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 A B S T R A C T

Nitrogen (N) is crucial for crop and ecosystem health in agricultural settings. Traditional remote sensing (RS) 
methods, using regression models and indices like NDVI, face challenges in transferability across time and 
space. This study aims to enhance in-season N concentration assessment by integrating RS data with a hybrid 
approach, combining the PROSPECT-PRO and 4SAIL models to create PROSAIL-PRO. This Radiative Transfer 
Model (RTM) excels in parsing leaf protein, crucial for accurate crop N content estimation. PROSAIL-PRO forms 
the basis for a robust learning database, guiding the training of Gaussian Process Regression (GPR) models—
Bayesian-based machine learning known for precision and insights into uncertainties. The Gezira irrigation 
scheme in Sudan serves as a case study. Using Sentinel-2 bands, this research informs agricultural resource 
management and assesses crop health in the scheme. Fertilizer application data and yield records drawn from 
three farms within the Gezira scheme to form the basis for validation. Wheat, the primary crop in this context, 
experienced varying fertilizer application scenarios across these farms during the 2021-22 cropping season 
resulting in varying yields. Similar results were found in the crop N content and biomass estimation. GPR 
models, trained on PROSAIL-PRO, effectively predict above ground N content and biomass. Validation against 
field records shows promising outcomes, with GPR models exhibiting an RMSE of 7.9 kg/ha for N content and 
0.54 tonnes/ha for yield estimation. Moreover, the model’s spatiotemporal scalability was assessed, showing an 
RMSE of 1.01 tonnes/ha at the Nimra level and 1.6 tonnes/ha at the farm level, highlighting the applicability of 
this approach to larger areas. A significant correlation (0.7) was found between estimated N concentration and 
actual recorded yield at the field level, further corroborated by an 0.83 correlation at the Nimra level. These 
results emphasize the robustness of this hybrid modeling approach, particularly in linking nitrogen dynamics to 
primary productivity, as evidenced by stronger correlations between NPP and nitrogen content than between 
N content and fAPAR. This study therefore highlights the benefits of adoption hybrid modeling, based on 
PROSAIL-PRO, in global agricultural monitoring. The synergy found between remote sensing, radiative transfer 
modeling, and real-world dynamics promises a sustainable future for agriculture applications.
1. Introduction

The challenge of ensuring food security is becoming increasingly 
pressing due to rising demands for food and freshwater supplies, along-
side the backdrop of climate variability and change. This interdepen-
dence between water resources and food security has been underscored 
by the Food and Agricultural Organization of the United Nations (FAO), 
recognizing that actions taken in one domain can profoundly affect the 
other. Such efforts are vital for enhancing human well-being, alleviat-
ing poverty, and fostering sustainable development (FAO, 2014). Thus, 
the imperative to continuously enhance water and land productivity to 
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sustain food security persists as a critical endeavor for both present and 
future generations (Safi et al., 2022). 

Agriculture serves as the fundamental backbone of human existence 
and exerts considerable influence on economic dynamics (Ennouri 
and Kallel, 2019). Consequently, it becomes paramount to carefully 
track the state of crops throughout their developmental stages. This 
involves evaluating a spectrum of factors including nutritional param-
eters, soil moisture content, plant vigor, and susceptibility to stressors 
stemming from both abiotic (e.g., humidity, temperature) and biotic 
(e.g., pests and diseases) sources (Ennouri and Kallel, 2019). Any depar-
ture from the optimal parameters during each growth phase can have 
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adverse effects on crop development, leading to reduced production 
and productivity.

Nitrogen (N) holds pivotal significance in agriculture, being indis-
pensable for the well-being of plants, animals, and soil ecosystems. 
Within the soil, nitrogen exists in diverse forms, undergoing frequent 
transformations from one form to another (Science of Agriculture, 
2017). 𝑁 deficiency can exert a substantial impact on various aspects 
of plant physiology, including leaf chlorophyll content and photo-
synthesis rate, thereby influencing plant development and ultimately 
reducing biomass production (Mu and Chen, 2021). The decline in leaf 
photosynthesis rate attributed to 𝑁 deficiency primarily stems from 
decreased stomatal conductance, rather than a diminished capacity for 
carboxylation within the leaf structure (Zhao et al., 2005).

Precision agriculture (PA) stands out for its emphasis on augmenting 
farmers’ comprehension of their fields and crops, offering substan-
tial benefits in terms of heightened productivity and optimized input 
employment (Gebbers and Adamchuk, 2010). Complementing PA, Vari-
able Rate Technology (VRT) plays a pivotal role by enabling the tar-
geted application of farm inputs, such as fertilizer and water, at varying 
rates across the field, guided by site-specific data (He, 2022). Further 
refining this approach, Variable Rate Fertilization (VRF) emerges as 
an advanced PA technique, leveraging embedded high-speed comput-
ers, remote sensing (RS) technologies, Geographic Information Sys-
tems (GIS), precise Global Positioning System (GPS) receivers, soil 
maps, alongside real-time crop characteristics measurement and predic-
tion capabilities through electronic sensors and actuators (Schumann, 
2010). VRF methodologies harbor the potential to augment fertilizer 
use efficiency, mitigate environmental impacts, and refine both crop 
quality and yield outcomes (Gao and Li, 2022).

Remote sensing (RS) products have a critical role in the develop-
ment of decision support tools for PA and VRF, employing sophisticated 
sensor and analysis tools to enhance crop yields and facilitate man-
agement decisions (Singh et al., 2020). Recent advancements have 
seen the integration of PA technologies based on RS into commercial 
farming practices (Sishodia et al., 2020). The integration of VRF with 
prescription maps is recognized as a promising strategy for achieving 
targeted top-dressing fertilization, thereby enhancing nitrogen appli-
cation efficiency (Basso et al., 2016). To facilitate this, variable rate 
maps can be generated by leveraging various thematic layers as inputs 
for classical or unsupervised clustering algorithms, thereby delineating 
site-specific management zones (Fridgen et al., 2003).

RS techniques offer a versatile means to estimate various parame-
ters, ranging in complexity, which serve as indicators of the nitrogen 
status of crops. 𝑁 content in plants often exhibits correlations with 
wavelengths similar to those of chlorophyll (Chl) (Rubo and Zinker-
nagel, 2022). Notably, as water content decreases, reflectance tends 
to increase, with significant information regarding water content being 
encoded in key wavelengths such as 1450, 1940, and 2500 nm (Jacque-
moud and Ustin, 2019). The significant absorption resulting from water 
in the reflectance spectra of fresh leaves can obscure the relatively 
weaker absorption associated with plant biochemical components, such 
as nitrogen absorption features (Kokaly, 2001).

Many models have been developed to simulate the propagation of 
electromagnetic radiation through both the atmosphere and vegetation 
canopies, taking into account the structural and inherent properties of 
crops to accurately forecast the transmission of radiation (Chen et al., 
2017). The utilization of such models typically entails either directly 
employing the retrieved variables as input for the model (e.g., LAI, dry 
mass, and leaf chlorophyll content) or simulating the variable within 
the model (e.g., green fraction, photosynthetically active radiation 
(PAR) - fraction absorbed by green vegetation (fAPAR)) (Weiss et al., 
2020). Radiative Transfer Models (RTM), which are physically-based 
models, have been leveraged for nitrogen retrieval (Berger et al., 2018; 
Li et al., 2018, 2019; Wang et al., 2018). RTMs explain the interaction 
of photons with the biophysical and biochemical attributes of plants 
and find extensive applications in remote sensing, encompassing the 
2 
inversion of parameters from satellite bands, the development of para-
metric and nonparametric regression techniques, and the integration 
of machine learning (ML) regression methods with RTM simulations in 
hybrid regression approaches (Verrelst et al., 2019).

