
0.66, respectively. For the fAPAR GPR model, these values were 0.044
and 0.82. These metrics collectively indicate that all three models are
not over-fitting the data and demonstrate relatively strong performance
in their respective tasks.

3.2.2. N prediction
Fig. 8 presents the time series of the Normalized Difference Vegeta-
tion Index (NDVI; (Rouse et al., 1974)) computed for the three farms,

encompassing all the acquired S2 images during the 2021-22 season
(see Table 2). To provide a comprehensive spatial representation, the
mean and standard deviation were calculated across all pixels within
each farm area.

Interestingly, the NDVI trends across the three farms show a rela-
tively uniform pattern throughout the season. NDVI values increased
steadily during the early growth stages and peaked in mid-January,
followed by a sharp drop and a subsequent plateau. This decline
corresponds with the transition of wheat into the heading and ripening
stages, where nitrogen is remobilized from leaves and stems into the
grain. Since nitrogen exists in both chlorophyll and protein forms —
both closely linked to canopy greenness — the decline in NDVI during
this period reflects a physiological reduction in leaf greenness.

Fig. 8 also presents the time series of predicted above-ground nitro-
gen concentration, derived using the trained N-GPR model based on 10
S2 bands. As with NDVI, the mean and standard deviation were com-
puted across each farm’s extent. Although the model showed limited
accuracy in early growth stages (seeding to tillering), it performed well
from stem elongation onward, aligning with known physiological shifts
in nitrogen partitioning.

The motivation for comparing NDVI and nitrogen concentration
time series stems from a desire to explore canopy color dynamics across
the crop’s growth stages and assess how visible greenness patterns
relate to nitrogen redistribution. While NDVI alone cannot distinguish
among different nutrient management strategies, its temporal behavior
can serve as an indirect indicator of crop status when interpreted
alongside biochemical indicators like nitrogen concentration.

At first glance, the nitrogen concentration time series exhibits a
trend similar to the NDVI curve. This alignment validates the model’s
ability to track nitrogen uptake and redistribution across stages. As
nitrogen remobilizes toward the grain, both NDVI and modeled N
concentrations decline. This relationship supports physiological evi-
dence in the literature; for example, Simpson et al. (1983) found that
approximately 40% of the grain’s nitrogen originates from remobilized
leaf nitrogen.

However, while NDVI trends may appear similar between farms
(e.g., Farms 1 and 3), this does not imply uniform agronomic condi-
tions. It is important to note that these farms differed in initial nitrogen
inputs and land preparation techniques. Moreover, NDVI calculated
from just two spectral bands—is known to saturate in high biomass
conditions and lacks sensitivity to subtle nutrient variations. In con-
trast, our nitrogen model utilizes a broader spectral input, enabling
more detailed biochemical assessments. This is particularly relevant
when considering that a 0.8 tonnes/ha yield difference between Farms
1 and 3, while substantial, is not necessarily evident in NDVI due to its
inherent limitations.

Finally, the nitrogen estimates from the GPR model are instan-
taneous, reflecting canopy status at the time of satellite overpass.
The maximum predicted N concentration represents the cumulative
uptake from fertilization events, which were uniformly applied from
the second to fifth irrigation. Interestingly, nitrogen concentration con-
tinued to increase for approximately 10-12 days after the final Urea
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Fig. 8. Normalized difference vegetation index time series for the three farms (top) and predicted above-ground nitrogen time series (bottom).
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Fig. 9. N-GPR model predicted above ground nitrogen for 2022-01-22.

Table 5

Approximated nitrogen consumption for each farm through the season.
Farm # Farm-1 Farm-2 Farm-3
Total N consumed (kg/ha) 52.36 52.36 56.6
Predicted mean N content (kg/ha) 65.2 55 60.5

application—highlighting the absorption lag as nitrogen moves from
the soil to the plant.

Fig. 9 showcases the above ground N concentration predicted by
the trained N-GPR using the S2-acquired bands on January 22, 2022.

The appearance of negative values within the predicted map across
the study area can be attributed to various factors. Firstly, these nega-
tive values are associated with the presence of water bodies, such as the
major irrigation canal in the eastern part of the study area and the main

10

and minor canals. Furthermore, areas with built-up infrastructure, such
as villages, often exhibit negative and near-zero values. Additionally,
the negative values observed in agricultural areas may result from these
regions lying fallow during that particular cropping season.

