
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Connecting Traces: Understanding
Client-Server Interactions in Ajax

Applications

Nick Matthijssen, Andy Zaidman, Margaret-Anne Storey, Ian
Bull, Arie van Deursen

Report TUD-SERG-2010-008

SERG



TUD-SERG-2010-008

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Paper accepted for publication in the Proceedings of the 18th International Conference on Program
Comprehension (ICPC 2010)

c⃝ copyright 2010, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Connecting Traces: Understanding Client-Server Interactions in Ajax Applications

Nick Matthijssen∗, Andy Zaidman∗, Margaret-Anne Storey†, Ian Bull† and Arie van Deursen∗

∗Software Engineering Research Group, Delft University of Technology, The Netherlands
Email: nick8maal@gmail.com, {a.e.zaidman, arie.vandeursen}@tudelft.nl

†Department of Computer Science, University of Victoria, Victoria, BC, Canada
Email: mstorey@uvic.ca, irbull@gmail.com

Abstract—Ajax-enabled web applications are a new breed of
highly interactive, highly dynamic web applications. Although
Ajax allows developers to create rich web applications, Ajax
applications can be difficult to comprehend and thus to
maintain. For this reason, we have created FireDetective, a
tool that uses dynamic analysis at both the client (browser) and
server side to facilitate the understanding of Ajax applications.
Using an exploratory pre-experimental user study, we see
that web developers encounter problems when understanding
Ajax applications. We also find preliminary evidence that the
FireDetective tool allows web developers to understand Ajax
applications more effectively, more efficiently and with more
confidence★.

I. INTRODUCTION

Over the last decade web development has evolved from
creating static web sites to creating rich and highly inter-
active web applications. The most important technology in
realizing this shift is Ajax (Asynchronous Javascript and
XML), an umbrella term for existing techniques such as
JavaScript, DOM manipulation and the XMLHttpRequest
object. Ajax is popular: since the term was coined in
2005 [2], a vast amount of Ajax enabled web sites have
emerged, numerous Ajax frameworks have been created and
“an overwhelming number of articles in developer sites
and professional magazines have appeared” [3]. A good
example of an Ajax application is Gmail, which uses Ajax
technologies to update only a part of the page when you
open an email conversation, and to suggest email addresses
of recent correspondents as you type.

Unfortunately, Ajax also makes developing for the web
more complex. Classical web applications are based on a
multi-page interface model, in which interactions are based
on a page-sequence paradigm [3]. Ajax changes this by
allowing asynchronous requests to be made after a page has
been loaded and allowing JavaScript code to update parts
of the page in the browser, effectively making delta-updates
without reloading the complete page.

Before the dawn of Ajax, Hassan and Holt already noted
that “Web applications are the legacy software of the future”
and “Maintaining such systems is problematic” [4]. We

★This work is described in more detail in the MSc thesis of Nick
Matthijssen [1].

expect that the interactivity and complexity that Ajax adds
will certainly not improve this situation.

Software maintenance starts with building up understand-
ing and subsequently making the necessary modifications.
This understanding step is known to be very costly, with
Corbi reporting that as much as 50% of the time of a
maintenance task is spent on understanding [5]. However,
papers focusing on program understanding specifically for
Ajax applications are scarce (e.g., [6]).

These observations, together with the rapidly growing
number of Ajax enabled web applications, motivated us to
examine ways to support web developers in maintaining
this new breed of web applications. In particular, in this
paper we investigate what kind of problems web developers
struggle with when understanding an Ajax application and
how we can leverage dynamic analysis to better support web
developers in understanding Ajax applications.

Our choice for dynamic analysis is instigated by the fact
that specific to Ajax applications is the potential difficulty of
following the control flow through an application. This stems
from the fact that an Ajax application consists of a collection
of heterogeneous resources, such as web templates, client
side scripts and server side scripts, which are dependent on
each other and all of which contribute to the application.
Links between these artifacts are often established at run-
time. Next, HTML pages can be generated and updated
dynamically, and client side scripts can be generated on
the fly and executed. Finally, the languages that are used
themselves are highly dynamic, such as JavaScript and
server side scripting languages such as PHP. Antoniol et al.
[7] already argued that static analysis alone is insufficient
for web applications. We argue that the even higher degree
of dynamicity in Ajax applications makes static analysis
insufficient for Ajax applications as well.

In order to facilitate a better understanding of Ajax-based
web applications, we have built FireDetective, a tool that
records execution traces on both the client (browser) and
server, and subsequently visualizes them in a combined way.

Next, we used our tool in an exploratory study, which
matches the early stage of this research. The study consists
of two parts, each of which addresses one of our research
questions:
RQ1 Which strategies do web developers currently use

SERG Matthijssen et al. – Connecting Traces: Understanding Client-Server Interactions in Ajax Applications

TUD-SERG-2010-008 1



when trying to understand Ajax applications?
RQ2 Can we use dynamic analysis to improve program

understanding for Ajax applications?
The rest of this paper is organized as follows. Section II

describes the design and implementation of FireDetective.
Section III documents the design of our empirical study.
Section IV describes and discusses our findings. Threats
to validity are covered in Section V. Section VI discusses
related work. Finally, Section VII presents our conclusions
and identifies future opportunities.

II. TOOL DESIGN

FireDetective1 is a tool that records execution traces of
the JavaScript code that is executed in the browser and of
the server side code on the server. The level of detail that
is used is the “call” level: the tool records the names of
all functions and methods that were called, and in what
order they were called, allowing the tool to reconstruct a call
tree representation of each trace. From our own experiences
as Ajax developers we realized that relating these separate
traces to each other would be essential for obtaining a
good understanding of the control flow through an Ajax
application. Consequently, the tool also records information
about abstractions that are specific to the Ajax/web-domain,
such as (Ajax) requests, DOM events, timeouts, etc. This is
a key element of the tool: it enables us to link the afore-
mentioned execution traces in meaningful ways. Moreover,
the abstractions can be used as familiar starting points for
program understanding. The tool presents the network of
traces and abstractions to the user in a set of interactive
views.