While conventional methodologies, such as regression models de-
veloped using indices like NDVI and in-situ crop biophysical data, 
have been widely applied, their transferability across different temporal 
and spatial contexts is often limited (Kang et al., 2016; Ali et al., 
2016). Recent studies have highlighted these challenges (Mridha et al., 
2021), emphasizing the need for more robust alternatives. This study, 
therefore, focuses on a novel approach that addresses these limitations 
by leveraging physical models based on RTM, which have been proven 
to be more robust, transferable, and accurate in retrieving crop bio-
physical and biochemical parameters (Mridha et al., 2014; Sehgal et al., 
2013, 2016; Upreti et al., 2019; Bacour et al., 2006). The major limi-
tations of this approach include the ill-posed problem, where different 
combinations of biophysical and biochemical parameters can produce 
similar reflectance values, and the relatively slow computational speed 
compared to other methods.

This research aims to assess nitrogen concentration in agricultural 
fields throughout the cropping season by leveraging RS data and RTMs. 
The integration of these technologies offers a novel approach to esti-
mate crucial variables related to soil fertility and crop nutrition. The 
specific objectives include exploring the potential of capturing key 
variables using satellite data, evaluating the accuracy of nitrogen level 
retrieval and biomass estimation for a selected crop through a machine 
learning model trained on simulated reflectance at the canopy level, 
assessing the impact of nitrogen levels on crop yield at the season’s con-
clusion, and testing the spatiotemporal transferability of the produced 
models. By addressing these objectives, this study seeks to contribute 
valuable insights into the application of remote sensing and machine 
learning for precision agriculture, bridging existing knowledge gaps in 
the utilization of these techniques for optimizing crop management 
practices. Given the importance of the Gezira Scheme as one of the 
largest irrigation initiatives globally—historically contributing to 60% 
of Sudan’s total wheat production from 1980 to 1990 (Elsayed et al., 
2019), this research is especially relevant for promoting sustainable 
practices within extensive irrigation systems.

2. Materials and methods

2.1. Study area

The Gezira Scheme, situated south of Khartoum, the capital of 
Sudan, encompasses Al Gezira State. As depicted in Fig.  1, the scheme 
is divided into four main divisions. Nestled between the Blue Nile and 
White Nile rivers, the Gezira Scheme constitutes a significant agricul-
tural area boasting extensive irrigation infrastructure. The Sennar dam 
and reservoir in the Blue Nile serve as the command level for the 
scheme’s gravity flow-based irrigation canals. Managed by a singular 
governing body, the scheme stands as one of the world’s largest irriga-
tion projects (Hussein et al., 2002). Covering approximately 882,400 
hectares (2.1 million feddans), the Gezira Scheme surpasses the com-
bined size of all projects in the Blue Nile river basin, such as Asalaya 
and Rahad. Wheat emerges as one of the primary crops cultivated 
within the scheme, typically sown in early to mid-November and 
harvested 110–120 days post-sowing, with an estimated yield ranging 
from 0.85 to 1.0 tonnes/feddan (2.02–2.38 tonnes/ha) (Elkhidir, 2019).

This study focused on three wheat-cultivating farms located in the 
southern sector of the Gezira Scheme, within the Musalamia admin-
istrative unit of the project area (Fig.  2). Fieldwork was carried out 
during the 2021–22 cropping season, and the selection of farms was 
guided by the availability of relevant data. A key consideration in the 
selection was that the farmer had implemented an experimental trial 
during the season, applying three separate fertilization regimes across 
the three farms (details provided in Table  1). The final yield achieved 
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Fig. 1. Gezira irrigation scheme main divisions.
Fig. 2. The three wheat farms in southern part of Gezira Scheme.

at the end of the season served as the main criterion for determining 
the most effective fertilization strategy.

In this experiment, the process started with land ploughing at the 
beginning of October, preparing the ground for the subsequent sowing 
period (which occurred after 45 days). During this phase, varying levels 
of Di-ammonium Phosphate (DAP) were applied across the three farms 
(as detailed in Table  1). Notably, Farm-1 utilized Single Super Phos-
phate (SSP) in conjunction with DAP. Following these initial stages, 
the first irrigation was typically applied between the 15th and 20th of 
November. As the season progressed, a total of eight irrigation events 
were administered, each spaced 12 days apart. Urea application took 
place from the second to the fifth irrigation, with each application 
3 
amounting to 59.5 kg/ha. Ultimately, the crop reached maturity 100 
days after the first irrigation, indicating its readiness for harvest.

To test the Spatiotemporal transferability of the trained models an 
analysis was conducted for a different subzone in the Gezira scheme, 
namely called Wad-Hilal area, more specifically, the focus was on eight 
tertiary units (named hereafter as Nimras) during the 2022–23 Winter 
season (see Fig.  3). During that season, these eight Nimras had a total 
of 214 Wheat-cultivating farms all of which had a record of the final 
yield collected by HRC as part of Elnour (2023) research.

2.2. Experimental setup

Fig.  A.16 provides an overview of the methodology employed in this 
study. The core analysis for the study covered a wider area, demarcated 
by the yellow boundary in Fig.  2, which included the three farms of 
interest.

2.2.1. RTM
The process of radiative transfer modeling begins with the random 

generation of 21,000 distinct points, each comprising a set of 14 bio-
physical and biochemical variables (BV) values representing PROSPECT 
and SAIL parameters. These input points were independently created 
outside the model and thoroughly designed to align with the specified 
statistical properties of the parameters and their relationship with LAI. 
Before proceeding with further steps, a sensitivity analysis was con-
ducted to evaluate the connection between the simulated reflectance 
and various factors, including LAI, Cp, sun zenith angle (SZA), viewing 
zenith angle (VZA), and Relative Sensor-Solar Azimuth Angle (psi). The 
selection of relevant Sentinel-2 (S2) bands was based on the outcomes 
of this sensitivity analysis. Subsequently, the fraction of absorbed pho-
tosynthetically active radiation (fAPAR) and canopy reflectance were 
simulated across all input configurations. The simulated canopy re-
flectance values were then adjusted to match S2-specified bands using 
the Sentinel-2 Spectral Response Function (S2-SRF).
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Fig. 3. Wad Hilal subzone and the eight tertiary units.
Table 1
Farm management strategies during the 2021-22 season.
 Parameter Farm-1 Farm-2 Farm-3  
 Area in Feddan (Hectare) 6 (2.52 ha) 6 (2.52 ha) 6 (2.52 ha) 
 Sowing amount (kg/ha) 143 143 143  
 Land Preparation Fertilizer (kg/ha) 119 DAP + 119 SSP 119 DAP 178 DAP  
 Urea (kg/ha) 238 238 238  
 Yield (tonnes/ha) 3.4 2.9 4.2  
2.2.2. Machine learning
The aforementioned process yielded an extensive database, which 

was subsequently divided into two subsets for training and validation 
purposes. Each subset comprised paired data, consisting of simulated 
reflectance and nitrogen content for training the nitrogen Gaussian Pro-
cess Regression (GPR) model, and simulated reflectance and fAPAR for 
the fAPAR GPR model. The choice of GPR was further supported by the 
findings of Upreti et al. (2019), who compared various machine learn-
ing algorithms and concluded that Gaussian Processes outperformed 
others during cross-validation for estimating classical biochemical and 
biophysical variables. The decision to generate 21,000 points for this 
database was informed by insights from available literature and a 
systematic trial-and-error approach. Of the total 21,000 points, 14,000 
were allocated for training, a number deemed sufficient to achieve 
robust training performance, surpassing the minimum requirement of 
10,000 points suggested for a medium complexity problem by Weiss 
and Baret (2016). This approach aimed to strike a balance between data 
size and time efficiency for both training and prediction tasks.