It is important to note that these negative and low values occur due
to the GPR model’s training solely on canopy reflectance. Such outliers
arise from the extrapolation beyond the lowest value that the model
was trained on. To gain further insight into areas where the model
struggled to interpret reflectance data, we can refer to the generated
uncertainty map (STD) of the N-GPR predictions (Fig. 10). This map
aids in identifying regions where the model’s reflectance predictions
may have been less reliable or where unusual values were encountered.

The STD values in the uncertainty map are indicative of the devi-
ation from the mean of the data points used during model training.
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Fig. 11. fAPAR-GPR model outputs on 2022-01-27: (a) Standard deviation representing uncertainty, and (b) predicted fAPAR.

Higher STD values reflect greater uncertainty in the resulting predic-
tions. It is also worth noting that both Figs. 9 and 10 showed similar
patterns (very low N values associated with higher uncertainty)

Using the information provided in Table 1, we can calculate the
amount of applied N as a percentage of the applied Urea and DAP
fertilizers. Given that N represents 46% of the Urea fertilizer and 18%
of DAP, the total applied N during the 21-22 season for Farms 1 and
2 was 130.9 kg/ha, and for Farm-3, it was 141.52 kg/ha.

Assuming that only 40% of this applied N was actually utilized by
the crops, as suggested by Lassaletta et al. (2014), the consumed N can
be estimated as listed in Table 5 below.

Comparing these values to the predicted instantaneous mean N
concentrations for each farm on January 22, 2022 (the date with the
highest accumulation, which represents the total amount consumed by
the plant over the season), reveals an RMSE of 7.9 kg/ha (equivalent
to 0.79 g/m?). This RMSE signifies the deviation between the model’s
predictions and the observed N concentrations in the field. Notably,
despite both Farm-1 and Farm-2 receiving the same amount of nitrogen
application, the model predicted different values for them. This differ-
ence can be attributed to the additional type of fertilizer (SSP) applied
to Farm-1, resulting in an overall higher biomass compared to Farm-2.
Due to this difference in biomass, the model was unable to capture the
variation in N concentration accurately.

11

3.2.3. fAPAR prediction

Fig. 11(a) presents the fAPAR-GPR model’s uncertainties and
Fig. 11(b) illustrates the model’s predictions for the S2 product bands
on January 27, 2022. Similar to the N-GPR model, the fAPAR-GPR
model generated low and negative values for water bodies and built-up
areas, accompanied by elevated uncertainty in these predictions.

Notably, both the N-GPR and fAPAR-GPR models attributed nega-
tive values to the major canal in the eastern section of the study area
(highlighted in red in Fig. 10).

3.2.4. Yield estimation

The bar chart in Fig. 12 compares the actual and predicted yield
values across the three farms.

The spatial mean for the predicted yield values was found to
be 3.86 tonnes/ha for Farm-1, 3.67 tonnes/ha for Farm-2, and 3.91
tonnes/ha for Farm-3. RMSE for yield estimation was calculated to
be 0.54 tonnes/ha. This value can be considered good, especially
when considering that the accumulation was done using simple linear
interpolation. These estimations further validate the performance of
the fAPAR-GPR model in predicting crop yield. It can be seen from
the bar chart that there was an overestimation of the yield values for
Farms 1 and 2, while for Farm-3 there was a slight underestimation.
Since the largest miss-estimation was in Farm-2, it is worth mentioning
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Fig. 12. Predicted yield vs. actual recorded yield for the three farms.

that this could be attributed to the pixels with the high uncertainty
(STD) values across Farm-2 borders (Fig. 11(a)). It is also worth noting
that the same pixels faced high STD values in N estimation (Fig.
10), and this translates that these pixels may be representing a poor
performing area because even the end-of-season NDVI values for it were
low compared to the rest of the field. And because of that the model
was not able to accurately predict fAPAR values for the farm which
caused the underestimation and having the largest gap between actual
and predicted values.

3.3. Dilution curve

Fig. 13 presents the estimated biomass map for the end of December
2021, with a mean biomass production value of 2 tonnes/ha across the
three farms. In the context of the N dilution curves, it is important
to note that the lower the biomass production value (in tonnes/ha),
the steeper the dilution curve becomes, leading to higher critical N%
values. From the curves reported by Yao et al. (2021), when the
biomass is around 2 tonnes/ha, the critical N% can be approximated
as 3% of the biomass.