A. Architecture

The architecture of FireDetective is shown in Figure 1.
The tool consists of a Firefox add-on which records
JavaScript traces and information about Ajax abstractions,
and a server tracer which can be hooked into a Java EE2

web server. Both of these components forward the data that
they record (via sockets) to the visualizer, the third and final
component of FireDetective. The visualizer then processes
and visualizes the data in real-time. A benefit of this
architecture is that it allows users to use Firefox to interact
with an Ajax application, as they normally would, and then
use the FireDetective visualizer to inspect what is going on
“under the hood”. The architecture also enables components
to run across different machines. Currently, the tool is built
for Ajax applications with a Java + JSP back-end, a decision
that was influenced by the target application that we chose
for our empirical study (see Section III). However, the same
techniques can be applied to Ajax applications with other
back-ends, such as PHP or Ruby.

1FireDetective is open source and can be downloaded from http://swerl.
tudelft.nl/bin/view/Main/FireDetective.

2Java Platform, Enterprise Edition. See http://java.sun.com/javaee/.

Firefox

FireDetective Add-On

FireDetective

Visualizer

Trace data

Java EE Web Server

FireDetective

Server Tracer

FireDetective

Visualizer

Trace data

Figure 1. Architecture of FireDetective.

B. Using abstractions to link traces

We use a number of abstractions from the Ajax/web
domain to which we link traces or calls within traces. They
are listed below.

∙ Full page requests occur when a whole page is loaded.
We use a full page request to group all requests and
JavaScript traces that take place before the next full
page request occurs, into a chronological list.

∙ Non-Ajax requests are contained within a full page
request. They are also associated with the server side
trace that was recorded for that particular request.

∙ Top-level script load invocations occur when the
browser has loaded scripts and executes them. These
script loads are linked to the resulting JavaScript trace.

∙ DOM events are events such as “element was clicked”
or “page was loaded”. They are associated with one or
more JavaScript traces that were recorded as a result of
event handlers firing for the DOM event in question.

∙ Ajax requests, like other requests, are associated with
a single server side trace. They are also linked to the
JavaScript call that sent the request and the JavaScript
traces that were recorded when handling the response.

∙ Timeouts (in JavaScript) can be set to trigger a timeout
handler after a specified time period has elapsed. We
link timeouts to the JavaScript traces that were recorded
as a result of the timeout handler being invoked, and
to the JavaScript calls that started and stopped that
particular timeout3.

∙ Web template invocations are not specific to Ajax, and
are used in many web applications. In our case, we are
working with JSP templates. Because these templates
are compiled prior to use, they do not end up in the
trace in their original form. Therefore, we reconstruct
JSP invocations from the original trace and link them
to the points in the traces where they took place.

Some links between traces/calls and abstractions represent
a causal relationship, e.g. some JavaScript call causes an
Ajax request, which then causes a server side and – when
the response is received – JavaScript trace to be created. By
following these links in one direction, tool users are able to
answer “what?” and “how?” questions about the program,

3The last two types of links were only implemented after conducting the
empirical study.

Matthijssen et al. – Connecting Traces: Understanding Client-Server Interactions in Ajax Applications SERG

2 TUD-SERG-2010-008



e.g. “how was this DOM event handled?”. Moreover, links
can also be followed in the reverse direction, enabling tool
users to answer “why?” questions, e.g. “why did this Ajax
request occur?”.

The abstractions were identified through our own experi-
ences as Ajax developers. In Section IV we offer possible
additions to this list. We used different mechanisms for
recording and reconstructing these abstractions, and linking
them to the relevant traces. These mechanisms are briefly
described in Subsection II-E.

C. Interactive visualization
The visualizer displays the collection of traces and ab-

stractions to the user. Its interface is shown in Figure 2.
The visualization’s design is loosely based on guidelines
outlined by Shneiderman [8]: information visualization tools
should allow for creating overviews, zooming, filtering, and
providing details on demand. This design correlates with a
top-down comprehension strategy [9].

Three main views are used, each of which shows a
different level of detail. The first view is a high-level view,
which shows a tree representation of the aforementioned
abstractions (except template invocations). Expandable tree
nodes may reveal more detail, e.g. expanding an Ajax
request node shows its relation to particular traces and calls,
i.e. the life cycle of the request. The second view is a trace
view which displays one execution trace at a time, as a call
tree. Each tree node represents a single call, with expandable
subcalls. The third view is a standard source code view.

The three views are linked: selecting a high-level entity
in the first view shows the related trace in the trace view,
and selecting a call in the trace view shows the related code.
There is also one side view, which contains a tree representa-
tion of the resources (e.g. code files) of the Ajax application.
Clicking a resource shows the file in the code view. The
view can be filtered to only show the files that were used
for the current page, which greatly reduces the number of
files that are shown, and allows a tool user to quickly see
which resources are involved on the current page. The user
can also select a block of code (e.g. a JavaScript function)
to highlight and cycle through invocations of that block of
code in the high-level view and trace view.

A disadvantage of execution traces is that they can quickly
grow to massive proportions. In order to reduce the size
of traces, we use two simple, well-known trace reduction
mechanisms [10]. The first one is to filter out all library calls
and only keep calls that are specific to the Ajax application
that is being analyzed. Both client side libraries (such as
Dojo4 and server side libraries (such as Java EE server
internals) are filtered out. The second mechanism concerns
stopping and starting recording. This allows the user to time
slice the Ajax application, and, for example, to find out how
a particular interaction with the Ajax application is handled.