Considering that Gaussian Processes entail computationally inten-
sive processes, the training of both models 𝑁 GPR and fAPAR GPR took 
place within the Google Colab cloud environment, leveraging the com-
putational capacity of an NVIDIA A100 Tensor Core GPU with 40 GB 
VRAM. Each model underwent 10,000 training iterations, followed by 
validation using 7000 testing data points. During validation, metrics 
such as Root Mean Square Error (RMSE) and R-squared (R2) were 
computed to assess the models’ adherence to the dataset.
4 
2.2.3. Prediction and validation
For this study, S2 images covering all of the 2021–22 cropping 

season were acquired and subsequently clipped to the boundaries of 
the study area. The trained GPR models were then applied to the ten 
S2 bands to predict 𝑁 and fAPAR across the entire study area, as 
illustrated in Fig.  2. Subsequently, the fAPAR predictions were used to 
calculate Net Primary Production (NPP) for the study area. Following 
this prediction phase, the anticipated values underwent a comparative 
validation assessment, wherein they were compared against the actual 
field measurements recorded during the 2021–22 growing season for 
the three farms under investigation. Finally, the time series of nitrogen 
concentrations, along with the corresponding estimates of biomass, 
were utilized in conjunction with a selected Wheat Nitrogen dilution 
curve to determine the application rate of nitrogen fertilization and 
assess its alignment with the crop’s needs throughout the growing 
season.

2.2.4. Spatial and temporal transferability
To evaluate the model’s ability to operate across diverse locations 

and timeframes, a spatiotemporal transferability assessment was con-
ducted during the 2022–23 winter season. This assessment involved 
running the trained GPR models to predict 𝑁 concentration and fAPAR 
over the eight Nimras in the Wad Hilal unit (Fig.  3). Subsequently, the 
correlation between the estimated nitrogen concentration and both the 
modeled and actual recorded yield was computed.
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Table 2
PROSAIL input parameterization for creating Sentinel-2 reflectance used for GPR training.
 Parameter Abbrev. (unit) Distribution law Min Max SD Mode Ref.  
 PROSPECT-PRO:
 Leaf protein content 𝐶𝑝 (g/cm2) Gaussian 0.001 0.0025 0.0005 0.00175 Berger et al. (2020)  
 Leaf chlorophyll a + b content 𝐶𝑎𝑏 (μg/cm2) Gaussian 20 90 30 45 Delloye et al. (2018) 
 Leaf structure parameter n (no dim.) Uniform 1.3 2.5 – – Verrelst et al. (2016) 
 Equivalent water thickness 𝐶𝑤 (cm) Uniform 0.002 0.05 – – Rivera et al. (2013)  
 Leaf carotenoid content 𝐶𝑐𝑎𝑟 (μg/cm2) Gaussian 0 15 3 7 Berger et al. (2020)  
 Leaf anthocyanin content 𝐶𝑎𝑛𝑡ℎ (g/cm-2) Gaussian 0 2 0.3 1 Berger et al. (2020)  
 Brown pigment content 𝐶𝑏𝑟𝑜𝑤𝑛 (no dim.) Gaussian 0 2 0.3 0 Delloye et al. (2018) 
 Carbon-based constituents 𝐶𝑏𝑐 (g/cm2) Gaussian 0.001 0.01 0.0015 0.005 Berger et al. (2020)  
 Leaf mass per area 𝐶𝑚 (g/cm2) Uniform 0.001 0.03 – – Rivera et al. (2013)  
 4SAIL:
 Leaf area index LAI (m2/m2) Gaussian 1 8 2 2 Rivera et al. (2013)  
 Average leaf inclination angle lidfa (◦) Uniform 30 80 – – Delloye et al. (2018) 
 Hotspot parameter hspot (m/m) Uniform 0.05 0.5 – – Richter et al. (2011)  
 Soil brightness rsoil (no dim.) Uniform 0 1 – – Berger et al. (2020)  
 Soil moisture psoil (no dim.) Uniform 0 1 – – –  
 Sun zenith angle SZA (◦) – 40◦ –  
 View zenith angle VZA (◦) – 0◦ –  
 Sun-sensor azimuth angle psi (◦) – 0◦ –  
2.3. Data

2.3.1. Generating the learning database
The selection of appropriate ranges for the biophysical and bio-

chemical variables (BV) is crucial for ensuring the accuracy of forward 
simulation in PROSAIL. Careful consideration of these ranges is es-
sential to ensure that the simulated reflectance accurately captures 
meaningful features of the BV. Consequently, when creating the train-
ing dataset for the Gaussian Process (GP) model, it is imperative to 
choose parameter ranges that mitigate the potential ill-posed problem. 
Therefore, for each input parameter, the typical range and distribution 
are determined (Table  2 lists the input parameters for the PROSAIL 
model, along with notations, units, and the range of parameters).

To establish a relationship between BV and LAI, we adopted a 
concept introduced by Weiss and Baret (2016). According to this 
concept, the dynamics of parameters vary linearly with LAI, and 
these changes are constrained by new limits defined as Vmin(LAImin), 
Vmax(LAImin), Vmin(LAImax), and Vmax(LAImax). These modified 
limits are illustrated in Table  3, providing a clearer understanding 
of how parameter values evolve in response to variations in LAI 
compared to their original boundaries. Specifically, as LAI transitions 
from LAImin to LAImax, the BV range undergoes adjustments within 
linear upper and lower limits that extend from Vmax(LAImin) to 
Vmax(LAImax) and from Vmin(LAImin) to Vmin(LAImax), respectively. 
This approach enables a finer characterization of parameter behavior 
across the entire LAI range, thereby enhancing the accuracy and 
reliability of our modeling framework.

Following the generation of PROSAIL simulations, adjustments were 
made to match the actual spectral response of Sentinel-2 (S2) using 
the latest Sentinel-2 Spectral Response Function (S2-SRF). Additionally, 
while fAPAR is not a primary input parameter, it was simulated by 
running the same input parameters for all generated reflectance values. 
Subsequently, the training database was divided into two segments: 
two-thirds were designated for training the Gaussian Process (GP) 
model, while one-third was allocated for validation.