In consideration of this assumption, the instantaneous critical N (in
kg/ha) was calculated for all biomass pixels across the three farms.
These values were then compared to the predicted above-ground N
content estimated on December 28, 2021. This comparison provides
valuable insights into the implications of the final Urea application,
which occurred on January 7, 2022.
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The results of this assessment are depicted in Fig. 14. Clearly,
Farms 1 and 3 exhibited N concentrations above the critical value (the
minimum N concentration required to ensure growth for that specific
biomass value), suggesting a relatively adequate N supply. In contrast,
Farm-2 appeared to be under significant N stress, which could also be
the reason for its poor final production.

Notably, despite the relatively small area of the three farms, em-
ploying this approach with S2 high resolution enabled the detection
of spatial variability, even within these limited areas. Such advisory
insights, even if not extraordinarily precise, can contribute to achieving
more efficient resource utilization and economic benefits.

4. Models spatiotemporal transferability

The average overall recorded yield in Wad Hilal subzone (Fig. 3)
during the 2022-23 season was found to be 2.25 tonnes/ha (with
Hegeiliga Median recording the highest average production of 2.92
tonnes/ha, and BahiEddin3 with the lowest average production of 1.4
tonnes/ha) (Elnour, 2023). RMSE between the actual and the model
predicted yield for all the farms was found to be 1.6 tonnes/ha for
the field level yield estimation and 1.01 tonnes/ha for the Nimra level
estimation with an average overall predicted yield of 3.1 tonnes/ha.

A correlation analysis was conducted between the model’s estima-
tions for Nitrogen concentration and the model predicted NPP time
series for each farm. The correlation between N time series and NPP
was found to be higher than the correlation between N and fAPAR (Fig.
15), with median correlation values of 0.62 and 0.59 respectively.

Furthermore, the correlation between the median estimated N con-
centration value throughout the season and the actual recorded yield
on a field level was found to be 0.7, while the correlation with the
average recorded yield on a Nimra level was 0.83. In the first violin
plot, which examines the correlation between the simulated Nitrogen
timeseries and fAPAR simulation, a notable relationship indicative of
the nitrogen impact on photosynthetic activity was observed. This
correlation underscores the crucial role of Nitrogen in assessing crop
health and productivity. However, what stands out is the subsequent
upshift in correlation when transitioning to NPP in the second violin
plot. This shift emphasizes the importance of accurate meteorologi-
cal parameterization when transiting from fAPAR to NPP in a way
that helps understanding the nuanced relationship between Nitrogen
dynamics and primary productivity.
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Fig. 13. Biomass estimation for end of December 2021.
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5. Conclusions

This study demonstrated the value of integrating remote sensing
data and machine learning with canopy radiative transfer model-
ing (PROSAIL-PRO) for estimating crop nitrogen status and biomass
throughout the season. Using simulated reflectance data and Sentinel-
2 imagery, we trained Gaussian Process Regression (GPR) models to
retrieve nitrogen concentration and biomass, achieving RMSE values
of 7.9 kg/ha and 0.54 tonnes/ha respectively.

Our analysis emphasized the importance of multiple factors in
determining retrieval accuracy, including the quality and distribution
of simulated inputs, kernel and mean function choices in GPR, and
external conditions such as crop stage and acquisition timing. The
models effectively distinguished cropland from non-crop areas, but
accurate crop-type identification (e.g., wheat) remained essential for
precise biophysical estimations within agricultural zones.

To address the scalability challenges of GPR models in operational
settings, we recommend exploring more computationally efficient al-
ternatives, such as linear or polynomial regressions, particularly when
sufficient training data are available.

Correlation analysis revealed a strong link between nitrogen dy-
namics and final yield, underlining the value of including nitrogen
as a predictive variable in crop production models to enhance yield
estimations.

13

International Journal of Applied Earth Observation and Geoinformation 144 (2025) 104897

Finally, the practical application of our workflow in the Gezira irri-
gation scheme showcased its potential for identifying nitrogen-stressed
regions using PROSAIL-driven GPR models and Sentinel-2 imagery.
This ability to map nutrient deficiencies through N dilution curves
offers promising pathways for more efficient nitrogen resource man-
agement and improved precision agriculture practices.
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