4See http://dojotoolkit.org/.

D. Barriers to comprehension

One caveat regarding JavaScript tracing is that the lan-
guage allows a developer to define anonymous functions,
a mechanism which is commonly used by web developers.
Because many trace visualizations (including ours) display
the names of invoked functions, this becomes a problem:
e.g., a call tree showing “anonymous” functions calling each
other is not particularly helpful.

In practice, it turns out that a function is often assigned
to exactly one variable, e.g.: var f = function(...)
{ ... }. Therefore, whenever this is the case, we use the
name of the variable to identify the function. We parse all
JavaScript files and for every anonymous function definition
that we encounter, we try to find a variable or instance
variable that precedes it. Note that this approach is not
always correct: in the example, f could be reassigned another
function. However, the approach seems to work well in
practice: for example, the popular Firefox FireBug add-on
currently5 uses a similar technique (albeit simpler, based on
regular expressions) to “name” anonymous functions.

Another potential issue is the “lazy loading” of JavaScript
files, a technique that is used in the Dojo library, for
example. “Lazy loading” refers to retrieving a script file by
means of an Ajax request, and subsequently “eval”-ing it,
reducing the initial page load time. However, because of the
“eval” call, the link between original filename and code is
lost. This can lead to the undesirable situation of having
a fragment of code and not knowing where it came from,
except that it was dynamically generated at some point.

The tool solves this problem by computing a hash code for
the response text of every Ajax request, and every “eval”-ed
string. When the tool shows a fragment of “eval”-ed code
and finds a matching Ajax response text hash, the tool can
reconstruct the filename of the “eval”-ed code.

E. Implementation details

JavaScript function calls and Java calls are recorded using
Firefox’ debugger interface and the Java VM tool interface,
respectively. This has the advantage that no code needs
to be instrumented, and that the approach also works for
JavaScript code that is generated dynamically and “eval”-ed
on the fly.

The connection between browser and server is made
by appending a custom header X-REQUEST-ID contain-
ing an id, to every outgoing HTTP request in Firefox.
Upon receiving the request on the server side, the id
can be detected by the server tracer. DOM events are
registered in Firefox by adding event listeners for all
possible DOM events, for the window and document
objects. Ajax requests and JavaScript timeouts (and in-
tervals) are registered by wrapping all related properties
and functions (e.g., XMLHttpRequest.responseXML,

5FireBug 1.5.0, see http://getfirebug.com/.

SERG Matthijssen et al. – Connecting Traces: Understanding Client-Server Interactions in Ajax Applications

TUD-SERG-2010-008 3



Figure 2. The visualizer, showing an analysis of a small sample application. 1. High-level view. An Ajax request is expanded; related traces/calls are
shown. 2. Trace view. 3 Code view. 4. Resource list, showing only the files that were used on the current page.

window.setTimeout) and callbacks. JSP invocations are
reconstructed by recognizing certain calls that occur within
the JSP engine, which works well for our target application,
although it fails to scale up to bigger applications with
multiple JSP files with the same name, but in different
directories. One possible solution would be to instrument
JSP files prior to analysis, which has the additional benefit of
not depending on implementation details of the JSP engine.

III. STUDY DESIGN

We used an exploratory pre-experimental user study to
address our research questions: which strategies do web
developers currently use, and, can dynamic analysis improve
program understanding for Ajax applications? The type
of experiment is called pre-experimental to indicate that
it does not meet the scientific standards of experimental
design [11], yet it allows to report on facts of real user-
behavior, even those observed in under-controlled, limited-
sample experiences.

In the study, we observed 8 participants working on a
number of program understanding tasks. Two were full-time
software developers; the other six were computer science
or software engineering students, of which five had a part-
time software development job. Each participant’s session
consisted of two distinct parts:

∙ Part A: Observing current understanding strategies.
Participants used a standard set of web development
tools: Eclipse and Firefox with the popular FireBug
add-on. The purpose of this part is to provide insight
into which strategies web developers use when trying

to understand Ajax applications, and whether these
strategies are sufficient.

∙ Part B: Support through dynamic analysis. Par-
ticipants used Eclipse and Firefox with FireDetec-
tive. The purpose of this part is to provide insight
into whether dynamic analysis techniques as provided
through FireDetective can improve understanding, and
if so, how.

Our approach is exploratory and the focus lies on observ-
ing participants as they work on tasks. We asked participants
to think aloud during the study, and because the study was
conducted in a lab setting we were able to make audio
and screen recordings for later analysis. After each part,
participants were subjected to a short interview. Addition-
ally, some quantitative data was collected during the study,
mainly through two short questionnaires. In the following
sections, these aspects are described in more detail.

A. Design of Part A: Observing current understanding
strategies

Part A started with a background interview and question-
naire, to gauge the development experience of the partic-
ipant. This was followed up by a 10-minute introduction
to the tools used in this part of the study: Eclipse and
FireBug. Since participants were likely to have experience
with these tools (this was indeed the case, see section IV),
the introduction served mostly to refresh the participants’
memory.

After the introduction, participants worked on a set of
program understanding tasks for 35 minutes. We emphasized

Matthijssen et al. – Connecting Traces: Understanding Client-Server Interactions in Ajax Applications SERG

4 TUD-SERG-2010-008



that they could use any feature they wished, to minimize
bias towards using the features that we had shown them.
Participants were informed that they could move on to the
next task if they failed to make progress on their current task,
and that they could ask questions at any time (questions
about the target application itself were not answered, for
obvious reasons). Also, if the experiment leader noticed that
a participant was struggling with a particular tool feature,
the participant would be given a short explanation of the
feature. Since our goal was to find out as much as we can
about the strategies that participants use, we did not want
them to get stuck for too long. A short interview asking
participants about encountered problems concluded part A.