2.3.2. Sentinel-2
The Copernicus Sentinel-2 (S2) mission provides spectral reflectance 

data with frequent revisits every 5 days, fine spatial resolution (10 m), 
comprehensive global coverage, and an open access policy (Gascon 
et al., 2017). These attributes collectively position it as an invaluable 
resource for the development of near-real-time operational agricultural 
services (Delloye et al., 2018). In this study, the level two product (L2A) 
of the multispectral instrument (MSI) was utilized to acquire the S2 mis-
sion tiles with relative orbit number 078 and tile number 36PWB across 
the targeted cropping season from November 2021 to February 2022 
5 
Table 3
Statistical properties of the PROSAIL input parameters.
 Parameter Vmin(LAImin) Vmax(LAImin) Vmin(LAImax) Vmax(LAImax) 
 𝐶𝑝 0.001 0.0025 0.0019 0.001  
 𝐶𝑎𝑏 20 90 45 90  
 n 1.3 2.5 1.4 2  
 𝐶𝑤 0.002 0.05 0.004 0.05  
 𝐶𝑎𝑟 0 15 0.1 0.5  
 𝐶𝑎𝑛𝑡ℎ 0 2 0 2  
 𝐶𝑏𝑟𝑜𝑤𝑛 0 2 0 2  
 𝐶𝑏𝑐 0.001 0.01 0.003 0.01  
 𝐶𝑚 0.001 0.03 0.005 0.03  
 LAI – – – –  
 lidfa 30 80 55 65  
 hspot 0.05 0.5 0.05 0.5  
 rsoil 0 1 0 0.2  
 psoil 0 1 0 1  

(Table  4). The L2A data undergoes atmospheric correction through the 
Sen2Cor processor, eliminating the need for additional correction steps 
and enhancing the reliability of the reflectance values used in our anal-
ysis. Cloud cover for all images remained well below the 20% threshold. 
Subsequently, the acquired L2A products were clipped to match the 
study area (Fig.  2) and were transformed from digital numbers to 
reflectance values at 10 m resolution using the semi-automatic classi-
fication plugin in QGIS (Congedo, 2021). This processing resulted in a 
set of 10 bands that will serve as inputs for predicting nitrogen content 
and fAPAR. The selection of these specific bands was guided by their 
robust correlation with plant nitrogen content and biomass estimation. 
Notably, prior research highlights the significance of certain bands in 
these estimations. For instance, Guerif et al. (2007) demonstrated the 
feasibility of assessing nitrogen concentration through spectral features 
in visible and Red-edged bands, which are indicative of chlorophyll 
content.

Similarly, Berger et al. (2020) advocated for the utilization of 
the short-wave infrared (SWIR) spectral domain to estimate nitrogen 
levels through the proxy of proteins. In this context, the results of the 
sensitivity analysis, combined with insights from existing literature, 
was leveraged to determine the optimal bands for estimating nitrogen 
concentration and biomass.

2.4. PROSAIL-PRO configuration

2.4.1. N content estimation
In this study, a Python version of PROSAIL-PRO (Domenzain et al., 

2019) was employed to generate a lookup table (LUT) to serve as a 
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Table 4
S2-MSI-L2A Acquired data for 2021-22 season.
 Sensing date Platform Cloud cover % 
 2021–11–23 A 0.0  
 2021–11–28 B 0.0  
 2021–12–03 A 0.0  
 2021–12–08 B 0.0  
 2021–12–13 A 1.4  
 2021–12–18 B 0.0  
 2021–12–23 A 1.5  
 2021–12–28 B 0.0  
 2022–01–07 B 0.3  
 2022–01–12 A 2.9  
 2022–01–17 B 0.9  
 2022–01–22 A 3.4  
 2022–01–27 B 1.5  
 2022–02–01 A 0.0  
 2022–02–06 B 4.9  
 2022–02–11 A 2.7  
 2022–02–16 B 7.0  
 2022–02–21 A 0.0  
 2022–02–26 B 0.4  

training database. Operating collaboratively, this coupled model sim-
ulates canopy-scale reflectance, predicted from a diverse set of bio-
physical parameters (such as Leaf Area Index (𝐿𝐴𝐼) and average leaf 
inclination angle) as well as leaf biochemical inputs (including leaf 
Chlorophyll-a+b content (𝐶𝑎𝑏), equivalent water thickness (𝐶𝑤), and 
leaf carotenoid content (𝐶𝑎𝑟). The direct calculation of leaf nitrogen 
content (𝑁𝑎) from leaf protein content (𝐶𝑝) is facilitated through the 
protein-to-nitrogen conversion factor of 4.43 (Wang et al., 2018), as 
established by Yeoh and Wee (1994) after studying 90 plant species. 
This factor is utilized according to the equation below: 

𝑁𝑎 =
𝐶𝑝

4.43

(

g
cm2

)

(1)

Moreover, in the transition from the leaf level to the canopy scale, 
LAI served as an upscaling parameter. This enabled the calculation 
of above-ground nitrogen content from the entry points in the LUT, 
utilizing LAI and leaf protein content (𝐶𝑝) for each input point, as 
recommended by Berger et al. (2020), outlined as follows: 

above ground N content
( g
m2

)

= 𝑁𝑎

(

g
cm2

)

× LAI
(

m2

m2

)

× 10,000 (2)

2.4.2. fAPAR simulation
In the domain of canopy radiative transfer, the computation of 

fAPAR encompasses multiple elements. This involves the direct ab-
sorption of radiation by the canopy (a1(𝜆)), along with the fraction 
reflected by the background and subsequently absorbed by the vege-
tation (a2(𝜆)). Consequently, the total energy absorbed by the green 
canopy can be expressed by the equation: 
𝑎(𝜆) = 𝑎1(𝜆) + 𝑎2(𝜆) (3)

Here, 𝜆 denotes the wavelength. The determination of a1(𝜆) rests 
upon the assumption of negligible background reflectance (rg). In this 
context, the instantaneous fAPAR can be expressed as:

Here, 𝜆 denotes the wavelength. The calculation of a1(𝜆) is predi-
cated on the assumption of negligible background reflectance (rg). In 
this context, the instantaneous fAPAR can be formulated as: 

𝑓𝐴𝑃𝐴𝑅 = ∫

0.7𝜇m

0.4𝜇m
𝑎(𝜆) 𝑑𝜆 (4)

This conceptual framework is adapted from (Fan et al., 2014). In the 
core of the computation of fAPAR within this framework are a series of 
critical parameters, which are either directly calculated or derived as 
secondary quantities within the SAIL model. The SAIL parameter for the 
fraction of diffuse incoming solar radiation (skyl) incorporates the Solar 
Zenith Angle (SZA) (François et al., 2002), which is based on an average 
6 
atmospheric condition representative of mid-latitudes. The calculation 
of skyl is expressed as: 
𝑠𝑘𝑦𝑙 = 0.847 − 1.61 sin(90◦ − SZA) + 1.04 sin2(90◦ − SZA) (5)

The simulation process commenced with the computation of the 
direct component of solar irradiance reaching the canopy (edir) and the 
hemispherical diffuse component (edif), with es and ed representing the 
solar irradiance spectra for direct and diffuse illumination, respectively.

Subsequently, leveraging insights from (Verhoef and Bach, 2007; 
Zhou et al., 2017), 𝛼𝑠 and 𝛼𝑑 , indicating the absorbance of the isolated 
canopy layer concerning solar and hemispherical diffuse incident flux, 
were computed utilizing the internal parameters generated during 
the execution of 4SAIL as a sub-process within PROSAIL-PRO. These 
parameters encompassed tss (beam transmittance in the sun-target 
path), tsd (canopy directional-hemispherical transmittance factor), rsd 
(canopy directional-hemispherical reflectance factor), tdd (canopy bi-
hemispherical transmittance factor), and rdd (canopy bi-hemispherical 
reflectance factor). Consequently, the parameters 𝛼𝑠𝑥 and 𝛼𝑑𝑥, signi-
fying the canopy absorption for edir and edif, respectively, were also 
derived by utilizing 4SAIL-generated parameters alongside the param-
eter dn, which represents the interaction with the background soil. 
Finally, fAPAR simulation was accomplished by applying the equation:

𝑓𝐴𝑃𝐴𝑅 =
∑300

𝑖=0(𝛼sx ⋅ edir[𝑖] + 𝛼dx ⋅ edif[𝑖])
∑300

𝑖=0(edir[𝑖] + edif[𝑖])
(6)

The slicing factor was defined within the range of 0 to 300 to 
compute these values, with consideration given only to wavelengths 
between 400 and 700 nm.

Moreover, the estimated fAPAR was subsequently utilized to com-
pute Net Primary Production (NPP; gC/m2/day) using the following 
equation (FAO, 2020): 
𝑁𝑃𝑃 = 𝑆𝑐 ⋅ 𝑅𝑠 ⋅ 𝑓𝐴𝑃𝐴𝑅 ⋅ 𝑆𝑀 ⋅ 𝜀𝑙𝑢𝑒 ⋅ 𝜀𝑝 ⋅ 𝜀𝑡 ⋅ 𝜀𝑐𝑜2 ⋅ 𝜀𝐴𝑅 (7)

Where:

• 𝜀(𝑇 ,CO2) is a function derived from 𝑆𝑐 represents the scaling 
factor from Dry Matter Production (DMP) to NPP (0.045).

• 𝑅𝑠 denotes the total shortwave incoming radiation (GJ/ha/day) 
(from ERA5-Land Hourly, ‘surface_solar_radiation_downwards’).

• 𝜀𝑝 signifies climate efficiency (0.48).
• 𝑆𝑀 stands for Soil Moisture stress reduction factor (equal to 1).
• 𝜀𝑙𝑢𝑒 is Light Use Efficiency (LUE) at optimum conditions (2.7 
kgDM/GJPA for a C3 crop like Wheat).

• 𝜀𝐴𝑅 is the fraction retained after autotrophic respiration (0.5).
• 𝜀𝑡 denotes the normalized temperature effect (Estimated using 
‘‘ERA5 Daily Avg Temperature’’ and the Wheat temperature func-
tion from (Durgun et al., 2016)).

• 𝜀𝑐𝑜2 represents the normalized CO2 fertilization effect. Estimated 
using the function proposed by Veroustraete (1994): 

𝜀CO2
=

CO2

COref2

(8)

Where:

– CO𝑟𝑒𝑓
2  represents the CO2 mixing ratio for the reference year 

1833, taken as 281 ppm.
– CO2 was taken from the annual ‘spatial’ average of globally-
averaged (CO2) data from the NOAA-ESRL1 (414.7 ppm for 
2021, 417.07 ppm for 2022).

Following this, a basic linear interpolation was implemented to 
estimate the cumulative values of NPP at the start and end of each 
month, aiming to ascertain the total NPP at the conclusion of the 

1 https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt

https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt
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growing season. Subsequently, the yield was estimated utilizing the 
equation proposed by Mul and Bastiaanssen (2019): 

Yield =
𝑁𝑃𝑃 ⋅ (𝐴𝑂𝑇 ⋅ 22.222 ⋅ 𝑓𝑐 )

1 −𝑀𝑐
⋅𝐻𝐼 (9)

Where: AOT represents the above over total biomass (0.85), 𝑓𝑐
stands for the correlation factor for light use efficiency, Mc is the 
moisture content in fresh biomass (0.15 for wheat), HI represents the 
harvest index (taken as 0.4 for Wheat in Gezira estimated by the 
Hydraulic Research Centre (HRC)), and NPP value here is the seasonal 
estimate.

2.5. GP models configuration

2.5.1. Model structure
Constructing a GPR model entails crucial decisions regarding the 

mean function and the kernel function, which essentially govern the 
behavior of the model. In this study, the mean function was formu-
lated as a simple function that consistently yields the mean value of 
observations (parameter values). To capture the diverse features of the 
RTM simulated dataset, we employed the Exponentiated Quadratic co-
variance kernel provided by TensorFlow-Probability (tfp) (Dillon et al., 
2017) to train the GPR models. This process started with defining and 
initializing the kernel’s hyperparameters, including the amplitude (rep-
resenting the overall variance) and length scale. Moreover, the number 
of feature dimensions (feature_ndims) was specified as 1, given that 
the training dataset comprises pairs of parameter values and reflection 
values. Furthermore, the modeling process took into account observa-
tional noise by incorporating the observation_noise_variance parameter 
of the TensorFlow Gaussian process model. This culminated in three 
trainable hyperparameters: amplitude, length scale, and observation 
noise variance.

2.5.2. Model optimization
The optimization process began with the definition of a mini-batch 

data iterator, with a batch size set to 1000. This iterator was in-
stantiated using TensorFlow’s tf.data.Dataset functionality, facilitating 
efficient data handling and memory usage during training. To introduce 
randomness and mitigate overfitting, the data was shuffled with a 
buffer size matching the total size of the training dataset, set at 14,000.

For optimization, the Adaptive Moment Estimation (ADAM) op-
timizer was selected and configured with a learning rate of 0.001. 
ADAM was chosen due to its efficacy in dynamically adjusting learning 
rates for each parameter throughout the training process. As detailed 
by Kingma and Ba (2014), ADAM stands out for its computational ef-
ficiency, low memory footprint, robustness to gradient diagonal rescal-
ing, and suitability for managing high-dimensional data and parameter 
spaces.

Moreover, a negative log-likelihood (NLL) loss function, denoted 
as gp_loss_fn, was defined. This function encapsulated essential 
aspects of the Gaussian Process (GP), including the mean function, 
kernel function, index points (representing reflectance in this context), 
and observation noise variance. The NLL loss function aimed to mini-
mize the negative log-likelihood of the model, thereby optimizing it to 
make precise predictions while accommodating the inherent noise in 
the observations.

These optimization procedures collectively contributed to enhanc-
ing the performance and reliability of the Gaussian Process Regression 
(GPR) model for subsequent analyses. Following this, the model en-
tered a training loop, wherein batched NLL loss values were computed 
and stored for plotting (batch_nlls), while full data NLL values 
were periodically assessed to comprehensively evaluate model perfor-
mance (full_ll). The training process extended over 10,000 itera-
tions (nb_iterations), with updates logged at every 20 iterations 
(log_interval).