B. Design of part B: Support through dynamic analysis

After a short break, participants continued with part B,
during which they used Eclipse and FireDetective. Ideally,
we would have included FireBug as well, but unfortunately,
FireDetective and FireBug are currently incompatible.

As in part A of the study, the focus lies on observing
participants as they work on tasks. However, part B also con-
tains a quantitative component, for which a pretest-posttest
design was used [12]. The pretest measured participants’
expectations prior to using FireDetective, while the posttest
measured participants’ experience after using the tool. In
particular, we evaluated four attributes:

∙ Better understanding. Does the tool allow web devel-
opers to understand Ajax applications more effectively?

∙ Quicker understanding. Does the tool allow to under-
stand Ajax applications more efficiently?

∙ More confident about understanding. Does the tool
make web developers more confident about their un-
derstanding of an Ajax application?

∙ Minimal value. This attribute is inversely related to the
above attributes. Does the tool provide value?

For the pretest, participants were given a short abstract
description of a tool like FireDetective. To avoid influencing
participants’ expectations by exposing them to part A of the
study, the pretest was conducted during the beginning of part
A (after the background questionnaire). The posttest took
place after working with FireDetective. In both the pretest
and posttest, each of the four attributes was tested via a
multiple choice question for which we used a 5-point Likert
scale, ranging from strongly disagree to strongly agree.

After a 10-minute introduction to FireDetective, partici-
pants worked on a different set of program understanding
tasks, for 25 minutes. This choice was made to keep the
complete duration of the study under two hours. Since our
intent is not to compare the effectiveness of FireDetective
to FireBug, this difference in timing is not a concern in
our study design. We decided to allocate more time to Part
A as understanding how developers use existing tools was
more important to us at this stage of our research. The target
application was the same as in part A.

Working on the tasks was followed by the posttest ques-
tionnaire. We also asked participants to rate their top 3
features. Finally, another short interview was conducted,
asking about encountered problems, least and best liked parts
of the tool and suggestions for improvement.

C. Target application

To gain real world insights, we required a target applica-
tion that was representative of a real world Ajax application
and written using languages and technologies that our par-
ticipants were familiar with. The Java Pet Store satisfied
these requirements. It is a reference application, “designed
to illustrate how the Java Enterprise Edition 5 Platform can
be used to develop an AJAX-enabled Web 2.0 application”6.
The application consists of 12KLoc, which are written in a
variety of languages, such as HTML, CSS and JavaScript
on the client side, and Java and JSP on the server side. All
of these files were made available in an Eclipse workspace.

The Java BluePrints library is used extensively in the Pet
Store, and we found that not including its client side code
limited us in the task design. Moreover, this code would
show up in FireBug and FireDetective anyway. Hence, we
made sure that all client side code that was potentially visible
in FireBug and FireDetective could also be found in Eclipse.
This amounted to +6KLoc for BluePrints and +97KLoc for
Dojo, respectively.

D. Task design

The study required the design of two task sets, one for
each part of the study. We constructed the tasks ourselves, by
drawing from our own experience with the Pet Store. Each
task set consisted of 4 tasks, divided into 2 or 3 subtasks
each, adding up to a total of 10 subtasks per task set7.

For the generalizability of the study it is important to
make sure that the tasks are realistic and that they accurately
represent a significant part of the program understanding task
domain. Therefore, we used open-ended questions rather
than multiple choice questions. Moreover, we designed tasks
using Pacione’s taxonomy of 9 principal activities [13], and
strove for coverage of the first 6 principles he suggests:
A1. Investigating the functionality of (a part of) the system;
A2. Adding to or changing the system’s functionality; A3.
Investigating the internal structure of an artifact; A4. Inves-
tigating dependencies between artifacts; A5. Investigating
runtime interactions in the system; A6. Investigating how
much an artifact is used. We did not cover the last three
principles, to limit the number of tasks and reduce the risk
of our participants becoming fatigued during the study.

Since we were keen to observe how FireDetective would
be used on unfamiliar code, we strove to choose tasks for

6See http://java.sun.com/developer/releases/petstore/, retrieved on De-
cember 14th, 2009.

7The task descriptions can be found in [1].

SERG Matthijssen et al. – Connecting Traces: Understanding Client-Server Interactions in Ajax Applications

TUD-SERG-2010-008 5



the second set that would involve code not inspected in part
A of the study.

E. Pilot sessions

Three pilot sessions were conducted to fine tune the study.
The first pilot session did not use think aloud, and it turned

out to be hard to reconstruct the participant’s thinking steps.
As a result, we switched to think aloud with audio and screen
recordings. Also, the questionnaires were reduced in size,
with more emphasis on participant interviews. To keep the
total length of the study under 2 hours, the duration of the
second part (during which participants use FireDetective)
was reduced from 35 to 25 minutes.

During the second pilot we found that the tasks were too
difficult, so they were altered to make them slightly easier.
To reduce pressure on participants, we decided to give out
tasks one at a time. Also, at the beginning of the study we
made it clear that if participants were unsure what to do next,
they could indicate this and move on to the next task. Finally,
FireDetective’s user interface was improved and simplified.

The third pilot session ran without major problems and
only a few minor adjustments were made afterwards. In
particular, we altered the introduction to Eclipse to exclude
explanations of Eclipse features (such as “Call hierarchy”) as
such explanations may bias participants towards using these
features. Also, some of the task descriptions were adjusted
to make them clearer.

F. Participant profile

All participants in the user study were required to have
web development experience. Since the term “web devel-
opment experience” can be interpreted quite broadly, we
specifically asked for basic Java and JavaScript experience.
We assumed that when people had experience with these
two languages, especially the latter, they would also have
experience with web development. This turned out to be
the case for 8 out of 9 participants that we recruited. One
participant indicated to have 0 years of web development ex-
perience and this was reflected in the results: the participant
was only able to complete the most basic tasks. Because
the participant was clearly not representative of the target
population we excluded this data. As such, the total number
of participants is 8.

Our 8 participants represent our target population quite
well. 5 had a professional web development job: 1 full-
time and 4 part-time. 2 others had a professional software
development job: 1 full-time and 1 part-time. Both of these
participants indicated that they worked on web develop-
ment projects for at least a part of their jobs. Except for
the 2 full-time developers, the 6 other participants were
either computer science or software engineering students:
4 undergraduate and 2 PhD students. Participants’ median
number of years of web development experience was 2 years
(min. 1 year, max. 5 years); it can be argued that this is a

4.5 4.5

2

1

2

3

4

5

Java JavaScript JSP

Level

1

4

4.5

Dojo Eclipse FireBug

Figure 3. Box plots of participants’ experience with relevant technologies
and tools. The values on the 5-point scale (vertical axis) correspond to
1 = “Never used it”, 2 = “Used it for a couple of hours or less”, 3 = “Used
it for one or two projects”, 4 = “I use it regularly” and 5 = “I’ve been using
it regularly for over two years now”.

low number. However, technologies like Ajax have not been
around for that long: at the time of writing, the term Ajax has
been coined less than 5 years ago [2]. Moreover, the median
number of years of software development experience was
5.5 years (min. 2 years, max. 10 years), which shows that
participants did have general software development skills.

Participants’ rated their experience with particular tech-
nologies that were relevant to the study. They did so on a
custom 5-point scale; the results are shown in Figure 3. We
can clearly see that participants have a good understanding
of Java, JavaScript, Eclipse and FireBug, yet, we can also
see that they are not familiar with JSP and the Dojo
library. The impact of this on the generalizability of the
study is discussed in Section V, which covers threats to
validity. Participants did not have a prior understanding of
the Pet Store or BluePrints library, which we could see from
observing participants working on the tasks.

IV. FINDINGS AND DISCUSSION

Although our focus in this study was not on the number
of completed tasks, but rather the strategies used for solving
them, it is interesting to note that the median number of
subtasks worked on for part A is 6 (min. 4, max. 8), for
part B this is 7 (min. 5, max. 9). Roughly two thirds of
these attempts led to the correct answer, in both parts of the
study. In the following, we report our observations.

A. Part A: Observing current understanding strategies

Central to the first part of the study is our first research
question: “which strategies do web developers currently
use when trying to understand Ajax applications?” While
participants were working with Eclipse and FireBug, we
were able to make a number of observations.

First of all, participants relied almost solely on bottom-up
comprehension strategies, i.e. starting at the lowest level –
e.g. code fragments – and trying to piece the fragments that
they found together. Participants mainly focused on explor-
ing control flow relationships [14], i.e. finding definitions
and/or occurrences of functions, methods and classes.

In order to explore these control flow relationships, all
participants made heavy use of text search. While Eclipse
provides functionality for exploring control flow, e.g., the

Matthijssen et al. – Connecting Traces: Understanding Client-Server Interactions in Ajax Applications SERG

6 TUD-SERG-2010-008



0

1

2

3

4

5

6

– – – o + ++

(a) Better understanding

0

1

2

3

4

5

6

– – – o + ++

(b) Quicker understanding

0

1

2

3

4

5

6

– – – o + ++

(c) More confident

0

1

2

3

4

5

6

– – – o + ++

(d) Minimal value

Pretest

Posttest

(e) Legend

Figure 4. Distributions of participants’ expectations before (pretest, light gray) and experiences after (posttest, blue) using FireDetective. Horizontal axes:
5-point Likert scale, ranging from strongly disagree (“– –”) to strongly agree (“+ +”). Vertical axes: number of participants.

“Open Declaration” and “Call Hierarchy” functions, these
functions were only occasionally used by participants (far
less than text search). A possible reason for this might
be that these functions (currently) do not always work as
expected for web applications: for instance, opening the
“Call hierarchy” of a Java method does not show calls made
from a JSP file, and “Open Declaration” does not always
work well with JavaScript’s anonymous functions.

Another use of text search, specific to web applications,
was mapping an id of an element (usually found through the
FireBug element inspector) to where the id was used in the
code. We also noticed more ad hoc uses of text search, such
as searching for (part of) an URL or searching for some text
of the web page, used both successfully and unsuccessfully
by participants to get an idea of where a particular element
or URL was generated on the server.

Text search leads to a number of problems. Important
results are sometimes missed because of cluttering of the
search results window or choosing the wrong search scope.
The biggest problem is that text search only allows the user
to explore one control flow link at a time, making it easy to
lose track. During a task when participants were required to
follow a small but branching call tree, participants quickly
lost track of which branches they had already explored,
causing them to make mistakes: only two participants were
able to provide a correct answer.

Discussion. From this we conclude that the strategies that
web developers currently use can be improved. Participants
rely mostly on looking at code and text search, which can be
better supported by tools. Since following control flow con-
stitutes a fairly big chunk of participants’ actions, supporting
this process seems useful. Considering the incompleteness
of static analysis and the highly dynamic nature of web
applications, we argue that dynamic analysis support would
be beneficial in tool support.

B. Part B: Support through dynamic analysis

Central to this part of the study is our second research
question: “Can dynamic analysis improve program under-
standing for Ajax applications?” If this is the case, we would
also like to learn more about how this works, and what
we can do to further improve understanding. We obtained
insights into these questions via four different routes: the

pretest-posttest, the questionnaire about feature usefulness,
observing participants using the tool and the final interview.