To preserve a trained GP model, the trained parameters, including 
kernel hyperparameters and observation noise variance, were saved, 
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along with the training dataset comprising reflectance values and corre-
sponding parameter values. This dataset facilitated the re-computation 
of the mean function and subsequent estimation of the standard devia-
tion (STD) when making predictions on new data.

2.5.3. Posterior prediction
For conducting predictions through posterior inference (post-

training), the tfp.Distribution GPR class was employed. GPR models 
were initiated using the trained kernel hyperparameters, observation 
noise variances, and the training data specific to each model. These 
GPR models were then used to predict the corresponding parameters 
(N, fAPAR) and their associated standard deviations (uncertainties) for 
each row in the acquired Sentinel-2 (S2) bands at the specified date 
within the study area. Subsequently, these row-level predictions were 
accurately mapped to their respective positions in the predicted maps 
(Predicted_parameter_map and Prediction_stdev_map).

3. Results and discussion

3.1. PROSAIL-PRO

3.1.1. Input data sets
Fig.  4 displays how the generated PROSAIL-PRO input variable, a 

total of 14 of them, as specified in Tables  3 and 4, are interconnected 
with LAI distribution, as highlighted in 2.3.1.

In these scatter plots, we can observe a clear linear relationship 
between LAI and the Leaf structure parameter (n), Leaf chlorophyll 
content (𝐶𝑎𝑏), Leaf carotenoid content (𝐶𝑎𝑟), Leaf water content (𝐶𝑤), 
Leaf dry matter (𝐶𝑚), and Soil brightness (𝑟𝑠𝑜𝑖𝑙).

The distribution of LAI values follows a Gaussian distribution with 
most of them centered around LAI = 2, reported sd of 2. The range 
of LAI was set between 1 to 8, as the expected LAI trend for Wheat 
is from 0 to 4.5, the range was set in this way to limit the problem of 
having out-of-range canopy reflectance simulations with low LAI values 
(less than 0.8) which will eventually affect the trained GPR model’s 
ability in estimating 𝑁 and fAPAR in early stages of plant development. 
Furthermore, having very high LAI values for training the model is 
important for the GPR not to be over-saturated with high values (n the 
normal limit) during training and for better performance with extreme 
cases while predicting.

The artefacts observed in the distributions, such as the initial drop in 
the Cm uniform distribution and the contrasting trends in the uniform 
distributions of n and rsoil, can be attributed to the co-distribution con-
straints imposed with high LAI values. Similarly, the decreasing trend 
in the Gaussian distributions of Cab also arises from these constraints.

After generating the input points, 𝑁 was calculated using the equa-
tions in Section 2.4.1 from the values of LAI and Cp for each input 
point. This resulted in a range of 𝑁 values from 2.26 to 45.15 g∕m2. The 
histogram depicted in Fig.  5 showcases the distribution of 𝑁 values. 
In this histogram, each bar represents a specific range of 𝑁 values, 
and the height of the bars indicates the frequency of occurrence within 
each range (with a total sum of 21,000 points). The highest bars in the 
histogram correspond to the most frequent 𝑁 values, providing a clear 
visual representation of the data’s distribution.

The majority of 𝑁 values are concentrated within the range of 5 to 
20 g∕m2, as evidenced by the prominent bars in this interval. This range 
aligns well with the suitability for training a Gaussian Process Regres-
sion (GPR) model to predict Wheat’s 𝑁 content, as it encompasses the 
normal variation in 𝑁 content within wheat leaves (2.4 to 13.2 g∕m2) 
during the growing season, as documented in previous research (Berger 
et al., 2020).
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Fig. 4. PROSAIL-PRO input parameters co-distributions.
3.1.2. Distribution of simulated variables
After running PROSAIL-PRO using the generated dataset of 21,000 

points, the process concluded with two simulated variables: top of 
canopy reflectance from 400 to 2500 nm for each input point and 
simulated fAPAR. In Fig.  6, the statistical characteristics, including the 
mean, STD, and range, for all the generated reflectance values were 
highlighted. It is important to note that PROSAIL-PRO is only capable of 
generating canopy reflectance, the input data (especially the LAI range) 
was set in a way that ensures the model only simulates reflectance data 
from the budding growth stage (or the end of the vegetative stage) 
onwards.

This particular configuration is chosen due to a limitation in RS. 
From an RS perspective, obtaining valuable information during the 
early stages of plant growth, especially during the vegetative stage 
when the canopy is still forming, poses a significant challenge. This 
challenge remains unless there is access to higher spatial and spectral 
resolution data.

Subsequently, a statistical test was conducted to assess the poten-
tial presence of the ill-posed problem (having two similar reflectance 
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spectrums attributed to different parameter values) within the gen-
erated dataset. The result shows that there were no two reflectance 
profiles found to be entirely identical, even following the application of
S2-SRF to derive band values and this can be attributed to two key 
factors. Firstly, the reasonable selection of parameter ranges during 
the generation process. These parameter ranges were defined to mimic 
realistic vegetation scenarios. Secondly, co-distributing the parameters 
with LAI significantly contributed to the uniqueness of the simulated 
reflectance values.

Fig.  7 presents a histogram depicting the simulated fAPAR values. 
Just as explained previously, the fAPAR values are predominantly 
distributed above the 0.5 threshold to ensure that the trained GPR 
model can accurately estimate these values, particularly during the 
intermediate and advanced growth stages of vegetation.

This was driven by a particular consideration: during the early 
stages of growth, Satellite RS data often faces challenges in capturing 
accurate canopy reflectance values due to interference from water and 
background soil reflectance.
Fig. 5. Above ground nitrogen distribution calculated for each input point using leaf area index and leaf protein content.
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Fig. 6. PROSAIL-PRO simulated reflectance mean, standard deviation, and range for all input points.
Fig. 7. PROSAIL-PRO simulated fraction of absorbed photosynthetically active 
radiation distribution.

3.2. GPR models

3.2.1. Training
During the training process, a gradient-based approach, specifically 

ADAM, was employed to minimize NLL. The complexity of the log 
marginal likelihood pose a challenge, potentially leading to overfit-
ting of the data. To address this concern, the dataset was partitioned 
into training (14,000) and validation (7000) sets. The model selection 
process focused on identifying the best-fit models by evaluating their 
performance on the validation set, thereby minimizing the risk of 
overfitting and ensuring robust generalization to unseen data.

The 𝑁 GPR model demonstrated the most robust performance 
during training. This outcome can likely be attributed to the Gaussian 
distribution of 𝑁 values (depicted in Fig.  5), which is almost centered 
and well-distributed. In contrast, the distribution of fAPAR values (Fig. 
7) is right-skewed.

It is worth mentioning that the normal range of NLL typically falls 
between zero and positive infinity. However, the occurrence of negative 
NLL values during the training of the fAPAR model could indicate 
potential over-fitting to the training data. Negative NLL values are 
associated with likelihoods derived from probability density functions. 
This was the case with fAPAR (Fig.  7), given that fAPAR values typically 
range between 0 and 1. To assess this, it is essential to consider 
the relative difference between the beginning and end of training. 
Cross-validation, utilizing the validation data points, helps confirm the 
significance of this difference.