Pretest–posttest. The results of the pretest and posttest
are shown in Figure 4. From a first look at the results we
can see that the pretest and posttest results are fairly similar:
it is interesting to know that participants did not completely
switch their opinions before and after using the tool. The
pretest results are quite positive, which confirms the need
for tool support that we found in part A. The posttest results
are quite positive as well, and show that participants were
quite pleased with FireDetective.

In particular, participants indicate that the tool can help
them to understand web applications more effectively (a)
and more efficiently (b). Participants also seem convinced
that the tool helps them to be more confident about their
understanding of the web application they are investigating
(c), although their answers are somewhat more distributed
compared to the other questions. One participant answered
“strongly disagree” during the posttest, as can be seen from
the figure. Interestingly enough, when asked why this was,
the participant answered that the tool made some tasks
almost too easy: “It seemed like I caught [the answer] a lot
quicker than I was expecting, so that questioned how much
I really trusted the results that I came up with.” Finally,
participants acknowledge that the tool adds value (d).

Discussion. While these are preliminary findings, we think
they are very encouraging. They show that FireDetective,
which leverages dynamic analysis techniques, is indeed
capable of improving program understanding for Ajax ap-
plications.

Features. We asked participants’ opinion on 6 features of
FireDetective that we wanted to investigate in more detail:
the high-level view (F1), the files view which is filtered and
only shows the files that were used on the current page (F2),
the ability to jump between client and server traces (F3), the
ability to follow the life cycle of an Ajax request (F4), time
slicing the analysis by starting and stopping tracing (F5),
and the fact that the analysis is real-time (F6). By looking
at the screen recordings we were able to reconstruct feature
use; feature usefulness was measured by asking participants
to indicate their top 3 features in the final questionnaire.

All participants used the first three features (F1, F2, F3).
This is not too surprising, since these features are central

SERG Matthijssen et al. – Connecting Traces: Understanding Client-Server Interactions in Ajax Applications

TUD-SERG-2010-008 7



1 2 3 4 5 6 7 8

F1: High-level overview 1 1 2 1 3

F2: Filtered files view 3 2 2 2 2 2

F3: Jumping between client-server 3 3 3 1 1

F4: Following Ajax requests' life cycles 3

F5: Time slicing 1 1 1 2

F6: Real-time analysis 2 3 3

Figure 5. Participants’ top 3 features. Each column represents one
participant. The 1’s, 2’s and 3’s indicate the participant’s best liked, second
best and third best liked features respectively.

to the tool. 6 out of 8 participants used the time slice
feature (F5) and 4 participants briefly explored the life cycle
feature (F4). (use of F6 is implicit). Participants’ subjective
preferences towards features are shown in Figure 5. We can
see that there is no clear winning feature. However, we can
observe some trends, which may give us some insight into
how FireDetective helped improve program understanding.

The high-level overview (F1) and time slicing (of the
high-level view) (F5) seem to be popular with three #1 votes
each, as well as jumping between client and server (F3)
– two #1 votes. A possible explanation for this popularity
could be that these three features all play a role in enabling
a more top-down understanding process, which, as we could
see from part A of the study, participants did not previously
use. Rather than starting with low-level code, participants
can now look at abstractions such as Ajax requests and DOM
events and use them as starting points to explore the code.
The filtered files view (F2) has the largest number of votes
in general, and may play a similar role. From part A of the
study, we saw that participants often did not know all of the
files that were relevant to a certain page of the Pet Store:
the filtered files view provides an initial overview of these
relevant files, such that participants have a better starting
point for investigation.

Discussion. It is hard to determine exactly which elements
of FireDetective are the main contributors to its usefulness.
Some features are untestable via a questionnaire, such as
“code view” and “naming of anonymous functions” (auto-
matic): these features are used all the time, but because of
that it can be hard for participants to determine whether
these features were actually useful.

Observations and interview. Besides the expected learn-
ing curve and usability issues (see [1]), participants encoun-
tered a number of issues when working with FireDetective.

One interesting issue that several participants encountered
had to do with Java servlet filters, server side classes defined
by the web application that process requests. Because the
tool records calls to all methods, it also shows calls made to
filter classes. However, it cannot show why these calls occur,
since the internal server logic that calls the filters is hidden
from view, and even if the tool were to show these internal

calls, it would produce a distorted picture, since the real
cause of the filter being called is a binding specified in an
XML file. During the study, several participants encountered
this problem. They were wondering why the EntryFilter class
of the PetStore was invoked, but the tool was unable to give
them this information.

Another problem occurred during a task in which partic-
ipants had to examine a bug, caused by a click handler that
contained a syntax error. Participants, still unaware of the
cause of the bug, would trigger the click event and search
for it in the high-level view of the tool. However, the click
event handler did not show up because it failed to compile.
Since the tool did not capture information about JavaScript
compilations, it was unable to show the reason for the
event handler not being called. When participants noticed the
syntax error (mostly by hovering over the element, causing
Firefox to show the associated script in the status bar),
they wanted to find where the event handler was set. Most
participants said they would have liked to use FireBug at
this point, to use the element inspector to find the id of
the element, and look through the code for that id. They
essentially wanted to link DOM (element) mutations to code,
something which FireDetective cannot currently do since
it does not record information about the DOM mutation
abstraction.

Finally, participants were slightly confused by the way the
tool presents full-page requests. The high-level view was
filtered to show only the last full-page request. However,
participants did not always notice this, causing them to think
that they were dealing with an Ajax request, while it was
actually a full-page request. This confused them because
they were looking for an Ajax request that did not exist.