RMSE and 𝑅2 values for the 𝑁 GPR model were 3.56 (g∕m2) and 
0.66, respectively. For the fAPAR GPR model, these values were 0.044 
and 0.82. These metrics collectively indicate that all three models are 
not over-fitting the data and demonstrate relatively strong performance 
in their respective tasks.

3.2.2. N prediction
Fig.  8 presents the time series of the Normalized Difference Vegeta-

tion Index (NDVI; (Rouse et al., 1974)) computed for the three farms, 
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encompassing all the acquired S2 images during the 2021–22 season 
(see Table  2). To provide a comprehensive spatial representation, the 
mean and standard deviation were calculated across all pixels within 
each farm area.

Interestingly, the NDVI trends across the three farms show a rela-
tively uniform pattern throughout the season. NDVI values increased 
steadily during the early growth stages and peaked in mid-January, 
followed by a sharp drop and a subsequent plateau. This decline 
corresponds with the transition of wheat into the heading and ripening 
stages, where nitrogen is remobilized from leaves and stems into the 
grain. Since nitrogen exists in both chlorophyll and protein forms — 
both closely linked to canopy greenness — the decline in NDVI during 
this period reflects a physiological reduction in leaf greenness.

Fig.  8 also presents the time series of predicted above-ground nitro-
gen concentration, derived using the trained N-GPR model based on 10 
S2 bands. As with NDVI, the mean and standard deviation were com-
puted across each farm’s extent. Although the model showed limited 
accuracy in early growth stages (seeding to tillering), it performed well 
from stem elongation onward, aligning with known physiological shifts 
in nitrogen partitioning.

The motivation for comparing NDVI and nitrogen concentration 
time series stems from a desire to explore canopy color dynamics across 
the crop’s growth stages and assess how visible greenness patterns 
relate to nitrogen redistribution. While NDVI alone cannot distinguish 
among different nutrient management strategies, its temporal behavior 
can serve as an indirect indicator of crop status when interpreted 
alongside biochemical indicators like nitrogen concentration.

At first glance, the nitrogen concentration time series exhibits a 
trend similar to the NDVI curve. This alignment validates the model’s 
ability to track nitrogen uptake and redistribution across stages. As 
nitrogen remobilizes toward the grain, both NDVI and modeled 𝑁
concentrations decline. This relationship supports physiological evi-
dence in the literature; for example, Simpson et al. (1983) found that 
approximately 40% of the grain’s nitrogen originates from remobilized 
leaf nitrogen.

However, while NDVI trends may appear similar between farms 
(e.g., Farms 1 and 3), this does not imply uniform agronomic condi-
tions. It is important to note that these farms differed in initial nitrogen 
inputs and land preparation techniques. Moreover, NDVI calculated 
from just two spectral bands—is known to saturate in high biomass 
conditions and lacks sensitivity to subtle nutrient variations. In con-
trast, our nitrogen model utilizes a broader spectral input, enabling 
more detailed biochemical assessments. This is particularly relevant 
when considering that a 0.8 tonnes/ha yield difference between Farms 
1 and 3, while substantial, is not necessarily evident in NDVI due to its 
inherent limitations.

Finally, the nitrogen estimates from the GPR model are instan-
taneous, reflecting canopy status at the time of satellite overpass. 
The maximum predicted 𝑁 concentration represents the cumulative 
uptake from fertilization events, which were uniformly applied from 
the second to fifth irrigation. Interestingly, nitrogen concentration con-
tinued to increase for approximately 10–12 days after the final Urea 
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Fig. 8. Normalized difference vegetation index time series for the three farms (top) and predicted above-ground nitrogen time series (bottom).
Fig. 9. N-GPR model predicted above ground nitrogen for 2022-01-22.
Table 5
Approximated nitrogen consumption for each farm through the season.
 Farm # Farm-1 Farm-2 Farm-3 
 Total N consumed (kg/ha) 52.36 52.36 56.6  
 Predicted mean N content (kg/ha) 65.2 55 60.5  

application—highlighting the absorption lag as nitrogen moves from 
the soil to the plant.

Fig.  9 showcases the above ground 𝑁 concentration predicted by 
the trained N-GPR using the S2-acquired bands on January 22, 2022.

The appearance of negative values within the predicted map across 
the study area can be attributed to various factors. Firstly, these nega-
tive values are associated with the presence of water bodies, such as the 
major irrigation canal in the eastern part of the study area and the main 
10 
and minor canals. Furthermore, areas with built-up infrastructure, such 
as villages, often exhibit negative and near-zero values. Additionally, 
the negative values observed in agricultural areas may result from these 
regions lying fallow during that particular cropping season.

It is important to note that these negative and low values occur due 
to the GPR model’s training solely on canopy reflectance. Such outliers 
arise from the extrapolation beyond the lowest value that the model 
was trained on. To gain further insight into areas where the model 
struggled to interpret reflectance data, we can refer to the generated 
uncertainty map (STD) of the N-GPR predictions (Fig.  10). This map 
aids in identifying regions where the model’s reflectance predictions 
may have been less reliable or where unusual values were encountered.

The STD values in the uncertainty map are indicative of the devi-
ation from the mean of the data points used during model training. 
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Fig. 10. N-GPR model uncertainties expressed as standard deviation around the mean for 2022-01-22.
Fig. 11. fAPAR-GPR model outputs on 2022-01-27: (a) Standard deviation representing uncertainty, and (b) predicted fAPAR.
Higher STD values reflect greater uncertainty in the resulting predic-
tions. It is also worth noting that both Figs.  9 and 10 showed similar 
patterns (very low 𝑁 values associated with higher uncertainty)

Using the information provided in Table  1, we can calculate the 
amount of applied 𝑁 as a percentage of the applied Urea and DAP 
fertilizers. Given that 𝑁 represents 46% of the Urea fertilizer and 18% 
of DAP, the total applied 𝑁 during the 21–22 season for Farms 1 and 
2 was 130.9 kg/ha, and for Farm-3, it was 141.52 kg/ha.

Assuming that only 40% of this applied 𝑁 was actually utilized by 
the crops, as suggested by Lassaletta et al. (2014), the consumed 𝑁 can 
be estimated as listed in Table  5 below.

Comparing these values to the predicted instantaneous mean 𝑁
concentrations for each farm on January 22, 2022 (the date with the 
highest accumulation, which represents the total amount consumed by 
the plant over the season), reveals an RMSE of 7.9 kg/ha (equivalent 
to 0.79 g∕m2). This RMSE signifies the deviation between the model’s 
predictions and the observed 𝑁 concentrations in the field. Notably, 
despite both Farm-1 and Farm-2 receiving the same amount of nitrogen 
application, the model predicted different values for them. This differ-
ence can be attributed to the additional type of fertilizer (SSP) applied 
to Farm-1, resulting in an overall higher biomass compared to Farm-2. 
Due to this difference in biomass, the model was unable to capture the 
variation in 𝑁 concentration accurately.
11 
3.2.3. fAPAR prediction
Fig.  11(a) presents the fAPAR-GPR model’s uncertainties and

Fig.  11(b) illustrates the model’s predictions for the S2 product bands 
on January 27, 2022. Similar to the N-GPR model, the fAPAR-GPR 
model generated low and negative values for water bodies and built-up 
areas, accompanied by elevated uncertainty in these predictions.