When asked about potential tool improvements, partic-
ipants often indicated integration with FireBug, providing
evidence for the fact that FireBug and FireDetective are
complementary. Participants also asked for mechanisms to
reduce the amount of visible information: they were some-
times overwhelmed by the information shown. Since we
used only basic trace visualization and reduction techniques,
this was to be expected. Participants asked for particular
static analysis techniques, such as full text search, possibly
because they are attached to their old way of working, but
probably because static and dynamic analysis are comple-
mentary techniques.

Discussion. From the observations that we made we can
extract three ways in which this work can be continued:

∙ Other types of abstractions. The absence of certain
abstractions in the tool hampered the understanding
process. Our first suggestion is to record information
about various types of XML bindings and link them to
traces. Candidates include the aforementioned filters,
servlet mappings and taglibs (custom JSP tags, which
are linked to their implementation via XML). XML
bindings in general represent connecting information,

Matthijssen et al. – Connecting Traces: Understanding Client-Server Interactions in Ajax Applications SERG

8 TUD-SERG-2010-008



and hence, they can be very helpful for improving
understanding. Other abstractions that we found evi-
dence for being useful are the JavaScript script parsing
process and the errors that occur during it and DOM
mutations.

∙ Different kinds of visualizations. FireDetective’s vi-
sualizations are straightforward representations of the
recorded abstractions and traces. Only simple trace
reduction techniques were used, which – expectedly –
caused participants to be overloaded with information
on various occasions. We should investigate how to
visualize the connected network of abstractions, traces
and code in better ways.

∙ Integration with existing tools. From the study it
became obvious that FireDetective and FireBug are
complementary tools. It could be interesting to inves-
tigate how these tools exactly complement each other
and how they can be integrated more tightly.

V. THREATS TO VALIDITY

A. Internal validity

Participants might have been inclined to rate the tool more
positively than they actually value it, because they might
have felt this was the more desirable answer. We mitigated
this concern by indicating to participants that only honest
answers were valuable.

Next, the introduction sessions might have biased partic-
ipants towards using the features that we showed them. We
tried to neutralize this threat in the following way. During the
introduction session for part A we only showed participants
basic information on where they could find the different parts
(i.e. server side code, client side code) within the Eclipse
project, and the basic FireBug views. Explanations of other
features were not included and participants were told they
could use any feature they liked. For part B, we made sure
to explain all features of FireDetective.

The tasks might have been too easy or too difficult. How-
ever, through pilot sessions we adjusted the task difficulty
level accordingly. Also, participants might have felt time
pressure, causing them to behave differently. We minimized
this problem by telling them that the number of tasks
completed was not important and by handing out tasks one
at a time, without revealing how many there were to come.

B. External validity

A concern regarding the generalizability of the results is
that most participants were students. However, as shown
in Section III-F a lot of these participants had a relevant
part-time job. Participants were not familiar with two of the
technologies used in the study, JSP and Dojo. We admit
that the learning curve involved has likely impacted the
results. Yet, we also think that this impact is limited because
both JSP and Dojo are technologies that are very similar to
rivaling technologies. Moreover, participants were given a

brief introduction to JSP, and were allowed to ask questions
about the technologies involved at any time.

The Java Pet Store, our target application, is a showcase
application. This might cause one to question whether this
application is representative of a real-world Ajax application.
However, the application represents the state-of-the-practice
and manual inspection of the application shows that it uses
Ajax on most of its pages and is clearly more than just a
“toy example”. Moreover, the application has been used in
previous program understanding research efforts, e.g. [15].

Finally, the tasks might not have been representative of
real-world tasks. Because of the limited time frame tasks are
likely to be shorter than real-world tasks, and they might
not have covered all program understanding aspects. We
tried to mitigate this threat by using Pacione’s framework
of principal comprehension activities [13] to make sure that
the tasks are realistic and cover a significant portion of the
program comprehension spectrum.

VI. RELATED WORK

Early web application reverse engineering efforts were
mainly focused on architecture reconstruction, e.g. [4], [7],
[16]–[18]. Static analysis alone does not suffice because
of the dynamic nature of web applications [7], [18], so in
most cases the static analysis is complemented by dynamic
analysis. However, many client side aspects that are common
in Ajax applications are not taken into account.

De Pauw et al. [19] present the Web Services Navigator,
a tool that offers insight into message and transaction flows
in systems of multiple web services. The tool combines
multiple web service event logs to reconstruct meaningful
abstractions in the web service domain and has some similar-
ities with FireDetective, albeit applied to a different domain.

Recent efforts have focused on understanding only client
side aspects of Ajax applications. Li and Wohlstadter [15]
present a tool named Script InSight, which uses dynamic
analysis to record DOM mutations and relate them to the
JavaScript functions that caused them. This allows a web
developer to map a DOM element on the page to locations
in the code where the element was modified.

Oney and Myers [20] present FireCrystal, which enables
a user to view a timeline of DOM events and DOM
modifications, and view code coverage per DOM event.

Our approach differs from these last two approaches in
a number of ways. First, our approach visualizes execution
traces. Second, it combines client and server side informa-
tion to show a complete picture of an Ajax application.
Third, it uses a different and larger set of abstractions from
the Ajax/web domain to link traces together (in contrast to
only DOM mutations and DOM events).

Finally, there is one commercial tool of interest: Dyna-
Trace Ajax8. While conceptually quite similar to FireDetec-

8See http://ajax.dynatrace.com/. DynaTrace Ajax Edition was released in
September 2009, after we built FireDetective.

SERG Matthijssen et al. – Connecting Traces: Understanding Client-Server Interactions in Ajax Applications

TUD-SERG-2010-008 9



tive, DynaTrace Ajax focuses on performance analysis.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced FireDetective, a dynamic
analysis tool for analyzing Ajax applications. FireDetective
records execution traces on both the browser and server, cap-
tures information about Ajax/web abstractions, and presents
this information in a linked way.

We conducted an exploratory user study to provide insight
into our two research questions:
RQ1 Which strategies do web developers currently use

when trying to understand Ajax applications? Partic-
ipants mainly use a bottom-up approach, and heavily
rely on text search. This strategy is ad hoc and problem-
atic for understanding Ajax applications; tool support
should be improved.

RQ2 Can we use dynamic analysis to improve program
understanding for Ajax applications? Participants indi-
cated that FireDetective – which uses dynamic analysis
– allows them to understand Ajax applications more
effectively, more efficiently and with more confidence.
A possible explanation could be that the tool offers the
option to switch to a more top-down way of understand-
ing. From the observations and interviews conducted
during the user study we identify three different ways to
further support the understanding process: incorporat-
ing information about additional abstractions (such as
various kinds of XML bindings and JavaScript parsing
errors), exploration of other kinds of visualizations and
integration with existing tools, such as Firefox’ FireBug
add-on.

Contributions. In this paper, we have made the following
contributions:

∙ We have built FireDetective, a dynamic analysis tool
for understanding Ajax applications.

∙ We have shown how to employ abstractions in the
Ajax/web domain to link execution traces.

∙ We have carried out a preliminary user study that
showed us (1) how developers traditionally go about
understanding Ajax applications and (2) that dynamic
analysis techniques can improve their understanding.

Future Work. An interesting avenue for future work is to
explore ways to further improve program understanding of
Ajax applications. At the same time we must carefully evalu-
ate empirically how individual aspects and techniques affect
the understanding process. Furthermore, a longitudinal study
which explores the long term effects of such techniques in
a real web development environment is our next step.

Acknowledgments. We would like to thank all volunteers
that participated in our user study.

REFERENCES

[1] N. A. Matthijssen, “Understanding Ajax applications by using
trace analysis,” Master’s thesis, Tech. Univ. Delft, 2010.

[2] J. J. Garrett, “Ajax: A new approach to web ap-
plications,” 2005, http://www.adaptivepath.com/ideas/essays/
archives/000385.php, retrieved on December 30th, 2009.

[3] A. Mesbah and A. van Deursen, “A component- and push-
based architectural style for ajax applications,” Journal of
Systems and Software, vol. 81, no. 12, pp. 2194–2209, 2008.

[4] A. E. Hassan and R. C. Holt, “Architecture recovery of web
applications,” in Proceedings of the International Conference
on Software Engineering (ICSE). ACM, 2002, pp. 349–359.

[5] T. Corbi, “Program understanding: Challenge for the 1990s,”
IBM Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[6] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension
through dynamic analysis,” IEEE Transactions on Software
Engineering, vol. 35, no. 5, pp. 684–702, 2009.

[7] G. Antoniol, M. Di Penta, and M. Zazzara, “Understanding
web applications through dynamic analysis,” in Int’l Work-
shop on Program Comprehension. IEEE, 2004, pp. 120–129.

[8] B. Shneiderman, “The eyes have it: A task by data type
taxonomy for information visualizations,” in Proc. Symposium
on Visual Languages (VL). IEEE, 1996, pp. 336–343.

[9] A. von Mayrhauser and A. M. Vans, “Program comprehension
during software maintenance and evolution,” IEEE Computer,
vol. 28, no. 8, pp. 44–55, 1995.

[10] B. Cornelissen, L. Moonen, and A. Zaidman, “An assessment
methodology for trace reduction techniques,” in Int’l Conf. on
Software Maintenance (ICSM). IEEE, 2008, pp. 107–116.

[11] E. Babbie, The practice of social research, 11th ed.
Wadsworth Belmont, 2007.

[12] D. Campbell, J. Stanley, and N. Gage, Experimental and
quasi-experimental designs for research. Rand McNally
Chicago, 1963.

[13] M. Pacione, M. Roper, and M. Wood, “A novel software
visualisation model to support software comprehension,” in
Working Conf. Rev. Engineering. IEEE, 2004, pp. 70–79.

[14] N. Pennington, “Stimulus structures and mental representa-
tions in expert comprehension of computer programs,” Cog-
nitive Psychology, vol. 19, no. 3, pp. 295–341, 1987.

[15] P. Li and E. Wohlstadter, “Script InSight: Using models to
explore JavaScript code from the browser view,” in Int’l Conf.
Web Engineering (ICWE). Springer, 2009, pp. 260–274.

[16] F. Ricca and P. Tonella, “Analysis and testing of web appli-
cations,” in Proceedings of the 23rd International Conference
on Software Engineering (ICSE). IEEE, 2001, pp. 25–34.

[17] G. Di Lucca, A. Fasolino, F. Pace, P. Tramontana, and U. de
Carlini, “WARE: A tool for the reverse engineering of web
applications,” in Proc. Conf. on Software Maintenance and
Reengineering (CSMR). IEEE, 2002, pp. 241–250.

[18] P. Tonella and F. Ricca, “Dynamic model extraction and sta-
tistical analysis of web applications,” in Proc. Int’l Workshop
on Web Site Evolution (WSE). IEEE, 2002, pp. 43–52.

[19] W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J. F.
Morar, “Web services navigator: visualizing the execution of
web services,” IBM Systems Journal, vol. 44, no. 4, pp. 821–
845, 2005.

[20] S. Oney and B. Myers, “FireCrystal: Understanding interac-
tive behaviors in dynamic web pages,” in Proc. of the Sym-
posium on Visual Languages and Human-Centric Computing
(VLHCC). IEEE, 2009, pp. 105–108.

Matthijssen et al. – Connecting Traces: Understanding Client-Server Interactions in Ajax Applications SERG

10 TUD-SERG-2010-008





TUD-SERG-2010-008
ISSN 1872-5392 SERG