Notably, both the N-GPR and fAPAR-GPR models attributed nega-
tive values to the major canal in the eastern section of the study area 
(highlighted in red in Fig.  10).

3.2.4. Yield estimation
The bar chart in Fig.  12 compares the actual and predicted yield 

values across the three farms.
The spatial mean for the predicted yield values was found to 

be 3.86 tonnes/ha for Farm-1, 3.67 tonnes/ha for Farm-2, and 3.91 
tonnes/ha for Farm-3. RMSE for yield estimation was calculated to 
be 0.54 tonnes/ha. This value can be considered good, especially 
when considering that the accumulation was done using simple linear 
interpolation. These estimations further validate the performance of 
the fAPAR-GPR model in predicting crop yield. It can be seen from 
the bar chart that there was an overestimation of the yield values for 
Farms 1 and 2, while for Farm-3 there was a slight underestimation. 
Since the largest miss-estimation was in Farm-2, it is worth mentioning 
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Fig. 12. Predicted yield vs. actual recorded yield for the three farms.

that this could be attributed to the pixels with the high uncertainty 
(STD) values across Farm-2 borders (Fig.  11(a)). It is also worth noting 
that the same pixels faced high STD values in 𝑁 estimation (Fig. 
10), and this translates that these pixels may be representing a poor 
performing area because even the end-of-season NDVI values for it were 
low compared to the rest of the field. And because of that the model 
was not able to accurately predict fAPAR values for the farm which 
caused the underestimation and having the largest gap between actual 
and predicted values.

3.3. Dilution curve

Fig.  13 presents the estimated biomass map for the end of December 
2021, with a mean biomass production value of 2 tonnes/ha across the 
three farms. In the context of the 𝑁 dilution curves, it is important 
to note that the lower the biomass production value (in tonnes/ha), 
the steeper the dilution curve becomes, leading to higher critical N% 
values. From the curves reported by Yao et al. (2021), when the 
biomass is around 2 tonnes/ha, the critical N% can be approximated 
as 3% of the biomass.

In consideration of this assumption, the instantaneous critical 𝑁 (in 
kg/ha) was calculated for all biomass pixels across the three farms. 
These values were then compared to the predicted above-ground 𝑁
content estimated on December 28, 2021. This comparison provides 
valuable insights into the implications of the final Urea application, 
which occurred on January 7, 2022.
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The results of this assessment are depicted in Fig.  14. Clearly, 
Farms 1 and 3 exhibited 𝑁 concentrations above the critical value (the 
minimum 𝑁 concentration required to ensure growth for that specific 
biomass value), suggesting a relatively adequate 𝑁 supply. In contrast, 
Farm-2 appeared to be under significant 𝑁 stress, which could also be 
the reason for its poor final production.

Notably, despite the relatively small area of the three farms, em-
ploying this approach with S2 high resolution enabled the detection 
of spatial variability, even within these limited areas. Such advisory 
insights, even if not extraordinarily precise, can contribute to achieving 
more efficient resource utilization and economic benefits.

4. Models spatiotemporal transferability

The average overall recorded yield in Wad Hilal subzone (Fig.  3) 
during the 2022–23 season was found to be 2.25 tonnes/ha (with 
Hegeiliga_Median recording the highest average production of 2.92 
tonnes/ha, and BahiEddin3 with the lowest average production of 1.4 
tonnes/ha) (Elnour, 2023). RMSE between the actual and the model 
predicted yield for all the farms was found to be 1.6 tonnes/ha for 
the field level yield estimation and 1.01 tonnes/ha for the Nimra level 
estimation with an average overall predicted yield of 3.1 tonnes/ha.

A correlation analysis was conducted between the model’s estima-
tions for Nitrogen concentration and the model predicted NPP time 
series for each farm. The correlation between 𝑁 time series and NPP 
was found to be higher than the correlation between 𝑁 and fAPAR (Fig. 
15), with median correlation values of 0.62 and 0.59 respectively.

Furthermore, the correlation between the median estimated 𝑁 con-
centration value throughout the season and the actual recorded yield 
on a field level was found to be 0.7, while the correlation with the 
average recorded yield on a Nimra level was 0.83. In the first violin 
plot, which examines the correlation between the simulated Nitrogen 
timeseries and fAPAR simulation, a notable relationship indicative of 
the nitrogen impact on photosynthetic activity was observed. This 
correlation underscores the crucial role of Nitrogen in assessing crop 
health and productivity. However, what stands out is the subsequent 
upshift in correlation when transitioning to NPP in the second violin 
plot. This shift emphasizes the importance of accurate meteorologi-
cal parameterization when transiting from fAPAR to NPP in a way 
that helps understanding the nuanced relationship between Nitrogen 
dynamics and primary productivity.
Fig. 13. Biomass estimation for end of December 2021.
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Fig. 14. Nitrogen stress map for the three farms on December 28, 2021.

Fig. 15. Nitrogen correlation with the fraction of absorbed photosynthetically 
active radiation and net primary production.

5. Conclusions

This study demonstrated the value of integrating remote sensing 
data and machine learning with canopy radiative transfer model-
ing (PROSAIL-PRO) for estimating crop nitrogen status and biomass 
throughout the season. Using simulated reflectance data and Sentinel-
2 imagery, we trained Gaussian Process Regression (GPR) models to 
retrieve nitrogen concentration and biomass, achieving RMSE values 
of 7.9 kg/ha and 0.54 tonnes/ha respectively.

Our analysis emphasized the importance of multiple factors in 
determining retrieval accuracy, including the quality and distribution 
of simulated inputs, kernel and mean function choices in GPR, and 
external conditions such as crop stage and acquisition timing. The 
models effectively distinguished cropland from non-crop areas, but 
accurate crop-type identification (e.g., wheat) remained essential for 
precise biophysical estimations within agricultural zones.

To address the scalability challenges of GPR models in operational 
settings, we recommend exploring more computationally efficient al-
ternatives, such as linear or polynomial regressions, particularly when 
sufficient training data are available.

Correlation analysis revealed a strong link between nitrogen dy-
namics and final yield, underlining the value of including nitrogen 
as a predictive variable in crop production models to enhance yield 
estimations.
13 
Finally, the practical application of our workflow in the Gezira irri-
gation scheme showcased its potential for identifying nitrogen-stressed 
regions using PROSAIL-driven GPR models and Sentinel-2 imagery. 
This ability to map nutrient deficiencies through 𝑁 dilution curves 
offers promising pathways for more efficient nitrogen resource man-
agement and improved precision agriculture practices. 
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nret Python package

As part of this study, all functions and scripts used, ranging from 
the generation of input data points to linking their distribution to Leaf 
Area Index (LAI) and running them through the PROSAIL-PRO model, 
have been consolidated into a Python package named ‘‘nret’’ (Nitro-
gen Retrieval). The NRET package and scripts used for training the
Gaussian Process Regression (GPR) model and performing predictions 
on Sentinel-2 bands are publicly available.2

This repository streamlines the entire nitrogen retrieval process, of-
fering a user-friendly and efficient tool for researchers and practitioners 
in the field. Also, it serves as a valuable resource for those interested 
in replicating or building upon our research, promoting transparency, 
and fostering collaboration within the scientific community.
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Fig. A.16. Methodology flowchart.
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